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Abstract
The use of the factorization method for electrical impedance tomography has
been proved to be very promising for applications in the case where one wants to
find inhomogeneous inclusions in a known background. In many situations, the
inspected domain is three dimensional and is made of various materials. In this
case, the main challenge in applying the factorization method is in computing
the Neumann Green’s function of the background medium. We explain how we
solve this difficulty and demonstrate the capability of the factorization method
to locate inclusions in realistic inhomogeneous three dimensional background
media from simulated data obtained by solving the so-called complete electrode
model. We also perform a numerical study of the stability of the factorization
method with respect to various modelling errors.

Keywords: inverse problems, electrical impedance tomography, factorization
method

(Some figures may appear in colour only in the online journal)

1. Introduction

Electrical impedance tomography (EIT) is an imaging technique that allows retrieval of the
conductivity distribution inside a body by the application of a current to its boundary and
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measurement of the resulting voltage. The portability and the low cost of electronic devices
capable of producing such data makes it an ideal tool for non destructive testing or medical
imaging. In the last few years, several imaging devices that use EIT have produced interesting
results in the field of medical imaging (see [11]) as well as for non destructive testing
(see [22]).

The EIT inverse problem has been intensively studied in the mathematical literature
since Calderón’s paper in 1980 (see [4]) that formulates the inverse boundary value problem.
Then, many authors have been interested in proving uniqueness for the inverse problem and
in providing efficient algorithms to find the conductivity from boundary measurements (see
[17] and references therein for a complete review on this subject). One of these algorithms is
the so-called factorization method, introduced by Kirsch in [15] for locating obstacles from
acoustic scattering data and then extended by Brühl in [2] to the EIT inverse problem. The
main advantage we see in this technique is that it places fewer demands on the data since it
only locates an embedded inhomogeneity but does not give the conductivity value inside the
inclusion. The factorization method and its regularization have been studied by Lechleiter et al
in [16] in the context of the so-called complete electrode model which was shown by Isaacson
et al in [5] to be close to real-life experimental devices.

The main purpose of this paper is to show that the factorization method can be successfully
applied to realistic three dimensional EIT inverse problems. To our knowledge, the only work
presenting three dimensional reconstruction by using the factorization method in EIT is due
to Hanke et al [9] and they focus on the case where the probed domain is the half space.
Therefore, we would like to extend this to more complex geometries with inhomogeneous
background conductivities. To do so, the main difficulty consists in computing the Neumann
Green’s function of the studied domain since this function is needed to apply the factorization
method. In two dimensions with homogeneous background, one can use conformal mapping
techniques to obtain the Neumann Green’s function of many geometries from that of the
unit circle (see [3, 14] for example). Clearly, this technique is no longer available in three
dimensions and we have to use other ideas. We choose to follow a classical idea presented
in [1], and more recently used in [7] in the EIT context in two dimensions, because it can be
extended to three dimensional problems and allows to compute Neumann Green’s functions
for non constant conductivities. It consists in splitting the Green’s function into a singular part
(which is known) plus a regular part and to compute the regular part which is the solution
to a well posed boundary value problem with numerical methods such as finite elements or
boundary elements.

We show with various numerical experiments and for different geometries that this
technique can be successfully applied in three dimensions to obtain EIT images from simulated
data. To make our experiments more realistic, the simulated data we used were produced by
using the complete electrode model with a limited number of electrodes which covered a part
of the inspected domain, as it is the case in many applications. We first compare the results
obtained by using the Neumann Green’s function of the searched domain and the one of the free
space. Then we study the influence of various parameters on the quality of the reconstructions
and we conclude our numerical evaluation of the method by studying the influence on the
reconstructions of various modelling errors such as errors in electrode positions, in the shape
of the probed domain and in the background conductivity.

