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ABSTRACT 

Reducing adventitious infiltration in order to save energy is important and is highlighted by the building 

standards of many countries.  This operational infiltration is often inferred via the measurement of the air 

leakage rate at a pressure differential of 50 Pascals.  Some building codes, such as the UK’s Standard 

Assessment Procedure, assume a simple relationship between the air leakage rate and mean infiltration rate 

during the heating season, the so-called leakage-infiltration ratio, which is scaled to account for the physical and 

environmental properties of a dwelling.  The scaling does not take account of the permeability of party walls in 

conjoined dwellings and so cannot be used to differentiate between the infiltration of unconditioned ambient air 

that requires heating, and conditioned air from an adjacent dwelling that does not.  This article evaluates the 

leakage infiltration ratio in apartments, which share a large proportion of their envelope area with other 

dwellings.  A stochastic approach is used that applies a theoretical model of adventitious infiltration to predict 

the distribution of the mean infiltration rate and total heat loss during heating hours for a sample of apartments of 

the English housing stock (a subset of the UK stock) for two extreme assumptions of party wall permeability.  

Knowledge of party wall permeability is not provided by a standard measurement of air leakage but is shown to 

be vital for making informed decisions on the implementation of energy efficiency measures.  Accordingly, this 

paper provides probability distribution functions of operational infiltration in English apartments that can be 

used to help the policy makers of any country whose housing stock contains a large proportion of conjoined 

dwellings. 
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1 INTRODUCTION 

The infiltration of cold air through adventitious openings located in the envelope of a 

dwelling, known as air leakage paths (ALPs), is thought to be a significant contributor to its 

heating load. However, determining a mean infiltration rate during the heating season is time 

consuming, invasive, expensive, and technically difficult. Therefore, it is often inferred from 

a measurement of the air leakage rate (ALR),  ̇   (m
3
/s) or  ̇   (kg

3
/s), the rate of airflow 



through the fabric of a building at a steady high pressure difference, normally 50 Pascals (Pa), 

when the effects of wind and buoyancy are effectively eliminated (Etheridge; 2012). The 

ALR is often scaled by dwelling volume to give an air change rate at 50 Pa,  ̇   (h
-1

), or by 

dwelling envelope area,      (m
2
), to an air permeability,  ̇   (m

3
/h/m

2
). In order to be 

useful, the ALR must be converted to an operational infiltration rate, and although there are 

several methods of doing this (Younes et al., 2012), the most common for dwellings is the 

rule-of-thumb known as the leakage-infiltration ratio,  , given by Sherman (1998) as: 

 ( ̇   ̇ ⁄   ̇   ̇ ⁄   ̇   ̇ ⁄ )    (1) 

Here, the subscripts 50 and I indicate parameters measured at a steady pressure differential of 

50Pa and under operational conditions, respectively. The parameter   is a variable but is often 

taken to be equal to 20 when Equation (1) is known as the rule-of-20. However,   must not be 

considered to be a constant but should be scaled according to factors such as dwelling height 

air leakage path (ALP) size, shielding, and climate (Sherman, 1987). The UK government’s 

method for assessing and comparing the energy and environmental performance of dwellings 

is known as the Standard Assessment Procedure (SAP). SAP uses the rule-of-20 as a starting 

point to obtain an initial dwelling infiltration rate from measured ALR. Further infiltration is 

added if chimney, flues, and fans are present. The figure is revised further according to local 

shielding, and mechanical ventilation. Other building codes make similar assumptions 

(MoEoF, 2012). 

There are obvious problems with Equation (1). Firstly, the ALR is a physical property of a 

dwelling that indicates the resistance of its fabric to airflow (Jones et al., 2013a) at high 

pressure whereas operational infiltration occurs at pressure differences that are both dynamic 

and an order of magnitude lower. Furthermore, the rule-of-20 was derived from 

measurements made in dwellings in the USA (Sherman, 1998) whose properties are different 

from typical European dwellings. For example, detached dwellings comprise the majority 

(~86%) of the U.S. stock (Sherman & Matson, 1997) whereas semi-detached houses and 

apartments comprise >50% of the English housing stock (DCLG, 2011). A dwelling of either 

of these latter types shares some of its walls, known as party walls, with adjacent dwellings. 

