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Sammendrag 

Instrumentvariabelestimater tolkes gjerne som lokale gjennomsnittlige behandlingseffekter (LATE) av 

endringer i behandlingsstatus indusert av det spesifikke instrumentet som har vært brukt i 

estimeringen. Denne tolkningen gir opphav til spørsmål knyttet til den eksterne validiteten og 

politikkrelevansen av estimatene. Vi undersøker her hvordan en kan komme lenger enn å estimere 

LATE i situasjoner der instrumentene er diskrete, slik de gjerne er i anvendt forskning. Diskrete 

instrumenter gir ikke tilstrekkelig dekning til å fullt ut identifisere marginale behandlingseffekter 

(MTE) med den lokale instrumentvariabelmetoden. Vi viser hvordan en alternativ estimeringsmetode 

lar oss identifisere rikere spesifikasjoner av MTE med diskrete instrumenter. Et resultat er at den 

alternative fremgangsmåten identifiserer en lineær MTE-modell selv med et enkelt binært instrument. 

Selv om modellen er restriktiv, inneholder estimatoren av den lineære MTE-modellen den vanlige IV 

estimatoren: Modellen gir opphav til eksakt samme estimat av LATE, samtidig som den gir en test av 

ekstern validitet og en lineær ekstrapolasjon. Et annet resultat er at den alternative metoden gir 

identifikasjon av en generell MTE-model under en ekstra antakelse om additiv separabilitet mellom 

effektene av observert og uobservert heterogenitet. Vi anvender disse resultatene til å undersøke 

interaksjonen mellom kvantitet og kvalitet i foreldres investeringer i barn. Motivert av den klassiske 

kvantitet-kvalitetsmodellen av fruktbarhet, har en stor og voksende gren av empirisk forskning brukt 

binære instrumenter til å estimere LATE av familiestørrelse på utfall hos barn. Vi viser at effektene av 

familiestørrelse er både mer varierende og større enn hva LATE-resultatene indikerer. Våre MTE-

estimater viser at effekten av familiestørrelse varierer både i størrelsesorden og fortegn, slik at 

familiene oppfører seg som om de har noe kunnskap om effekten av flere barn på barnas utfall i sin 

egen familie, når de beslutter om de skal få flere barn. 



1 Introduction

Many empirical papers use instrumental variables estimators (IV) to estimate a model of

the following type

y = µ+ βD +X
′
δ + ε, (1)

where y is the dependent variable, X is a vector of covariates, D is the binary regressor

of interest, and ε is the error term. The standard problem of selection bias (D correlated

with ε conditional on X) is solved with a valid instrumental variable Z. In�uential work

by Imbens and Angrist (1994) has clari�ed the interpretation of IV estimates as local

average treatment e�ects (LATE) when β is a random coe�cient. With selection on

gains (β is correlated with D), the LATE is only informative about the average causal

e�ect of a speci�c instrument-induced shift in D. In general, agents induced to treatment

by Z need not be the same agents induced to treatment by a given policy change, and the

average β of the two groups can di�er substantially. In addition, the LATE identi�ed by a

particular instrument will generally di�er from conventional treatment parameters, such

as the average treatment e�ect (ATE) and the average treatment e�ect on the treated

(ATT).

To move beyond the LATE, Heckman and Vytlacil (1999, 2005, 2007) generalize the

marginal treatment e�ects (MTE) introduced by Bjorklund and Mo�tt (1987). The

MTE has several useful features: (1) it plays the role of a functional that is invariant

to the choice of instrument; (2) it has an attractive economic interpretation as a will-

ingness to pay parameter for persons at a margin of indi�erence between participating

in an activity or not; and (3) all conventional treatment parameters can be expressed

as di�erent weighted averages of MTE. Using the method of local instrumental variables

(LIV), the MTE can be identi�ed and estimated under the standard IV assumptions of

conditional independence and monotonicity (see Vytlacil, 2002; Heckman, 2010). How-

ever, non-parametric identi�cation of the full set of MTEs requires an instrument that

generates continuous support on the probability of treatment P (Z) from 0 to 1 for each

value of X. In practice, however, instruments are often discrete, and many are binary. In

such situations, auxiliary assumptions are needed to identify the MTE over the full unit

interval, and to recover conventional treatment parameters.

This paper contributes by examining how to move beyond the LATE in situations

with discrete instruments. We begin by showing that a polynomial MTE function of

order (N − 1) can be identi�ed under the standard IV assumptions when P (Z) takes N

di�erent values for each value ofX. One key implication is that a linear MTE model can be

identi�ed even with a single binary instrument. Although restrictive, the estimator based

on the linear MTE model nests the standard IV estimator: The model gives the exact

same estimate of LATE, while at the same time providing a simple test for its external
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validity and a linear extrapolation. Speci�cally, if the slope in the linear MTE model is

non-zero so that the MTEs are non-constant, we reject the external validity of the LATE.

In such cases, a given IV estimate is only informative about the instrument-induced e�ect

of treatment.1

In some applications with discrete instruments, however, one may be reluctant to

impose strong restrictions on the functional form of the MTE function. In such cases, an

auxiliary assumption is required. We show that with a binary instrument andM di�erent

values of the covariates X, a polynomial MTE function of order M can be identi�ed

under the standard IV assumptions and the auxiliary assumption of additive separability

between observed and unobserved heterogeneity in treatment e�ects. Although restrictive,

this auxiliary assumption is implied by additive separability betweenD andX, as imposed

in equation (1), which is standard in applied work using IV.

Our identi�cation results are based on an alternative estimation approach to the

conventional LIV method. In the LIV approach, the MTE is identi�ed by di�erenti-

ating E(Y | X = x;P (Z) = p) with respect to p, which can be computed over the

empirical support of P (Z) conditional on X. With a binary instrument, P (Z) takes

only two values for each value of X, and LIV cannot identify even a linear MTE func-

tion. The alternative approach, however, identi�es the MTE from separately estimating

E(Y | X = x;P (Z) = p,D = 1) and E(Y | X = x;P (Z) = p,D = 0). With a bi-

nary instrument, the advantage of the alternative estimation approach is that we have,

for each value of X, two values of P (Z) for the treated (always-takers vs. always-takers

and compliers) and two values of P (Z) for the untreated (never-takers vs. never-takers

and compliers).2 The additional information allows us to use a binary instrument to (i)

estimate a linear MTE function under the standard IV assumptions, (ii) test the external

validity of LATE, and (iii) estimate a general MTE function under the auxiliary assump-

tion of additive separability between observed and unobserved heterogeneity in treatment

e�ects.3

We apply these identi�cation results to empirically assess the interaction between

1Note that our test requires only a single binary instrument. In contrast, the approaches to test the
external validity of LATE proposed by Angrist and Fernandez-Val (2010), Heckman, Schmierer, and Urzua
(2010), and Heckman and Schmierer (2010) require either two (or more) instruments or one instrument
that takes on multiple values. Our test is therefore a particularly useful complement in applications with
a binary instrument.

2In the terminology of Angrist, Imbens, and Rubin (1996), the treated consist of compliers whose
behavior is a�ected by the binary instrument at hand and always-takers who are treated irrespective
of whether the instrument is switched o� or on; the untreated are likewise composed of compliers and
never-takers, where the latter group avoids treatment even when the instrument is switched on.

3See Heckman and Vytlacil (2007) and Carneiro and Lee (2009) for a discussion of the alternative
estimation approach in situations with an instrument that generates continuous support on the probability
of treatment P (Z) from 0 to 1 for each value of X. With such instruments, Heckman and Vytlacil
(2007) show that the alternative estimation approach can non-parametrically identify MTE over the full
unit interval, while Carneiro and Lee (2009) use the approach to estimate the distribution of potential
outcomes.
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the quantity and quality of children. Motivated by the seminal quantity-quality (QQ)

model of fertility by Becker and Lewis (1973), a large and growing body of empirical

research has examined the e�ect of family size on child outcomes. Much of the early

literature that tested the QQ model found that larger families reduced child quality,

such as educational attainment (e.g. Rosenzweig and Wolpin (1980); Hanushek (1992)).

However, recent studies from several developed countries have used binary instruments,

such as twin births and same-sex sibship, to address the problem of selection bias in family

size. The estimated LATEs suggest that family size little e�ect on children's outcomes.4

Although these recent studies represent a signi�cant step forward, a concern is still

that the e�ects of family size may be both more varied and more extensive than what the

IV estimates suggest. To move beyond the LATE of family size, we apply our identi�-

cation results to Norwegian administrative data, using same-sex siblings and twin births

as instruments. We begin by using the same-sex instrument to estimate a linear MTE

function, and �nd that the external validity of the LATE of family size can be rejected

at conventional signi�cance levels. We next impose the auxiliary assumption of addi-

tive separability between observed and unobserved heterogeneity in treatment e�ects and

estimate a general MTE function. We then �nd that the e�ects of family size vary in

magnitude and even sign (i.e. β is random), and that families act as if they possess some

knowledge of their idiosyncratic return in the fertility decision (β is correlated with D).

We next use the twins instrument to validate the MTE estimates based on the same-

sex instrument, exploiting that the MTE is a functional that is invariant to the choice

of instrument. Lastly, we compare the MTE weights associated with the IV estimates

to the MTE weights associated with ATE and ATT, and �nd that the latter treatment

parameters assign much more weight to the positive part of the MTE distribution. This

explains why the ATE and ATT of family size are sizeable and positive, while the LATEs

are smaller and sometimes negative.

The remainder of the paper is organized as follows. Section 2 presents the generalized

Roy model and uses it to de�ne MTE. This section also reviews how LIV and the separate

estimation approach identify and estimate MTE with a continuous instrument. Section 3

shows how to identify and estimate MTE with a discrete instruments. Section 4 presents

our empirical analysis of the e�ects of family size on child outcomes. Section 5 concludes.

4Black, Devereux, and Salvanes (2005) conclude that �there is little if any family size e�ect on child
education� (p. 697). Using data from the US and Isreal, Caceres-Delpiano (2006) and Angrist, Lavy,
and Schlosser (2010) come to a similar conclusion. However, Mogstad and Wiswall (2011) re-examine
the analysis by Black, Devereux, and Salvanes (2005), and �nd a signi�cant but non-linear relationship
between family size and child outcomes: While a second sibling increases the educational attainment of
�rst born children, additional children have a negative e�ect.
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2 Framework and estimation procedures

2.1 The Generalized Roy Model and MTE

The generalized Roy model is a basic choice-theoretic framework for empirical analysis.

Let Y1 be the potential outcome of an individual in the treated state (D = 1), and Y0

denote his potential outcome in the untreated state (D = 0).5 The observed outcome (Y )

can be linked to the potential outcomes through the switching regression model:

Y = (1−D)Y0 +DY1.

