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Abstract: Sample selection models are employed when an outcome of in-
terest is observed for a restricted non-randomly selected sample of the pop-
ulation. We consider the case in which the response is binary and continuous
covariates have a nonlinear relationship to the outcome. We introduce two
statistical methods for the estimation of two binary regression models in-
volving semiparametric predictors in the presence of non-random sample
selection. This is achieved using a multiple-stage procedure, and a newly
developed simultaneous equation estimation scheme. Both approaches are
based on the penalized likelihood estimation framework. The problems of
identification and inference are also discussed. The empirical properties of
the proposed approaches are studied through a simulation study. The meth-
ods are then illustrated using data from the American National Election
Study where the aim is to quantify public support for school integration.
If non-random sample selection is neglected then the predicted probability
of giving, for instance, a supportive response may be biased, an issue that
can be tackled using the proposed tools.
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1. Introduction

Sample selection techniques are employed when observations are not from a
random sample of the population. For instance, in public surveys it may be
the case that some individuals choose not to answer some specific questions
because they feel that their opinion might paint them in an unfavorable light.
This leaves us with a self-selected sample. So if the interest is in quantifying the
relationship between various demographic and socio-economic characteristics
and an outcome variable in the population as a whole, then using the responding
subsample is likely to produce biased estimates [16, 9].

To fix ideas, let us consider a study of public opinion polls on school in-
tegration that uses data from an American survey. The main question was if
respondents support government intervention to ensure that black and white
children go to the same school. In particular, individuals were first asked if they
had an opinion on the integration question (0 = no, 1 = yes) and then what that
opinion was (0 = no integration, 1 = yes integration). Information on individual
demographic and socio-economic characteristics was also recorded. If the respon-
dents who opposed government involvement in school integration chose not to
answer the question, because they felt their opinion might be perceived as so-
cially unacceptable, then the sample of individuals who provided an opinion may
have differed in systematic ways from the sample of non-respondents. To clarify
this (often misunderstood) concept, let us characterize each individual by some
observed and unobserved features or confounders. If the responding and nonre-
sponding subsamples have similar characteristics, then the issue of non-random
sample selection does not arise since the average (observed and unobserved)
features of the responding sample are similar to those of the population. If the
decision to answer is no longer random, because of differing characteristics be-
tween the responding and nonresponding individuals, then biased analyses are
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expected. When the relationship between the decision to respond and outcome is
only through observables, it is possible to correct for non-random sample selec-
tion by controlling for these variables in the outcome equation. However, in the
presence of unobservables influencing the decision to answer and the outcome,
controlling only for observables is clearly insufficient. That is, if some individu-
als are part of the responding subsample because of their unobserved features,
then regardless of whether observables and unobservables are correlated in the
overall population they will be in the selected sample [9]. This means that ig-
noring the potential correlation between the unobserved factors influencing the
decision to answer and the outcome can lead to inconsistent estimates of the
covariate impacts in the outcome equation. For other examples of non-random
sample selection, see [1, 7, 30].

Statistical methods correcting for non-random selection have been devel-
oped. Many of these concern models where the response variable is Gaussian
[5, 16, 11, 22, 25, 40]. There are also a number of works that go beyond Gaussian
responses; these include models for skewed, count and ordinal data [35, 4, 36, 29].
We consider the case in which the response is binary. The procedures currently
available to fit a sample selection binary response model are those presented
in [8, 3, 11]. These involve the (separate or simultaneous) estimation of two
binary regression models for the selection and outcome equations. The out-
come equation is used to examine the substantive question of interest, whereas
the selection equation is used to detect non-random selection and hence obtain
consistent estimates of the covariate effects in the outcome equation. One po-
tential drawback to the application of these techniques is the lack of flexibility
in handling the possible presence of nonlinear covariate-response relationships.
That is, because the functional shape between predictors and outcome is rarely
known a priori, imposing a parametric structure may prevent the researcher
from recognizing a strong covariate effect or, more generally, revealing interest-
ing relationships [34, 42].

The contribution of this article is twofold, one methodological and the other
practical. First, we extend the procedures discussed in [8, 3, 11] to incorpo-
rate semiparametric covariate effects. In particular, we present a multiple-stage
estimation approach, and a penalized likelihood estimation framework for a
simultaneous system of two binary equations. Both approaches allow for flex-
ible functional dependence of the binary responses on continuous covariates.
Second, we implement the methods discussed in this article in the R package
SemiParBIVProbit [26]; this can be particularly attractive to practitioners who
wish to fit such models. No other computational alternatives which consider a
semiparametric sample selection binary response model are available in the lit-
erature. It may be argued that the model setup adopted here is fairly similar to
that of [40] except that, in the current context, the outcome is binary. This sug-
gests that the Bayesian estimation scheme introduced by [40] can be extended
for fitting the model considered in this paper. We elected to follow a frequentist
approach because it can especially appeal to researchers and practitioners al-
ready familiar with traditional frequentist techniques and has the advantage of
being computationally fast. The empirical properties of the methods are studied
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through a simulation study, and the methods then illustrated using the above-
mentioned case study on public opinion polls on school integration.

2. Methods

In this section, we describe the model structure of a semiparametric binary
response sample selection model, present two strategies for parameter estimation
and discuss the problems of identification and inference.