However, when building codes scale the ALR they do not take account the permeability of 

party walls in conjoined dwellings and so cannot differentiate between the infiltration of 

unconditioned ambient air that requires heating, and conditioned air from an adjacent 

dwelling that does not. When measuring the ALR, Jones et al. (2013a) propose that one can 

make two extreme assumptions about the permeability of party walls at 50Pa: A(1) party 

walls are permeable and so airflow to and from adjacent dwellings does occur; or A(2) party 

walls are impermeable and so airflow to and from adjacent dwellings does not occur. They 

then use two archetypal English dwellings to investigate the potential consequences of these 

assumptions using a theoretical model. They predict for assumption A(1) that the leakage-

infiltration is significantly higher than that used by buildings code whereas for assumption 

A(2) the leakage-infiltration ratio is predicted to be close to that used in practice. The 

consequences of these findings are two-fold. Firstly, if A(1) is true then operational energy 

loss is less than that predicted by building codes (such as SAP), and government funded 

schemes (such as the UK’s Green Deal) that aim to tighten the European housing stock will 

have longer payback periods than expected. Secondly, if A(2) is true government funded 

schemes that aim to tighten the European housing stock are appropriate. This predicted 

dichotomy of outcomes introduces great uncertainty into the effectiveness of any policy that 

aims to reduce energy consumption through fabric tightening. 

An investigation of the variation of infiltration rates found in a stock of dwellings could be 

used to determine its exfiltration heat loss. Estimated probability distribution functions of 

infiltration and heat loss are useful tools with which policy makers can determine the likely 

effectiveness of fabric tightening schemes. Accordingly, this paper asks the questions: how 



can one predict distributions of infiltration rates for a housing stock and what effects do the 

extreme assumptions about the permeability of party walls have on them? 

2 METHODS 

There are no known large scale measurements or predictions of heating season infiltration 

rates in English dwellings and so a modelling approach is proposed. Distributions of 

infiltration rates in U.S. dwellings have been predicted by Persily et al. (2010), and their study 

offers useful guidance. A modelling approach requires three things: a model of dwelling 

infiltration and exfiltration, knowledge of the properties of a large number of dwellings of a 

stock that can be applied to the model, and a suitable statistical approach that enables robust 

predictions to be made. In this section the three requirements are discussed using the English 

housing stock as a case study, although the approach is readily transferable to housing stocks 

in other countries. A single dwelling type is used to answer the research question “what 

effects do the extreme assumptions on the permeability of party walls have on a distribution 

of infiltration rates?” Here, apartments (defined as low-rise with ≤3 stories) are used because 

they can share up to 5 of their external surfaces with another dwelling and so any difference 

between predictions for the two permeability assumptions A(1) and A(2) is expected to be 

clearly observed. If a difference is observed, the method proposed here can be applied to all 

other dwelling types encompassing the whole stock. 

2.1 Modelling infiltration and exfiltration heat loss 

For any model there is always a trade-off between model complexity (and associated 

prediction accuracy) with computational speed. Uncertainty in the predictions of a model is a 

function of errors in the inputs to the model and model uncertainty (structural and 

parametric). Striking the right balance in this trade-off must be addressed when considering 

the model’s tasks; for example, when modelling a stock of dwellings the sample size is 

expected to be large and so a computationally fast model is desirable. Furthermore, the 

variation in geometry types across a stock dictates that the model should also be versatile. A 

final requirement is that the workings and limitations of the model must be documented and 

its predictions compared against empirical data or, less desirably, corroborated against the 

predictions of other models. 

This paper applies DOMVENT3D, a model of infiltration and exfiltration through any 

number of façades that assumes two things about façades: all are uniformly porous; the 

pressure distribution over one is linear. DOMVENT3D integrates the airflow rate in the 

vertical plane to predict the total airflow rate through any number of façades (Jones et al., 

2013). DOMVENT3D makes further assumptions about the dwelling. Following Etheridge 

(2012), it assumes that all rooms of a dwelling are interconnected and that its internal doors 

are open so that a dwelling can be treated as a single-zone, thus reducing model complexity. 