We specify the potential outcomes as

Yj = µj(X) + Uj, j = 0, 1 (2)

where µ1() and µ0() are unspeci�ed functions, X a random vector of covariates and U1

and U0 are random variables for which we normalize E(U1|X = x) = E(U0|X = x) = 0

and assume that E(U2
j |X = x) exists for j = 0, 1, for all x in the support of X. We allow

X to be stochastically dependent on (U1,U0).

The individual's net bene�t of receiving treatment (ID) depends on observed variables

(Z) and an unobserved component (UD):

ID = µD(Z)− UD, (3)

where Z = (X,Z−) is a vector Z− represents the excluded instrument(s), µD() is an

unspeci�ed function, and UD is a continuous random variable with a strictly increasing

distribution function. An individual selects the treated state if the net bene�t of treatment

is positive: D = 1{ID > 0}. Without loss of generality, the marginal distribution of UD

can be normalized to a uniform distribution on the unit interval (Carneiro, Heckman,

and Vytlacil, 2011). The function µD(Z) is then interpretable as a propensity score: We

therefore write P (Z) = µD(Z) so that D = 1 if P (Z) > UD.

The generalized Roy model allows ID to depend on Y0 and Y1, which leads to depen-

dence between (U1,U0) and UD. The key assumption about the random variables is

Assumption 1 Conditional independence: (U0, U1, UD) is independent of Z, con-

ditional on X.

The traditional approach to estimating the model of equations (2) and (3) speci�es a

5For simplicity, we consider only a binary treatment variable, as in most of the literature on MTE.
Notable exceptions include Heckman and Vytlacil (2007), Heckman, Urzua, and Vytlacil (2006) and
Heckman and Urzua (2010).
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parametric joint distribution of the random variables (U0, U1, UD) (see e.g. Bjorklund and

Mo�tt, 1987). Importantly, we will not make any assumption about the joint distribution

of these variables. With Z stochastically independent of (U0, U1, UD) givenX, the model of

equations (2) and (3) implies and is implied by the standard IV assumptions of conditional

independence and monotonicity (see Vytlacil, 2002; Heckman, 2010).

To de�ne MTE, we use the following notation for the conditional expectations of U1

and U0:

kj(p, x) = E(Uj|Z = z, UD = p), j = 0, 1,

and

k(p, x) = E(U1 − U0|Z = z, UD = p). (4)

By Assumption 1, the expectations of Uj are functions of z only through x.

De�nition 1 The MTE is the expected treatment e�ect conditional on UD and X:

MTE(x, p) = E(Y1 − Y0|X = x, UD = p) = µ1(x)− µ0(x) + k(p, x).

Conditioning on UD = p is equivalent to conditioning on the intersection of P (Z) = p

and ID = 0 (indi�erence to the choice of treatment). The MTE is the average treatment

e�ect for individuals with characteristics X = x and UD = p.

The LATE is de�ned within the context of the generalized Roy model as integrals over

MTE (Heckman and Vytlacil, 1999, 2005, 2007). In particular, with a binary instrument

(Z− ∈ 0, 1) that shifts the propensity score from P ((x, 0)) = p0(x) to P ((x, 1)) = p1(x),

the LATE can be written as

LATE(x) =
E(Y |Z = (x, 1))− E(Y |Z = (x, 0))

E(D|Z = (x, 1))− E(D|Z = (x, 0))
(5)

=
1

p1(x)− p0(x)

p1ˆ

p0

MTE(x, p)dp.

2.2 Local Instrumental Variables

Heckman and Vytlacil (1999) show how MTE can be identi�ed and estimated using LIV.

This method is a two-stage procedure. In the �rst stage, the propensity score is estimated

as a function of Z, denoted P̂ (Z). In the second stage one estimates the nonparametric

regression: Y = L(P̂ (Z), X)+ε, with ε an error term. The MTE is given by the derivative

of L with respect to P̂ (Z).

Conditioning on the propensity score and inserting the model for potential outcomes
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(2), we obtain

E(Y |P (Z) = p,X = x) = (1− p)(µ0(x) + E(U0|UD > p,X = x)) (6)

+ p(µ1(x) + E(U1|UD ≤ p,X = x)).

Since E(U0|X = x) = 0, we have

(1− p)E(U0|UD > p,X = x) = −pE(U0|UD ≤ p,X = x),

giving

E(U0|UD > p,X = x) = − p

1− p
E(U0|UD ≤ p,X = x). (7)

Inserting (7) into (6) gives:

E(Y |P (Z) = p,X = x) = µ0(x) + p(µ1(x)− µ0(x)) +K(p, x),

where

K(p, x) = pE(U1 − U0|UD ≤ p,X = x)

=

ˆ p

0

E(U1 − U0|UD = u,X = x)du

The MTE equals the following derivative:

∂E(Y |P (Z) = p,X = x)

∂p
= µ1(x)− µ0(x) + k(p, x),

with k de�ned in equation (4). This means thatMTE(x, p) is identi�ed under Assumption

1 over the support for the treated and the untreated of P (Z) conditional on X.

2.3 A Separate Estimation Approach

As an alternative to LIV, Heckman and Vytlacil (2007) use a separate estimation approach

to identify the MTE. The separate estimation approach is also a two-stage procedure. As

in LIV, the �rst stage is to estimate the propensity score as a function of Z, denoted

P̂ (Z). Unlike LIV, the second stage consists of two separate nonparametric regressions:

Yj = Lj(P̂ (Z), X) + εj for j = 0, 1.

To be concrete, from (2) we obtain

E(Yj|P (Z) = p,X = x,D = j) = µj(x) +Kj(p, x),

for j = 0, 1, where

K1(p, x) = E(U1|UD ≤ p,X = x)
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and

K0(p, x) = E(U0|UD > p,X = x).

By di�erentiating K1 and K0 with respect to p and rearranging, we get

k1(p, x) = p
∂K1(p, x)

∂p
+K1(p, x)

and

k0(p, x) = −(1− p)∂K0(p, x)

∂p
+K0(p, x).

Since

k(p, x) = k1(p, x)− k0(p, x),

we can, under Assumption 1, use the separate estimation to recover the function k(p, x)

and identify MTE(x, p) over the support for the treated and the untreated of P (Z)

conditional on X.

3 MTE with a Discrete Instrument

With an instrument that generates full support of P (Z), both LIV and the separate es-

timation approach non-parametrically identify MTE over the full unit interval (Heckman

and Vytlacil (2007)). We now show that with a discrete instrument, the separate estima-

tion approach allows identi�cation of richer speci�cations of the MTE function than LIV.

We �rst show how the separate estimation approach allows us to identify and estimate a

parametric MTE function under the standard IV assumptions. We next demonstrate that

the separate estimation approach o�ers a simple test for the external validity of LATE.

Lastly, we show how the separate estimation approach identi�es and estimates a �exible

MTE function under the auxiliary assumption of additive separability between observed

and unobserved heterogeneity in treatment e�ects.

3.1 Identi�cation of MTE in a non-separable model

Throughout subsections 3.1 and 3.2, we assume only that Assumption 1 (Conditional

Independence) holds. Without loss of generality, we keep the conditioning on X implicit

and hence take Z = Z−.

To �x ideas, we begin with an example showing how the separate estimation approach

allows us to identify a linear MTE function with a single binary instrument.

Example 1 The following equations specify a linear MTE function:

k0(p) = α0p−
1

2
α0
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and

k1(p) = α1p−
1

2
α1

where the constant terms ensure that the marginal expectations of U1 and U0 are zero.

From these expressions, we derive

K1(p) =
1

p

pˆ

0

E(U1|UD = u)du =
1

2
α1(p− 1)

and

K0(p) =
1

2
α0p

and

K(p) =
1

2
(α1 − α0)p(p− 1).

The MTE in this case is linear in p and given by

MTE = µ1 − µ0 +
1

2
(α1 − α0)− p(α1 − α0).

From the expressions above, we get

E(Y |P (Z) = p,D = 0) = µ0 +
1

2
α0p, (8)

E(Y |P (Z) = p,D = 1) = µ1 +
1

2
α1(p− 1) (9)

and

E(Y |P (Z) = p) = µ0 + p(µ1 − µ0) +
1

2
p(1− p)(α1 − α0). (10)

Assume that Z ∈ {0, 1}, such that P (Z = 1) = p1 and P (Z = 0) = p0, with p1 ∈ (0, 1)

and p0 ∈ (0, 1).

Recall that LIV is based on the integrated MTE in equation (10). Although the MTE

function is linear in p, equation (10) is quadratic in p. With a binary instrument, the

empirical analog of E(Y |P (Z) = p) is only observed for two di�erent values of p. Thus,

LIV does not identify a linear MTE function with a binary instrument.

The separate estimation approach is based on equations (8) and (9). Both equations

are linear in p. With a binary instrument, the empirical analogs of E(Y |P (Z) = p,D = 1)

and E(Y |P (Z) = p,D = 0) are observed for two di�erent values of p. Thus, the separate

estimation approach identi�es a linear MTE function with a binary instrument.
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Geometry of linear MTE and LATE

Figure 1 illustrates the basic geometry of the linear MTE model and how it relates to

LATE. The y-axis measures the outcome of interest, whereas the x-axis measures p. Recall

that UD has been normalized to be unit uniform, so that tracing MTE over the unit

interval shows how the e�ect of treatment vary with di�erent quantiles of the unobserved

component of selection into treatment.

In this example, we consider a binary instrument with associate propensity score values

of p1 = 0.8 and p0 = 0.4. In the data, we observe the average outcome for each combination

of treatment state and value of the instrumental variable. Indicated by circles are the four

conditional averages: Y1(0.8) = E(Y |D = 1, P (Z) = 0.8), Y1(0.4) = E(Y |D = 1, P (Z) =

0.4), Y0(0.8) = E(Y |D = 0, P (Z) = 0.8), and Y0(0.4) = E(Y |D = 0, P (Z) = 0.4). The

dashed line that goes through the two conditional averages for the treated observations

identi�es the line µ1 + K1(p). The dashed line that goes through the two conditional

averages for the untreated observations identi�es the line µ0 + K0(p). The solid line

µ1 + k1(p) has twice the slope as the dashed line µ1 +K1(p). The solid line µ0 + k0(p) has

twice the slope as the dashed line µ0+K0(p). Note that k0(1) = K0(1) and k1(0) = K1(0).

The MTE is given by the vertical di�erence between the solid lines at a given value

UD = p, i.e. MTE(p) = µ1 − µ0 + k1(p) − k0(p). In this example, the MTE is negative

for UD < 0.5 and positive for UD > 0.5. If the MTEs were constant (i.e. no heterogeneity

in treatment e�ects), the solid lines would be parallel.

The LATE is given by the integrated MTE over the interval (p0, p1), which equals

the vertical distance between the solid lines at the midpoint of the interval (p0, p1). If

the MTEs were constant, the vertical distance between the solid lines would be the same

at all points UD ∈ [0, 1]. However, because the MTEs are non-constant, the di�erent

instruments will generally identify di�erent LATEs.

