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We find all nonrational meromorphic solutions of the equation ww′′ − (w′)2 = α(z)w +
β(z)w′ + γ (z), where α, β, and γ are rational functions of z. In so doing, we answer a

question of Hayman by showing that all such solutions have finite order. Apart from

special choices of the coefficient functions, the general solution is not meromorphic

and contains movable branch points. For some choices for the coefficient functions, the

equation admits a one-parameter family of nonrational meromorphic solutions. Nevan-

linna theory is used to show that all such solutions have been found and allows us to

avoid issues that can arise from the fact that resonances can occur at arbitrarily high

orders. We actually solve the more general problem of finding all meromorphic solutions

that are admissible in the sense of Nevanlinna theory, where the coefficients α, β, and γ

are meromorphic functions.

1 Introduction

Local series methods often provide strong necessary conditions for the general solution

of an ordinary differential equation (ODE) to have a meromorphic general solution. The

existence of a meromorphic general solution (or more generally, that an ODE has the

Painlevé property, see, e.g., [1]) is often used as a way to identify equations that are

integrable, that is, in some sense exactly solvable. We wish to extend this idea to that
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of finding all sufficiently complicated meromorphic solutions of an ODE, even when the

general solution is not meromorphic. We are effectively using singularity structure to

find integrable sectors of the solution space of the equation under consideration.

In this paper, we will find all admissible meromorphic solutions of the

differential equation

ww′′ − w′2 = α(z)w + β(z)w′ + γ (z), (1)

where α, β, and γ are meromorphic functions. Heuristially a meromorphic solution is

admissible if it is more complicated than the coefficients that appear in the equation. In

particular, if the coefficients are rational functions, then any transcendental (i.e., non-

rational) meromorphic solution is admissible. If the coefficients are constants, then any

nonconstant meromorphic solution is admissible. The precise definition of an admissi-

ble meromorphic solution w of Equation (1) is that w satisfies

T(r, α) + T(r, β) + T(r, γ ) = S(r, w), (2)

where T is the Nevanlinna characteristic and S(r, w) is used to denote any function of

r that is o(T(r, w)) as r → ∞ outside of some possible exceptional set of finite linear

measure.

The main result of this paper is the following.

Theorem 1.1. Suppose that w is a meromorphic solution of Equation (1), where the

meromorphic coefficients α(z), β(z), and γ (z) satisfy Equation (2). Then, w is one of the

solutions described in the following list, where c1 and c2 are constants.

(1) If β ≡ γ ≡ 0 and k1 = α �≡ 0 is a constant, then w = k1

c2
1
{1 + cosh(c1z + c2)} or

w = − k1
2 (z + c2)

2.

(2) If γ ≡ 0, β �≡ 0 and k1 = −α/β is a constant, then w(z) = c1 ek1z.

(3) If γ ≡ 0 and α + β ′ ≡ 0, then w(z) = ec1z{c2 − ∫
β(z) e−c1zdz}.

(4) If γ �≡ 0 and there is a constant k1 and a meromorphic function h satisfying

h2 + βh + γ = 0 and h′ − k1h= α + k1β, then w = ek1z(c1 + ∫
h(z) e−k1zdz).

(5) Suppose that γ �≡ 0 and A= β(α+β ′)−γ ′
γ

is a constant.

(a) If A= 0 and there is a nonzero constant k1 such that k2
1β + β ′′ +

2α′ = 0, then

k2
2 = 1

k2
1

{
1

4k2
1

(β ′ + 2α)2 +
(

γ − β2

4

)}

is also a constant. If k2 �= 0, then w = ±k2 cosh(k1z + c1) + β ′+2α

2k2
1

.
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(b) If k2
1 = (

β

2 A−β ′−2α)2

β2−4γ
is a nonzero constant, then w = c1 e(− A

2 ±k1)z −
1

2k2
1
(

β

2 A− β ′ − 2α).

(c) If α and γ are nonzero constants and β = 0, then w(z) = −α
2 (z +

c1)
2 − γ

2α
.

(d) If k2
1 = β2/4 − γ �≡ 0 is a constant and A= 0, then w(z) = ±k1z +

c1 − 1
2

∫
β dz.

(e) If β2/4 − γ ≡ 0, then w = e−Az/2{c1 − ∫
β

2 eAz/2 dz}. �

We have used k1 and k2 to denote constants that appear in constraints on the

coefficient functions. The constants c1 and c2 are parameters in families of solutions of

Equation (1), that is, they are integration constants.

