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Abstract. We prove that the (real or complex) chromatic roots of a series-parallel graph with
maxmaxflow Λ lie in the disc |q − 1| < (Λ− 1)/ log 2. More generally, the same bound holds for the
(real or complex) roots of the multivariate Tutte polynomial when the edge weights lie in the “real
antiferromagnetic regime” −1 ≤ ve ≤ 0. For each Λ ≥ 3, we exhibit a family of graphs, namely,
the “leaf-joined trees”, with maxmaxflow Λ and chromatic roots accumulating densely on the circle
|q− 1| = Λ− 1, thereby showing that our result is within a factor 1/ log 2 ≈ 1.442695 of being sharp.
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1. Introduction. The roots of the chromatic polynomial of a graph, and their
location in the complex plane, have been extensively studied both by combinatorial
mathematicians and by statistical physicists [16, 32, 25, 23]. Combinatorial mathe-
maticians were originally motivated by attempts (thus far unsuccessful) to use analytic
techniques to prove the four-color theorem [3, p. 357], while statistical physicists are
motivated by the deep connections to the partition function of the q-state Potts model
and the Yang–Lee theory of phase transitions [32].

For both groups of researchers, one of the fundamental questions that arises is
to find bounds on the location of chromatic roots in terms of graph structure or
parameters of the graph. Early conjectures that there might be absolute bounds on
the location of chromatic roots, such as being restricted to the right half-plane [13],
were disproved by the following strong result.

Theorem 1.1 (see [31, Theorems 1.1–1.4]). Chromatic roots are dense in the
whole complex plane. Indeed, even the chromatic roots of the generalized theta graphs
Θ(s,p) are dense in the whole complex plane with the possible exception of the disc
|q − 1| < 1.1

Biggs, Damerell, and Sands [2] were the first to suggest, in the early 1970s, that
the degree (i.e., valency) of a regular graph might be relevant to the location of its
chromatic roots. They conjectured (on rather limited evidence) the existence of a
function f such that the chromatic roots of a regular graph of degree r lie in the disc
|q| ≤ f(r). Two decades later, Brenti, Royle, and Wagner [9] extended this conjecture
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2118 GORDON F. ROYLE AND ALAN D. SOKAL

to not-necessarily-regular graphs of maximum degree r.2 This latter conjecture was
finally confirmed by one of us, who used cluster-expansion techniques from statistical
physics to show that taking f(r) ≈ 8r would suffice.

Theorem 1.2 (see [30, Corollary 5.3 and Proposition 5.4]). The chromatic roots
of a graph of maximum degree Δ lie in the disc |q| ≤ 7.963907Δ.

Moreover, almost the same bound holds when the largest degree Δ is replaced
by the second-largest degree Δ2, namely, all the chromatic roots lie in the disc |q| ≤
7.963907Δ2+1 [30, Corollary 6.4].3 The constant 7.963907 (see also [5]) is an artifact
of the proof and is not likely to be close to the true value. Fernández and Procacci
[14] have recently improved the constant in Theorem 1.2 to 6.907652 (see also [17]),
but this is probably still far from best possible. Of course, the linear dependence
on Δ is indeed best possible, since the complete graph KΔ+1 has chromatic roots
0, 1, 2, . . . ,Δ.4

The parameters Δ and Δ2 are, however, unsatisfactory in various ways. For
example, Δ and Δ2 can be made arbitrarily large by gluing together blocks at a cut
vertex, yet this operation does not alter the chromatic roots. The underlying reason
for this discrepancy is that the chromatic polynomial is essentially a property of the
cycle matroid of the graph, but vertex degrees are not. Therefore it would be of great
interest to find a matroidal parameter that could play the role of maximum degree (or
second-largest degree) in results of this type. Motivated by some remarks of Shrock
and Tsai [28, 29], a few years ago Sokal [30, section 7] and Jackson and Sokal [19]
suggested considering a graph parameter that they called maxmaxflow , defined as
follows: If x and y are distinct vertices in a graph G, then let λG(x, y) denote the
maximum flow from x to y:

λG(x, y) = max. number of edge disjoint paths from x to y(1.1a)

= min. number of edges separating x from y.(1.1b)

Then define the maxmaxflow Λ(G) to be the maximum of these values over all pairs
of distinct vertices:

(1.2) Λ(G) = max
x �=y

λG(x, y) .

Although this definition appears to use the nonmatroidal concept of a “vertex” in

2This latter conjecture actually follows from the former one, as indicated by Thomassen [34,
p. 505]: If r is odd, then there is a graph H with all vertices but one having degree r and the
remaining vertex having degree 1. Then, given any graph G of maximum degree r − 1 or r, we glue
enough copies of this “gadget” H (using its vertex of degree 1) to the vertices of degree less than r in
G, thereby yielding a regular graph of degree r whose chromatic roots are the union of the chromatic
roots of the original graph G and those of H.

3Note that it is not possible to go farther and obtain a bound in terms of the third-largest degree
Δ3, as the chromatic roots of the generalized theta graphs Θ(s,p)—which have Δ = Δ2 = p but
Δ3 = 2—are dense in the whole complex plane with the possible exception of the disc |q − 1| < 1.

4Perhaps surprisingly, the complete graph KΔ+1 is not the extremal graph for this problem
(except presumably for Δ = 1, 2, 3), and a bound |q| ≤ Δ is not possible. In fact, a nonrigorous
(but probably rigorizable) asymptotic analysis, confirmed by numerical calculations, shows [27] that
the complete bipartite graph KΔ,Δ has a chromatic root αΔ + o(Δ), where α = −2/W (−2/e) ≈
0.678345 + 1.447937i; here W denotes the principal branch of the Lambert W function (the inverse
function of w �→ wew) [11]. So the constant in Theorem 1.2 cannot be better than |α| ≈ 1.598960.
One of us has conjectured [25, Conjecture 6.6] that, for Δ ≥ 4, the complete bipartite graph KΔ,Δ

has the chromatic root of largest modulus (and also largest imaginary part) among all graphs of
maximum degree Δ. Furthermore, it seems empirically true that the largest modulus of a chromatic
root of KΔ,Δ, divided by Δ, is an increasing function of Δ. If these conjectures are correct, then
the optimal constant in Theorem 1.2 would be |α|.
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a fundamental way, Jackson and Sokal [19] proved that maxmaxflow has a “dual”
formulation in terms of cocycle bases, namely,