Identifying MTE with a discrete instrument

Proposition 1 states the general identi�cation result for a discrete instrument: the separate

estimation approach allows identi�cation of richer speci�cations of the MTE function

than LIV. In terms of estimation, the MTE function can be recovered from the empirical

analogs of E(Y |P (Z) = p,D = 1), E(Y |P (Z) = p,D = 0), and P (Z) - all of which can

be consistently estimated from sample data.

Proposition 1 Suppose Assumption 1 holds. Assume that P (Z) takes on N di�erent

values, p1, . . . , pN ∈ (0, 1).

(i) Using LIV, the MTEs are identi�ed provided k is speci�ed as a polynomial of order

no higher than N − 2.

(ii) Using the separate estimation approach, the MTEs are identi�ed provided k1 and

k0 are speci�ed as polynomials of degree no higher than N − 1.
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(The proof is given in appendix A.)

3.2 Extrapolating and testing the external validity of LATE

Assume that Z ∈ {0, 1}, such that P (1) = p1 and P (0) = p0, with p1 ∈ (0, 1) and

p0 ∈ (0, 1). The de�nition of LATE in equation (5) can be rewritten as

LATE =
p1(µ1 +K1(p1)) + (1− p1)(µ0 +K0(p1))

p1 − p0
(11)

− (p0(µ1 +K1(p0)) + (1− p0)(µ0 +K0(p0)))

p1 − p0

because

p1ˆ

p0

k1(u)du =

p1ˆ

0

k1(u)du−
p0ˆ

0

k1(u)du = p1K1(p1)− p0K1(p0)

and

p1ˆ

p0

k0(u)du =

1ˆ

p0

k0(u)du−
1ˆ

p1

k0(u)du = (1− p0)K0(p0)− (1− p1)K0(p1).

Equation (11) is useful because the linear MTE model is estimated by (i) computing the

propensity scores as the sample proportions in treatment with the instrument switched on

and o�, and (ii) �tting the 4 parameters such that µ0 +K0(p0), µ0 +K0(p1), µ1 +K1(p0),

and µ1 +K1(p1) are equal to their empirical counterparts. Hence, the estimator of LATE

derived from the estimated linear MTE model can be expressed as

γ̂LATE =

(
p̂1Ȳ

c
1 (p̂1) + (1− p̂1)Ȳ c

0 (p̂1)
)
−
(
p̂0Ȳ

c
1 (p̂0) + (1− p̂0)Ȳ c

0 (p̂0)
)

p̂1 − p̂0
,

where p̂z is the empirical analog of P (Z = z) and Ȳ c
j (p̂z) is the empirical analog of

E(Y |P (Z) = pz, D = j), for z = 0, 1 and j = 0, 1. It then follows straightforwardly that

γ̂LATE is equal to the standard IV estimator:

γ̂IV =
Ȳ c(p̂1)− Ȳ c(p̂0)

p̂1 − p̂0
.

However, the separate estimation approach o�ers more than the standard IV estimator:

A simple test for the external validity of the LATE and a linear extrapolation. Speci�cally,

if the slope in the linear MTE function is non-zero so that the MTEs are non-constant, we

reject the external validity of the LATE. In such cases, a given IV estimate is informative

only insofar the instrument-induced e�ect of treatment is the question of interest.
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The test for the external validity of LATE is simple to implement and does not require

estimation of the linear MTE model. Testing the null hypothesis of constant MTE (i.e.,

U1-U0 is mean independent of UD) versus the alternative hypothesis of linear but non-

constant MTE (i.e. U1-U0 is a linear function of UD) is equivalent to testing whether

∆1 = ∆0, (12)

where

∆j = E(Y |D = j, Z = 1)− E(Y |D = j, Z = 0) for j = {0, 1}.

This is a standard statistical test with known properties. It is easily seen from Figure 1

that constant MTE in the linear MTE model corresponds to equation (12). If there are

covariates in the model, the test statistic can be computed conditional on X, and it is

straightforward to test jointly if all of the MTEs are constant.6

Note that our test requires only a single binary instrument. In contrast, the approaches

to test the exernal validity of LATE proposed by Angrist and Fernandez-Val (2010),

Heckman, Schmierer, and Urzua (2010), and Heckman and Schmierer (2010) require either

two (or more) instruments or one instrument that takes multiple values. Our test is

therefore a particularly useful complement in applications with a binary instrument.

3.3 Identi�cation of MTE with separability

Without stronger assumptions than Assumption 1, we can only identify a fairly restrictive

parametric MTE function, where the degree of the �exibility depends on the support of

the discrete instrument. This subsection shows how an auxiliary assumption allows us to

identify a more general MTE function in the separate estimation approach.

The auxiliary assumption is:

Assumption 2 [Separability of marginal treatment e�ects]

E(Yj|UD, X = x) = µj(x) + E(Uj|UD), j = 0, 1.

Assumption 2 implies that the conditional expectation function of U1 − U0 as a function

of UD does not depend on X, so that MTE is additively separable in X and UD:

MTE(x, p) = µ1(x)− µ0(x) + E(U1 − U0|UD = p).

Although restrictive, Assumption 2 is implied by additive separability between D and

X, as imposed in equation (1), which is a standard auxiliary assumption in applied work

6In comparison, testing for no selection bias is equivalent to testing whether ∆1 = ∆0 = 0, which
implies that (U1,U0) is mean independent of UD.
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using IV.7

Proposition 2 states the usefulness of the auxiliary assumption.

Proposition 2 Suppose Assumptions 1 and 2 hold. Assume that X takes on M di�erent

values and Z takes on N di�erent values for each X, giving MN values of P (Z), labeled

(p1, . . . , pMN) ∈ P = (0, 1)MN .

(i) Using LIV, the MTEs are identi�ed with (p1, . . . , pMN) a.e. in P provided k is

speci�ed as a polynomial of order no higher than (N − 2)M .

(ii) Using the separate estimation approach, the MTEs are identi�ed with (p1, . . . , pMN)

a.e. in P provided k1 and k2 are speci�ed as polynomials of order no higher than (N−1)M .

(The proof is in Appendix A.)

The almost everywhere (a.e.) condition in Proposition 2 is necessary because, even if

we require all the p's to be di�erent, there exist particular combinations of the p's such

that the parameters will not be uniquely identi�ed. An illustration is given below, in

Example 2. We conjecture that this possibility of non-identi�cation has little empirical

relevance.

An important implication of Proposition 2 is that with a binary instrument and M

di�erent values of the covariates X, the separate estimation approach can identify a

polynomial MTE function of order M under Assumptions 1 and 2. In contrast, LIV

cannot even identify a linear MTE function under the same assumptions. Example 2

illustrates the di�erences across the estimation procedures in the simple case of a single

binary X.

Example 2 Consider �rst the case without any covariates. The following equations spec-

ify a quadratic MTE function:

k0(u) = α01u+ α02u
2 − 1

2
α01 −

1

3
α02

and

k1(u) = α11u+ α12u
2 − 1

2
α11 −

1

3
α12

where the constant terms ensure that the marginal expectations of U1 and U0 are zero.

From these expressions, we derive

K0(p) =
1

2
α01p+

1

3
α02p(p+ 1),

K1(p) =
1

2
α11(p− 1) +

1

3
α12(p

2 − 1)

7In fact, Assumption 2 is weaker, as it allows the treatment e�ects to vary by X and UD, though not
by the interaction of the two terms. In contrast, additive separability between D and X assumes that
the treatment e�ects are the same for all values of X.
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and

K(p) =
1

2
(α11 − α01)p(p− 1) +

1

3
(α12 − α02)p(p

2 − 1).

As shown in Proposition 1, with only a binary instrument, neither LIV nor the separate

estimation approach will identify the quadratic MTE function.

Suppose we introduce a single binary covariate to the model. With a binary instru-

ment, Assumptions 1 and 2 now give us four di�erent values of p for the treated and the

untreated. At the same time, we have additional parameters that we need to estimate since

the model allows the µ1(X) and µ0(X) terms to vary with X.

The LIV approach is based on the equation

E(Y |X = x, P (Z) = p) = µ00 + µ01x+ p(µ10 − µ00) + px(µ11 − µ01) +K(p)

where under Assumption 2, the K() function does not depend on X. From this equation,

the four values of p are insu�cient for identi�cation of the model under Assumptions 1

and 2. In fact, the inclusion of X does not allow for identi�cation of even a linear MTE

function.

The separate estimation approach is based on the equations

E(Y |X = x, P (Z) = p,D = 0) = µ00 + µ01x+
1

2
α01p+

1

3
α02p(p+ 1) (13)

and

E(Y |X = x, P (Z) = p,D = 1) = µ10 + µ11x+
1

2
α11(p− 1) +

1

3
α12(p

2 − 1). (14)

In each equation, we have four parameters and data that allow us to evaluate the expec-

tation for four values of p. This shows that under Assumptions 1 and 2, the separate

estimation approach identi�es a quadratic MTE function with a binary Z− and a binary

X.

There is one exception to the conclusion in the above paragraph - which illustrates the

reason for the a.e. condition in Proposition 2. Explicit speci�cation of the linear equation

system necessary to solve for the parameters in (13) and (14) shows that the parameters

are uniquely identi�ed if∣∣∣∣∣∣∣∣∣∣
1 1 p1 p21

1 1 p2 p22

1 0 p3 p23

1 0 p4 p24

∣∣∣∣∣∣∣∣∣∣
= (p2 − p1)(p4 − p3)(p4 + p3)− (p2 − p1)(p4 − p3)(p2 + p1) 6= 0,

where p1 and p2 are the two propensity scores associated with X = 1, and p3 and p4 are the

two propensity scores associated with X = 0. Proposition 2 assumes that the propensity
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scores di�er for each value of X, so that p1 6= p2 and p3 6= p4. The system will then have

a unique solution, except if p1 + p2 = p3 + p4 which is the reason for the a.e. condition

in Proposition 2. Although this may happen by chance, we conjecture that there will be a

unique solution in most empirical applications. The exception is if Z− is generated from

a randomized controlled trial with perfect compliance.

3.4 Weights on MTE for conventional treatment parameters

Heckman and Vytlacil (2005, 2007) show that conventional treatment parameters, such

as LATE, ATE, ATT, and the average treatment e�ect on the untreated (ATUT), can be

expressed as di�erent weighted averages of the MTE. Speci�cally they show that treatment

parameter j for a given X, denoted ∆j(x), can be written as:

∆j(x) =

1ˆ

0

MTE(x, u)hj(x, u)du,

where the weights can be consistently estimated from sample data. The population treat-

ment parameter, ∆j, is simply the weighted sum of covariate-speci�c treatment parame-

ters, ∆j(x).

The formulas for weights derived by Heckman and Vytlacil assume that the MTEs are

estimated separately for each value of X. In practice, however, researchers rarely estimate

covariate-speci�c treatment parameters. Brinch, Mogstad, and Wiswall (2012) show how

instrumental variables estimators can be expressed as di�erent weighted averages of the

MTE in situations with parametric speci�cations in X. In the part of the empirical

analysis where we will be making parametric speci�cations in X, we use these weight

expressions. As before, the weights can be consistently estimated from sample data.