2.1. The model

The model consists of a first selection equation and a second outcome equation
determining the response. The selection equation, expressed using the latent
variable representation, is given as

y∗1i = x+
1iθ1 +

K1∑

k1=1

f1k1
(z1k1i) + ε1i, i = 1, . . . n, (2.1)

where n denotes the sample size, and y∗1i is a latent continuous variable which
is related to its observable counterpart y1i through the rule 1(y∗1i > 0). The
outcome equation is given as

y∗2i = x+
2iθ2 +

K2∑

k2=1

f2k2
(z2k2i) + ε2i, (2.2)

where

y2i =

{
1 if (y∗2i > 0 & y1i = 1)

0 if (y∗2i < 0 & y1i = 1)
,

and y2i is missing when y1i = 0. In (2.1), x+
1i =

(
1, x+

12i, . . . , x
+
1P1i

)
represents

the ith row vector of x+
1 , the n×P1 model matrix for any parametric model com-

ponents (i.e. intercept, binary and categorical predictors), with corresponding
parameter vector θ1. The f1k1

(z1k1i) are unknown smooth functions of the K1

continuous covariates z1k1i. These components are represented using the regres-
sion spline approach (see next section). Each smooth term may be multiplied by
some predictor, yielding a ‘varying coefficients’ model [15], and smooth functions
of two covariates may also be considered [42, pp. 154-167]. Similarly in (2.2),
x+
2i is the i

th row vector of the nse×P2 model matrix x+
2 , with coefficient vector

θ2, the f2k2
(z2k2i) are unknown smooth terms of the K2 continuous regressors

z2k2i, and nse denotes the size of the selected sample. For identification purposes,
smooth terms are subject to constraints such as

∑
i fvkv

(zvkvi) = 0, v = 1, 2,
kv = 1, . . . ,Kv. As in [40], we make the assumption that unobserved confounders
have a linear impact on the responses, i.e. (ε1i, ε2i) ∼ N ([0, 0], [1, ρ, ρ, 1]), where
ρ is the correlation coefficient and the error variances are normalized to unity
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since the parameters in the model can only be identified up to a scale coeffi-
cient.

It is important to stress that estimation of (2.2) alone when ρ 6= 0 will yield
inconsistent parameter estimates. As explained in the previous section, intu-
itively, ignoring the correlation between the unobserved confounders influencing
the decision to answer and the outcome will induce bias in the covariate impacts
because of non-random sample selection on unobservables. This can be formally
seen from the derivations in Section 2.2.

Going back to our example, y1i and y2i would correspond to the question of
whether an individual had an opinion on the integration question and what that
opinion was, respectively. Covariate vectors x+

1i and x+
2i would contain variables

such as gender and region, and the f1k1
(z1k1i) and f2k2

(z2k2i) could be thought
of as smooth nonlinear effects of covariates such as age and education in both
the selection and outcome equations.

2.1.1. Smooth function representation

A popular and effective way of representing smooth functions of continuous co-
variates is the regression spline approach [10]. The basic idea is to approximate
fk(zki), where subscript v has been dropped to avoid clutter, by a linear com-
bination of known spline basis functions, bkj(zki), and regression parameters,

βkj . That is, fk(zki) =
∑Jk

j=1 βkjbkj(zki) = Bk(zki)βk, where Jk is the number
of spline bases and hence regression coefficients used to represent fk, Bk(zki)
represents the ith row vector of dimension Jk consisting of the basis functions
evaluated at the observation zki, i.e. Bk(zki) = {bk1(zki), bk2(zki), . . . , bkJ (zki)},
and βk is the corresponding parameter vector. Calculating Bk(zki) for each i
yields Jk curves encompassing different degrees of complexity which multiplied
by some real valued parameter vector βk and then summed give a curve estimate
for fk(zk). Basis functions are usually chosen to have convenient mathematical
properties and good numerical stability. Possible choices are B-splines, cubic
regression and thin plate regression splines (see [34] for a more detailed intro-
duction). Based on the result above, equations (2.1) and (2.2) can written as

y∗1i = x+
1iθ1 +B1iβ1 + ε1i = η1i + ε1i, i = 1, . . . , n, (2.3)

and

y∗2i = x+
2iθ2 +B2iβ2 + ε2i = η2i + ε2i, i ∈ {j : y1j = 1}, (2.4)

where Bvi = {Bv1(zv1i), . . . ,BvKv
(zvKvi)}, βT

v = (βT

v1, . . . ,β
T

vKv
) and ηvi =

x+
viθv +Bviβv, for v = 1, 2.

2.2. Multiple-stage estimation approach

Non-random sample selection can be dealt with by using a device which [16]
introduced for an analogous problem in binary-choice regression, and that [8, 3]
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employed in the sample selection context for fully parametric probit models.
Here, we extend this device to incorporate semiparametric covariate effects.

The population regression for (2.4) can be written as

E(y∗2i|x+
2i,B2i) = η2i,

while the regression for the subsample of complete observations is

E(y∗2i|x+
2i,B2i, y

∗

1i > 0) = η2i + E(ε2i|x+
2i,B2i, y

∗

1i > 0). (2.5)

It follows that

E(ε2i|x+
2i,B2i, y

∗

1i > 0) = ρϑi, (2.6)

where ϑi = φ(η1i)/Φ(η1i) (typically called inverse Mills ratio), and φ and Φ
are the density and distribution functions of a standardized normal. Regression
equation (2.5) can be therefore written as

y∗2i = η2i + ρϑi + ε̃2i, (2.7)

where E(ε̃2i|y∗1i > 0) = 0 and E(ε̃22i|y∗1i > 0) = τ2i = 1 + ρ2ϑi(−η1i − ϑi)
[16]. It is clear that the parameter estimates for the covariates in η2i that are
correlated with η1i are inconsistent if ρ 6= 0. This can be thought of as arising
from an ordinary specification error with the conditional mean (2.6) deleted as
a covariate in the model. Including ϑi as an explanatory variable, as in equation
(2.7), would rectify this situation. In practice we do not know ϑi, but it is
possible to obtain a consistent estimate of it based on the estimated coefficients
of selection equation (2.3). After dividing the components in the right hand side
of (2.7) by τi, because E(ε̃22i|y∗1i > 0) = τ2i , and using the selected sample, we
can obtain parameter estimates using

y∗2i = (x+
2i/τi)θ2 +B∗

2iβ2 + ρ(ϑi/τi) + ε̄2i, (2.8)

where B∗

2i includes the quantities corresponding to the spline bases for the
smooth functions of the covariates z2k2i rescaled by τi, E(ε̄2i|y∗1i > 0) = 0,
E(ε̄22i|y∗1i > 0) = 1, and ϑi and τi can be consistently estimated as described
above.