In section 2 we present briefly the two main models for the direct EIT problem and
introduce some notations and definitions. In section 3 we present the inverse problem and state
the main theoretical foundation of this paper. Finally, in section 4, we present our numerical
implementation of the method and in section 5 we give numerical reconstructions for different
domains obtained with noisy simulated data.
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2. Forward models in electrical impedance tomography

2.1. The continuum forward model

Let � ⊂ R
3 be an open bounded set with Lipschitz boundary �. Then, according to the

continuum model, the electric potential u inside � produced by the injection of a current I on
the boundary � solves⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

div(σ∇u) = 0 in �,

∂u

∂ν
= I on �,∫

�

u ds = 0,

(1)

where ν is the unit normal to � directed outward to � and the conductivity σ ∈ L∞(�) is a
real valued function such that there exists c > 0 for which

σ (x) � c > 0 for almost all x ∈ �.

Let us denote L2
�(�) := { f ∈ L2(�) | ∫

�
f ds = 0}. It is well known that whenever I ∈ L2

�(�),
problem (1) has a unique solution u ∈ H1(�). Then, we can define the so- called Neumann-
to-Dirichlet map corresponding to the conductivity σ by

�σ : L2
�(�) −→ L2

�(�)

I �−→ u|�
where u is the unique solution to (1).

2.2. The complete electrode model

A more accurate model, the so-called complete electrode model, takes into account the fact
that in practise the current is applied on � through a finite number M ∈ N of electrodes. Let us
denote by (Ej) j=1,...,M these electrodes, for each j = 1, . . . , M, Ej is a connected open subset
of � with Lipschitz boundary and non zero measure. According to the experimental setups,
we assume in addition that the distance between two electrodes is strictly positive, that is
Ei ∩ Ej = ∅ when i �= j. We also introduce GM := � \ ∪M

i=1Ei the gap between the electrodes.
Following the presentation in [13], let us introduce the subspace of L2

�(�) of functions that
are constant on each electrode and that vanish on the gaps between the electrodes

T M
� :=

{
f ∈ L2

�(�) | f =
M∑

i=1

χEi fi, fi ∈ R, 1 � i � M

}
where χV stands for the characteristic function of some domain V . For simplicity, in the
following we will not make the distinction between an element f of T M

� and the associated
vector ( fi)i=1,...,M of R

M . Let us denote by I ∈ T M
� the injected current which is constant and

equal to Ii on electrode i. The voltage potential u then solves⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

div(σ∇u) = 0 in �,
1

|Ei|
∫

Ei

σ
∂u

∂ν
ds = Ii for i = 1, . . . M,

u + zσ
∂u

∂ν
= Ui for x ∈ Ei, i = 1, . . . M,

σ
∂u

∂ν
= 0 for x ∈ � \ ∪M

i=1Ei

(2)
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where z ∈ L2(�) is the so-called contact impedance and U ∈ T M
� is the unknown

measured voltage potential on the electrodes. We assume that the contact impedance satisfies
z(x) � c > 0 for almost all x ∈ �.

For all I ∈ T M
� there exists a unique (u,U ) ∈ H1(�) × T M

� that solves problem (2) (see
[20] for more details about the model and the proof of existence and uniqueness) and this
solution depends continuously on I. Similarly to the continuum model, we define the (finite
dimensional) Neumann-to-Dirichlet map associated with the conductivity σ by

	M
σ : T M

� −→ T M
�

I �−→ U

where (u,U ) is the unique solution to (2).

3. The inverse problem

3.1. Statement of the inverse problem

Let us denote by σ ∈ L∞(�) the conductivity in the presence of an inclusion. We assume that
σ (x) � c > 0 for almost all x ∈ � and that there exists a domain D ⊂ � such that

σ (x) = σ0(x) + γ (x)χD(x)

where γ ∈ L∞(D) is either a positive or a negative function on D and σ0 ∈ C0,1(�) is the
known conductivity of the background and is such that σ0(x) � c > 0 for almost all x ∈ �.
We assume moreover that D ⊂ � and that � \ D is connected with Lipschitz boundary. The
inverse problem we treat consists in finding the indicator function χD from the knowledge of
the finite dimensional maps 	M

σ0
and 	M

σ .
As stated in the next section (see theorem 3.1), the factorization method provides an

explicit formula of the indicator function χD from the knowledge of �σ0 and �σ . Nevertheless,
as we explain later on, 	M

σ0
and 	M

σ actually give a good approximation of the characteristic
function of D provided that the number of electrodes M is sufficiently large and that they cover
most of �.