4 Empirical analysis

4.1 Data and descriptive statistics

As in Black, Devereux, and Salvanes (2005), our data are based on administrative registers

from Statistics Norway covering the entire resident population of Norway who were be-

tween 16 and 74 of age at some point during the period 1986-2000. The family and demo-

graphic �les are merged by unique individual identi�ers with detailed information about

educational attainment reported annually by Norwegian educational establishments. The

data also contains identi�ers that allow us to match parents to their children. As we

observe each child's date of birth, we are able to construct birth order indicators for every

child in each family. We refer to Black, Devereux, and Salvanes (2005) for a more detailed

description of the data as well as of relevant institutional details for Norway.
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We follow the sample selection used in Black, Devereux, and Salvanes (2005). We

begin by restricting the sample to children who were aged at least 25 in 2000 to make

it likely that most individuals in our sample have completed their education. Twins are

excluded from the estimation sample because of the di�culty of assigning birth order

to these children. To increase the chances of measuring completed family size, we drop

families with children aged less than 16 in 2000. We exclude a small number of children

with more than 5 siblings as well as a handful of families where the mother had a birth

before she was aged 16 or after she was 49. In addition, we exclude a small number of

children where their own or their mother's education is missing. Rather than dropping

the larger number of observations where information on fathers is missing, we include a

separate category of missing for father's education and father's age.

Regressors and instruments

As in Black, Devereux, and Salvanes (2005), our measure of family size is the number of

children born to each mother. Throughout the empirical analysis, we follow much of the

previous literature in focusing on the treatment e�ect on a �rst born child from being in a

family with 2 or more siblings rather than 1 sibling. The outcome of interest is the child's

years of schooling, which is often used as a proxy for child quality. The child's education

is collected from year 2000, and the education of the parents is measured at age 16 of the

child.

In line with much of the previous literature on family size and child outcomes, we use

the following two instruments: twin birth and same-sex sibship. The twins instrument

is a dummy for a multiple second birth (2nd and 3rd born children are twins). This

instrument rests on the assumptions that the occurrence of a multiple birth is as good as

random, and that a multiple birth a�ects child development solely by increasing fertility.

The same-sex instrument is a dummy variable equal to one if the two �rst children in a

family have the same sex. This instrument is motivated by the fact that parents with

two children are more likely to have a third child if the �rst two are of the same sex

than if sex-composition is mixed. The validity of the same-sex instrument rests on the

assumptions that sibling sex composition is essentially random and that it a�ects child

development solely by increasing fertility. It should be emphasized that our focus is not

on the validity of these instruments: Our aim is to move beyond the LATE of family size,

applying commonly used instruments.8

8See e.g. Black, Devereux, and Salvanes (2005) and Angrist, Lavy, and Schlosser (2010) for an
assessment of the validity of the instruments.
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Summary statistics and fertility decision model

Our sample consists of 514,049 children. Table 1 displays the basic descriptive statistics.

In 50 percent of the sample, the two �rst children are of the same sex, whereas a twin

birth at second parity occurs in about 1 percent of the families. As expected, fathers are,

on average, slightly older and more educated than mothers. In 50 percent of the sample,

there are at least three children in the family, and the average family size is 2.7 children.

Table 2 presents estimates of the average marginal e�ects from a logit model for the

choice of having 3 or more children (instead of 2 children). In terms of the choice model

de�ned by (3), ID represents the net bene�t from having more than 2 children, which is

assumed to depend on an unobserved component, the covariates and the instrument(s)

listed in Table 1. Recall that we do not assume that the covaraites are exogenous; all we

assume is that the instruments are independent of the unobservables conditional on the

covariates.

We see that the instruments are (individually and jointly) strong predictors of family

size. The average e�ect of twin birth is about 0.52. This means that 48 percent of mothers

with two or more children would have had a third birth anyway. We also see that parents

of same-sex sibship are, on average, about 5.7 percentage points more likely to have a

third birth than parents of mixed-sex sibship. It is also evident that families with three or

more children were decreasing over the period we study, which is re�ected in the sizable

marginal e�ect of child's age in the year 2000. Mothers age at �rst birth is also predictive

of family size: The propensity score decreases by as much as 1.6 percentage points if the

mother is one year older at the �rst birth.

4.2 IV estimates with treatment heterogeneity

We specify the following outcome equation:

Y = µ+ βD +X
′
δ + ε, (15)

where Y denotes child's years of schooling, X is a vector of controls for (pre-determined)

child and parental characteristics, and ε is the error term. In line with much of the previous

literature, we will throughout the empirical analysis focus on the treatment e�ect on a

�rst born child from being in a family with 2 or more siblings (D = 1) rather than 1

sibling (D = 0).

Table 3 shows how IV estimates of the e�ects of family size vary in magnitude and

even sign with the choice of instrument. The IV estimates reported in Column 1 are based

on the �rst stage

D = γ + Z
′

−θ +X
′
ξ + v. (16)
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While the e�ect of family size induced by twins is only 0.051, the e�ect based on the

same-sex instrument is as large as 0.165. The fact that the IV estimates vary with the

choice of instrument indicates non-constant MTEs. When including both instruments in

the �rst stage, we estimate that being in a family with 2 or more siblings rather than 1

sibling raises educational attainment by 0.076 years.

In Column 2, we follow Carneiro, Heckman, and Vytlacil (2011) in specifying the �rst

stage as

D = γ + δP (Z) +X
′
ξ + v, (17)

where P (Z) ≡ Pr(D = 1 | Z) is used as the instrument for family size. We construct

P (Z) using the parameter estimates from the logit model, for which average e�ects are

reported in Table 2. We report IV estimates based on (17) for each instrument separately

and when using both instruments.

Both (16) and (17) provide consistent estimates of the LATE from instrument-induced

shifts in family size under the same assumptions (Carneiro, Heckman, and Vytlacil, 2011).

However, as P (Z) incorporates interactions between the controls and the instrument in

the fertility choice, the LATE of a P (Z)-shift in D does not need to be same as the LATE

of a Z−-shift in D. Indeed, the IV estimates di�er substantially across Columns 1 and

2: While the estimated LATEs based on Z− are positive for every instrumental variable,

the estimated LATEs based on P (Z) are negative for every instrumental variable. This

suggests that the MTEs vary in sign and that the IV estimates based on P (Z) assign

more weight to negative MTEs as compared to the IV estimates based on Z−.

MTE weights of treatment parameters

As a �rst step towards understanding why the IV estimates vary so much with the choice of

instrument, we estimate the distribution of instrument-speci�c weights across the support

of the MTE distribution. Figure 3 displays the distribution of weights for the IV estimates,

and compares them to the distribution of weights of the ATE, the ATT, and the ATUT.

The y-axis measures the density of the distribution of weights, whereas the x-axis measures

the unobserved component UD of parents' net gain from having 3 or more children (D = 1)

rather than 2 children (D = 0). Recall that a high value of UD means that a family is

less likely to have 3 or more children.

There are clear patterns in the distribution of weights. First, the IV estimates based

on the twins instrument assign more weight to individuals with high values of UD as

compared to the same-sex instrument. This pattern is quite intuitive: With twin births

there are no never-takers, so that even families very unlikely to have another child are

induced to increase family size; with same-sex sibship, the complier group consists of
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parents whose preferences for mixed-sex sibship induce them to have a third child.9

Second, the distributions of weights are more skewed to the right for IV estimates

using Z− as the instrument as compared to those using P (Z) as the instrument. The

di�erence is particularly stark for the same-sex instrument, in which case the IV estimate

based on P (Z) assigns the vast majority of weight to MTEs in the interval (0.3, 0.6). The

large disparity in the distribution of weights for the same-sex instrument resonates well

with the substantial di�erence in estimated LATEs based on the same-sex instrument

Third, both ATT and ATE assign much more weight to families who are likely to

have 2 or more siblings as compared to the IV estimates. In contrast, ATUT and the IV

estimates based on the twins instrument assign most of the weight to families unlikely to

have another child. This pattern is also quite intuitive. With twins there are no never-

takers, so the untreated consist only of compliers with the twins instrument switched o�.

If the occurrence of a twin birth is as good as random (conditional on covariates), the

LATE representing the average e�ect for the twin birth compliers is equal to the average

e�ect for all compliers given by ATUT. This implies that the distributions of weights with

the twins instruments should mirror the distribution of weights for the ATUT.

Heterogeneity in the generalized Roy model

To fully understand what the LATEs of family size identify and why the IV estimates vary

so much with the choice of instrument, we need to know the underlying distribution of

MTEs. But before turning attention to the actual estimation of MTE, it can be useful to

get a better sense of the pattern of heterogeneity in the relationship between the quantity

and quality of children that is consistent with the generalized Roy model.

Consider �rst the traditional approach to estimating the model of equations (2) and

(3), which assumes that (U0, U1, UD) are joint normal distributed and independent of Z

(see e.g. Bjorklund and Mo�tt, 1987). Although this normal selection model restricts the

shape of the MTE function, it is consistent with IV estimates of di�erent magnitude and

sign depending on the choice of instrument: the MTE is either constant, monotonically

declining (i.e. positive selection on gains) or monotonically increasing (i.e. negative

selection on gains) in UD; the MTE tends towards ±∞ as UD tends towards 0 or 1 (unless

the MTE is constant); the distribution of MTE is symmetric in UD, so that the slope of

the MTE takes the same absolute value for UD = u and UD = 1− u.
Although the joint normality assumption is convenient, it can mask essential hetero-

geneity in the e�ects of family size if the population is segmented in preferences and/or

constraints. For example, preference for mixed-sex sibships is unlikely to be manifested

with equal force by all groups in the population. Mixture distributions arise naturally

9Angrist and Fernandez-Val (2010) characterize the complier groups and �nd that twins and same-sex
compliers are clearly di�erent. For example, twins compliers are likely to be college graduates, while
same-sex compliers are unlikely to be college graduates.
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when the population contains two or more distinct sub-populations.10 In Figure 2, we

present a simple example of MTE in a mixture model with two subpopulations of equal

size. Speci�cally, let the unobserved component UD of parents' net gain from having 3

or more children be generated from as a mixture of two random variables UD1 and UD2

with equal probability. We assume that UD1 is standard normal, while UD2 is normal

with mean zero and variance 2. Individuals in the �rst subgroup have constant MTE of 1,

while individuals in the second subgroup have constant MTE of -1. Figure 2 shows that

the MTE derived from this mixed model has a U-shape. Individuals with high MTE are

overrepresented in the tails, whereas individuals with low MTE tend to be in the middle

ranges of UD. The reason is that the �rst subgroup has a relatively high variance of UD:

This could, for example, be due to weaker preferences for mixed-sex sibship such that the

unobserved component explains more of the variation in the choice of family size.

