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Abstract 

Purpose: to provide an X-ray Phase Contrast Imaging (XPCI) method working with 

conventional sources that could be readily translated into clinical practice. XPCI shows 

potential in synchrotron studies but attempts at translating it for use with conventional sources 

are subject to limitations in terms of field of view, stability, exposure time and, possibly most 

importantly, delivered dose.  

Methods: following the adaptation of our “edge-illumination” XPCI technique for use with 

conventional x-ray sources through the use of x-ray masks, we have further modified the 

design of such masks to allow further reducing the dose delivered to the sample without 

affecting the phase sensitivity of the method. 

Results: we have built a prototype based on the new mask design and used it to image ex-vivo 

breast tissue samples containing malignant lesions. We compared images acquired with this 

prototype to those obtained with a conventional system. We demonstrate and quantify image 

improvements, especially in terms of microcalcification detection. On calcifications detected 

also by the conventional system, we measure contrast increases from 5 to 9 fold; 

calcifications and other features were also detected which are completely invisible in the 

conventional image. Dose measurements confirmed that the above enhancements were 

achieved while delivering doses compatible with clinical practice. 

Conclusions: we obtained phase-related image enhancements in mammography by means of 

a system built with components available off-the-shelf that operates under exposure time and 

dose conditions compatible with clinical practice. This opens the way to a straightforward 

translation of phase enhanced imaging methods into clinical practice. 

Keywords: mammography, x-ray phase contrast imaging, microcalcifications, image contrast 
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Introduction 

X-ray phase contrast imaging (XPCi) generates contrast from refraction and interference1-3, 

overcoming the problem of low image contrast resulting from small attenuation differences. 

This was shown to be beneficial in medical imaging,3,4 mammography4,5 in particular. For 

years, XPCi was considered restricted to synchrotrons, where XPCi mammography has 

reached the in vivo stage.5 The diagnostic improvements demonstrated by this in vivo study 

prove the importance of implementing XPCi mammography outside synchrotrons. 

While recent methods enable XPCi with conventional sources, application of these to 

mammography suffered from excessive exposure time and, crucially, radiation doses too high 

for clinical practice.  

Free-space propagation2,5,6 requires high spatial coherence (i.e., a source with a small angular 

diameter as seen from the sample), i.e. either synchrotrons 2,5 or microfocal sources,6 the latter 

leading to excessively long exposure times6 due to low emitted flux. If the focal spot is 

increased to make more flux available, phase enhancements vanish:7,8 a clinical translation 

attempt did “not lead to a statistically significant difference in recall and cancer detection 

rates”, 9 while the Trieste study, which uses the same method but a source of suitable 

coherence, is demonstrating significant advantages.5 

Other implementations use crystals1,10 acting as angular and spectral filters. Although 

translation attempts exist,11 crystals select a narrow bandwidth from the conventional source’s 

polychromatic spectrum, again leading to low flux and thus long exposure times. 

Grating interferometry,12,13 based on Talbot self-imaging,14 still requires high spatial 

coherence, and is thus subject to the same limitations. However, an extended source can be 

used by covering it with an additional grating15 creating an array of individually coherent 

“sourcelets”. Stampanoni et al.16 used this approach to image ex vivo breast tissue, and 

successfully demonstrated improved image quality; however, this required a mean glandular 
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dose (MGD) one order of magnitude above clinical acceptability. A key reason for this high 

dose is the absorption analyzer grating placed downstream of the sample. Furthermore, it 

should be noted that both phase and absorption gratings are manufactured on silicon 

substrates, which typically are a few hundred micron thick: at least in some configurations, 

these can thus further increase dose and exposure time. Other restrictions are the flux 

limitations caused by the “source” grating (necessary if a conventional source is used) and the 

fine pitch (2-3 µm) of the other gratings, leading to demanding alignment requirements (20-

30 nm17).  

We propose a solution through a modification of the edge-illumination7 based coded-aperture 

(CA) approach,18 the dose-reduction potential of which is due to the pre-sample mask 

protecting the sample. In this work, we optimize this by combining an open fraction smaller 

than 50% in the pre-sample mask with small misalignments between pre-sample and detector 

masks. CA XPCi also offers stability against environmental vibrations, due to larger aperture 

pitch/dimensions than grating interferometry. This leads to simpler alignment, automated via 

a feedback mechanism.19 The source is exploited efficiently as no source grating is required, 

leading to reduced exposure times,20 and masks are realized on low-absorbing graphite 

substrates. 

