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Abstract 

The development and application of a fluid-structure interaction model for simulating 

the transition of a through-wall defect in pressurised dense (150 bar, 283.15 K) and 

gas phase (34 bar, 283.15 K) CO2 pipelines into a running brittle fracture is presented. 

Given the economic incentives, the fracture model is employed to test the suitability 

of the existing stock of natural gas pipelines with the relatively high ductile to brittle 

transition temperatures of 0 oC and -10 oC for transporting CO2 in the terms of their 

resistance to brittle fracture propagation. The hypothetical but nevertheless realistic 

scenarios simulated involve both buried and above ground 10 km long, 0.6 m i.d 

pipelines. Based on the assumption of no blowout of the surrounding soil upon the 

formation of the initial leak, the results show that the transition of the leak into a 

running brittle fracture in buried CO2 pipelines is far more likely as compared to 

above ground pipelines. In addition, gas phase pipelines are more prone to undergoing 

a propagating brittle fracture as compared to dense phase pipelines despite the lower 

operating pressures of the former. Furthermore, counter-intuitively, isolation of the 

feed flow following the discovery of a leak is shown to facilitate brittle fracture 

failure. The initial defect geometry on the other hand is shown to have a profound 

impact on the pipeline’s resistance to propagating brittle fractures.   
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1. Introduction 

 

As the planning for Carbon Capture and Sequestration (CCS) proceeds, the use of 

long distance networks of pressurised pipelines for the transportation of the captured 

CO2 for subsequent sequestration is becoming inevitable. Given that CO2 is 

considered to be toxic at concentrations higher than 7% (Harper et al., 2011), the 
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safety of CO2 pipelines is of paramount importance and indeed pivotal to the public 

acceptability of CCS as a viable means for tackling the impact of global warming.  

 

It is noteworthy that CO2 pipelines have been in operation in the US for over 30 year 

for enhanced oil recovery (Bilio et al., 2009; Seevam et al., 2008); however, these are 

confined to low populated areas. Additionally, given their small number, it is not 

possible to draw a meaningful statistical representation of the overall risk. Parfomak 

and Fogler (2007) propose that ‘statistically, the number of incidents involving CO2 

pipelines should be similar to those for natural gas transmission pipelines’.  

 

Clearly, given the heightened public awareness in environmental issues, even a single 

incident involving the large-scale escape of CO2 near a populated area may have an 

adverse impact on the introduction of the CCS technology. 

 

Propagating or running factures are considered as the most catastrophic type of 

pipeline failure given that they result in a massive escape of inventory in a short space 

of time. As such it is highly desirable to design pipelines with sufficiently high 

fracture toughness such that when a defect reaches a critical size, the result is a leak 

rather than a long running fracture. In the case of CO2 pipelines such types of failure 

will be of particular concern in Europe as large pipeline sections will inevitably be 

onshore, some passing near or through populated areas (Serpa et al., 2011). In 

addition, there is significant financial incentive in using the existing stock of 

hydrocarbon pipelines for transporting CO2 (Serpa et al., 2011). Given the very 

different properties of CO2 as compared to hydrocarbons, all safety issues regarding 

fluid/pipeline compatibility must be addressed a priori.   

 

A fracture may propagate in either a ductile or a brittle mode. However, there are 

subtle, yet important differences in the respective propagation mechanisms worthy of 

discussion. Ductile fractures, characterised by the plastic deformation of the pipeline 

along the tear are the more common of the two modes of failure and therefore best 

understood. These may commence following an initial tear or a puncture in the 

pipeline, for example due to third party damage or corrosion. The potential for this 

initial through-wall defect transforming into a propagating ductile fracture may be 

assessed using the simple well-established Battelle Two Curve (BTC) methodology 
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(Maxey, 1974). In essence the above involves the comparison of the pipeline 

decompression and the crack tip velocity curves. The crack will propagate as long as 

the decompression wave speed in the fluid is slower than the crack tip velocity. The 

BTC approach was recently extended by the present authors (Mahgerefteh et al., 2011) 

based on the coupling the fluid decompression and the crack velocity curves. This 

enabled the prediction of the variation of the crack length with time and hence the 

crack arrest length. Given the almost instantaneous transformation of the initial tear 

into a ductile fracture running at high velocity (ca. 200-300 m/s), heat transfer effects 

between the escaping fluid and the pipe wall during the propagation process will be 

insignificant. As such the transient pressure stress is the only driving force for 

propagating a ductile fracture.  