The algorithm to fit model (2.8) can be summarised as follows:

step 1 Fit a probit model for equation (2.3) to obtain consistent estimates of η̂1i
and hence ϑ̂i, for all i.

step 2 Using the selected sample, obtain a consistent estimate of ρ by fitting a
linear probability model for equation (2.7), where ϑi is replaced with ϑ̂i

for all i.

step 3 Estimate τ̂i via

√
1 + ρ̂2ϑ̂i(−η̂1i − ϑ̂i), where ϑ̂i, η̂1i and ρ̂ are obtained

in steps 1 and 2.
step 4 Using the selected sample and after rescaling all components in the equa-

tion of interest by the τ̂i, fit a probit model for equation (2.8).
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Remark 1. Equation (2.8) is fitted using probit regression even if the normality

assumption of ε̄2i, which is necessary for consistency of θ̂2 and β̂2, is clearly not
met. However, as shown by [8] in a fully parametric context, this approach can
deliver estimates which are close, if not as good as, to those obtained using a
consistent estimator such as maximum likelihood.

Remark 2. Standard errors of the parameter estimates in (2.8) are not realistic
in that, for example, they do not account for that additional source of sampling
variability due to the estimation of ϑi and τi. In addition, the method can
produce an estimate for ρ which is not in the range [−1, 1].

Remark 3. The models used in the steps outlined above may be fitted using
unpenalized parameter estimation procedures. However, because of the flexible
model specification considered here, this is likely to result in smooth function
estimates that are too wiggly to produce sensible results. This issue can be
overcome by penalized estimation, where the objective function is augmented
by a penalty term, such as

∑
k λk

∫
f ′′

k (zk)
2dzk, measuring the (second-order, in

this case) roughness of the smooth terms in the model. The λk are smoothing
parameters controlling the trade-off between fit and smoothness. Since regression
splines are linear in their model parameters, such a penalty can be expressed as
a quadratic form in the generic parameter vector β (containing the coefficients
of all smooth terms in the model), i.e.

∑
k λk

∫
f ′′

k (zk)
2dzk = βT (

∑
k λkSk)β,

where the Sk are positive semi-definite known square matrices. Depending on
the model employed, parameters can be estimated by either minimization of a
penalized least squares criterion or maximization of a penalized log-likelihood
function. The λk can be selected via a prediction error or likelihood criterion
[34, Chapter 8].

2.3. Bivariate probit estimation approach

In the current sample selection context, the data identify the three possible
events (y1i = 1, y2i = 1), (y1i = 1, y2i = 0) and (y1i = 0), with probabilities

P(y1i = 1, y2i = 1|x+
1i,B1i,x

+
2i,B2i) = p11i = Φ2(η1i, η2i; ρ),

P(y1i = 1, y2i = 0|x+
1i,B1i,x

+
2i,B2i) = p10i = Φ(η1i)− Φ2(η1i, η2i; ρ),

P(y1i = 0|x+
1i,B1i) = p0i = Φ(−η1i),

where Φ2 is the distribution function of a standardized bivariate normal with
correlation ρ. The log-likelihood function is therefore

ℓ(δ) =

n∑

i=1

{y1iy2i log(p11i) + y1i(1− y2i) log(p10i) + (1 − y1i) log(p0i)} ,

where δT = (δT1 , δ
T

2 , ρ), and δTv = (θT

v ,β
T

v ).
As pointed out in Remark 3 of the previous section, in a smoothing context

it is necessary to penalize the regression spline coefficients to avoid exceedingly
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wiggly smooth function estimates. Hence, the model is fitted by maximization
of the penalized log-likelihood

ℓp(δ) = ℓ(δ)− 1

2
βTSλβ, (2.9)

where βT = (βT

1 ,β
T

2 ) and Sλ =
∑2

v=1

∑Kv

kv=1 λvkv
Svkv

. Note that because

ρ is bounded in [−1, 1], we use the common transform ρ∗ = tanh−1(ρ) =
(1/2) log {(1 + ρ) / (1− ρ)} in optimization. Given values for the λvkv

, we seek
to maximize (2.9). This is achieved by using a trust region algorithm [31, Section
4.2] which is based on

δ̂[a+1] = δ̂[a] + (I [a] + S∗

λ)
−1(g[a] − S∗

λδ̂
[a]), (2.10)

where a is the iteration index and S∗

λ an overall block-diagonal penalty matrix
made up of λvkv

Svkv
and 0 components. The gradient vector g is defined by two

subvectors g1 = ∂ℓ(δ)/∂δ1 and g2 = ∂ℓ(δ)/∂δ2, and a scalar g3 = ∂ℓ(δ)/∂ρ∗,
while the Fisher information matrix has a 3 × 3 matrix block structure with
(r, h)th element Ir,h = −E

[
∂2ℓ(δ)/∂δr∂δ

T

h

]
, r, h = 1, . . . , 3, where δ3 = ρ∗.

The use of a trust region algorithm proved to be faster and more reliable than
the standard approaches adopted in the literature to estimate likelihood-based
models, with occasional convergence failure for small values of n and nse. In
(2.10), the smoothing parameters are fixed at some values. This is because joint
estimation of δ and λ = (λ1k1

, . . . , λ1K1
, λ2k2

, . . . , λ2K2
) via maximization of

(2.9) would clearly lead to overfitting since the highest value for ℓp(δ) would
be obtained when λ = 0. Hence the need to estimate λ using an appropriate
criterion.