3.2. The factorization method to find the support of an inclusion

For each point z in �, let us define the Green’s function for the background problem with
Neumann boundary conditions N(·, z) ∈ L2

�(�) which is the solution to⎧⎪⎪⎪⎨⎪⎪⎪⎩
divx(σ0(x)∇xN(x, z)) = −δz in �,

σ0
∂N(x, z)

∂ν(x)
= − 1

|�| on �,∫
�

N(x, z) ds(x) = 0,

(3)

where δz is the Dirac distribution at point z ∈ �. Then,

φd
z (x) := d · ∇zN(x, z) (4)

is the electric potential created by a dipole located at point z ∈ � of direction d ∈ R
3 such

that |d| = 1.
We use these dipole test functions in the next theorem (which is a slightly reformulated

version of [2, proposition 4.4]) in the expression of the characteristic function of the
inclusion D.

4
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Theorem 3.1. Take d ∈ R
3 such that |d| = 1 and let us denote (λi, ψi)i=1,...,+∞ the eigenvalues

and eigenvectors of the self adjoint and compact operator �σ0 − �σ . Then the characteristic
function χD of D is given by

χD(z) = sgn

⎡⎣(+∞∑
i=1

(φd
z , ψi)

2
L2(�)

|λi|

)−1
⎤⎦ . (5)

Remark 3.2. An equivalent (and maybe more classical) statement of theorem 3.1 is the
following range test

z ∈ D ⇐⇒ ∃gz ∈ L2
�(�) such that |�σ0 − �σ |1/2gz = φd

z

for d a given unit vector of R
3. Then, (5) is given by the inverse L2 squared norm of gz that

solves |�σ0 − �σ |1/2gz = φd
z and which is finite if and only if this equation has a solution in

L2
�(�).

In [16] the authors state a convergence result that justifies the use of the finite dimensional
map 	M

σ0
− 	M

σ instead of �σ0 − �σ to obtain an approximation of the characteristic function
of D. We recall here briefly the main result they obtain. Let us introduce PM : L2

�(�) → T M
�

the L2(�) orthogonal projector defined by

PM f =
M∑

i=1

χEi

1

|Ei|
(∫

Ei

f ds + 1

M

∫
GM

f ds

)
and let us denote by 	M := (	M

σ0
− 	M

σ ) : T M
� → T M

� the difference data operator. Then, if
the number of electrodes M goes to infinity and if the gap between the electrodes decreases
sufficiently fast, we deduce from [16, theorem 8.2] that for every M there exists a truncation
index 0 < R(M) < M such that for a given z ∈ � the sequence

1

‖PMφd
z ‖2

L2(�)

R(M)∑
i=1

(PMφd
z , ψM

i )2
L2(�)

|λM
i |

converges when M goes to infinity if and only if z is in D. In this expression, (λM
i , ψM

i )i=1,...,M

are the eigenvalues and eigenfunctions of the finite dimensional map 	M . In practice, it is not
easy to determine the truncation index R(M) from the data (see [8] for a heuristic method)
but since we will consider the case where we have few measurements, we will see that no
regularization is actually needed and we will take R(M) = M − 1. This result tells us that the
function

χM
d (z) := ‖PMφd

z ‖2
L2(�)

(
R(M)∑
i=1

(PMφd
z , ψM

i )2
L2(�)

|λM
i |

)−1

should be an approximation of the indicator function of D in the sense that χM
d should be

greater inside D than outside D.

Remark 3.3. As in the continuous setting (see remark 3.2), for each point z the characteristic
function can be defined by using the inverse of the squared L2 norm of the solution gM

z to the
linear equation

|	M|1/2gM
z = PMφd

z .

4. Numerical implementation

In this section we give a precise definition of the data we used for inversion and we present our
implementation of the factorization method and of the computation of the dipole test functions.