 

The propagation mechanism in the case of brittle factures is somewhat different. A 

situation may arise in which the pressure inside the pipeline at the time of formation 

of a puncture or a leak will be insufficient to drive a ductile fracture. However, with 

the passage of time, the Joule-Thomson expansion induced cooling of the escaping 

fluid will lower the pipe wall temperature in the proximity of the leak. In the event 

that the pipe wall temperature reaches its Ductile to Brittle Transition Temperature 

(DBTT), for most pipeline materials, there will be an almost instantaneous and 

significant drop in the fracture toughness. In such cases, depending on the initial 

defect size and geometry, if the prevailing pressure and thermal stresses exceed the 

critical facture toughness (Mahgerefteh and Atti, 2006), a running brittle fracture will 

occur. 

 

As such the modelling of brittle fractures requires the consideration of both the 

transient thermal and pressure stresses in the proximity of the initial through-wall 

defect.  

 

Three factors render CO2 pipelines especially susceptible to brittle fractures as 

compared to hydrocarbon pipelines (Bilio et al., 2009). These include CO2’s high 

saturation pressure and its significant sensitivity to the presence of even small 

amounts of impurities (Mahgerefeth et al., 2012), its ‘slow’ depressurisation 
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following a leak especially during the liquid/gas phase transition and finally its high 

Joule-Thomson expansion induced cooling.   

 

Although brittle fracture propagation in CO2 pipelines has been raised as an issue of 

possible concern (Andrews et al., 2010), to date, no experimental test data or 

comprehensive mathematical modelling work on the topic has been reported. This is 

of especial concern given the economic incentives in using existing natural gas 

pipelines for transporting CO2. Such pipelines are more susceptible to brittle fractures 

as compared to newer pipeline materials given their much higher DBTT (cf. -10 °C 

with -80 °C). Given the relatively short time frames being proposed for CCS 

introduction, the development of suitable mathematical models for assessing the 

susceptibility of CO2 pipelines to brittle factures is very timely.  

 

In a previous publication (Mahgerefteh and Atti, 2006), we presented a fluid-structure 

interaction model for simulating brittle fractures in pressurised pipelines. However, 

the simulation data reported based on application of the model was limited to 

hydrocarbon pipeline inventories. Given their very different thermodynamic 

decompression trajectories, it is impossible to extend the findings to CO2 pipelines. 

Additionally, the modelling employed an over-simplified heat transfer mechanism in 

which the impact of the radial temperature gradient across the pipe wall thickness on 

the resulting thermal stresses was ignored. Given that the latter is the main mechanism 

responsible for facilitating a brittle fracture, its accurate determination is important. 

 

In this paper, we present the development and application of a fully coupled fluid-

structure interaction model for simulating brittle fracture propagation in gas and dense 

phase CO2 pipelines. Given the obvious economic incentives, the simulations using 

the model mainly focus on testing the suitability of the current stock of natural gas 

pipelines for transporting CO2 in terms of their propensity to brittle fracture 

propagation. The impacts of fluid phase, the pipe wall thickness, Ductile-Brittle-

Transition Temperature (DBTT), the crack geometry, feed temperature, stream 

impurities as well as flow isolation on brittle fracture propagation behaviour are tested. 
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2. Theory 

 

The development of the brittle fracture model involves the formulation of the 

following elements: 

 

i) a fluid dynamics model for predicting the transient fluid temperature and 

pressure during the decompression process following the initial leak; 

 

ii) a heat transfer model for predicting the localised cooling of the pipe wall by the 

escaping CO2;  

 

iii) a fracture model for evaluating the resultant pressure and thermal stresses at 

the defect tip.  

 

2.1 Fluid Dynamics Model  

The background theory of the fluid dynamics model employed for predicting the fluid 

flow parameters including the transient fluid temperature and pressure following 

pipeline failure has been described elsewhere (Mahgerefteh et al., 2009, 2008; Oke et 

al., 2003) and hence only a brief account is given here. The governing conservation 

equations for mass, energy and momentum are respectively given by:  

 
(1) 

 
(2) 

 
(3) 

 

(4) 

where, , ,  and  are the velocity, specific enthalpy, density and pressure of the 

fluid as function of time, t, and space, x.  is the heat transferred through the pipe 

wall to the fluid and  is the friction force term defined in (4), in which  is 

pipeline inner diameter and  is the Fanning friction factor given by (Chen, 1979):  
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where ε, and  are the pipe roughness and internal diameter respectively. 

