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Abstract

In this thesis we develop a new criterion for the congruence subgroup problem in

the case of arithmetic groups of SU(2, 1), which in principle can be checked using a

computer. Our main theorem states that if there exists a prime q > 3 and a congru-

ence subgroup Γ′ ⊂ SU(2, 1)(Z) such that the restriction mapH2(SU(2, 1)(Z),Fq)→

H2(Γ′,Fq) is not injective, then the congruence kernel of SU(2, 1) is infinite.
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Introduction

The congruence subgroup problem (CSP) has been studied and is understood for

a number of groups. For the group SL2(Z), the classical formulation of the CSP is

as follows. We define a congruence subgroup of SL2(Z) to be a subgroup containing

the kernel of the homomorphism

ker (SL2(Z) −→ SL2(Z/NZ)) ,

for N a positive integer. While it is clear that such a subgroup has finite index in

SL2(Z), the CSP for SL2(Z) turns this around and asks if every subgroup of finite

index in SL2(Z) is a congruence subgroup. It was known to Felix Klein that the

congruence subgroup problem has a negative solution for SL2(Z) and in fact there are

infinitely many non-congruence subgroups of SL2(Z). If we define Γ = SL2(Z) and

Γ(N) = ker (Γ −→ SL2(Z/NZ)), then we can explicitly construct a non-congruence

subgroup as in Section 3.4, [30] as follows; let Γ
′

be the subgroup of Γ generated

1
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by the matrices A =

 1 2

0 1

 and B =

 1 0

2 1

. Then Γ
′

is a free group and

has index 2 in Γ(2). Thus there exists a surjective homomorphism EA from Γ
′

to Z

which we construct by taking a word w ∈ Γ
′

and defining EA(w) : Γ
′ −→ Z to be

the sum of the exponents of A in w. Define

Γl =
{
g ∈ Γ

′
: EA(g) ≡ 0 mod l

}
,

for l > 0. Then Γl is not a congruence subgroup if l is not a power of 2 (see Section

3.4, [30]).

In contrast to the negative solution for SL2(Z), Bass, Lazard and Serre showed

in [1] that SLn(Z) has a positive solution for n ≥ 3. However, it was the refor-

mulation of the CSP by Bass, Milnor and Serre in [2] through the introduction of

the congruence kernel that provided a greater understanding of the CSP. This more

precise reformulation gives a means of measuring the deviation of the CSP from a

positive solution.

The study of the congruence kernel led to the solution of the CSP for many

groups. When G is an absolutely simple, simply connected k-group, Serre conjec-

tured in [28] the following claim regarding the congruence kernel, which became

known as the congruence subgroup conjecture;

Conjecture. (Congruence Subgroup Conjecture) Let G be an absolutely simple,
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simply connected k-group. Denoting the congruence kernel by CongS(G), then

(i) if rkS(G) ≥ 2 and rkkp(G) > 0 for all p ∈ S \ V∞, then CongS(G) is finite,

and

(ii) if rkS(G) = 1 then CongS(G) is infinite.

This conjecture is now known for many groups and the current status of the CSP

can be summarised by the following theorem (Section 6.7, [30]).

Theorem. Let k be an algebraic number field and G be a simple, simply-connected

k-group of one of the following types: Bn (n ≥ 2), Cn (n ≥ 2), Dn (n ≥ 5), E7, E8,

F4, G2 or a special unitary group SUm(f) (m ≥ 4) of a nondegenerate hermitian

form f over either a quadratic extension L/k or a quaternion division algebra D/L

with an involution of the second kind. Suppose that rkS(G) ≥ 2 and if G is F4, there

is a place p ∈ S such that rkkp(G) ≥ 2 and if G is of type C3, then either S \ V∞ is

nonempty, or there exists p ∈ V∞ such that rkkp(G) ≥ 2. Then CongS(G) is central.

The centrality of the congruence kernel CongS(G) is relevant since when this can

be shown, we can relate CongS(G) to the metaplectic kernel and whilst the centrality

of CongS(G) is not complete in all cases, the computation of the metaplectic kernel

is (see Section 4.9, [30]). We also note however that the CSP is still unknown

in a number of cases, including certain special unitary groups of the second kind,

which we describe next. The aim of this thesis is to develop a new approach to the
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congruence subgroup problem and demonstrate its application through the special

unitary group SU(2, 1).

To describe the two different kinds of special unitary group, as in [3] we fix a

totally real number field F , a quadratic extension E of F with no real embeddings

and let x 7→ x denote the non-trivial field automorphism of E/F . We have two

ways of constructing the special unitary group. Take D to denote a central simple

algebra over E of dimension 9 and ι : D −→ D an involution of the second kind,

signifying that ι restricts to x 7→ x on E. If in particular D = M3(E), then there

exists a matrix J ∈ GL3(E) such that J = J t and ι(g) = J−1gtJ . Given this, we

can define a unitary group Uι(F ) = {g ∈M3(E) : ι(g)g = Id}. The unitary group

constructed this way is said to be of the first kind. If D is not M3(E), it must be

a division algebra and the corresponding unitary group is said to be of the second

kind. Whilst we will be primarily interested in the special unitary group SU(2, 1) of

the first kind, we explicitly construct a special unitary group of the second kind and

describe the relevance of the results in this thesis to such groups in the Conclusions.

The congruence kernel for special unitary groups of the first kind is already

known to be infinite, as predicted by the conjecture. This follows from the fact that

there exists an arithmetic group Γ such that H1(Γ,C) is non-zero (see Theorem 1

of [3]). In general, when the existence of an arithmetic group Γ is known such that

H1(Γ,C) is non-zero, then the congruence kernel is infinite (Section 8, [13]). However

for the related groups of the second kind, all arithmetic groups Γ have H1(Γ,C) = 0



CONTENTS 5

and the CSP is still unknown (see Theorem 1 of [3]). As an application of the theory

developed in this thesis, we demonstrate its use towards an alternative proof of the

non-triviality of the congruence kernel for SU(2, 1). Our main result is the following

new criterion for demonstrating that congruence kernels are infinite.

Theorem. Let SU(2, 1) denote a unitary group of the first kind, let Γ = SU(2, 1)(Z)

and q > 3 be a prime. Suppose there exists a congruence subgroup Γ′ ⊂ Γ such that

the restriction map H2(Γ,Fq) → H2(Γ′,Fq) is not injective. Then the congruence

kernel of SU(2, 1) is infinite.

This theorem generalises a result of Deligne [8], which states that if there exists

a weight 1/n multiplier system on some congruence subgroup for n > 2, then the

congruence kernel is infinite.



Chapter 1

Definitions and Preliminary

Material

In this chapter we introduce the group SU(2, 1) defined over a field and reproduce

some of its basic structure that will be of use to us throughout. This will include

the Bruhat decomposition of SU(2, 1), its corresponding Lie algebra su(2, 1) and the

group of adele points of SU(2, 1). We describe the congruence subgroup problem

and introduce the notion of a fractional weight modular form on SU(2, 1). We then

use these concepts to develop some theory that will be used in our approach to the

congruence subgroup problem.

6
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1.1 SU(2, 1) Defined Over A Field

Let k denote a field and K a degree 2 extension of k of the form K = k(
√
−d)

for d ∈ k×. We define α0 =
√
−d. We have a non-trivial field automorphism of K

fixing k given by

a+ bα0 = a− bα0.

Letting A denote a commutative k-algebra, we can construct SU(2, 1)K/k as a functor

from commutative k-algebras to groups given by

SU(2, 1)K/k(A) =
{
g ∈ SL3(A⊗k K) : gtJg = J

}
,

where J is the Hermitian matrix defined by

J =


0 0 1

0 1 0

1 0 0

 ,

and as usual gt denotes the transpose of the matrix g. Since the extension K/k

will always be clear, we write SU(2, 1)K/k as SU(2, 1). When our ground field k is

contained in R and d > 0, we can verify that this form has signature (2, 1) since a
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change of coordinates allows us to write

J =


1 0 0

0 1 0

0 0 −1

 ,

and defining SU(2, 1) with respect to this matrix gives us a description of SU(2, 1)

isomorphic to our initial definition.

We will often abbreviate the above notation by writing G = SU(2, 1); we reserve

this notation throughout solely for SU(2, 1) and thus

G(k) =
{
g ∈ SL3(K) : gtJg = J

}
.

Suppose now that k is a number field. We denote its ring of integers by Ok and we

fix a prime ideal p ⊂ Ok (we will often say that p is prime in k). A choice of p allows

us to construct a p-adic norm on k, denoted |·|p, in the following way; the residue

field Ok/p has size q for some q ∈ Z, and we can factorise α ∈ k× as a product of

primes pepe11 · · · penn in k. We set νp(α) = e and the p-adic norm on k is given by

|α|p = q−νp(α),

and we set |0|p = 0. The function νp is a discrete valuation of k. We can complete

k with respect to |·|p and the resulting field is denoted kp. The valuation ring Okp ,
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along with its group of units O×kp
and maximal ideal m, are defined as the sets

Okp = {x ∈ kp : νp(x) ≥ 0} ,

O×kp
= {x ∈ kp : νp(x) = 0} and

m = {x ∈ kp : νp(x) > 0} .

Together with the p-adic norms on k, we also have the archimedian norms at the

infinite places, which are given by embeddings k ↪→ C and restricting the usual norm

|·|∞ on C to k. We note that two such embeddings τ and its complex conjugate

τ may differ on C, but they still induce the same norm on k. We thus define an

equivalence relation on the infinite places, with equivalence classes consisting of

embeddings {τ, τ}.

Throughout, we will denote the set of equivalence classes of norms on k by V k.

This decomposes as a union of the finite places and infinite places of k, denoted V k
f

and V k
∞ respectively. From the definition of SU(2, 1), we have

SU(2, 1)(kp) =
{
g ∈ SL3 (kp ⊗k K) : gtJg = J

}
.

The structure of the group SU(2, 1)(kp) depends upon the ramification properties of

p in the field K upstairs. Recall that (see [24]) for a finite extension of number fields

L/k, a norm |·|p on k extends to norms |·|P1
, · · · , |·|Pn

on L where P1, · · · ,Pn are
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primes of L containing p. We have an isomorphism

kp

⊗
k

L ∼=
n⊕
i=1

LPi
,

and the degree of the extension [L : k] is the sum of the local degrees [LPi
: kp].

Returning to our quadratic extension K = k(α0), if p remains inert in K then

Kp
∼= kp ⊗k K is a field and can be written as kp(α0). We then have SU(2, 1)(kp) =

{g ∈ SL3 (Kp) : gtJg = J}. Similarly, when p ramifies as p = P2 for P ∈ K, we

have SU(2, 1)(kp) = {g ∈ SL3 (KP) : gtJg = J}. In the case when p splits in K,

kp⊗kK ∼= kp⊕ kp. There is then an isomorphism SL3(kp⊕ kp) ∼= SL3(kp)⊕ SL3(kp)

and we have G(kp) ∼= SL3(kp). So to understand G(kp), we will need to consider

whether p is ramified, inert or split in the field K upstairs.

We follow the same notation when given a commutativeOk-algebra A by defining

SU(2, 1)(A) =
{
g ∈ SL3(A⊗Ok OK) : gtJg = J

}
.

We will mostly be interested in this construction when A = Okp , A = Ok/p or

A = Ok/pn.
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1.2 The Lie Algebra and the Bruhat De-

composition

We let k denote a general field and K a degree 2 extension of k as before. The

Lie algebra corresponding to G/k is denoted g(k) (or simply g when the field k is

understood) and is given by

g(k) =
{
X ∈ sl3(K) : X tJ + JX = 0

}
.

There is an automorphism θ of g(k) with θ2 = 1 given by θ(X) = −X t
(see [16]).

If we write k and p to denote the +1 and −1 eigenspaces of θ respectively, then we

obtain a direct sum decomposition g = k⊕p. We have a maximal abelian subalgebra

of p given by

a =




a 0 0

0 0 0

0 0 −a

 : a ∈ k


,
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and the root system of g with respect to a is Σ = {−2λ,−λ, λ, 2λ}. Thus we have

one simple root λ, which as a function of a is

λ


a 0 0

0 0 0

0 0 −a

 = a,
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for all a ∈ k. The root spaces are as usual denoted by gφ for φ ∈ Σ and are as

follows:

gλ = {X ∈ g : ad(a)(X) = λ(a)(X) ∀a ∈ a}

=




0 x 0

0 0 −x

0 0 0

 : x ∈ K



g2λ =




0 0 yα0

0 0 0

0 0 0

 : y ∈ k



g0 =




a 0 0

0 a− a 0

0 0 −a

 : a ∈ K



g−λ =




0 0 0

x 0 0

0 −x 0

 : x ∈ K



g−2λ =




0 0 0

0 0 0

yα0 0 0

 : y ∈ k


.

(1.1)

This gives us the root space decomposition g = g0 ⊕
⊕

φ∈Σ gφ.
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The set Σ is a root system and the Weyl group W of Σ is the group generated

by the reflection with respect to the simple root λ. We can identify W with the

quotient NG(S)/ZG(S), where

S =




s 0 0

0 1 0

0 0 s−1

 : s ∈ k×


,

and NG(S) and ZG(S) are the normaliser and centraliser of S in G(k) respectively.

Note that W has one non-trivial element which we can represent by the matrix

w =


0 0 −1

0 −1 0

−1 0 0

 . (1.2)

There are several subgroups of SU(2, 1) that will be important for us. First we note

that SU(2, 1) contains algebraic tori Sk and TK/k, where Sk is a maximal k-split

torus and TK/k is a maximal torus in SU(2, 1). Given a commutative k-algebra A,
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we realise these as

Sk =




s 0 0

0 1 0

0 0 s−1

 : s ∈ k×


and

TK/k(A) =
{
g ∈ diag

(
x, y, (xy)−1

)
: x, y ∈ A⊗k K, gJg = J

}
.

We will usually exclude the subscripts k and K/k to ease notation. In particular,

G(k) has a maximal k-split torus and a maximal torus given by

S =




s 0 0

0 1 0

0 0 s−1

 : s ∈ k×


and

T (k) =




x 0 0

0 x/x 0

0 0 x−1

 : x ∈ K×


,

respectively (see [4]). We remark that the Lie algebras of the algebraic tori Sk and

TK/k are a and g0 respectively.

From now on we fix a set of positive roots Σ+ = {λ, 2λ}. By Lecture 4 of [16],

the Borel subalgebra is the Lie subalgebra b = g0 ⊕
⊕

α∈Σ+ gα. The subgroup of G

whose Lie algebra is b is a Borel subgroup whose k-points have a simple description



CHAPTER 1. DEFINITIONS AND PRELIMINARY MATERIAL 16

as the set of upper triangular matrices in G(k);

B(k) =




x r m

0 x/x −r

0 0 x−1

 : x ∈ K×, r,m ∈ K with Tr(m) = −N(r)


.

Here we are using the notation Tr(m) to denote the trace of m and N(r) to denote

the norm of r. We can decompose B(k) as a semidirect product B(k) = N(k)oT (k),

where N(k) is the unipotent subgroup of G(k) given by

N(k) =




1 r m

0 1 −r

0 0 1

 : r,m ∈ K with Tr(m) = −N(r)


.

Similarly, we will denote N(k)t to be the subgroup of G(k) such that g ∈ N(k)t if and

only if gt ∈ N(k). With the above notation, we arrive at the Bruhat Decomposition

(see [4], V.21.29).

Theorem 1.2.1. (The Bruhat Decomposition) Let k be a field and w represent an

element in the Weyl group W . Then G(k) can be decomposed as a disjoint union of

double cosets

G(k) =
⋃
w∈W

B(k)wB(k).
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1.3 Arithmetic Subgroups and the Adele

Group

Recall that we introduced the notation V k to denote the set of classes of valu-

ations of k when k is an algebraic number field. When we say a prime p ∈ V k, we

take this to mean the norm corresponding to p as constructed earlier lies in V k. The

adele ring Ak of k is the restricted topological product

Ak =

′∏
p∈V k

kp,

with respect to the subrings Okp . This means that an adele x ∈ Ak is a collection

(xp) such that each xp ∈ kp and xp ∈ Okp for all but finitely many places p ∈ V k
f .

We can make Ak into a ring by using componentwise addition and multiplication.

We can topologise Ak by taking a basis of open sets to consist of sets of the form∏
p∈S Up ×

∏
p∈V k\S Okp , where S ⊂ V k is finite and contains V k

∞, and Up ⊂ kp are

open subsets for each p ∈ S. Note that we can diagonally embed k ↪→ Ak by the

map x 7−→ (x, x, · · · ), since we may write x = a/b with a, b ∈ Ok, b 6= 0, and b

factorises as a finite product of prime ideals. The set of finite adeles is denoted

Af
k and is the restricted product Af

k =
∏′

p∈V kf
kp with respect to the subrings Okp .

When no confusion will arise, we abbreviate the notation Ak to A. We introduce

two additional pieces of notation. Firstly, A(S) will denote the set of S-integral
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adeles which for a finite subset S ⊂ V k containing V k
∞, is

∏
p∈S kp ×

∏
p∈V k\S Okp .

Secondly, the S-adeles AS is defined as the image of A under the natural projection

of
∏

p kp onto
∏

p 6∈S kp.

Of particular interest will be the adele points and finite adele points of G, the

latter given by

G(Af
k) =

{
g ∈ SL3(Af

k ⊗k K) : gtJg = J
}
,

and the adele points of G constructed in an analogous way. We note now that G(Af
k)

is a topological group with basis of open sets consisting of those of the form

∏
p

Up,

where Up ⊂ SU(2, 1)(kp) is open and for all but finitely many p, Up = SU(2, 1)(Okp).

A crucial property we will need is the strong approximation theorem. Given an

algebraic number field k and a finite subset S containing V k
∞, the strong approxima-

tion theorem (with respect to S) for a k-simple, simply connected algebraic group

G with G(S) :=
∏

p∈S G(kp) noncompact, follows from Theorem 7.12 of [24]. We

have the following theorem.

Theorem 1.3.1. (Strong Approximation Theorem) Let k be an algebraic number

field and G a k-simple, simply connected algebraic group over k such that G(S) =∏
p∈S G(kp) is noncompact. Then the embedding of G(k) into G(AS) by the diagonal
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map has dense image in G(AS).

We note that in particular SU(2, 1) defined over k satisfies the strong approxi-

mation theorem, thus SU(2, 1)(k) has dense image in SU(2, 1)(Af
k).

1.4 The Congruence Subgroup Problem

In most of what comes later we will not have a distinguished set of primes S and

we will instead be working with the full adele ring or its subring of finite adeles.

However, in the first subsection we will introduce the congruence subgroup problem

as it often is in the literature which involves a fixed set of primes S. We will then

focus specifically on the congruence subgroup problem for SU(2, 1).

1.4.1 The Classical Formulation

In this section we introduce the congruence subgroup problem as it is stated

in [25]. For a subset S ⊂ V k containing all the infinite places of k, we define the set

of S-integers of k by

O(S) =
{
x ∈ k : |x|p ≤ 1 for all p ∈ V k \ S

}
.

In this section we take an absolutely simple, simply connected linear algebraic group

G defined over k, with the added condition that G(S) =
∏

p∈S G(kp) is not com-
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pact. We note that SU(2, 1) satisfies these conditions, and that such a group G

has the strong approximation theorem with respect to S (see Section 7.4 of [24]).

We fix an embedding G ↪→ GLn over k (the choice of embedding here has no

impact on the congruence subgroup problem for G). We construct an arithmetic

subgroup by Γ = G(k) ∩ GLn(O(S)) and define GLn(O(S), a) to be the subgroup

of GLn(O(S)) consisting of all matrices congruent to the identity matrix modulo a

non-zero ideal a ⊂ O(S). We then define the principal S-congruence subgroup of

level a as Γ(a) := Γ∩GLn(O(S), a), and a subgroup Γ′ ⊂ Γ is called an S-congruence

subgroup of Γ if it contains Γ(a) for some non-zero ideal a. It is clear that such sub-

groups have finite index in Γ, and so we can ask if all subgroups of finite index are

of this form;

Congruence Subgroup Problem (CSP): Is every subgroup of finite index in Γ a con-

gruence subgroup?

A natural first example is the group G = SL2 defined over Q, with S = V Q
∞ and

arithmetic subgroup Γ = SL2(Z). The congruence subgroups are then the subgroups

which contain the kernel of the map

SL2(Z) −→ SL2(Z/NZ),
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for some positive integer N . The CSP for SL2(Z) has been solved and it turns out

that there are infinitely many subgroups of finite index in Γ that are not congruence

subgroups; proofs of this along with constructions of some non-congruence subgroups

can be found in [30]. In contrast to this, a positive solution to the CSP was found

for SLn(Z) with n ≥ 3 by Bass-Lazard-Serre in [1]. The groups SLn(O(S)) for

n ≥ 3 were considered by Bass-Milnor-Serre in [2]; in approaching the congruence

subgroup problem for these groups, the congruence kernel is constructed as a means

of measuring the deviation from a positive solution to the CSP. This comes as a

result of a reformulation of the problem in the following way.