(1.3) Λ(G) = min
B

max
C∈B

|C|,

where M(G) is the cycle matroid of the graph G, the min runs over all bases B of
the cocycle space of M(G) [over GF (2)], and the max runs over all cocycles in the
basis B. Thus, by taking (1.3) as the definition of Λ(M) for an arbitrary binary
matroid M , we obtain a matroidal parameter that specializes to maxmaxflow for a
graphic matroid. Furthermore, for graphs, Λ(G) behaves exactly as one would wish
with respect to gluing together blocks at a cut vertex, namely, the maxmaxflow of a
graph is the maximum of the maxmaxflows of its blocks. Furthermore, from either
description it is immediate that

(1.4) Λ(G) ≤ Δ2(G) .

It is therefore natural to make the following conjecture [30, 19], which if true would
extend the known bound on chromatic roots in terms of second-largest degree.

Conjecture 1.3 (see [19, Conjecture 1.1]). There exist universal constants
C(Λ) < ∞ such that all the chromatic roots (real or complex) of all loopless graphs of
maxmaxflow Λ lie in the disc |q| ≤ C(Λ). Indeed, it is conjectured that C(Λ) can be
taken to be linear in Λ.

However, there are some serious difficulties in modifying the existing cluster-
expansion proof of Theorem 1.2 to get an analogous bound in terms of Λ; and although
some progress has been made in this direction [19], a number of obstacles remain.5

In this paper, we restrict our attention to series-parallel graphs and use an entirely
different approach to prove the following main result.

Theorem 1.4. Fix an integer Λ ≥ 2, and let G be a loopless series-parallel
graph of maxmaxflow at most Λ. Then all the roots (real or complex) of the chromatic
polynomial PG(q) lie in the disc |q − 1| < (Λ − 1)/ log 2 ≈ 1.442695(Λ− 1).

Since there are series-parallel graphs of maxmaxflow Λ having chromatic roots
arbitrarily close to every point of the circle |q − 1| = Λ − 1 (see [26, Appendix B]),
the constant in Theorem 1.4 is nonsharp by at most a factor 1/ log 2 ≈ 1.442695.
Moreover, a bound |q− 1| ≤ Λ− 1 cannot hold in general, since at least for Λ = 3 we
can exhibit a 94-vertex series-parallel graph with a chromatic root at |q−1| ≈ 2.009462
(see section 6).

Let us also remark that in this paper we use only the definition (1.2) of max-
maxflow; we do not use the result (1.3).

The essence of our approach is to view the chromatic polynomial PG(q) as a special
case of the multivariate Tutte polynomial ZG(q,v) of a graph equipped with edge
weights v = {ve}e∈E , namely, the case in which all the edge weights take the special
value ve = −1.6 By working within the more flexible framework of the multivariate
Tutte polynomial, we can use the rules for series and parallel reduction [32, sections 4.4
and 4.5] to transform a graph G into a smaller graph with different edge weights
and the same (or closely related) multivariate Tutte polynomial. In particular, a
series-parallel graph can be transformed into a one-edge graph with a complicated
weight (a messy rational function of q and {ve}) on its single edge. Although this

5See [32, section 9.2] for a brief discussion.
6See [32] for a review on the multivariate Tutte polynomial (which is also known in statistical

physics as the partition function of the q-state Potts model in the Fortuin–Kasteleyn representation).
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2120 GORDON F. ROYLE AND ALAN D. SOKAL

weight is complicated, we are able in certain circumstances to bound where it lies in
the complex plane and thereby to ensure that the multivariate Tutte polynomial is
nonvanishing. After some fairly straightforward real and complex analysis, we can
prove Theorem 1.4.

We shall actually prove a result that is slightly stronger than Theorem 1.4 in two
ways: First of all, the chromatic roots will be shown to lie in a disc |q − 1| < Q�

Λ,
where Q�

Λ is the solution of a particular polynomial equation of degree 2Λ − 3 and
satisfies Q�

Λ < (Λ − 3
2 log 2)/ log 2 < (Λ − 1)/ log 2. [Note that 3

2 log 2 ≈ 1.039721.]
Second, the chromatic polynomial PG(q) can be replaced by the multivariate Tutte
polynomial ZG(q,v) where the edge weights v = {ve}e∈E lie in a suitable set. See
Theorem 5.1 for details.

At this point the reader might well wonder: Since series-parallel graphs form a
tiny subset of planar graphs, which in turn form a tiny subset of all graphs, what is the
interest of a result restricted to the former? The answer is that Theorem 1.1 already
shows that even series-parallel graphs can exhibit “wild” behavior in their chromatic
roots. If one wishes to bound those roots, then some additional parameter is clearly
needed. It is a nontrivial fact that maxmaxflow is such a parameter. Theorem 1.4
gives the first nontrivial family of graphs whose chromatic roots are bounded in terms
of their maxmaxflow. Whether or not this is good evidence for the truth of the more
general Conjecture 1.3 remains to be seen.

The techniques used in proving Theorem 1.4 lend themselves to a number of direct
extensions. For example, one fairly easy extension is to permit the original graph
to have edge weights throughout the “real antiferromagnetic regime,” i.e., taking
ve ∈ [−1, 0] independently for each edge e. It turns out that exactly the same bound
holds.

Theorem 1.5. Fix an integer Λ ≥ 2. Let G = (V,E) be a loopless series-
parallel graph of maxmaxflow at most Λ, and let the edge weights v = {ve}e∈E satisfy
ve ∈ [−1, 0] for all e. Then all the roots (real or complex) of the multivariate Tutte
polynomial ZG(q,v) lie in the disc |q − 1| < (Λ − 1)/ log 2 ≈ 1.442695(Λ− 1).

Once again, we shall actually prove a slightly stronger result, in which the chro-
matic roots are shown to lie in the disc |q − 1| < Q�

Λ, and in which the edge weights
v = {ve}e∈E are allowed to lie in a set that is somewhat larger than [−1, 0]. See
Theorem 7.1.