The case in which α, β, and γ are constants was solved in [3]. In this case, any

nonconstant solution is admissible. Since it is trivial to find the constant solutions, all

meromorphic solutions were found.

In [10], Hayman conjectured that all entire solutions of

f f ′′ − f ′2 = κ0 + κ1 f + κ2 f ′ + κ3 f ′′ (3)

have finite order, where κ0, . . . , κ3 are rational functions of z. If we let w = f − κ3, then

w solves Equation (1) with α = κ1 − κ ′′
3 , β = κ2 + κ ′

3 and γ = κ0 + κ1κ3 + κ2κ
′
3 + (κ ′

3)
2. This

provided the initial motivation for studying the meromorphic solutions of Equation (1).

However, the problem of the explicit determination of all meromorphic solutions soon

became the main problem of interest. Nevertheless, Hayman’s question is answered by

the following elementary corollary of Theorem 1.1.

Corollary 1.2. If α, β, and γ are rational functions, then any transcendental meromor-

phic solution w of Equation (1) is of order 1, exponential type. �

This corollary follows immediately on noting that any meromorphic function

that can be expressed as an integral of the form
∫

β eAz, for some constant A, is itself of

the form B(z) eAz, for some rational function B. This can be seen by decomposing β into

partial fractions, using integration by parts, and noting that the coefficients of terms of

the form
∫
(z − c)−1 eAz, where c is constant, must vanish. In [2], Barsegian et al. obtained

some estimates for the number of poles of meromorphic solutions of Equation (1) in the

case in which α, β, and γ are polynomials.

In some sense, Equation (3) is the simplest differential equation which is neither

covered by the results of Steinmetz [13, Theorem 12.2; 15] nor Hayman [10, Theorem C].
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Both these results generalize the classical Gol’dberg Theorem [8] that all meromorphic

solutions of the first-order ODE Ω(z, f, f ′) = 0, where Ω is polynomial in all its argu-

ments, are of finite order.

Equation (1) is singular when w = 0. Suppose that w has a zero at z= z0, which is

neither a zero nor a pole of the coefficients, and substitute the expansion

w(z) =
∞∑

n=0

an(z − z0)
n+p

in Equation (1), where a0 �= 0 and p is a positive integer. If γ �≡ 0, then p= 1 and there are

(generally) two possible values for a0 given by a2
0 + β(z0)a0 + γ (z0) = 0. For each choice of

a0, we have a recurrence relation of the form

(n+ 1)(n− r)a0an = Pn(a0, . . . , an−1), (4)

where for each n, Pn is a polynomial in its arguments. For Equation (1), r depends on α,

β, γ, and a0.

If r is not a positive integer, then all of the coefficients an are determined by

the choice of a0. In this case, there are at most two solutions with a zero at z0. This is

the so-called finiteness property that has been used by several authors to characterize

meromorphic solutions of equations [4–7, 12]. It is particularly effective for constant

coefficient equations as it can be used to deduce periodicity of solutions.

If r is a positive integer, then only a1, . . . , ar−1 are determined by a0. Equation (4)

shows that there is a necessary (resonance) condition, P (a0, . . . , ar−1) = 0, which must be

satisfied. Subject to this constraint, all remaining coefficients, ar+1, . . . are determined by

ar and a0. This is very useful for identifying equations that admit meromorphic solutions

(see, e.g., [16]). One of the main difficulties with Equation (1) is that the location of the

resonance depends on the coefficients: r = (β(z0)/a0) + 2. So even in the constant coeffi-

cient case considered in [3], we can choose β and γ so that there is a positive integer res-

onance at an arbitrary high coefficient in the expansion for w, implying that high-order

derivatives of w at a zero of w are not determined by the equation and leading-order

term (cf. [14]).

In the present paper, we bypass issues related to resonance by using at most the

first two terms in the series expansion for w at zeros to construct a small (in the sense

of Nevanlinna theory) function of w and w′, the coefficient functions α, β, γ and their

derivatives. In this way, we construct first-order equations that we can solve for w.
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2 Proof of Theorem 1.1

If α(z) ≡ β(z) ≡ γ (z) ≡ 0, then Equation (1) becomes (w′/w)′ = 0, which has the general

solution w(z) = c2 ec1z. This is a special case of part (3) of Theorem 1.1. From now on, we

take at least one of α, β, γ to be nonzero.