2.3.1. Smoothing parameter selection

Smoothing parameter selection can be achieved by direct grid search optimiza-
tion of a prediction error criterion, for example. However, if the model has more
than one smooth term per equation, then this can become computationally bur-
densome, hence making the model building process difficult in most applied
contexts. There are a number of techniques for automatic multiple smoothing
parameter selection within the penalized likelihood framework. Without claim
of exhaustiveness, these include the performance-oriented iteration method orig-
inally proposed by [13] and mixed model approach to penalized regression spline
estimation [34]. The former applies the generalized cross validation or unbiased
risk estimator [UBRE; 6] to each working linear model of the penalized iter-
atively re-weighted least squares (P-IRLS) scheme used to fit the model. The
latter consists of viewing the λvkv

as variance components so that they can be
estimated, e.g., by restricted maximum likelihood. Here, we adapt the approach
by [13] to the current context.

Given a parameter vector value for λ, iterative equation (2.10) can be written
in P-IRLS form

‖
√
W

[a]
(z[a] −Xδ)‖2 + δTS∗

λδ, (2.11)
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where
√
W is a weight non-diagonal matrix square root, zi is the 3-dimensional

vector zi = Xiδ
[a]+W−1

i di, di = {∂ℓ(δ)i/∂η1i, ∂ℓ(δ)i/∂η2i, ∂ℓ(δ)i/∂η3i}, η3i =
ρ∗,Wi is the 3×3 matrix with (r, h)th element (Wi)rh = −E

[
∂2ℓ(δ)i/∂ηri∂ηhi

]
,

r, h = 1, . . . , 3 and Xi = diag
{
(x+

1i,B1i), (x
+
2i,B2i), 1

}
. The superscript [a] has

been suppressed from di, zi, and Wi, and is omitted from the quantities shown
below, to avoid clutter.

Vector λ should be selected so that the estimated smooth functions are as
close as possible to the true functions. In the current context, this is achieved
using the approximate UBRE. Specifically, λ̂ is the solution to the problem

minimize Vw
u (λ) =

1

n∗

‖
√
W(z−Xδ)‖2 − 1 +

2

n∗

tr(Aλ) w.r.t. λ, (2.12)

where the working linear model quantities are constructed for a given estimate
of δ, n∗ = 3n, Aλ = X(XTWX + S∗

λ)
−1XTW is the hat matrix, and tr(Aλ)

represents the estimated degrees of freedom of the penalized model. For each
working linear model of a trust region iteration, Vw

u (λ) is minimized with respect
to λ. The two steps, one for δ the other for λ, are iterated until convergence.
This approach is implemented employing the approach by [41], which is based
on Newton’s method and can evaluate score (2.12) and their derivatives in a
way that is both computationally efficient and stable. Generally speaking, this
is achieved using

√
WX = QR, obtained by pivoted QR decomposition, where

Q and R are defined in the usual manner, and the singular value decomposition
[

R

L

]
= UDVT, where L is any matrix square root of S∗

λ such that LTL = S∗

λ,

the columns of U are those of an orthogonal matrix, V is an orthogonal matrix,
andD is a diagonal matrix of singular values which are useful to detect numerical
rank deficiency of the fitting problem. Based on this, evaluation of tr(Aλ) for
new trial values of the smoothing parameters can be made relatively cheap,
and the derivatives of Vw

u (λ) with respect to λ can be stably and efficiently
evaluated. Note that minimization of the score is with respect to λ∗ = log(λ)
since the smoothing parameters must be positive. See [41] for further details.

Remark 1. In the context of simultaneous equation estimation methods, the
use of the Fisher information matrix is recommended because the Wi are
positive-definite over a larger region of the parameter space as compared to
those obtained by using the observed information. This is crucial given that√
W and W−1 (via z), obtained by eigen-decomposition, are needed in (2.12).

Remark 2. Because W is a non-diagonal matrix of dimension n∗×n∗, compu-
tation can quickly become prohibitive, even for small sample sizes. To calculate
W−1d,

√
Wz and

√
WX so that the computational load and storage demand

of the algorithm is kept as low as possible, the band structure of W is exploited.
Hence, the working linear model in (2.12) is formed in O(n∗(m+2)) rather than
O(n2

∗
(m+ 2)) operations, where m is the number of columns of X.

Remark 3. As opposed to the multiple-stage approach discussed in Section 2.2,
simultaneous estimation of all model parameters via the bivariate probit scheme
introduced here does not rely on approximations and does not require the use
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of quantities estimated in preliminary steps. Therefore, the procedure can yield
consistent estimates for δ. Moreover, correction of standard errors is not in
principle required since no inverse Mills ratio is used and all parameters in δ are
estimated jointly. This convenience comes at expense of computational cost and
stability. However, these can be dealt with by using the approach described in
last two sections, and supplying the multiple-stage estimates as starting values
in the bivariate probit estimation scheme.

2.4. Identification

Under correct model specification, the parameters of the approach described
in Section 2.2 are formally identified even if

(
x+
1i,B1i

)
=

(
x+
2i,B2i

)
. This is

because of the nonlinearity of the inverse Mills ratio; see, e.g., [32]. However,

in applications, this typically results in substantial collinearity between ϑ̂i and
the other covariates in the outcome equation, especially when the variation
in η̂1i is such that the nonlinearity of the inverse Mills ratio does not play a
major role. This collinearity can lead to large standard errors and instability
in estimation. The parameters of the method introduced in Section 2.3 are
also formally identified, but with the advantage of not having the limitations
deriving from the use of the inverse Mills ratio. However, the likelihood functions
of sample selection models may be affected by local maxima especially in the
case of highly correlated error terms [20].

In practice, empirical identification is achieved if the exclusion restriction
(ER) on the covariates in the two equations holds [37]. That is, the regressors in
the selection equation should contain at least one or more regressors not included
in the outcome equation. Such predictors can be regarded as instrumental vari-
ables, which, in this context, induce variation in the selection equation, do not
directly affect the outcome, and are independent of (ε1i, ε2i) given the covariates
[23]. In the data analysis reported in Section 4, ER was achieved by including
in the selection equation the binary variable indicating whether the respondent
was persuaded to participate in the survey.