A second extension is to consider graphs that are not series-parallel but are nev-
ertheless built up by using series and parallel compositions from a fixed “starting set”
of graphs. For instance, we can prove the following.

Theorem 1.6. Let G = (G, s, t) be a 2-terminal graph that can be obtained from
K2 and the Wheatstone bridge W by successive series and parallel compositions.7 If
G has maxmaxflow at most Λ (where Λ ≥ 3), then all the roots (real or complex) of
the chromatic polynomial PG(q) lie in the disc |q − 1| < (Λ − log 2)/ log 2.

Once again, we shall actually prove a slightly stronger result: See Theorem 8.2
and Corollary 8.4.

The plan of this paper is as follows: In section 2 we review the properties of the
multivariate Tutte polynomial, with emphasis on its behavior under series and parallel
composition. In section 3 we discuss series-parallel graphs and decomposition trees
for 2-terminal graphs. In section 4 we state and prove an abstract result that gives a
sufficient condition for the multivariate Tutte polynomial to be nonzero, involving sets

7The Wheatstone bridge is the 2-terminal graph W = (W, s, t) obtained from W = K4 − e by
taking the two vertices of degree 2 to be the terminals s and t. See section 8.2.
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S1 ⊆ S2 ⊆ · · · ⊆ SΛ−1 in the complex plane satisfying certain conditions. In section 5
we prove Theorem 1.4 (and the stronger Theorem 5.1) by constructing suitable sets
S1 ⊆ S2 ⊆ · · · ⊆ SΛ−1. In section 6 we give a slightly sharper result for the case
Λ = 3. In section 7 we prove Theorem 1.5 (and the stronger Theorem 7.1) by a slight
generalization of our previous construction. In section 8 we prove Theorem 1.6 (and
the stronger Theorem 8.2 and Corollary 8.4).

In the arXiv version of this paper [26] we include two appendices that are being
omitted from this journal version due to space constraints: Appendix A in which we
define parallel and series connection for edge weights lying in the Riemann sphere,
and Appendix B in which we prove Theorem 3.11 on the chromatic roots of leaf-joined
trees by using methods from the theory of holomorphic dynamics.

2. The multivariate Tutte polynomial. In this section we begin by reviewing
the definition and elementary properties of the multivariate Tutte polynomial (sec-
tion 2.1). We then discuss the technical tools that will play a central role in this
paper: parallel and series reduction of edges (section 2.2), the partial multivariate
Tutte polynomials and “effective weights” veff for 2-terminal graphs (section 2.3),
and the parallel and series composition of 2-terminal graphs (section 2.4).

2.1. Definition and elementary properties. Let G = (V,E) be a finite undi-
rected graph (which may have loops and/or multiple edges). Then the multivariate
Tutte polynomial of G is the polynomial

(2.1) ZG(q,v) =
∑
A⊆E

qk(A)
∏
e∈A

ve ,

where q and v = {ve}e∈E are commuting indeterminates and k(A) is the number of
connected components in the subgraph (V,A). See [32] for a review on the multivariate
Tutte polynomial. In this paper we shall sometimes consider ZG(q,v) algebraically
as a polynomial belonging to the polynomial ring Z[q,v] or C[q,v], but we shall most
often take an analytic point of view and consider ZG(q,v) to be a polynomial function
of the complex variables q and {ve}.

If q is a positive integer, then the multivariate Tutte polynomial is equal to the
partition function of the q-state Potts model in statistical mechanics, which is defined
by

(2.2) ZPotts
G (q,v) =

∑
σ : V →{1,2,...,q}

∏
e∈E

[
1 + veδ(σ(x1(e)), σ(x2(e)))

]
,

where the sum runs over all maps σ : V → {1, 2, . . . , q}, the δ is the Kronecker delta

(2.3) δ(a, b) =

{
1 if a = b ,

0 if a 	= b ,

and x1(e), x2(e) ∈ V are the two endpoints of the edge e (in arbitrary order). More
precisely, we have the following.

Theorem 2.1 (Fortuin–Kasteleyn representation of the Potts model). For inte-
ger q ≥ 1,

(2.4) ZPotts
G (q,v) = ZG(q,v) .

That is, the Potts-model partition function is simply the specialization of the multi-
variate Tutte polynomial to q ∈ Z+.

See, e.g., [32, section 2.2] for an easy proof.
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We shall adopt the terminology from statistical mechanics to designate various
sets of values for the edge weights ve. In particular, we shall say that a real weight
ve is ferromagnetic if ve ≥ 0 and antiferromagnetic if −1 ≤ ve ≤ 0. We shall also
sometimes say that a complex weight ve is complex ferromagnetic if |1 + ve| ≥ 1 and
complex antiferromagnetic if |1 + ve| ≤ 1. Finally, we shall say that a set of weights
v = {ve}e∈E is ferromagnetic or antiferromagnetic if all of the ve are.

The zero-temperature limit of the antiferromagnetic Potts model arises when ve =
−1 for all edges e; then ZPotts

G gives weight 1 to each proper coloring and weight
0 to each improper coloring, and so counts the proper colorings. It follows from
Theorem 2.1 that the number of proper q-colorings of G is, in fact, the restriction to
q ∈ Z+ of a polynomial in q, namely, the chromatic polynomial

(2.5) PG(q) = ZG(q, {−1}) .
The multivariate Tutte polynomial factorizes in a simple way over connected

components and blocks. If G is the disjoint union of G1 and G2 then, trivially,

(2.6) ZG(q,v) = ZG1(q,v)ZG2(q,v) .

If G consists of subgraphs G1 and G2 joined at a single cut vertex, then it is not hard
to see [32, section 4.1] that

(2.7) ZG(q,v) =
ZG1(q,v)ZG2(q,v)

q
.

Therefore, when studying the multivariate Tutte polynomial, it suffices to restrict
attention to nonseparable graphs G.8

Note also that a loop e contributes a trivial prefactor 1+ve to ZG(q,v). If ve = −1
(as it is, e.g., for the chromatic polynomial), this causes ZG to be identically zero as
a polynomial in q; if ve 	= −1, the loop does not affect the roots of ZG at all. Since in
this paper we want to allow ve = −1, we shall assume in our main theorems that the
graph G is loopless.