 

Also 

 
(6) 

where, g and  are the gravitational acceleration and the angle of inclination of the 

pipeline to the horizontal respectively.  

 

The above quasi-linear conservation equations are solved numerically using the 

method of characteristics (Zucrow and Hoffman, 1975). The technique is based on the 

principle of the propagation of characteristic waves, which handles the choked flow 

intrinsically via the Mach line characteristics. The modified Peng-Robinson equation 

of state (Wu and S. Chen, 1997) is employed to obtain the relevant fluid 

thermodynamic and phase equilibrium data.  

 

2.2 Heat Transfer 

2.2.1 Pipe wall temperature  

The 3-D heat transfer within the pipe wall is governed by the following heat 

conduction equation (Cengel, 2003):  

 

 

(7) 

 

where,  and are the thermal conductivity and specific heat respectively. Equation 

(7) is solved numerically using the finite volume method (Tannehill et al., 1997) by 

discretising the pipe wall into small elements. The corresponding heat balance for 

each element is given by: 
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where ki,j,k+1/2 are the thermal conductivities between the neighbouring cells (i,j,k) and 

(i,j,k+1).  

 

Thus, by knowing the temperature of cell (i,j,k) and its six adjacent cells at time, t  the 

temperature of cell (i,j,k) at time tt  can be calculated. 

 

The time-step, t  is determined using the following stability criterion (Eftring, 1990): 
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The main modes of heat transfer during pipeline depressurisation are:  

 

i) ambient air to outer pipe wall heat transfer; 

ii) axial forced convective heat transfer between the escaping fluid and the 

puncture plane; 

iii) convective heat transfer between the flowing fluid and the inner pipe wall. 

 

2.2.2 Ambient to outer pipe wall heat transfer  

The heat transfer coefficient between the pipe wall and the surrounding ambient is 

given by (Janna, 2000): 

3/133 )( fornatamb hhh 
 (10) 

where, hnat and hfor are the natural and forced (in the case of wind) heat transfer 

coefficients respectively. The average Nusselt number for natural convection over the 

entire surface of a horizontal cylinder is given by (Churchill and Chu, 1975): 
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where,  , Dout,  and  are the coefficient of volume expansion, the outer diameter 

of the pipe, the kinematic and dynamic viscosity respectively. The subscript, film 

represents the ambient air properties at the film temperature.  

 

For forced convection, the average heat transfer coefficient over the entire surface is 

given by (Churchill and Bernstein, 1977): 
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where forNu ,
 filmRe and 

filmPr are the Nusselt, Reynolds and Prandtl number at film 

temperature respectively.  

 

2.2.3 Axial forced convective heat transfer between the escaping fluid and the 

puncture plane  

The high velocity fluid escaping through the puncture is assumed to be fully 

developed and turbulent (Re >106) (Mahgerefteh and Atti, 2006). As such the main 

mode of heat transfer will be forced turbulent convection. The corresponding Nusselt 

number is given by (Gnielinsky,1976) : 
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Depending on the prevailing temperature and pressure, the discharging fluid may be 

single or two-phase. In the latter case, the heat transfer coefficient fh  is given by 

(Steiner and Taborek, 1992): 
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where, x, g and l are the fluid quality vapour and liquid densities respectively. hl is 

the heat transfer coefficient for the liquid phase, in turn given by 
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where kl, mix, u, Cpl, and l  are respectively the thermal conductivity of the liquid, 

the two-phase mixture density, the mixture velocity, the liquid specific heat and liquid 

viscosity respectively. 

2.2.4 Convective heat transfer between the flowing fluid and the inner pipe wall 

Depending on the puncture diameter and the flow conditions, the heat transfer 

between the flowing fluid and the inner pipe wall away from the puncture may be in 

the form of laminar or turbulent convection. For turbulent flow, equation (18) applies. 

For laminar flow, the Nusselt number can be determined from (Edwards et al., 1979): 

  3/2
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LD

LD
Nu

in

in


  (21) 

where L is the pipe length.  

 

2.3 Fracture Mechanics 

The quasi-adiabatic expansion of the escaping fluid will result in the cooling of the 

pipe wall in the proximity of the puncture. If the temperature at the crack tip falls 

below the pipeline material DBTT, depending on the prevailing  thermal and pressure 

stresses, the material may fail in a brittle manner, in which case linear-elastic fracture 

mechanics becomes applicable. As such, the mode 1 stress intensity factor, KI, is used 

as the fracture parameter in this study (Pook, 2000; Westergaard, 1939).  