2.5. Inference

The methods described in Section 2 rely on penalized estimation. Within this
framework, inferential theory is not standard because of the presence of smooth-
ing penalties which undermines the usefulness of classic frequentist results for
practical modeling; see, e.g., [42]. Solutions to this problem have been proposed.
In this section, we show how to construct pointwise confidence intervals for the
components of a semiparametric sample selection model adapting some of the
results available in the literature.

The well known Bayesian ‘confidence’ intervals originally proposed by [39] in
the univariate spline model context are typically used to represent the uncer-
tainty of smooth functions [14, 34, 42]. An interesting feature of these intervals is
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that they have close to nominal ‘across-the-function’ frequentist coverage prob-
abilities [27]. To better understand this point, let us consider a generic smooth
component f(zi). Intervals can be constructed seeking some constants Ci and
A, such that

ACP =
1

n
E

{
∑

i

I(|f̂(zi)− f(zi)| ≤ qα/2A/
√
Ci)

}
= 1− α, (2.13)

where ACP denotes average coverage probability, I is an indicator function, α
is a constant between 0 and 1, and qα/2 is the α/2 critical point from a standard

normal distribution. Defining b(z) = E{f̂(z)}−f(z) and v(z) = f̂(z)−E{f̂(z)},
so that f̂ − f = b + v, and I to be a random variable uniformly distributed on
{1, 2, . . . , n}, we have that ACP = Pr

(
|B + V | ≤ qα/2A

)
, where B =

√
CIb(zI)

and V =
√
CIv(zI). At this point, it is necessary to find the distribution of

B+V and values for the Ci and A so that requirement (2.13) is met. As shown
in [27], in the context of non-Gaussian response models involving several smooth
components, such a requirement is approximately met when confidence intervals
for the smooth components are constructed using

δ|y∽̇N (δ̂,Vδ), (2.14)

where, for the approach described in Section 2.3, y refers to the response vectors,
δ̂ is the estimate of δ and Vδ = (I + S∗

λ
)−1 is the inverse of the penalized

Fisher information matrix obtained at convergence of the algorithm used to
fit the model. Note that the same distributional result can be used for the
models described in Section 2.2. Given (2.14), confidence intervals for linear
and nonlinear functions of the model parameters can be easily obtained. For
any parametric model components, using (2.14) is equivalent to using classic
likelihood results since such model terms are not penalized. It is important to
stress that there is no contradiction in fitting the sample selection model via
penalized log-likelihood estimation and then constructing confidence intervals
using a Bayesian result, and such an approach has been employed many times
in the literature; see, e.g., [14, 23, 42].

Result (2.14) should produce intervals with good coverage probabilities for
the model components when using the method described in Section 2.3. How-
ever, this is not likely to be true for the approach detailed in Section 2.2, for the
reasons given in Remark 2. As a solution, posterior simulation can be employed
[42]. Specifically, we propose to adjust the intervals as follows:

• Let the parameter vector and covariance Bayesian matrix estimated in
step 1 be δ̂1 and V̂δ1

. Draw Ns random vectors from N (δ̂1, V̂δ1
) and then

calculate the corresponding Ns values η̂∗1i and ϑ̂∗

i , for all i.

• Fit Ns step 2 models to obtain δ̂ols2,1 , . . . , δ̂
ols
2,Ns

and V̂ols
δ2,1

, . . . , V̂ols
δ2,Ns

. For
each parameter vector and covariance matrix combination, draw Ns ran-
dom vectors from the corresponding Gaussian distribution and then cal-
culate the N2

s values ρ̂∗.
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• Calculate the N2
s values τ̂∗i , for all i, using ϑ̂∗

i , η̂
∗

1i and ρ̂∗.

• Fit N2
s step 4 models, using each of the ϑ̂∗

i and τ̂∗i combination, to ob-

tain δ̂2,1, . . . , δ̂2,N2
s
and V̂δ2,1

, . . . , V̂δ
2,N2

s

. For each parameter vector and

covariance matrix combination, draw Nd random vectors from the corre-
sponding Gaussian distribution so to obtain N2

s ×Nd random draws from
which approximate intervals for the component functions of model (2.8)
can be constructed.

This procedure can account for the extra source of variability introduced via the
quantities calculated in steps 1–3 of the multiple-stage estimation approach. As
in [24], simulation experience suggested that small values for Ns and Nd, say 20
and 100, will be tolerable in practice.

3. Simulation study

To gain insights into the effectiveness of the estimation approaches detailed
in the previous sections, a Monte Carlo simulation study was conducted. All
computations were performed in the R environment [33] using the package
SemiParBIVProbit which implements the ideas discussed in this article [26].

3.1. Design and model fitting details

The sampling experiments were based on the model

y∗1i = θ11 + θ12x
+
i + f11(z1i) + f12(z2i) + ε1i

y∗2i = θ21 + θ22x
+
i + f21(z1i) + ε2i

,

where the binary outcomes y1i and y2i were determined according to the rules
described in Section 2.1. The test functions are displayed in Figure 1 and are
given as f11(z1i) = −0.7

{
4z1i + 2.5z21i + 0.7 sin(5z1i) + cos(7.5z1i)

}
, f12(z2i) =

−0.4 {−0.3− 1.6z2i + sin(5z2i)} and f21(z1i) = 0.6 {exp(z1i) + sin(2.9z1i)}. Pa-
rameter vector (θ12, θ22) was set to (2.5,−1.5). To generate binary values for y1i
so that approximately 50% of the total number of observations were selected to
fit the outcome equation, and values for y2i which appeared in approximately
identical numbers, (θ11, θ21) was set to (0.58,−0.68). Predictors x+

i , z1i and z2i
were generated as three uniform correlated variables on (0, 1). This was achieved
using rmvnorm(), in the package mvtnorm, drawing standardized multivariate
random variables with correlation 0.5 and then applying pnorm() [23]. Variable
x+
i was eventually dichotomized using round(). Standardized bivariate normal

errors with correlations ρ = (±0.1,±0.5,±0.9) were considered, and sample sizes
set to 500, 1000 and 3000. In a full factorial design fashion, 1000 replications of
each combination of parameter settings were obtained.