Finally, if G consists of a single vertex and no edges (i.e., G = K1), then
ZG(q,v) = q. So we can assume without loss of generality that G is loopless, nonsep-
arable, and contains at least one edge.

There are several reasons why it can be advantageous to consider the multivariate
Tutte polynomial, even when the ultimate goal is to obtain results on the chromatic
polynomial. The first reason is that ZG(q,v) is multiaffine in the variables v (i.e., of
degree 1 in each ve separately), and often a multiaffine polynomial in many variables
is easier to handle than a general polynomial in a single variable (e.g., it may permit
simple proofs by induction on the number of variables). Second, allowing unequal
edge weights ve permits more flexibility in inductive proofs; indeed, in some cases
the stronger result is much easier to prove. In particular, local operations on graphs
can be reflected in local changes to the edge weights of the affected edges, which is
impossible if all edge weights are constrained to be equal.9 In this context, two of
the most important such “local operations” are parallel and series reductions, to be
discussed in the next subsection.

8See section 3 for a precise definition of “nonseparable” for graphs that may contain loops.
9One striking example of this phenomenon is the three-line proof of the multivariate Brown–

Colbourn property for series-parallel graphs [30, Remark 3 in section 4.1] [24, Theorem 5.6(c) =⇒
(a)], which contrasts with the 20-page proof of the corresponding univariate result [36]. See [18] for
several further instances in which results on the chromatic polynomial can be proven more easily by
working within the more general framework of the multivariate Tutte polynomial.
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2.2. Parallel and series reduction. We say that edges e, f ∈ E are in parallel
if they connect the same pair of distinct vertices x and y. In this case they can be
replaced, without changing the value of the multivariate Tutte polynomial, by a single
new edge with “effective weight”

(2.8) veff = (1 + ve)(1 + vf )− 1 .

This operation of replacing two parallel edges by a single edge is called parallel reduc-
tion, and we write ve ‖ vf as a shorthand for (1 + ve)(1 + vf )− 1.

We say that edges e, f ∈ E are in series (in the narrow sense)10 if there are
vertices x, y, z ∈ V with x 	= y and y 	= z such that e connects x and y, f connects
y and z, and y has degree 2. In this case, replacing the edges e and f with a single
edge of effective weight

(2.9) veff =
vevf

q + ve + vf

yields a graph whose multivariate Tutte polynomial—when multiplied by the prefactor
q + ve + vf—is the same as that of the original graph, provided that q + ve + vf 	= 0.
More formally, we can consider the new graph to be obtained from G by contracting
f , and we can write

(2.10) ZG(q,v�=e,f , ve, vf ) = (q + ve + vf )ZG/f(q,v�=e,f , vevf/(q + ve + vf )) .

See [32, section 4.5] for an easy proof. Naturally this operation is called series reduc-
tion, and we write

(2.11) ve ��q vf =

⎧⎨⎩
vevf

q + ve + vf
if q + ve + vf 	= 0 ,

undefined if q + ve + vf = 0 ,

where “undefined” is a special value (not a complex number). We furthermore declare
that any ‖ or ��q operation in which one or both of the inputs is undefined yields an

output that is also undefined. The operators ‖ and ��q are thus maps Ĉ × Ĉ → Ĉ,

where Ĉ = C ∪ {undefined}.11
There are other ways to parametrize the edge weights occurring in the multivariate

Tutte polynomial, and there are often advantages in using the variables that give the
simplest expression for the immediate task at hand. In particular, in this paper we
will use three sets of variables, namely, the edge weights {ve}, the transmissivities
{te} defined by

(2.12) te =
ve

q + ve
, ve =

qte
1− te

,

and a third set of variables {ye} given by

(2.13) ye = 1 + ve, ve = ye − 1 .

10Note that this definition of “edges in series” is more restrictive than the matroidal definition
of elements in series, but the distinction is not important in our context. See [32, section 4.5] for
further discussion.

11However, see the Remark at the end of this subsection, as well as [26, Appendix A].
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2124 GORDON F. ROYLE AND ALAN D. SOKAL

There are two main reasons for using these different sets of variables. The first reason
is that the variables {te} and {ye} each make one of the operations of series and
parallel reduction trivial. More precisely, let ‖V , ‖T , and ‖Y denote the parallel-
reduction operation expressed in the v, t, and y variables, respectively, and similarly
for ��V , ��T , and ��Y . Then we have

ve ‖V vf = (1 + ve)(1 + vf )− 1 ,(2.14)

ve ��
V
q ve =

vevf
q + ve + vf

,(2.15)

te ‖Tq tf =
te + tf + (q − 2)tetf

1 + (q − 1)tetf
,(2.16)

te ��
T tf = tetf ,(2.17)

ye ‖Y yf = yeyf ,(2.18)

ye ��
Y
q yf =

q − 1 + yeyf
q − 2 + ye + yf

,(2.19)

where it is understood in (2.15), (2.16), (2.19) that the result is declared to be unde-
fined whenever the denominator vanishes, as in (2.11). We have given the operators
a q-subscript whenever the corresponding expression depends on q. Note that series
reduction is particularly easy in the t-variables, while parallel reduction is particularly
easy in the y-variables. We shall also use the obvious notation

A ‖V B = {a ‖V b : a ∈ A, b ∈ B} ,(2.20)

A ��Vq B = {a ��Vq b : a ∈ A, b ∈ B} ,(2.21)

when A and B are subsets of the complex plane, and analogously for the other vari-
ables.

The second reason for introducing these different sets of variables is that the
regions we are attempting to bound have different shapes in the complex v-plane,
t-plane, and y-plane, and we will ultimately choose the variables in which the regions
are the easiest to effectively bound. Of course, since the maps (2.12) and (2.13) are
Möbius transformations, discs in any one of these planes always map to discs (or their
exteriors) in any other one of these planes; but discs centered at the origin do not
in general map to discs centered at the origin, and concentric discs do not in general
map to concentric discs. It is convenient, as we shall see, to choose variables in which
we can use discs centered at the origin.

