
Comments on Hornstein
KLAUS ABELS

1. Introduction

Hornstein represents minimalism in linguistics as a project that takes certain
generalizations about the human language faculty, or universal grammar, to be
(roughly) empirically correct and whose aim it is to deduce these properties from a
more fundamental theory of the human mind/brain.

According to him, the stock of empirically correct claims about the language fac-
ulty comes from the work in the principles and parameters framework, generalized
phrase structure grammar, relational grammar, and lexical-functional grammar—all
of which Hornstein views as ‘much the same theories in slightly different notation.’
The properties of the language faculty described by these theories are the targets of
deduction.

To make progress on this project, the properties of the language faculty have
to be stated in terms as simple and parsimonious as possible. Further, some of
the properties of the language faculty might follow from what the literature
calls ‘interface conditions’—conditions placed on the linguistic system by other
cognitive modules that use the products of the linguistic system. Third, and this
is crucial to the project described by Hornstein, some of the properties of the
language faculty might follow from the way in which linguistic computations
proceed. In this connection Hornstein introduces the following consideration: He
assumes that the language faculty evolved in the human species rapidly, mentioning
50–100,000 years, which, if true, suggests that parochial, domain specific structure
and computation within the language faculty must be quite limited; the time
necessary for evolutionary tinkering to take place is simply not available. This,
in turn, suggests that general computational principles (such as computational
efficiency) or computational methods known to be involved in other cognitive
domains can and must be invoked in an explanation of the properties of the
language faculty.

After laying out this general program, Hornstein discusses the canonical binding
theory, which was developed within government and binding theory, with the aim
of illustrating how its properties can be thus deduced.

Address for correspondence: Department of Linguistics, UCL, Room 115B, Chandler House,
2 Wakefield Street, London WC1N 1PF, UK.
Email: k.abels@ucl.ac.uk

Mind & Language, Vol. 28, No. 4 September 2013, pp. 421–429.
© 2013 The Authors. Mind & Language published by John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which permits
use, distribution and reproduction in any medium, provided the original work is properly cited.



422 K. Abels

In this brief note, I will try to put Hornstein’s project into a more general
context. In particular, I will show what place this project has in the construction
of an overall theory of language, when see as an information processing device.
The general framework for this is provided by Marr, 1982. The project described
by Hornstein seems both coherent and worthwhile to me. However, the examples
that Hornstein provides to illustrate how this project is carried out, and indeed
the vast majority of work in minimalism, are examples of quite a different project
with no relation to the one advertised by Hornstein in the first part of his article.
I refrain from discussing the merits and problems of the concrete linguistic proposal
concerning the binding theory sketched by Hornstein in the second half of his
article.

2. The Project

When generative linguists study the language faculty, they approach it as an
information processing system (see also Neeleman, this volume). In his seminal
book on vision, Marr (1982) points out that a complete understanding of any
information processing system has to include theories at three distinct levels, which
he calls the computational, the algorithmic, and the hardware levels.

A theory at the most abstract level, the computational level, must characterize
what the information processing system does and why. The characterization of
what the system does is, in essence, a description of the function the system
computes, that is, a description of the input–output relations that characterize it.
A complete theory at this level must also specify why this function is appropriate
for the goal of the computation. At the next lower level, the level of algo-
rithms and representations, the specific algorithm used by the system to compute
the function characterized at the higher level is described and the internal and
external representations are determined. Finally, at the lowest level, the hardware
that implements the algorithm and how it implements the algorithm has to be
described.

Marr illustrates the three levels using a very schematic model of a cash register.
At the computational level, a cash register can be characterized as an adding
machine. This is what the cash register does. Addition is the appropriate function
for a cash register to compute, because intuitive notions about the behavior of
the correspondence between the accumulation of goods bought and the price are
correctly reflected by addition. At the next lower level, we can ask how the numbers
are represented in the cash register (e.g. in a decimal or a dual representation) and
by which of a number of different algorithms addition is performed. Finally, there
is the question of how the algorithm is actually realized in the hardware of the cash
register. The descriptions at the three levels constrain each other in broad terms but
are otherwise independent of each other.