For any meromorphic function f , we define the set Φ f as follows. If f ≡ 0, then

Φ f = ∅. If f �≡ 0, then Φ f is the set of all zeros and poles of f . Let Φ = Φα ∪ Φβ ∪ Φγ . Let

w �≡ 0 be a meromorphic solution of Equation (1) and let z0 ∈ Ω := C \ Φ be either a zero

or a pole of w. Then, w has a Laurent series expansion of the form

w(z) = a0ζ
p + a1ζ

p+1 + O(ζ p+2),

where ζ = z − z0, a0 �= 0 and p∈ Z \ {0}. Equation (1) then becomes

− pa2
0ζ 2p−2 + · · · = α(z0)(a0ζ

p + · · · ) + β(z0)(a0 pζ p−1 + · · · ) + (γ (z0) + · · · ). (5)

It follows that if β ≡ γ ≡ 0, then p= 2. Otherwise p= 1. In particular, w is analytic on Ω.

Throughout this proof, we will use the standard notation from Nevanlinna the-

ory (see, e.g., Hayman [9] or Laine [13]). In particular, for any meromorphic function f ,

we denote the (integrated) counting function with multiplicities by N(r, f) and with-

out multiplicities by N̄(r, f). Furthermore, we will denote by NΦ(r, f) and N̄Φ(r, f) the

counting functions (with and without multiplicities, respectively) where we only count

the poles of f in the set Φ. In particular, it follows that if w is a meromorphic solu-

tion of Equation (1), then N(r, w) = NΦ(r, w). Now for any meromorphic function f ,

N̄Φ(r, f) ≤ N̄(r, α) + N̄(r, 1/α) + N̄(r, β) + N̄(r, 1/β) + N̄(r, γ ) + N̄(r, 1/γ ) = S(r, w), where if

α ≡ 0 we take N̄(r, 1/α) = 0, etc. So N̄(r, w) = N̄Φ(r, w) = S(r, w).

When the coefficient functions α, β and γ are rational functions, then Φ is a finite

set and NΦ(r, w) = S(r, w). However, for transcendental coefficients this does not follow

immediately.

Case 1: α �≡ 0, β ≡ γ ≡ 0.

Substituting w(z) = a0ζ
2 + a1ζ

3 + O(ζ 4) in Equation (1) shows that about any z0 ∈
Ω such that w(z0) = 0, we have

w(z) = −α(z0)

2
ζ 2 − α′(z0)

2
ζ 3 + O(ζ 4).

Together with the fact that w is analytic on Ω, it follows that

f(z) :=
(

w′

w
− α′

α

)2

+ 2
α

w
(6)
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is also analytic on Ω. Using Equation (1) with β ≡ γ ≡ 0, we see that

f(z) =
(

w′

w
− α′

α

)2

+ 2
(

w′

w

)′
. (7)

Hence

N(r, f) = NΦ(r, f) ≤ 2NΦ

(
r,

w′

w

)
+ 2NΦ

(
r,

α′

α

)
+ NΦ

(
r,
(

w′

w

)′)

= 4
{

N̄Φ(r, w) + N̄Φ

(
r,

1

w

)}
+ 2NΦ

(
r,

α′

α

)
= S(r, w).

Furthermore, applying the Lemma on the Logarithmic Derivative to Equation (7) gives

m(r, f) = S(r, w). So T(r, f) = S(r, w).

Differentiating Equation (6) and using Equation (1) to eliminate w′′ gives

f ′ = 2
(

α′

α

)′ (
α′

α
− w′

w

)
. (8)

When ( α′
α
)′ �≡ 0, we obtain

w′

w
= α′

α
− f ′

2

[(
α′

α

)′]−1

.

Substituting this into Equation (6) gives

f = f ′2

4

[(
α′

α

)′]−2

+ 2
α

w
. (9)

Applying Nevanlinna’s First Fundamental Theorem to Equation (9), we obtain T(r, w) =
S(r, w), a contradiction. Therefore (α′/α)′ ≡ 0, so from Equation (8), f ′ ≡ 0. Thus,

α(z) ≡ k1ek2z and f(z) ≡ c2
1,

where k1 �= 0, k2, and c1 are constants.

In terms of u= w/α, Equation (6) becomes

u′2 = c2
1u2 − 2u.