To avoid notational overload, we will normally specify the variables being used
in each section of the paper and use the convention that ‖ and �� with no superscript
refer to the expressions applicable to the current choice.

Remark. The definitions given in this section concerning the use of the value
undefined are convenient for the main purposes of this paper, where we will be dealing
with regions that belong to the finite plane simultaneously in both the v- and t-
variables, but they are somewhat unnatural because the conditions for being undefined
in (2.15), (2.19), and (2.16) do not correspond: q + ve + vf = 0 is not equivalent to
1 + (q − 1)tetf = 0. A more natural approach is to define the operations ‖ and ��
on the Riemann sphere C = C ∪ {∞} in such a way that the conditions for being
undefined are the same no matter which variables are used. This approach is outlined
and used in the appendices of [26].
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2.3. Partial multivariate Tutte polynomials and veff for 2-terminal
graphs. A 2-terminal graph G = (G, s, t) is a graph G with two distinguished vertices
s and t (s 	= t), called the terminals . (We do not insist here that G be connected but,
in practice, it always will be.) Given a 2-terminal graph (G, s, t), we define the partial
multivariate Tutte polynomials

Z
(s �↔t)
G (q,v) =

∑
E′ ⊆ E

E′ doesnot connect s to t

qk(E
′)
∏
e∈E′

ve ,(2.22)

Z
(s↔t)
G (q,v) =

∑
E′ ⊆ E

E′ connectss to t

qk(E
′)
∏
e∈E′

ve .(2.23)

From (2.1) we have trivially

(2.24) ZG(q,v) = Z
(s �↔t)
G (q,v) + Z

(s↔t)
G (q,v) .

Since clearly k(E′) ≥ 2 (resp., 1) whenever E′ does not connect (resp., connects) s to
t, it is convenient to define

AG,s,t(q,v) = q−2Z
(s �↔t)
G (q,v) ,(2.25)

BG,s,t(q,v) = q−1Z
(s↔t)
G (q,v) .(2.26)

AG,s,t(q,v) and BG,s,t(q,v) are thus defined by sums like (2.22), (2.23) but in which
only those connected components not containing one or both of the terminals s, t
receive a factor q. We also define the “effective weight”

(2.27) veff(G, s, t) ≡ BG,s,t(q,v)

AG,s,t(q,v)
=

qZ
(s↔t)
G (q,v)

Z
(s �↔t)
G (q,v)

,

which is a rational function of q and {ve}. [Note that the polynomial Z
(s �↔t)
G (q,v)

cannot vanish identically, because the term E′ = ∅ in (2.22) contributes q|V (G)|.]
More precisely, we have the following.

Lemma 2.1. Let (G, s, t) be a 2-terminal graph.
(a) If G contains an st-path, then veff(G, s, t) is a rational function of q and {ve}

that depends nontrivially on {ve}.
(b) If G does not contain an st-path, then veff(G, s, t) ≡ 0.
Proof.
(a) If G contains an st-path, then BG,s,t(q,v) 	≡ 0, and every monomial in

BG,s,t(q,v) contains at least one factor ve. On the other hand, AG,s,t(q,v)
contains a monomial q|V (G)|−2 (coming from E′ = ∅) that contains no factors
ve. Therefore, it cannot happen that BG,s,t(q,v) = f(q)AG,s,t(q,v).

(b) The proof is trivial.
Remarks.
1. The “effective transmissivity” teff ≡ veff/(q + veff) is given by the simple

formula

(2.28) teff(G, s, t) =
Z

(s↔t)
G (q,v)

ZG(q,v)
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2126 GORDON F. ROYLE AND ALAN D. SOKAL

and thus represents the “probability” that s is connected to t. In fact, when
v ≥ 0 this is a true probability in the random-cluster model [15].

2. If G is a graph and s, t are distinct vertices of G, we define G/st to be the
graph in which s and t are contracted to a single vertex. (N.B. If G contains
one or more edges st, then these edges are not deleted, but become loops in
G/st.) It is then easy to see that

(2.29) ZG/st(q,v) = Z
(s↔t)
G (q,v) + q−1Z

(s �↔t)
G (q,v) .

One convenient way of calculating Z
(s↔t)
G and Z

(s �↔t)
G is to first calculate

ZG and ZG/st (for instance, by deletion contraction) and then solve (2.24),

(2.29) for Z
(s↔t)
G and Z

(s �↔t)
G . See [32, section 4.6] for more information on

the partial multivariate Tutte polynomials.
Let us now justify the name veff by showing that when (G, s, t) is inserted inside

a larger graph, it acts essentially (modulo a prefactor) as a single edge with effective
weight veff(G, s, t). The precise construction is as follows: LetH be a graph, and let e�
be an edge of H with endpoints a and b.12 Let us denote by H [(e�, a, b) → (G, s, t)]
the graph obtained from the disjoint union of H \ e� and G by identifying s with
a and t with b. So the edge set of H [(e�, a, b) → (G, s, t)] can be identified with
(E(H)\{e�})∪E(G). Now put weights v = {ve}e∈E(H) on the edges ofH and weights
w = {we}e∈E(G) on the edges of G, so that veff(G, s, t) = BG,s,t(q,w)/AG,s,t(q,w)
is a rational function of q and w. We use the notation v�=e� = {ve}e∈E(H)\{e�} and
hence ZH(q,v) = ZH(q,v�=e� , ve�). We then have the following.

Proposition 2.2. When a 2-terminal graph (G, s, t) is inserted into a graph H
as above,

(2.30) ZH[(e�,a,b)→(G,s,t)](q,v�=e� ,w) = AG,s,t(q,w) ZH(q,v�=e� , veff(G, s, t)) .