Figure 1 below reproduces Marr’s own summary of the content of the description
at each of these levels.

© 2013 The Authors. Mind & Language published by John Wiley & Sons Ltd.



Comments on Hornstein 423

Computational Theory Hardware implementation 

What is the goal of the
computation, why is it
appropriate, and what is
the logic of the strategy
by which it can be
carried out?

How can this computa-
tional theory be imple-
mented? In particular,
what is the representa-
tion for the input and
output, and what is the
algorithm for the trans-
formation?

How can the representa-
tion and algorithm be re-
alized physically?

Representation and
algorithm

Figure 1 The three levels at which any machine carrying out an information-processing task must be
understood (from Marr, 1982, p. 25).

Transformational grammar of the 60s, as Marr (1982, p. 28) himself points out ‘is
a true computational theory in the sense defined earlier. It is concerned solely with
specifying what the syntactic decomposition of an English sentence should be, and
not at all with how that decomposition should be achieved.’ This characterization
certainly remains true also for work done in generative theories of the 80s and
early 90s. Theorizing at the most abstract, the computational level has remained the
mainstay of work in theoretical linguistics.

Within this setup, Hornstein’s premise that the results and generalizations
emerging from government and binding theory of the 80s are roughly empirically
correct, corresponds to the claim that those results and generalizations adequately
characterize the function computed by the language faculty.

Following Marr, we should ask why this is the appropriate function to compute.
Some of the considerations relevant to answering this question will revolve around
issues of the purpose of linguistic computations. Views on this differ to a certain
extent. Do linguistic computations structure thought? Do they only make indepen-
dently existing and structured thoughts accessible to sensorimotor systems that can
externalize and internalize them? Do they do both? While the first of these questions
is not settled, linguists assume that linguistic computation certainly serves to inter-
face between meaning representations and sensorimotor representations. Certain
properties of the computational theory of the language faculty flow quite naturally
from such very bare considerations. For example, the form-meaning pairing that
the language faculty implements is locally compositional. Local compositionality is
effectively forced in a system that is unboundedly expressive, a system in which the
form-meaning correspondence at the level of the atomic sign is not predictable,
and a system which is rapidly learnable.

While such considerations go a certain way towards motivating properties of
the language faculty, they underdetermine the language faculty massively.1 There

1 The problem is made worse by the fact that too little is known about the truly language
independent properties of meaning in the mind, which means that an important anchoring
point is missing.

© 2013 The Authors. Mind & Language published by John Wiley & Sons Ltd.



424 K. Abels

are very many functions that are compatible with the constraints arising from such
general considerations. Natural language grammars represent a tiny, systematically
structured subset of the range of logical possibilities (see Adger, this volume). So
the question arises where the additional structure comes from.

An obvious place to look for answers to some of these questions is the algorithmic
level.

I pointed out above that the theories of an information processing device at
the computational and the algorithmic level depend on each other to a certain
extent. An illustration might be useful here. Results from formal language theory
in the 70s and 80s indicated that natural languages cannot be characterized by
context free grammars (Bresnan et al., 1982; Culy, 1985; Huybregts, 1976, 1984;
Shieber,1985).2 Clearly, considerations of the complexity of the grammar when
viewed as a function, that is, when described at the computational level, puts a
lower bound on the complexity of the algorithms that can compute it.

It is entirely conceivable that properties at the algorithmic level might determine
what is going on at the computational level. In particular, if the constraints imposed
on a computation are so weak that many different functions would satisfy them, then
that function might be chosen which can be computed with a particularly simple or
efficient algorithm, or maybe with routines that the overall system already possesses.
While some literature on minimalism in linguistics aims to show that language
is a perfect (maximally simple) solution to the boundary conditions, Hornstein
in the present paper leans in a different direction. He remarks ‘that focusing on
computational efficiency can be misleading in an unhelpful way. The problem is
not so much whether linguistic computations are efficient but whether they are
cognitively provincial.’3 In this context, the alleged fact that language arose on an
evolutionarily short timescale of 50–100,000 years is intended to lend plausibility
to the idea that linguistic computations are not ‘cognitively provincial’.