Let Ra and Rc be collections of all normal subgroups of finite index and congru-

ence subgroups of Γ respectively. We then define topologies τa and τc on Γ which

have Ra (resp. Rc) as a base of neighbourhoods of the identity. We call these the

S-arithmetic topology and the S-congruence topology respectively. Taking the com-

pletion of Γ with respect to each of these topologies, we obtain two new groups, Γ̂

and Γ̄ respectively. Both of these groups can be described in terms of projective

limits as Γ̂ = lim←−Γ
′∈Ra

Γ/Γ
′

and Γ̄ = lim←−Γ
′∈Rc

Γ/Γ
′
. Since τa is a stronger topology

than τc we have a continuous surjective homomorphism

Γ̂
πΓ−→ Γ̄,

the kernel of which we define to be the congruence kernel and is denoted CongS(G).



CHAPTER 1. DEFINITIONS AND PRELIMINARY MATERIAL 22

The congruence kernel thus fits into a short exact sequence,

1 −→ CongS(G) −→ Γ̂
πΓ−→ Γ̄ −→ 1.

We note that G(k) also has the structure of a topological group with respect to

the two topologies defined above (see [25]). Furthermore, one can show that the S-

congruence topology onG(k) corresponds to the topology we obtain onG(k) through

the diagonal embedding G(k) ↪→ G(AS) (also in [25]). We can thus complete G(k)

in the same way and by the strong approximation theorem (with respect to S), we

have

G(Af
S) = lim←−

Γ′∈Rc

G(k)/Γ
′
,

and we define

G̃(Af
S) = lim←−

Γ′∈Ra

G(k)/Γ
′
.

Note that these are indeed both groups; the collections of arithmetic and congruence

subgroups each give a filtration on G(k) and these filtrations are both normal.

Here, normal is taken to mean that for any g ∈ G(k) and any arithmetic subgroup

(resp. congruence subgroup) Γ
′
, g−1Γ

′
g ⊃ Γ

′′
for some arithmetic subgroup (resp.

congruence subgroup) Γ
′′
. It follows that G(Af

S) and G̃(Af
S) are both groups, and
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there is a surjective map G̃(Af
S) → G(Af

S) whose kernel coincides with CongS(G).

The congruence subgroup problem then becomes: Is CongS(G) = 1?

We conclude this section by giving some known results to the congruence sub-

group problem for a number of groups, along with a conjecture due to Serre.

We noted previously that SL2(Z) had infinitely many non-congruence subgroups,

whereas all subgroups of finite index in SL3(Z) are congruence subgroups. It was

shown in [2] that there are two possibilities for CongS(G) with G = SLn and n ≥ 3;

CongS(SLn) is isomorphic to the finite cyclic group µk of all roots of unity in k if

S is totally complex and is trivial otherwise. In fact, it is shown in [28] that these

same conditions on S when |S| > 1 gives the same possibilities for CongS(SL2).

However, if |S| = 1, then CongS(SL2) is infinite. We conclude with the following

conjecture due to Serre [28]. First, we recall that the S-rank of G is defined as

rkS(G) =
∑

p∈S rkkp(G).

Conjecture 1.4.1. (Congruence Subgroup Conjecture) Let G be an absolutely sim-

ple, simply connected k-group. Then

(i) if rkS(G) ≥ 2 and rkkp > 0 for all p ∈ S \ V∞, then CongS(G) is finite, and

(ii) if rkS(G) = 1 then CongS(G) is infinite.

We note that if rkS(G) = 0, then the S-arithmetic groups are finite and therefore

CongS(G) is trivial. In the Introduction, we gave two different types of unitary

group; those of the first kind and the second kind. The group SU(2, 1) as introduced
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above is of the first kind and has k-rank 1. For this group, the conjecture is already

known. However, for the closely related groups of the second kind, the conjecture

remains unknown (see for example [3]), although it is known that if the congruence

kernel is finite in this case, then it must be trivial (see [26]). Our aim is to develop

a new tool for proving this conjecture for SU(2, 1).

1.4.2 Congruence Subgroup Problem for SU(2, 1)

Let k be an imaginary quadratic extension of Q and S = V Q
∞. Let p denote a

prime in Z and p a prime in Ok. From this point onwards, we will always be studying

SU(2, 1)k/Q; if there is no mention of the field extension, then it is understood to be

k/Q. The aim of this section is to make explicit the results of the previous section

for SU(2, 1) and to introduce the notation we will be using in later chapters. We

begin with two observations relating congruence subgroups and the compact open

subgroups of SU(2, 1)(Af
Q).

Proposition 1.4.2. An arithmetic subgroup Γ is a congruence subgroup if and only

if it is open in the subspace topology of SU(2, 1)(Af
Q).

Proof. Recall that a set U is open in SU(2, 1)(Af
Q) if it contains a set of the form∏

p Up, where Up ⊂ SU(2, 1)(Qp) is open and for all but finitely many p, Up =

SU(2, 1)(Zp). Equivalently, a set U is open if there exists N ∈ Z such that U
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contains

Kf (N) :=
∏
p

Kp(N),

where we define

Kp(N) =



{g ∈ SL3(Zp) : g ≡ Id mod NZp} p split in k,

{
g ∈ SU(2, 1)(Zp) : g ≡ Id mod NOkp

}
p inert in k,

{
g ∈ SU(2, 1)(Zp) : g ≡ Id mod NOkp

}
p = p2 ramified in k.

The subgroups Kf (N) are compact open subgroups and furthermore

(Kf (N)× SU(2, 1)(R)) ∩ SU(2, 1)(Q) = Γ(N).

So after unravelling the definitions, we see that if Γ is open in the subspace topology

of SU(2, 1)(Af
Q), it must contain some Γ(N).

Conversely, suppose that Γ ⊃ Γ(N). Choosing a set of representatives gi ∈

Γ/Γ(N), Γ can be written as a disjoint union
∏

gi
giΓ(N). So Γ is a finite union of

open sets, thus is open.

We introduce some notation. Given a compact open subgroupKf of SU(2, 1)(Af
Q)

as above, we define Γ(Kf ) = (Kf ×SU(2, 1)(R))∩SU(2, 1)(Q). This is a congruence

subgroup by the above Proposition. In fact, this map has an inverse and gives us
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the following Corollary.

Corollary 1.4.3. The compact open subgroups Kf ⊂ SU(2, 1)(Af
Q) are in one-to-

one correspondence with congruence subgroups Γ(Kf ).

These results tell us that the congruence topology on SU(2, 1)(Q) coincides with

the topology induced by embedding SU(2, 1)(Q) into SU(2, 1)(Af
Q). Thus by strong

approximation we have as we did above,

SU(2, 1)(Af
Q) = lim←−

Γ′∈Rc

SU(2, 1)(Q)/Γ
′
,

and we define

˜SU(2, 1)(Af
Q) = lim←−

Γ′∈Ra

SU(2, 1)(Q)/Γ
′
.

The congruence kernel Cong(SU(2, 1)) for SU(2, 1) then fits into the short exact

sequence

1 −→ Cong(SU(2, 1)) −→ ˜SU(2, 1)(Af ) −→ SU(2, 1)(Af ) −→ 1.
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1.5 An Approach to the Congruence Sub-

group Problem

Having introduced the congruence subgroup problem, we develop the main ideas

behind our approach to determining if the congruence kernel is trivial or non-trivial.

Recall that we are now defining SU(2, 1) using the imaginary quadratic extension

k/Q.

1.5.1 Fractional Weight Forms on SU(2, 1)

We begin by introducing the notion of a fractional weight modular form on

SU(2, 1). We will show in section 1.5.2 that the existence of certain fractional weight

modular forms on SU(2, 1) imply that the congruence kernel is infinite, hence our

motivation for introducing the theory.

We let Γ ⊂ SU(2, 1)(Q) denote an arithmetic subgroup, take V = C3 and X =

P2(C). Then SU(2, 1)(Q) acts upon V and X in the obvious way and if we take the

Hermitian form on V defined by 〈u, v〉 = utJv, then clearly SU(2, 1) preserves the
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subsets

V + =
{
v ∈ C3 : 〈v, v〉 > 0

}
,

V 0 =
{
v ∈ C3 : 〈v, v〉 = 0

}
and

V − =
{
v ∈ C3 : 〈v, v〉 < 0

}
.

Let X− denote the image of V − in X. Taking k to be a positive integer, we define

a weight k modular form (of level Γ) to be a holomorphic function f : V − −→ C

such that

f(λv) = λ−kf(v) ∀λ ∈ C× and

f(γv) = f(v) ∀γ ∈ Γ.

Since any


x

y

z

 ∈ X− must have z 6= 0, we can define a section X− −→ V − by


x

y

1

 7−→

x

y

1

. Defining

H =


x
y

 ∈ C2 : Tr(x) + N(y) < 0

 ,
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we construct a function g : H −→ C by g


x
y


 = f




x

y

1



.

We need to know how Γ acts upon H. To see this, we break γ ∈ Γ into blocks

by writing γ =

 A B

C D

, where A is a matrix of size 2× 2, B is 2× 1, C is 1× 2

and D has size 1× 1. Writing v =

x
y

 ∈ H, the action is given by

γv =
Av +B

Cv +D
γ ∈ Γ.
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Noting that Cv +D is a scalar, we now have

g (γv) = g

(
Av +B

Cv +D

)

= f


Av+B

Cv+D

1




= (Cv +D)kf


Av +B

Cv +D




= (Cv +D)kf

γ
v

1




= (Cv +D)kf


v

1




= (Cv +D)kg (v) .

We define j
′
(γ, v) = (Cv + D)k to be the weight k multiplier system on Γ, since

given γ1, γ2 ∈ Γ and v ∈ H as above, a routine check verifies that

j′(γ1γ2, v) = j′(γ1, γ2v)j′(γ2, v).

Similarly, we can then define a weight k/n multiplier system on Γ to be a function
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j : Γ×H −→ C× such that

j(γ1γ2, v) = j(γ1, γ2v)j(γ2, v) and

j(γ, v)n = (Cv +D)k,

where γ ∈ Γ is decomposed into blocks A,B,C and D as above. We then define a

weight k/n modular form on Γ to be a function f : H −→ C such that for γ ∈ Γ

and v ∈ H,

f(γ(v)) = j(γ, v)f(v).

We note that once a fractional weight multiplier system has been constructed, we can

write down a fractional weight modular form by means of a holomorphic Eisenstein

series. In the next section, we will link the existence of certain fractional weight

multiplier systems on SU(2, 1) with the size of the congruence kernel for SU(2, 1).

1.5.2 Metaplectic Covers

Throughout this section let G denote an absolutely simple, simply connected

linear algebraic group defined over Q which is also quasi-split over Q. We will also

assume that G(R) has a connected n-fold cover for each n ∈ N. In particular, the

results in this section are true for G. Let A denote the full adele ring of Q and let µ2
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denote the multiplicative group of order 2. We can construct a canonical topological

central extension of G(A) by µ2, called a metaplectic extension of G(A) by µ2, given

by

1 // µ2 // G̃(A) // G(A) // 1,

G(Q)

OOccHHHHHHHHH

such that the extension splits on the group of rational points G(Q) of G. The reason

we call this extension metaplectic is due to the fact that it splits over the rational

points of G. This is the only non-trivial topological central extension of G(A) by µ2

which splits on G(Q) (see [9]). If ˜SU(2, 1)(R) denotes the preimage of SU(2, 1)(R)

in the metaplectic extension, we obtain an extension of Lie groups

1 −→ µ2 −→ ˜SU(2, 1)(R) −→ SU(2, 1)(R) −→ 1.

In fact, the fundamental group π1 (SU(2, 1)(R)) ∼= Z as can be seen in [21], so

SU(2, 1)(R) has a connected n-fold cover for every n ∈ N which fits into a central

extension

1 −→ Z/nZ −→ ˜SU(2, 1)(R)
(n)

−→ SU(2, 1)(R) −→ 1.
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When n = 2, ˜SU(2, 1)(R)
(2)

is isomorphic to the preimage of SU(2, 1)(R) in the

metaplectic cover and we can show that this extension splits on some congruence

subgroup. This is proved by the following Proposition.

Proposition 1.5.1. Let G be as above. Let G(R) denote the corresponding real Lie

group and G̃(R)
(2)

be its preimage in the metaplectic extension. Then there exists a

congruence subgroup Γ ⊂ G(Q) such that the extension

1 // µ2 //
G̃(R)

(2)
// G(R) // 1,

Γ

OO
ddJJJJJJJJJJ

splits on Γ.

Proof. Let G̃(R) and G̃(Af ) be the preimages of G(R) and G(Af ) respectively in

the metaplectic cover. Since G̃(Af ) is a topological cover of G(Af ), there exists a

neighbourhood U1 of the identity e ∈ G(Af ) such that the preimage of the restriction

map of U1, pr−1(U1), is a disjoint union of homeomorphic copies of U1. We will write

pr−1(U1) ∼ V1∪̇V2. We may assume without loss of generality that V1 is the copy of

U1 containing the identity element of G̃(Af ). The group G̃(Af ) is locally compact

and totally disconnected, hence V1 contains some compact open subgroup. Now, we

can assume again without loss of generality that V1 is a compact open subgroup,

hence U1 is also. We conclude that V1
∼= U1 as groups and so the extension of G(Af )

splits on U1.
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Fix a congruence subgroup Γ := G(Q) ∩ (U1 ×G(R)). Recall that (see [20]) for

locally compact separable topological groups A and G with A abelian and G acting

continuously as a group of automorphisms of A, that the cohomology group with

measurable cochains H2
m(G,A) classifies topological extensions of G by A. So we

let σR ∈ H2
m(G(R), µ2) and σAf ∈ H2

m(G(Af ), µ2) be the 2-cocyles corresponding to

their respective extensions above. Now since G(R) is connected, H1
m(G(R), µ2) = 0

and so H2
m(G(A), µ2) ∼= H2

m(G(R), µ2)⊕H2
m(G(Af ), µ2). Thus the 2-cocycle σR+σAf

corresponds to the metaplectic extension of G(A) and σR
∣∣
G(Q)

+ σAf
∣∣
G(Q)

= 0 since

the extension splits on G(Q). Hence

σR
∣∣
G(Q)

= −σAf
∣∣
G(Q)

=⇒ σR
∣∣
Γ

= −σAf
∣∣
G(Q)∩U1

.

However, we showed that σAf splits on U1 and so σAf
∣∣
U1

= 0. It follows that the

extension

1 −→ µ2 −→ G̃(R) −→ G(R) −→ 1,

splits on Γ.

We can also prove a partial converse of this result which is due to Deligne [8].

Theorem 1.5.2. Suppose G is as above, with the added conditions that G has trivial
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congruence kernel. Suppose G(R) has a connected n-fold cover for every n ∈ N,

1 −→ Z/nZ −→ G̃(R) −→ G(R) −→ 1.

If there exists a congruence subgroup Γ that lifts to G̃(R) for some n, then n ≤ 2.

Proof. We begin by recalling that G satisfies the strong approximation theorem.

Thus G(Q) is dense in G(Af ) and we have

G(Af ) = lim←−G(Q)/Υ,

where the projective limit is taken over all congruence subgroups (or equivalently

arithmetic subgroups) Υ ⊂ Γ. If i : Γ→ G̃(R) is the lift of Γ to G̃(R), we construct

G̃(Af ) = lim←− G̃(Q)/i(Υ),

where again the projective limit is taken over all congruence subgroups Υ ⊂ Γ. In

order to use this to construct an extension of G(Af ) by Z/nZ, we first must show

that G̃(Af ) is a group.

To do this, we claim that the filtration

F = {i(Υ) : Υ is a congruence subgroup of Γ} ,
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is normal, which as we noted above means to say that F satisfies the property that

for any i(Υ) ∈ F and any g̃ ∈ G̃(Q), g̃−1i(Υ)g̃ ⊃ i(Υ′) for some i(Υ′) ∈ F . Once

this is shown, it follows that the projective limit is a group. So, take g̃ ∈ G̃(Q) and

a congruence subgroup Υ0 ⊂ Γ. Set g = pr(g̃). The subgroup Υ′ = Υ0 ∩ g−1Υ0g is

a congruence subgroup of Γ and Υ0 ⊃ Υ′. We have two possible lifts of Υ′; i and a

lift j given by the composition

j : γ 7−→ gγg−1 7−→ i(gγg−1) 7−→ g̃−1i(gγg−1)g̃,

for γ ∈ Υ′. If i = j, then Υ′ is the subgroup we require since i(Υ′) = j(Υ′) ⊂

g̃−1i(Υ0)g̃, as required. If not, then we note that i and j differ by elements of Z/nZ

and since our extensions are central, there exists a group homomorphism

Φ : Υ′ −→ Z/nZ

γ 7−→ i(γ)j(γ)−1.

Setting Υ′′ := ker(Φ) gives us a congruence subgroup Υ′′ as the kernel of Φ has finite

index in Υ0, and furthermore the lifts i, j coincide on Υ′′. Hence i(Υ′′) = j(Υ′′) ⊂

g̃−1i(Υ0)g̃, as required.

We conclude that G̃(Af ) is a group and we thus have the following extensions
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giving us a commutative diagram

1 // Z/nZ // G̃(Af ) // G(Af ) // 1

1 // Z/nZ // G̃(Q) //

?�

OO

� _

��

G(Q) //
?�

OO

� _

��

1

1 // Z/nZ // G̃(R) // G(R) // 1.

Set σA = σAf − σR, where σAf and σR are the 2-cocycles corresponding to the top

and bottom extensions of these extensions respectively. It immediately follows that

σA
∣∣
G(Q)

= 0 and thus the extension splits on G(Q). Hence G̃(R) is the preimage in

a metaplectic extension of G(R). By the classification of metaplectic extensions, we

have n ≤ 2 as required.

As a consequence, we have the following Corollary.

Corollary 1.5.3. If there exists a congruence subgroup Γ that lifts to a connected

n-fold cover of SU(2, 1)(R) for some n ≥ 3, then the congruence kernel of SU(2, 1)

is infinite.

We stated in the previous section that there is a link between fractional weight

multiplier systems on Γ and the congruence kernel. Given the previous Corollary, we

can now make this clear by showing how the construction of a weight 1/n multiplier

system on Γ gives us a lift of Γ to a connected n-fold cover of G(R).

We know that G(R) has a connected n-fold cover for each positive integer n, and

in fact we can construct the connected n-fold cover of G(R) in the following way.
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First, recall the construction of H and the blocks of matrices A,B,C and D used to

decompose an element g ∈ SU(2, 1) from section 1.5.1. Define G̃(R) to be the set of

pairs (g, ϕ(v)) such that g =

 A B

C D

 ∈ G(R) and ϕ : H −→ C× is a continuous

function satisfying ϕ(v)n = Cv+D for v ∈ H. For each choice of g ∈ G(R) we have

n choices of ϕ, and we define the group operation on G̃(R) as

(g1, ϕ1(v))(g2, ϕ2(v)) = (g1g2, (ϕ1(g2v))ϕ2(v)).

This makes G̃(R) a group and an n-fold cover of G(R), and is in fact the connected

n-fold cover. To see this, suppose that for each g ∈ G(R) we have fixed a function

ϕg with ϕg(v)n = Cv+D. This defines a section G(R) −→ G̃(R) by g 7→ (g, ϕg(v)).

We construct a cocycle corresponding to the extension by

Ω(g1, g2) = (g1, ϕg1(v))(g2, ϕg2(v))(g1g2, ϕg1g2(v))−1.

Considering the restriction of this cocycle to the maximal torus T (R) ⊂ G(R) and

letting z be an element of order n in T (R) ∼= C×, we construct the number

N =
n∏
i=1

Ω(z, zi). (1.3)

Then N ∈ Z/nZ has order n and depends only on the cohomology class of Ω. To see
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why N has order n, for z ∈ T (R) of order n we take z =


λ 0 0

0 λ̄/λ 0

0 0 λ̄−1

 ∈ T (R)

and choose ϕz(v) = λ̄−
1
n = λ

1
n . Then noting that (z, ϕzi)

−1 = (z−1, ϕz−i), we have

N =
n∏
i=1

(z, ϕz)(z
i, ϕzi)(z

i+1, ϕzi+1)−1

=
[
(z, z

1
n )(z, z

1
n )(z−2, z

−2
n )
]
· · ·
[
(z, z

1
n )(zn−1, z

n−1
n )
] [

(z, z
1
n )(z−1, z

−1
n )
]

= (1, 1) · · · (1, z)(1, 1)

= (1, z).

Since z has order n, N must also have order n. In order to show that G̃(R) is the

connected n-fold cover of G(R), we will show that for a disconnected n-fold cover

of G(R), the value of N as constructed in equation 1.3 must have order dividing d

where d|n and d < n. So take an n-fold cover Ĝ(R) of G(R) which is not connected.