 

In the absence of an analytical solution for a non-uniform defect geometry considered 

in this study, the weight function method (Rice, 1972) is used to evaluate the KI at the 

crack tip.  

 

The weight function at any distance, x along the crack length a, is given by:  
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Using equation (22), the stress intensity factor, KI, can be expressed as  
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where )(x and Γc are the stress distribution along the crack face in the uncracked 

geometry and the perimeter of the crack respectively. 

 

Following Brennen (1994), the weight function can be expressed in the form of a 

power series given as: 
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where Cj are unknown coefficients to be determined which depend on the defect 

geometry only. m, on the other hand is the number of symmetrical reference loading 

stresses.  

 

The coefficients Cj can be found from at least two reference stress intensity factor 

solutions with corresponding reference stress loading. Considering the situation where 

two reference cases are available: 
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where qi and Wij are defined as: 
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where Ki(a) is the stress intensity factor of ith loading case. 

 

For a given defect geometry, the above method requires at least two stress intensity 

factor solutions under independent stress loadings to develop the weight function. The 

finite element method using the commercially available software, ABAQUS 

(SIMULIA, 2011) is employed for this purpose. Here, the pipeline is modelled as 

cylindrical tube of defined diameter and thickness, incorporating a puncture of a given 

geometry on its wall. 

 

3. Results and Discussion 

The following describes the results of the application of the brittle fracture described 

above to a 10 km long, 609.6 mm o.d. hypothetical gas or dense phase CO2 pipeline 

made of British Gas LX/1 steel. The fracture toughness values above and below the 

Ductile-Brittle-Transition Temperature (DBTT) are taken as 95 MPa m0.5 and 40 MPa 

m0.5 respectively. These values are assumed constant at any temperature away from 

the DBTT.  

 

The two pipeline failure scenarios considered are as follows:  

 

1) above ground exposed pipeline (no insulation);  

 

2) buried pipeline. 

 

As part of the analysis, the pipe wall thickness, DBTT and defect shape are varied in 

order to investigate their impact on the fracture propagation behaviour. The examined 

flow conditions include isolated (i.e. no flow within the pipeline prior to failure) and 

unisolated flows where pumping continues despite rupture.  
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Unless otherwise stated, the initial through wall defect shape is assumed to be a 20 

mm dia. circular puncture with a 20-mm hairline fracture extending from its side, 

running parallel to the main pipeline axis. The inventory is assumed to be pure CO2. 

Table 1 presents the prevailing conditions for the simulation tests conducted. 

 

Inventory  100% CO2 

Feed pressure (bara)  

34 (gas phase), 150 (dense 

phase) 

Ambient and feed temperature (K)  283.15 

Overall pipeline length (km)  10  

Pipeline wall thickness (mm)  5, 6, 9, 14.7 

Pipeline external diameter (mm)  609.6  

Failure mode  puncture  

Puncture diameter (mm)  20 

Equation of state Modified Peng Robinson 

Pipe material British Gas LX/1 

Pipe roughness (mm) 0.05 

Pipe wall thermal conductivity 

(W/(m·K)) 
53.65 

Pipe wall heat capacity (J/(kg·K)) 434 

Feed flow rate (m/s) 0, 0.2 m/s 

DBTT (°C) 0, -10 

KIc(MPa m0.5)  95 (ductile), 40 (brittle) 

Table 1 Pipeline Characteristics and prevailing condition for the test cases 

 

3.1 Crack Propagation in Exposed Pipelines 
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In the case of the exposed pipeline, the simulations are conducted for both gas and 

dense phase CO2 transportation. CO2 is considered to be in the dense phase when 

above its critical pressure (73.8 bara) and below its critical temperature (31.1 °C). To 

satisfy the 50% Specified Minimum Yield Strength requirement for the operating 

pressures (see table 1), the respective pipe wall thicknesses for each case are 

calculated as 6 mm (gas phase)  and 14.7 mm (dense phase) respectively. The pipeline 

material is assumed to comply with British Gas LX/1 specification corresponding to a 

DBTT of 0 °C. In both cases, the pipeline is assumed to be isolated upon failure. 