The project, in other words, is to explain properties of the computational
theory of the language faculty in terms of its algorithmic theory. An explanation
of this sort commits the person proposing such an explanation to a number of
sub-projects. First, he would need to describe the information processing system
at the algorithmic level. As we saw this involves developing an algorithm that
correctly describes the input–output profile characterized at the computational
level. It would require proposing and defending a particular representational format
for the data manipulated by the system. Further, to count as an explanation of

2 Shieber, 1985 is usually credited with the formal argument that languages cannot be characterized
by context free grammars even when viewed as string sets (weak generative capacity). As argued
by Kracht, 2007, the type of data discussed in Huybregts, 1976 already settles the case once
local compositionality, that is, strong generative capacity, is taken into account.

3 In the context of Marr’s three levels, the term ‘computational efficiency’ itself is somewhat
misleading, since what is meant is not a property of the computational but of the algorithmic
theory.

© 2013 The Authors. Mind & Language published by John Wiley & Sons Ltd.



Comments on Hornstein 425

the higher level properties, one would need to show that alternative algorithms
are less simple, less efficient, or, given again the evolutionary considerations, not
independently available in the system. Similarly for the representational format,
which would either have to be shown to be particularly suited to be manipulated
by the particular algorithms or to preexist in the system.

The following quote from Hornstein and Pietroski, 2009 should make it clear
that what I have presented here is not a far-fetched, straw man interpretation of
what Hornstein takes to be minimalist project.

We view the task of getting beyond mere description of innate linguistic
constraints, and moving towards an explanation of how and why [the human
faculty of language] has just these constraints, as akin to the task described
by Marr (1982) in the context of studying vision. Given a description of the
input-output profile for some posited cognitive system, one can and should ask
how that system computes the relevant function, bearing in mind that nature
has somehow realized the actual algorithm. And at least initially, it can be
useful to abstract from various details of the input–output profile, in order to
identify some fundamental operations—perhaps corresponding to an important
subsystem—that are especially good candidates for realization.

The ‘description of innate linguistic constraints’ in the quote above is of course the
body of facts and generalizations coming from the work of government and binding
theory and its cousins. These are analogized with theories at the computational
level. Recall that in the present paper Hornstein characterizes government and
binding theory, generalized phrase structure grammar, lexical-functional grammar,
and relational grammar as ‘much the same theories in slightly different notation’.
Hornstein’s dismissal of notation as an important differentiating factor indicates that
he locates the above-mentioned theories at the computational level. According to
the view expressed in the above quote, to get ‘beyond mere description of innate
linguistic constraints’ one has to consider the algorithmic theory of language.

In the preceding paragraphs I have tried to articulate as clearly as I could what
I take Hornstein’s characterization of the minimalist project to be. I hope to have
managed to do this without undue distortion. As far as I can see, there is nothing
principally unsound or categorically undoable about this project. Roughly the
second half of Hornstein’s article is intended as an illustration of how the project
can progress and of the kind of fruit it can bear. However, in my view Hornstein
makes no progress in this project, because he never embarks on it.

3. A Failure to Engage the Questions

Recall that the project by Hornstein—that of explaining properties of the lan-
guage faculty at the computational level in terms of properties of the algorithmic

© 2013 The Authors. Mind & Language published by John Wiley & Sons Ltd.



426 K. Abels

theory—requires constructing and defending suitable algorithms and representa-
tions.

I find no trace of this in Hornstein’s paper. After setting aside the notational
differences between various theoretical schools in linguistics as irrelevant at the
computational level, Hornstein adopts without discussion the standard minimalist
representational system for phrase structure and the particular proposal for con-
structing phrase structure representations going back to Chomsky, 1995: phrase
markers are built up bottom to top via the binary operation Merge.