5
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4.1. Data sets and numerical implementation of the indicator function

In practise, one does not know the full and noiseless map 	M but only the map 	̂M : V → T M
�

where V ⊂ T M
� is the set of currents that one injects in the tested object and for all I ∈ V we

have

	̂MI = 	MI + ε

where ε denotes the noise in the data. As a consequence, the data consist of the M × N matrix
	̂M where N is the dimension of V . Each column of this matrix is a vector that contains the
voltage at each electrode. In the following, we will consider the case of synthetic data. To
produce them, we compute a noiseless map 	̃M by using finite elements implemented with
the software FreeFem++ (see [10]) to solve equations (2) for each current I in the admissible
set of currents V . We refer to [21] for more details on the variational formulation we use to
solve (2). Then, we build 	̂M by adding artificial noise to 	̃M that is

	̂M = 	̃M + ηN · 	̃M

where N is a matrix of size M × N whose (i, j) element is a random number generated with
a normal distribution and η is a real number chosen such that

δ := ‖	̃M − 	̂M‖
‖	̃M‖ (6)

is a given level of noise. The · denotes the term by term multiplication between two matrices
and ‖ · ‖ denotes the Frobenius norm.

Let us introduce the singular values (σ̂ M
i )i=1,...N and singular vectors (ûM

i , v̂M
i )i=1,...,N of

	̂M that satisfy

	̂M v̂M
i = σ̂ M

i ûM
i and (	̂M )T ûM

i = σ̂ M
i v̂M

i

for all i = 1, . . . , N. Then, the function χM
d introduced in the previous section corresponds to

the inverse of

f M(z, d) := 1∑R(M)

i=1 (PMφd
z , ûM

i )2

R(M)∑
i=1

(PMφd
z , ûM

i )2

σ̂ M
i

since

gM
z :=

R(M)∑
i=1

(PMφd
z , ûM

i )

(σ̂ M
i )1/2

v̂M
i

solves |	̂M|1/2gM
z = PMφd

z (see remark 3.3). As mentioned before, we take the truncation
index R(M) as large as we can which is equal to the dimension of the range of 	M . Finally, to
limit artefacts, we will use the function

Ind(z) :=
(∑

d∈S

f M(z, d)

)−1

as an indicator function of D where S is a set of eight unit vectors of R
3. The choice of the

number of dipole directions is based on experimental observations.

4.2. Computation of the dipole potentials

In three dimensions, the Green’s function of the Laplace equation in the free space is given by

�z(x) = 1

4π

1

|x − z|3
6
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and for any unit vector d ∈ R
3 and points x �= z we define the associated dipole potential

φ̂d
z (x) := d · ∇z�z(x) = − 1

2π

d · (x − z)

|x − z|3 .

We remark that the image principle used in two dimensions to compute the Neumann Green’s
function for a circle is not valid anymore in three dimensions for a sphere. Nevertheless (see
[1, 7] for example), for σ0 ∈ C0,1(�) and for z, x ∈ � we can decompose φd

z as

φd
z (x) = V d

z (x) + φ̂d
z (x, σ0(z))

where

φ̂d
z (x, σ0(z)) := d · ∇z

(
�z(x)

σ0(z)

)
and V d

z (x) solves the following conductivity problem:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
divx(σ0(x)∇xV d

z ) = div[(σ0(z) − σ0(x))∇xφ̂
d
z (x, σ0(z))] in �,

σ0(x)
∂V d

z (x)

∂ν(x)
= −σ0(x)

∂φ̂d
z (x, σ0(z))

∂ν(x)
on �,∫

�

V d
z (x) ds(x) =

∫
�

φ̂d
z (x, σ0(z)) ds(x).

(7)

One can actually compute ∇xφ̂
d
z (x, σ0(z)) and realise that this function is singular for x = z

but in L2(�). Therefore, by elliptic regularity we deduce that V d
z (x) is in H1(�) and we

compute it by using the finite element software FreeFem++ to obtain a good approximation
of φd

z (xi) for each electrode position xi and each point z in �. In the case of an homogeneous
background, we have verified the accuracy of our approximation by comparing the finite
element solution V d

z (x) of (7) with a boundary element solution computed with the software
BEM++ (see [19]). In the case of a homogeneous background (σ0 is constant) there is no
source term inside � in equations (7). Therefore, as it has been observed in [3], one can first
compute the Neuman-to-Dirichlet map �σ0 associated with the continuum model and obtain
the solutions to equation (7) with a simple matrix vector product.