Each horizontal and vertical surface of the external envelope requires only a single flow 

equation linked by a continuity equation, thus reducing computational time. DOMVENT3D’s 

final assumption follows Jones et al. (2013a) who state that adjacent dwellings are assumed to 

experience identical environmental conditions and thus have the same internal pressure. 

Therefore, airflow through permeable party walls and floors does not occur under operational 

conditions and so is only considered through external surfaces. This boundary requires a 

model of a conjoined dwelling (located within a block) only to consider the surfaces of that 

dwelling (and not those of the entire block), further reducing computation time. 

DOMVENT3D is implemented using bespoke MATLAB code (MathWorks, 2013). Its 

assumptions, merits, limitations, and the corroboration of its predictions are discussed widely 

by Jones et al. (2013a,b). 



DOMVENT3D requires inputs that may be unique to each dwelling or are general to a sub-

stock of dwellings bounded by geographic region. Unique inputs comprise the flow exponent, 

internal air density, the dimensions of all permeable external vertical (façades) and horizontal 

(ceilings and floors) surfaces, scaled wind speed, and façade wind pressure coefficients. 

General inputs are the ambient air temperature, regional wind speed, and wind orientation. 

Sources of data are discussed in Section 2.2. 

Once the infiltration and exfiltration rates are predicted by DOMVENT 3D, the exfiltration 

heat loss (W) at an instant in time is calculated by 

  ( )   ̇     (1) 

where  ̇  is as defined above,    is the specific gas constant of air (Jkg
-1

K
-1

) and    is the 

difference between the internal and ambient air temperatures (K). The internal air temperature 

of an average English house is, on average, 3 C higher than the ambient air temperature and 

so the heating system is assumed to function only when the ambient air temperature is ≤3 C 

below the internal air temperature (Hamilton et al., 2011). Heat loss is only calculated when 

the heating system is “on”. 

2.2 Model inputs 

The English housing stock c is comprisesd of 22.3 million dwellings, of which a statistically 

representative sample of 16,150 dwellings is documented by the 2009 English housing survey 

(DCLG, 2011). Each sample is weighted so that the sum of the weights equals 22.3m, and 

provides geographic, geometric, and environmental information. However, the inputs to 

DOMVENT3D are not always explicitly available despite the data rich EHS. Therefore, 

metadata must be derived either from the EHS and other sources, or assumed. Data inputs to 

DOMVENT3D may be divided into four distinct types: geographic (location), geometric 

(dwelling dimensions, block dimensions, orientation), environmental (local wind speed and 

direction, internal and ambient temperatures, physical parameters (air permeability, flow 

exponent, and façade pressure coefficients), and terrain type, local shielding). We now discuss 

each data type in turn beginning with geographic data. 

2.2.1 Geographic metadata 

The EHS indicates the region in which each sample is located and allows suitable weather 

data to be chosen. The CIBSE Test Reference Year (TRY) weather data set (CISBE, 2002) 

provides synthesised typical weather years for 10 English regions and is suitable for analysing 

the environmental performance of buildings. Accordingly, each EHS region is mapped to an 

appropriate CIBSE TRY region and where more than one CIBSE region is located in an EHS 

region the CIBSE region is chosen randomly from the set of possible regions. 

2.2.2 Geometric metadata 

The EHS assumes that two connecting cuboids can reasonably represents ~98% of the 

sampled stock thus allowing a cuboid model of each storey of a dwelling to be created. The 

proportion of each surface shared with another dwelling is recorded and we note that this does 

not always add to 100%; for example, a terrace might be staggered in the horizontal plane. 

The cuboid model is constructed following the Cambridge Housing Model (CHM) (Hughes et 

al., 2012) that applies SAP is to estimate energy use and CO2 emissions in the English stock. 