Proof. The sets A ⊆ (E(H) \ {e�})∪E(G) contributing to the multivariate Tutte
polynomial (2.1) of H [(e�, a, b) → (G, s, t)] can be classified according to whether a is
or is not connected to b via edges in E(G). Those that do not connect a to b give a
factor AG,s,t(q,w) and correspond to the sets A′ 	 e� contributing to the multivariate
Tutte polynomial (2.1) of H , while those that connect a to b give a factor BG,s,t(q,w)
and correspond to the sets A′  e� contributing to the multivariate Tutte polynomial
(2.1) of H . Since veff(G, s, t) = BG,s,t(q,w)/AG,s,t(q,w), the formula (2.30) is an
immediate consequence of this correspondence.

Remarks.
1. The graphical construction of inserting (G, s, t) inside H depends on the cho-

sen order of endpoints for the edge e�, but the resulting multivariate Tutte
polynomial does not. That is, H [(e�, a, b) → (G, s, t)] and H [(e�, b, a) →
(G, s, t)] are in general nonisomorphic as graphs, but Proposition 2.2 shows
that they have the same multivariate Tutte polynomial.

2. The formula (2.10) for series reduction is a special case of (2.30), in which
the inserted graph (G, s, t) is a two-edge path.

2.4. Parallel and series composition of 2-terminal graphs. If G1 =
(G1, s1, t1) and G2 = (G2, s2, t2) are 2-terminal graphs on disjoint vertex sets, then

12The result of Proposition 2.2 below is valid even when a = b (i.e., e� is a loop), although we
will never use it in this situation.
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their parallel composition is the 2-terminal graph

(2.31) G1 ‖ G2 = (H, s1, t1) ,

where H is obtained from G1 ∪G2 by identifying s2 with s1 and t2 with t1, and their
series composition is the 2-terminal graph

(2.32) G1 �� G2 = (H, s1, t2) ,

where H is obtained from G1 ∪ G2 by identifying t1 with s2. For future use (see
section 3.3), let us say that a 2-terminal graph is prime if it cannot be written as the
parallel or series composition of two strictly smaller 2-terminal graphs.13

Remark. We trivially have G1‖G2 = G2‖G1. On the other hand, G1��G2 	= G2��G1,
if only because the terminals are different in the two cases; moreover, even the graphs
underlying G1��G2 and G2��G1 (ignoring the terminals) need not be isomorphic, as can
be seen by simple examples. But this subtlety will play no role in this paper, because
G1 ��G2 and G2 ��G1 will have the same multivariate Tutte polynomial; indeed, they
will have the same partial multivariate Tutte polynomials (2.22), (2.23) and hence also
the same veff . This is a reflection of the fact that the multivariate Tutte polynomial
of a graph G depends only on the graphic matroid M(G) [except for an overall pref-
actor q|V (G)|] and that series connection of matroids does not depend on any orienta-
tion.

Let us now show how the partial multivariate Tutte polynomials Z
(s �↔t)
G and

Z
(s↔t)
G of a parallel or series composition of 2-terminal graphs (G1, s1, t1) and

(G2, s2, t2) can be computed from the partial multivariate Tutte polynomials of the
two input graphs. It is convenient to use the modified partial multivariate Tutte
polynomials AG,s,t and BG,s,t defined in (2.25), (2.26).

Proposition 2.3.

(a) Consider a parallel composition (G, s, t) = (G1, s1, t1) ‖ (G2, s2, t2). Writing
A = AG,s,t and Ai = AGi,si,ti for i = 1, 2 and likewise for B, we have

A = A1A2 ,(2.33)

B = A1B2 +A2B1 +B1B2 ,(2.34)

and, in particular,

(2.35) A+B = (A1 +B1)(A2 +B2)

and

(2.36) veff(G, s, t) = veff(G1, s1, t1) ‖ veff(G2, s2, t2) .

(b) Consider a series composition (G, s, t) = (G1, s1, t1) �� (G2, s2, t2). Writing
A = AG,s,t and Ai = AGi,si,ti for i = 1, 2 and likewise for B, we have

A = A1B2 +A2B1 + qA1A2 ,(2.37)

B = B1B2 ,(2.38)

13We say “strictly smaller” because every 2-terminal graph G can be written as G = G ‖ K̄2 where
K̄2 is the graph with two vertices (the terminals) and no edges. It is to exclude this trivial type of
parallel composition that we write “each have at least one edge” in Lemmas 3.1(d) and 3.2(c). In
section 3.3 and thereafter, this trivial case will be excluded by requiring that all graphs appearing in a
decomposition tree be connected. We could avoid all these technicalities by requiring connectedness
from the start, but we refrain from doing so because connectedness plays no role in the formulas of
the present section.
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and, in particular,

(2.39) qA+B = (qA1 +B1)(qA2 +B2)

and

(2.40) veff(G, s, t) = veff(G1, s1, t1) ��q veff(G2, s2, t2) .

Proof. We recall that AG,s,t(q,v) and BG,s,t(q,v) are defined by sums like (2.22),
(2.23) but in which only those connected components not containing one or both of
the terminals s, t (let us call these “nonterminal components”) receive a factor q.

For a parallel composition, s is connected to t in a spanning subgraph of G if and
only if it is connected in the corresponding spanning subgraph of G1 or G2 or both;
and the number of nonterminal components in G is the sum of those in G1 and G2.
This proves (2.33), (2.34); then (2.35) and (2.36) are an immediate consequence.

For a series composition, s is connected to t in a spanning subgraph of G if and
only if si is connected to ti in the corresponding spanning subgraph of Gi for both
i = 1 and i = 2; and the number of nonterminal components in G is the sum of those
in G1 and G2 except that there is an extra nonterminal component containing the
“inner terminal” s2 = t1 whenever si is disconnected from ti in Gi for both i = 1 and
i = 2 [this explains the factor q in front of A1A2 in (2.37)]. This proves (2.37), (2.38);
then (2.39) and (2.40) are an immediate consequence.

Of course, it is no accident that veff satisfies (2.36) and (2.40) under parallel and
series composition: By Proposition 2.2, veff must behave under parallel and series
composition exactly like the parallel and series connection of single edges. Indeed,
this argument gives an alternate way of proving (2.36) and (2.40).

3. Series-parallel graphs and decomposition trees. In this section we be-
gin by making some further remarks on series and parallel composition of 2-terminal
graphs (section 3.1); we then discuss series-parallel graphs (section 3.2), decomposi-
tion trees for 2-terminal graphs (section 3.3), and the use of decomposition trees to
compute the multivariate Tutte polynomial (section 3.4). Finally, we introduce an
important family of example graphs, the leaf-joined trees (section 3.5).