Lastly, we note that several sources can generate MTE of di�erent magnitude and sign,

including heterogeneity in preferences over child quality and quantity, di�erences in the

technologies available to produce child quality, and variability in the economic resources

available to families. For example, the QQ model of fertility by Becker and Lewis (1973)

is consistent with both positive and negative e�ects of family size depending on whether

quantity and quality are complements or substitutes (Rosenzweig and Wolpin, 1980). Also

other theories, outside the Becker and Lewis model, suggest essential heterogeneity in the

e�ects of family size on child outcome. In particular, for some families additional siblings

may bene�t existing children if they stabilize parental relationship (see e.g. Becker, 1998),

make maternal employment less likely (see e.g. Ruhm, 2008), or if there are positive

spillover e�ects among siblings (see e.g. Bandura, 1977).

4.3 MTE estimates with the same-sex instrument

This subsection shows how the separate estimation approach and our identi�cation results

can be used to move beyond the LATE of family size. We begin by estimating a linear

MTE function and use it to test the external validity of LATE. We next impose the auxil-

iary assumption of additive separability between observed and unobserved heterogeneity

in treatment e�ects (Assumption 2) and estimate a general MTE function.

Linear MTE model and external validity of LATE

Consider �rst a linear MTE model without covariates. For now, we only use the same-sex

instrument, but we will later provide estimates using both instruments. Table 4 displays

the results: Panel (a) shows estimates of the intercept and the slope of the linear MTE

10Morduch and Stern (1997) show how a mixture model provides an empirical framework which is
consistent with theoretically and empirically based concerns about population heterogeneity with regards
to gender bias in fertility and child investment.
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model as well as its underlying components; Panel (b) reports the LATE derived from

the linear MTE model and compares it to the LATE estimated by standard IV.

We �nd that 53.1 percent of parents with same-sex siblings have a third child, whereas

only 47.3 percent of parents with mixed-sex sibship have 3 or more children. It is also

evident that �rst born children with same-sex siblings have slightly lower educational

attainment (12.281 years of schooling) as compared to �rst born children with mixed-sex

sibship (12.284 years of schooling). The estimated LATE of the same-sex-induced increase

in family size is given by

γ̂IV =
Ȳ c(p̂1)− Ȳ c(p̂0)

p̂1 − p̂0
=

12.281− 12.284

0.531− 0.473
= −0.065

Table 4 shows that our separate estimation approach provides the exact same estimate of

the LATE. To be speci�c, we estimate that

µ̂1 + K̂1(p) = 11.720 + 0.773p

µ̂0 + K̂0(p) = 12.780− 0.216p

and

µ̂1 + k̂1(p) = 0.773p+ 11.720 + 0.773p = 11.720 + 1.546p

= 11.720 + 1.546p

µ̂0 + k̂0(p) = −0.216(1− p)− (12.780− 0.216p)

= 12.780− 0.432p.

The last step in the separate estimation approach to derive the LATE is:

µ̂1 − µ̂0 +

0.531ˆ

0.471

k̂1(u)− k̂0(u)du = −0.065.

This illustrates that in situations with a binary instrument, the separate estimation ap-

proach of the linear MTE model gives the exact same estimate of LATE as standard IV

estimation.

However, the separate estimation approach o�ers more: A simple test for the external

validity of the LATE. Table 4 shows that the slope of the linear MTE model is di�erent
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from zero at conventional signi�cance levels. We therefore reject the external validity of

LATE, which suggests that it is only informative about the same-sex-induced e�ect of

family size.

Recall that our test for the external validity of LATE can actually be performed

without estimating the linear MTE model. Speci�cally, testing the null hypothesis of

constant MTEs versus the alternative hypothesis of linear but non-constant MTEs is

equivalent to testing whether

E(Y |D = 1, Z = 1) − E(Y |D = 1, Z = 0)

=

E(Y |D = 0, Z = 1) − E(Y |D = 0, Z = 0),

which is a standard statistical test with known properties. In this application, we reject

the null hypothesis of a constant MTE at the 1 percent signi�cance level (p-value 0.0001).

There is one important caveat to the rejection of the external validity of the LATE:

The same-sex instrument may be correlated with other variables than family size. If these

variables a�ect children's education then Z depends on (U1, U2, UD), implying that the

results reported in Table 4 are biased. We address this concern by controlling for the set

of covariates listed in Table 1. Speci�cally, we partition our sample into 64 groups based

on these covariates and estimate the linear MTE model separately for each group. Tables

D-1 and D-2 reported in the Appendix display the results. Although most of the LATEs

are too imprecisely estimated to draw any conclusions about the covariate-speci�c e�ects

of family size, we �nd that the slopes of the linear MTE models are jointly di�erent from

zero at the 10 percent signi�cance level (p-value 0.064). This suggests that the rejection

of the external validity of the LATE is unlikely to be driven by di�erences in observables

across families with same-sex and mixed-sex sibship.11

A �exible MTE function in a separable model

If all we are willing to assume is that (U1, U2, UD) is independent of Z givenX (Assumption

1), then a binary instrument identi�es a linear MTE function only. This means that unless

one is willing to use the linear MTE function to extrapolate, it is not possible to recover

the MTE over a wide range of UD. As an alternative to such a linear extrapolation, we

proceed by invoking the auxilary assumption of additive separability between observed

and unobserved heterogeneity in treatment e�ects (Assumption 2).

Figure 4 shows the empirical support of P (Z) ≡ Pr(D = 1 | Z) under Assumptions 1

and 2, using same-sex as the instrument for family size. The common support is de�ned as

the intersection of the support of P (Z) given D = 1 and the support of P (Z) given D = 0.

11The rejection of the external validity of the LATE is robust to how we partition the sample and what
covariates we include. The robustness results are available upon request.
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As for the IV estimates reported in Table 3, we construct P (Z) using the parameter

estimates from the logit model whose average derivatives are reported in Table 2. We see

that the auxiliary assumption yields substantial support in the interval (0.20, 0.75). We

do not, however, obtain support in the tails, which implies that we cannot identify MTE

as UD approaches 0 or 1.

We proceed by semi-parametric estimation of the MTE under Assumptions 1 and 2.

Our estimation procedure follows closely the approach used in Heckman, Urzua, and Vyt-

lacil (2006) and Carneiro, Heckman, and Vytlacil (2011). The �rst step is the construction

of the estimated P (Z), and the second step is the estimation of µ1(X) and µ2(X) using

the estimated P (Z). The �rst step is carried out as for Figure 4. Our speci�cation is quite

�exible, and alternative functional form speci�cations for the choice model (e.g. probit or

linear probability model) produce results similar to the ones reported here. The second

step uses the method proposed by Robinson (1988) for estimating partially linear models,

as extended in Heckman, Ichimura, and Todd (1997). Lastly, the functions K1 and K0 are

estimated using local quadratic regression of Y1− µ̂1(X) and Y0− µ̂0(X) on the estimated

P (Z), where µ̂1 and µ̂0 are the estimates from the second step.12

Figure 5 displays how the MTE depends on UD, with 95 percent con�dence intervals

computed from a non-parametric bootstrap.13 The MTE estimates are evaluated at mean

values of X. Our estimates show that the e�ects of family size vary in magnitude (i.e.

β is random) and even sign, and that families act as if they possess some knowledge of

their idiosyncratic return (β is correlated with D). As in the study of the marginal return

to education by Carneiro, Heckman, and Vytlacil (2005), the MTE is clearly U-shaped

and the magnitude of heterogeneity is substantial. As discussed above, this pattern for

the MTE could not be uncovered with the normal selection model, but it is consistent

with a mixture model where the population is segmented according to preferences and/or

constraints. Speci�cally, our estimates show that an increase in family size raises the

average educational attainment of �rst born children in families with UD less than 0.40.

This means that �rst born in families that are likely to have another child (in terms of

their unobservables) would gain from an increase in family size. The family size e�ects are

negative for values of UD in the interval (0.40,0.62), indicating a quantity-quality tradeo�

in families where preferences for mixed sibling sex composition plays a more important

role in the decision to have another child. For values of UD above 0.62, the estimated

MTE is positive. This means that the educational attainment of �rst born in families

12We use rectangular kernels and choose the bandwidth that minimizes the square prediction error when
the current observation is left out of the analysis. This gives us an estimate of the optimal bandwidth of
0.055.

13Heckman, Ichimura, and Todd (1997) show that the bootstrap provides a better approximation to
the true standard errors than asymptotic standard errors for the estimation of the parameters in a model
similar to the one we present here. We use 100 bootstrap replications. Throughout the paper, in each
iteration of the bootstrap we re-estimate P (Z) so all standard errors account for the fact that P (Z) is
itself an estimated object.
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unlikely to have a third child will bene�t from an increase in family size; However, the

parents still decide not to have an additional child because the unobserved (psychic or

�nancial) costs are too high.

We have already discussed the rejection of the hypothesis that MTE is constant in

UD, based on the estimates of the linear MTE model with and without covariates. But

we can also directly test whether the semi-parametric MTE is constant in UD or not. We

evaluate the MTE in �ve intervals equally spaced between 0.2 and 0.75. As in Carneiro,

Heckman, and Vytlacil (2011) we construct pairs of adjacent intervals and compare the

mean of the MTEs for each pair. Table 5 reports the outcome of these comparisons. For

example, the �rst column reports

E(Y1 − Y0|X = X̄, 0.3 ≤ UD ≤ 0.35) − E(Y1 − Y0|X = X̄, 0.25 ≤ UD ≤ 0.2) = 0.955.

The p-value of the test of the hypothesis that this di�erence is equal to zero is reported

below and is equal to 0.051. Table 5 shows that most of the adjacent LATEs are di�erent

at conventional levels of signi�cance. A joint test that the di�erence across all adjacent

LATEs is di�erent from zero has a p-value close to zero. This is further evidence that

families select into family size based on heterogeneous returns.

4.4 Model validation using the twins instrument

So far, we have only used the sex instrument in the estimation of the MTE. We now use

the twins instrument to validate the MTE estimates based on the same-sex instrument,

exploiting that the MTE is a functional that is invariant to the choice of instrument. If

the MTE estimates vary signi�cantly with the choice of instrument, it would raise serious

concerns about the validity of the instruments (or Assumption 2).

Figure 6 compares estimates of MTE based on the same-sex instrument to estimates

of MTE using both the same-sex and the twins instrument. In both cases, we use the

semi-parametric method described above. It is reassuring to �nd that the two MTE

estimates display the same U-shaped pattern. Indeed, the point estimates are similar in

magnitude and never statistically di�erent. This �nding suggests that the di�erences in

the IV estimates by the choice of instrument is because of di�erent weighting of the MTE,

rather than invalidity of the instruments.