Suppose Ĥ denotes the connected component of Ĝ(R). Then Ĥ is a d-fold cover for

some d|n, d 6= n. We can then choose a section s : C× −→ Ĝ(R) such that the image

of s lies in Ĥ. Construct the 2-cocycle corresponding to s. This 2-cocycle must have

image lying in Z/dZ and so must have order dividing d. In particular, the number

N as defined in equation 1.3 must have order dividing d for this 2-cocycle. Thus for

the cocycle corresponding to the n-fold cover we constructed above, we must have

d = n and so must be connected.
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Now, suppose that Γ lifts to G̃(R). This means that for each γ ∈ Γ, we have

an element (γ, ϕγ) ∈ G̃(R), such that the map γ 7→ (γ, ϕγ) is a group homomor-

phism. This means we must have (γ1, ϕγ1(v))(γ2, ϕγ2(v)) = (γ1γ2, ϕγ1γ2(v)), but also

(γ1, ϕγ1(v))(γ2, ϕγ2(v)) = (γ1γ2, (ϕγ1(γ2v))ϕγ2(v)), so that

(γ1γ2, (ϕγ1(γ2v))ϕγ2(v)) = (γ1γ2, ϕγ1γ2(v)),

which tells us that j : Γ × H −→ C× defined by j(γ, v) = ϕγ(v) is a multiplier

system on Γ. Furthermore, this is a weight 1/n multiplier system on Γ since clearly

j(γ, v)n = Cv +D.

We have shown how a lift of Γ to a connected n-fold cover of G(R) defines a

weight 1/n multiplier system on Γ. The same argument follows in reverse to show

that a weight 1/n multiplier system on Γ can be used to construct a lift of Γ to a

connected n-fold cover of G(R). During the course of this thesis, we will develop

and demonstrate the ideas used in this section on the construction of a lift of some

congruence subgroup to a connected n-fold cover of G(R), as a new method to show

that the congruence kernel is infinite. In the next chapter we will show how this idea

generalises, allowing us to search for certain n-fold lifts of a congruence subgroup Γ
′

to an arithmetic group Γ, rather than lifts of Γ
′

to G̃(R). The advantage of looking

for lifts of Γ
′

to Γ has an advantage from a computational perspective, in that the

calculations needed to be done to put into practice this method can be done directly
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through the fundamental domain of Γ. A description of how this may be done can

be found in the concluding section of this thesis, when I discuss the application of

our main theorem.

1.5.3 A Motivational Example

Take G = SU(2, 1) as above. Let σ̃ ∈ H2(G(R),Z) correspond to the universal

extension of G(R). Let σ̃(n) denote the image of σ̃ in H2(G(R),Z/nZ) and fix an

arithmetic subgroup Γ = SU(2, 1)(Z). In [34] it is calculated that H2(Γ,Z) ∼= Z

for SU(2, 1) defined using the field extension Q(
√
−1)/Q and where Γ is the level 1

arithmetic subgroup. Suppose σ̃
∣∣
Γ
∈ H2(Γ,Z) generates H2(Γ,Z). Now, we have a

short exact sequence

0 −→ Z ×n−→ Z f−→ Z/nZ −→ 0,

giving (see [5]) a long exact sequence

· · · −→ H2(Γ,Z)
×n−→ H2(Γ,Z)

f∗−→ H2(Γ,Z/nZ) −→ H3(Γ,Z)
×n−→ · · · .

Then

σ̃(n)
∣∣
Γ

= 0⇐⇒ σ̃
∣∣
Γ
∈ ker(f∗)⇐⇒ σ̃

∣∣
Γ

= nτ for some τ ∈ H2(Γ,Z).
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Thus the question of the existence of a congruence subgroup Γ′ ⊂ Γ lifting to a

connected n-fold cover for n ≥ 3 becomes: Given σ̃ ∈ H2(G(R),Z) corresponding

to the universal extension of G(R) such that σ := σ̃
∣∣
Γ

is a generator for H2(Γ,Z), is

there a congruence subgroup Γ′ such that σ
∣∣
Γ′

becomes a multiple of n for n ≥ 3?



Chapter 2

Generalising Deligne’s Theorem

In the previous chapter we introduced the congruence subgroup problem and

outlined a method of approaching it. In this chapter we will develop further these

ideas. First we must introduce some specific homological algebra that we will need.

We then move onto the central object of study; H2
cts(Kf ,Z/qZ) and how we will

calculate it. We will see that this calculation breaks into three cases, depending on

whether a given prime p we are considering is split, inert or ramified in k. When p is a

rational prime that splits in the imaginary quadratic extension k, G(Zp) = SL3(Zp).

We will then demonstrate the theory we have developed by finding H1
cts(SL3(Zp),Fq)

and H2
cts(SL3(Zp),Fq) for all split rational primes p and all but finitely many primes

q. The corresponding calculations for p inert and ramified are considered in the last

two chapters.

43
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2.1 Some Homological Algebra

This section is devoted to developing the specific aspects of homological algebra

that will play a role in what we do later. As usual, we will denote the n-dimensional

cohomology group of a group G with coefficients in a G-module A by Hn(G,A).

The n-th continuous cochain cohomology group of G with coefficients in A will be

denoted Hn
cts(G,A). We start by introducing the general theory we will need, then

taking a compact open subgroup Kf ⊂ SU(2, 1)(Af
Q) as we did above and setting

Γ = Γ(Kf ), we will develop some of the more specific theory we will use.

2.1.1 Technical Results

To begin, we recall two well-known results from the theory of cohomology of

groups, the first of which can be found in Section 2 of [29].

Proposition 2.1.1. Let Gi be a projective system of profinite groups and let Ai

denote an inductive system of discrete Gi-modules. Then

Hn
cts(lim←−Gi, lim−→Ai) = lim−→Hn(Gi, Ai) for all n ≥ 0.

We will make frequent use of spectral sequences later on during calculations

and a particularly useful tool will be the Hochschild-Serre Spectral Sequence; this

and detailed introductory accounts of the theory of spectral sequences can be found
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in [22] and [31].

Theorem 2.1.2. (Hochschild-Serre Spectral Sequence) Let G denote a profinite

group, H a closed normal subgroup and let A be a discrete G-module. There exists

a spectral sequence

Ers
2 = Hr

cts(G/H,H
s
cts(H,A)) =⇒ Hr+s

cts (G,A).

We also need to introduce some more technical theory in order to deal with the

groups we will be looking at. Almost all of this can be found in Section 1 and

the first part of Section 2 of Casselman and Wigner, [7]. We take G to be a locally

compact, totally disconnected group and A will be a continuous G-module, meaning

that the action G×A→ A is continuous. For two G-modules U and V , we denote

the set of continuous homomorphisms from U to V by Homcts(U, V ). We take the

following definitions from [7].

Definition 2.1.3. Let A, B, U and V be G-modules. Then

(i) a strong G-injection of A into B is a G-morphism which has a continuous left

inverse, and

(ii) A is continuously injective if given a strong G-injection f : U → V and a

G-morphism α : U → A, there exists a G-extension of α to V .

Let Cn(G,A) denote the collection of continuous n-cochains on G with values in

A, and similarly Zn(G,A) the set of n-cocycles andBn(G,A) the set of n-boundaries.
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Following Section 1 of [7], we give each Cn(G,A) the compact open topology. From

the topology on the cochain spaces, we obtain a topology on the cohomology groups

Hn
cts(G,A). We will say that Hn

cts(G,A) is strongly Hausdorff if the injection of

Bn(G,A) ∼= Cn−1(G,A)/Zn−1(G,A) into Zn(G,A) is a strong injection.

Let H be a closed subgroup of G and let A be a H-module. As usual, we define

indGH(A) to be the set of continuous maps f : G→ A such that f(gh) = h−1f(g) for

all h ∈ H, g ∈ G. By Section 1 of [7], if A is continuously injective as a H-module,

then indGH(A) is continuously injective as a G-module. We will also be interested

in the instance when H is the trivial group, and we denote this specific case by

C(G,A). Since every A is continuously injective with respect to the trivial group,

C(G,A) is continuously injective as a G-module. More generally, one can use this to

see that the collection of n-cochains are continuously injective G-modules for each

n. We will need the following facts.

Theorem 2.1.4. Suppose G is a locally compact and totally disconnected topological

group, let H be a closed subgroup of G and p ∈ Z a prime. Then

(i) C(G,Z/pZ) is continuously injective as a H-module, thus

Hn(H,C(G,Z/pZ)) = 0,

for all n > 0.

(ii) Suppose H is also normal in G and A is as above. If the cohomology groups
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Hn(H,A) are strongly Hausdorff then there exists a spectral sequence

Hr
cts(G/H,H

s
cts(H,A)) =⇒ Hr+s

cts (G,A).

The first part of this theorem is given by Proposition 4 of [7], and the second is

Proposition 5 of [7].

Up until now in this chapter, the meaning of the notation G has varied depending

upon the context. From now on, we will be applying these results to G = SU(2, 1).

Before proving the two key Propositions of this section, we first need a couple of

additional Lemmas.

Lemma 2.1.5. Let Kf ⊂ G(Af ) be a compact open subgroup, p ∈ Z prime and set

Γ = Γ(Kf ). If C(Kf ,Z/pZ) denotes the set of continuous functions from Kf to

Z/pZ, then the cohomology groups

Hn
cts(Kf , C(Kf ,Z/pZ)) and

Hn
cts(Γ, C(Kf ,Z/pZ)),

are strongly Hausdorff.

Proof. We begin by noting that C(Kf ,Z/pZ) is given the compact open topology.

SinceKf is compact and Z/pZ is discrete, it follows that C(Kf ,Z/pZ) is discrete. By

the same argument, Cn(Kf , C(Kf ,Z/pZ)) is discrete, hence Zn(Kf , C(Kf ,Z/pZ))
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is also discrete and it immediately follows that Hn
cts(Kf , C(Kf ,Z/pZ)) is strongly

Hausdorff.

We now consider Hn
cts(Γ, C(Kf ,Z/pZ)). We note that Γ is virtually torsion-free,

in the sense that Γ contains a torsion-free subgroup of finite index (see for instance

Chapter VIII, Section 11 of [5]). Furthermore, the virtual cohomological dimension

of Γ is finite, thus there exists some finite dimensional, contractible simplicial cell

complex X̃ with a simplicial Γ-action. We let X denote the quotient simplicial

complex X = Γ \ X̃ and denote by X(n) and X̃(n) the set of n-simplices of X and

X̃ respectively. We construct a group

An =
{
f : X̃(n) −→ C(Kf ,Z/pZ)

}
.

We regard An as a Γ-module with Γ-action given by γ ◦ f(∆) = γf(γ−1∆), where

γ ∈ Γ, f ∈ An and ∆ ∈ X(n). We give An the compact open topology and

recall (see for instance Chapter VII, Section 7 of [5]) that we have a decompo-

sition An ∼=
⊕

σ indΓ
Γσ C(Kf ,Z/pZ), where σ ∈ Γ \ X̃(n) runs through a set of

representatives and Γσ is the stabiliser subgroup of σ. Each indΓ
Γσ C(Kf ,Z/pZ) has

the compact open topology. Now, C(Kf ,Z/pZ) is continuously injective as a Γσ-

module, so indΓ
Γσ C(Kf ,Z/pZ) is continuously injective as a Γ-module and so each

An is continuously injective as a Γ-module. We thus obtain an exact sequence of
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Γ-modules

0 −→ C(Kf ,Z/pZ) −→ A0 −→ A1 −→ · · · ,

which is an injective resolution of C(Kf ,Z/pZ). It is sufficient to show that (An)Γ

is discrete for each n. This is true since each indΓ
Γσ(C(Kf ,Z/pZ))

Γ
is discrete.

Now, recall the following definitions from Chapter VIII, Section 4 of [5]. A

resolution or partial resolution (Pi) of an R-module A is said to be of finite type if

each Pi is finitely generated. We say that A is of type FPn for an integer n ≥ 0 if

there exists a partial projective resolution Pn → · · · → P0 → A→ 0 of finite type.

Definition 2.1.6. An R-module A is of type FP∞ if it satisfies one of the following

equivalent conditions;

(i) A has a free resolution of finite type,

(ii) A has a projective resolution of finite type,

(iii) A is of type FPn for all integers n ≥ 0.

Applying the above definitions to the specific case R = ZΓ and A = Z, we say

that Γ is of type FPn for 0 ≤ n ≤ ∞ if Z is of type FPn as a ZΓ-module.

Lemma 2.1.7. Let Ai denote an inductive system of ZΓ-modules. Then

lim−→Hn(Γ, Ai) ∼= Hn(Γ, lim−→Ai),
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that is, Hn(Γ,−) commutes with direct limits.

Proof. By Proposition 4.6, Chapter VIII of [5], we are required to show that Γ is

of type FP∞. Since any arithmetic group contains a torsion-free subgroup of finite

index, we may choose Γ′ ⊂ Γ to be such a subgroup. It follows from the work in

Chapter VIII, Sections 9 and 11 of [5], that Γ′ is of type FP∞. However, Proposition

5.1 in Chapter VIII of [5] states that if Γ′ ⊂ Γ has finite index, then Γ is of type

FPn for some 0 ≤ n ≤ ∞ if and only if Γ′ is of type FPn. It follows from these

results that Γ is of type FP∞, as required.

We are now in a position to state and prove the following two Propositions.

Before we do, recall that we are denoting the set of continuous functions from Kf

to Z/pZ by C(Kf ,Z/pZ), and we will often abbreviate this to just C(Kf ) when no

confusion can arise.

Proposition 2.1.8. Let Kf ⊂ G(Af ) be a compact open subgroup, p ∈ Z prime and

set Γ = Γ(Kf ). Let

H
s

= lim−→Hs(Γ
′
,Z/pZ),

where the inductive limit is taken over congruence subgroups Γ
′ ⊂ Γ. We can then

construct a spectral sequence

Hr
cts

(
Kf , H

s)
=⇒ Hr+s (Γ,Z/pZ) .
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Proof. By Shapiro’s Lemma, we have

Hs(Γ
′
,Z/pZ) = Hs(Γ, indΓ

Γ
′ (Z/pZ))

= Hs
(

Γ,
{

functions f : Γ/Γ
′ → Z/pZ

})
.

Thus by Lemma 2.1.7 and the strong approximation theorem,

H
s

= lim−→Hs(Γ
′
,Z/pZ)

= Hs(Γ, C(Kf ,Z/pZ)).

Now, C(Kf ) is a Γ×Kf -module, where Γ acts by left translation and Kf by right

translation. By Lemma 2.1.5, the cohomology groups Hs
cts(Kf , C(Kf ,Z/pZ)) and

Hs
cts(Γ, C(Kf ,Z/pZ)) are strongly Hausdorff and so applying Theorem 2.1.4, we

have two spectral sequences converging to the same object;

Hr(Γ, Hs
cts(Kf , C(Kf ))) =⇒ Hr+s(Γ×Kf , C(Kf )) (2.1)

Hr
cts(Kf , H

s
) =⇒ Hr+s(Γ×Kf , C(Kf )). (2.2)
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Note that

Hs
cts(Kf , C(Kf )) = Hs

cts(Kf , ind
Kf
1 (Z/pZ))

= Hs(1,Z/pZ) (Shapiro’s Lemma, [7])

=


Z/pZ s = 0

0 s > 0,

hence from equation (2.1), Hr(Γ,Z/pZ) ∼= Hr(Γ×Kf , C(Kf )). Equation (2.2) then

gives us the desired result,

Hr
cts(Kf , H

s
) =⇒ Hr+s(Γ,Z/pZ).

Proposition 2.1.9. Letting Cong(G) denote the congruence kernel of G and with

the notation of Proposition 2.1.8, we have

H
1 ∼= Homcts(Cong(G),Z/pZ).

Proof. Recall that Cong(G) fits into the short exact sequence

1 −→ Cong(G) −→ Kf −→ Kf −→ 1,
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where Kf = lim←−Γ/Γ
′

with the projective limit taken over all normal subgroups of Γ

of finite index. We consider C
(
Kf ,Z/pZ

)
as a Γ× Cong(G)-module, where Γ acts

by left translation and Cong(G) acts by right translation. Again by Theorem 2.1.4,

we have two spectral sequences converging to the same object,

Hr
cts

(
Cong(G), Hs

(
Γ, C

(
Kf

)))
=⇒ Hr+s

cts

(
Γ× Cong(G), C

(
Kf

))
(2.3)

Hr
(
Γ, Hs

cts

(
Cong(G), C

(
Kf

)))
=⇒ Hr+s

cts

(
Γ× Cong(G), C

(
Kf

))
. (2.4)

Looking at equation (2.4) and using Theorem (2.1.4), we see that

Hs
cts

(
Cong(G), C

(
Kf ,Z/pZ

))
=


C(Kf ,Z/pZ) s = 0

0 s > 0.

So the spectral sequence (2.4) degenerates and we have Hr (Γ, C(Kf ,Z/pZ)) =

Hr
cts

(
Γ× Cong(G), C

(
Kf ,Z/pZ

))
. Using this and spectral sequence (2.3), we have

an exact sequence of low degree terms

1 −→ H1
cts

(
Cong(G), H0

(
Γ, C

(
Kf

)))
−→ H1(Γ, C(Kf )) −→

−→ H0
(
Cong(G), H1

(
Γ, C

(
Kf

)))
.
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First, H0
(
Γ, C

(
Kf

))
= Z/pZ since Γ is dense in Kf , and secondly

H1
(
Γ, C

(
Kf ,Z/pZ

))
= lim−→H1(Γ

′
,Z/pZ),

where the direct limit is taken over all normal subgroups Γ′ ⊂ Γ of finite index. Now,

suppose f ∈ H1(Γ′,Z/pZ) is non-trivial. Let Γ
′′

= ker(f), so that f
∣∣
Γ′′

= 0. Then

we see that the image of f in the direct limit lim−→H1(Γ
′
,Z/pZ) is in fact zero, hence

lim−→H1(Γ
′
,Z/pZ) = 0. It immediately follows that H1(Cong(G),Z/pZ) ∼= H1.

This proposition is key to our generalisation of Deligne’s Theorem, since it says

that if Cong(G) = 1 then H
1

= 0. Writing out the individual terms of the spectral

sequence in Proposition 2.1.8 with the assumption that Cong(G) = 1, we arrive at

the following E3-sheet.

(
H

2
)Kf

0 0 0 0

Z/pZ H1(Kf ,Z/pZ) H2(Kf ,Z/pZ) H3(Kf ,Z/pZ)
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This gives us the following 3-term exact sequence,

0 // H2
cts(Kf ,Z/pZ)

res // H2(Γ,Z/pZ)
Φ //

(
H

2
)Kf

.

(
lim−→H2(Γ

′
,Z/pZ)

)Kf
In particular,

ker(Φ) = ker
(
H2(Γ,Z/pZ) −→ H

2
)

=
{
σ ∈ H2(Γ,Z/pZ) : ∃ Γ

′ ⊂ Γ with σ
∣∣
Γ′

= 0
}
,

where Γ
′

is a congruence subgroup. We arrive at the following theorem.

Theorem 2.1.10. If Cong(G) = 1, then ker(Φ) = H2
cts(Kf ,Z/pZ).

We can calculate H2(Kf ,Z/pZ) in many cases and often it will be 0. When

it is true that H2(Kf ,Z/pZ) = 0, our assumption that the congruence kernel is

trivial means that H2(Γ,Z/pZ) must inject into H2(Γ
′
,Z/pZ) for all congruence

subgroups Γ
′ ⊂ Γ by our work above. However, if H2(Kf ,Z/pZ) = 0 but we can

find a congruence subgroup Γ
′

and a non-trivial cocycle σ ∈ H2(Γ,Z/pZ) such that

σ
∣∣
Γ′

= 0, we will have demonstrated that the congruence kernel is infinite.
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2.1.2 A Result Involving H2(V,Fp)

The aim of this section is to prove a useful result needed later on. During this

section we let p ∈ Z be prime, Fp the field of p elements and G̃ be a group such

that V E G̃ is an n-dimensional Fp-vector space. We thus have a conjugation action

of G := G̃/V on V and we suppose throughout this section that Fp is a trivial G̃-

module. Denoting the dual space Hom(V,Fp) of V by V ∗, we aim to prove that as a

G-module, H2(V,Fp) fits into a short exact sequence of G-modules in the following

way;

0 −→ V ∗ −→ H2(V,Fp) −→
∧2

V ∗ −→ 0.

As usual,
∧2V ∗ denotes the second exterior power of V ∗. We begin by recalling the

following short exact sequence given by the Universal Coefficient Theorem,

0 −→ Ext1
Z(H1(V,Z),Fp) −→ H2(V,Fp) −→ Hom(H2(V,Z),Fp) −→ 0. (2.5)

Recall that H2(V,Z) is the Schur multiplier of V which by [18], can also be realised

in the following way,

H2(V,Z) ∼= ker
(
V ∧ V δ−→ [V, V ]

)
δ(v ∧ w) 7−→ [v, w] ,
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where [v, w] denotes the commutator of v, w ∈ V . Since V is an abelian group,

this says that H2(V,Z) ∼= V ∧ V and furthermore, H1(V,Z) ∼= V so equation (2.5)

becomes

0 −→ Ext1
Z(V,Fp) −→ H2(V,Fp) −→ Hom(V ∧ V,Fp) −→ 0.