In the following, we will study the impact of using the zero average dipole of the free
space: φ̃d

z (x) := φ̂d
z (x) − 1/|�| ∫

�
φ̂d

z (x) on the quality of the reconstructions. To this end, we
introduce the new indicator function

Ĩnd(z) :=
(∑

d∈S

f̃ M(z, d)

)−1

where f̃ M corresponds to f M with φd
z replaced by φ̃d

z .

5. Numerical simulations and error analysis

In this section, we show that the factorization method successfully applies to three dimensional
imaging problems in rather complicated geometries and with partial covering of the boundary �

with electrodes. We also test the sensibility of the method with respect to various experimental
errors such as errors in the shape of the domain, errors in the background conductivity and
errors in the electrode’s placement. In what follows we choose to not show plots of the
indicator functions but plots of an iso-surface of the indicator functions Ĩnd and Ind in red
on the images. The choice of the iso-surface is a complicated question and to our knowledge
there is no systematic way to do it; we arbitrarily choose to show the iso-surface of value 0.9
for the indicator function which we normalize between 0 and 1. We show in figure 5 how this
parameter influences the quality of the reconstruction. To overcome this known difficulty, a

7
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(b) (c)

(d) (e)

(a)

Figure 1. Reconstruction for a cylindrical geometry with one ring of electrodes by
adding δ = 1% of noise to synthetic the data. The geometry of the domain is shown in
figure (a) and in figures (b)–(e) we represent reconstructions for different cases. In red
we plot the iso-surface of value 0.9 of the indicator function as well as its projection
on the border of the plotting domain and in green is the projection of the true object.
(a) Domain � (in blue) and electrodes (coloured squares). (b) One inclusion using
φd

z ; Ec = 0.12. (c) One inclusion using φ̃d
z ; Ẽc = 0.18. (d) Two inclusions using φd

z ;
Ec = 0.13. (e) Two inclusions using φ̃d

z ; Ẽc = 0.21.

solution would be to use the indicator function obtained with the factorization as an initial
guess for a level set approach as it is done in [18] in the context of acoustic scattering or use
it for regularization of a linear inversion method as it is proposed in [6].

5.1. Preliminary experiments

In figures 1–4 we show reconstructions for various geometries, for constant or piecewise
constant background conductivities and for inclusions located at different locations. In all
cases, the inclusion is a sphere (of radius 1 for the cylinder and 10 for the head shape) and the
conductivity value in this inclusion is double that of the background. The different positions
of the centre of the sphere are reported in table 1. In order to compare the reconstructed object
with the true one, we plot in green the projection of the true object on the different planes
delimiting the plotting region. We also choose a quantitative estimate of the quality of the
reconstruction by introducing the relative error on the location of the barycenter which is
defined by

Ec := |Ctrue − CEst|
diam(�)

and Ẽc := |Ctrue − C̃Est|
diam(�)

where Ctrue is the barycenter of D, CEst (respectively C̃Est) is the barycenter of the region
delimited by the closed iso-surface of level 0.9 of the normalized indicator function obtained
from Ind (respectively from Ĩnd). Finally, diam(�) stands for the diameter of the computational
domain �. The errors on the location of the barycenter for the different tests presented in this
section are reported in the caption of the plots. When D is not simply connected, we compute
Ec and Ẽc for each simply connected component and we give the mean of the errors obtained

8
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Table 1. Centre of inclusions for the different experiments in section 5.1.

Figures Position

Figures 1(b), (c) and 2(b) (0, 5, 2)
Figures 1(d), (e) and 2(c) (0, 5, 2) and (5, −2, 2)
Figures 3(b), 4(b) and (c) (0, 0, 0)
Figures 3(c), 4(d) and (e) (40, 40, 0)

for the different objects. In all this experiments, the noise added to the simulated data is taken
such that δ = 1% in (6).