Before starting, however, we need to clarify our usage of the term “nonseparable”
as concerns graphs with loops. So let us call a graph separable if it is either discon-
nected or can be obtained by gluing at a vertex two graphs that each have at least
one edge; otherwise we call it nonseparable. Equivalently, a graph is nonseparable if
it is either a single vertex with no edges, a single vertex with a single loop, a pair of
vertices connected by one or more edges, or a 2-connected graph. Note in particular
that, in our definition, a nonseparable graph must be loopless unless it consists of a
single vertex with a single loop. (By contrast, the usual definition of “separable” for
connected graphs—namely, a graph with a cut vertex—deems a single vertex with
multiple loops to be nonseparable. This definition has the disadvantage of not being
invariant under planar duality.) Our definition of “nonseparable” agrees with the
usual definition when restricted to loopless graphs.

3.1. Nice 2-terminal graphs. As preparation for a more detailed study of
series and parallel composition of 2-terminal graphs, we wish to single out a class of
2-terminal graphs that are “well-behaved” in the sense that they connect the terminals
without containing “dangling ends.” More precisely, let us say that a 2-terminal graph
(G, s, t) is nice if G is connected and G + st is nonseparable. (Here G + st denotes
the graph obtained from G by adding a new edge from s to t, irrespective of whether
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or not such an edge was already present.) Equivalently, (G, s, t) is nice if either G is
nonseparable or else G is a block path (with more than one block) in which s lies in
one endblock and t in the other and neither of them is a cut vertex. In the latter case
(G, s, t) can be written uniquely as a series composition H1 �� H2 �� · · · �� Hk, where
k ≥ 2 and all the Hi are nonseparable.14 Conversely, if (G, s, t) is nice and not the
series composition of two smaller 2-terminal graphs, then G must be nonseparable.

The following facts are easily verified.
Lemma 3.1. Let G1 = (G1, s1, t1) and G2 = (G2, s2, t2) be 2-terminal graphs.

Then we have the following:
(a) The series composition G1 �� G2 is always separable.
(b) The series composition G1 ��G2 is nice if and only if both G1 and G2 are nice.
(c) If G1 and G2 are nice, then the parallel composition G1 ‖ G2 is nonseparable

(and hence also nice).
(d) Conversely, if G1 and G2 each have at least one edge and the parallel com-

position G1 ‖ G2 is nice, then G1 and G2 are both nice (and hence G1 ‖ G2 is
nonseparable).

In particular, any 2-terminal graph formed by successive series and parallel composi-
tions of nice 2-terminal graphs is nice.

3.2. Series-parallel graphs. In the literature one can find two slightly different
concepts of “series-parallel graph”: one applying to graphs, and the other applying
to 2-terminal graphs. In this paper we shall need to use both of these concepts. We
therefore begin by reviewing the two definitions and the theorems relating them.

In section 2.4 we defined the parallel and series composition of 2-terminal graphs.
We now define a 2-terminal series-parallel graph to be a 2-terminal graph that is either
K2 (with the two vertices as terminals) or else the parallel or series composition of two
smaller 2-terminal series-parallel graphs. Note that a 2-terminal series-parallel graph
is always loopless. Note also that if (G, s, t) is 2-terminal series-parallel, then it is nice,
i.e., G is connected and G + st is nonseparable; this is an immediate consequence of
Lemma 3.1 and the fact that K2 is nice.

For 2-terminal series-parallel graphs we have the following analogue of Lemma 3.1.
Lemma 3.2. Let G1 = (G1, s1, t1) and G2 = (G2, s2, t2) be 2-terminal graphs.

Then we have the following.
(a) The series composition G1��G2 is 2-terminal series-parallel if and only if both

G1 and G2 are 2-terminal series-parallel.
(b) If G1 and G2 are 2-terminal series-parallel, then the parallel composition G1 ‖

G2 is 2-terminal series-parallel.
(c) Conversely, if G1 and G2 each have at least one edge and the parallel com-

position G1 ‖ G2 is 2-terminal series-parallel, then G1 and G2 are 2-terminal
series-parallel.

Proof. The “if” part of (a) is obvious. For the “only if,” we observe that if
G = G1 �� G2 is 2-terminal series-parallel, then it is nice and separable and hence can
be written uniquely as H1 �� H2 �� · · · �� Hk with k ≥ 2 and all the Hi nonseparable;
moreover, we must have G1 = H1 �� · · · �� H� and G2 = H�+1 �� · · · �� Hk for some �.
We now claim that all the Hi are 2-terminal series-parallel (so that G1 and G2 are as
well), and we shall prove this by induction on k. If k = 2, the last operation in the
series-parallel construction of Gmust have been the series connection of H1 with H2, so

14Saying “Hi is nonseparable” is a convenient shorthand for the more precise but pedantic state-
ment “Hi = (Hi, si, ti) with Hi nonseparable”. In what follows we shall repeatedly use this shorthand
in order to avoid ponderous locutions.
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H1 and H2 must be 2-terminal series-parallel. If k > 2, then the last operation in the
series-parallel construction of G must have been the series connection of H1�� · · ·��Hm

with Hm+1 �� · · ·��Hk for some m, so both of these must be 2-terminal series-parallel;
and since they each have less than k blocks, the inductive hypothesis implies that all
the Hi are 2-terminal series-parallel.

(b) The proof is obvious. For (c), we observe that G = G1 ‖ G2 is nice, and hence
by Lemma 3.1(d) it is nonseparable. Now any nonseparable 2-terminal graph G can
be written uniquely (modulo ordering) as G = H1 ‖H2 ‖ · · · ‖Hk, where none of the Hi

can be further decomposed as a nontrivial parallel composition.15 (The summands
Hi are the st-bridges in G.) An argument essentially identical to the one used in
part (a) shows that if G is 2-terminal series-parallel, then all the Hi are 2-terminal
series-parallel, and moreover G1 and G2 are obtained by parallel composition of some
(complementary) nonempty subsets of the Hi.