Although the EHS gives the number of stories in an apartment block and the location of the 

apartment within the block, it is desirable to assume that the vertical location of the apartment 

is a random variable uniformly sampled between the boundaries of the block dimensions and 

commensurate with the number of apartment floors (some have several floors). Dwelling 



orientation is not given by the EHS and so it is assumed to be a uniformly distributed random 

variable between 1 and 360 degrees. Other geometric parameters must also be assumed. For 

example, the number of dwellings in a block of apartments is not always given by the EHS 

but this parameter informs the calculation of physical parameters, such as wind pressure 

coefficients (see Section 2.2.3). Accordingly, the block aspect ratio is arbitrarily assumed to 

be a uniformly distributed random variable between 3 and 20. Using arbitrarily inputs 

introduces error so a sensitivity analysis is undertaken in Section 5 to evaluate their impact on 

the predictions of DOMVENT3D. 

2.2.3 Physical metadata 

To the best of the authors’ knowledge, there are no large-scale measurements of operational 

infiltration rates in the English housing stock. However, there are a limited number of 

databases of  ̇   values for U.K. dwellings (Pan, 2010); for example, Pan (2010) gives air 

permeability values for 287 new English houses constructed after 2006, and Stephen (1998) 

gives air permeability values for 384 U.K. dwellings (also reported in Orme et al., 1998) 

constructed before 2000. Although U.K. housing developments constructed after 2006 are 

required to record the air permeability of a proportion of them (HM Government, 2010) new 

dwellings represent a small proportion of the total stock, ~4% (DCLG, 2011). Therefore, there 

is only a cursory knowledge of the operational infiltration rates one expects to find in the 

majority of English dwellings. In their model of infiltration in U.S. dwellings, Persily et al. 

(2010) assign a permeability value to a dwelling according to its age and type, representing an 

appropriate approach. However, the limited quantity of empirical data for English dwellings 

makes this approach impossible. Instead, the distributions of Pan (2010) and Stephen (1998) 

are applied if the dwelling is constructed pre-2000 and post-2000, respectively. It is 

acknowledged that Pan’s data is for post 2006 houses, but this is the best compromise that the 

EHS dwelling age distribution allow. 

The flow exponent variable characterises the airflow regime through an ALP and is a function 

of its geometry and surface roughness. Its value affects both the pressure difference across an 

ALP and the airflow rate through it. Most infiltration models assume a constant value of 0.66 

(Orme et al., 1998), but Sherman (1998) shows that a mean value of µ=0.651 with a standard 

deviation of σ=0.077 best represents more than 1900 measurements made in U.S. dwellings. 

Sherman’s distribution is very similar to the smaller international AIVC data set (Orme et al., 

1998) and so is applied with confidence as a Gaussian random variable. 

Wind pressure coefficients are defined for the horizontal and vertical surfaces. For the latter, 

the algorithm of Swami and Chandra (1987) gives a normalized average wind pressure 

coefficient for long-walled low-rise dwellings and is a function of the angle of incidence of 

the wind (for wind direction see Section 2.2.1), local sheltering (Section 2.2.4), and the block 

aspect ratio (Section 2.2.2). The coefficient is then scaled to account for local shielding 

(Section 2.2.4). Horizontal surfaces are assumed to be completely shielded from the effects of 

the wind following Sherman and Grimsrud (1980). 

2.2.4 Environmental metadata 

Local wind speed, wind direction, and ambient air temperature are taken from an appropriate 

CIBSE TRY file (see Section 2.2.2) but the wind speed must be scaled according to the 

terrain and dwelling height using a standard power law formula (BSI, 1991). Dwelling height 

is obtained from the cuboid model and the terrain is indicated by the EHS. The four BSI 

terrain types and the local wind pressure shielding coefficients (Section 2.2.3) of Deru and 

Burns (2002) are mapped using expert judgement to the six EHS terrain types. 

DOMVENT3D is not a thermal model and so the internal air temperature must be prescribed. 

Here, a constant value of 18.5°C is chosen following Palmer et al. (2011) who estimate this 



figure for the U.K. domestic average internal air temperature in 2005. There is no evidence on 

the fluctuation of this value and so it is assumed to be a constant. 

