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Purpose: The Software for Tomographic Image Reconstruction (STIR, %∃!

http://stir.sourceforge.net) package is an open source object-oriented library 

implemented in C++. Although its modular design is suitable for reconstructing data 

from several modalities, it currently only supports Positron Emission Tomography 

(PET) data. In this work we present results for Single Photon Emission Tomography 

(SPECT) imaging. Methods: This was achieved by the complete integration of a 3D %∀!

SPECT system matrix modelling library into STIR. Results: We demonstrate the 

flexibility of the combined software by reconstructing simulated and acquired 

projections from three different scanners with different iterative algorithms of STIR. 

Conclusions: The extension of the open source STIR project with advanced SPECT 

modelling will enable the research community to study the performance of several &∃!



2 

!

algorithms on SPECT data, and potentially implement new algorithms by expanding 

the existing framework.  

 

I. INTRODUCTION  

STIR1 (Software for Tomographic Image Reconstruction) is an open source C++ library which provides a &∀!

Multi-Platform Object-Oriented framework for research in processing and reconstruction of emission 

tomography studies. Currently, the emphasis is on iterative image reconstruction in Positron Emission 

Tomography (PET). The extension of STIR to other modalities such as Single Photon Emission Computed 

Tomography (SPECT) is of interest as it allows performing reconstruction in both modalities, SPECT and 

PET, in an integrated platform. To achieve this, we have integrated parts of the SPECT Reconstruction ∋∃!

Library developed at the University of Barcelona (SRL-UB)2-5 into STIR. The SRL-UB library accounts for 

effects such as the attenuation and spatially variant collimator-detector response correction by incorporating 

them into the projection matrix. 

The aim of this note is to demonstrate the capabilities of the combined STIR/SRL-UB framework for 

SPECT reconstruction. Reconstruction algorithms implemented in STIR have been validated extensively with ∋∀!

PET data.6-7  

II. TECHNICAL DESCRIPTION 

The new STIR release includes a dedicated reader for SPECT projection data in interfile format8 and a 

SPECT projector class. The SPECT interfile reader takes into account the characteristics of SPECT 

projections as the type of acquisition (circular or non-circular), the rotation radius for each projection, the ∀∃!

direction, the extent of the rotation and its initial angle. The new projector for SPECT was created as a matrix 

projector type derived from the existing STIR ProjMatrixByBin class. This projector provides any necessary 

information for generation of the projector matrix using the SRL-UB routines. SRL-UB allows modelling of 

attenuation and Point Spread Function (PSF) in the projection matrix. 2-5  

The geometric part of the projection matrix can be calculated in two different ways: (A) if the PSF ∀∀!

correction mode is selected, the collimator-detector response is modelled as a spatially variant 1D or 2D 

Gaussian distribution in the image plane parallel to the detector plane (with width dependent on the distance 

between the plane containing the voxel and the detector); (B) else if it is not selected, a geometrical approach 
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is used computing the orthogonal projection of the voxel on the detector. The geometrical approach provides 

higher computational speed and reduced memory requirements than the PSF approach, but is less accurate. (∃!

In order to reduce computational burden and memory requirements, SRL-UB provides a mask option 

which allows computing/storing just those projection matrix elements belonging to voxels in the mask. SRL-

UB allows PSF modelling using parallel and convergent collimators however, only parallel collimators were 

tested in the current STIR integration.  

Attenuation contribution depends on the attenuation coefficients of the medium and is computed as a (∀!

(discretised) line integral of the attenuation between the centre of the voxel and the centre of the detector 

element.9 This contribution is obtained from an attenuation map, which in the current implementation is 

expected to have the same dimensions as the reconstructed image, with the values of the attenuation 

coefficients in cm-1.  

In contrast to other implementations, the projection calculations are not performed on-the-fly but instead )∃!

the matrix is computed and stored in STIR’s sparse matrix format. The projection matrix can be kept in 

memory or calculated per projection angle. In the latter case, the memory is released before a new angle is 

started, reducing memory requirements but increasing computation time for iterative reconstruction 

algorithms, as illustrated in the next section. 

III. MATERIALS AND RESULTS )∀!

In this section we show results on simulated and acquired data reconstructed using STIR as an illustration 

of its new capabilities.  

