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Abstract

Hierarchical orthologous groups are defined as sets of genes that have descended from a single common ancestor within a
taxonomic range of interest. Identifying such groups is useful in a wide range of contexts, including inference of gene
function, study of gene evolution dynamics and comparative genomics. Hierarchical orthologous groups can be derived
from reconciled gene/species trees but, this being a computationally costly procedure, many phylogenomic databases work
on the basis of pairwise gene comparisons instead (‘‘graph-based’’ approach). To our knowledge, there is only one
published algorithm for graph-based hierarchical group inference, but both its theoretical justification and performance in
practice are as of yet largely uncharacterised. We establish a formal correspondence between the orthology graph and
hierarchical orthologous groups. Based on that, we devise GETHOGs (‘‘Graph-based Efficient Technique for Hierarchical
Orthologous Groups’’), a novel algorithm to infer hierarchical groups directly from the orthology graph, thus without
needing gene tree inference nor gene/species tree reconciliation. GETHOGs is shown to correctly reconstruct hierarchical
orthologous groups when applied to perfect input, and several extensions with stringency parameters are provided to deal
with imperfect input data. We demonstrate its competitiveness using both simulated and empirical data. GETHOGs is
implemented as a part of the freely-available OMA standalone package (http://omabrowser.org/standalone). Furthermore,
hierarchical groups inferred by GETHOGs (‘‘OMA HOGs’’) on .1,000 genomes can be interactively queried via the OMA
browser (http://omabrowser.org).
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Introduction

Homologous biological sequences–sequences related through

common ancestry–can be further classified according to the type of

evolutionary event that initiated their divergence from one

another. Notably, pairs of genes that descended from their last

common ancestor through a speciation are referred to as

orthologs, while genes that have diverged from a duplication

event are referred to as paralogs [1]. This distinction is useful in a

broad range of contexts, such as genome annotation, comparative

genomics, and phylogenetic analyses. Accordingly, numerous

methods and associated databases have been developed to infer

orthology and paralogy (reviewed in [2,3]).

Orthology between pairs of genes can be quite reliably inferred

using various algorithms, such as bidirectional best hit [4],

reciprocal smallest distance [5], Inparanoid [6], or OMA pairwise

[7] (see [8] for in-depth description and evaluation). Yet, many

analyses require relations over more than two genes at a time. But

because in general orthology and paralogy are non-transitive

relations (i.e. x being orthologous to y and y being orthologous to z

does not imply x being orthologous to z), the generalisation of

these concepts to sets of genes is not straightforward. As a

consequence, several definitions of orthologous groups have been

proposed, with considerable differences in terms of evolutionary

relations implied [9].

For instance, OrthoMCL identifies groups of orthologs and

‘‘close’’ paralogs using Markov clustering, a procedure to identify

sets of genes with high pairwise alignment scores [10]. A more

stringent grouping strategy lies in identifying cliques of orthologs,

but this comes at the cost of lower coverage in terms of all

orthologous relations [7]. Also worth mentioning are criteria

which are not directly aiming for orthology, such as groups with a

given minimum percentage of sequence identity (e.g. [11,12]) or

minimum percentage of sequence length coverage (e.g. [12]).

However, these non-evolutionary criteria can yield groupings

which are at odds with the central notion of evolution and function

changes along trees.

One particularly useful gene grouping strategy, sometimes

referred to as hierarchical orthologous groups, entails grouping genes

that have descended from a single common ancestral gene in the

last common ancestral species of a given taxonomic range

[Figure 1]. This definition has several interesting implications: (i)

defining groups in terms of specific taxonomic ranges enables users

to fine-tune their analyses to different contexts of investigation–for

instance, studying ‘‘ubiquitous’’ genes among all species, but

studying lactation genes in terms of the last mammalian common

ancestor only; (ii) hierarchical groups have a straightforward

interpretation in terms of gene trees: they are clades on these trees;

(iii) collectively, hierarchical groups defined with respect to every

ancestral species capture all orthologous and paralogous relations
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[9]. Hierarchical groups are at the heart of the orthology databases

EggNOG [13] and OrthoDB [14]. Since 2011, we also provide

this type of grouping in the OMA database [15].

Hierarchical groups can be trivially derived from reconciled gene/

species trees, such as those obtained by LOFT [16], Ensembl

Compara [17], Synergy [18], or PhylomeDB [19]. However, these

tree-based approaches are computationally expensive, and indeed,

most large phylogenomic databases are ‘‘graph-based’’, i.e. they infer

orthology based on pairwise gene comparison [3]. But most well-

established graph-based methods do not attempt to reconstruct

hierarchical groups: OrthoMCL groups are a trade-off between

orthology and paralogy [20], Inparanoid works for pairs of genomes

only [21] and RoundUp computes pairs of orthologs only, i.e. there is

no further grouping [22]. To our knowledge, the only graph-based

algorithm for hierarchical group inference published to date is

COCO-CL [23], which despite its pioneering character is a

somewhat ad-hoc approach. Indeed COCO-CL can be shown to

return suboptimal results on relatively simple problems, even with

perfect input data (example provided in Materials S1).