A concern with the validation exercise presented in Figure 6 is that the same-sex

instrument is driving both MTE estimates. To address this concern, it would be useful

to estimate the MTE separately for each instrument. However, with twins there are no

never-takers, so the function k0 and thus the MTE cannot be identi�ed under Assumptions

1 and 2 from the twins instrument only. Nevertheless, we can use the twins instrument

to estimate the function k1 (i.e. the expected outcome as treated), since there are both

always-takers and compliers. Figure 7 shows how the semi-parametric estimates of the
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function k1 vary with the choice of instrument. For each instrument, we use the semi-

parametric method described above. The similarity in the estimates of k1 gives credibility

to the semi-parametric MTE estimates reported in Figure 5.

4.5 Summary Measures of Treatment E�ects

As shown by Heckman and Vytlacil (1999, 2005, 2007), all conventional treatment pa-

rameters can be expressed as di�erent weighted averages of the MTE. Recovering these

treatment parameters from estimates of MTE, however, requires full support of P (Z) on

the unit interval. Since we do not have full support of P (Z), we follow Carneiro, Heck-

man, and Vytlacil (2011) in constructing bounds and in rescaling the weights so that they

integrate to one over the region of common support.

We use the semi-parametric MTE estimates based on the same-sex instrument, re-

ported in Figure 5, to construct rescaled estimates and lower bounds on the ATE, the

ATET and the ATUT. While there are regions of P (Z) with negative MTEs, the MTEs

are positive and sizeable in the tails of the common support. We therefore construct

the lower bounds assuming that the MTE in the region outside the common support

(UD ∈ [0.20, 0.75]) are non-negative.

Table 6 displays the lower bounds and rescaled support estimates for the ATE, ATT,

and ATUT parameters. The lower bound estimates are 0.194 for the ATUT, 0.232 for the

ATE, and 0.313 for the ATT. The rescaled support estimates are even larger, re�ecting

that no weight is given to the MTE outside the region of support. This evidence stands

in stark contrast to the IV estimates reported in Table 3, which range between 0.174 and

-0.208. As shown in Figure 3, the reason is that the IV estimates assign much more weight

to the regions with negative MTE as compared to the ATE and ATT. This illustrates the

need to be cautious in going from the mean impact of family size on compliers to the

average e�ects on the entire population or the subpopulation of (non)treated.

5 Conclusions

The interpretation of IV estimates as e�ects of instrument-induced shifts in treatment

raises concerns about their external validity. This paper examines how to move beyond the

LATE in situations with a discrete instrument with �nite support. Discrete instruments

do not give su�cient support to identify the full range of marginal treatment e�ects

(MTE) in Heckman and Vytlacil's (1999, 2005, 2007) local instrumental variable (LIV)

approach. We show how an alternative estimation approach allows identi�cation of richer

speci�cations of the MTE with discrete instruments.

One key result is that we can identify a linear MTE model even with a single binary

instrument. Although restrictive, the linear MTE model nests the standard IV estimator:
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The model gives the exact same estimate of LATE while at the same time providing

a simple test for its external validity and a linear extrapolation. Another key result is

that the alternative estimation approach allows identi�cation of a general MTE model

under the auxiliary assumption of additive separability between observed and unobserved

heterogeneity in treatment e�ects.

We apply these identi�cation results to empirically assess the interaction between the

quantity and quality of children. Motivated by the seminal quantity-quality model of

fertility, a large and growing body of empirical research has used IV to examine the e�ect

of family size on child outcomes. We �nd that the e�ects of family size vary in magnitude

and even sign, and that families act as if they possess some knowledge of the idiosyncratic

e�ects. We also reject the external validity of the LATEs of family size at conventional

signi�cance levels. When comparing the MTE weights associated with the IV estimates

to the MTE weights associated with ATE and ATT, we found that the latter treatment

parameters assign much more weight to positive MTEs. This explains why the ATE and

ATT of family size are sizeable and positive, while the LATEs are smaller and sometimes

negative.
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6 Tables

Table 1: Descriptive Statistics

Mean Std. Dev.
Outcome:
Years of schooling 12.3 2.7

Instruments:
Same sex, 1st and 2nd child 0.501 0.5
Twins at second birth 0.0096 0.097

Endogenous regressor:
At least three children 0.5021 0.5

Covariates:
Female 0.47 0.50
Age in 2000 39.5 9.2
Mother's age at �rst birth 24.0 4.2
Father's age at �rst birth 26.8 4.5
Mother's years of schooling 10.0 1.4
Father's years of schooling 10.1 2.6

Note: Descriptive statistics are for 514,049 children. All children are �rst born with at least one sibling.

Twins at �rst birth are excluded from the sample. All children, parents and siblings are aged between 16

and 74 years at some point between 1986 and 2000.
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Table 2: Fertility decision model - Average Derivatives

Average e�ect (std. err.)

Covariates:
Age in 2000 0.0163 (0.0011)
Mother's age at �rst birth -0.0161 (0.0013)
Father's age at �rst birth 0.0007 (0.0008)
Mother's years of schooling 0.0030 (0.0016)
Father's years of schooling -0.0038 (0.0019)
Female -0.0016 (0.0018)

Instruments:
Same sex, �rst and second 0.0567 (0.0012)
Twins at 2nd parity 0.5179 (0.0007)

Note: This table reports the average partial e�ect (average treatment e�ect for binary variables) from a

logit model for the probability of being in a family with 2 or more siblings rather than 1 sibling. The

emodel is speci�ed in the following way: We use a third order polynomial in �Age in 2000�, �Mother's

age at �rst birth�, �Father's age at �rst birth birth�, �Mother's years of schooling� and �Father's years of

schooling�; We include interactions between the �rst order terms of all covariates; �Same sex, �rst and

second� enters the model without interaction terms; �Twins at 2nd parity� is interacted with all covariates

(including higher order terms and interactions) to ensure that the model is consistent with the fact that

there are no never takers with twins. Standard errors in parantheses are computed by nonparametric

bootstrap with 100 bootstrap replications.

Table 3: OLS and IV estimates

Z− as instrument P (Z) as instrument
IV:
Same-sex instrument 0.174 -0.208

(0.115) (0.104)
Twins instrument 0.050 -0.060

(0.063) (0.063)
Both instruments 0.076 -0.015

(0.055) (0.054)

OLS -0.052
(0.007)

Note: This table reports OLS and IV estimates of the e�ect of family size on the educational attainment

of �rst born children. The �rst column (Z− as instrument) uses the �rst stage equation (16). The second

column (P(Z) as instrument) uses the �rst stage equation (17). We construct P(Z) using the parameter

estimates from the logit model with average derivatives reported in Table 2. The second stage is given by

equation (15). We use the same speci�cation for the covariates as reported in Table 2. The �rst row uses

the �Same sex, �rst and second� instrument, the second row uses the �Twins at 2nd parity� instrument,

and the third row uses both instruments. The OLS estimates is reported in the fourth row. Standard

errors in parantheses are heteroskedasticity-robust.
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Table 4: LATE and linear MTE estimates with same-sex instrument, no covariates

(a) Estimates of linear MTE model and its components

p=0.473 p=0.531 intercept slope

Linear MTE model:
µ1 +K1(P ) = E(Y1|UD < p) 12.086 12.131 11.720 + 0.773 p

(0.008) (0.007) (0.073) (0.180)
µ0 +K0(P ) = E(Y0|UD > p) 12.462 12.450 12.564 -0.216 p

(0.007) (0.008) (0.090) (0.184)
µ1 + k1(p) = E(Y1|UD = p) 12.453 12.576 11.720 +1.550 p

(0.082) (0.103) (0.073) (0.360)
µ0 + k0(p) = E(Y0|UD = p) 12.576 12.551 12.780 -0.432 p

(0.100) (0.790) (0.270) (0.0368)
MTE(p) = E(Y1 − Y0|UD = p) -0.123 -0.008 -1.006 +1.981 p

(0.129) (0.130) (0.285) (0.514)

(b) LATE from IV and linear MTE model

Instrumental variables:
(E(Y |Pr(D) = 0.531)− E(Y |Pr(D) = 0.473)) /(0.531− 0.473) -0.065

(0.129)

LATE from linear MTE model:´ 0.531
0.471

MTE(p) = MTE((0.531 + 0.471)/2) -0.065
(0.128)

Note: This table displays LATE and linear MTE estimates of family size on the educational attainment

of �rst born children. Panel (a) reports estimates of the linear MTE-model with �Same sex, �rst and

second� as instrument and no covariates. Panel (b) reports estimates of LATE from the IV estimator

and the linear MTE model, with �Same sex, �rst and second� as instrument and no covariates. Standard

errors in parantheses are computed by nonparametric bootstrap with 100 bootstrap replications.
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Table 5: Tests of constant MTE: Comparing LATEs at di�erent propensity score ranges

LATE over interval (0.20,0.25) (0.30,0.35) (0.40,0.45) (0.50,0.55) (0.60,0.65)
- LATE over interval (0.30,0.35) (0.40,0.45) (0.50,0.55) (0.60,0.65) (0.70,0.75)
point est. 1.109 1.285 0.053 -0.752 -1.239
std. err. 0.441 0.371 0.294 0.285 0.390
p-value 0.012 0.001 0.857 0.008 0.002
joint p-value 0.000

Note: This table reports tests of constant MTE of family size on the educational attainment of �rst born

children. The MTE estimates are from the semiparametric generalized Roy model based on Assumptions

1 and 2, with �Same sex, �rst and second� as instrument (see Figure 5). We construct P(Z) using the

parameter estimates from the logit model with average derivatives reported in Table 2. We use the same

speci�cation for the covariates as reported in Table 2. The MTE estimates are based on double residual

regression separately for the treated and non-treated, using local quadratic regression with rectangular

kernel and bandwidth of 0.055. The LATEs are derived from the MTE estimates by integrating over the

indicated intervals. Standard errors are based on nonparametric bootstrap (of both estimation stages)

with 100 bootstrap replications.

Table 6: Treatment e�ect parameters using same-sex instrument

model ATE ATT ATUT
lower bound 0.232 0.313 0.194

(0.060) (0.086) (0.061)
rescaled support 0.423 0.756 0.553

(0.110) (0.171) (0.150)

Note: This table reports ATE, ATET, and ATUT of family size on the educational attainment of �rst born

children. Lower bound: We use estimates of MTE in the region (0.20,0.75). In the regions (0,0.20) and

(0.75,1) the MTE is set equal to 0. Rescaled support: We use estimates of MTE in the region (0.20,0.75),

and rescale the weights to integrate to one over this region. In both cases, the MTE estimates are from

the semiparametric generalized Roy model based on Assumptions 1 and 2, with �Same sex, �rst and

second� as instrument (see Figure 5). We construct P(Z) using the parameter estimates from the logit

model with average derivatives reported in Table 2. . We use the same speci�cation for the covariates

as reported in Table 2. The MTE estimates are based on double residual regression separately for the

treated and non-treated, using local quadratic regression with rectangular kernel and bandwidth of 0.055.