The smooth components were represented using penalized thin plate regres-
sion splines with basis dimensions equal to 10 and penalties based on second-
order derivatives [42]. In cross-sectional studies, 10 bases typically suffice to
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Fig 1. The test functions used in the simulation studies.

represent reasonably well smooth functions, although sensitivity analysis using
fewer or more spline bases is advisable in applied work. Models were also fit-
ted neglecting non-random sample selection, i.e. simply fitting equation (2.4)
on the selected sample (henceforth, this will be referred to as naive approach);
since this can not account for sample selection, biased parameter estimates are
expected. We decided to report the naive results because they represent a bench-
mark for evaluating more realistic models as well as highlight the substantial
detrimental effects that the neglect of non-random sample selection may have
on the parameter estimates.

3.2. Results

In this section, we only show a subset of results; these are representative of
all empirical findings. Since the parameters of the selection equation are not in
principle affected by bias, we focus on the estimation results for the outcome
equation.

Figures 2, 3 and 4 present the boxplots of the estimates for θ22, ρ, and the
empirical root mean squared errors (RMSE) of f̂21(z1) when employing the
naive, multiple-stage and bivariate probit estimation approaches, ER holds and
approximately 50% of the total number of observations are available to fit the
outcome equation. Figure 5 shows the estimated smooth functions for f21(z1)
averaged over the simulation runs. As in [40], based on the estimates for 200 fixed

covariate values, RMSE(f̂21) was calculated as

√∑200
b=1

{
f̂21(z1b)− f21(z1b)

}2
.

The results can be summarized as follows:

• Figure 2 shows that at all sample sizes and ρ = (0.5, 0.9) the sample
selection estimators outperform the naive approach in terms of bias, and
that bivariate probit is much more accurate than multiple-stage. However,
for n = (500, 1000) the introduced estimators are less precise than naive,
especially when the sample selection issue is negligible.

• Figure 3 suggests overall that the multiple-stage estimates for ρ are sys-
tematically biased as compared to those of bivariate probit. When ρ = 0.9
the bias in the multiple-stage estimates worsens as n increases. This is
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Fig 2. Boxplots of the parameter estimates for θ22 based on 1000 replications when employing
the naive, multiple-stage and bivariate probit estimation approaches and approximately 50%
of the total number of observations are available to fit the outcome equation. The true value
(dashed lines) is −1.5. ρ and n denote the correlation between the errors of the selection and
outcome equations, and the sample size. See Section 3.1 for further details.
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Fig 3. Boxplots of the parameter estimates for ρ based on 1000 replications when employing
the multiple-stage and bivariate probit estimation approaches. The dashed lines indicate the
true values. Further details are given in the caption of Figure 2.
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Fig 4. Boxplots of the empirical root mean squared errors (RMSE) of f̂21(z1) based on 1000
replications when employing the naive, multiple-stage and bivariate probit estimation ap-
proaches. Further details are given in the caption of Figure 2.

z1

av
er

ag
e 

 f̂
21

(z
1)

−1.0

−0.5

0.0

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0

n=500

ρ=
0.

9

n=1000

ρ=
0.

9

0.0 0.2 0.4 0.6 0.8 1.0

n=3000

ρ=
0.

9

n=500

ρ=
0.

5

n=1000

ρ=
0.

5

−1.0

−0.5

0.0

0.5

1.0

n=3000

ρ=
0.

5

−1.0

−0.5

0.0

0.5

1.0

n=500

ρ=
0.

1

0.0 0.2 0.4 0.6 0.8 1.0

n=1000

ρ=
0.

1

n=3000

ρ=
0.

1
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most likely due to the violation of the normality assumption (see Remark
1 of Section 2.2).

• Figure 4 indicates that for ρ = 0.1 the performance of the naive estimator
is superior at all sample sizes, and is comparable to that of the sample
selection approaches for ρ = 0.5 and n = 500. In all the other cases,
multiple-stage and bivariate probit outperform naive, with bivariate probit
being the best for ρ = 0.9. The average fits, in Figure 5, show that the
sample selection estimators yield better curve estimates except for ρ = 0.1
where naive recovers the underlying function fairly well.

In summary, in the presence of non-random sample selection and non-linear
covariate effects, the sample selection estimators are less biased as compared to
the naive estimator with the bivariate probit approach being the best. When
the sample selection issue is negligible and the sample size small, the introduced
estimators are more variable than naive. Models were also fitted using the data
generating process described in the previous section but with no ER, i.e. with-
out including z2i in the selection equation. The results from this scenario (not
reported here and available upon request) showed that the estimates of all meth-
ods are biased. This confirmed that empirical identification is achieved when the
ER is present (see Section 2.4).

Average coverage probabilities of the 95% confidence intervals for θ22 and
f21(z1), constructed as described in Section 2.5, were also calculated. Ns and
Nd were set to 20 and 100. For θ22, the coverage rates of the multiple-stage
approach were below the nominal level, with values going from 0.92 to 0.79
as ρ increases. For the bivariate probit method, despite its good accuracy in
estimating θ22, rates were low with values ranging from 0.73 to 0.88; here, non-
parametric bootstrap percentile intervals based on 199 replications appeared to
be effective, with rates in the interval (0.91, 0.97). As for f21(z1), nominal cov-
erages were satisfactory for both methods with values in the range (0.92, 0.97).
For the multiple-stage approach, confidence intervals calculated employing the
correction procedure described in Section 2.5 offered marginal improvements.

Coverage rates for θ22 were not satisfactory. For the multiple-stage estimator,
this was most likely due to the bias in the estimates highlighted in Figure 2.
For bivariate probit, the issue seems to lie in the information matrix which un-
derestimates the variability of the parametric components. Limited simulation
evidence suggests that using the observed (rather than Fisher) information ma-
trix in (2.10) can yield improved coverage rates for parametric terms. However,
as pointed out in Remark 1 of Section 2.3.1, the use of the Fisher information
is crucial to be able to carry out the smoothing parameter selection step. Here,
further research is needed to exploit the properties of both information matrices
and avoid the use of computationally intensive bootstrap procedures.