First setting: cylinder with one ring of electrodes (figure 1). We consider a cylindrical domain
� of radius 10 and height 7 with one ring of electrodes containing 32 electrodes (see figure 1(a)).
The space V of input currents is made of 16 independent vectors of R

32 corresponding to the
so-called opposite current pattern (see [17, chapter 12] for more details on different current
patterns). This means that all the electrodes are set to 0 except for two of them that are
geometrically opposite to each other. One of these is set to 1, the other one to −1 so that the
constraint on the input current is satisfied. In this experiment, the background conductivity is
taken constant and equal to 1 while the contact impedance value is z = 5 for all the electrodes
(we keep this value for all experiments). In figure 1(b) we see that with one inclusion, the
algorithm with φd

z as test function finds the correct (x, y) location of the inhomogeneity but
not the z location whereas the algorithm with φ̃d

z (figure 1(c)) does not even find the (x, y)

location. The reason why Ind gives the correct (x, y) location but not the z one is because we
only have one ring of electrodes at the same z position. We also run an experiment with two
well separated inclusions and the algorithm with φd

z (figure 1(d)) seems to give quite accurate
results in this case as well while the use of φ̃d

z (figure 1(e)) only gives a rough idea of the
location of the objects. Therefore, in the following we will mainly use the indicator function
Ind.

Second setting: cylinder with two rings of electrodes (figure 2). This experiment is similar
to the first one (the domain � is the same) except that we have two rings of 20 electrodes
each. The injection protocol is again a pairwise injection which corresponds to the opposite
injection pattern for each ring of electrodes. Then, the data consist of a 40 × 20 matrix. The
results are similar to the previous case, except that the resolution in the z direction in much
better in this case since we accurately find the (x, y, z) location of the inhomogeneity if we
use the correct dipole function (figures 2(b) and (c)). This experiment illustrates that it is not
necessary to have electrodes covering the entire domain to have good quality reconstructions
since we do not have any electrode on the top and on the bottom of the cylinder and still we
find the z location with a good accuracy.

Third setting: human head with homogeneous background (figures 3). We use a head shape
domain with 31 electrodes that covers a portion of the physically accessible part of the head
(see figure 3(a)). In this setting, we show that the factorization method still performs well.
The protocol injection is very similar to the previous one and the data correspond to a 31 × 20
Neumann-to-Dirichlet matrix. We tried two positions for the inclusion which is a sphere of
radius 10 and of conductivity 2σ0 with a background conductivity of σ0 = 1. We still use a
constant contact impedance which is z = 5 for all the electrodes. In both cases the location of
the inclusion is accurately found.

9
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(b) (c)(a)

Figure 2. Reconstruction for a cylindrical geometry with two rings of electrodes by
adding δ = 1% of noise to the synthetic data (same colours as in figure 1). (a) Domain
� (in blue) and electrodes (coloured squares). (b) One inclusion using φd

z ; Ec = 0.03.
(c) Two inclusions using φd

z ; Ec = 0.06.

(b) (c)(a)

Figure 3. Reconstruction for a head shape geometry with homogeneous background by
adding δ = 1% of noise to the data (same colours as in figure 1). (a) Domain � (in blue)
and electrodes (coloured circles). (b) One inclusion in the middle using φd

z ; Ec = 0.007.
(c) One inclusion in the back side using φd

z ; Ec = 0.01.

Fourth setting: human head with inhomogeneous background (figure 4). We use the same
head shape geometry as previously, but this time the conductivity σ0 of the background is not
constant. We take a piecewise constant conductivity with values 1.5 × 10−4 in the yellow part,
2.0 × 10−5 in the green part and 4.4 × 10−4 in the red part of the domain (see figure 4(a)).
These values correspond approximately to the conductivity of the skin, the skull and the
brain respectively of a human head (see [12] and references therein). The inclusion is still
a sphere of radius 10 and of conductivity 2σ0 = 8.8 × 10−4 located at the same places as
in the previous setting. Let us mention the fact that for the two locations, the inclusion is
inside the brain (the red part of the computational domain). The reconstructions with the exact
dipole tests functions are very precise but when we use the dipole function of the free space
we observe a misplacement of the reconstructed object. This difference is actually significant
when the inclusion is close the inhomogeneous layers (compare figure 4(d) with figure 4(e)).
The result obtained with the free space dipole function will be used for comparison in
section 5.3.

