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1. Introduction

Urban transport systems are intrinsically defined by the behaviours of many
thousands or millions of individuals. It is thus vital, that where one seeks to model
transport systems under change or shock, individual behaviour is well understood.
Yet recent research into one core spatial behaviour – route selection – suggests that
conventional models of such behaviour are poorly conceived (Manley et al. 2012b).

Existing models of route-choice suggest that individuals select routes based
predominantly on a principle of economic rationality, namely that they will always
aim to minimise travel time or distance. However, research is growing that suggests
that such assumptions are unrealistic (Golledge 1995, Wiener et al. 2004, Zhu &
Levinson 2010), and result in inaccurate predictions of road transport flows (Manley
et al. 2012a). Rather, behaviours are influenced by subjective representations of
space and estimations of prospective travel times. Furthermore, it has been
established that individuals do not necessarily remember specific routes or paths, but
rather maintain a topological network within the brain of salient places through which
a route is constructed (Golledge 1978, Passini 1984, Winter et al. 2007). Such
findings help better explain the observable heterogeneity in behaviours observed in
route selection, and the presence of non-linearity in choice, in that certain areas of the
network appear to attract and repel traffic significantly more than might be expected
(Manley et al. 2012b).

In aiming to more accurately model road transport flows, one must therefore
seek to incorporate the full extent of this behavioural heterogeneity within a model of
route-choice. The Markov chain Monte Carlo (MCMC) method is a statistical
approach to modelling and predicting behavioural heterogeneity. Through MCMC,
rather than specifying a set of parameters and making predictions on the relative
contribution of each in determining behaviour, prior actions – described through data
– are used to make predictions on future behaviours. In this research, an MCMC
model is applied to describing route-choice behaviour across a topological
representation of the road network. In using the MCMC approach, we are able to
capture all relevant behaviours that may be difficult to accurately specify using
alternative methods. While this approach does not offer any explanatory power in
describing individual route selection, it does enable the improved statistical
description of the full heterogeneity of choice among a population of individual
travellers.

2. MCMC Route Choice Structure and Definition

The traditional Markov chain model can be thought of as a network of nodes,
connected according to their probability of sequential selection. The probability of



moving from one node to another is defined according prior observed behaviours,
usually captured through data. In the case of the route-choice model described here,
the network nodes are intended to represent salient locations on the road network, and
the probability of moving between two given points specified according to a large
dataset of cab routes in London. For the purposes of this model, an adapted version
of the traditional Markov chain is developed, incorporating higher-level strategic
choice behaviours that shape movement towards a target destination.

2.1. Node Specification

The MCMC model is applied to a topological representation of the road network. The
nodes within the MCMC model are intended to represent locations on the road
network at which route selection choices are likely to be made. As such, a structure
of nodes is developed from the points of junctions between major thoroughfares. It
may be assumed that, as these locations represent points of likely route deviation,
individuals are more likely to maintain a memory of them. Route choice, therefore,
rather than being executed on a link-by-link basis, is modelled through a node-to-node
selection process.

2.2. Inter-Nodal Probability Specification

The probability of connection between given nodes on the road network are drawn
from the route choice behaviours during around 700000 private hire cab journeys
through London, United Kingdom. In our approach, unlike traditional Markov chain
representations, node selection is dependent on the connection with the current node
given the node selected prior to the current node. This allows for a sense of linear
path continuity to be incorporated into the selection process, so that if an individual is
approaching a node from one direction, they are most likely to continue broadly in
same direction. This process is best demonstrated in the model in Figure 1, where an
individual’s choice from node j is shaped by the fact that they’d previously visited
node k.

Figure 1. Markov chain network structure, where k is the previous node, j is the
current node and i is an optional next node, showing the probability of

connections between node i and a range of sequential nodes.
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Through the specification of the Markov chain model, using a rarely seen wealth in
routing data, we have been able to effectively describe the heterogeneity inherent
across a population of individuals making a route selection between an origin and
destination. Although this approach does not yet offer any explanatory power as to
the nature of the decisions being taken by the individual, it does provide a picture of
population route choice that – given it is drawn from previous route selections – must
broadly represent the choices of a population of individuals.

There are some clear avenues for further work with respect to this research. Firstly,
there must be some work carried out into the validation of this approach, with
identification of whether the selections are broadly in line with the real data for
specific origin-destination pairs. Second, further work should be carried out into
identifying how effective the current node specification is in capturing key route
decision points, and whether certain nodes may be added or removed from this
representation. And finally, as hinted at above, the model currently lacks explanatory
power, thus further analysis should be carried out into identifying the important
influencing parameters causing node-to-node linkage.
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