If c1 = 0, this gives u= − 1
2 (z + c2)

2. When k2 �= 0, we arrive at the contradiction T(r, w) =
T(r, α) + S(r, α) = S(r, w). Thus, k2 = 0, so α = k1 and w = − k1

2 (z + c2)
2. For the case c1 �= 0,

u= c−2
1 {cosh(c1z + c2) + 1}, where c2 is a constant. This gives part (1) of Theorem 1.1.
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Case 2: β �≡ 0, γ ≡ 0.

Recall that in this case w has only simple zeros in Ω. Substituting w(z) = a0ζ +
a1ζ

2 + O(ζ 3) in Equation (1) yields, at the leading order a0 = −β(z0) and at the next-to-

leading order we find the constraint α(z0) + β ′(z0) = 0.

Case 2a: α + β ′ �≡ 0, γ ≡ 0.

Let f = w′/w. If z0 is a pole of w, then z0 ∈ Φ. If z0 is a zero of w, then either z0 ∈ Φ

or α(z0) + β ′(z0) = 0. Hence

N(r, f) = N
(

r,
w′

w

)
≤ N̄Φ(r, w) + N̄Φ

(
r,

1

w

)
+ N̄

(
r,

1

α + β ′

)
= S(r, w).

It then follows form the Lemma on the Logarithmic Derivative that T(r, f) = T(r, w′/w) =
S(r, w). Substituting w′ = fw and w′′ = ( f ′ + f2)w in Equation (1) with γ ≡ 0 yields

f ′w = α + fβ.

Since T(r, f ′) = S(r, w) and T(r, α + fβ) = S(r, w), we must have f ′ ≡ α + fβ ≡ 0, thus f ≡ k1

is a constant. Hence there exists a constants k1 such that w(z) = c1 ek1z and α(z) = −k1β(z),

giving part (1.1) of the theorem.

Case 2b: α + β ′ ≡ 0, γ ≡ 0.

Equation (1) takes the form ((w′ + β)/w)′ = 0, which has the general solution w =
ec1z{c2 − ∫

β(z)e−c1zdz}, where c2 is a constant. This gives part (3) of the theorem.

Case 3: γ �≡ 0.

Recall that in this case w is analytic in Ω and any zero z0 of w in Ω is simple. On

substituting w(z) = a0ζ + a1ζ
2 + O(ζ 3) in Equation (1), we find that

a2
0 + β(z0)a0 + γ (z0) = 0 and a1 = 1

2γ (z0)
{γ ′(z0) − β(z0)(α(z0) + β ′(z0))}a0

− 1

2
(α(z0) + β ′(z0)).

Let

f(z) = (w′)2 + βw′ + γ

w2
.

If f has a pole at z0 ∈ Ω, then w(z0) = 0, From Equation (1), f(z) = (w′′ − α)/w, so in a

neighborhood of z0,

f(z) = 2a1 − α(z0)

a0ζ
+ O(1) =

{
γ ′(z0) − β(z0)[α(z0) + β ′(z0)]

γ (z0)ζ
− 2α(z0) + β ′(z0)

a0ζ

}
+ O(1).
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Therefore

g(z) = (w′)2 + βw′ + γ

w2
+ A

w′

w
+ 2α + β ′

w
, A= β(α + β ′) − γ ′

γ
(10)

is analytic on Ω.

Rewriting Equation (1) as

1

w2
= 1

γ

{(
w′

w

)′
− 1

w

(
α + β

w′

w

)}
, (11)

we see that

2NΦ

(
r,

1

w

)
≤ NΦ

(
r,

1

γ

)
+ NΦ

(
r,
(

w′

w

)′)
+ NΦ

(
r,

1

w

)
+ NΦ(r, α) + NΦ(r, β) + NΦ

(
r,

w′

w

)
.

Hence

NΦ

(
r,

1

w

)
≤ 3

{
N̄Φ(r, w) + N̄Φ

(
r,

1

w

)}
+ S(r, w) = S(r, w).

So from Equation (10), we have

N(r, g) = NΦ(r, g) ≤ 2N̄Φ(r, w) + 2NΦ

(
r,

1

w

)
+ S(r, w) = S(r, w).

Taking the proximity function of both sides of Equation (11), we obtain

2m
(

r,
1

w

)
≤ m

(
r,

1

γ

)
+ m

(
r,
(

w′

w

)′)
+ m

(
r,

1

w

)
+ m(r, α) + m(r, β) + m

(
r,

w′

w

)

= m
(

r,
1

w

)
+ S(r, w).