A. Simulated data  

The SimSET Monte Carlo code10 was employed using the 2.9 version to simulate SPECT projections of a 

cylindrical phantom (diameter: 210 mm, length: 174 mm). The phantom had three different regions: a ∗∃!

uniform region, a region with six hot cylinders, and a region with six cold cylinders. The diameters of the 

cylinders were 10, 15, 20, 30, 40 and 50 mm. The size of the activity and attenuation maps used for the 

SimSET simulation was 256×256×200 with voxel size 1×1×1 mm3. SimSET was configured to generate 

photon emission projections using 99mTc as a radioisotope. A dual detector hybrid SPECT/CT imaging system 

based on InfiniaTM HawkeyeTM 4 of GE Healthcare equipped with a Low Energy High Resolution (LEHR) ∗∀!

parallel hole collimator was modelled. The characteristics of the collimators were: hexagonal holes, 0.15 mm 

in diameter, 0.02 mm in septal thickness and 35 mm of length. One hundred twenty simulated projection 
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views (128×64, 3.32×3.32 mm2) were generated using a 20% energy window centred on 140 keV. The 

simulation characteristics are based on brain acquisitions from Hospital Clinic of Barcelona.11 

Figure 1 shows a sinogram of the hot cylinders region of the original phantom obtained by (A) SimSET; +∃!

and (B) the new STIR forward projector (ProjMatrixByBinSPECTUB) including the PSF and attenuation 

effects. Visual agreement between these sinograms supports that the implementation of the projector matrix 

in STIR is suitable, thereby indicating a good integration between both libraries. Furthermore, it provides the 

insight that STIR may be also used for fast analytic simulations of different cameras, as recently 

demonstrated with STIR for PET.12  +∀!

To compare the different types of corrections available in SPECT reconstruction, the simulated 

projections were reconstructed using Ordered Subsets Expectation Maximization13 (OSEM) on a 128×128×

64 grid with voxel size 3.32×3.32×3.32 mm3. Figure 2 allows a visual comparison of the reconstructed 

phantom without corrections (left), with attenuation correction (middle) and with attenuation and PSF 

correction (right). All reconstructions were performed by using 8 subsets and 40 subiterations.   #∃∃!

As regards to computational aspects, Table 1 summarizes time and memory requirement for different 

types of reconstructions, keeping the matrix in memory or (re)calculating it for every projection angle. All the 

reconstructions were performed using a Linux workstation with two Intel® Xeon® CPU X5670 @2.93 GHz 

96.00 GB RAM system with Ubuntu and gcc 4.6.3 without multi-threading. Here, we have not used the MPI 

capabilities of STIR which allow it to perform several computations in parallel. #∃∀!

The time column of Table 1 represents the total computational time to reconstruct the simulated data 

using 8 subsets and 40 subiterations. All configurations keeping the matrix in memory required more RAM 

but less computational time than when recalculating it per projection angle. The matrix size depends only on 

the PSF modelling and, as a consequence, reconstructions with equal PSF modelling require the same 

memory independent if attenuation is used or not. By using a mask (last row of Table 1) both memory and ##∃!

computational time were reduced significant.  

 

Table 1. Maximum RAM and computational time required in SPECT reconstruction. Reconstructions were 

performed with OSEM algorithm (8 Subsets and 40 subiterations). N-C: No correction; A-C: Attenuation 

correction; PSF-C: PSF correction; PSFA-C: PSF and attenuation correction; PSFAM-C: PSF and attenuation 

correction using mask option. 
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 Matrix in memory Matrix per projection 

 Max RAM (Mb) Time (s)  Max RAM (Mb) Time (s)  

N-C 2825 37 187 88 

A-C 2825 89 187 368 

PSF-C 37400 324 400 885 

PSFA-C 37400 1241 400 5626 

PSFAM-C 9181 185 119 341 

 

In addition to the OSEM algorithm, STIR includes other iterative algorithms such as: (A) the ordered 

subset version of the One Step Late algorithm14,15 with optional inter-update and/or inter-iteration filtering ##∀!

