








nisms responsible for the observed composition of naturally
occurring fibrils in the affected kindred (2).

DISCUSSION

�2m is among the most extensively studied globular protein
precursors of human amyloid fibrils. The discovery of the first
natural variant of human �2m as the cause of hereditary sys-
temic amyloidosis uniquely enables a very informative compar-
ison of two different types of �2m amyloidosis with distinctly
different clinical and pathological features. The D76N residue
substitution allows a fully folded three-dimensional structure
almost identical to that of the wild type protein that forms amy-
loid fibrils in dialysis-related amyloidosis. However, dissection
of the mechanism of D76N �2m fibrillogenesis confirmed our
previously established paradigm that the amyloidogenicity of
monomeric globular proteins is intimately connected to desta-
bilization of the native fold (64). Importantly, a specific inter-
mediate of the folding pathway of wild type �2m, which was
previously structurally characterized and shown to play a cru-
cial role in priming the amyloid transition (47), is particularly
abundantly populated by the D76N variant. It is therefore pos-
sible that this specific residue substitution facilitates themolec-
ular mechanism responsible for the inherent amyloidogenicity
of wild type �2m and thereby enables the variant to cause clin-
ical pathology even at a normal plasma concentration rather

than the grossly increased abundance of wild type �2m respon-
sible for dialysis-related amyloidosis.
Our elucidation of the structural properties and folding

dynamics of the highly amyloidogenic D76N variant has vali-
dated several earlier interpretations of the molecular basis of
the amyloid transition of the wild type �2m. The characteriza-
tion of conditions for rapid fibrillogenesis of the variant in a
physiological milieu is therefore particularly significant. D76N
�2m forms amyloid fibrils within a few hours in physiological
buffers in vitro that is enhanced by fluid agitation and exposure
to a hydrophobic surface. In contrast, fibrillogenesis of wild
type �2m is extremely slow under physiological conditions,
beingminimal or absent after 100 days of incubation (61). Fluid
agitation has been shown previously to be crucial in priming
amyloid fibrillogenesis of other polypeptides including amyloid
� (31), insulin (65), apolipoprotein C-II (66), and �-synuclein
(67), but all these precursors were either natively unfolded
(apolipoprotein-CII, amyloid �, and �-synuclein) or induced to
unfold by a denaturing buffer (insulin).
Our present demonstration that the interfacial forces, acting

in a physiologically relevant fluid flowing over natural hydro-
phobic surfaces, can prime fibrillar conversion of D76N �2m
monomers identifies this protein as a genuine paradigm for
amyloidogenic globular proteins causing systemic amyloidosis.
Although critically destabilized by comparison with the wild

FIGURE 9. Fibrillogenesis of D76N and wild type �2m. A, the time course of aggregation of D76N �2m (red) and wild type (black) was monitored under
stirring conditions by fluorescence emission of ThT (using 445 and 480 nm as excitation and emission wavelengths, respectively). Proteins were
dissolved at 40 �M in 25 mM sodium phosphate buffer, pH 7.4 at 37 °C. Aggregation experiments were monitored in the presence of air-water (filled
circles) and Teflon-water interfaces (empty circles). B, tapping mode AFM images of different stages of aggregation of D76N �2m carried out under
stirring conditions and in the presence of an air-water interface. Oligomers formed after 1 h, prefibrillar aggregates coexisted with oligomers after 2 h,
filaments were observed after 8 h, and fibril clusters were observed after 24 h. Scan size, 1 �m; Z range, 15 (times 0 and 24 h), 8 (times 1 and 2 h), and 3
nm (time 8 h). a.u., arbitrary units.
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type protein, it nevertheless folds in the wild type native con-
formation and evades intracellular quality control so that it is
secreted at a physiological rate. Nevertheless, when, like all
globular proteins, its stability is challenged by the physiological

extracellular environment (51), the variant’s propensity to mis-
fold and aggregate as amyloid fibrils becomes evident. Within
the extracellular space where amyloid is deposited in the sys-
temic amyloidoses, the interstitial fluid flows over the extensive
surfaces of the fibrous network of elastin, collagen, and leucine-
rich proteoglycans (68), the high hydrophobicities of which
play a key role in promoting local unfolding of globular pro-
teins. We have previously reported the capacity of collagen to

FIGURE 10. Fibrillogenesis of D76N and wild type �2m in presence of hydro-
philic-hydrophobic interfaces. A, tapping mode AFM images of fibrils formed
by D76N �2m in the presence of graphite sheets under stirring conditions (I) or
without agitation (II). Scan size, 2 �m, Z range, 15 (I) and 25 nm (II). B, time course
of fibril formation by D76N �2m under ultrasonication (light blue lines show rep-
licate experiments) in contrast to the absence of fibrillogenesis by wild type �2m
(red line) under the same conditions. D76N �2m fibril formation was accelerated
in the presence of carbon nanotubes (green lines), whereas wild type�2m (dashed
black line) did not aggregate. C, fibrillogenesis of D76N (red triangles) and wild
type �2m (black triangles) carried out under stirring conditions at 37 °C in the pres-
ence of a Teflon-water interface with 6 �M human elastin. a.u., arbitrary units.