In this article, we present GETHOGs, which stands for

‘‘Graph-based Efficient Technique for Hierarchical Orthologous

Groups’’. The algorithm is based on correspondences between the

orthology graph and the underlying gene phylogeny, correspon-

dences that we prove in two new lemmas. We present an efficient

implementation of the algorithm as part of the OMA standalone

package. We demonstrate that the resulting algorithm outperforms

COCO-CL on simulated and real data. We also show that

GETHOGs outperforms the tree reconciliation method LOFT.

Lastly, we contrast GETHOGs’s results on real data with

predictions of the EggNOG and OrthoDB databases (whose

precise algorithms are as yet unpublished).

Methods

In this section, we first mathematically define hierarchical

orthologous groups in terms of gene and species trees, and derive

useful notions and properties. We then define the orthology graph,

which, crucially, can be inferred without computing gene trees.

Next, we describe the correspondence between hierarchical

orthologous groups and the orthology graph. The rest of the

section details the data and methods used for validating and

comparing our new algorithm with existing approaches.

Readers not interested in the technical details can skip this

section and proceed directly to the description of GETHOGs

(Results Section).

Labelled Gene Trees, Species Trees, and Hierarchical
Orthologous Groups

Let F be a forest of rooted gene trees where the internal nodes

are labelled either as speciation or duplication nodes. We denote

Figure 1. Hierarchical orthologous groups and their relationship to the orthology graph and the underlying gene and species trees.
In this example, the hierarchical groups for the taxonomic range fA,B,Cg are drawn in orange. By definition, these groups correspond to the sets of
leaves attached to the speciation nodes of the gene tree coloured in orange.
doi:10.1371/journal.pone.0053786.g001
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the speciation nodes on these gene trees as N~fnig. Note that

one speciation event at the genome level (i.e. on the species tree)

corresponds to multiple speciation nodes on the gene trees (one

node per ancestral gene in the ancestral species undergoing

speciation). The leaves of the trees G~fgig represent present day

genes, so that we use the terms leaf and present day gene

interchangeably. Furthermore, we require that each gene gi

belongs to exactly one gene tree in F . With LCA(gi,gj), we denote

the last common ancestral gene of two present day genes gi and gj .

For any present day gene gi, the operator S(gi)~sj[S denotes the

species that gene belongs to, where S is the set of all species

covered by F . Similarly, we denote by the leaves attached to a

speciation node L(ni)(G the set of leaves contained in the subtree

rooted by the speciation node ni and by S(ni)~
S

g[L(ni)
S(g)(S

the taxonomic range of ni, represented by the set of species

appearing in the subtree rooted at speciation node ni (see Figure 1

for illustration of some of these definitions).

By definition, L(ni)–the set of genes that have descended from

the speciation node ni–constitutes one hierarchical group for the

taxonomic range S(ni). For example, consider an ancestral gene

that has duplicated within the vertebrates, but before the

mammalian radiation. For the vertebrate taxonomic range, all

present day genes that have descended from that ancestral gene

are in the same hierarchical group, say L(nv), assuming nv

corresponds to the first speciation event among the vertebrates; by

contrast, with respect to the mammals, these present day genes are

split into two distinct hierarchical groups, say L(nm1) and L(nm2),
where the speciation nodes nm1 and nm2 correspond to the first

speciation event among the mammals.

Let SD(S be a chosen taxonomic range, such that SD forms a

monophyletic group of size §2 in the species tree. Such a subset

of species induces a subset of present day genes GD~

fgi[GDS(gi)[SDg. We define N D(N to be the minimal set of

speciation nodes whose leaves (i.e. hierarchical groups) collectively

include most genes in GD without including genes in species

outside SD. A constructive definition of N D is given by Algorithm

1 (Table 1). Note that in the absence of gene loss, the nodes N D

are the ancestral genes in the last common ancestor of SD, which is

a more intuitive way of thinking about this set. From these

speciation nodes, we derive i) FD as the forest of subtrees of F
rooted at the speciation nodes N D; and ii) HD~fL(n)Dn[N Dg,
the set of hierarchical orthologous groups induced by speciation

nodes N D.

Proposition 1. For all speciation nodes ni [N D, there is no

speciation node nj[N with the two following properties: i) nj is an ancestral

node of ni; ii) nj corresponds to a speciation event within the taxonomic range

SD.

Proof. We prove this proposition by contradiction. Assume

the existence of such speciation nodes ni,nj . Since nj is an ancestral

node of ni, L(ni)5L(nj). Furthermore, since nj is within the

taxonomic range SD, the additional leaves of nj belong to species

in SD as well (i.e. L(nj)\L(ni)(GD). But then, ni is not part of the

minimum set of speciation nodes whose leaves collectively cover

most of GD without covering genes in species outside SD, which

contradicts our assumption.

