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Abstract

Microbial translocation (MT) from the gut is implicated in driving immune activation, increasing morbidity and
mortality in HIV. We used bacterial 16S rDNA PCR, Sanger sequencing, and high-throughput sequencing to
identify microbial DNA in the bloodstream of HIV-infected children in London, United Kingdom. Blood samples
were collected from sequential children attending the HIV clinic at Great Ormond Street Hospital, London. DNA
extraction, broad range 16S rDNA PCR, and standard Sanger sequencing were carried out. A subset of positive
samples was analyzed by high-throughput sequencing (Roche 454 platform). Of 105 samples collected from
sequential children, nine were positive using broad range 16S rDNA PCR (8.6%; 95% CI 4.4–16%). From three
amplicons, 16S rDNA sequences were identified as Streptococcus, Propionibacterium acnes, and coagulase-negative
Staphylococcus. Four positive samples were analyzed by high-throughput sequencing. In the three samples in
which organisms were identified by Sanger sequencing, the same species were identified. Further species, in
differing proportions, were identified in all four samples. The identified organisms included known gut orders
Bifidobacteriaceae, Lactobacillaceae, Bacteroidales, and Clostridiales. In immunocompetent children of equiva-
lent age, no bacterial DNA was detected in blood using this approach. This is the first study to our knowledge
using molecular techniques to identify MT in children in the developed world. Our data indicate that 16S rDNA
is detectable in 8.6% of HIV-infected children. Levels of DNA were low and from multiple bacterial species.
Further studies are needed to ascertain the importance of MT in HIV-infected children.

Introduction

Immune activation is central to the pathogenesis of
HIV infection and is associated with increased mortality

and non-AIDS-related morbidity1–10 despite antiretroviral
therapy (ART). Microbial translocation (MT) across the gut is
one mechanism that may drive immune activation.11–15

Rapid CD4 cell depletion within the gut mucosa early in HIV
infection is hypothesized to allow translocation of intestinal mi-
crobiotal products into the bloodstream at increased levels
compared with uninfected persons.16–22 Translocation may be of
viable organisms or of microbial components, which may include
lipopolysaccharide (LPS) and bacterial DNA. Intact organisms
and microbial components are potential immunostimulants.

MT has been reported to be higher in patients with HIV
infection and has been implicated as a cause for increased
immune activation and poor CD4 cell count recovery on
ART.9,12,17 It has been hypothesized that immune activation is

driven by MT as a consequence of HIV-induced gut mucosal
damage. If correct, a number of potential treatment strategies
could be employed to reduce MT and improve outcomes.
There are clinical trials underway with this specific aim.23–25

Most evidence for increased microbial translocation in HIV is
based on detection of increased levels of LPS and bacterial 16S
rDNA. The latter is detected through a broad-range quantitative
polymerase chain reaction (qPCR). However 16S rDNA-PCR
is vulnerable to contamination from exogenous and endogenous
bacterial DNA.26–29 Without sequencing the amplicons, these
results are therefore potentially artifactual and indeed thus far
sequencing has largely yielded results compatible with environ-
mental contaminants and not recognized gut commensals.17,30,31

Materials and Methods

We set out to determine if bacterial 16S rDNA was detect-
able in the bloodstream of HIV-infected children in London,
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United Kingdom, and if present, to use sequencing to identify
the microbial source.

Discard EDTA blood samples were collected from se-
quential children attending the HIV outpatient clinic at Great
Ormond Street Hospital, London. At the time of the study 124
HIV-infected children were being seen regularly, 97 of whom
were receiving ART. Of the children 57% were aged 12–17
years and 43% were under 12 years; 78% were of black African
ethnic origin, 11% were African/white, and the remainder
classified themselves as white, Afrocaribbean, or other. Of
those on ART 88% were on triple therapy, with 6% on dual
therapy, 4% on monotherapy, and 1% on four drugs. Of the
children 47% had a CD4 cell percentage above 30% at the last
clinic visit, with 34% having a CD4 cell percentage between
21% and 30%, 16% between 11% and 20%, and 3% under 10%;
64% of children had a viral load < 50 copies/ml, with 32%
between 50 and 100,000 copies/ml and 4% with a viral load
> 100,000 copies/ml.