 

Figure 1 shows the transient axial pipe temperature profiles at different time intervals 

in the proximity of the puncture plane for gas phase CO2 at 10 °C. The rapid 

expansion of the escaping inventory results in significant cooling of the pipe wall with 

the effect becoming more pronounced with time and distance towards the puncture 

plane. According to the data, the pipe wall temperature at ca. 7 cm either side of the 

puncture reaches the DBTT of 0 °C in less than 60 s following puncture, dropping to a 

minimum temperature of −23 °C at its centre.  

 

Figure 2 shows the corresponding variation of the crack length against time following 

the puncture. According to the data, the crack begins to grow upon puncture, reaching 

a maximum length of ca. 70 mm at 1000 s following rupture, becoming unstable 

beyond this point leading to catastrophic pipeline failure. 
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Figure 1. The variation of the pipe wall temperature in the proximity of the 

puncture with time for gas phase CO2 (34 bara,  10 °C; exposed pipeline)  
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Figure 2. Variation of the crack length against time following the puncture of the 

gas phase CO2 pipeline (34 bara,  10 °C; exposed pipeline).   
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Figures 3 and 4 respectively show the same data as in figures 1 and 2, but this time for 

a pipeline containing dense phase CO2 at 150 bara. It is clear from figure 3 that the 

minimum temperature at the defect centre reaches to only -2 °C (c.f. -23 °C for gas 

phase CO2). The initial crack tip temperature 20 mm away from the puncture always 

stays above the DBTT. Hence, for the conditions tested, crack propagation will not 

occur in the exposed pipeline containing dense phase CO2.  
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Figure 3. The variation of the pipe wall temperature in the proximity of the 

puncture with time for dense phase CO2 (150 bara,  10 °C, exposed pipeline)  

 

 

3.2 Crack Propagation in Buried Pipelines 

In the following simulations, all of the pipeline characteristics and the prevailing 

conditions are taken to be the same as those given table 1 with the exception that the 

pipeline is assumed to be buried. The backfill soil is taken to be sand with thermal 

conductivity and mean particle size of 0.95 W/mK and 1.35 mm respectively. 

Furthermore, it is assumed that there is no blowout of the surrounding soil following 

the initial puncture given its small diameter. The simulations are performed for  gas 

and dense phase CO2 inventories..  
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Figure 4 shows the transient pipe wall temperature in the proximity of the puncture at 

different time intervals up to 10,000 s following puncture for the pipeline transporting 

gas phase CO2 (34 bar and 10 °C). Figure 5 shows the same data as in figure 4 but for 

the dense phase CO2 (150 bar and 10°C). In both cases, the pipeline is assumed to be 

isolated upon failure corresponding to zero feed flow.  

 

Returning to figure 4 for the gas phase CO2 pipeline, the following observations may 

be made:   

 

i) the minimum pipe wall temperature at the puncture location remains at - 20 oC 

for the entire duration of  the release period of 10, 000 s under consideration;  

 

ii) in the first 1,000 s following puncture, the minimum pipe wall temperature 

corresponds to the release location. Also, the pipe wall temperature away from 

the puncture plane decreases with the passage of time; 

 

iii) at around 5,000 s, a switchover takes place where the pipe wall temperature 

away from the puncture plane drops below that at the puncture plane, falling to 

a minimum temperature of -55 oC at ca 1,000 s. This switchover is due to the 

eventual secondary cooling of the pipe wall by the surrounding soil cooled by 

the low temperature (ca. -70 oC) escaping CO2.  

 

Similar trends in the data may be observed for dense phase CO2 (figure 5) with the 

exception that the minimum rupture plane temperature before the switch over takes 

place is -2 oC (c.f -20 oC for gas phase; see figure 5). On the other hand the minimum 

temperature away from the puncture plane at 10,000 s following puncture is ca – 42 

oC (c.f – 55 oC for gas phase CO2: figure 4).   
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Figure 4. The variation of the pipe wall temperature in the proximity of the 

puncture with time for the gas phase CO2 pipeline (34 bara, 10 °C; buried 

pipeline, no soil blow out)  

-70

-60

-50

-40

-30

-20

-10

0

10

-50 -30 -10 10 30 50

Te
m

p
e

ra
tu

re
 (

⁰C
)

Distance away from puncture (cm)

60 s

300 s

1000 s

10000 s

5000 s

 