Hence m(r, g) = S(r, w). So T(r, g) = m(r, g) + N(r, g) = S(r, w).

Differentiating w2× Equation (10) and using Equation (1) to eliminate w′′ and

Equation (10) to eliminate (w′)3 and then (w′)2, we have

A′w′ = g′w − B, (12)

where B = βg + αA+ 2α′ + β ′′.

Case 3a: A′ �≡ 0.

Using Equation (12) to eliminate w′ from Equation (10) gives

(g′2 − gA′2 + g′ AA′)w2 + ([2α + β ′]A′2 + βg′ A′ − AA′B − 2g′B)w + (B2 − β A′B + γ A′2) = 0.

Since the coefficients of the different powers of w are all S(r, w), we must have that

each coefficient vanishes identically. In particular, the coefficient of w2 gives g′2 − gA′2 +
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g′ AA′ = 0. It follows that G = g + (A2/4) satisfies (G ′)2 = (A′)2G. Hence either G = 0 (i.e.,

g = −A2/4) or G = (A/2 + k1)
2 (i.e., g = k1 A+ k2

1), where k1 is a constant.

Case 3a(i): g = k1 A+ k2
1.

Equation (12) now has the form

w′ = k1w + h, (13)

where h= −B/A′. Hence w′′ = k2
1w + (h′ + k1h) and we see that any solution of

Equation (13) solves Equation (1) if and only if

(h′ − k1h − α − k1β)w = h2 + βh + γ,

so h2 + βh + γ = 0 and h′ − k1h= α + k1β. This corresponds to part (4) of the theorem.

Case 3a(ii): g = −A2/4.

Equation (12) becomes w′ = −(A/2)w + h, where h= −B/A′. Hence w′′ = [(A2/4) −
(A′/2)]w + h′ − hA/2. Using these expressions to eliminate the first and second deriva-

tives in Equation (1) leads to

− A′

2
w2 +

(
Ah

2
+ h′ − α + β A

2

)
w = h2 + βh + γ

with coefficients that are S(r, w). By the Valiron–Mokhon’ko Theorem [17, Theorem 1.13],

we have 2T(r, w) = S(r, w), which is impossible.

Case 3b: A′ ≡ 0, that is, A is a constant.

It follows from Equation (12) that g is also a constant and B = 0. Equation (10)

can be rewritten as

(
w′ + 1

2
[Aw + β]

)2

=
(

g + A2

4

)
w2 +

(
β

2
A− β ′ − 2α

)
w +

(
β2

4
− γ

)
. (14)

Let h(z) = (
β

2 A− β ′ − 2α) eAz/2. Then

([
β2

4
− γ

]
eAz

)′
= β

2
eAz/2h (15)

and the condition B = 0 is equivalent to

h′ =
(

g + A2

4

)
β eAz/2. (16)

Clearly, if g = −A2/4, then h is constant.

Case 3b(i): g + A2

4 �= 0.
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So k2
1 = g + A2

4 is a nonzero constant. It follows from Equations (15) and (16) that

([
β2

4
− γ

]
eAz

)′
= 1

2k2
1

hh′.

Integration shows that

k2
2 = 1

k2
1

{
h2

4k2
1

+
(

γ − β2

4

)
eAz

}
= 1

k2
1

{
1

4k2
1

(
β

2
A− β ′ − 2α

)2

+
(

γ − β2

4

)}
eAz (17)

is a constant. Let

u= w eAz/2 + h

2k2
1

.

Then, Equation (14) becomes

(u′)2 = k2
1(u2 − k2

2). (18)

When k2 �= 0, we have

w =
(

±k2 cosh(k1z + c1) − h

2k2
1

)
e−Az/2,

where c1 is a constant. Therefore, T(r, w) ≤ K1r + S(r, w) for some K1 > 0. When A �= 0,

Equation (17) shows that r ≤ K2T(r, eAz) = S(r, w), which gives the contradiction T(r, w) =
S(r, w). Hence A= 0 if k2 �= 0. This is part (5)(a) of the theorem. Part (5)(b) corresponds to

the case in which k2 = 0, where

w = e−Az/2

(
c1e±k1z − h

2k2
1

)
= c1 e(− A

2 ±k1)z − 1

2k2
1

(
β

2
A− β ′ − 2α

)
.