The commercial QIAmp DNA mini kit (Qiagen, Crawley,
UK), with an additional bead-beating step to ensure complete
lysis of bacterial cells, was used to extract DNA from 200 ll of
EDTA blood within 48 h of collection. Broad range 16S rDNA
PCR was carried out as previously described using two pri-
mer sets.26,32 16SFa/16SFb (GCTCAGATTGAACGCTGG/
GCTCAGGAYGAACGCTGG) and 16SR (TACTGCTGCCT
CCCGTA) amplified the V1 and V2 region of the 16S rDNA
gene26 and 785F (GGATTAGATACCCBRGTAGTC) and
1175R (ACGTCRTCCCCDCCTTCCTC) amplified the V5 and
V6 region. The sensitivity of the broad-range 16S rDNA PCR
has previously been demonstrated to be 10–100 colony-
forming units per PCR reaction.26 Amplicons derived from
positive samples were sequenced using the Big-Dye v.3.1
cycle sequencing kit (Applied Biosystems, Warrington, UK)
and analyzed on the 3130 genetic analyzer (Applied Biosys-
tems). The sequences obtained were compared to those on the
GenBank database using the BLAST program available at the
National Center for Biotechnology Information (www.ncbi
.nlm.nih.gov). The sequence was classified to species level if
there was > 98% homology with two or more GenBank se-
quences from the same species, submitted by independent
laboratories, and the percentage identification was lower for
all other species. A subset of samples found to be positive by
broad range 16S rDNA PCR was analyzed by high-through-
put sequencing. Attached to the 16S rDNA primers were
standard 454 Titanium adapters and an individual barcode
sequence for each sample. The library was pyrosequenced on
a 454 FLX Titanium (Roche) platform according to the man-
ufacturer’s recommended protocol.

Sequences were processed and analyzed using QIIME.33

16SFa/16SFb/16SR and 785F/1175R reads were discarded if
they contained ambiguous bases, if the quality score was < 25,
if the run of homopolymer bases was > 6, if there was a
mismatch in primer sequence, and if the barcode could not be
corrected. Operational taxonomic units (OTUs) were clus-
tered at 97% sequence similarity and chimeric sequences were
removed using USEARCH.34 Representative OTUs were as-
signed taxonomy using the RDP classifier35 at a minimum
support threshold of 80% again the Greengenes database.36

Discard samples were used in accordance with the guid-
ance of the National Patient Safety Agency and National Re-
search Ethics Service, which assessed this project to be within
the remit of assay performance evaluation.

Results

Samples were collected from 105 sequential children at-
tending the outpatient clinic representing 85% of the clinic
population.

Nine samples were found to be positive using broad range
16S rDNA PCR representing a positivity rate of 8.6% (95% CI
4.4–16%). From three of these amplicons, 16S rDNA se-
quences were obtained and identified as Streptococcus species,
Propionibacterium acnes, and coagulase negative Staphylo-
coccus. Direct Sanger sequencing failed in the other six sam-
ples, probably due to a mixture of 16S rDNA sequences from
different bacterial species.

Three samples that were successfully sequenced and one
sample on which direct sequencing failed (samples A, B, C,
and D) were then analyzed by high-throughput sequencing.
This identified several orders of bacteria known to be asso-
ciated with the human gut.31,30,37 The relative proportions of
these bacteria are shown in Fig. 1. Two of four samples were
positive for Bifidobacteriales, Bacteroidales, and Clostridiales,
whereas all samples were positive for Lactobacillales, Bur-
kholderiales, Bacillales, and Pseudomonadales.

Of the nine patients in whom microbial DNA was detected,
five (55%) had an undetectable viral load; four (45%) had a
CD4 percentage above 30% and two (22%) had a CD4 of less
than 10%.

Discussion

There has so far been few data generated investigating the
question of MT in HIV-infected children,15,22,38,39 with this
being the first study to our knowledge using molecular
techniques to identify MT in children in the developed world,
and the only one to have successfully sequenced bacterial
DNA using conventional and high-throughput techniques. In
adult populations standard sequencing has been carried out
in only a handful of studies17,30 and has yielded results
compatible with possible contamination such as Serratia spp.