Figure 5. The variation of the pipe wall temperature in the proximity of the 

puncture with time for the dense phase CO2 pipeline (150 bara; 10 °C, buried 

pipeline, no soil blow out)  

 

Figure 6 shows the corresponding variation of the crack length against time following 

the puncture of the buried pipeline transporting gas and dense phase CO2. As it may 
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be observed, for the gas phase buried pipeline, it only takes 360 s following the initial 

puncture for the crack to become unstable. This compares to ca. 1,000 s for the 

exposed pipeline (see figure 2). The considerably shorter time span needed to reach 

unstable crack in the former case is due to the secondary cooling of the pipe wall by 

the surrounding soil exposed to the escaping low temperature CO2. The same process 

is also responsible for promoting crack propagation in the dense phase CO2 pipeline, 

where the crack starts becomes unstable ca.774 s following puncture.  As it may be 

recalled, no crack propagation was observed in the case of the exposed pipeline 

transporting dense phase CO2 (see figure 4).  

 

0

10

20

30

40

50

60

70

80

0 100 200 300 400 500 600 700 800 900

C
ra

ck
 le

n
gt

h
 (m

m
) 

Time after initial puncture (s)

Buried pipeline,  
gas phase.
Unstable at 360 s

Buried pipeline, 
dense phase.
Unstable at 774 s

 

Figure 6. Variation of the crack length against time following the puncture for 

pipeline transporting gas and dense phase CO2 (34 bara and 150 bara;  10 °C, 

buried pipeline, no soil blow out).  
 

3.3 Sensitivity Analysis  

3.3.1 Impact of Pipe Wall Thickness 

 

Figure 8 shows the impact of the pipe wall thicknesses (5, 6 and 9 mm) on the crack 

propagation behaviour against time for the exposed gas phase CO2 pipeline. The 

results for the 6 mm wall thickness are the same as those presented in figure 2, where 
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the crack became unstable at ca. 1,000 s following puncture. As it may be observed, 

decreasing the pipe wall thickness to 5 mm, results in the much earlier catastrophic 

failure at ca. 320 s following puncture.    

 

Increasing the pipe wall thickness to 9 mm on the other hand results in no crack 

propagation despite the fact that crack tip temperature drops below the DBTT (see 

figure 1).  
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Figure 7. Comparison of the variation of the crack length against time after 

puncture with various pipe wall thicknesses; exposed pipeline, gas phase CO2 

 

3.3.2 Impact of Ductile-Brittle-Transition Temperature 

 

Figure 8 shows the effect of varying the DBTT of the pipe material on the crack 

propagation behaviour following puncture for the gas phase CO2 pipeline (see table 1). 

As it may be observed,  when the DBTT is 0 °C,  it takes 326 s and 1036 s for the 

cracks to reach the critical condition for the 5 mm and 6 mm pipe wall thicknesses 

respectively. However, reducing the pipe wall material DBTT to -10 °C has a 

dramatic impact on the fracture propagation behaviour. For both pipe wall thicknesses, 

the initial crack grows by only 10 mm, coming to rest at ca. 2,900 s after the initial 



20 

 

puncture. Noting that modern pipelines steels normally have a DBTT of -70 °C, it is 

highly unlikely that the brittle fracture will occur in a gas phase exposed CO2 pipeline.  

 

 

 

0

10

20

30

40

50

60

70

80

0 500 1000 1500 2000 2500 3000 3500

C
ra

ck
 le

n
gt

h
 (m

m
) 

Time after initial puncture (s)

Wall thickness = 6 mm 
DBTT =  0 ⁰C
Unstable at 1032 s 

Wall thickness = 5 mm 
DBTT =  0 ⁰C
Unstable at 326 s 

Wall thickness = 5, 6 mm 

DBTT = -10 ⁰C
Propagation Length =10 mm

 
Figure 8. Comparison of the variation of the crack length against time following 

the puncture with various DBTT; exposed pipeline, gas phase CO2.  
 

3.3.3 Impact of Feed Flow  

Figure 9 shows the fracture propagation behaviour for the gas phase CO2 pipeline 

(DBTT = 0 °C and pipe thickness of 6 mm; table 1), for both isolated and unisolated 

flows, exposed pipeline. In the latter case, the feed flow into the pipe is assumed to 

remain at 0.2 m/s throughout the decompression process. As it may be observed, in 

the case of unisolated flow, the crack arrests after 247 s following puncture. This 

compares to unstable crack propagation at 1,032 s following puncture for the isolated 

pipeline. Remarkably and counter-intuitively, the above observation means that for 

the case examined, emergency isolation of the flow following the formation of the 

initial defect results in unstable fracture propagation.  