Standard errors are based on nonparametric bootstrap (of both estimation stages), with 100 bootstrap

replications.
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Figure 1: The geometry of the linear MTE model and LATE
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Note: This �gure shows the geometry of the linear MTE-models and LATE. We consider a binary

instrument with associated propensity scores p0 = 0.4 and p1 = 0.8. The four circles indicate the

average outcome for each combination of treatment state and instrument value. The dashed line that

goes through the two conditional averages for the treated observations identi�es the line µ1 + K1(p).

The dashed line that goes through the two conditional averages for the untreated observations identi�es

the line µ0 + K0(p). The solid line µ1 + k1(p) has twice the slope as the dashed line µ1 + K1(p). The

solid line µ0 + k0(p) has twice the slope as the dashed line µ0 + K0(p). Note that k0(1) = K0(1) and

k1(0) = K1(0). We identify MTE from the vertical di�erence between the solid lines at a given value

UD = p , i.e. MTE(p) = µ1 − µ0 + k1(p) − k0(p). The LATE is given by the integrated MTE over the

interval (p0, p1), which equals the vertical distance between the solid lines at the midpoint of the interval

(p0, p1) (indicated by the vertical dotted line).
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Figure 2: Example of MTE generated from a mixture model
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Note: This �gure displays the distribution of MTE that is generated from a mixture of two normal

selection models. The population consists of two equally sized subgroups: One with constant marginal

treatment e�ects equal to 1; the other with constant marginal treatment e�ects equal to -1. In the

selection equation both groups enter treatment if a random variable exceeds a threshold of 0. The group

with negative marginal treatment e�ects has a random variables that is standard normal, while the group

with positive marginal treatment e�ects has random variables that is normal with mean zero and variance

2. The y-axis measures the value of the MTE, whereas the x-axis represents the unobserved component

of parents' net gain from treatment. A high value of p means that treatment is less likely.
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Figure 3: Weight of MTE for treatment e�ects parameters and instruments
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(a) ATT, ATUT, and ATE
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(b) IV with Z− as instrument
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(c) IV with P(Z) as instrument

Note: The upper panel graphs MTE weights associated with the average treatment e�ect on the treated

(ATT), the average treatment e�ect (ATE), and the average treatment e�ect on the untreated (ATUT).

The middle panel (Z− as instrument) and lower panel (P (Z) as instrument) graph MTE weights

associated with the IV estimates presented in Table 3. To compute the weights, we use the weight

formulas described in the Appendix. The y-axis measures the density of the distribution of weights,

whereas the x-axis represents the unobserved component of parents' net gain from having 3 or more

children rather than 2 children. A high value of p means that a family is less likely to have 3 or more

children. 37



Figure 4: Histogram of propensity scores with same-sex instrument, for the treated (solid)
and the untreated (dotted)
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Note: This �gure shows the empirical support of P (Z) ≡ Pr(D = 1 | X,Z) under Assumptions 1 and 2,

with �Same sex, �rst and second� as instrument. The common support is de�ned as the intersection of

the support of P (Z) given D = 1 (solid) and the support of P (Z) given D = 0 (dotted). We construct

P(Z) using the parameter estimates from the logit model with average derivatives reported in Table 2.

We use the same speci�cation for the covariates as reported in Table 2.
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Figure 5: MTE estimates with same-sex instrument
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Note: This �gure displays the MTE estimates from the semiparametric generalized Roy model based

on Assumptions 1 and 2, with �Same sex, �rst and second� as instrument. We construct P(Z) using

the parameter estimates from the logit model with average derivatives reported in Table 2. We use

the same speci�cation for the covariates as reported in Table 2. The MTE estimates are based on

double residual regression separately for the treated and non-treated, using local quadratic regression

with rectangular kernel and bandwidth of 0.055. The 95 percent con�dence interval is computed from a

non-parametric bootstrap with 100 bootstrap replications. The y-axis measures the value of the MTE

in years of schooling, whereas the x-axis represents the unobserved component of parents' net gain from

having 3 or more children rather than 2 children. A high value of p means that a family is less likely to

have 3 or more children.
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Figure 6: MTE estimates with same-sex instrument only and with both same-sex and
twins instruments
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Note: This �gure displays the MTE estimates from the semiparametric generalized Roy model based on

Assumptions 1 and 2. We show estimates with �Same sex, �rst and second� as the only instrument (solid

line) and when both the �Same sex, �rst and second� instrument and the �Twins at 2nd parity� instrument

are included (dashed line). We construct P(Z) using the parameter estimates from the logit model with

average derivatives reported in Table 2. We use the same speci�cation for the covariates as reported in

Table 2. The MTE estimates are based on double residual regression separately for the treated and non-

treated, using local quadratic regression with rectangular kernel and bandwidth of 0.055. The 95 percent

con�dence interval is computed from a non-parametric bootstrap with 100 bootstrap replications. The

y-axis measures the value of the MTE in years of schooling, whereas the x-axis represents the unobserved

component of parents' net gain from having 3 or more children rather than 2 children. A high value of p

means that a family is less likely to have 3 or more children.
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Figure 7: Expected outcome as treated for each instrument
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Note: This �gure displays estimates of expected years of schooling with 2 or more siblings (µ1(X)+k1(p))

from the semiparametric generalized Roy model based on Assumptions 1 and 2. We show estimates with

�Same sex, �rst and second� as the only instrument (solid line) and with �Twins at 2nd parity� as the

only instrument (dashed line). We construct P(Z) using the parameter estimates from the logit model

with average derivatives reported in Table 2. We use the same speci�cation for the covariates as reported

in Table 2. The MTE estimates are based on double residual regression separately for the treated and

non-treated, using local quadratic regression with rectangular kernel and bandwidth of 0.055. The 95

percent con�dence interval (dotted lines) pertains to the MTE estimates based on the �Twins at 2nd

parity� instrument, and is computed from a non-parametric bootstrap with 100 bootstrap replications.

The y-axis measures the outcome in years of schooling, whereas the x-axis represents the unobserved

component of parents' net gain from having 3 or more children rather than 2 children. A high value of p

means that a family is less likely to have 3 or more children.
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A Proofs

Proposition 1

Proof. Suppose Assumption 1 holds. Assume that P (Z) takes on N di�erent values,
p1, . . . , pN ∈ (0, 1). Without loss of generality, we keep the conditioning on X implicit
and take Z = Z−.

The expected outcome as a function of the propensity score is given by

E(Y |P (Z) = p) = µ0 + p(µ1 − µ0) +K(p). (18)

Specify k(p) =
∑L

k=0 αkp
k. Inserting for k(p) in K(p) gives

K(p) =

pˆ

0

k(u)du =
L∑

k=0

αk

k + 1
pk+1,

and it follows that E(Y |P (Z) = p) is a polynomial in p of order L+ 1
Let Ȳ c(pi) denote the conditional average of Y given P (Z) = pi. If L = N − 2, there

is exactly one combination of parameters

θ = (µ0, µ1 − µ0 + α0, α1, . . . , αL)

that �ts the expectations in equation (18) to the observed conditional averages

{(p1, Ȳ c(p1)), . . . , (pN , Ȳ c(pN))}

according to the unisolvence theorem. Because

E(U1 − U0) =

1ˆ

0

k(u)du = 0

implies

α0 = −
L∑

k=1

αk/(1 + k)

then µ1 is also identi�ed. In contrast, if L > N − 2, there are several combinations of
the parameters θ that �t the expectations in equation (18) to the observed conditional
averages. Thus, using LIV the MTEs are identi�ed provided k is speci�ed as a polynomial
of order no higher than N − 2.

The expected outcome as function of propensity scores and treatment status is given
by

E(Y |P (Z) = p,D = j) = µj +Kj(p), j = 0, 1 (19)

Specify k1(p) =
∑L

k=0 α
1
kp

k. Inserting for k1(p) in K1(p) gives,

K1(p) =
1

p

pˆ

0

k1(u)du =
L∑

k=0

α1
k

k + 1
pk,

and it follows that E(Y |P (Z) = p,D = 1) is a polynomial in p of order L.
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Let Ȳ c
1 (pi) denote the conditional average of Y given P (Z) = pi and D = 1. If

L = N − 1, there is exactly one combination of parameters

ξ1 = (µ1 + α1
0, α

1
1, . . . , α

1
L)

that �ts the expectations in equation (19) to the observed conditional averages

{(p1, Ȳ c
1 (p1)), . . . , (pN , Ȳ c

1 (pN))}

according to the unisolvence theorem. Because

E(U1) =

1ˆ

0

k1(u)du = 0

implies

α1
0 = −

L∑
k=1

α1
k/(1 + k)

then µ1 is also identi�ed. In contrast, if L > N − 1, there are several combinations of
the parameters ξ1 that �t the expectations in equation (18) to the observed conditional
averages.

The proof for identi�cation of µ0 and the parameters in K0(p) follows the above pro-
cedure. Thus, using the separate estimation approach the MTEs are identi�ed provided
k1 and k0 are speci�ed as polynomials of degree no higher than N − 1.

Proposition 2

Proof. Suppose Assumptions 1 and 2 hold. Assume that X takes on M di�erent val-
ues and Z takes on N di�erent values for each X, giving MN values of P (Z), labeled
(p1, . . . , pMN) ∈ P = (0, 1)MN .

The expected outcome as a function of the propensity score is given by

E(Y |P (Z) = p,X = x) = µ0(x) + p(µ1(x)− µ0(x)) +K(p).

Specify k(p) =
∑L

k=0 αkp
k. Inserting for k(p) in K(p) gives

K(p) =

pˆ

0

k(u)du =
L∑

k=0

αk

k + 1
pk+1.

Let Ȳ c(pi, x) denote the conditional average of Y given P (Z) = pi and X = x. There
are MN di�erent values of Ȳ c(pi, x). The vector of parameters

θ = (α1/2, . . . , αL/(L+ 1),

µ0(1), µ1(1)− µ0(1) + α0, . . . , µ0(N), µ1(N)− µ0(N) + α0)
′
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are identi�ed if no more than one solution exist for the equation system

E(Y |P (Z) = pi, X = x) = Ȳ c(pi, x)

for all pi and X. The equation system is linear in parameters, with Aθ = Ȳ c where

A =



p21 · · · pL+1
1 1 p1 0 0 · · · 0 0

p22 · · · pL+1
2 1 p2 0 0 · · · 0 0

...
...

...
...

...
...

p2N · · · pL+1
N 1 pN 0 0 · · · 0 0

p2N+1 · · · pL+1
N+1 0 0 1 pN+1 · · · 0 0

...
...

...
...

...
...

...
...

p2MN · · · pL+1
MN 0 0 0 0 · · · 1 pMN


and Ȳ c is an appropriately sorted (column) vector of Ȳ c(pi, x).