We now construct an explicit G-module homomorphism between H2(V,Fp) and

Hom(V ∧ V,Fp). Following Definition 1.1 of [14], if we take σ ∈ Z2(V,Fp) and

v, w ∈ V , we can construct a map [−,−]σ : V × V −→ Fp given by [v, w]σ :=

σ(v, w)− σ(w, v). Note that this map differs from taking commutators of elements

of V used above and its difference will be signified in the notation by the explicit use

of the 2-cocycle in the subscript. By Theorem 1.2 of [14], this map has properties

which we summarise in the following Lemma.

Lemma 2.1.11. (i) The map [−,−]σ depends only on the cohomology class [σ]

of σ, and

(ii) [−,−]σ is bilinear and skew-symmetric.

As a result, we have a well-defined homomorphism

C : H2(V,Fp) −→
(∧2

V
)∗

[σ] 7−→ [−,−]σ where

[v, w]σ := σ(v, w)− σ(w, v),
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for σ ∈ H2(V,Fp) and v, w ∈ V . Furthermore, this homomorphism is easily seen to

be G-equivariant, since for σ ∈ H2(V,Fp), v, w ∈ V and g ∈ G we have

[v, w]g◦σ = (g ◦ σ)(v, w)− (g ◦ σ)(w, v) = σ(gv, gw)− σ(gw, gv) = [gv, gw]σ ,

which shows that C(g ◦ σ) = g ◦ C(σ). Since
(∧2V

)∗ ∼= ∧2V ∗ as G-modules, we

have defined a map from H2(V,Fp) to
∧2V ∗. The kernel of the map C consists of all

cocycles σ ∈ H2(V,Fp) such that σ(v, w) = σ(w, v) for all v, w ∈ V . We call these

symmetric cocycles and we denote the collection of all such cocycles by H2
sym(V,Fp).

The group of symmetric 2-cocycles is precisely Ext1
Z(V,Fp), thus we have a short

exact sequence of G-modules

0 −→ Ext1
Z(V,Fp) −→ H2(V,Fp) −→

∧2
V ∗ −→ 0. (2.6)

It remains to show that V ∗ ∼= Ext1
Z(V,Fp) as G-modules. We can suppose that

without loss of generality, the group G acting on V is GLn(Z). Consider the short

exact sequence given by

0 −→ Zn ×p−→ Zn −→ V −→ 0,
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which gives is an exact sequence of G-modules

0 −→ Hom(V,Fp) −→ Hom(Zn,Fp)
×p−→ Hom(Zn,Fp) −→

−→ Ext1
Z(V,Fp) −→ Ext1

Z(Zn,Fp) −→ · · · .

Since Ext1
Z(Zn,Fp) = 0 and the multiplication by p map is just the 0 map in this

instance, we have the following isomorphisms of G-modules:

Hom(V,Fp) ∼= Hom(Zn,Fp) and

Hom(Zn,Fp) ∼= Ext1
Z(V,Fp).

Thus V ∗ = Hom(V,Fp) ∼= Ext1
Z(V,Fp) as G-modules and we have the short exact

sequence of G-modules

0 −→ V ∗ −→ H2(V,Fp) −→
∧2

V ∗ −→ 0,

as required. We have thus proved the following Lemma.

Lemma 2.1.12. Let G̃ be a group and V be an n-dimensional vector space over a

finite field Fp such that V E G̃. We have an action of G := G̃/V on V , making

H2(V,Fp) a G-module which fits into a short exact sequence of G-modules

0 −→ V ∗ −→ H2(V,Fp) −→
∧2

V ∗ −→ 0,
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where
∧2 V ∗ is the second exterior power of V ∗.

2.2 Calculating H2(Kf ,Z/qZ)

Fix a prime q ∈ Z. In light of Theorem 2.1.10, our aim from here is to calculate

H2(Kf ,Z/qZ) for G = SU(2, 1) defined over an imaginary quadratic extension k of

Q and Kf =
∏

pKp. Here, p ∈ Z is a rational prime and Kp = G(Zp) is a compact

open subgroup of G(Qp). We first observe that

Hr(Kf ,Z/qZ) = Hr

(
lim←−
N

∏
p<N

Kp,Z/qZ

)

= lim−→
N

Hr

(∏
p<N

Kp,Z/qZ

)
(Proposition 2.1.1).

We can decompose the right hand side using the Künneth formula. The Künneth

formula has a particularly simple description when q is prime, and as usual we will

be writing Fq for the finite field with q elements. We have

Hr

(∏
p<N

Kp,Fq

)
=

⊕
i2+i3+i5+···=r

(⊗
p<N

H ip (Kp,Fq)

)
.

In particular, for r = 2 we have

H2

(∏
p<N

Kp,Fq

)
=
⊕
p<N

H2(Kp,Fq)⊕
⊕

p1<p2<N

H1(Kp1 ,Fq)⊗H1(Kp2 ,Fq).
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The problem is now to calculate Hr(Kp,Fq) for r = 1, 2 and for each prime p ∈ Z.

If p splits in the field extension k then G(Zp) = SL3(Zp). If p is inert then we have

G(Zp) = SU(2, 1)(Zp), so we consider the three cases separately; when p is split,

inert and ramified. Certain notation and facts will be common to all three cases

however, so we develop them here to avoid repetition.

For a fixed prime p ∈ Z, let p denote the maximal ideal of Zp ⊗Z Ok when p is

not split. In the notation that follows, if p is split then we are taking p = p. With

this in mind, we define

G(Zp, p
n) = {g ∈ G(Zp) : g ≡ Id mod pn} .

It is well known (see [24], Section 3.3) that these congruence subgroups form a

basis of open neighbourhoods of the identity of G(Qp) and furthermore, G(Zp) =

lim←−G(Zp)/G(Zp, p
n). These groups give us the following filtration on G(Zp),

G(Zp) ⊃ G(Zp, p) ⊃ · · · ⊃ G(Zp, p
n) ⊃ · · · . (2.7)

Since we will make frequent use of this filtration, we will often abbreviate the

notation by writing G(Zp, p
n) = G(n). We note that for all n ≥ 1, G(Zp, p),

G(Zp, p)/G(Zp, p
n) and G(Zp, p

n)/G(Zp, p
n+1) are all pro-p groups (Lemma 3.8 of

[24]). Quotients in this filtration act upon other quotients in the filtration; the ac-

tion of G(0) on G(n)/G(n + 1) is by conjugation for all n ≥ 1 and the action of
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G(k) on G(n)/G(n + 1) is trivial for all n, k ≥ 1. Thus we also have a conjugation

action of G(0)/G(1) upon G(n)/G(n+ 1) for each n ≥ 1. Here when p is inert, for a

commutative ring A we are using

SU(2, 1)(A) =
{
g ∈ SL3(A⊗Z Ok) : gtJg = J

}
.

In particular, G(0)/G(1) ∼= SU(2, 1)(Fp) = {g ∈ SL3(Fp2) : gtJg = J} when p is

inert. Since treating the split case turns out to be more straightforward than the

ramified and inert cases, we will begin our calculations with p split in k.

2.3 p Split in k

Our aim in this section is to calculate Hr(SL3(Zp),Fq) for rational primes p, q

and r = 1, 2. Throughout this section we will be assuming that p splits in the field

k upstairs.

2.3.1 H1(SL3(Zp),Fq)

We will make use of the notion of a perfect group during a number of calculations.

Recall that a group G is perfect if it equals its own commutator subgroup; that is,

G is generated by commutators. We begin with the following Proposition, which

completes the calculation of H1(SL3(Zp),Fq) for all pairs of primes p, q.
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Proposition 2.3.1. The matrix group SL3(Zp) is perfect for all primes p.

Proof. Let En(Zp) denote the subgroup of GLn(Zp) generated by all elementary

matrices eij(z) for 1 ≤ i, j ≤ n and z ∈ Zp. Recall that eij(z) has 1’s on the

diagonal and z in the (i, j) position. Then SL3(Zp) = E3(Zp) by Proposition 5.4 (ii)

of [17], and E3(Zp) is perfect by [32], completing the proof.

Corollary 2.3.2. H1(SL3(Zp),Fq) = 0 for all primes p and q.

Proof. Since Fq is a trivial SL3(Zp)-module, H1(SL3(Zp),Fq) = Hom(SL3(Zp),Fq).

However, SL3(Zp) is perfect by Proposition 2.3.1 and thus is generated by commu-

tators. Subsequently, any homomorphism from SL3(Zp) to the finite field Fq must

be trivial, completing the proof.

2.3.2 H2(SL3(Zp),Fq), p 6= q

After finding H1(SL3(Zp),Fq) for all pairs of primes p and q, it remains to find

H2(SL3(Zp),Fq); this divides into two cases, p 6= q and p = q. In this section we will

treat the case p 6= q. By the Hochschild-Serre spectral sequence (Theorem 2.1.2) we

have

Hr(G(Zp)/G(Zp, p), H
s(G(Zp, p),Fq)) =⇒ Hr+s (G(Zp),Fq) . (2.8)

Since G(Zp, p) is a pro-p group, H0(G(Zp, p),Fq) = Fq and Hs(G(Zp, p),Fq) = 0 for

all s > 0. However, G(Zp)/G(Zp, p) ∼= G(Fp) and so from the spectral sequence 2.8
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above,

Hr(G(Zp),Fq) ∼= Hr(G(Fp),Fq).

Our aim is to calculate the right hand side of this isomorphism, which can be done

using K-theory for all but a finite number of p and q. Following Milnor, Introduction

to Algebraic K-Theory [19], let R denote a ring with λ, µ ∈ R. For an integer n ≥ 3

and distinct integers i, j with 1 ≤ i, j ≤ n, the Steinberg group Stn(R) is the group

defined by generators xij(λ) subject to the relations

xij(λ)xij(µ) = xij(λ+ µ),

[xij(λ), xjl(µ)] = xil(λµ) for i 6= l and

[xij(λ), xkl(µ)] = 1 for j 6= k and i 6= l.

There is a canonical homomorphism φ : Stn(R) −→ GLn(R) given by φ(xij(λ)) =

eij(λ), where eij(λ) is the elementary matrix with 1’s on the diagonal and λ in the

(i, j) position. Taking the direct limit of these groups over n, we obtain groups

denoted by St(R) and GL(R) respectively, along with a canonical homomorphism

St(R)→ GL(R). The kernel of this homomorphism is denoted K2(R). In particular,

let F denote any field and Cn the kernel of the map Stn(F) → SLn(F), then by

Corollary 11.2 of [19], for all n ≥ 3 the groups Cn are canonically isomorphic to

each other and to their direct limit K2(F). Furthermore, provided we exclude the
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exceptional cases SL3(F2), SL3(F4) and SL4(F2), we have isomorphisms

H2(SL3(F),Fq) ∼= Hom(H2(SL3(F)),Fq) ∼= Hom(K2(F),Fq).

However, (see Chapter 4, Section 3, Page 213 of [27]) K2(Fp) = 1 for every finite

field. We conclude that H2(SL3(Fp),Fq) = 0 for p > 2 and all q.

The case H2(SL3(F2),Fq) with q > 2 can be dealt with separately. To do this,

recall that the order of SL3(Fp) is p3(p2 − 1)(p3 − 1), thus |SL3(F2)| = 23 × 3 × 7.

It is well-known that Hn(G,M) = 0 for all n > 0 when G is any finite group whose

order is invertible in some G-module M (see [5]). This leaves us to consider the

cases q = 3, 7 which can be done by looking at the q-Sylow subgroups of SL3(F2).

In order to do this we will first indroduce some theory, all of which can be found

in either Chapter III of [5] or Chapter XII of [6]. Let G denote a finite group, H a

subgroup and M a G-module. We have a homomorphism given by

res GH : H∗(G,M) −→ H∗(H,M),

called restriction. Taking g ∈ G, we also have isomorphisms

cg : H∗(H,M) −→ H∗(gHg−1,M).

The constructions of these maps can be found in both [5] and [6]. We say that an
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element z ∈ H∗(H,M) is G-invariant if for all g ∈ G, we have

resHH∩gHg−1z = res gHg
−1

H∩gHg−1cgz.

Now suppose Gq is a q-Sylow subgroup of G, and M is as above. By Theorem 10.1

of [6], we have a monomorphism

Hn(G,M) ↪→ Hn(Gq,M),

whose image is the set of G-invariant elements of Hn(Gq,M). A specific instance of

this is when for all g ∈ G, either gGqg
−1 = Gq or Gq ∩ gGqg

−1 = 1, in which case

Hn(G,M) = Hn(Gq,M)NG(Gq)/Gq .

We will often find that our q-Sylow subgroups are either cyclic groups or products of

cyclic groups. In order to prove the statements below, we will need a fact concerning

the cohomology of cyclic groups that will also be useful to us later on. Firstly, recall

that the cohomology ring H•(Cp,Fp) of the cyclic group Cp acting trivially on the

coefficient module Fp is given by

H•(Cp,Fp) ∼= Fp [X, Y ] /
〈
X2 = 0

〉
, (2.9)
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where X is in degree 1 and Y is in degree 2 (see Section 6.7 of [31]). In particular,

Hn(Cp,Fp) ∼= Fp for all n. The Sylow subgroups of the groups we will be considering

will often be cyclic and when this does happen, we will often have a conjugation

action of an element g ∈ G on this cyclic subgroup. We will be interested in how

this action translates into an action on Hn(Cp,Fp).

Lemma 2.3.3. Let Z/pZ act trivially on Fp, and suppose G is a group with a

conjugation action on Z/pZ which can be written as ga = x × a for some x ∈ F×p ,

any a ∈ Z/pZ and g ∈ G. If G also acts trivially on Fp, then g ∈ G acts on

ϕ ∈ H1(Z/pZ,Fp) by g ◦ϕ = x−1×ϕ and on σ ∈ H2(Z/pZ,Fp) by g ◦ σ = x−1× σ.

Proof. Take any ϕ ∈ H1(Z/pZ,Fp) ∼= Hom(Z/pZ,Fp). Then for any g ∈ G and

a ∈ Z/pZ,

g ◦ ϕ(a) = ϕ(g−1 ◦ a)

= ϕ(x−1a)

= x−1ϕ(a) (since ϕ is Fp-linear),

so G acts by multiplication by x−1 on H1(Z/pZ,Fp).

To find its action on H2(Z/pZ,Fp), we first construct an explicit cocycle σ ∈

H2(Z/pZ,Fp) by considering the short exact sequence

1 −→ Fp
i−→ Z/p2Z −→ Z/pZ −→ 1,
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where the map i is multiplication by p. Explicit computation shows that the cocycle

corresponding to this extension is

σ(a, b) =


1 a+ b ≥ p

0 otherwise

a, b ∈ {0, 1, · · · , p− 1} .

This gives an isomorphism

H2(Z/pZ,Fp) −→ Fp

τ 7−→ τ(1, 0) + τ(1, 1) + · · ·+ τ(1, p− 1),

noting that σ 7→ 1. Then g ◦ σ(a, b) = σ(g−1 ◦ a, g−1 ◦ b) = σ(x−1a, x−1b), so that

g ◦ σ 7−→ σ(x−1, 0) + σ(x−1, x−1) + · · ·+ σ(x−1, x−1(p− 1))

= σ(x−1, 0) + σ(x−1, 1) + · · ·+ σ(x−1, p− 1)

=
∑
i∈Z/pZ
i+x−1≥p

1

= x−1.

Thus g ∈ G also acts on H2(Z/pZ,Fp) by multiplication by x−1, completing the

proof.

We can now prove the following Proposition.
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Proposition 2.3.4. H2(SL3(F2),F3) = 0.

Proof. Clearly the 3-Sylow subgroup is the cyclic group C3 and since the action

of SL3(F2) on F3 is trivial, so is the action of C3. By equation (2.9), we have an

injection

Hn(SL3(F2),F3) ↪→ F3 for all n > 0.

Consider the following two elements in SL3(F2):

α =


0 1 0

1 1 0

0 0 1

 and

β =


1 1 0

0 1 0

0 0 1

 .

Note that α has order 3 and so can be taken as a generator of the 3-Sylow subgroup

of SL3(F2). On the other hand, β has order 2 and its conjugation action on α sends

α to α−1. Thus β acts upon the generator X of degree 1 in the cohomology ring

H•(C3,F3) by X 7→ −X (in the additive notation of H1(C3,F3)). Hence by Lemma

2.3.3, β also acts on Y in degree 2 by Y 7→ −Y . Since this means that Y 7→ −Y

under the action of β ∈ SL3(F2), it follows that there are no SL3(F2)-invariant
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elements in H2(C3,F3).

We can consider the case q = 7 in a similar way.

Proposition 2.3.5. H2(SL3(F2),F7) = 0.

Proof. The 7-Sylow subgroup is again the cyclic group C7. There is a simple way

of finding a generator of C7 in SL3(F2); we can take a generator of F×8 and consider

its multiplication action on a basis for F8 over F2. Doing this, we obtain α =
0 0 1

1 0 1

0 1 0

 ∈ SL3(F2) of order 7. Furthermore, we have at least an action of an

element of order 3 on this C7 given by the Frobenius endomorphism. Again this

gives us β =


1 0 0

0 0 1

0 1 1

 ∈ SL3(F2) of order 3. Its conjugation action sends α to

α2 and so recalling the structure of the cohomology ring H•(C7,F7), β acts on a

generator X ∈ H1(C7,F7) by X 7→ 1
2
X ≡ 4X mod 7. By Lemma 2.3.3, β then also

acts on a generator Y ∈ H2(C7,F7) by Y 7→ 4Y . It immediately follows that there

are no invariant classes in H2(C7,F7) under the action of SL3(F2).

We can put together these computations to form the following Corollary.

Corollary 2.3.6. Let p and q be rational primes. Then for all p 6= q, we have

H2(SL3(Zp),Fq) = 0.
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2.3.3 H2(SL3(Zp),Fp)

We will assume throughout this section that p > 3, for reasons that will become

apparent later. The case p = q is more involved than the case p 6= q; we will use the

filtration (2.7) and the Hochschild-Serre spectral sequence from above to inductively

calculate H2(G(0)/G(n),Fp) for increasing n. The case n = 1 we have already done

by K-theory and we have H2(SL3(Fp),Fp) = 0 provided p > 2. For n = 2, we use

the spectral sequence

Hr(G(0)/G(1), Hs(G(1)/G(2),Fp)) =⇒ Hr+s(G(0)/G(2),Fp),

with r + s = 2. We have already calculated the term with (r, s) = (2, 0) in section

2.3.2, so we focus on r = 1 and s = 1.

As we stated earlier, it is well-known that the order of SL3(Fp) is p3(p2−1)(p3−1),

thus the p-Sylow subgroup has order p3 and we may choose it to be the unipotent

subgroup N (or N(Fp) if we wish to specify the field involved) consisting of the

upper triangular matrices with 1’s down the diagonal. Therefore there exists a

monomorphism

H1(SL3(Fp), H1(G(1)/G(2),Fp)) ↪→ H1(N,H1(G(1)/G(2),Fp)).

In fact for each n > 0, the quotient G(n)/G(n + 1) can be expressed in a simple
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and convenient manner; each g ∈ G(n)/G(n + 1) can be written as 1 + pnX where

X ∈ M3(Fp) and Tr(X) = 0. Thus for each n > 0, G(n)/G(n + 1) ∼= sl3(Fp) and

the above monomorphism can be rewritten

H1(SL3(Fp), H1(sl3(Fp),Fp)) ↪→ H1(N,H1(sl3(Fp),Fp)).

When p > 3, the Killing form on sl3(Fp) is non-degenerate and gives a G(Fp)-

equivariant isomorphism between sl3(Fp) and its dual space, Hom(sl3(Fp),Fp). In

particular, H1(sl3(Fp),Fp) ∼= sl3(Fp) as G(Fp)-modules provided p > 3, which is a

condition we fixed for p in this section. The image of this monomorphism is then

the set of invariant classes in H1(N, sl3(Fp)) under the action of SL3(Fp) (see [5]).

However, rather than finding the invariant classes under the entire group SL3(Fp),

we start by finding the invariant classes under the action of the torus in SL3(Fp),

T (Fp) =




λ 0 0

0 µ 0

0 0 (λµ)−1

 : λ, µ ∈ F×p


.
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Now, consider the filtration

sl3(Fp) ⊃


∗ ∗ ∗

∗ ∗ ∗

0 ∗ ∗

 ⊃

∗ ∗ ∗

0 ∗ ∗

0 0 ∗

 ⊃


0 ∗ ∗

0 0 ∗

0 0 0

 ⊃

⊃


0 0 ∗

0 0 0

0 0 0

 ⊃ {0} .
(2.10)

We abbreviate the subspaces in the above filtration by writing it as

sl3(Fp) = F (0) ⊃ F (1) ⊃ · · · ⊃ F (4) ⊃ F (5) = 0.