Proposition 2. The correspondences between the speciation nodes in

N D, the trees in FD, and the hierarchical orthologous groups HD are all one-

to-one.

Proof. The one-to-one correspondence between ND and FD

can be established as follows: recall that we require the leaves of

the forest F to be distinct; thus, each element in N D is the root of

a distinct gene subtree in FD. Conversely, each tree in FD has

a distinct speciation node as root. Likewise, the one-to-one

correspondence between N D and HD also follows from the

requirement that leaves in F be distinct: this guarantees that the

hierarchical orthologous groups associated with each speciation

node are distinct; furthermore, by definition, each element in HD

is constructed from a distinct speciation node in N D. Finally, the

correspondence between FD and HD can be viewed as a

composition of the two previous one-to-one correspondences,

and is therefore one-to-one itself.

Proposition 3. If two present day genes gi,gj[GD belong to distinct

hierarchical orthologous groups in HD, gi and gj are not orthologous.

Proof. Let ni[N D be the speciation node (ancestral to gene gi)

corresponding to hierarchical orthologous group hi, and nj the

speciation node (ancestral to gene gj ) corresponding to hj . Since

hi=hj and given Proposition 2, ni and nj are distinct. We show by

contradiction that gi and gj cannot be orthologous. Assume that gi

and gj are orthologous. Hence, by Fitch’s definition of orthology,

gi and gj are related through a speciation node nij , which, since

the two genes belong to GD, corresponds to a speciation event

within the taxonomic range SD. Furthermore, their respective

ancestral nodes ni and nj are distinct, which means that nij must be

ancestral to ni and nj . But Proposition 1 states that there is no such

speciation node, which contradicts our assumption.

The Orthology Graph
We define an orthology graph to be a graph G(G,E) over the

present day genes G as nodes and with edge set

E ~ f(gi,gj)Dgi[G,gj[G,LCA(gi,gj)[Ng, representing pairwise

orthology relations between genes as defined by Fitch [1], i.e.

they are symmetric, but non-transitive. We further require that

every present day gene in G be part of at least one orthologous

relation, such that G has no singleton. As mentioned in the

introduction, pairwise orthologs can be inferred using well-

established methods, many of which do not require gene tree

reconstruction or gene/species tree reconciliation.

Table 1. Algorithm 1 GROUPROOTS.

Input: Set of rooted gene trees F and a taxonomic range SD

procedure TREEGROUPROOTS(T )

if T is a leaf then

return 1

else

n~ROOTNODE Tð Þ

if n[N ^ S(n)(SD then

return fng
else

K~SETOFCHILDRENSUBTREES nð Þ
return

S
k[K TREEGROUPROOTS kð Þ

end if

end if

end procedure

N D ~1

for all t[F do

N D~N D|TREEGROUPROOTS tð Þ
end for

return N D

Output: Subset of speciation nodes N D

doi:10.1371/journal.pone.0053786.t001
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Here, we consider two cases: perfect data, where we assume that

the pairwise orthologs have been correctly and exhaustively

identified, and ‘‘real data’’, where these have been imperfectly

identified, using OMA pairwise (Sect. ‘‘Orthology graph infer-

ence’’; [7] ).

To restrict the orthology graph to a chosen taxonomic range, we

denote by G½GD� the orthology subgraph induced by the vertex

subset GD, again, without singleton genes. Finally, CD denotes the

set of connected components in G½GD�. A connected component is

defined as a maximal subgraph where there exists a path on the

graph between every pair of nodes.

Correspondence between Hierarchical Orthologous
Groups and Orthology Graph

Our novel algorithm for hierarchical orthologous group

inference will use the following two lemmas. The first lemma

establishes a correspondence between hierarchical orthologous

groups and the orthology graph (illustrated in Figure 2):

Lemma 1. Given a taxonomic range SD, there is a one-to-one

correspondence between the hierarchical orthologous groups HD ~

fL(n)Dn[N Dg and the connected components CD of the orthology subgraph

of the taxonomic range in question G½GD�.
Proof. As Proposition 2 asserts, the correspondence between

the hierarchical orthologous groups HD and the speciation nodes

N D is one-to-one. Thus, it suffice to establish a one-to-one

correspondence between ND and CD. Recall that by definition

(and as illustrated in [Figure 1] ), genes in GD are both the leaves

attached to the speciation nodes N D and the nodes in CD. This

defines a correspondence between the two sets, which we now

demonstrate is one-to-one. First, each element n[N D is the root of

a tree in FD, and thus has at least two leaves attached to it; in turn,

these leaves belong to at least one c[CD. Conversely, any c[CD has

at least one present day gene; in turn, this gene belongs to at least

one t[FD whose root is by definition in N D. Next, we show that

no n[N D is paired with more than one c[CD. Let t[FD be the tree

rooted at n. The left and the right subtrees of the speciation node n

partition the genes in t into two sets. By definition, all the genes in

one set are orthologous to all the genes in the other set. Therefore,

the two sets form a complete bipartite subgraph of G½GD� and,

hence, lie in one connected component. To conclude the proof, we

show by contradiction that no c[CD is paired with more than one

n[N D. Assume the existence of a connected component c paired

with kw1 speciation nodes in N D. As Proposition 2 establishes,

this implies that the connected component c is paired with kw1
orthologous groups in HD. However, Proposition 3 asserts that all

pairs of genes belonging to different such groups are non-

orthologous, and thus are not connected by an edge in c. But then,

there can be no edge between the k subsets of genes of c that

belong to different groups, which contradicts our assumption that

c is a connected component.