 

Materials and methods 

Figure 1 shows how the CA XPCi concept was modified to achieve low-dose imaging. For 

simplicity’s sake, the parallel-beam geometry is represented, as a divergent beam simply 

entails scaling down the pre-sample mask. In the “standard” CA XPCi implementation, 

masks’ open fraction is 50%, and a misalignment of half aperture size is used18,20 (figure 

1(a)). Increasing this misalignment enhances sensitivity;21 however, in this “standard” 
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configuration, this increases both exposure time and dose, as more primary photons impinge 

on the absorbing septa of the detector mask.  

In the “low dose” version (figure 1(b)), the open fraction of the pre-sample mask is reduced 

(in this study, to 20%). This enables achieving the same sensitivity, determined by the 

fraction of the pixel illuminated by the beam21 (see dashed lines labelled “pixel illumination” 

in figures 1(a) and 1(b)), with a smaller misalignment between sample and detector masks. A 

negligible fraction of the beam not stopped by the pre-sample mask thus impinges on the 

absorbing septa of the detector mask (figure 1(b)). This is the only source of “extra-dose” in 

CA XPCi, and this configuration enables its minimization. A slight increase in the average 

beam energy, viable because phase effects decrease more slowly than absorption with 

increasing energy,1-3 is used to compensate for this.  

 

 

Figure 1 “Standard” (a) vs. low-dose (b) CA XPCi. In the low-dose version, the aperture size 

in the pre-sample mask is reduced, and a much smaller misalignment between pre-sample and 

detector mask is adopted. This enables same phase sensitivity to be achieved (determined by 

the “pixel illumination” indicated by dashed lines in both drawings) while illuminating a very 

small region of the septa in the detector mask, which is the only source of “additional” dose in 

CA XPCi. 
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We also use figure (1) to briefly schematize the method’s basic working principle for readers 

not familiar with it. In Fig 1(a), a sample and two different refracted x-rays (labelled as 1 and 

2) have been added. Refraction by the sample causes x-ray 1, which would normally hit the 

absorbing septa on the detector mask, to be deviated onto the detector pixel and be counted, 

thus increasing the number of counts in that pixel. The opposite occurs for x-ray 2, which 

normally would be counted, but is refracted by the sample onto the absorbing septa (thus 

reducing the number of counts in the corresponding pixel). A similar situation is encountered 

in the configuration show in figure 1(b), with a prevalence of “x-ray 2” type cases (intensity 

reduction) due to the introduced asymmetry. This last aspect is specific of the new “low dose” 

implementation of the method presented in this paper, and is thus further discussed below (see 

Fig. 4 and related discussion, and supplementary material). 

We used the Rigaku M007 source, with molybdenum target and 70 µm focal spot, at 40 kVp 

and 25 mA, with additional 30 µm molybdenum filtration. The detector is the ANRAD 

“SMAM” amorphous selenium flat panel, with 85 µm pixel. The pre-sample mask consisted 

of a series of 720 4.8 cm long, 12 µm wide apertures, with 66.8 µm pitch, obtained in a 30 µm 

thick gold layer electroplated on a graphite substrate. The detector mask had the same gold 

thickness and a similar design, but with 6 cm long, 20 µm wide apertures and 83.5 µm pitch. 

Both masks were manufactured to the authors’ design by Creatv Microtech (Lake Potomac, 

MD). Mask alignment was achieved via a stack of Newport translation stages and Kohzu 

cradles.19 The source-to-sample and sample-to-detector distances were 1.6 m and 0.4 m, 

respectively. 

Entrance dose measurements were obtained through a calibrated Keithley 35050A ion 

chamber positioned immediately downstream of the pre-sample mask, where the sample is 

normally placed. A 4 cm thick polymethacrylate (PMMA) slab was placed behind the ion 
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chamber to include contributions from backscattering. The measurements were repeated by 

means of thermoluminescent dosimeters (TLD-100H), and the same results were obtained to 

within ~10% accuracy. The additional exposure requested to obtain the same detected 

statistics on a thicker sample was calculated by assuming a 50%-50% glandular-adipose 

breast tissue composition; the mass attenuation coefficients for the single elements (H, C, N, 

O, P) were obtained from the XOP “DABAX” database.22 Air kerma values were converted 

into MGD values by using Boone’s tabulated factors.23 The conventional mammographic 

image was acquired with a GE Senographe Essential Version ADS 54.11, operated at 26 kVp 

and 25 mAs. Tissue samples were obtained from mastectomies after informed consent; the 

study was approved by the local ethical regulatory bodies. 

 

Results 

Figure 2 shows an example image of a breast tissue specimen obtained with the proposed 

method (figures 2(b) and 2(c)), compared to conventional mammography (figure 2(a)).  

