UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Imaging Biomolecules using Frequency Modulation Atomic Force Microscopy in Liquids

Khan, Z; (2013) Imaging Biomolecules using Frequency Modulation Atomic Force Microscopy in Liquids. Doctoral thesis , UCL (University College London). Green open access

[thumbnail of Khan_Z Khan PhD Thesis final.pdf]
Preview
Text
Khan_Z Khan PhD Thesis final.pdf

Download (15MB) | Preview

Abstract

Atomic force microscopy is an advanced imaging technique for viewing biological structures and dynamic biological mechanisms at the nanometre scale. This thesis describes a high-resolution atomic force microscope designed for imaging biological samples in physiological solution. This microscope includes a highly sensitive interferometric cantilever detector, along with a home-built frequency/phase and amplitude detector. The initial chapters of this thesis begin with a description of the experimental set-up, as well as various tests carried out to characterise the fast frequency detector. Following this is a description of the interferometric cantilever detector, which possess a noise floor at a mere 5 fm/√Hz, making it particularly suited for detecting cantilevers in liquids. Results chapters then go on to demonstrate the capability of this instrument to image at nanometre and atomic-scale resolution. Images of the atomic structure of muscovite mica in buffer solution are presented. Images of chaperonin protein GroEL were also acquired, which contain features of the protein's apical domain. Most importantly, for the first time AFM was used to track the pore-formation of pore forming protein pneumolysin in buffer solution. Supported lipid bilayers were prepared and images were captured of the proteins oligomerising on their surface. The initial stage of pore-formation was investigated by comparing the height of pneumolysin before and after pores were formed. Details of the monomers making up the structure of the protein were also imaged, as well as pores created within the supported lipid bilayers.

Type: Thesis (Doctoral)
Title: Imaging Biomolecules using Frequency Modulation Atomic Force Microscopy in Liquids
Open access status: An open access version is available from UCL Discovery
Language: English
Keywords: Atomic force microscopy, AFM, Biomolecules, Nanoscale, Frequency modulation
UCL classification: UCL
UCL > Provost and Vice Provost Offices
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences
URI: https://discovery.ucl.ac.uk/id/eprint/1399519
Downloads since deposit
159Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item