In the second lemma, we prove that on perfect data, members

of a hierarchical group have at most two degrees of separation in

the orthology graph. Intuitively, this can be seen by the fact that

the deepest split in all considered gene (sub)trees is a speciation

node, so every gene in one subtree of this split is orthologous to

every gene in the other subtree of that split. Hence, regardless of

the relationships within these subtrees, it is always possible to go to

another gene within the same subtree by first going to any gene in

the other subtree and then coming back.

Lemma 2. Each connected component in CD has a diameter of at most

2, i.e. every pair of genes within a hierarchical group is separated by at most 2

edges.

Proof. According to Lemma 1, every c[CD maps onto a

n[N D. The left and the right subtree of the speciation node n

partition the genes into two sets. By definition, all the genes in one

set are orthologous to all the genes in the other. Therefore, c

Figure 2. Illustration of Lemma 1: the taxonomic range fA,B,Cg induces a set of speciation node N D (left) and associated
hierarchical orthologous groups HD (centre). Likewise, it also induces an orthology subgraph with set of connected component CD (right).
Lemma 1 establishes the one-to-one correspondence between HD and CD (which we prove by viewing it as composition of the one-to-one
correspondences HD<N D and N D<CD).
doi:10.1371/journal.pone.0053786.g002
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contains a complete bipartite graph known to have at most

diameter 2.

We will make use of Lemma 2 to motivate and establish the

heuristic FractionReachableInTwoSteps parameter to cope with

imperfect input data.

Methods and Data for Validation and Comparison
Simulated genomes. To generate the simulated genomes we

used ALF [24], which simulates events at both gene-level

(substitution, indels) and genome-level (gene duplication, specia-

tion). For the present work, we simulated 4 independent runs for

two different parameter sets: the root genome of each simulation

consisted of 200 randomly and independently generated sequences

with C(3,133)-distributed lengths. Although 200 genes is much

fewer than in most real genomes, the present work pertains to

evolutionary relations within homologous families, not among

them; as such, the number of starting genes can be viewed as the

number of replicates we use to obtain result averages. Sequence

evolution was simulated with two M3 codon models [25] with

default parameters along a species tree of 30 taxa sampled from a

birth-death process with birth rate 0:01 and death rate 0.001. The

distance from the root to the leaves was set to 150 PAM. Gene

duplication and loss rates both were set to 0:001 for the first

parameter set. For the second parameter set, we set duplication

rate to 0:007 and loss rate to 0.005. In the second parameter set,

we additionally allowed temporal rate changes after duplication to

model sub- and neo-functionalization of genes as well as gene

fusion and fission. The ALF parameter files with all options are

provided as supplementary materials (Datasets S1 and S2).

Empirical data. We reanalysed the three gene families from

a recent manually curated study by Boeckmann et al. [9]. As input

for our algorithm, we used the pairwise orthologs from the OMA

May 2010 release as orthology graph and the NCBI taxonomy

[26] as the species tree.

Orthology graph inference. To construct the orthology

graph, we used pairwise orthologs inferred by the OMA algorithm

[7], which has been shown to be competitive in benchmarking

studies [8,9,27,28]. In brief, the OMA algorithm first computes all-

against-all sequence alignments using full dynamic programming.

From these, potential orthologs (‘‘stable pairs’’) are selected based

on evolutionary distances and considering inference uncertainty.

In a verification step, the algorithm identifies pseudo-orthologs

arising through differential gene loss [29]. The resulting ‘‘verified

pairs’’ are used to construct the orthology graph for the

hierarchical clustering method proposed here.

Species-tree inference. With the simulated dataset, we do

not assume knowledge of the true species tree. Instead, we estimate

it using a least-squares distance approach (MinSquareTree() function

in Darwin; [30]), using OMA groups as sets of marker genes [7].

COCO-CL on COG clusters. COCO-CL requires initial

homologous clusters and refines them into a hierarchy by applying

a single linkage clustering algorithm on the induced pairwise

distance estimates of the cluster’s multiple alignment. As suggested

by the authors [23], we built the initial clusters using the COG

algorithm [31]. The COG parameters were chosen according to

software documentation, i.e. E-value cutoff = 0:01 and hit

coverage threshold = 0.5. We applied COCO-CL on both the

simulated and real datasets. On simulated data, and in order to

assess the COCO-CL gene family refinement procedure indepen-

dently from the COG clustering step, we also used the true

simulated homologous gene families as input clusters. To conform

to the definition of hierarchical groups, we fixed COCO-CL’s

paralogy threshold s~0, i.e. two sub-clusters sharing genes from

the same species have to be related by a duplication. For the

analysis on simulated data, we varied the bootstrap threshold

between 0 and 0.95. For the analysis on empirical data, we set the

bootstrap threshold to the default value (0.75).