FIG. 1. Bacteria orders recovered from HIV + blood using
16S rDNA high-throughput sequencing. Proportions of the
total recovered sequences from each sample after quality
filtering and assigning taxonomy to reads generated by high-
throughput sequencing. Samples are labeled A, B, C, and D.
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and Rahnella spp.17,31 Previous work in this field has largely
relied on the detection of LPS or surrogate markers of MT such
as sCD14 (a coreceptor for LPS produced by monocytes) and
LPS-binding protein (LBP).9,22,40,41 In view of ongoing debate
about optimal methods to detect MT in HIV-infected peo-
ple,29,42,43 there is an urgent need for further assay develop-
ment and optimization. This need is compounded by the
conflicting data generated in pediatric populations in partic-
ular, but also in adult populations. Indeed a major African
longitudinal study found no evidence of increasing MT
markers during untreated disease progression.44 Detection of
known gut commensal microbial DNA in the bloodstream
will accelerate our understanding of MT and its potential
impact on HIV pathogenesis. These findings are compatible
with MT occurring in relatively well children infected with
HIV in the United Kingdom, for the most part on ART with
reasonably well-controlled disease. In resource-limited set-
tings in the context of malnutrition, enteropathy, and poorly
controlled HIV infection, MT has potentially an even greater
significance.45,46

It has been difficult to demonstrate evidence of gut-
associated organisms using broad-range 16S rDNA PCR and
conventional Sanger sequencing techniques.17,30 Although a
powerful technique for detection and identification of most
bacterial species from culture-negative samples, 16S rDNA
PCR does have limitations. One disadvantage of the tech-
nique is that typically a single dominant species will be
identified with minority species often being outcompeted in
the PCR. The addition of a cloning step can resolve mixtures
of 16S rDNA sequences and identify minority species. How-
ever, the technique is very labor intensive and this limits the
maximum number of sequences that can be obtained to
somewhere in the order of 100. When cloning has been used in
this field, it has demonstrated the presence of mixed se-
quences, which further emphasizes the need for more so-
phisticated techniques.30 High-throughput sequencing can
generate hundreds of thousands of sequences from a single
16S rDNA amplicon, which, with subsequent bioinformatics
input, can provide a comprehensive picture of all bacterial
species that have been amplified, even those that are a small
minority.47–49 To our knowledge this is the first study to use
high-throughput sequencing to investigate microbial trans-
location in HIV. The potential usefulness of the technique is
demonstrated by the detection of 16S rDNA sequences of
common gut organisms such as Bifidobacteriales and Lacto-
bacillalese that were not detected by conventional Sanger
sequencing of the amplicon.

The strengths and weaknesses of this approach to identi-
fying bacterial DNA in whole blood are highlighted by our
findings. Due to the relative paucity of bacterial DNA in the
samples, high-throughput sequencing will identify low levels
of multiple organisms including potential contaminants that
are present in PCR reagents. 26 However, the depth of cov-
erage afforded by high-throughput sequencing also identifies
potentially interesting organisms that could be derived from
the GI tract. We cannot rule out contamination as the source of
microbial DNA in the samples. However, in 191 blood sam-
ples of immunocompetent children previously evaluated us-
ing this 16S rDNA PCR technique, none was positive despite
some having clinically significant bacteremia.50

The microbial translocation hypothesis needs further in-
vestigation in children where data so far are limited and

conflicting.15,22,38,51 Our data indicate that MT may consist of
low levels of multiple organisms resident within the GI tract.
Given the increased survival of HIV-infected children on
ART,52,53 investigating the importance of MT in this popula-
tion and in resource-limited settings is vital for the future
rational design of intervention studies. If microbial translo-
cation is indeed responsible for increased levels of immune
activation and thus excess morbidity and mortality in those
infected with HIV, there is the possibility of rational thera-
peutic intervention, including probiotics, synbiotics, nonab-
sorbable antibiotics, and LPS binders.54 There is an urgent need
for further investigation using molecular techniques that can
comprehensively describe the microbiota detectable in the
bloodstream of those with HIV and determine whether this
profile changes over time and its relationship to clinical outcome.
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