5.2. Influence of the truncation value and of the inclusion’s size on the reconstruction

In the next set of experiments we illustrate the influence of the choice of iso-surface (figure 5)
and of the size of the inclusion (figure 6). All these simulations are performed in the same
geometry as in figure 4 and the conductivity value of the background and of the inclusion are
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(b) (c)

(d) (e)

(a)

Figure 4. Reconstruction for a head shape geometry with inhomogeneous background
by adding δ = 1% of noise to the data (same colours as in figure 1). (a) Inhomogeneous
layered structure. (b) One inclusion in the middle using φd

z ; Ec = 0.01. (c) One inclusion
in the middle using φ̃d

z ; Ẽc = 0.08. (d) One inclusion in the back side using φd
z ; Ec = 0.01.

(e) One inclusion in the back side using φ̃d
z ; Ẽc = 0.13.

(b) (c)(a)

Figure 5. Reconstruction of a centred inclusion by using φd
z for different choices of

iso-surface of function Ind (same colours as in figure 1). (a) Iso-surface value: 0.6
; Ec = 0.02. (b) Iso-surface value: 0.8 ; Ec = 0.01. (c) Iso-surface value: 0.95 ;
Ec = 0.01.

also the same. Therefore, one can compare these results to the reference results presented in
figure 4.

Regarding the influence of the value of the iso-surface that defines the boundary of
the inclusion, we remark that it greatly affects the size of the reconstructed object but not its
location. As it has already been observed in previous work, in its actually state, the factorization
method is probably not the right tool to estimate the size of a defect since this quantity depends
too much on the choice of the iso-surface value. Nevertheless, whatever the value of the iso-
surface, the object we reconstruct has the correct shape and the correct location.

11



Inverse Problems 30 (2014) 045005 N Chaulet et al

(b) (c)(a)

Figure 6. Reconstruction of a centred inclusion of different sizes by using φd
z (same

colours as in figure 1). (a) Radius of inclusion: 5; Ec = 0.01. (b) Radius of inclusion:
15; Ec = 0.01. (c) Radius of inclusion: 20; Ec = 0.005.

(b) (c)(a)

Figure 7. Reconstruction of a centred inclusion by using φd
z with various level of noise

(same colours as in figure 1). (a) Noise level: δ = 3%; Ec = 0.02. (b) Noise level:
δ = 7%; Ec = 0.04. (c) Noise level: δ = 10%; Ec = 0.05.

These remarks also apply to our second test (figure 6) where we plot the iso-surface of
value 0.9 but this time for inclusions of different sizes. Nevertheless, let us mention the fact
that even for a small inclusion (figure 6(a)) the method locates accurately the defect.

5.3. Robustness to modelling errors

We conclude our numerical analysis of the factorization method in the context of EIT for brain
imaging by studying the influence of modelling errors and noise on the reconstructions.

First of all, in figure 7 we repeat the same experiment as in figure 4(b) and we plot the
iso-surface of value 0.9 of the indicator function Ind for different level of noise added to the
simulated data. The size of the reconstructed defect is strongly affected by the noise level but
even for 10% of noise we still obtain a very accurate estimate of the location of the inclusion
(see figure 7(c)).

We also test the sensitivity of the method with respect to errors on the shape of the domain
� and on the electrode’s placement. Indeed, this is of crucial importance for applications since
one usually has only a rough idea of the shape of � and of the electrode positions. We consider
in this experiment the homogeneous head that has already been used in figure 3. We choose
to not use the inhomogeneous head of figure 4 since we would like to decouple errors in the
background conductivity and errors in the shape of the domain. To simulate such modelling
errors, we deform the boundary of the domain � by expanding it in the direction x and z and
by contracting it in the direction y and to obtain a perturbed domain �ε. See figure 8(a) for a
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(b) (c)(a)

Figure 8. Reconstruction for a deformed head shape geometry with homogeneous
background by adding δ = 1% of noise to the data (same colours as in figure 1).
(a) Slices of � (in blue) and of �ε (in orange). (b) One inclusion in the middle using
φd

z ; Ec = 0.05. (c)One inclusion in the back side using φd
z ; Ec = 0.08.