2.3 Stochastic methods 

A Monte Carlo (MC) approach is used to predict distributions of winter infiltration and heat 

loss in English apartments and their sensitivity to model inputs. Inputs to DOMVENT3D are 

provided by multiple Latin Hypercubes each of 20 sets (balance between computation and 

accuracy, convergence) of four stochastic input variables comprising the EHS sample (using 

dwelling weight), the dwelling orientation, the air permeability, and the flow exponent. All 

other random variables are a function of these parameters and are chosen independently when 

required. After each set of 20 samples the mean (µ) and standard deviation (σ) of the 

predicted infiltration rate,  ̇  (h
-1

), of all samples are calculated and used to decide if a 

stopping criterion has been met. The number of samples is deemed adequate if the change in σ 

from one set of 20 samples to the next is less than 0.1%. The model is run twice because a 

distribution is required for each of the two assumptions, A(1) and A(2) . 

3 RESULTS 

Table 1: Statistical summary of mean infiltration rate (h
-1

) and total winter heat loss (MWh) samples. 

Assumption A(1): permeable party walls. Assumption A(2): impermeable party walls. 

Statistical measure Mean Infiltration Rate,  ̇  (h
-1

) Total Heat Loss,    (MWh) 

 Permeability Assumption Permeability Assumption 

A(1) A(2) A(1) A(2) 

Minimum 0.001 0.016 0.004 0.029 

2% centile 0.010 0.031 0.022 0.078 

25% 0.054 0.145 0.124 0.395 

50% 0.117 0.292 0.300 0.748 

75% 0.215 0.477 0.589 1.287 

98% 0.541 1.079 1.696 3.110 

Maximum 0.736 1.603 6.470 8.282 

Mean 0.151 0.338 0.448 0.959 

Standard deviation 0.129 0.249 0.565 0.820 

 
Figure 1a (left) and 1b (right): Predicted cumulative distribution of mean infiltration rate (left) and total winter 

heat loss (right).            , Assumption A(1); 
….…

, A(2). 

Figure 1a shows the predicted cumulative distribution of mean infiltration rate,  ̇  (h
-1

), in 

English apartments during the heating season for both permeability assumptions. Figure 1b 

shows the same for total winter heat loss,    (MWh). Table 1 gives descriptive statistics for 

each sample and extreme permeability assumption. The number of samples required were 360 

and 860 for permeability assumptions A(1) and A(2), respectively. 

Table 1 and Figures 1a and 1b show that all distributions are positively skewed and so median 

values are used herein. A clear difference between the predictions made for each of the two 

permeability assumptions is observed.  ̇  and    are predicted to be lower for permeability 



assumption A(1) than for A(2), and that assumption A(2) increases the variance of the sample. 

The difference in predicted mean winter infiltration for A(1) and A(2) is explained by 

considering both assumptions applied to an apartment of fixed permeability with at least one 

party wall. Whatever the permeability assumption of the party walls, the total leakage area 

(equal to the sum of the cross sectional areas of all ALPs) of the apartment is identical 

because the permeability is fixed. If assumption A(1) is assumed and the party walls are 

permeable then the total leakage area is uniformly distributed over all surfaces of the 

apartment’s envelope. If assumption A(2) is assumed and the party walls are impermeable 

then the total leakage area is only uniformly distributed over the exposed surfaces,    (m
2
), of 

the apartment’s envelope, thus increasing the operational infiltration rate. Jones et al. (2013a) 

show that the ratio of the predicted infiltration rate for the two permeability assumptions is 

equal to a ratio of permeable envelope area at a pressure differential of 50 Pascals     (m
2
) 

where 

      ( )      ( )⁄   ̇   ( )  ̇   ( )⁄  (2) 

Here, the subscripts indicate the pressure differential and the permeability assumption. 

Equation (2) shows that for apartments, the ratio is likely to be  1 because apartments tend to 

have more than one party wall and so      ( )       ( ). For detached houses, one expects 

the ratio to approach unity because they have no party walls and so      ( )       ( ). Note 

that Equation (2) is valid for a single dwelling and not for an entire distribution. Therefore it 

is reassuring that Table 2 shows that Equation (2) is approximately true for the sample 

medians of the two permeability assumptions. Table 2 also shows that the median air 

permeability, apartment volume, envelope area, and exposed envelope area for both samples 

are also similar because they are unaffected by the permeability assumptions. 