4. Application

In this section, we illustrate the proposed methods using data on public opinion
polls on school integration. As argued in [38], in certain situations, opinion polls
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may poorly reflect collective public sentiment because some individuals choose
not to respond to some specific questions as they feel that their opinion may
be perceived as socially unacceptable. When some individuals are not willing to
show their views, polls measuring collective opinion on sensitive topics typically
provide misleading estimates of preferences in the population as a whole. A
number of studies have recognized the presence of this phenomenon which can
be problematic for policy information; see, e.g., [12]. A survey of public opinion
polls on school integration conducted in the USA is one such study [2].

4.1. American national election study

We use data from the American National Election Survey (ANES) conducted in
19921. This study is part of a time-series collection of national surveys fielded
continuously since 1952. The election studies were designed to present data on
Americans’ social backgrounds, enduring political predispositions, social and
political values, perceptions and evaluations of groups and candidates, opinions
on questions of public policy, and participation in political life. The 1992 ANES
study entailed both a pre-election interview and a post-election reinterview [28].

As mentioned in the introductory section, the main question was whether
respondents support government intervention to ensure that black and white
children go to the same school. About 700 individuals were first asked if they
had an opinion on the integration question (0 = no, 1 = yes) and then what that
opinion was (0 = no integration, 1 = yes integration). This gave respondents
an opportunity to opt out of the question answering process at an earlier stage.
64.57% of the individuals chose to answer the integration question. Among these,
the proportion of ‘yes’ answers was 46.43%. The dataset also included informa-
tion on individual demographic and socio-economic characteristics. The vari-
ables considered were age (in years), educ (number of years of education), sex
(0 = female, 1 = male), race (0 = black, 1 = white), reg (0 = North-Central,
1 = North-East, 2 = South, 3 = West), child (number of children in the house-
hold), discpol (0 = never discuss politics, 1 = discuss politics), moralcons
(1 = support for moral conservatism, 2 = no support for moral conservatism,
3 = neither), and perslett which was a binary variable indicating whether the
interviewer attempted to convert a respondent who initially refused to partici-
pate in the survey.

We analyzed the ANES dataset using the naive, multiple-stage and bivari-
ate probit estimation approaches with the same model fitting settings as those
described in the simulation study section. The outcome equation included the
variables sex, race, reg, child, moralcons and discpol as parametric compo-
nents, and smooth functions of age and educ. The selection equation included
the same variables plus perslett. The inclusion of perslett in the selection
equation was used as ER on the ground that it may be regarded as a good
predictor of the propensity to answer and is independent of the outcome. child

1http://www.electionstudies.org/studypages/1992prepost/1992prepost.htm.

http://www.electionstudies.org/studypages/1992prepost/1992prepost.htm.
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was included as a parametric component because it did not have enough unique
covariate values to justify the use of a smooth function.

4.2. Results and interpretation

Table 1 and Figure 6 report the parametric and smooth function estimates
for the outcome equation and, for completeness, also those for the selection
equation, when applying the three approaches on the ANES dataset.

In the selection equation, the parameter of perslett, obtained using the
sample selection estimators, is statistically significant at the 5% level, hence
supporting its use as ER. Although there are some differences in the signifi-
cance of the parametric terms of the sample selection models, the magnitude
and sign of the coefficients are similar. For example, the negative parameter es-
timate for race.white is consistent with the interpretation that the propensity

Table 1

Parametric estimates obtained applying the naive, multiple-stage and bivariate probit
estimation approaches on the ANES dataset described in Section 4.1. Within parentheses are
95% confidence intervals calculated as described in Section 2.5 with Ns = 20 and Nd = 100

for multiple-stage, and nonparametric bootstrap based on 199 replications for bivariate
probit. Note that results from the naive approach concern only the outcome equation

Variable Naive Multiple-stage Bivariate probit

Selection Eq.

(Intercept) - 0.10 (−0.33, 0.54) 0.12 (−0.17, 0.41)
sex.male - 0.05 (−0.16, 0.26) 0.04 (−0.10, 0.18)
race.white - −0.27 (−0.60, 0.06) −0.27 (−0.53,−0.01)
reg.northeast - 0.31 (0.00, 0.63) 0.34 (0.12, 0.56)
reg.south - 0.18 (−0.10, 0.46) 0.19 (0.03, 0.35)
reg.west - 0.36 (0.05, 0.66) 0.37 (0.17, 0.56)
child - 0.08 (−0.03, 0.20) 0.09 (−0.01, 0.18)
discpol - 0.24 (−0.01, 0.48) 0.21 (0.07, 0.34)
moralcons.disagree - 0.26 (0.03, 0.49) 0.23 (0.06, 0.40)
moralcons.neither - −0.30 (−0.62, 0.02) −0.33 (−0.52,−0.13)
perslett - 0.25 (0.01, 0.50) 0.29 (0.07, 0.52)

Outcome Eq.