The action of SL3(Fp) (and hence of N and T ) on sl3(Fp) is by conjugation and

a direct computation shows that N acts trivially on each quotient F (i)/F (i + 1),

0 ≤ i ≤ 4. Although we will not use it, we note that we could also construct a similar

filtration on H1(sl3(Fp),Fp) with N acting trivially upon successive quotients, only

the filtration would go the other way; that is, we would take F (4) to consist of a

single non-zero entry in the (3, 1) entry instead of the (1, 3) as we had above, and

F (1) would have a 0 in the (1, 3) entry instead of in the (3, 1) position. Since the

notational advantages are clear, we will use the filtration on sl3(Fp).

For representations of T , we’ll use the notation Fp(φ) to signify that T acts
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upon elements of Fp by multiplication by some φ : T → F×p . When T acts trivially

upon Fp, we extend this notation by writing Fp(0). Following this notation, we can

decompose sl3(Fp) as a representation of T into a direct sum of weight spaces

sl3(Fp) = g0 ⊕
⊕
φ∈Φ

′

Fp(φ), with (2.11)

Φ
′

=
{

(αβ)±1, α±1, β±1
}
. (2.12)

Here we note that g0 is 2-dimensional over Fp and which will often be written as

Fp(0)2, and Φ
′

is a collection of linear functionals on T with α and β defined by

α


λ 0 0

0 µ 0

0 0 (λµ)−1

 = λ/µ and

β


λ 0 0

0 µ 0

0 0 (λµ)−1

 = µ/(λµ)−1 = λµ2.

In order to simplify notation, we write the action of T via the linear functionals

additively as opposed to multiplicatively and we will often write α in place of α(t)

for t ∈ T when no confusion can arise. So we let

Φ = {±(α + β),±α,±β} . (2.13)
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With this, the quotients of successive subspaces in the filtration above can be ex-

pressed as:

F (0)/F (1) = Fp(−α− β), F (1)/F (2) = Fp(−α)⊕ Fp(−β), F (2)/F (3) = Fp(0)2,

F (3)/F (4) = Fp(α)⊕ Fp(β), F (4)/F (5) = Fp(α + β).

Our strategy to calculate the T -invariants of H1(N, sl3(Fp)) is to successively calcu-

late the T -invariants of H1(N,F (i)) for decreasing i. We know how T acts upon quo-

tients F (i)/F (i+1) in the filtration, we also need to know how T acts on H1(N,Fp)

for a trivial N -module Fp. Firstly, H1(N,Fp) ∼= Hom(N,Fp) and if Z ⊂ N denotes

the subgroup

Z =


1 0 m

0 1 0

0 0 1

 ,

then Z is precisely the commutator subgroup of N . Hence

Hom(N,Fp) ∼= Hom(N/Z,Fp) ∼= Fp ⊕ Fp.

We know that T acts on N/Z by multiplication by the linear functional α on the

1-dimensional subspace of N/Z in the (1, 2) entry and by multiplication by β on

the other subspace in the (2, 1) entry. The action on the dual space is then by
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multiplication by −α on one Fp factor and by −β on the other. Therefore as a

T -module, we will write Hom(N/Z,Fp) ∼= Fp(−α)⊕ Fp(−β).

With this in mind, we turn our attention to finding H1(N,F (i)/F (i+ 1)). Since

N/Z acts trivially on each of these coefficient modules, as a T -module we have

H1(N,F (i)/F (i+ 1)) ∼= Hom(N/Z,Fp)⊗ F (i)/F (i+ 1),

where Fp here is a trivial N -module. We know how T acts on Hom(N/Z,Fp) and

F (i)/F (i+1), so we know the action on their tensor product (see Chapter 1 of [11]);

we add the linear functionals. Adopting the above notation, we have the following

isomorphisms of T -modules:

H1(N,F (4)) ∼= Fp(β)⊕ Fp(α),

H1(N,F (3)/F (4)) ∼= Fp(0)⊕ Fp(−α + β)⊕ Fp(−β + α)⊕ Fp(0),

H1(N,F (2)/F (3)) ∼= Fp(−α)2 ⊕ Fp(−β)2,

H1(N,F (1)/F (2)) ∼= Fp(−2α)⊕ Fp(−α− β)⊕ Fp(−β − α)⊕ Fp(−2β),

H1(N,F (0)/F (1)) ∼= Fp(−2α− β)⊕ Fp(−2β − α).

We see immediately that there is a subspace F2
p of H1(N/Z, F (3)/F (4)) invariant

under T . However, simple calculations show that the action of T on the other

subspaces are non-trivial provided p > 3, hence no subspaces are fixed for any
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values of i excepting the F2
p we have already observed.

Now, take the short exact sequence

0 −→ F (4) −→ F (3) −→ F (3)/F (4) −→ 0,

this gives a long exact sequence

0 −→ F (4)N −→ F (3)N −→ F (3)/F (4)N −→ H1(N,F (4)) −→

−→ H1(N,F (3)) −→ H1(N,F (3)/F (4)) −→ · · · .

∣∣T ∣∣ = p2 − 2p + 1 ≡ 1 mod p, so (−)T is an exact functor on Fp [T (Fp)]-modules.

Writing B = N o T , we may take T -invariants in this long exact sequence to arrive

at the long exact sequence

0 −→ F (4)B −→ F (3)B −→ F (3)/F (4)B −→ H1(N,F (4))T −→

−→ H1(N,F (3))T −→ H1(N,F (3)/F (4))T −→ · · · .

The first 4 terms in the sequence are 0, so this gives

0 −→ H1(N,F (3))T −→ F2
p −→ H2(N,F (4))T −→ · · · .

It follows that H1(N,F (3))T is either 0,Fp or F2
p. Consider now the short exact
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sequence

0 −→ F (3) −→ F (2) −→ F (2)/F (3) −→ 0,

in the same manner this gives the long exact sequence

0 −→ F (3)B −→ F (2)B −→ F (2)/F (3)B −→ H1(N,F (3))T −→

−→ H1(N,F (2))T −→ H1(N,F (2)/F (3))T −→ · · · .

Note that F (3)B = F (2)B = 0, (F (2)/F (3))B = F2
p and recall from above that

H1(N,F (2)/F (3))T = 0. With this, the long exact sequence is

0 −→ F2
p −→ H1(N,F (3))T −→ H1(N,F (2))T −→ 0 −→ · · · .

From this it becomes clear that the only option for H1(N,F (3))T is F2
p. Hence

0 −→ F2
p
∼−−→ F2

p −→ H1(N,F (2))T −→ 0 −→ · · · ,

and so H1(N,F (2))T = 0 and the cohomology we picked up at F (3) disappears at

F (2). Following this method up to F (0) and using our calculation that

H1(N,F (i)/F (i+ 1)) = 0 for 0 ≤ i ≤ 2 and p > 3,
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we easily see that H1(N,F (0))T = 0. Stated in our original notation, we have

shown that H1(N, sl3(Fp))T = 0. Since H1(SL3(Fp), sl3(Fp)) embeds into this, it is

immediate that

H1(SL3(Fp), sl3(Fp)) = 0 for p > 3.

In terms of the filtration 2.7, we have H1(G(0)/G(1), H1(G(1)/G(2),Fp)) = 0. It

remains to find H0(G(0)/G(1), H2(G(1)/G(2),Fp)), which corresponds to the E0,2
2

entry in the spectral sequence above. That is, we wish to find

H2(sl3(Fp),Fp)SL3(Fp).

We begin by recalling the work we did in section 2.1.2 and in particular Lemma

2.1.12. This Lemma is of particular interest to us here where we have V = sl3(Fp)

and G = SL3(Fp) since it tells us that H2(sl3(Fp),Fp) fits into a short exact sequence

of SL3(Fp)-modules in the following way,

0 −→ H1(sl3(Fp),Fp) −→ H2(sl3(Fp),Fp) −→
∧2

H1(sl3(Fp),Fp) −→ 0,

or equivalently

0 −→ sl3(Fp) −→ H2(sl3(Fp),Fp) −→
∧2

sl3(Fp) −→ 0.
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We will see that H2(sl3(Fp),Fp)SL3(Fp) can be computed by finding (sl3(Fp))SL3(Fp)

and
(∧2

sl3(Fp)
)SL3(Fp)

. Since (sl3(Fp))SL3(Fp) = 0, we calculate
(∧2

sl3(Fp)
)SL3(Fp)

.

Proposition 2.3.7. Let p > 3 be a prime in Z. Under the conjugation action of

SL3(Fp) on sl3(Fp), we have
(∧2

sl3(Fp)
)SL3(Fp)

= 0.

Proof. Recall the root space decomposition of sl3(Fp) with respect to the torus

T (Fp). Let Φ denote the set of roots (written additively) as we had in (2.13) and

let gφ denote the eigenspace of the root φ ∈ Φ. Then

sl3(Fp) = g0 ⊕
⊕
φ∈Φ

gφ

=⇒
∧2

sl3(Fp) =
∧2

g0 ⊕
⊕
φ∈Φ

(g0 ∧ gφ)⊕
⊕
φ,ϕ∈Φ
φ>ϕ

gφ ∧ gϕ.

It is clear that

(⊕
φ∈Φ

(g0 ∧ gφ)

)T (Fp)

= 0 and

⊕
φ,ϕ∈Φ
φ>ϕ

gφ ∧ gϕ


T (Fp)

=
⊕
φ∈Φ
φ>0

gφ ∧ g−φ,

so we have

(∧2
sl3(Fp)

)T (Fp)

=
∧2

g0 ⊕
⊕
φ∈Φ
φ>0

gφ ∧ g−φ.
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The Weyl group W of SL3(Fp) has 6 elements and is isomorphic to the symmetric

group of order 6. Consider the action of w :=


0 0 −1

0 −1 0

−1 0 0

 ∈ W on
∧2

g0.

Since


1 0 0

0 −1 0

0 0 0

 ∧


0 0 0

0 1 0

0 0 −1


w7−→


0 0 0

0 −1 0

0 0 1

 ∧

−1 0 0

0 1 0

0 0 0



= −


1 0 0

0 −1 0

0 0 0

 ∧


0 0 0

0 1 0

0 0 −1

 ,

it follows immediately that
∧2

g0 has no fixed points under the action of W . Fur-

thermore, taking elements


0 0 1

0 0 0

0 0 0

 ∈ gα+β and


0 0 0

0 0 0

1 0 0

 ∈ g−α−β, we see

that


0 0 1

0 0 0

0 0 0

 ∧


0 0 0

0 0 0

1 0 0


w7−→ −


0 0 1

0 0 0

0 0 0

 ∧


0 0 0

0 0 0

1 0 0

 ,

showing that there are also no fixed points in the subspace gα+β ∧ g−α−β. We also
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see that

gα ∧ g−α
w−→ g−β ∧ gβ,

therefore

(∧2
sl3(Fp)

)T (Fp)〈w〉
⊆ gα ∧ g−α ⊕ g−β ∧ gβ.

Now take w′ :=


0 0 1

1 0 0

0 1 0

 ∈ W . A direct computation gives


0 1 0

0 0 0

0 0 0

 ∧


0 0 0

1 0 0

0 0 0


w′7−→


0 0 0

0 0 1

0 0 0

 ∧


0 0 0

0 0 0

0 1 0

 , and


0 0 0

0 0 0

0 1 0

 ∧


0 0 0

0 0 1

0 0 0


w′7−→


0 0 1

0 0 0

0 0 0

 ∧


0 0 0

0 0 0

1 0 0

 ,

showing that there are no fixed points in the subspace gα ∧ g−α ⊕ g−β ∧ gβ under

the action of w′ and we conclude that
(∧2

sl3(Fp)
)SL3(Fp)

= 0, as required.

Given this and (sl3(Fp))SL3(Fp) = 0, it follows that H2(sl3(Fp),Fp)SL3(Fp) = 0.
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Corollary 2.3.8. For any prime p in Z with p > 3,

H0(G(0)/G(1), H2(G(1)/G(2),Fp)) = 0.

Furthermore, H0(G(0)/G(n), H2(G(n)/G(n+ 1),Fp)) = 0 for any n ≥ 2.

Proof. The first of these assertions is what we have just proved. The second follows

from the first when we recall that G(n)/G(n + 1) ∼= sl3(Fp) for all n ≥ 1, and the

action of G(0)/G(n) on G(n)/G(n+ 1) is by conjugation. Since G(0)/G(n) contains

G(0)/G(1) as a quotient, the second assertion follows directly from the first.

Putting the above results together, we have proved that H2(G(0)/G(2),Fp) = 0.

However, we wish to calculate H2(G(0)/G(n),Fp) for each n ≥ 1. We can do this

inductively once we have proved the following Proposition.

Proposition 2.3.9. Continuing with the above notation, for each n ≥ 1 and all

primes p > 3,

H1

(
G(0)

G(n)
, H1

(
G(n)

G(n+ 1)
,Fp
))

= 0.

Proof. The proof is by induction. We’ve shown the result for n = 1 so we suppose

the result is true for n. Since the Killing form gives a G(0)-equivariant isomor-

phism between H1
(
G(n)
G(n+1)

,Fp
)

and G(n)
G(n+1)

for all n > 0, it is sufficient to show that
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H1
(
G(0)
G(n+1)

, G(n+1)
G(n+2)

)
= 0. The short exact sequence

1 −→ G(n)/G(n+ 1) −→ G(0)/G(n+ 1) −→ G(0)/G(n) −→ 1,

gives us the corresponding Hochschild-Serre spectral sequence

Hr

(
G(0)

G(n)
, Hs

(
G(n)

G(n+ 1)
,
G(n+ 1)

G(n+ 2)

))
=⇒ Hr+s

(
G(0)

G(n+ 1)
,
G(n+ 1)

G(n+ 2)

)
.

Recall that G(n)/G(n+ 1) acts trivially on G(n+ 1)/G(n+ 2) when n ≥ 1 and the

spectral sequence gives us an exact sequence of low degree terms,

0 −→ H1

(
G(0)

G(n)
,
G(n+ 1)

G(n+ 2)

)
−→ H1

(
G(0)

G(n+ 1)
,
G(n+ 1)

G(n+ 2)

)
−→

−→ H0

(
G(0)

G(n)
, H1

(
G(n)

G(n+ 1)
,
G(n+ 1)

G(n+ 2)

))
−→ H2

(
G(0)

G(n)
,
G(n+ 1)

G(n+ 2)

)
.

Now, G(n)/G(n + 1) ∼= G(n + 1)/G(n + 2) ∼= sl3(Fp) as G(0)-modules, so by the

inductive hypothesis the first term is 0 and the exact sequence becomes

0 −→ H1

(
G(0)

G(n+ 1)
,
G(n)

G(n+ 1)

)
−→

−→ Hom

(
G(n)

G(n+ 1)
,
G(n)

G(n+ 1)

)G(0)/G(n)

−→ H2

(
G(0)

G(n)
,
G(n)

G(n+ 1)

)
.

Recall that f ∈ Hom(G(n)/G(n + 1),G(n)/G(n + 1)) is fixed under the action of

g ∈ G(0)/G(n) if and only if f(X) = g ◦ f(g−1 ◦ X). Since only homomorphisms
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of the form f(X) = kX for k ∈ Fp and X ∈ sl3(Fp) are fixed under the action of

G(0)/G(n), it follows that the middle term in this sequence is Fp. Thus the exact

sequence is

0 −→ H1

(
G(0)

G(n+ 1)
,
G(n)

G(n+ 1)

)
−→ Fp −→ H2

(
G(0)

G(n)
,
G(n)

G(n+ 1)

)
. (2.14)

The next section of this proof employs similar ideas to those used in parts of the

proof of Theorem 2.4.4 in [22], and our strategy is to show that the map between

Fp and H2
(
G(0)
G(n)

, G(n)
G(n+1)

)
is non-trivial and hence injective. Doing so will show that

H1
(
G(0)
G(n+1)

, G(n)
G(n+1)

)
= 0, as required.

Recall that the map from Fp to H2
(
G(0)
G(n)

, G(n)
G(n+1)

)
in the exact sequence (2.14)

is given by the transgression map, which we denote by tg (see Proposition 1.6.6

of [22]). Take the non-trivial 1-cocycle

ε ∈ H0

(
G(0)

G(n)
, H1

(
G(n)

G(n+ 1)
,
G(n)

G(n+ 1)

))
,

given by ε(X) = X for X ∈ sl3(Fp), and let u ∈ H2 (G(0)/G(n),G(n)/G(n+ 1)) be

a representative of the cohomology class defining the short exact sequence

1 −→ G(n)/G(n+ 1) −→ G(0)/G(n+ 1) −→ G(0)/G(n) −→ 1.
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Choose a section s : G(0)/G(n) −→ G(0)/G(n+ 1) of the projection

G(0)/G(n+ 1) −→ G(0)/G(n)

σ 7−→ σ,

with s1 = 1. Such a choice is possible (see Exercise 4, Section 1, Chapter 1 of [22]).

We now define a 1-cochain y : G(0)/G(n+ 1) −→ G(n)/G(n+ 1) by

y(σ) := σ(sσ)−1.

Note that if X ∈ G(n)/G(n + 1), the projection X = 1. Then y(X) = X(sX)−1 =

X(s1)−1 = X and so y
∣∣
G(n)/G(n+1)

= ε. Furthermore, for σ1, σ2 ∈ G(0)/G(n+ 1),

(δy)(σ1, σ2) = y(σ1σ2)−1(σ1 ◦ y(σ2))y(σ1)

= (sσ1σ2)σ−1
2 σ−1

1 σ1σ2(sσ2)−1σ−1
1 σ1(sσ1)−1

= s(σ1σ2)(s(σ2))−1(s(σ1))−1

=
(
s(σ1)s(σ2)s(σ1σ2)−1

)−1
.

By definition of tg, tg(ε) = [δy]. However, the function s(σ1)s(σ2)s(σ1σ2)−1 is a 2-

cocycle representing the class u we constructed above. Hence if we write 2-cocycles

in H2(G(0)/G(n),G(n)/G(n+ 1)) additively, tg(ε) = −u.

It remains to show that u does not represent the trivial class (since then neither
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will −u). That is, we must show that G(0)/G(n + 1) is not a semidirect product.

We can see this by taking an element of order pn in G(0)/G(n) of the form

Za =


1 0 a

0 1 0

0 0 1

 ,

where a 6≡ 0 mod p. Now, every preimage of this element in G(0)/G(n + 1) is of

the form

Za =


1 0 a

0 1 0

0 0 1

 ,

where a ≡ a mod pn. Since (Za)
k = Zka for all k, we have (Za)

k = I3 if and only

if ka ≡ 0 mod pn+1. However, as a 6≡ 0 mod p, it follows from the definition of a

that a 6≡ 0 mod p and so ka ≡ 0 mod pn+1 if and only if k ≡ 0 mod pn+1. So with

a chosen this way, Za always has order pn+1 and so every preimage of Za has order

pn+1. It follows that G(0)/G(n + 1) is not a semidirect product and so u does not

represent the trivial class, hence neither does −u and therefore the chosen generator

ε does not lie in the kernel of the transgression map. The transgression map must

then be a monomorphism and from the short exact sequence (2.14), we must then
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have

H1

(
G(0)

G(n+ 1)
,
G(n+ 1)

G(n+ 2)

)
= 0.

It follows from the induction hypothesis that this is 0 for every n ≥ 0, as required.

We can summarise the above work in the following theorem, bringing the split

case to a conclusion.

Theorem 2.3.10. Let p and q be rational primes with p split in k. We have

(i) H1(SL3(Zp),Fq) = 0 for all pairs p and q,

(ii) H2(SL3(Zp),Fp) = 0 for all p > 3, and

(iii) H2(SL3(Zp),Fq) = 0 for all p 6= q.

Proof. The first and third statements are Corollary 2.3.2 and Corollary 2.3.6, respec-

tively. For the second, recall that we showed by K-theory that H2 (G(0)/G(1),Fp) =

0. We then also have H2(G(0)/G(n),Fp) = 0 for all p > 3 and all n ≥ 1 by a simple

inductive argument, using Corollary 2.3.8, Proposition 2.3.9 and the Hochschild-

Serre spectral sequence

Hr

(
G(0)

G(n)
, Hs

(
G(n)

G(n+ 1)
,Fp
))

=⇒ Hr+s

(
G(0)

G(n+ 1)
,Fp
)
.
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Supposing H2(G(0)/G(n),Fp) = 0 for the inductive hypothesis, then for p > 3, all

the terms in the Ers
2 position with r + s = 2 are zero for this spectral sequence,

hence H2 (G(0)/G(n+ 1),Fp) = 0. The second statement then follows from

H2(G(Zp),Fp) = H2(lim←−
n

G(0)/G(n),Fp)

= lim−→
n

H2(G(0)/G(n),Fp) (Proposition 2.1.1),

where the limits are taken over n ≥ 1.