LOFT. LOFT is a tree-based orthology inference method

[16]. It computes Neighbour-Joining gene trees based on pairwise

distances using the Nr model [32] followed by an evolutionary

event-labelling step of the internal nodes based on a species

overlap criterion. Similarly to COCO-CL, LOFT requires initial

gene families to work on. Again, we use the inferred COG clusters

using the parameters as described above on both simulated and

real datasets. On the simulated dataset, as additional control, we

repeated the analyses using the true and complete homologous

gene families as input.

Performance metric. Following Boeckmann et al. [9], we

measured the performance of a method in terms of the precision

and recall of pairwise orthology or paralogy. Precision and recall

are defined as Precision ~
TP

TPzFP
and Recall ~

TP

TPzFN
,

where TP is the number of true positive reported relations, FP the

number of spuriously reported relations and FN the number of

missing predictions. Both precision and recall are bound to the

interval ½0,1�, with higher values indicating better performance.

Results and Discussion

We first present an algorithm which, given a perfect input

orthology graph (i.e. all the pairwise orthologs have been correctly

and exhaustively identified) and the true (partially or fully resolved)

species tree topology, correctly identifies for all taxonomic ranges

the corresponding hierarchical orthologous groups. In the second

part, we present extensions to cope with imperfect data followed

by some remarks about the implementation of the algorithm. We

conclude this section by comparing the performance of

GETHOGs with existing methods.

GETHOGs Algorithm
Perfect input data. In order to obtain a hierarchy of nested

orthologous groups, our approach requires a rooted, at least

partially resolved species tree. Our proposed algorithm computes a

hierarchy of orthologous groups by recursively identifying the

connected components on the orthology subgraphs induced by the

species in the lineages at various taxonomic levels (Algorithm 2,

Table 2). As Lemma 1 shows, these connected components

Table 2. Algorithm 2 GETHOGs.

Input: Rooted species tree T and orthology graph G~(G,E)

SD~S(ROOTNODE Tð Þ)
K~SETOFCHILDRENSUBTREESROOTNODE(T)

CD~CONNECTEDCOMPONENTS G½GD�ð Þ
OG~1

for all c[CD do

for all k[K do

OG/OG|GETHOGs k,cð Þ
end for

OG/OG|f½SD,NODES cð Þ�g
end for

return OG

Output: Set of tuples of taxonomic range and associated orthologous groups.

doi:10.1371/journal.pone.0053786.t002
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directly correspond to hierarchical groups. The corollary to this is

that other clustering criteria are suboptimal in at least some cases.

For example, the COG triangle-based algorithm is too restrictive

when we reach the hierarchical level of two species only. At the

same time, it can erroneously merge different groups if they are

related through speciation events outside the taxonomic range of

interest. More stringent clustering approaches (e.g. MCL with

typical parameters) will fail in other cases.

Note that, due to the definition of hierarchical groups, genes

belonging to different groups at the same taxonomic range have

descended from distinct genes in the last common ancestor. As we

have formally established in Proposition 3, such genes are in no

circumstance orthologous, and are paralogous if the groups are

evolutionarily related (homologous).

The runtime complexity of the GETHOGs algorithm on

perfect input data is O(DSD3 log � DSD), where log� denotes the

iterated logarithm function (which grows at a much slower rate

than the logarithm function itself). Indeed, algorithm essentially

traverses the species tree. In the worst case, the species tree is

completely unbalanced. Hence, there are at most DSD levels of

recursion. Within each recursion, we need to compute the

following elements: first, computing the induced subgraph requires

visiting every edge in the orthology graph. This can be done in

O(DED)~O(DSD2), because that the number of genes is bound by

DGDƒkDSD, were k is the number of genes in the largest genome.

Second, we need to be able to access the children of the root,

which can be done in the worst case, a star tree, in O(DSD). And

third, computing the connected components in a graph can be

done in O(DEDa(DED,DGD))~O(DSD2 log � DSD), where a denotes the

inverse Ackermann function [33]. Hence, the time complexity of

each level is dominated by this last step, which multiplied by the of

recursion gives the overall time complexity.

Imperfect input data. The two Lemmas described in the

‘‘Methods’’ section are only valid for perfect data. In practice, for

all but trivial examples, the input orthology graph can be expected

to have missing (false negative) and spurious (false positive)

orthology predictions. While missing predictions are typically not a

problem–the orthology graph is normally dense enough to provide

a path from every group member to every other–additional

predictions are more disruptive: false positives result in the

erroneous merging of orthologous groups. Hence, using the

transitive closure of the pairwise orthology relations would in such

situations lead to excessively large clusters. Fortunately, these

spuriously merged clusters are often not strongly connected to

each other, with only few edges connecting them [Figure 3].