While this move may be innocuous at the computational level, it is far from
innocent at the algorithmic level. Here both the representation format and the
method for building up complex representations need to be defended. Bottom up
merger, as far as I can tell, is not a contender for a serious theory at the algorithmic
level and was never meant to be. With this as background, consider the following
passage from Hornstein’s article:

What other properties might a ‘nice’ cognitive computation system have?
Monotonocity/No Tampering (if α and β are inputs to an operation then
their identities are preserved in the output of that operation, i.e. once a
constituent, always a constituent; a nice feature for computational objects to
have if constituents are required for further reasons e.g. interpretation, parsing
etc.), . . .

The idea of the no tampering condition in minimalist syntax is the following: Say
the operation Merge has created constituent α by combining A with B, (1-a). The
gist of the no tampering condition is now that further applications of Merge are
not allowed to alter the immediate dominance relations previously established. This
reasoning allows (1-b); it rules out (1-c) as the output of any subsequent operation.
The reason for this is that the immediate dominance relation established between
α and B in (1-a) is no longer present in (1-c). This reasoning motivates the slogan:
‘once a constituent, always a constituent’.

(1) a. Merge(A, B) = α

A B

b. Merge(Merge(A, B), C) = β

α

A B

C

c. α

A β

B C

© 2013 The Authors. Mind & Language published by John Wiley & Sons Ltd.



Comments on Hornstein 427

While the preservation of information, monotonicity might well be a ‘nice’
computational property, a change in representational format and algorithm would
allow the transition from (1-a) to (1-c) without any violation of preservation of
information. Suppose for the sake of illustration that the representation of phrase
markers involved lists of precedence and dominance relations.4 In such a system
(1-a) would be characterized by (2-a), (1-b) by (2-b), and (1-c) by (2-c).

(2) a. dominates = {<α,A>, <α,B>}
precedes = {<A,B>}

b. dominates = {<α,A>, <α,B>, <β, C>, <β, α >, <β, A>, <β, B>}
precedes = {<A,B>, <A,C>, <B, C>}

c. dominates = {<α,A>, <α,B>, <α,β >, <α,C>, β,B>, <β,C>}
precedes = {<A,B>, <A,C>, <B,C>}

Given the representation format chosen in (2), the transition from (2-a) to (2-c) all
of a sudden appears to be information preserving (monotonic, in accordance with
the spirit of non-tampering). The first conclusion is that what appears to be a nice
property in one representational system might not be a nice property in a closely
related one. Therefore, if important results in syntax rely on the non-tampering
condition and if, furthermore, an explanation of the non-tampering condition is
to be derived from the algorithmic theory of the language faculty, then a detailed
defense of the correctness of the representational format in (1) and the procedure
generating complex structures is needed.

Alas, the prospects for this don’t seem very bright. No work on the real-
time production or processing of language uses bottom-up tree generation, while
work that takes the contingencies of real-time language processing seriously and is
therefore a much better contender for an algorithmic theory is likely to use rep-
resentations of the type seen in (2) (see for example Phillips, 1996, 2003). Indeed,
Phillips offers a theory of coordination and a resolution of Pesetsky paradoxes
(Pesetsky, 1995) that crucially relies on information preservation being computed
as in (2) rather than in (1).5

For the project that I extracted above from Hornstein’s article, such issues are
crucial. However, he fails to mention them, let alone engage them. Instead, the

4 I am assuming here an encoding without a direct representation of immediate dominance
and immediate precedence. Both can simply be derived: For all x, y, x immediately domi-
nates/preceds y iff x dominates/precedes y and there is no z, such that x dominates/precedes z
and z dominates/precedes y.

5 Phillips’s solution to Pesetsky paradoxes has been dealt a lethal blow in Lechner, 2003. For more
recent discussion see also Janke and Neeleman, 2012. Nevertheless, the type of representation
presented in (2) remains useful when characterizing parsing processes that have to recover phrase
markers in real time and incrementally (for discussion see Abels and Neeleman, 2012).