Thus, excepting the primes q = 2, 3, we have completed the calculations for when

p is split in k. Our exclusion of the cases q = 2, 3 will not be a problem; we can still

take any q ≥ 5 which would then correspond to looking for a congruence subgroup

Γ′ ⊂ SU(2, 1)(Z) such that the restriction map H2(SU(2, 1)(Z),Fq) −→ H2(Γ′,Fq)

is not injective.



Chapter 3

Low Dimensional Cohomology of

SU(2, 1)(Zp) with p Inert

In the previous chapter we calculated H1(G(Zp),Fq) and H2(G(Zp),Fq) for when

p is split in k. The focus of this chapter will be the calculation of the cohomology

groups H1 (SU(2, 1)(Zp),Fq) and H2(SU(2, 1)(Zp),Fq) for primes p, q with p inert.

While our general approach is similar in many areas to the split case, most of the

details differ. Recall that for p ∈ Z inert, we have

SU(2, 1)(Qp) =
{
g ∈ SL3(Qp ⊗Q k) : gtJg = J

}
=

{
g ∈ SL3(kp) : gtJg = J

}
,

90
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and so we will be interested in the H1 and H2 cohomology of SU(2, 1)(Zp) ={
g ∈ SL3(Okp) : gtJg = J

}
for each p.

3.1 H1(SU(2, 1)(Zp),Fq)

We approach this computation in a similar way to the split case, by looking at

when SU(2, 1)(Zp) is perfect. We will be able to show that this is true when p > 2

and so throughout this section, we will assume p > 2; a separate calculation will

deal with the case p = 2.

Proposition 3.1.1. Let p, q ∈ Z be primes with p inert in the imaginary quadratic

extension k of Q. Then H1(SU(2, 1)(Zp),Fq) = 0 for all p > 2.

Proof. Recall that we have a filtration on SU(2, 1)(Zp) given by equation (2.7) above,

which we denote by

SU(2, 1)(Zp) = G(0) ⊃ G(1) ⊃ · · · ⊃ G(n) ⊃ · · · .

Now, G(0)/G(1) ∼= SU(2, 1)(Fp) and it will be shown in section 3.2.2 below that

G(n)/G(n+ 1) ∼= su(2, 1)(Fp) for each n > 0, where the Lie algebra su(2, 1)(Fp) was

described in section 1.2. Note that throughout this proof, we will make use of the

notation introduced in section 1.2 above.
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Using these facts, we have a short exact sequence

0 −→ su(2, 1)(Fp) −→ G(0)/G(2) −→ SU(2, 1)(Fp) −→ 0.

The group SU(2, 1)(Fp) is known to be perfect (see Page 389 of [12]) for all p > 2. If

we can show that su(2, 1)(Fp) is contained in the commutator subgroup of G(0)/G(2),

then G(0)/G(2) must also be perfect. To show this, it is sufficient to show that

su(2, 1)(Fp) ⊂ [SU(2, 1)(Fp),G(1)/G(2)] .

Take g ∈ SU(2, 1)(Fp), X ∈ su(2, 1)(Fp) and 1 + pX ∈ G(1)/G(2), then

g(1 + pX)g−1(1− pX) =
(
1 + p(gXg−1)

)
(1− pX) = 1 + p

(
gXg−1 −X

)
.

Take any root Y 6∈ g0 of su(2, 1)(Fp), then since p > 2 we can choose an element

in the maximal torus of SU(2, 1)(Fp), say t ∈ T (Fp), such that tY t−1 − Y = cY

for some c 6= 0. Thus all X 6∈ g0 lies in the commutator subgroup of G(0)/G(2).

Now taking Y0 ∈ g0 and w the non-trivial element of the Weyl group, the same

calculation shows that a =




a 0 0

0 0 0

0 0 −a

 : a ∈ Fp


as defined in section 1.2,

satisfies a ⊂ [G(0)/G(2),G(0)/G(2)]. It remains to show that the one-dimensional
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subspace of elements of the form


z 0 0

0 −2z 0

0 0 z

 with z ∈ Fp2 and z̄ = −z lies in the

commutator subgroup of G(0)/G(2). Rather than continuing with the above method,

consider the subgroup H = su(2, 1)(Fp) ∩ [G(0)/G(2),G(0)/G(2)]. We have shown

thatH has dimension at least 7 as an Fp-vector space and it is clear that it is a normal

subgroup of G(0)/G(2). So SU(2, 1)(Fp) acts on H by conjugation and from this, we

see that H must be su(2, 1)(Fp) since taking for example


0 0 0

x 0 0

0 −x 0

 ∈ H and


1 r m

0 1 −r

0 0 1

 ∈ SU(2, 1)(Fp),


1 r m

0 1 −r

0 0 1




0 0 0

x 0 0

0 −x 0




1 r m

0 1 −r

0 0 1



−1

=


rx ∗ ∗

∗ rx− rx ∗

∗ ∗ −rx

 .

Since r, x ∈ Fp2 , they can be chosen so that rx ∈ Fp2 \Fp and so rx− rx 6= 0. Hence

H = su(2, 1)(Fp), so su(2, 1)(Fp) ⊂ [G(0)/G(2),G(0)/G(2)] and since we noted earlier

that SU(2, 1)(Fp) is perfect for all p > 2, it follows that G(0)/G(2) is perfect for all

p > 2.
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Inductively, the short exact sequence

0 −→ su(2, 1)(Fp) −→ G(0)/G(n+ 1) −→ G(0)/G(n) −→ 0,

shows that G(0)/G(n+ 1) is perfect for all n > 0. Thus

G(0)/G(n) = [G(0)/G(n),G(0)/G(n)] ⊂ [SU(2, 1)(Zp), SU(2, 1)(Zp)] ,

for all n > 0, so the commutator subgroup of SU(2, 1)(Zp) is dense in SU(2, 1)(Zp)

and hence H1(SU(2, 1)(Zp),Fq) = Homcts(SU(2, 1)(Zp),Fq) = 0.

We now calculate H1(SU(2, 1)(Z2),Fq) with q > 2 separately. First recall that

SU(2, 1)(Zp, p) is a pro-p group and so for p 6= q, we have

Hn(SU(2, 1)(Zp),Fq) ∼= Hn(SU(2, 1)(Fp),Fq).

It will be useful for us to know the order of SU(2, 1)(Fp). To calculate this, recall

from section 1.2 the definitions of the groups B(Fp) and N(Fp), and the non-trivial

element of the Weyl group w. Then the Bruhat decomposition (Theorem 1.2.1)

gives us

SU(2, 1)(Fp) = B(Fp) tB(Fp)wB(Fp).



CHAPTER 3. LOW DIMENSIONAL COHOMOLOGY OF SU(2, 1)(ZP ) WITH
P INERT 95

Now,
∣∣B(Fp)

∣∣ =
∣∣N(Fp)

∣∣∣∣T (Fp)
∣∣ = p3 × (p2 − 1) and we can also see that

∣∣B(Fp)wB(Fp)
∣∣ =

∣∣N(Fp)
∣∣w∣∣B(Fp)

∣∣ = p3 × p3(p2 − 1),

so

∣∣ SU(2, 1)(Fp)
∣∣ = p3(p2 − 1) + p3p3(p2 − 1) = p3(p2 − 1)(p3 + 1).

For p = 2, this is 216 = 2333. So for q > 3 and n > 0, Hn(SU(2, 1)(F2),Fq) = 0,

which leaves only the case q = 3 to check. As before, we have a monomorphism

Hn(G(F2),F3) ↪→ Hn(G(F2)3,F3),

where G(F2)3 denotes the 3-Sylow subgroup of G(F2). The basic structure of G(F2)

and G(F2)3 is given by the following Proposition.

Proposition 3.1.2. Suppose that 2 is inert in k. Then G(F2) ∼= Q8 nG(F2)3, where

Q8 is the quaternion group of order 8 with generators a =


1 1 z

0 1 1

0 0 1

 and b =


1 z z

0 1 z

0 0 1

 with z ∈ F4 \ F2, and G(F2)3 is the 3-Sylow subgroup. Furthermore,
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G(F2)3 is generated by

α =


λ 0 0

0 λ 0

0 0 λ

 , β =


1 0 1

0 1 0

1 0 0

 and γ =


z̄ z z

1 0 z

1 1 z̄

 ,

and is isomorphic to U(3, 3), the upper-triangular unipotent matrix group of 3 × 3

matrices over F3.

Proof. There is an obvious subgroup of order 8 in G(F2) given by N(F2). Explicit

computation shows that this is the quaternion group Q8 and has generators

a =


1 1 z

0 1 1

0 0 1

 and b =


1 z z

0 1 z

0 0 1

 ,

where z ∈ F4 \ F2. We now construct a subgroup of order 27. We can easily spot

an element of order 3 given by

α =


λ 0 0

0 λ 0

0 0 λ

 ,
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where λ ∈ F×4 \ F×2 . Another is given by

β =


1 0 1

0 1 0

1 0 0

 .

We can generate another element of order 3 by conjugating this element by a ∈ Q8;

γ = a


1 0 1

0 1 0

1 0 0

 a−1 =


z̄ z z

1 0 z

1 1 z̄

 .

Explicit computation shows that α, β and γ generate a group of order 27 and is the

3-Sylow subgroup G(F2)3. Furthermore, a and b normalize G(F2)3, hence G(F2)3 is

normal in G(F2) and is the unique 3-Sylow subgroup of G(F2). We conclude that

G(F2) ∼= Q8 n G(F2)3. Up to isomorphism G(F2)3 can only be one of five groups:

Z/27Z, Z/9Z⊕ Z/3Z, Z/3Z⊕ Z/3Z⊕ Z/3Z, Z/9Z o Z/3Z or U(3, 3).

By elimination, it must be U(3, 3).

An immediate consequence is the following Corollary.

Corollary 3.1.3. Hn(G(F2),F3) ∼= Hn(G(F2)3,F3)Q8.

Proposition 3.1.4. H1(G(F2),F3) = 0.
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Proof. By the previous Corollary and the fact that F3 is acted upon trivially by

G(F2), we have

H1(G(F2),F3) ∼= H1(G(F2)3,F3)Q8 ∼= Hom(G(F2)3,F3)Q8

∼= Hom(G(F2)3/ [G(F2)3,G(F2)3] ,F3)Q8

∼= Hom(〈β, γ〉 ,F3)Q8 .

Here we have used that [G(F2)3,G(F2)3] ∼= 〈α〉. Now, Hom(〈β, γ〉 ,F3) ∼= F2
3 but Q8

acts non-trivially on 〈β, γ〉. In particular, aβ = γ and aγ = β−1. Thus the action

of a on G(F2)3/ [G(F2)3,G(F2)3] is given by the matrix

 0 −1

1 0

. Taking the

inverse and transpose of this matrix gives us the action of a on H1(G(F2)3,F3). In

particular, we have

H1(G(F2)3,F3)Q8 =


x
y

 ∈ F2
3 :

 0 −1

1 0


x
y

 =

x
y


 .

From this, clearly both x = 0 and y = 0, hence H1(G(F2),F3) = H1(G(F2)3,F3)Q8 =

0, as required.

We summarise the above results as follows.

Corollary 3.1.5. For all pairs of primes (p, q) 6= (2, 2), H1 (G(Zp),Fq) = 0.
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3.2 H2(SU(2, 1)(Zp),Fq)

As with the case when p is split, we will break this calculation into two cases;

p = q and p 6= q. The method we use for p = q is similar to the split case but is

more involved than when p 6= q. When p 6= q the computation reduces to finding

H2(SU(2, 1)(Fp),Fq). Our method for finding this does not require p and q to be

distinct and since it will be useful for us later on to know H2(SU(2, 1)(Fp),Fp), it

makes sense to do it all together. So in the following subsection, we will not make

the restriction that p and q are distinct.

3.2.1 H2(SU(2, 1)(Fp),Fq)

We begin by recalling that G(Fp) is perfect (see Page 389 of [12]) for all p > 2.

The Schur multiplier of G(Fp) is defined to be the group H2(G(Fp),Z). Since G(Fp)

is perfect for all p > 2, by Section 6.9 of [31] we have

H2(G(Fp),Fq) ∼= Hom(H2(G(Fp),Z),Fq).

However, Griess showed in [12] that the Schur multiplier of SU(2, 1)(Fp) is in fact

trivial, so it follows that

H2(G(Fp),Fq) = 0 for p > 2.
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We have proved the following Proposition.

Proposition 3.2.1. For p > 2, we have H2(G(Fp),Fq) = 0. In particular, when

p 6= q we have

H2(G(Zp),Fq) = 0.

The specific case of when p = 2 and q > 3 has already been done in the previous

section; we noted that |G(F2)| = 2333 and hence Hn(G(F2),Fq) = 0 for all q > 3.

We summarise the results in this section with the following Corollary.

Corollary 3.2.2. For all primes p and q with p > 2 and p 6= q, H2(G(Zp),Fp) = 0.

If p = 2 and q > 3 then we also have H2(G(Z2),Fq) = 0.

3.2.2 H2(SU(2, 1)(Zp),Fp)

We will assume that p > 3 throughout this section. Our general approach to

finding H2(SU(2, 1)(Zp),Fp) is similar to the one used for the corresponding case

with p split. We start with filtration 2.7;

G(0) ⊃ G(1) ⊃ · · · ⊃ G(n) ⊃ · · · .

We inductively calculateH2(G(0)/G(n),Fp) for increasing n by using the Hochschild-

Serre spectral sequence. For n = 1, we already know from the previous section that
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H2(G(Fp),Fp) = 0. For n = 2 we have

Hr (G(0)/G(1), Hs (H(1)/G(2),Fp)) =⇒ Hr+s(G(0)/G(2),Fp),

and we are interested in when r + s = 2. When r = 2 and s = 0, we already know

the cohomology group to be trivial. We are left with two possibilities; r = 1, s = 1

and r = 0, s = 2. We start with the former.

As with the split case, for all n > 0 there is a simple description of G(n)/G(n+1).

Each g ∈ G(n)/G(n + 1) can be written as g = 1 + pnX, where X ∈ M3(Fp2),

Tr(X) = 0 and gtJḡ = J . This last matrix condition tells us that

gtJḡ = J

⇐⇒ (1 + pnX)tJ(1 + pnX) = J

⇐⇒ (1 + pnX t)(J + pnJX) = J

⇐⇒ J + pn(JX +X tJ) = J

⇐⇒ JX +X tJ ≡ 0 mod p.

That is, X must lie in the Lie algebra su(2, 1)(Fp); we described su(2, 1) in section

1.2 above. So we in fact have G(n)/G(n+ 1) ∼= su(2, 1)(Fp) for all n > 0.

For p > 3, we have a G(Fp)-equivariant isomorphism H1(su(2, 1)(Fp),Fp) ∼=

su(2, 1)(Fp) given by the Killing form. Furthermore, it is clear from the orders of
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G(Fp) and N(Fp) that N(Fp) can be taken as a choice of p-Sylow subgroup for G(Fp).

Our aim is to calculate the image of the monomorphism

H1(G(Fp), su(2, 1)(Fp)) ↪→ H1(N(Fp), su(2, 1)(Fp)).

Since su(2, 1)(Fp) is a finite dimensional Fp-vector space, we can tensor with the

quadratic extension Fp2 of Fp to obtain for all n,

Hn(SU(2, 1)(Fp), su(2, 1)(Fp))⊗Fp Fp2
∼= Hn(SU(2, 1)(Fp), su(2, 1)(Fp)⊗Fp Fp2)

∼= Hn(SU(2, 1)(Fp), sl3(Fp2)).

To ease notation, we will write F for Fp2 . With this formulation, we need to find

the image of the monomorphism Hr(G(Fp), sl3(F)) ↪→ Hr(N(Fp), sl3(F)).

Proposition 3.2.3. Let N(Fp) be as above and g ∈ G(Fp). Then

N ∩ g−1Ng =


N g ∈ B

1 otherwise,

where B ⊂ G(Fp) is the Borel subgroup consisting of all upper triangular matrices.

In particular,

Hn(G(Fp), sl3(F)) ∼= Hn(N(Fp), sl3(F))T (Fp) for all n > 0,
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where T (Fp) is the maximal torus of G(Fp).

Proof. Recall the Bruhat decomposition of G(Fp) from Theorem 1.2.1;

G(Fp) = N(Fp)T (Fp) tN(Fp)T (Fp)wN(Fp),

where w is the non-trivial element of the Weyl group of G(Fp). It is clear that B

normalises N . It remains to show what happens when g has a non-zero (3, 1) entry.

In this case, we can write g = nwtn′ with n, n′ ∈ N(Fp) and t ∈ T (Fp). Now,

N ∩N g = N ∩Nnwtn′

= N ∩Nwtn′

= (N ∩Nw)tn
′

= 1.

Since B/N(Fp) ∼= T (Fp), we have

H1(G(Fp), sl3(F)) ∼= H1(N(Fp), sl3(F))T (Fp).

We are now in a very similar situation to the split case; we use the same filtration

on sl3(F) as we had on sl3(Fp) in equation (2.10), only now with entries in F rather
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than Fp. Similarly, we denote the subspaces in it by F (i) and N(Fp) can be shown

to act trivially on each quotient F (i)/F (i+ 1) for 0 ≤ i ≤ 4 as before.

As a representation of T (Fp), we can decompose sl3(F) into a direct sum of

weight spaces

sl3(F) = g0 ⊕
⊕
φ∈Φ′

F(φ),

where Φ
′

= {(αβ)±1, α±1, β±1} is a collection of linear functionals on T (Fp), this

time defined by

α


λ 0 0

0 λ̄/λ 0

0 0 λ̄−1

 = (λ)/(λ̄/λ) = λ2−p and

β


λ 0 0

0 λ̄/λ 0

0 0 λ̄−1

 = (λ̄/λ)/(λ̄−1) = λ2p−1,

and g0 is 2-dimensional over F which will often be denoted by F(0)2. We will write

the linear functionals in Φ
′
additively, and Φ = {±(α + β),±α,±β} will denote this

collection of additive linear functionals. Again, the quotients of successive subspaces
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in the filtration can be expressed as

F (0)/F (1) = F(−α− β), F (1)/F (2) = F(−α)⊕ F(−β), F (2)/F (3) = F(0)2,

F (3)/F (4) = F(α)⊕ F(β), F (4)/F (5) = F(α + β),

and our strategy will be to successively calculate H1(N(Fp), F (i))T (Fp).

Let Z denote the center of N(Fp). As a group, N/Z ∼= Fp2 and T acts upon

it by multiplication by α. We denote this T -module by Fp2(α). Suppose F is a

trivial T -module. Note that Hom(N/Z,F) is generated by two homomorphisms; the

identity map x 7→ x and the map x 7→ x̄ = xp. Call these two maps f1 and f2. Then

tλ ∈ T acts upon f1 and f2 by

tλ ◦ f1(x) = f1(t−1
λ x) = f1(α(t−1

λ )x) = α(t−1
λ )x, and

tλ ◦ f2(x) = f2(t−1
λ x) = f2(α(t−1

λ )x) = α(t−1
λ )x = β(t−1

λ )x.

Written additively, this is multiplication by −α and −β respectively. Hence as a

T (Fp)-module, Hom(N/Z,F) ∼= F ⊕ F and T acts upon one of the copies of F by

multiplication by −α and on the other by −β. We express this action of T by

writing Hom(N/Z,F) ∼= F(−α)⊕ F(−β).

Now since N/Z acts trivially on each quotient F (i)/F (i+ 1), as a T -module we
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have

Hom(N/Z, F (i)/F (i+ 1)) ∼= Hom(N/Z,F)⊗ F (i)/F (i+ 1),

where F denotes a trivial G(Fp)-module. Adopting the above notation, we have as

before the following isomorphisms of T -modules:

H1(N/Z, F (4)) = F(β)⊕ F(α),

H1(N/Z, F (3)/F (4)) = F(0)⊕ F(−α + β)⊕ F(−β + α)⊕ F(0),

H1(N/Z, F (2)/F (3)) = F(−α)2 ⊕ F(−β)2,

H1(N/Z, F (1)/F (2)) = F(−2α)⊕ F(−α− β)⊕ F(−β − α)⊕ F(−2β),

H1(N/Z, F (0)/F (1)) = F(−2α− β)⊕ F(−2β − α).

We see immediately that there is a subspace F2 of H1(N/Z, F (3)/F (4)) invariant

under T . Simple calculations show that the other linear functionals are non-zero

for p > 2 (and hence also for our assumption p > 3), so no other subspaces are

fixed for any values of i other than the subspace F2 we already observed. Finally,

noting that
∣∣T ∣∣ = p2 − 1 ≡ −1 mod p, it follows that (−)T is an exact functor on

F [T (Fp)]-modules. We are now in the same situation as the split case, only with

F-modules rather than Fp-modules. Performing the same analysis as when p is split,

we see that the cohomology we pick up at H1(N/Z, F (3)/F (4)) disappears further
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up the filtration. We arrive at the conclusion that H1(N, sl3(F))T = 0, and so

H1(SU(2, 1)(Fp), sl3(F)) = 0 for p > 3.