To cope with such errors in the orthology graph, we modify/

extend the algorithm GETHOGs (Algorithm 2, Table 2) in the

following way: We replace the ConnectedComponents function by

DivideGraph (Algorithm 3, Table 3) : this procedure divides the

orthology graph using a Minimum-Cut algorithm [34] until all the

subgraphs conform sufficiently to the property established in

Lemma 2. Minimum-Cut is the well-known computer science

problem of cutting a graph into two disjoint components by

removing the smallest number of edges (or, in the weighted

version, edges with the smallest sum of edge weights). Treating our

problem as Minimum-Cut is reasonable in that cutting the graph

is needed to undo the effect of spurious edges across groups, while

the minimum criterion satisfies the parsimony principle.

As for the termination criterion, it is motivated by the property

that with correct input, connected components graphs have

diameter of at most 2 (Lemma 2). To approximate the diameter,

Figure 3. Example of an orthology graph. An example orthology graph from the OMA database where two false positive prediction merges two
well-defined orthologous groups. At the level of vertebrates, the NOX family forms 4 different orthologous groups. Because of two spurious
predictions, the NOX1 and NOX2 clusters get weakly connected. The minimum cut algorithm will split them, as there are only two edges to cut.
doi:10.1371/journal.pone.0053786.g003
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which is expensive to compute, we estimate the average fraction of

nodes which are reachable within two steps of each node

(Algorithm 4, Table 4). On perfect data, where the diameter is

at most 2, this statistic is necessarily equal to 1. On real data, we

however allow for values lower than 1, using the stringency

parameter a. Based on empirical analyses (see below), we have

chosen a~0:6 as the default parameter.

Furthermore, it is also possible to use the weighted version of

Minimum-Cut. For this purpose, we augment the orthology graph

with edge weights corresponding to pairwise alignment scores, and

use these weights to guide the Minimum-Cut algorithm. The

rationale is that spurious false positives often have relatively low

alignment scores. Hence, the spurious edges erroneously connect-

ing two bona fide groups will have low scores and thus be targeted

by the weighted Minimum-Cut procedure. But note that while this

heuristic has a theoretical motivation based on our findings on

perfect data, we do not claim it to be optimal.

We now give an asymptotic runtime analysis of our algorithm.

Giving a tight bound on the runtime analysis on imperfect input

data is not easy. We therefore make the assumption that gene

duplications and losses are distributed uniformly on the gene trees

(thus resulting in a mostly balanced gene family tree).

The time complexity of the DIVIDEGRAPH algorithm depends on

that of MINIMUMCUT and FRACTIONREACHABLEINTWOSTEPS.

FRACTIONREACHABLEINTWOSTEPS runs in order O(DSD2). Essential-

ly, we have to traverse the graph in breadth-first order from a

constant set of starting nodes. The algorithm by Karger and Stein

[35] finds a minimum-cut in O(DSD2 log3 (DSD)). Hence, the time

complexity of FRACTIONREACHABLEINTWOSTEPS is dominated by

MINIMUMCUT.

The depth of the recursion DIVIDEGRAPH depends heavily on

the structure of the orthology graph. Obviously, it is limited by the

number of nodes, but generally, many fewer iterations are

necessary. With the assumption that duplications and losses are

uniformly distributed on the gene tree, we can expect the graph to

be partitioned in proportions of the total size. Then, O( log DSD)
iterations are required, which leads to a time complexity for

DIVIDEGRAPH of O(DSD2 log4 DSD).
The resulting overall time complexity for GETHOGs on

imperfect data is therefore of order O(DSD3 log4 DSD).

Implementation
The source of the described algorithm is freely available for

non-commercial uses as part of the OMA standalone package on

http://omabrowser.org/standalone. The implementation is writ-

ten in Darwin, an interpreted computer language tailored for

bioinformatics applications [30]. An important part for our

algorithm is a fast implementation of the Minimum Cut algorithm.

As a new part of Darwin, we added a C implementation of the

randomised minimum cut algorithm by Karger and Stein [35].

The Karger-Stein algorithm was implemented for weighted

graphs. The algorithm is randomised, that is to say, with certain

probability (which can be made arbitrarily small) it may not find

the minimum cut, but one slightly larger than the minimum. In

practice, we could not find cases where it failed for the default

parameters, and even if it would fail, this would mostly alter the

order in which we find the groups. This randomization allows us

to parallelise the procedure for very large graphs [Materials S1].