 

 

Figure 2. Conventional (a) vs low-dose (b) and ultra-low dose (c) CA XPCi images of the 

same breast tissue specimen (region of interest extracted from a larger 5 x 5 cm2 image). 

Arrows in (b) highlight details of interest: arrows labelled 1 and 2 indicate examples where 

XPCi leads to improved visualization of the tissue structure (trabeculae in particular); arrows 
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labelled a and b indicate the calcifications used in the quantitative analysis reported below; 

unlabelled arrows indicate calcifications or clusters of calcifications invisible in the 

conventional image. Images should be viewed on a monitor.  

 

Images in figures 2(a), 2(b) and 2(c) were acquired with entrance air kerma values of 3, 5.5 

and 1 mGy, respectively, all below the acceptable limit for the entrance dose in 

mammography (12 mGy24). Although this is partly due to the specimen being thinner (~2 cm) 

than a full breast, extrapolation to thicker samples still leads to clinically acceptable MGD 

values (see below). By comparing figures 2(a) and 2(b), the increased detail visibility in the 

XPCi image is apparent, in terms of both tissue definition (arrows labelled “1” and “2”) and 

increased microcalcification detection (unlabelled arrows). Moreover, practically all 

calcifications detected in Figure 2(b) are still visible in Figure 2(c), obtained at a fifth of the 

dose. As the pixel size was 100 µm and 85 µm in the conventional and XPCi systems 

respectively, the increased microcalcification detection is not due to a difference in spatial 

resolution, but is rather a phase effect: the calcium/soft tissue interface generates x-ray 

refraction that deviates x-rays on the absorbing septa of the detector mask, thus leading to 

reduced detected intensity.  

 

 

Figure 3. Profiles extracted from figure 2 (a) (squares) and 2 (b) (circles) for the 

calcifications labelled with “a” and “b” in figure 2 (b). Plots (a) and (b) correspond to 

calcifications labelled with the same letter in Figure 2 (b). The relative intensity (i.e. 
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normalized to the background in the immediate vicinity of the calcification) is plotted as a 

function of the spatial displacement in µm. This enables reading the detail contrast directly on 

the vertical axis, as the maximum deviation from unity encountered in each plot.  

 

To quantify this, figure 3 shows profiles extracted from two calcifications which are visible 

both in the conventional and XPCi image (arrows “a” and “b” in figure 2(b)). It should be 

noted that, for such a direct comparison to be possible, “thicker” calcifications, already 

presenting an absorption signal sufficient to make them visible also in the conventional 

image, must be chosen, while the contrast increase is much greater for thinner ones, to the 

extent that many calcifications are detected which are invisible in Figure 2(a). Also 

considering this caveat, in the selected examples the contrast increase ranges from 500% 

(from 10% to 50%, figure 3(b)) to 900% (from 5% to 45%, figure 3(a)). In both graphs, the 

intensity is plotted against the displacement in µm rather than pixel number, which makes it 

possible to represent both graphs in the same figure, as the pixel size was slightly different in 

the two systems (85 vs 100 µm). This exercise of plotting the signals extracted from the 

calcifications on the same scale, plus the fact that in both cases calcifications are significantly 

larger than one pixel, further demonstrates that the observed increase in contrast in not related 

to the (negligible) difference in pixel size between the two systems. 

Unlike other “differential” XPCi methods10,11-13,15 and “standard” CA XPCi18-21 itself, the 

profiles in Figure 3 only show a negative peak, rather than a positive/negative pair. This is 

because the positive peak is generated by the x-rays impinging on the solid septa on the 

detector mask (figure 1(a)): when sample-induced refraction deviates them into the aperture, 

they increase the number of detector counts generating a positive peak. These x-rays have 

been practically eliminated in the low-dose implementation proposed here (figure 2(b)): 

hence, the only mechanism to generate phase signal is the deviation of x-rays from the 
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apertures onto the solid septa, which decreases the number of counts creating negative peaks. 

This is demonstrated in Figure 4, where standard (figure 4(a)) and low-dose (figure 4(b)) CA 

XPCi images are compared with the conventional absorption image (figure 4(c)) of the same 

specimen. Profiles were extracted from the same fibrous structure (arrow in figure 4(a)) in all 

images, and are compared in figure 4(d). While conventional CA XPCi presents the expected 

double-peak shape (dashed line), the low-dose version (solid line) only features the negative 

peak. This practically matches the one from the standard CA XPCi image, which is expected 

as the part of the beam responsible for its formation (the portion falling inside the detector 

mask apertures) is the same. The fact that this peak is much stronger than the absorption 

signal extracted from Figure 4(c) (dotted line) demonstrates 1) the almost pure phase nature of 

the negative peak, and 2) the advantage that the proposed method has also in the visualization 

of fibrous structures, as well as calcifications. More details on the single vs. double peak 

formation mechanism are given in the supplementary material. 