superposition of cut views of � and �ε, in blue we plot a slice of � and in orange a slice of
�ε. We remark that by doing so we also generate a domain with inexact electrode positioning.
Let us denote Eε ∈ R

31×3, respectively E ∈ R
31×3, the centre of the electrodes corresponding

to �ε, respectively �. We then simulate the Neumann-to-Dirichlet matrix data in the domain
�ε with inexact electrode positions Eε and use the Green’s function of � evaluated at the exact
electrode position E to produce an image. In figure 8 we report results for �ε and Eε being
such that the mean relative errors on the shape and the electrode positions are∫

∂�
dist(x, ∂�ε) dx

diam(�)
= 7% and

∑31
i=1 |Ei − Ei

ε|
diam(�)

= 11%

where dist stands for the distance function and Ei ∈ R
3, respectively Ei

ε ∈ R
3, contains the

position of the ith electrode on ∂�, respectively on ∂�ε. The main conclusion we can draw
from these experiments is that the factorization method we presented in this paper is stable
with respect to errors on the shape of the measurement domain.

The last source of modelling errors that certainly affects the factorization method is in
the background conductivity value. For this last experiment we go back to the inhomogeneous
head introduced in figure 4. We generate data for a noisy background conductivity σ

γ

0 given
for γ > 0 by

σ
γ

0 =
⎧⎨⎩

(1 + γ )σ0 in the yellow part,
(1 − γ )σ0 in the green part,
(1 + γ )σ0 in the blue part

(8)

for σ0 being as in figure 4 and the colours refer to the regions in figure 4(a). Then, we
build the indicator function Ind by using the dipole function associated with the background
conductivity σ0. In figure 9 we plot the iso-surface of value 0.9 of the indicator function
Ind for an inclusion located at (40, 40, 0). In view of figure 4 we expect that this position
is more affected by error in the background conductivity than the middle position since in
the case of the middle position (figures 4(b) and (c)) even the indicator function Ĩnd gave
accurate reconstructions. The results reported in figure 9 show that up to 20% of noise on the
background conductivity, the factorization method still performs reasonably well and gives an
accurate estimate of the object location. Let us also keep in mind that in situations where one
does not have any knowledge of the background conductivity, the free space dipole functions
are in practise good candidates to probe the domain (see figures 4(c) and (e)).
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(b) (c)(a)

Figure 9. Reconstruction of a lateral inclusion by using φd
z with error on the background

conductivity (same colours as in figure 1). (a) γ = 0.1 in (8); Ec = 0.03. (b) γ = 0.2
in (8); Ec = 0.04. (c) γ = 0.5 in (8); Ec = 0.09.

6. Conclusions

The main focus of this paper was to show via numerical experiments that the factorization
method can be used to solve realistic three dimensional imaging problem with EIT data. We
presented a possible implementation of the computation of the Neumann Green’s function for
three dimensional problems and we provided reconstructions obtained with the factorization
algorithm by using the numerically computed Green’s function. In the considered test cases
the obtained results are rather accurate. The factorization method actually finds the location
of an inclusion with 1% accuracy in the challenging and realistic case of a head shape domain
with homogeneous and inhomogeneous background conductivities from noisy simulated data
obtained with 31 electrodes that cover only a part of the domain’s boundary. We have also
show that the factorization method is robust with respect to noise on the measurements and
various modelling errors such as errors on electrode positioning, on the shape of the domain
and on the background conductivity.

A direct extension of this work would be to perform an experimental study and to
incorporate some systematic criterion to choose the truncation level for valuable singular
values and to pick an iso-surface of the indicator function. We think for example of the
criterions introduced in [8]. Another possible extension, which is probably the main interest of
the factorization method for applications, is to couple the result obtained by the factorization
algorithm with optimization algorithms as it is proposed for example in [6].
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[2] Brühl M 2001 Explicit characterization of inclusions in electrical impedance tomography SIAM J.
Math. Anal. 32 1327–41

14

http://dx.doi.org/10.1109/10.605431
http://dx.doi.org/10.1137/S003614100036656X


Inverse Problems 30 (2014) 045005 N Chaulet et al
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