The difference in variance between the samples (indicated by σ) is attributable to the variation 

of     governed by the permeability assumptions. For the A(1) sample,          for the 

vast majority of cases (ground floor apartments with impermeable solid floors are an 

exception), whereas for the A(2) sample,          for the vast majority of cases (when at 

least one party wall is assumed), they vary instead between           . 

Figure 1 shows that 97% and 78% of apartments for permeability assumptions A(1) and A(2), 

respectively, have a mean infiltration rate below 0.5ac/h. This is significant because 0.5ac/h is 

a threshold ventilation rate, recommended by many European countries, above which some 

negative health effects reduce (Jones et al., 2013a). This suggests that English apartments 

should be fitted with purpose provided ventilation in order to minimize health risks to 

occupants and is an important consideration for policy makers. 

Table 2: Meadian values of key descriptive parameters of 

sampled apartments. Assumption A(1): permeable party walls. 

Assumption A(2): impermeable party walls. 

Sample median A(1) A(2) 

Air permeability,  ̇   (m
3
/h/m

2
) 9.4 9.1 

Apartment volume (m
3
) 132.3 134.6 

Envelope area,      (m
2
) 184.2 185.6 

   (m
2
) 63.8 60.7 

    (m
2
) 161.9 60.7 

     ( )      ( )⁄  2.7 2.7 

 ̇   ( )  ̇   ( )⁄  2.5 2.5 
   , permeable envelope area at a pressure differential of 50 Pascals. 

  , exposed envelope area able to transfer mass under operational conditions. 

Table 3: Predicted leakage infiltration ratio 

  and performance statistics. 

Assumption A(1): permeable party walls. 

Assumption A(2): impermeable party walls. 

 A(1) A(2) 

  66.90 32.07 

R
2 

0.01 0.41 

RMSE 7.33 5.43 

MAE 26.01 25.14 



4 ASSESSING THE LEAKAGE INFILTRATION RATIO 

Equation (1) is evaluated by the linear regression of  ̇  and  ̇   to estimate   and by the 

calculation of key performance statistics: the Coefficient of Determination (R
2
), the Root 

Mean Squared Error (RMSE), and the Maximum Absolute Error (MAE). Here, R
2
 quantifies 

the proportion of the total variation in the data that is explained by the regression model. 

When R
2
=1, all variation in the data is explained by the model; whereas when R

2
=0 the 

opposite is true. The RMSE is a measure of the average performance of the model’s outputs, 

and the MAE is a measure of the largest deviation of the model’s outputs. Values of   are 

given in Table 3 by permeability assumption along with the performance statistics. These 

statistics show that      and that Equation (1) is a poor model of the relationship between 

 ̇  and  ̇   in English apartments, whatever the permeability assumption. This outcome 

suggests that building codes that apply Equation (1) with      (in the first instance) are 

over predicting exfiltration heat loss in apartments. Table 2 shows that the mean total heat 

losses are 300kWh and 748kWh for permeability assumptions A(1) and A(2), respectively. 

For assumption A(1) and A(2) this is equivalent to running approximately three and eight 

11W light bulbs non-stop for an entire year, respectively, or equivalent to the continuous 

occupancy by a single adult (assuming 100W per adult) for approximately 34% and 85% of a 

year, respectively. 

An alternative model of the relationship between  ̇  and  ̇   is required and further work 

should apply meta-modelling techniques that minimize the prediction errors in a least-squares 

sense and that use the predictions given here as training and validation data. 

5 SENSITIVITY ANALYSIS 

Table 4: Sensitivity of outputs to inputs, confidence, and rank of key model inputs. 