© 2013 The Authors. Mind & Language published by John Wiley & Sons Ltd.



428 K. Abels

abbreviated argument quoted above and the much more lengthy one about binding
theory takes the representation and the generative methods for granted. No argu-
ment is given that these representations and methods are adequate characterizations
of the algorithmic level. Indeed, it is more than dubious that they are. The account
proposed of binding theory in the second half of the article therefore remains
firmly at the computational level where arguments of computational complexity
must necessarily take a different shape from the ones presented, since they must be
independent of choice of methods and of the representation.

The above remarks are in no way intended to devalue Hornstein’s approach to
binding theory as a theory at the computational level. I have not discussed the
question whether it is empirically adequate and passes criteria of simplicity and
parsimony here. This would require a very different paper.

I have also not claimed that either the project Hornstein describes or the vastly
different project that he actually embarks on are wrong-headed or incoherent. My
point here is rather that the very interesting project sketched by Hornstein is not
the project he or most practicing minimalists pursue; Hornstein’s account does not
deduce properties of the language faculty from considerations at the algorithmic
level. Contrary to what he proposes as a research program, he doesn’t even engage
the relevant questions. To find out what minimalism is about, pay attention to what
minimalists do, not to what they say they do.

Department of Linguistics
UCL

References

Abels, K. and Neeleman, A. 2012: e. Ms., UCL.
Adger, D. 1982: Construction and grammatical explanation: Comments on Goldberg.

Mind & Language, 28, 466–78.
Bresnan, J., Kaplan, R., Peters, S. and Zaenen, A. 1982: Cross-serial dependencies in

Dutch. Linguistic Inquiry, 13, 613-35.
Chomsky, N. 1995: Bare phrase structure. In G. Webelhuth (ed.), Government and

Binding Theory and the Minimalist Program. Oxford: Basil Blackwell, 383-439.
Culy, C. 1985: The complexity of the vocabulary of Bambara. Linguistics and Philosophy,

8, 345-51.
Hornstein, N. and Pietroski, P. 2009: Basic operations: minimal syntax-semantics.

Catalan Journal of Linguistics, 8, 113-39.
Huybregts, R. 1976: Overlapping dependencies in Dutch. Utrecht Working Papers in

Linguistics, 1, 24-65.
Huybregts, R. 1984: The weak inadequacy of context-free phrase structure grammars.

In G. de Haan, M. Trommelen, and W. Zonneveld (eds), Van Periferie naar Kern.
Dordrecht: Foris, 81-99.

© 2013 The Authors. Mind & Language published by John Wiley & Sons Ltd.



Comments on Hornstein 429

Janke, V. and Neeleman, A. 2012: Ascending and descending VPs in English. Linguistic
Inquiry, 43, 151-90.

Kracht, M. 2007: The emergence of syntactic structure. Linguistics and Philosophy, 30,
47-95.

Lechner, W. 2003: Phrase structure paradoxes, movement and ellipsis. In K. Schwabe
and S. Winkler (eds), The Interfaces: Deriving and Interpreting Omitted Structures.
Amsterdam: John Benjamins, 177-205.

Marr, D. 1982: Vision: A Computational Investigation into the Human Representation and
Processing of Visual Information. New York: Freeman.

Neeleman, A. 2013: Comments on Pullum 2012. Mind & Language, 28, 522–31.
Pesetsky, D. 1995: Zero Syntax. Cambridge, MA: MIT Press.
Phillips, C. 1996: Order and structure. Doctoral dissertation, MIT.
Phillips, C. 2003: Linear order and constituency. Linguistic Inquiry, 34, 37-90.
Shieber, S. 1985: Evidence against the context-freeness of natural languages. Linguistics

and Philosophy, 8, pp. 333-43.

© 2013 The Authors. Mind & Language published by John Wiley & Sons Ltd.