(Intercept) 0.62 (0.07, 1.17) 0.28 (−0.96, 1.51) −0.22 (−0.67, 0.24)
sex.male −0.13 (−0.39, 0.13) −0.12 (−0.37, 0.14) −0.06 (−0.29, 0.18)
race.white −0.71 (−1.12,−0.31) −0.76 (−1.20,−0.31) −0.61 (−0.94,−0.29)
reg.northeast 0.41 (0.02, 0.80) 0.48 (0.01, 0.95) 0.45 (0.08, 0.82)
reg.south 0.40 (0.03, 0.76) 0.43 (0.04, 0.82) 0.38 (0.05, 0.72)
reg.west 0.37 (−0.01, 0.75) 0.44 (−0.02, 0.91) 0.45 (0.09, 0.81)
child 0.11 (−0.03, 0.25) 0.13 (−0.02, 0.28) 0.12 (0.00, 0.25)
discpol −0.33 (−0.66, 0.00) −0.26 (−0.62, 0.10) −0.10 (−0.36, 0.16)
moralcons.disagree −0.33 (−0.61,−0.05) −0.26 (−0.59, 0.08) −0.11 (−0.37, 0.15)
moralcons.neither 0.01 (−0.44, 0.46) −0.08 (−0.60, 0.44) −0.16 (−0.49, 0.17)
ρ - 0.77 (−0.36, 1.91) 0.86 (0.46, 1.00)
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Fig 6. Smooth function estimates obtained applying the naive (grey solid lines), multiple-
stage (black dashed lines) and bivariate probit (black solid lines) estimation approaches on
the ANES dataset described in Section 4.1. The results are reported on the scale of the lin-
ear predictors of the selection and outcome equations. The shaded regions represent 95%
Bayesian ‘confidence’ intervals calculated from the bivariate probit estimates. The ‘rug plot’,
at the bottom of each graph, shows the covariate values. Note that to avoid clutter corrected
confidence intervals for the multiple-stage approach have not been reported, results from the
naive approach concern only the outcome equation, and due to the identifiability constraints
the estimated curves are centered around zero.

that a white individual answers an integration question is lower than that of a
non-white individual. Also, the fact that the interviewer attempted to convert
a respondent who initially refused to participate in the survey has a positive ef-
fect on the probability of answering the integration question. As for the smooth
components, the effect of age is linear for both sample selection models. The
function estimates of educ are linear and nonlinear for bivariate probit and
multiple-stage, respectively, and the bivariate probit intervals do not contain
the multiple-stage curve for a part of the covariate value range. These findings
support the presence of linear parametric effects for all terms in the selection
equation of bivariate probit, and of linear and nonlinear covariate effects for
multiple-stage. The reason for the difference in some of the estimates between
the two sample selection estimators can perhaps be ascribed to sampling vari-
ability; at small sample sizes, the two methods are likely to be affected differently
by some bias.

In the outcome equation, the probability that a white respondent supports
integration is significantly lower as compared to that of a non-white; this con-
clusion is common to all approaches. The effects of age and educ show different
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degrees of nonlinearity across the three methods. The pointwise confidence in-
tervals of bivariate probit contain the zero line, suggesting that neither age nor
educ have (non-linear or linear) effects. These results suggest that information
in the data is too weak to clearly support the need for inclusion of smooth terms.

The estimates of ρ, which are important to ascertain the presence of bias
induced by non-random sample selection, are high and, for bivariate probit,
statistically significant. This means that the process by which individuals decide
to answer the integration question is connected to the process by which they
decide what the answer is. This could not have been detected using the naive
approach. The positive sign of ρ̂ indicates that the unobserved factors which lead
individuals to take part in the survey also lead them to take a more supportive
stance on the integration issue.

A comparison among the parametric estimates of the outcome equation ob-
tained from the three approaches indicates that, while none of them change sign,
the magnitude of some parameters is altered by the correction for non-random
sample selection. Specifically, the movement of the estimates of (Intercept) is
of interest. The naive estimate is more than double that of multiple-stage and
four times that of bivariate probit. This means that once selection effects are
accounted for, respondents are more likely to oppose school integration than
the naive estimate suggests. This result is consistent with that of [2] who also
found that correcting for non-random sample selection decreases the probability
of supporting government efforts to integrate schools.

To gauge the aggregate effects of the sample selection issue in the question-
answering process, we estimated the mean predicted probabilities of giving a
supportive response under the three methods. 95% confidence intervals were
conveniently obtained via posterior simulation using the results in Section 2.5.
The results were 0.46 (0.43, 0.50), 0.41 (0.35, 0.46) and 0.31 (0.28, 0.35) for the
naive, multiple-stage and bivariate probit approaches. So, predicted support
for school integration is significantly lower when sample selection is accounted
for, hence indicating that expressed opinion on the school integration question
is a poor barometer of underlying support for integrationist policy. Based on
our simulation evidence and the remarks given in Sections 2.2 and 2.3.1, the
estimation results obtained using the bivariate probit approach may perhaps
be regarded as the most accurate. The findings of this section may offer fur-
ther empirical insights into how the school integration issue could be handled.
For instance, support for school integration may be increased by investing in
campaigns for social sensibilization.

The goodness of the results presented in this section relies especially on
whether the assumption of normality is met. For the simultaneous equation
estimation approach, a possibility would be to employ a score test of bivariate
normality whose density of the errors under the alternative hypothesis is based
on a type AA bivariate Gram Charlier series with 9 additional parameters [19].
However, it is not clear whether this test can be extended to the penalized
framework proposed in this article.
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5. Discussion

We introduced two statistical methods for the (separate or simultaneous) es-
timation of two binary regression models involving semiparametric predictors
in the presence of non-random sample selection. The problems of identification
and inference have also been discussed. The approaches have been illustrated
using data on public opinion polls on school integration; predicted support for
school integration calculated using the proposed tools is lower as compared to
what a naive estimate would suggest.

The results of our simulation study showed that the sample selection estima-
tors are less biased as compared to the naive estimator and that the bivariate
probit approach can produce consistent parameter estimates. However, when
the sample selection issue is negligible and the sample size small, the introduced
approaches are more variable than naive; here, stability of sample selection es-
timators may be tenuous.

Because maximum likelihood estimation schemes are typically sensitive to
model error misspecification, extensions of our proposals allowing for different
joint distributions of the model errors seem feasible adopting copula functions.
This approach has already been adopted in the context of non-random sample
selection [18, 21, 35, 43, and references therein]. An alternative solution could
be based on a nonparametric distribution function framework; see, e.g., [17]. To
accommodate more complex data structures arising, for instance, in longitudinal
studies, future research will also focus on extending the methods presented in
this article to allow for random effects in the linear predictors. Finally, it would
be interesting to determine whether a generalized least squares approach can be
exploited to improve the efficiency of the sample selection estimators.
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