Outputs Mean infiltration rate,  ̇  Total heat loss,    

Inputs     rank      rank 

Air permeability,  ̇   (m
3
/h/m

2
) 0.54 0.00 1 0.53 0.00 1 

Airflow exponent -0.35 0.00 2 -0.35 0.00 2 

    (m
2
) -0.22 0.00 3 -0.19 0.00 3 

Mean wind speed at dwelling height (m/s) 0.08 0.00 4 0.09 0.00 4 

Orientation (  ) -0.04 0.02 5 -0.05 0.01 5 

Apartment volume (m
3
) -0.03 0.16 6 0.04 0.03 7 

Block aspect ratio 0.02 0.33 7 0.02 0.24 8 

Mean temperature difference,   ̅̅̅̅  ( C) -0.01 0.66 8 -0.01 0.52 9 

   (m
2
) 0.00 0.90 9 0.05 0.02 6 

   , permeable envelope area at a pressure differential of 50 Pascals. 

  , exposed envelope area able to transfer mass under operational conditions. 

It could be argued that the salient assertions made in Sections 3 and 4 are dependent upon the 

assumptions made in Section 2. Accordingly, a sensitivity analysis is used to determine the 

relative importance of inputs. All of the inputs are perturbed simultaneously by the Monte 

Carlo sampling method (see Section 2.3) and so any interactions between them (including 

those that are synergistic) are accounted for (Lomas and Eppel; 1992). To test the dependence 

of the inputs on the outputs  ̇  and   , the Kendall   correlation coefficient (a number 

between   ) is used. Here,     indicates perfect positive correlation between the input and 

the output, whereas      indicates perfect negative correlation. Inputs are ranked by | | 
where the lowest rank is the most significant; see Table 4. The inputs assed in Table 4 are 

continuous numerical variables that are uncorrelated with each other; for example,  ̇   

(m
3
/h/m

2
) is considered instead of envelope area,     . Moreover, the inputs are chosen to 

represent implicitly the geographic, geometric, environmental, physical, and terrain 



parameters discussed in Section 2, thus avoiding the need to test categorical variables, such as 

the region. 

Table 4 evaluates both samples in concert using MATLAB’s “corr” function (with 

“kendall” as an input) that gives   and a confidence interval ( ) used to test for a non-zero 

correlation between the input and the output, assuming that the null-hypothesis is true. Table 

4 shows that  ̇  is sensitive to 5 of the 9 inputs (at   0.05) and    is sensitive to 6 of the 9 

inputs. Both outputs are most sensitive to  ̇   whose limitations are identified in Section 

2.2.3. The accuracy of the predictions given here could be improved with more robust 

distributions of  ̇   by dwelling type and age. It is reassuring that the model is insensitive to 

block geometry, given that its imposed limits are arbitrary (see Section 2.2.2), and to the 

mean temperature difference,   ̅̅̅̅ , given the uncertainty in the variance of the internal air 

temperature (Section 2.2.4). 

6 CONCLUSIONS 

This paper provides a stochastic method for predicting distributions of mean infiltration rates 

in winter and total winter heat loss in a stock of dwellings. The method is used to investigate 

mean winter time infiltration rates in apartments, which share at least one wall with another 

dwelling, based on two extreme assumptions of party wall permeability. The first assumes 

that the party walls are permeable whereas the second assumes that they are not. A clear 

difference between the distributions for each of the two permeability assumptions is 

predicted. The distributions show that the mean infiltration rate and total heat loss are 

significantly less for the first assumption than for the second, and that at least 78% of 

apartments require additional purpose provided ventilation to limit negative health 

consequences. 

The leakage-infiltration ratio is shown to be an unsuitable method of predicting an 

apartment’s mean winter infiltration rate from a measurement of its air leakage rate. This 

finding is independent of the assumption of party wall permeability, because the leakage-

infiltration ratio cannot account for the variation in geographic, geometric, environmental, 

physical, and terrain parameters. Building codes that use this ratio should reassess their use of 

the relationship. 

The modelling approach detailed here can be applied to any stock of dwellings. The 

application of the approach to apartments highlights significant health and energy 

ramifications. The predicted distributions of the mean infiltration rate and total heat loss in 

winter for the two extremes of party wall permeability are a useful tool with which policy 

makers of any country whose housing stock contains apartments can make informed decisions 

about fabric tightness and exfiltration heat loss. 
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