 

 

Figure 4 Nature of the signal in low-dose CA XPCi. Panels (a), (b) and (c) show the same 

tissue specimen imaged with “standard” CA XPCi, low-dose CA XPCi, and conventional 

absorption imaging, respectively. (d) shows profiles extracted from the same fibrous structure 

highlighted by the arrow in (a). The negative phase peak practically coincides for standard 

(dashed line) and low-dose (solid line) CA XPCi, and is much stronger than the absorption 
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signal extracted from (c) (dotted line). However, the standard CA XPCi profile also shows the 

positive phase peak, absent from its low-dose correspondent. 

 

If contrast is estimated as peak-to-peak difference, then “standard” CA XPCi doubles it 

compared to the low-dose implementation, at the price of some additional dose. This can be 

seen as additional flexibility offered by CA XPCi and, most importantly, the negative peak 

alone is sufficient to significantly outperform image contrast provided by conventional 

absorption imaging. 

 

Discussion 

To the best of our knowledge, this is the first time non-synchrotron phase-induced 

enhancements in mammography are obtained at clinically acceptable doses, the closest 

example being the quoted work of Stampanoni et al.16 which required significantly higher 

doses. 

Horizontal lines visible in figures 2(b) and 2(c) are due to mask defects (actually the current 

masks have an even larger number of defects, and more than one image was acquired to fill in 

portions of the sample which were invisible due to this). This could be easily eliminated in a 

commercial system. Low aspect-ratio masks of this type can be fabricated in sizes compatible 

with clinical mammography, and are cheap if mass-produced. Another sub-optimal aspect of 

the current prototype is a maximum detector exposure time of 7 s. The image of figure 2(b) 

was obtained by summing ten 7 s frames; that of figure 2(c) by summing two. Each frame 

contains a comparable number of “dark” counts (counted also with the beam off) and real x-

ray hits, leading to penalizing noise propagation when background subtraction is performed. 

By increasing the number of frames from 2 to 10, we do not obtain the improvement in image 

quality corresponding to a 5-fold increase in the statistics, and one can estimate that a “real” 



 12 

10 s acquisition would provide the same image quality as summing two 7s frames (and would 

reduce the dose). We are currently operating at 2 m source-to-detector distance, while there is 

evidence that a 1.5 m long system could provide comparable performance21 leading to a two-

fold reduction in exposure time. Finally, no source optimization was implemented.  

For the imaged specimens, we provided entrance air kerma values rather than MGDs due to 

their limited thickness (~2 cm). At the moment we do not have access to thicker samples. 

However, an estimation of the MGD that would be required to image e.g. a 4 cm thick 

specimen (for which the concept of MGD is significant) can be provided in the following 

way. For the spectrum used (Mo at 40 kVp with 30 µm additional Mo filtration), we have 

calculated the increase in exposure that would be required to achieve the same statistics on the 

detector (and therefore, to first approximation, the same image noise) as in the images of 

Figure 2(b) and 2(c). This was done by assuming a 50%-50% glandular-adipose breast tissue 

composition for the additional 2 cm of breast, and by obtaining the mass attenuation 

coefficients for the single elements (H, C, N, O, P) from the XOP “DABAX” database.22 The 

increased air kerma values calculated in this way were then converted into MGD values by 

using Boone’s tabulated factors.23 This lead to MGDs of ~3 and 0.7 mGy (for the statistics of 

Figure 2(b) and 2(c) respectively), which “bracket” MGD values used in clinical practice, and 

are both within the limits of quality assurance protocols in mammography.24 Admittedly this 

refers to the specific spectral parameters used in this proof-of-concept study (e.g. the kVp 

setting is higher than normally used in mammography, a choice partly made possible by the 

fact that phase effects decrease more slowly than attenuation ones with increasing x-ray 

energy), and a detailed dose optimization study should be conducted before the method can be 

applied clinically. However, we find that these preliminary results give an encouraging 

indication in terms of clinical compatibility. 
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Although we can obtain phase-retrieved images through two acquisitions,25 we argue that a 

single, “mixed” image (like figure 2(b)) is sufficient to enable improved detection of breast 

abnormalities. This is the same strategy adopted by the aforementioned in vivo study with 

synchrotron radiation, 5 and has the advantage that radiologists can interpret the images by 

using the absorption signal as a reference.  

In conclusion, we show that significant advances in mammography can be obtained at 

acceptable doses and exposure times, with moderate engineering development, using 

technology that is already commercially available. 
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