called OSMAPOSL and (B) the Ordered Subsets Separable Paraboloidal Surrogate (OSSPS) with 

relaxation.16 As an illustration of the different algorithms performances, we compared the signal-to-noise 

ratio (SNR) throughout the number of subiterations. The SNR was calculated as the quotient between the 

contrast, obtained in the hot or cold cylindrical regions, and the coefficient of variation (CV) in a uniform 

cylindrical region of the phantom. The contrast (CON) for each cylinder i was defined as: #%∃!

refi

refi

i
AA

AA
CON

+

−
=   (1)  

  

where Ai and Aref are the activity mean values in the cylinder i and a reference region (ref), respectively. The 

attenuation map was used for the delineation of the regions of interests for each cylinder. Cylindrical 

reference areas (radius: 20 mm; length: 35 mm) were drawn between the two smallest cylinders of the 

phantom in hot and cold regions. From (1), the ideal contrast value is 1 in both hot and cold cylinders. CV #%∀!

was obtained using a centred cylinder (radius: 66.4 mm, length: 16.6 mm) on the uniform region. Figure 3 

shows the SNR against the number of subiterations for each reconstruction algorithm: (A) OSEM, (B) 

OSMAPOSL with median prior (MRP) (penalization factor, PF = 1.0) and (C) OSSPS with uniform quadratic 

prior (UQP) (PF = 0.04). The PFs were selected empirically based on reasonable visual appearance. OSSPS 

was initialized using the OSEM image at 80 subiterations. In OSEM reconstruction, the SNR reaches a #&∃!

maximum after few subiterations and then decreases as expected,13 while in OSMAPOSL-MRP and OSSPS-

UQP, the SNR converges to a stable value, which depends on the value of PF. To qualitatively illustrate the 

performance of the different algorithms, Figure 4 displays reconstructed axial views at 200 subiterations of 
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cold and hot regions of the simulated phantom for OSEM (left), OSMAPOSL-MRP (middle) and OSSPS-

UQP (right). #&∀!

 

B. Acquired data  

Real data were also reconstructed with the new SPECT projector of STIR using projections acquired from 

three of the most commonly used scanner manufactures, GE Healthcare, Philips and SIEMENS. Each 

acquisition was reconstructed by using one of the three iterative algorithms available in STIR as an example #∋∃!

of its new capabilities.  

A Data Spectrum torso phantom was acquired following a myocardial perfusion imaging protocol on a 

Phillips Precedence SPECT/CT system equipped with LEHR collimators. Sixty four projections were 

acquired over 180º in a 64×64 matrix with a pixel size of 6.39×6.39 mm2 in a non-circular acquisition with a 

mean rotation radius of 27 cm (24.1-29.2 cm). Data were reconstructed using OSEM with CT-based #∋∀!

attenuation and PSF correction (8 subsets and 80 subiterations).  

SPECT projections of the skeleton approximately 3 hours after injection of 99m[Tc]-MDP were acquired 

by a SIEMENS SYMBIA S dual-headed gamma-camera equipped with LEHR collimators. The radius of 

rotation was on average 25.8 cm (16.5-35.1 cm) and 128 projections (128×128 matrix and 4.80×4.80 mm2 

pixel size) were acquired over 360º. Bone SPECT data were reconstructed by using OSSPS-UQP (PF=0.04) #∀∃!

algorithm including PSF modelling on the projection matrix (8 subsets and 80 subiterations). OSSPS was 

initialized using the OSEM image at 80 subiterations.   

DaTSCAN© projections were acquired using an Infinia™ Hawkeye™ 4 (GE Healthcare) dual-head 

SPECT imaging system equipped with LEHR parallel-hole collimators. The radius of rotation was 14.7 cm 

and 120 projections (128×128 matrix and 2.95×2.95 mm2 pixel size) were acquired over 360º.  Projections #∀∀!

were reconstructed using OSMAPOSL-MRP (PF=1.0) with 8 subsets and 80 subiterations. PSF and 

attenuation corrections were applied.  