In the spectral sequence converging to Hr+s(G(0)/G(2),Fp), we have shown that

E2,0
2 = 0 and E1,1

2 = 0. We now consider the E0,2
2 term, which involves finding

H2(su(2, 1)(Fp),Fp)SU(2,1)(Fp). Viewing su(2, 1)(Fp) as an 8-dimensional vector space

over Fp, by Lemma 2.1.12 we have a short exact sequence of SU(2, 1)(Fp)-modules,

0→ H1(su(2, 1)(Fp),Fp)→ H2(su(2, 1)(Fp),Fp)→
∧2

H1(su(2, 1)(Fp),Fp)→ 0.

We will in fact prove a slightly more general Lemma than the result we need in this

section, but this will have the advantage that it will also be applicable in the next

chapter.

Lemma 3.2.4. Let p > 3 be a rational prime and SO(2, 1)(Fp) ⊂ SU(2, 1)(Fp) the

subgroup of all matrices g ∈ SL3(Fp) such that gtJg = J . Then

H0(SO(2, 1)(Fp), H2(su(2, 1)(Fp),Fp)) = 0.

Proof. It will be sufficient to show that both
(∧2

su(2, 1)(Fp)
)SO(2,1)(Fp)

= 0 and

(su(2, 1)(Fp))SO(2,1)(Fp) = 0. We note that the maximal Fp-split torus S(Fp) ⊂

SU(2, 1)(Fp) also lies in SO(2, 1)(Fp), and that SO(2, 1)(Fp) acts with no fixed points
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on su(2, 1)(Fp). Thus we are left with showing that
(∧2

su(2, 1)(Fp)
)SO(2,1)(Fp)

= 0.

Now, as a representation of S(Fp) we can write su(2, 1)(Fp) as

su(2, 1)(Fp) = g0 ⊕
⊕
φ∈Σ

gφ,

where g0 and each gφ are as in equation (1.1) of section 1.2 (with k = Fp and

K = Fp2) and when written additively instead of multiplicatively, Σ is also as in

section 1.2. Then

∧2
su(2, 1)(Fp) =

∧2
g0 ⊕

⊕
φ∈Σ

(g0 ∧ gφ)⊕
⊕
φ,ϕ∈Σ
φ>ϕ

gφ ∧ gϕ.

Taking S(Fp)-invariants, we notice that

(⊕
φ∈Σ

(g0 ∧ gφ)

)S(Fp)

= 0 and

⊕
φ,ϕ∈Σ
φ>ϕ

gφ ∧ gϕ


S(Fp)

=
⊕
φ∈Σ
φ>0

gφ ∧ g−φ,

so we have

(∧2
su(2, 1)(Fp)

)S(Fp)

=
∧2

g0 ⊕
⊕
φ∈Σ
φ>0

gφ ∧ g−φ.

Recall from section 1.2, the non-trivial element of the Weyl group which we rep-
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resented by w =


0 0 −1

0 −1 0

−1 0 0

 ∈ W ⊂ SO(2, 1)(Fp). We will see that W

preserves the subspaces
∧2

g0 and gφ ∧ g−φ but acts non-trivially, leaving nothing

fixed under its action. So let z ∈ Fp2 \ Fp. Then


1 0 0

0 0 0

0 0 −1

 ∧


z 0 0

0 z̄ − z 0

0 0 −z̄


w7−→


−1 0 0

0 0 0

0 0 1

 ∧

−z̄ 0 0

0 z̄ − z 0

0 0 z



=


1 0 0

0 0 0

0 0 −1

 ∧


z̄ 0 0

0 z − z̄ 0

0 0 −z

 ,

but z 6= z̄, so
(∧2

g0

)〈w〉
= 0. Similarly, for α0 as in equation (1.1),


0 0 α0

0 0 0

0 0 0

 ∧


0 0 0

0 0 0

α0 0 0


w7−→


0 0 0

0 0 0

α0 0 0

 ∧


0 0 α0

0 0 0

0 0 0



= −


0 0 α0

0 0 0

0 0 0

 ∧


0 0 0

0 0 0

α0 0 0

 ,
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showing that (g2λ ∧ g−2λ)
〈w〉 = 0. Finally,


0 x 0

0 0 −x̄

0 0 0

 ∧


0 0 0

y 0 0

0 −ȳ 0


w7−→


0 ȳ 0

0 0 −y

0 0 0

 ∧


0 0 0

−x̄ 0 0

0 x 0

 .

So for gλ ∧ g−λ to have elements fixed by w, we would require


0 x 0

0 0 −x̄

0 0 0

 = λ


0 ȳ 0

0 0 −y

0 0 0

 and


0 0 0

y 0 0

0 −ȳ 0

 = λ−1


0 0 0

−x̄ 0 0

0 x 0

 ,

for some λ ∈ Fp2 . However, our assumption that p > 3 leaves λ = 0 as the

only possibility. Hence
(∧2

su(2, 1)(Fp)
)S(Fp)〈w〉

= 0 which immediately implies that(∧2
su(2, 1)(Fp)

)SO(2,1)(Fp)
= 0.

Since SO(2, 1)(Fp) ⊂ SU(2, 1)(Fp), we have the following Corollary.

Corollary 3.2.5. For all rational primes p > 3 and all n > 0,

H0(G(0)/G(n), H2(G(n)/G(n+ 1),Fp)) = 0.
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An immediate consequence is that H2(G(0)/G(2),Fp) = 0. The final result we

need for the inert case is the following Proposition.

Proposition 3.2.6. For all n > 0 and p > 3 inert,

H1

(
G(0)

G(n)
, H1

(
G(n)

G(n+ 1)
,Fp
))

= 0.

Proof. The proof is the same as the proof of Proposition 2.3.9, which made no use

of p being split.

We can summarise the above work into the following theorem.

Theorem 3.2.7. Let p and q be rational primes with p inert in k. Then

(i) H1(SU(2, 1)(Zp),Fq) = 0 for all p and q, excluding the case p = q = 2,

(ii) H2(SU(2, 1)(Zp),Fp) = 0 for all p > 3, and

(iii) H2(SU(2, 1)(Zp),Fq) = 0 for all p > 2 and p 6= q, and all q > 3 when p = 2.

Proof. The first statement is Corollary 3.1.5. The second statement follows from

Propositions 3.2.1 and 3.2.6, Corollary 3.2.5 and the Hochschild-Serre spectral se-

quence Hr
(
G(0)
G(n)

, Hs
(
G(n)
G(n+1)

,Fp
))

=⇒ Hr+s
(
G(0)
G(n+1)

,Fp
)

. This, along with Propo-

sition 2.1.1 gives the second assertion. The third statement is Corollary 3.2.2.



Chapter 4

Low Dimensional Cohomology of

SU(2, 1)(Zp) with p Ramified

So far we have successfully shown that, excluding a finite number of small primes,

H1(G(Zp),Fq) = 0 and H2(G(Zp),Fq) = 0 when p is unramified. The final possibility

for p ∈ Z is that it ramifies in k. This means that there exists a prime ideal p ⊂ Ok

such that pOk = p2. In this chapter we turn our attention to the cohomology

groups H1 and H2 of G(Zp) for when p ∈ Z ramifies in k. When considering the

first cohomology group, we will be able to show that H1(SU(2, 1)(Zp),Fq) = 0 for all

primes p with q > 2 and (p, q) 6= (3, 3). We note however, that in the ramified case

we will require a different approach in order to achieve this. For all primes p with

q > 2 and (p, q) 6= (3, 3), we will once again be able to show that H2(G(Zp),Fq) = 0.

Throughout this chapter, p will be a rational prime such that pOk = p2 for some

112
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prime ideal p ⊂ Ok.

4.1 Initial Results

Throughout this section p and q will denote rational primes. We have a filtration

on G(Zp) given by

G(Zp) ⊃ G(Zp, p) ⊃ G(Zp, p
2) ⊃ · · · ⊃ G(Zp, p

n) ⊃ · · · , (4.1)

whose terms we will often abbreviate to just G(n). It will be important for us to

understand the quotients G(n)/G(n + 1) in this filtration. They behave a little

differently to the unramified cases and we determine them in the following Lemma.

Lemma 4.1.1. The quotients in filtration 4.1 are given by

G(Zp, p
n)/G(Zp, p

n+1) =



SO(2, 1)(Fp) n = 0,

sl2(Fp) n even and positive,

{X ∈ sl3(Fp) : X tJ − JX ≡ 0 mod p} n odd.

Proof. When n = 0, we have

G(0)/G(1) =
{
g ∈ SL3(Ok/p) : gtJḡ = J

}
,
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but ḡ = g when g ∈ SL3(Ok/p) and so G(0)/G(1) ∼= SO(2, 1)(Fp).

Now take n > 0 to be even and let π ∈ k be a prime element, chosen so that

π ≡ −π mod p2. Then g ∈ G(n)/G(n + 1) can be written in the form 1 + πnX,

where X ∈ sl3(Ok/p) and (1 + πnX)tJ(1 + πnX) = J . Now,

(1 + πnX)tJ(1 + πnX) = J

⇐⇒ J + πn(X tJ + JX) = J

⇐⇒ X tJ + JX ≡ 0 mod p.

That is, X ∈ so(2, 1)(Fp) ∼= sl2(Fp). Finally, let n > 0 have odd parity. Again,

g ∈ G(n)/G(n + 1) can be written in the form 1 + πnX, where X ∈ sl3(Ok/p) and

(1 + πnX)tJ(1 + πnX) = J . This time the matrix condition gives us

(1 + πnX)tJ(1 + πnX) = J

⇐⇒ J + πn(X tJ − JX) = J

⇐⇒ X tJ − JX ≡ 0 mod p.

In light of this Lemma, we will need to know some facts about SO(2, 1)(Fp). In

particular, we will need to know what its q-Sylow subgroups are.

Lemma 4.1.2. Suppose that q > 2 is a rational prime such that q divides the order
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of SO(2, 1)(Fp). The q-Sylow subgroup of SO(2, 1)(Fp) is cyclic and can be taken to

be a subgroup of one of the following three subgroups of SO(2, 1)(Fp):

(i) The split torus S(Fp) consisting of all matrices of the form




s 0 0

0 1 0

0 0 s−1

 : s ∈ F×p


,

(ii) the subgroup N(Fp) of upper triangular matrices with 1’s on the diagonal, or

(iii) the non-split torus in SO(2, 1)(Fp).

Proof. First, | SO(2, 1)(Fp)| = p(p− 1)(p+ 1), so that for q
∣∣| SO(2, 1)(Fp)|, q divides

only one of p−1, p or p+ 1. Suppose first that p−1 = qam1, with a > 0, a,m1 ∈ Z.

Clearly the split torus is a cyclic subgroup of size p − 1 and from it we can realise

a cyclic subgroup of order qa. The q-Sylow subgroup can then be taken to be this

cyclic subgroup of order qa.

Now, suppose q = p. A subgroup of order p can be constructed from the set of

matrices of the form

N(Fp) =




1 a −a2/2

0 1 −a

0 0 1

 : a ∈ Fp


,
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which by explicit computation can be seen to be all of the upper triangular matrices

in SO(2, 1)(Fp) with 1’s down the diagonal. It is easy to see that this subgroup is

cyclic and of order p.

Finally, suppose p + 1 = qbm2, with b > 0 and b,m2 ∈ Z. We can construct a

subgroup of order p+1 in the following way. We begin by recalling that | SL3(Fp)| =

p3(p−1)2(p+ 1)(p2 +p+ 1), so the q-Sylow subgroup of SO(2, 1)(Fp) must also be a

q-Sylow subgroup of SL3(Fp). Take a quadratic extension Fp2 of Fp and fix a basis.

We can associate every x ∈ Fp2 with an element of M2(Fp) by constructing the Fp-

linear transformation given by multiplication by x. Taking the subgroup consisting

of only those x with N(x) = 1 gives us a subgroup of SL2(Fp) of order p+ 1, called

the non-split torus of SL2(Fp). In particular, this subgroup is cyclic. Choosing an

embedding SL2(Fp) ↪→ SL3(Fp) gives us a cyclic subgroup of order p+ 1 in SL3(Fp).

So the q-Sylow subgroup of SL3(Fp) is cyclic of order qb and hence by conjugating

by an element of SL3(Fp) if necessary, it is also a cyclic subgroup of order qb in

SO(2, 1)(Fp). This subgroup of order qb can be taken to be the q-Sylow subgroup

of SO(2, 1)(Fp) and is a subgroup of the non-split torus of SO(2, 1)(Fp), which is a

cyclic group.



CHAPTER 4. LOW DIMENSIONAL COHOMOLOGY OF SU(2, 1)(ZP ) WITH
P RAMIFIED 117

4.2 H i(SO(2, 1)(Fp),Fq) for i = 1, 2

In this section we compute H1(G(0)/G(1),Fq) and H2(G(0)/G(1),Fq), which by

Lemma 4.1.1 amounts to finding H1(SO(2, 1)(Fp),Fq) and H2(SO(2, 1)(Fp),Fq), re-

spectively. When p 6= q, finding this will also give us both H1(G(Zp),Fq) and

H2(G(Zp),Fq), and when p = q the calculations in this section will be used later to

find H1(G(Zp),Fp) and H2(G(Zp),Fp).

Proposition 4.2.1. Let q > 2 be prime. Then

H1(SO(2, 1)(Fp),Fq) = 0 and

H2(SO(2, 1)(Fp),Fq) = 0,

for all primes p.

Proof. If q 6
∣∣| SO(2, 1)(Fp)| = p(p−1)(p+1) then the result is clearly true. Otherwise,

q divides either p, p− 1 or p+ 1 and we check each case individually.

First, suppose q = p (and so p > 2 under our assumption that q > 2). Then

H2(SO(2, 1)(Fp),Fp) ↪→ H2(N,Fp), where N is the p-Sylow subgroup from part

(ii) of Lemma 4.1.2. Denote by S(Fp) (or simply S) the split torus from part (i)

of Lemma 4.1.2. Explicit computation shows us that if g = sn for some s ∈ S

and n ∈ N , then N ∩ g−1Ng = N . Otherwise by the Bruhat decomposition, g

must be of the form nwsn
′
, where w is as in equation (1.2) and n

′ ∈ N . Then
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N ∩Nnwsn
′

= Nn
′−1

s−1 ∩Nw = 1. Thus

H2(SO(2, 1)(Fp),Fp) = H2(N,Fp)S.

Recall that N is a cyclic group of order p. The conjugation action of a generator

sx =


x 0 0

0 1 0

0 0 x−1

 ∈ S(Fp) on any n ∈ N is seen to be multiplication by x, since

sxns
−1
x = sx


1 a −a2/2

0 1 −a

0 0 1

 s−1
x =


1 ax −(ax)2/2

0 1 −ax

0 0 1

 .

Thus sx ∈ S acts on H1(N,Fp) by multiplication by x−1 and by Lemma 2.3.3,

also acts by multiplication by x−1 on H2(N,Fp). Thus H1(SO(2, 1)(Fp),Fp) =

H2(SO(2, 1)(Fp),Fp) = 0.

Suppose q
∣∣p−1. Then by Lemma 4.1.2, the q-Sylow subgroup Gq lies in the split

torus. Suppose g ∈ SO(2, 1)(Fp) with g−1Gqg ∩ Gq 6= 1. We claim that g normalises

Gq and S(Fp). Suppose ζ =


ξ 0 0

0 1 0

0 0 ξ−1

 is a generator of g−1Gqg ∩ Gq. Since ζ

and g−1ζg have the same eigenvalues, g−1ζg is either ζ or ζ−1. In particular, note

that w−1ζw = ζ−1, where again w is as in equation (1.2). We are left with two cases:
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if g−1ζg = ζ, then g commutes with ζ and hence g ∈ S, as can be seen by direct

computation. Otherwise, if g−1ζg = ζ−1 then (gw)−1ζgw = ζ and so now gw ∈ S

and again g normalises S. Hence

H2(SO(2, 1)(Fp),Fq) = H2(Gq,Fq)NSO(2,1)(Fp)(S)/ZSO(2,1)(Fp)(S)

= H2(Gq,Fq)〈w〉.

The action of w on a generator b ∈ Gq is by b 7→ b−1. Thus w acts by multiplication

by −1 on H1(Gq,Fq) and again by Lemma 2.3.3, also acts by multiplication by −1

on H2(Gq,Fq). Thus H1(SO(2, 1)(Fp),Fq) = H2(SO(2, 1)(Fp),Fq) = 0.

Now suppose q
∣∣p + 1 and p > 2; we will consider p = 2 separately. Then Gq is

contained in the non-split torus of part (iii) of Lemma 4.1.2. Choose some r ∈ Fp

such that in the notation of the Legendre symbol,
(
r
p

)
= −1. Then

Fp2 =
{
x+ y

√
r : x, y ∈ Fp

}
.

Recalling from the proof of Lemma 4.1.2 the construction of the non-split torus in

SL2(Fp), we may write it down explicitly as


 x ry

y x

 : x, y ∈ Fp, x2 − ry2 = 1

 .
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We note that the non-split torus for SL2(Fp) is an orthogonal group in dimension

2 that preserves the quadratic form determined by the matrix

 −1/r 0

0 1

. We

now embed the non-split torus of SL2(Fp) into SL3(Fp) via the mapping

 x ry

y x

 7−→


x ry 0

y x 0

0 0 1

 . (4.2)

The image of this map lies in the special orthogonal group that preserves the

quadratic form determined by the matrix J ′ :=


−1/r 0 0

0 1 0

0 0 1

. Call this group

SO(J ′)(Fp) and denote the subgroup of SO(J ′)(Fp) given by the image of the map

4.2 by H. From Section 62 of [23], there are precisely two non-degenerate quadratic

forms in any dimension up to equivalence over a finite field of odd characteristic.

This gives two possible choices of orthogonal groups, however in odd dimensions

these two orthogonal groups are isomorphic. Thus it suffices to work with the group

SO(J ′)(Fp) and the subgroup H ⊂ SO(J ′)(Fp), rather than SO(2, 1)(Fp) and its
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non-split torus. Consider the element

s =


1 0 0

0 −1 0

0 0 −1

 ∈ SO(J ′)(Fp).

We see that the action of s on H is

s−1


x ry 0

y x 0

0 0 1

 s =


x −ry 0

−y x 0

0 0 1



=


x ry 0

y x 0

0 0 1



−1

.

Now, H is a cyclic subgroup containing the q-Sylow subgroup Gq ⊂ SO(J ′)(Fp).

Lemma 2.3.3 tells us that s acts on H1(H,Fq) and H2(H,Fq) by multiplication by

−1 and in particular, that s acts on H1(Gq,Fq) and H2(Gq,Fq) by multiplication

by −1. It follows immediately that H1(SO(J ′)(Fp),Fq) = H2(SO(J ′)(Fp),Fq) = 0

when q
∣∣p + 1, and hence H1(SO(2, 1)(Fp),Fq) = H2(SO(2, 1)(Fp),Fq) = 0 when

q
∣∣p+ 1.

Finally, we take p = 2. Then
∣∣ SO(2, 1)(F2)

∣∣ = 6 and is the dihedral group of
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order 6, as can be seen by the matrices

α =


1 0 1

0 1 0

0 0 1

 , β =


1 0 1

0 1 0

1 0 0

 .

Explicit calculations show that α, β ∈ SO(2, 1)(Fp),
∣∣α∣∣ = 2,

∣∣β∣∣ = 3 and that

α−1βα = β−1. Since the only prime q > 2 that divides 6 is q = 3, we only have this

possibility to check. The 3-Sylow subgroup is clearly 〈β〉 and the conjugation action

of α on β gives an action of α on H1(〈β〉 ,F3) and H2(〈β〉 ,F3) by multiplication by

−1. Thus H1(SO(2, 1)(F2),Fq) = H2(SO(2, 1)(F2),Fq) = 0 for all q > 2.

Corollary 4.2.2. For all primes p 6= q, q > 2 and p ramified, we have

H1(SU(2, 1)(Zp),Fq) = 0 and

H2(SU(2, 1)(Zp),Fq) = 0.

4.3 H i(SU(2, 1)(Zp),Fp) for i = 1, 2

We will assume throughout this section that p is a rational prime greater than

3. We calculated that H2(G(0)/G(1),Fp) = 0 and H1(G(0)/G(1),Fp) = 0 in the

previous section. We first use this result to find H1(SU(2, 1)(Zp),Fp), which will

complete the calculations for H1.
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Proposition 4.3.1. Let p > 3 be a ramified prime in k. Then

H1(SU(2, 1)(Zp),Fp) = 0.