 

The above observation may be explained by reference to figure 10 showing the 

corresponding variation of the pipe wall temperature profile in the proximity of the 
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puncture at two time intervals of 300 s and 5,000 s following puncture for both the 

isolated and unisolated flow scenarios. As it may be observed, at 300 s, both the 

isolated and unisolated flow scenarios show similar temperature profiles. However, at 

5,000 s following the initial puncture, the feed flow in the unisolated pipeline results 

in a lower degree of cooling of the pipe wall as compared to the isolated case (cf -18 

oC with -23 oC). This indicates that the relatively warm (10 oC) bulk fluid flowing 

within the pipe reduces the amount of localised cooling of the pipe wall, thus 

increasing its resistance to brittle fracture propagation.   
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Figure 9. Variation of the crack length against time following the puncture of the 

gas phase pipeline for isolated and unisolated flows.  
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Figure 11. Comparison of pipe wall temperature profiles 300 s and 5,000 s 

following puncture of the gas phase pipeline for isolated and unisolated flows 

 

 

3.3.4 Impact of Stream Impurities  

 

Figure 12 shows the impact of stream impurities in the dense phase CO2 stream (150 

bar and 10°C) on the variation of the pipe wall temperature in the proximity of the 

puncture at 10,000 s following the initial puncture. The corresponding composition of 

CO2 mixtures examined represent those based on post-combustion and pre-

combustion (Cosham et al., 2011) capture technologies are given in table 2. Given the 

established significant impact of the presence N2 in promoting ductile failures 

(Mahgerefteh et al., 2012) the data also include two hypothetical mixtures of CO2 and 

N2 (5% v/v and 10%) representing extreme cases.  

 

Returning to figure 12, as it may be observed, within the ranges tested, impurities 

have negligible impact on the resulting pipe wall temperature profile and hence the 

fracture propagation behaviour during the depressurisation process.  
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Figure 12. The impact of CO2 composition on the pipe wall temperature profile 

in the proximity of the puncture plane at 10,000 s following puncture for dense 

phase CO2.   

 

 Composition  (v/v) 

Pure CO2 100% CO2 

Pre-Combustion mixture 95.6% CO2, 0.4% CO, 0.6% N2, 3.4% H2S 

Post-Combustion mixture 99.82% CO2, 0.17% N2, 0.01% O2 

CO2-N2  95% CO2, 5% N2 

CO2-N2  90% CO2, 10% N2 

Table 2. The % v/v composition of the various CO2 streams assumed for the 

fracture propagation simulations to investigate the impact of impurities 

 

3.3.5 Impact of Defect Shape and Size 
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Table 3 shows schematic representations and the characteristic dimensions 

represented by the symbols a, b, and c for four puncture geometries considered in 

order to investigate the impact of the defect shape on the fracture propagation 

behaviour. These include circular and elliptical punctures with hairline fractures of 

finite equal lengths (a = 20 mm) extending from either one or both sides. Such 

through-wall defects may form, for example, as a result of damage by a mechanical 

digger.  

 

Type 1 Type 2 

  

Type 3 Type 4 

  

Table 3. Various puncture geometries examined for fracture analysis indicating 

the characteristic dimensions, a, b and c  

 

Table 4 shows brittle fracture data for Type 1 defect geometry for different pipe wall 

thicknesses of 3.5, 4, 5 and 9 mm for the gas phase CO2. Two puncture diameters of 

10 and 20 mm are considered in order to investigate the impact of the defect size. The 

higher DBTT value of 0 °C is assumed to represent the worst-case scenario.  

 

As it may be observed, the larger initial puncture diameter (20 mm) results in a 

significant reduction in the pipeline’s resistance to fracture. For all but the largest pipe 

wall thicknesses (9 mm), uncontrolled propagating fractures would be expected.  

 

Table 5 shows the corresponding fracture data as in table 6.3 but for type 1 to type 4 

defect shapes (see table 4). For consistency, an open defect area of 3.14 cm2 

a  

b 

a a 
 

b 

b 

c 
a 

 
a a 

 

b 

c 
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equivalent to a 20 mm dia. circular hole is assumed in all cases. Based on the data 

presented, it is clear that the initial defect geometry has a profound impact on the 

pipeline’s resistance to brittle fracture. The elliptical defect geometries (Types 3 and 4) 

are worse than the circular defect geometries. Also, the presence of two initial cracks 

on either side of the defect dramatically reduces the pipe wall’s resistance to brittle 

fracture propagation. 