If L > (N − 2)M , there are several combinations of the parameters θ that solves the
equation system. If L = (N − 2)M , the equation system has a unique solution if and
only if the determinant D(p1, . . . , pMN) = |A| 6= 0. Note �rst that D(p1, . . . , pMN) is
not 0 for all (p1, . . . , pMN) ∈ P (this can easily be veri�ed numerically for any choice of
M > 1 and N > 2). Further, D is analytic in (p1, . . . , pMN). Since D is not zero for
all (p1, . . . , pMN) ∈ P and analytic, it is not zero on any open subset of P . Hence, the
equation system has a unique solution a.e. in P . Because

E(U1 − U0) =

1ˆ

0

k(u)du = 0

implies

α0 = −
L∑

k=1

αk/(1 + k)

then µ1(1), ..., µ1(N) are also identi�ed.
The expected outcome as a function of the propensity score and treatment status is

given by
E(Y |P (Z) = p,X = x,D = j) = µj(x) +Kj(p), j = 0, 1.

Inserting for k1(p) in K1(p) gives

K1(p) =
1

p

pˆ

0

k1(u)du =
L∑

k=0

α1
k

k + 1
pk.

Let Ȳ c
1 (pi, x) denote the conditional average of Y given P (Z) = pi, D = 1, and X = x.

There are MN di�erent values of Ȳ c
1 (pi, x). The vector of parameters

ξ1 = (α1
1/2, . . . , α

1
L/(L+ 1), µ1(1) + α1

0, .., µ1(N) + α1
0)
′
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are identi�ed if no more than one solution exist for the equation system

E(Y |P (Z) = pi, D = 1, X = x) = Ȳ c
1 (pi, x)

for all pi and X. The equation system is linear in parameters, with A1ξ
1 = Ȳ c

1 where

A1 =



p11 · · · pL1 1 0 · · · 0
p12 · · · pL2 1 0 · · · 0
...

...
...

...
...

p1N · · · pLN 1 0 · · · 0
p1N+1 · · · pLN+1 0 1 · · · 0
...

...
...

...
...

p1MN · · · pLMN 0 0 · · · 1


and Ȳ c

1 is an appropriately sorted (column) vector of Ȳ c
1 (pi, x).

If L > (N − 1)M , there are several combinations of the parameters ξ1 that solves the
equation system. If L = (N − 1)M , the equation system has a unique solution if and
only if the determinant D1(p1, . . . , pMN) = |A1| 6= 0. Note �rst that D1(p1, . . . , pMN) is
not 0 for all (p1, . . . , pMN) ∈ P (this can easily be veri�ed numerically for any choice of
M > 1 and N > 1). Further, D1 is analytic in (p1, . . . , pMN). Since D1 is not zero for
all (p1, . . . , pMN) ∈ P and analytic, it is not zero on any open subset of P . Hence, the
equation system has a unique solution a.e. in P . Because

E(U1) =

1ˆ

0

k(u)du = 0

implies

α1
0 = −

L∑
k=1

α1
k/(1 + k)

then µ1(1), ..., µ1(N) are also identi�ed.
The proof for identi�cation of the parameters µ0(x) and those in K0(p) follows the

above procedure.
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B Supplementary tables

Table B-1: LATE and Linear MTE slope coe�cients for 64 subgroups

Group Size p0 p1 LATE (se) SLOPE (se)
X1 X2 X3 X4 X5 X6

0 0 0 0 0 0 12136 0.519 0.574 -0.0856 (0.618) -1.77 (2.48)

0 0 0 0 0 1 12855 0.687 0.717 0.226 (1.38) 10.4 (6.03)

0 0 0 0 1 0 1453 0.43 0.458 -5.04 (6.03) 19.4 (15.9)

0 0 0 0 1 1 4396 0.548 0.605 0.145 (1.29) 0.765 (5.23)

0 0 0 1 0 0 5030 0.551 0.596 -0.896 (1.24) 1.76 (4.96)

0 0 0 1 0 1 13150 0.658 0.693 -2.56 (1.37) -2.94 (5.3)

0 0 0 1 1 0 4240 0.367 0.391 1.64 (3.01) 9.73 (11.6)

0 0 0 1 1 1 23920 0.439 0.498 -1.34* (0.591) -1.14 (2.32)

0 0 1 0 0 0 9070 0.432 0.496 0.584 (0.663) -4.57 (2.62)

0 0 1 0 0 1 3349 0.651 0.731 -0.0908 (1.03) 2.38 (4.53)

0 0 1 0 1 0 1643 0.396 0.444 -3.35 (2.75) -6.47 (8.8)

0 0 1 0 1 1 1348 0.576 0.628 0.654 (2.67) -17.5 (10.8)

0 0 1 1 0 0 4212 0.473 0.518 1.5 (1.6) 5.51 (6.01)

0 0 1 1 0 1 4114 0.632 0.691 0.139 (1.42) -4.14 (6.07)

0 0 1 1 1 0 5242 0.344 0.387 -0.778 (1.52) -1.28 (6.25)

0 0 1 1 1 1 12853 0.431 0.493 0.885 (0.843) 4.13 (3.33)

0 1 0 0 0 0 14081 0.461 0.516 -0.415 (0.637) 6.58* (2.55)

0 1 0 0 0 1 7835 0.662 0.699 -0.619 (1.51) 4.3 (6.5)

0 1 0 0 1 0 2286 0.356 0.416 0.236 (1.55) 2.42 (6.45)

0 1 0 0 1 1 2756 0.535 0.592 -1.77 (1.85) -10.5 (7.09)

0 1 0 1 0 0 2553 0.469 0.539 -0.631 (1.26) 0.532 (5.02)

0 1 0 1 0 1 3136 0.66 0.693 -0.162 (2.75) 10.4 (11.6)

0 1 0 1 1 0 4131 0.295 0.363 0.241 (1.05) -3.86 (4.47)

0 1 0 1 1 1 8416 0.417 0.465 4.00* (1.54) 8.72 (4.88)

0 1 1 0 0 0 29784 0.395 0.471 0.779 (0.362) -1.38 (1.45)

0 1 1 0 0 1 7093 0.655 0.715 2.29* (1.13) 0.727 (4.5)

0 1 1 0 1 0 11955 0.379 0.457 -0.661 (0.585) -2.16 (2.36)

0 1 1 0 1 1 4436 0.581 0.648 -0.205 (1.29) 13.1* (5.3)

0 1 1 1 0 0 6510 0.443 0.51 -0.308 (0.899) 2.02 (3.6)

0 1 1 1 0 1 3880 0.65 0.705 0.637 (1.68) -2.19 (7.14)

0 1 1 1 1 0 22664 0.318 0.385 0.889 (0.495) -0.813 (2.08)

0 1 1 1 1 1 20248 0.453 0.514 0.224 (0.664) -3.42 (2.66)

Note: X1 - female, X2 - Father's years of schooling > 9, X3 - Mothers years of schooling > 9, X4 -

Father's age at �rst birth > 26, X5 - Mother's age at �rst birth > 23, X6 - Age in 2000 > 39. Chi-square

test of H0 : �all slope coe�cients are equal to zero� has 64 degrees of freedom and gives test statistic

82.02 (p-value: 0.0642).
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Table B-1: continued

Group Size p0 p1 LATE (se) SLOPE (se)

X1 X2 X3 X4 X5 X6

1 0 0 0 0 0 11787 0.518 0.572 0.394 (0.699) -0.813 (2.78)

1 0 0 0 0 1 10862 0.687 0.731 1.51 (0.98) -0.0123 (4.1)

1 0 0 0 1 0 1344 0.429 0.472 1.66 (3.01) -1.29 (11.6)

1 0 0 0 1 1 3356 0.552 0.595 -1.74 (1.89) 1.57 (7.28)

1 0 0 1 0 0 4823 0.541 0.623 -0.432 (0.752) -0.457 (3.06)

1 0 0 1 0 1 10416 0.668 0.717 0.907 (0.911) 2.63 (3.9)

1 0 0 1 1 0 4135 0.358 0.39 -2.5 (2.47) -2.42 (9.24)

1 0 0 1 1 1 18253 0.446 0.473 2.23 (1.49) 7.12 (5.37)

1 0 1 0 0 0 8727 0.434 0.492 -0.137 (0.813) 2.7 (3.27)

1 0 1 0 0 1 3016 0.687 0.721 0.32 (2.59) -3.28 (11.3)

1 0 1 0 1 0 1522 0.381 0.446 3.78 (2.34) -0.629 (7.35)

1 0 1 0 1 1 1195 0.589 0.594 -44 (248) 241 (120)

1 0 1 1 0 0 4081 0.488 0.552 -0.306 (1.15) 5.1 (4.61)

1 0 1 1 0 1 3501 0.659 0.682 -1.57 (3.95) -23 (16.3)

1 0 1 1 1 0 5089 0.338 0.399 -1.08 (1.13) -1.43 (4.64)

1 0 1 1 1 1 10545 0.431 0.492 0.0253 (0.867) -4.93 (3.48)

1 1 0 0 0 0 13453 0.45 0.517 -0.327 (0.573) 3.86 (2.3)

1 1 0 0 0 1 6959 0.656 0.725 -0.965 (0.835) 2.29 (3.58)

1 1 0 0 1 0 2212 0.363 0.427 0.497 (1.54) 10.8 (6.32)

1 1 0 0 1 1 2404 0.557 0.603 -2.72 (2.56) -7.7 (9.15)

1 1 0 1 0 0 2552 0.475 0.551 -1.2 (1.22) -1.7 (4.77)

1 1 0 1 0 1 2591 0.625 0.708 0.691 (1.18) 6.8 (4.96)

1 1 0 1 1 0 4040 0.32 0.341 5.23 (5.25) 35.4* (15.1)

1 1 0 1 1 1 7003 0.407 0.464 -0.848 (1.1) -5.35 (4.4)

1 1 1 0 0 0 28294 0.403 0.47 0.042 (0.42) 1.97 (1.7)

1 1 1 0 0 1 6445 0.65 0.721 0.781 (0.937) 7.91 (4.02)

1 1 1 0 1 0 11341 0.373 0.444 0.442 (0.62) 2.67 (2.53)

1 1 1 0 1 1 3976 0.612 0.674 1.79 (1.43) 5.1 (5.78)

1 1 1 1 0 0 6300 0.448 0.514 -1.65 (0.97) -4.94 (3.68)

1 1 1 1 0 1 3403 0.654 0.712 2.03 (1.65) 13.8* (6.8)

1 1 1 1 1 0 21990 0.317 0.382 0.146 (0.48) -1.62 (2.02)

1 1 1 1 1 1 17614 0.456 0.514 0.749 (0.688) 0.463 (2.74)

Note: X1 - female, X2 - Father's years of schooling > 9, X3 - Mothers years of schooling > 9, X4 -

Father's age at �rst birth > 26, X5 - Mother's age at �rst birth > 23, X6 - Age in 2000 > 39. Chi-square

test of H0 : �all slope coe�cients are equal to zero� has 64 degrees of freedom and gives test statistic

82.02 (p-value: 0.0642).
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