Proof. First recall from Proposition 4.2.1 that H1(G(0)/G(1),Fp) = 0, and we noted

in the proof of Lemma 3.2.4 above that (su(2, 1)(Fp))SO(2,1)(Fp) = 0, provided p >

3. It immediately follows from the fact that G(n)/G(n + 1) ⊂ su(2, 1)(Fp), that

(G(n)/G(n+ 1))SO(2,1)(Fp) = 0 for all n > 0. The spectral sequence

Hr(G(0)/G(1), Hs(G(1)/G(2),Fp)) =⇒ Hr+s(G(0)/G(2),Fp),

gives the following exact sequence of low degree terms

0 −→ H1

(
G(0)

G(1)
,Fp
)
−→ H1

(
G(0)

G(2)
,Fp
)
−→ H0

(
G(0)

G(1)
, H1

(
G(1)

G(2)
,Fp
))

.

This tells us that H1(G(0)/G(2),Fp) = 0. Inductively, the spectral sequence

Hr(G(0)/G(n), Hs(G(n)/G(n+ 1),Fp)) =⇒ Hr+s(G(0)/G(n+ 1),Fp),

gives us H1(G(0)/G(n),Fp) = 0 for all n > 0. Thus H1(SU(2, 1)(Zp),Fp) = 0, as

required.

We now consider H2(G(0),Fp), which we do by finding H2(G(0)/G(n),Fp) for
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each n > 1. To achieve this, we will once again make use of the Hochschild-Serre

spectral sequence

Hr(G(0)/G(n), Hs(G(n)/G(n+ 1),Fp)) =⇒ Hr+s(G(0)/G(n+ 1),Fp),

with r + s = 2. We begin with n = 1. Since we have already done the calculation

for r = 2 and s = 0, we take r = 1 and s = 1 and our immediate aim is to find

H1(SO(2, 1)(Fp), H1(G(1)/G(2),Fp)). First, recall from Lemma 4.1.1 that

G(1)/G(2) =
{
X ∈ sl3(Fp) : X tJ − JX ∼= 0 mod p

}
.

For brevity, we set M = G(1)/G(2) and note that as a G(0)-module, M is also

isomorphic to G(n)/G(n + 1) for all odd n > 0. Again for p > 3, the Killing form

gives an SO(2, 1)(Fp)-equivariant isomorphism between M and H1(M,Fp). This,

together with Lemma 4.1.2 and the fact that N ∩ g−1Ng = N if g ∈ N o S and 1

otherwise, gives an isomorphism

H1(SO(2, 1)(Fp), H1(M,Fp)) ∼= H1(N(Fp),M)S(Fp).

Direct computation shows that M has dimension 5 as an Fp-vector space, and has
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a basis given by

m2 =


0 0 1

0 0 0

0 0 0

 ,m1 =


0 1 0

0 0 1

0 0 0

 ,m0 =


1 0 0

0 −2 0

0 0 1

 ,

m−1 = mt
1 and m−2 = mt

2.

(4.3)

We now choose a filtration on M , given by

M = M(0) ⊃M(1) ⊃ · · · ⊃M(4) ⊃M(5) = 0,

where M(i) = 〈mi−2, · · · ,m2〉 for each 0 ≤ i ≤ 4. A routine check verifies that

each quotient M(i)/M(i + 1) is fixed under the action of N . Furthermore, if sx =
x 0 0

0 1 0

0 0 x−1

 ∈ S(Fp), then sx acts on M(i)/M(i+ 1) by multiplication by xi−2,

and sx acts on N by multiplication by x. Given that for each i we have an S-module

isomorphism

H1(N,M(i)/M(i+ 1)) ∼= H1(N,Fp)⊗M(i)/M(i+ 1),

we see that sx acts on H1(N,M(i)/M(i + 1)) by multiplication by x−1xi−2 = xi−3.

So, given x ∈ F×p , we need to know for which 0 ≤ i ≤ 4 gives xi−3 = 1 for
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all x. Clearly this happens when i = 3. However, our assumption that p > 3

guarantees that a choice of x with |x| > 3 can be made, hence xi−3 = 1 if and only if

i = 3. Written another way, this says that H1(N,M(3)/M(4))S(Fp) = Fp, and that

H1(N,M(i)/M(i+ 1))S(Fp) = 0 for i 6= 3. We can now proceed in a similar manner

to the unramified cases. Namely, take the short exact sequence

0 −→M(4) −→M(3) −→M(3)/M(4) −→ 0,

this gives a long exact sequence

0 −→M(4)N −→M(3)N −→M(3)/M(4)N −→ H1(N,M(4)) −→

−→ H1(N,M(3)) −→ H1(N,M(3)/M(4)) −→ · · · .

∣∣S∣∣ = p− 1 which is clearly coprime to p, so (−)S is an exact functor on Fp [S(Fp)]-

modules. Writing B = N oS, we may take S-invariants in this long exact sequence

to arrive at the long exact sequence

0 −→M(4)B −→M(3)B −→M(3)/M(4)B −→ H1(N,M(4))S −→

−→ H1(N,M(3))S −→ H1(N,M(3)/M(4))S −→ · · · .
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The first 4 terms in the sequence are 0, so this gives

0 −→ H1(N,M(3))S −→ Fp −→ H2(N,M(4))S −→ · · · .

It follows that H1(N,M(3))S is either 0 or Fp. The next quotient M(2)/M(3) in

the filtration on M fits into the short exact sequence

0 −→M(3) −→M(2) −→M(2)/M(3) −→ 0,

which gives the corresponding long exact sequence

0 −→M(3)B −→M(2)B −→M(2)/M(3)B −→ H1(N,M(3))S −→

−→ H1(N,M(2))S −→ H1(N,M(2)/M(3))S −→ · · · .

Note that M(3)B = M(2)B = 0, (F (2)/F (3))B = Fp and recall from above that

H1(N,F (2)/F (3))T = 0. With this, the long exact sequence is

0 −→ Fp −→ H1(N,M(3))S −→ H1(N,M(2))S −→ 0 −→ · · · .

From this it becomes clear that the only option for H1(N,F (3))S is Fp and sub-

sequently that H1(N,M(2))S = 0. Carrying on in a similar way, we arrive at the
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conclusion that H1(N,M)S = 0. That is,

H1(G(0)/G(1), H1(G(1)/G(2),Fp)) = 0. (4.4)

Whilst we do not need the calculation immediately, we will later need to know what

H1(G(0)/G(1), H1(G(2)/G(3),Fp)) is. Since this is similar to what we have just

done, we will look at it now. For brevity, define L = G(2)/G(3) which we note is also

isomorphic as a G(0)-module to G(n)/G(n+1) for all even n > 0. Following what we

did above, we see that finding H1(G(0)/G(1), L) amounts to finding H1(N,L)S(Fp).

The following is a basis for L over Fp:

l1 =


0 1 0

0 0 −1

0 0 0

 , l0 =


1 0 0

0 0 0

0 0 −1

 , l−1 =


0 0 0

1 0 0

0 −1 0

 .

Again, choose a filtration on L by

L = L(0) ⊃ L(1) ⊃ L(2) ⊃ L(3) = 0,

where L(i) = 〈li−1, · · · , l1〉 for each 0 ≤ i ≤ 2. We are now in a very similar situation

to what we had above. Following the same method, we again see that

H1(G(0)/G(1), H1(G(2)/G(3),Fp)) = 0. (4.5)
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To find H2(G(0)/G(2),Fp), we still need to know H0(G(0)/G(1), H2(M,Fp)), which

corresponds to the E0,2
2 entry in the spectral sequence converging to it.

Proposition 4.3.2. Fix a prime p > 3. Then

H0(G(0)/G(1), H2(M,Fp)) = 0,

and furthermore, H0(G(0)/G(n), H2(M,Fp)) = 0 for all odd n > 0.

Proof. We begin by noting that M ⊂ su(2, 1)(Fp) and from Lemma 3.2.4, we already

know that

(H2(su(2, 1)(Fp),Fp))SO(2,1)(Fp) = 0.

It follows that (H2(M,Fp))SO(2,1)(Fp) = 0 and (H2(M,Fp))G(0)/G(n) = 0 for all odd

n > 0, completing the proof.

Keeping in line with the unramified cases, we have been able to show that

H2(G(0)/G(2),Fp) = 0. Of course our ultimate aim is to find H2(G(0)/G(n),Fp)

for each n. We can prove the corresponding Proposition in the ramified case to

Proposition 2.3.9 from the split case, only this time the proof needs treating slighty

differently due to G(n)/G(n+ 1) having dependency on the parity of n.
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Proposition 4.3.3. For each n ≥ 1 and all primes p > 3,

H1

(
G(0)

G(n)
, H1

(
G(n)

G(n+ 1)
,Fp
))

= 0.

Proof. The proof will be by induction. We’ve shown that the result is true for n = 1,

and we consider the short exact sequence

1 −→ G(n)/G(n+ 1) −→ G(0)/G(n+ 1) −→ G(0)/G(n) −→ 1,

giving us the corresponding Hochschild-Serre spectral sequence

Hr

(
G(0)

G(n)
, Hs

(
G(n)

G(n+ 1)
,
G(n+ 1)

G(n+ 2)

))
=⇒ Hr+s

(
G(0)

G(n+ 1)
,
G(n+ 1)

G(n+ 2)

)
.

Recall that G(n)/G(n+ 1) acts trivially on G(n+ 1)/G(n+ 2) when n ≥ 1 and the

spectral sequence gives us an exact sequence of low degree terms,

0 −→ H1

(
G(0)

G(n)
,
G(n+ 1)

G(n+ 2)

)
−→ H1

(
G(0)

G(n+ 1)
,
G(n+ 1)

G(n+ 2)

)
−→

−→ H0

(
G(0)

G(n)
, H1

(
G(n)

G(n+ 1)
,
G(n+ 1)

G(n+ 2)

))
−→ H2

(
G(0)

G(n)
,
G(n+ 1)

G(n+ 2)

)
.

Here is where the difference lies between the ramified and unramified cases; unlike

in the unramified cases, we cannot assume at this stage that H1
(
G(0)
G(n)

, G(n+1)
G(n+2)

)
= 0

as part of an inductive hypothesis in the same way as we did in Proposition 2.3.9.
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However, we do notice now that

H0

(
G(0)

G(n)
, H1

(
G(n)

G(n+ 1)
,
G(n+ 1)

G(n+ 2)

))
= Hom

(
G(n)

G(n+ 1)
,
G(n+ 1)

G(n+ 2)

) G(0)
G(n)

,

which is isomorphic to either Hom(M,L)G(0)/G(n) or Hom(L,M)G(0)/G(n), depend-

ing on the parity of n (recall that M and L are isomorphic as G(0)-modules to

G(n)/G(n + 1) for all odd (resp. even) n > 0). In either case, they are both 0 and

hence H0
(
G(0)
G(n)

, H1
(
G(n)
G(n+1)

, G(n+1)
G(n+2)

))
= 0. So the exact sequence becomes

0 −→ H1

(
G(0)

G(n)
,
G(n+ 1)

G(n+ 2)

)
−→ H1

(
G(0)

G(n+ 1)
,
G(n+ 1)

G(n+ 2)

)
−→ 0. (4.6)

We now consider the spectral sequence

Hr

(
G(0)

G(n)
, Hs

(
G(n)

G(n+ 1)
,
G(n+ 2)

G(n+ 3)

))
=⇒ Hr+s

(
G(0)

G(n+ 1)
,
G(n+ 2)

G(n+ 3)

)
.

This gives us the left exact sequence

0 −→ H1

(
G(0)

G(n)
,
G(n+ 2)

G(n+ 3)

)
−→ H1

(
G(0)

G(n+ 1)
,
G(n+ 2)

G(n+ 3)

)
−→

−→ H0

(
G(0)

G(n)
, H1

(
G(n)

G(n+ 1)
,
G(n+ 2)

G(n+ 3)

))
−→ H2

(
G(0)

G(n)
,
G(n+ 2)

G(n+ 3)

)
.

(4.7)

The idea is to use both the sequences in 4.6 and 4.7 together to simultaneously

calculate both H1
(
G(0)
G(n)

, G(n+1)
G(n+2)

)
and H1

(
G(0)
G(n)

, G(n+2)
G(n+3)

)
for increasing n, and thus

allowing us to find H1
(
G(0)
G(n+1)

, G(n+1)
G(n+2)

)
for each n.
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Our induction process starts here. We know from equations (4.4) and (4.5) that

H1
(
G(0)
G(1)

, G(1)
G(2)

)
= 0 and H1

(
G(0)
G(1)

, G(2)
G(3)

)
= 0. Suppose for our induction hypothesis

that

H1

(
G(0)

G(n)
,
G(n)

G(n+ 1)

)
= 0 and

H1

(
G(0)

G(n)
,
G(n+ 1)

G(n+ 2)

)
= 0,

is true for n. So by the inductive hypothesis H1
(
G(0)
G(n)

, G(n+1)
G(n+2)

)
= 0 and we immedi-

ately have

H1

(
G(0)

G(n+ 1)
,
G(n+ 1)

G(n+ 2)

)
= 0,

from the sequence in 4.6. We now must show that H1
(
G(0)
G(n+1)

, G(n+2)
G(n+3)

)
= 0. First,

we note that G(n+ 2)/G(n+ 3) = G(n)/G(n+ 1). So from the inductive hypothesis

we have H1
(
G(0)
G(n)

, G(n+2)
G(n+3)

)
= 0, and from the sequence in 4.7 we have

0 −→ H1

(
G(0)

G(n+ 1)
,
G(n+ 2)

G(n+ 3)

)
−→

−→ H0

(
G(0)

G(n)
, H1

(
G(n)

G(n+ 1)
,
G(n+ 2)

G(n+ 3)

))
−→ H2

(
G(0)

G(n)
,
G(n+ 2)

G(n+ 3)

)
.

This time the second term is Fp and we find ourselves in the same situation as in

Proposition 2.3.9 from the split case. However, the proof we gave of Proposition

2.3.9 goes through from here to show that the map between the second and third
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terms is an isomorphism, and hence that H1
(
G(0)
G(n+1)

, G(n+2)
G(n+3)

)
= 0. This completes

the inductive hypothesis and the proof.

One final calculation remains; we know that H0( G(0)
G(n)

, H2( G(n)
G(n+1)

,Fp)) = 0 for all

odd n from Proposition 4.3.2. For n even, it suffices to prove the following.

Proposition 4.3.4. Let p be a rational prime greater than 3. Then

H0(G(0)/G(1), H2(G(2)/G(3),Fp)) = 0,

and furthermore, H0(G(0)/G(n), H2(G(n)/G(n+ 1),Fp)) = 0 for all even n > 0.

Proof. Again we begin by noting that L ⊂ su(2, 1)(Fp) and from Lemma 3.2.4, we

already know that

(H2(su(2, 1)(Fp),Fp))SO(2,1)(Fp) = 0.

We must then have (H2(L,Fp))SO(2,1)(Fp) = 0 and (H2(G(n)/G(n+1),Fp))G(0)/G(n) =

0 for all even n > 0, completing the proof.

Propositions 4.3.2 and 4.3.4 immediately give us the following Corollary.

Corollary 4.3.5. Let p ∈ Z be a rational prime greater than 3 which ramifies in k.

Then for all n > 0

H0(G(0)/G(n), H2(G(n)/G(n+ 1),Fp)) = 0.
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With the results of this section, we arrive at the following theorem.

Theorem 4.3.6. Let p and q be rational primes such that p ramifies in k. Then

(i) H1(G(Zp),Fp) = H2(G(Zp),Fp) = 0 for p > 3, and

(ii) H1(G(Zp),Fq) = H2(G(Zp),Fq) = 0 for q > 2 and all p 6= q.

Proof. The statements for H1 follow from Corollary 4.2.2 and Proposition 4.3.1. The

first statement for H2 follows from Propositions 4.2.1, 4.3.3 and Corollary 4.3.5. The

second statement for H2 is Corollary 4.2.2.



Conclusions

In section 2.2, we took a compact open subgroup Kf =
∏

pKp of SU(2, 1)(Af
Q)

and began calculating H2(Kf ,Fq), as was necessary in order to use Theorem 2.1.10.

We began by decomposing the cohomology group as

Hr(Kf ,Z/qZ) = lim−→
N

Hr

(∏
p<N

Kp,Z/qZ

)
,

and applying the Künneth formula with r = 2 gave us

H2

(∏
p<N

Kp,Fq

)
=
⊕
p<N

H2(Kp,Fq)⊕
⊕

p1<p2<N

H1(Kp1 ,Fq)⊗H1(Kp2 ,Fq).

This reduced the problem of finding H2(Kf ,Fq) to that of finding Hn(Kp,Fq) for

n = 1, 2 and for each prime p ∈ Z. Having done this for Kp = SU(2, 1)(Zp)

in Theorems 2.3.10, 3.2.7 and 4.3.6, we can collect the results together into the

following theorem.

Theorem 4.3.7. Let Kf =
∏

p SU(2, 1)(Zp) ⊂ SU(2, 1)(Af
Q) where the product is

135
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taken over all primes p ∈ Z. Then for all primes q > 3, we have H2(Kf ,Fq) = 0.

Corollary 4.3.8. Let SU(2, 1) denote a unitary group of the first kind, let Γ =

SU(2, 1)(Z) and q > 3 be a prime. Suppose there exists a congruence subgroup

Γ′ ⊂ Γ such that the restriction map H2(Γ,Fq)→ H2(Γ′,Fq) is not injective. Then

the congruence kernel of SU(2, 1) is infinite.

Whilst this condition isn’t necessary for the congruence kernel to be infinite, it

gives us an alternative approach to proving that the congruence kernel is infinite for

the cases when H1(Γ,C) = 0 for all arithmetic groups Γ. This in particular is the

case for special unitary groups of the second kind. To demonstrate the relevance of

our main theorem (Corollary 4.3.8) to the special unitary groups of the second kind,

we first describe how one can construct such a group. To do so, take an imaginary

quadratic extension k/Q, a division algebra D of dimension 9 over k such that the

center of D is k, and an involution ι : D −→ D such that ι restricts to x 7→ x̄ on k.

We note that we may construct D as follows; take a degree 3 Galois extension L/k

with Gal(L/k) = 〈σ〉. Choosing an element r ∈ L such that r 6= NL/k(d) for any

d ∈ L×, the subset


a b c

rσ(c) σ(a) σ(b)

rσ2(b) rσ2(c) σ2(a)

 ⊂M3(L),

is a division algebra over k of degree 9 (see Chapter 2, Problems 17-19 of [15]). For
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a commutative Q-algebra A, the algebraic group is given by

SU1(D, ι)(A) = {g ∈ SL1(D ⊗Q A) : ι(g)g = 1} .

If we wish to perform similar calculations for special unitary groups of the second

kind as we did in chapters 2,3 and 4, we need to understand SU1(D, ι)(Qp), for

p a rational prime. We say that Dp := D ⊗Q Qp is ramified if Dp is the unique

division algebra over Qp, and is unramified otherwise. When Dp is unramified,

Dp
∼= M3(Qp) × M3(Qp) if p splits in k and Dp

∼= M3(kp) when p is inert in

k. However, D is ramified at p for only finitely many primes p (see Chapter XI,

Theorem 1, Page 202 of [33]). It follows that if G and G ′ are special unitary groups

of the first and second kind respectively, then for all but the finitely many primes p

for which D ramifies,

G(Zp) ∼= G
′
(Zp).

Thus for all but finitely many p, the cohomology calculations required to invoke our

main theorem (Corollary 4.3.8), reduce to the cohomology calculations for groups

of the first kind as performed in chapters 2,3 and 4.

We discuss briefly now how one can try to explicitly use Corollary 4.3.8. When a

fundamental domain for Γ is known, the cohomology of Γ can be calculated directly

from its fundamental domain. In fact when the fundamental domain is noncom-
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pact, we can hope to find a Γ-equivariant deformation retraction of the fundamental

domain to a smaller space known as a spine, from which we can compute the coho-

mology of Γ (see Section 11, [34]). The spine has the structure of a cell complex and

so its cohomology can be found combinatorially. The map H2(Γ,Fp) −→ H2(Γ
′
,Fp)

can be viewed by Shapiro’s Lemma as a map H2(Γ,Fp) −→ H2(Γ, indΓ
Γ′ (Fp)), where

Fp −→ indΓ
Γ′ (Fp) is given by 1 7→ (γ 7→ 1). The map H2(Γ,Fp) −→ H2(Γ, indΓ

Γ′ (Fp))

can then be computed from the spine of Γ and will take the form of a sparse ma-

trix over Fp. The question of whether this map is injective can be completed by

calculating the rank of this matrix.

There are already concrete descriptions of fundamental domains for some groups

of the first kind. An example of a spine for SU(2, 1)Q(
√
−1)/Q is described in [34] and

a fundamental domain for PU(2, 1)Q(ω)/Q where ω is a cube root of unity was found

in [10].
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