 

Wall 

thickness 

(mm) 

Puncture diameter = 20 

mm 

Puncture diameter = 10 mm 

Crack state Time(s) Crack state Time(s) 

3.5 Unstable Instant Unstable 2,458 

4 Unstable 234 Unstable 24,632 

5 Unstable 2,330 Arrest, 40 

mm 

25,300 

9 No growth - No growth - 

Table 4. Gas phase brittle fracture propagation behaviour for Type 1 defect 

geometry 

 

Wall 

thickness 

(mm) 

Type 2 Type 3 Type 4 

Crack 

state  
Time(s) 

Crack 

state 
Time(s) 

Crack 

state 
Time(s) 

3.5 Unstable  Instant Unstable Instant Unstable Instant 

4 Unstable  40 Unstable 40 Unstable Instant 

5 Unstable  234 Unstable 2,330 Unstable 40 

9 No growth - 
Arrest, 

40 mm 
43,818 

Arrest, 

40 mm 
43,818 

Table 5. Gas phase brittle fracture propagation behaviour for Types 2–4 

defect geometries (defect area = 3.14 cm2) 

4. Conclusion 

 

It is widely accepted that pressurised pipelines will present the main method for 

transporting captured CO2 from fossil fuel power plants and other CO2 intensive 

industries for subsequent sequestration. Given the CO2 is an asphyxiant at high 
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concentrations, the safety of such pipelines in the unlikely event of pipeline failure is 

of fundamental importance.  

 

The relatively high Joule-Thomson expansion cooling of CO2, coupled with its slow 

depressurisation, raises concern that a situation may arise in which a seemingly 

inconsequential small diameter through wall defect may eventually transform into a 

catastrophic running brittle fracture.  

 

So far most of the studies on this topic have focused on predicting the minimum pipe 

wall temperature and comparing it with the pipe wall material ductile to brittle 

transition temperature. In the absence of knowledge of the accompanying pressure 

and temperature stresses in the pipe wall, this information on its own is not enough to 

determine if and when the initial leak in the pipe wall will transform into a 

propagating fracture.  

 

In this paper, a rigorous fluid/structure interaction model for simulating the above 

process is presented. The model accounts for all the important processes governing 

the fracture propagation process including fluid/wall heat transfer effects, the 

resulting localised thermal and pressure stresses in the pipe wall as well as the initial 

defect geometry. Real fluid behaviour is considered using the modified Peng 

Robinson equation of state for CO2.  

 

The application of the fracture model to hypothetical but realistic failure scenarios 

using British Gas LX/1 pipeline materials reveals significant, and to some extent, 

unexpected findings.  For example:  

 

 gas phase CO2 pipelines are more susceptible to undergoing a propagating 

brittle facture as compared to dense phase CO2 pipelines,  despite the lower 

operating pressures in the former case.  This is shown to be primarily a 

consequence of the higher Joule Thomson expansion induced cooling of 

gaseous CO2.  

 



27 

 

 a buried CO2 pipeline is more susceptible to brittle fracture propagation as 

compared to an above ground pipeline due to the eventual secondary cooling 

of the pipe wall by the surrounding soil in contact with it. 

 

 isolation of the feed flow to the pipeline following a  leak promotes brittle 

fracture propagation. 

 

 an increase in the pipe wall thickness dramatically increases the pipeline’s 

resistance to brittle fracture failure.  

 

 the initial through wall defect geometry in the pipeline has a profound impact 

on the pipeline’s propensity to brittle fracture failure. A fracture may only 

propagate provided the initial through wall defect incorporates a sharp edge 

where the stress concentration may be large enough to drive a crack.   

 

 within the ranges tested, CO2 stream impurities representative of the main 

capture technologies do not have an appreciable impact on the pipeline’s 

resistance in undergoing brittle fracture failure. 

 

Finally, it should be noted that in contrast to ductile factures, brittle fracture 

propagation is a time dependent phenomenon. It will only occur if the 

depressurization duration is sufficiently long such that at the time when the pipe wall 

temperature in the vicinity of the defect drops below the DBTT, the accompanying 

thermal and pressure stresses exceed the pipe wall fracture toughness.   
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