FIGURE 11. Wild type �2m elongates D76N fibrils in vitro. A, soluble fractions of wild type �2m either alone (black empty circles; WTWT) or in an equimolar mixture
with the variant (black filled circles; WT(WT	D76N)) and of D76N variant either alone (red empty circles; D76ND76N) or in the mixture (black empty triangles; D76N(WT	D76N)).
B, soluble fractions of wild type either alone (black empty circles; WTWT) or in an equimolar mixture with the variant (black filled circles; WT(WT	�N6)) and of�N6�2m either
alone (green empty circles; �N6�N6) or in the mixture (black empty triangles; �N6(WT	�N6)). Values are mean and S.D. (error bars) from three independent experiments. C,
surface plots of AFM images showing different steps of the aggregation process of D76N �2m. At 1 h, oligomers are present; at 2 h, they coexist with short prefibrillar
aggregates; and at 8 h, filaments can be observed, whereas at 24 h, fibrils and complex fibril assemblies are seen. The surface plots were obtained from topographic tapping
mode AFM images (Fig. 9B).

FIGURE 12. Residual soluble �2m during aggregation. Agarose gel electro-
phoresis analysis of supernatants from fibrillogenesis of wild type �2m alone
(lane 1), D76N �2m alone (lane 2), �N6 �2m alone (lane 3), an equimolar mix-
ture of wild type and D76N �2m (lane 4), and an equimolar mixture of wild
type and �N6 �2m (lane 5) is shown. The arrows show the electrophoretic
mobility of each isoform.
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prime the formation of wild type�2m amyloid fibrils stacked on
the collagen surface, and here we show that elastin is a potent
promoter ofmassive amyloid conversion of theD76Nvariant in
solution. Massive enhancement by graphite nanotubes of vari-
ant �2m amyloid fibrillogenesis further confirms the role of
hydrophobic surfaces. Although Linse et al. (69) have previ-
ously noted an effect of hydrophobic surfaces on fibrillization of
wild type�2mwith accelerated nucleation induced by nanopar-
ticles covering a range of sizes and hydrophobicity patterns,
their experiments were done at the grossly non-physiological
pH of 2.5.
The kinetics of fibril formation bywild type�2m and its trun-

cated form �N6 �2m depend on a critical nucleation step and
can be accelerated by the presence of amyloid fibril seeds. In
particular, the truncated form �N6 �2m can catalyze the oligo-
merization of the wild type (70) and even prime the fibrillo-
genesis of the wild type protein in physiological buffer (61)
although with a slower rate and lower yield than when primed
by D76N �2m. The D76N variant is also much more potent
than�N6 �2m in promoting formation of actual amyloid fibrils
by wild type �2m. The apparent capacity of monomeric �N6
�2m to induce conformational rearrangement of the wild type
protein structure has previously been ascribed to a prion-like
effect (71). In our hands, however, monomeric D76N variant
and �N6 �2m do not prime fibrillogenesis by wild type �2m,
which only occurs when it is exposed to filaments and fibrils of
the priming species. Such amechanism is more consistent with
a surface nucleation process (72) rather than a genuine prion-
like effect.
The contrast between the potent in vitro priming and

enhancement by D76N �2m of amyloid fibril formation by wild
type�2m and the proteomic evidence that the wild type protein
is not present in the in vivo amyloid deposits are intriguing,
especially as wild type �2m clearly does form amyloid in vivo in
dialysis-related amyloidosis. Furthermore, in other types of
hereditary systemic amyloidosis in which the wild type precur-
sor protein is mildly amyloidogenic, for example transthyretin,
most patients are heterozygotes for the causative mutation,
expressing both amyloidogenic variant and wild type, and both
proteins are present in the amyloid fibrils. However, as we have
shown here, the capacity of D76N �2m to catalyze fibrillogen-

esis by wild type �2m can be modulated and even blocked by
typical chaperones such as crystallin, and this inhibition
depends on the stoichiometric chaperone/�2m ratio. A role for
extracellular chaperone-like proteins in the inhibition of wild
type �2m amyloidogenesis has been proposed previously (73),
and it is plausible that the persistent, extremely high concen-
tration of wild type�2m in renal failure patients on dialysis may
overcome the natural protective role of physiological chaper-
ones that otherwise protect against deposition of this rather
weakly amyloidogenic protein when it circulates at its normal
serum concentration. In addition to illuminating the critically
important biophysical features of the physiological milieu
where amyloid formation takes place, our results thus open up
novel avenues for exploration of hitherto unanswered ques-
tions about amyloidosis: why only a handful of all proteins ever
form amyloid in vivo, and when, why, and where amyloid is
deposited in disease.
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