Comparison with Existing Methods
We applied our algorithm to both simulated and real data

problems, and compared them to a graph-based and a tree-based

hierarchical grouping strategies. We generated two artificial

datasets by simulation with ALF [24]: one with moderate gene

duplication rate, the other with high duplication rate, rate changes

after duplication and gene fusion, and fissions (see Methods). For

graph-based COCO-CL, following the authors’ protocol, we

inferred initial COG clusters and refined them using different

bootstrap parameters ranging from 0:0 to 0:95 [23]. For tree-

based LOFT, also following the authors’ protocol, we inferred one

gene tree per COG cluster and inferred duplication nodes by

species overlap [16]. For GETHOGs, we used the OMA

algorithm [7] to obtain a pairwise orthology input graph. To

measure the correctness of the inference in the simulated datasets,

we compared the reported induced pairwise orthologous and

paralogous relations of the two methods to the true relations

obtained from the simulation.

On the dataset with moderate duplication rate, compared to

COCO-CL and LOFT, GETHOGs reported considerably more

orthologous relations at roughly the same level of precision

[Figure 4]. With respect to paralogous relations, GETHOGs

strongly outperformed the other methods both in precision and

recall. We observed similar trends on the dataset with high

duplication rate, except that the precision of GETHOGs orthologs

was lower than the precision of COCO-CL and LOFT orthologs.

In terms of parameter sensitivity, GETHOGs was little affected by

the choice of stringency parameter a in the first dataset; in the

Table 3. Algorithm 3 DIVIDEGRAPH.

Input: Orthology graph G~(G,E) and 0ƒaƒ1

if FRACTIONREACHABLEINTWOSTEPS Gð Þva then

G1,G2/MINIMUMCUT Gð Þ
return DIVIDEGRAPHraph G1,að Þ|DIVIDEGRAPH G2,að Þ

else

return f(G,E)g
end if

Output: Set of graphs all satisfying the reachability condition

doi:10.1371/journal.pone.0053786.t003

Table 4. Algorithm 4 FRACTIONREACHABLEINTWOSTEPS.

Input: Orthology graph G~(G,E) with AdjacencyTable Adj

sum~0

for a constant number c of randomly chosen v[G, without replacement do

r~s~fvg
for step~1 to 2 do

new~
S

w[sfAdj½w�g\r

if new~1 then

break

end if

s ~ new

r ~ r|new

end for

sum ~ sumzDrD

end for

return sum=(cDGD)
Estimate of average fraction of nodes reachable within 2 steps

doi:10.1371/journal.pone.0053786.t004
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dataset with higher duplication rate, a precision-recall trade-off

became apparent, with high a values resulting in moderately

higher overall precision and lower overall recall. COCO-CL

proved to be more sensitive to parameter choice, with low

bootstrap parameter values generally yielding better overall

performances.

To analyse the sensitivity to the species phylogeny required by

GETHOGs, we ran the algorithm once with the true species tree

and once with a species tree inferred from the data (Supplemen-

tary Figure 1 in Materials S1). On the first dataset, we observed

virtually no difference between GETHOGs with inferred and true

species tree, while on the second, more difficult dataset, supplying

Figure 4. Validation on simulated data: precision-recall plots of COCO-CL, LOFT and the algorithm introduced here (GETHOGs) on
two datasets of 30 simulated genomes (*200 genes each). The two datasets show average rates of 4 independent runs of genome
simulations with fixed parameters. The difference between the two datasets are essentially different gene duplication rates (see Method section for
details). As a point of reference, we also show the performance of pairwise orthologs inferred in OMA (OMA Pairwise). The colour gradient
corresponds to various a parameter values for GETHOGs and bootstrap value for COCO-CL.
doi:10.1371/journal.pone.0053786.g004
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the true tree led to a modest improvement in precision

(Supplementary Figure 1 in Materials S1). This analysis suggests

that while GETHOGs can benefit from knowing the true species

tree, the method remains competitive when the species tree needs

to be inferred.

The surprisingly low recall of LOFT with respect to orthologs

and paralogs in the more difficult dataset can be mainly attributed

to errors in the gene family inference step, for which LOFT uses

the COG algorithm. Indeed, if provided perfect gene family input,

the recall for LOFT and COCO-CL increases substantially for

both orthologs and paralogs (Supplementary Figure 1 in Materials

S1). This suggests that in general the performance of gene/species

tree reconciliation methods might strongly depend on the initial

family clustering step.

We now turn to the evaluation on empirical biological data.

With real data, the true evolutionary relations are mostly

unknown. Therefore, we restrict our analysis to a small set of

thoroughly studied gene families, which we assume to be free of

errors [9]. Again, we compared the predicted relations with the

induced relations from these labelled reference gene trees.

This analysis covers three gene families, the ‘‘ancestral-type’’

subfamily of NADPH oxidases (NOX1-4), the Popeye domain

family (POP) and the the eukaryotic V-type ATP synthase beta

subunit subfamily (VATB). All three families contain at least one

lineage specific gene duplication but no horizontal transfer and no

major change in their single-domain structure.