Figure 5 shows an example of each reconstructed data: axial view of Data Spectrum torso phantom (left), 

maximum intensity projection (MIP) image of the bone SPECT data (middle) and axial view of the 

DaTSCAN© study (right).  #(∃!
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IV. DISCUSSION  

Our findings show the feasibility of using the STIR framework and SRL-UB for reconstruction of SPECT 

projections. Simulated and real data were reconstructed in order to test the integration of SRL-UB library into 

STIR. Different types of reconstruction algorithms were tested illustrating that for optimal SNR, OSEM #(∀!

needs tuning in terms of iterations while penalised versions such as OSMAPOSL-MRP and OSSPS-UQP 

would require tuning in terms of the penalty factor. The results from simulated data indicate that the optimal 

parameter settings are dependent on the object size, activity and background. A potential advantage of 

penalised algorithms is that this dependency can be studied analytically, making it possible to change the 

penalty in order to achieve uniform SNR17 or resolution.18  #)∃!

In addition, we demonstrated the versatility of STIR in the reconstruction of acquired data from different 

commercial scanners with the availability of different reconstruction algorithms into one framework.  

The integrated software will be included in STIR release 3.0. Future extensions to the library could integrate 

scatter correction, multi-pinhole collimators, motion compensated image reconstruction,19 dynamic imaging 

and multi-tracer protocols, using existing tools in either STIR or SRL-UB. #)∀!

 

V. CONCLUSIONS 

In this work an extension of a PET reconstruction library to SPECT has been presented using simulated and 

acquired data from scanners of different manufacturers. Following the integration of the advanced SPECT 

modelling in the open source STIR project, we hope to enable the wider research community to study the #∗∃!

impact of more advanced algorithms in several SPECT imaging scenarios and with different scanners.  
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FIGURE CAPTIONS  

FIG 1. Projection of original hot region displayed in a 2D sinogram arrangement. A) SimSET data (left) and 

forward STIR projections adding PSF and attenuation degradations (right). %∋∀!

FIG 2. Simulated data. Axial views of OSEM reconstruction (8 subsets, 40 subiterations). From left to right: 

no correction, attenuation correction and PSF + attenuation correction. 

FIG 3. SNR plots comparing OSEM (solid line), OSMAPOSL with median root prior (dotted line) and 

OSSPS with uniform quadratic prior (dashed line) over subiterations. Top left: SNR of cylinder with 1.5 cm 

of radius on the cold region; Top right: SNR of cylinder with 1.5 cm of radius on the hot region; Bottom left: %∀∃!

SNR of cylinder with 4 cm of radius on the cold region; Bottom right: SNR of cylinder with 4 cm of radius 

on the hot region. 

FIG 4. Simulated data. Axial views of the reconstructed phantom by OSEM (left) and OSMAPOSL-MRP 

(PF=1.0) (middle) at 200 subiterations and OSSPS-UQP (PF=0.04)(right) at 120 subiterations, all using 8 

subsets. %∀∀!

FIG 5. Acquired data reconstruced by STIR using OSEM (left), OSSPS-UQP (PF=0.04) (middle) and 

OSMAPOSL-MRP (PF=1.0) (right) with 8 subsets and 80 subiterations.  
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APPENDIX 

This appendix shows an example of part of a STIR parameter file in order to use the SPECT UB projector as %(∃!

a STIR projector type. A detailed description of each variable of the parameters file can be found in the user 
manual 
 
projector pair type := Matrix 

Projector Pair Using Matrix Parameters := %(∀!

 

Matrix type := SPECT UB 

 

Projection Matrix By Bin SPECT UB Parameters:= 

 %)∃!

;minimum weight stored in the matrix 

minimum weight:= 0.001 

 

;PSF type of correction { 2D // 3D // Geometrical } 

psf type:= 3D %)∀!

;number of sigmas to consider in the Gaussian distribution for the PSF 

maximum number of sigmas:= 2.0 

;next 2 parameters define the PSF.  

;the PSF is modelled as a Gaussian with sigma dependent on the distance from the 

collimator %∗∃!

;sigma_at_depth = collimator_slope * depth_in_cm + collimator sigma 0(cm) 

collimator slope := 0.0163 

collimator sigma 0(cm) := 0.1466 

 

;Attenuation correction { Simple // Full // No } %∗∀!

attenuation type := Full 

;Values in attenuation map in cm-1    

attenuation map := attenuation_map.hv 

 

;Mask properties { Cylinder // Attenuation Map // Explicit Mask // No} %+∃!

mask type := Explicit Mask 

mask file := mask.hv 

 

keep all views in cache := 0 

 %+∀!

End Projection Matrix By Bin SPECT UB Parameters:= 