Case 3b(ii): g = −A2/4, h �= 0.

Let λ = ∫
β

2 eAz/2dz. It follows from Equation (15) and Equation (16) that h and

C := 1

h

(
β2

4
− γ

)
eAz − λ

are constants. Let u= w eAz/2 + λ. Then, Equation (14) becomes (u′)2 = h(u+ C ), which has

the general solution u= h
4 (z + c1)

2 − C . Hence

w = h

4
e−Az/2(z + c1)

2 − 1

h

(
β2

4
− γ

)
eAz/2 = 1

4

(
β

2
A− β ′ − 2α

)
(z + c1)

2 −
β2

4 − γ

β

2 A− β ′ − 2α
.

(19)

So T(r, w) = O(r) + S(r, w). Recall that h is a nonzero constant. Now if A �= 0, we have

r ≤ K1T(r, eAz/2) = K1T(r, β

2 A− β ′ − 2α) + O(1) = S(r, w), a contradiction. Therefore A= 0.
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Now Equation (19) with A= 0 shows that T(r, w) = 2 log r + S(r, w). Hence w is admissible

if and only if the coefficients α, β, and γ are constants. This gives part (5)(c).

Case 3b(iii): g = −A2/4, h= 0.

It follows from Equations (14) and (15) that w′ + 1
2 [Aw + β] = k1 e−Az/2, where k2

1 =
(

β2

4 − γ ) eAz is a constant. Hence (w eAz/2)′ = k1 − 1
2β eAz/2, giving

w = e−Az/2

{
k1z + c1 −

∫
β

2
eAz/2dz

}
.

To study the admissibility of this solution, we will use the following theorem from Hay-

man and Miles [11].

Theorem 2.1. Let f(z) be a transcendental meromorphic function and K > 1 be a real

number. Then, there exists a set M(K) of upper logarithmic density at most d(K) = 1 −
(2 eK−1 − 1)−1 > 0 such that for every positive integer k, we have

lim sup
r→∞, r �∈M(K)

T(r, f)

T(r, f (k))
≤ 3 eK. �

Furthermore, note that if f is any nonconstant rational function other than a

degree 1 polynomial, then T(r, f) ≤ KT(r, f ′) for some K > 0. Therefore, if w eAz/2 is not a

constant or a degree 1 polynomial and k1 �= 0, it follows that there is a sequence of values

of r → ∞ such that for some K1 > 0,

T(r, w) ≤ T(r, w eAz/2) + T(r, e−Az/2)

≤ K1T(r, (w eAz/2)′) + T(r, e−Az/2)

= K1T
(

r,
1

2
β eAz/2 − k1

)
+ T(r, e−Az/2)

= K1T

(
r,

1

2
k1β

(
β2

4
− γ

)−1/2

− k1

)
+ T

(
r, k−1

1

(
β2

4
− γ

)1/2
)

= o(T(r, w)),

which is a contradiction. If w eAz/2 is at most a degree 1 polynomial, then β = k2 e−Az/2

and w is only admissible if A= 0. Now w is a polynomial of degree no more than 1, so

α, β, and γ are constants. It follows from h= 0 that α = 0. At the same time, A= 0 and

α = 0 implies that g = 0, so we have w′2 + βw′ + γ = 0. This corresponds to part (5)(d) of

the theorem. Otherwise, we have k1 = 0, that is, γ = β2

4 , which corresponds to part (5)(e).
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3 Discussion

The proof provided in Section 2 would have been significantly shorter had we restricted

ourselves to the rational coefficient case. In the first instance, the fact that N(r, 1/w) =
N̄(r, 1/w) + S(r, w) would have followed immediately from Equation (5). Also, many of the

subcases considered in the proof could be eliminated or simplified because they require

that in general certain rational functions of the coefficient functions be an exponential

in z.

When we allowed some of the coefficients to be transcendental, we generated

many exact solutions only to discard them later because these solutions grow at the

same rate as the coefficients. From the point of view of using the existence of mero-

morphic solutions as a detector of exactly solvable cases, this suggests that perhaps

a weaker notion of “admissibility” would be more fruitful. These are all perfectly good

solutions and it is undesirable merely to discard them or even to search for more effi-

cient methods to avoid considering them in the first place. It seems wasteful not to

modify the problem so that such solutions will appear in the final classification. We

hope to explore this problem in future work.
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