In this analysis, we observe that the predictions of GETHOGs

largely outperform the ones of OrthoDB and COCO-CL in terms

of precision and recall [Figure 5]. Compared with EggNOG and

LOFT, the differences are more modest: while EggNOG

outperforms our method slightly on the VATB gene family, our

predictions are considerably better for the POP family. As for

LOFT, it showed similar performance to GETHOGs for the POP

and VATB families, but did noticeably worse than GETHOGs on

NOX genes.

Although these 3 families are not sufficient to draw general

conclusions, they nevertheless suggest that the good performance

of GETHOGs in simulation extends to real data as well.

Furthermore, it should be noted that the absence of description

of the EggNOG and OrthoDB algorithms, let alone available

implementation, precludes their use on custom genomic data.

We finish this section by discussing the limitations of

GETHOGs. Most importantly, the method depends on the

quality of the input orthology graph. We have established that

GETHOGs returns optimal graphs on perfect input data, but we

cannot expect perfect input data on real data. Although we have

introduced heuristics to cope with errors in the orthology graph,

the performance will deteriorate when the input information is not

sufficient to discriminate among multiple evolutionary scenarios.

We acknowledge that OMA pairwise, which is known to be

relatively conservative [8,28], might not necessarily provide the

best input orthologs for GETHOGs; it might for instance be that

GETHOGs works better with a more inclusive method, such as

Inparanoid (we plan to investigate this question in a later study).

One potential problem with the input graph might be caused by

genes encoding multi-domain proteins. Indeed, if the pairwise

orthology detection method used to construct the orthology graph

does not ensure that orthology between two genes extend over all

(or at least most) domains, the resulting graph might strongly

violate GETHOGs working assumptions. Note however that the

very concept of orthology among genes with different domain

composition (and thus non-homologous parts) is ill-defined, as

orthology is a subtype of (and thus presupposes) homology. Because

of that, many pairwise orthology inference algorithms, including

Figure 5. Validation on empirical data: precision-recall plot of our newly proposed GETHOGs, COCO-CL, LOFT, EggNOG and OrthoDB
on orthologous and paralogous gene relationships for the 3 gene families (3,783 relationships in total) analysed in Boeckmann
et al. [9]. Predictions for GETHOGs and COCO-CL are computed using the default parameters (respectively a~0:6 and bootstrap~0:75). The points
for EggNOG and OrthoDB are from the original analysis (Reference [9],table 2).
doi:10.1371/journal.pone.0053786.g005

Hierarchical Orthologous Groups from Orthologs

PLOS ONE | www.plosone.org 9 January 2013 | Volume 8 | Issue 1 | e53786



the OMA algorithm we used for all input in this work, require

homologous regions between two genes to extend over most of their

sequence lengths [7]. Such requirement is sufficient to ensure that

there be no orthology inferred between multi-domain genes/

proteins with significantly different domain composition.

The other main limitation of GETHOGs lies in the computa-

tional cost of processing huge gene families. The currently biggest

orthology graph in the OMA database contains 2,041,494 genes

and 142,574,813 ortholog relations, which is prohibitively

expensive for GETHOGs. On very large families, we currently

circumvent this problem by starting the GETHOGs recursion at

more specific taxonomic levels than the root of all species.

Practically, this means that we abstain from resolving the deepest

orthology/paralogy relationships in such families. Note however

that GETHOGs is able to process most gene families in OMA

from the root of the species tree. To give an idea of actual

runtimes, computing hierarchical groups on a graph of *1,100
genes and *15,000 orthologous relations took about 2 minutes on

a single desktop computer; processing another graph with *2,900
genes and *35,000 took about 15 minutes.

Conclusion
We presented GETHOGs, a novel algorithm for reconstructing

hierarchical orthologous groups. The approach is based on an

orthology graph induced by pairwise orthologous gene relations,

and as such requires neither gene tree inference nor gene/species

tree reconciliation. The algorithm is motivated by a lemma

demonstrating the equivalence of the connected components in

the orthology subgraph induced by a taxonomic range and the

orthologous groups with respect to the same taxonomic range on

perfect data. In order to extend the algorithm to be applicable for

real data, we separate weakly connected components by splitting

the graph repeatedly at its minimum cut. We stop once the graph

is sufficiently densely connected, based on the lemma that the

orthology graph should have diameter less than or equal to two.

We applied the algorithm on simulated and real datasets, and

compared it to COCO-CL and LOFT, where it finds considerably

more orthologs/paralogs at roughly the same precision rate. On

real data, we also compared our algorithm to EggNOG and

OrthoDB–two databases providing hierarchical orthologous

groups–by re-analysing three manually curated gene families from

a recent study. Though two the empirical datasets are too small to

draw general firm conclusions, the results based on these families

indicate that our method is competitive.

Regardless of these promising results, the raison d’être of

GETHOGs lies not so much in resolving once and for all the

graph-based hierarchical orthologous group problem as in

providing a well-founded and useful starting point to tackle this

problem. The theoretical results and implementation provided

alongside this study will hopefully foster the development of even

better solutions.
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