Let us now turn to the definition of “series-parallel graph” tout court. Un-
fortunately, there seems to be no completely standard definition of “series-parallel
graph”; a plethora of slightly different definitions can be found in the literature
[12, 10, 20, 21, 7, 24]. So let us be completely precise about our own usage: We
shall call a loopless graph series-parallel if it can be obtained from a forest by a finite
(possibly empty) sequence of series and parallel extensions of edges (i.e., replacing an
edge by two edges in series or two edges in parallel). We shall call a general graph
(allowing loops) series-parallel if its underlying loopless graph is series-parallel. Some
authors write “obtained from a tree,” “obtained from K2,” or “obtained from C2” in
place of “obtained from a forest”; in our terminology these definitions yield, respec-
tively, all connected series-parallel graphs, all connected series-parallel graphs whose
blocks form a path, or all nonseparable series-parallel graphs with the exception of
K2. See [7, section 11.2] for a more extensive bibliography.

The precise relationship between the 2-terminal and pure-graph definitions of
“series-parallel” is given by the following theorem, which follows from results of Duffin
[12] (see also Oxley [20]).

Theorem 3.3. If G is a loopless nonseparable graph with at least one edge, then
the following are equivalent:

(1) G is series-parallel.
(2) (G, s, t) is 2-terminal series-parallel for some pair of vertices s, t.
(3) (G, s, t) is 2-terminal series-parallel for every pair of adjacent vertices s, t.
One useful consequence of Theorem 3.3 is the following.
Corollary 3.4. Let (G, s, t) be a 2-terminal graph, where G is loopless and has

at least one edge, and G+ st is nonseparable. Then the following are equivalent:
(1) (G, s, t) is 2-terminal series-parallel.
(2) (G+ st, s, t) is 2-terminal series-parallel.
(3) G+ st is series-parallel.
Proof. Applying Theorem 3.3 to G + st proves the equivalence of (2) and (3).

Moreover, (1) =⇒ (2) is trivial, and (2) =⇒ (1) is a special case of Lem-
ma 3.2(c).

The reason for using the 2-terminal notion of series-parallel graph in this paper is
that, although we are unable to precisely control the maxmaxflow of a series-parallel
graph, we can control the flow between its terminals via the following trivial fact.

15We say that a parallel composition is nontrivial if each of the graphs occurring in it has at least
one edge. See footnote 13 above.
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Lemma 3.5. Let (G1, s1, t1) and (G2, s2, t2) be 2-terminal graphs (not necessarily
series-parallel). Then

λG1��G2(s, t) = min[λG1(s1, t1), λG2(s2, t2)] ,(3.1)

λG1‖G2
(s, t) = λG1(s1, t1) + λG2(s2, t2) ,(3.2)

where s and t denote the terminals of G1 ��G2 and G1 ‖G2, respectively. [Recall that
λG(x, y) denotes the maximum flow in G from x to y, as defined in (1.1b).]

3.3. Decomposition trees. Let G = (G, s, t) be a 2-terminal graph, where we
now assume that G is connected and loopless. A decomposition tree for (G, s, t) is
a rooted binary tree with three types of nodes—called s-nodes , p-nodes , and leaf
nodes—in which the children of each s-node are ordered, and each node is a connected
2-terminal graph (whose underlying graph is a subgraph of G), as follows: The root
node is G; if H is an s-node and H1 and H2 are its children (in order), then H = H1��H2;
if H is a p-node and H1 and H2 are its children (in either order), then H = H1 ‖H2; and
if H is a leaf node, then it has no children.16 If G is edge weighted, then the graph
at each node is also edge weighted with the weights inherited from its parent. The
graphs that appear as nodes in this decomposition tree are called the constituents of
G (with respect to the particular decomposition tree), and a constituent is proper if
it is not equal to G.

A given 2-terminal graph G = (G, s, t) can have many distinct decomposition
trees, and this for two separate reasons. First, one is free to stop the decomposition
at any stage. Indeed, in the extreme case the decomposition tree can consist of the
single node G (which is then a leaf node); we call this the trivial decomposition tree.
At the other extreme, we say that a decomposition tree is maximal if each leaf node
corresponds to a prime 2-terminal graph. Second, if G or one of its constituents is
formed by placing three or more 2-terminal graphs in series or in parallel, then these
may be paired up in various ways. (This nonuniqueness arises from our insistence
that a decomposition tree is a binary tree.)

Remarks.
1. The order of the children at an s-node is important to reconstructing the

graph (since G1 �� G2 	= G2 �� G1) but is irrelevant to the multivariate Tutte
polynomial.

2. We have insisted here that the decomposition tree be a binary tree: this
means that we need only consider parallel or series composition of pairs of
2-terminal subgraphs, but it also means that the maximal decomposition tree
is nonunique whenever G or one of its constituents is formed by placing three
or more 2-terminal graphs in series or in parallel, since these may be paired up
in various ways. Alternatively, we could allow the decomposition tree to be a

16The concept of a decomposition tree for a 2-terminal graph is very natural and has been used
sporadically in the literature, albeit with no standard definition. Brandstädt, Le, and Sprinrad
[7, section 11.2] define decomposition trees essentially as we do, but only for series-parallel graphs.
Bodlaender and van Antwerpen-de Fluiter [4] likewise define decomposition trees for series-parallel
graphs, with a definition that differs slightly from ours by allowing nonbinary trees (see Remark 2
below). Bern, Lawler, and Wong [1] and Borie, Parker, and Tovey [6] define decomposition trees in
the more general setting of k-terminal graphs for any fixed k; their definitions specialized to k = 2
are almost the same as ours. (Borie, Parker, and Tovey require the graphs at leaf nodes to have no
nonterminal vertices—something we do not wish to do, as it would restrict us to series-parallel graphs
only—but they immediately add [6, p. 558] that “this could be generalized to permit additional base
graphs.”) See also Spinrad [33, section 11.3] for a brief description of this latter work.
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2132 GORDON F. ROYLE AND ALAN D. SOKAL

general rooted tree; then the maximal decomposition tree would be unique,
but we would need to consider consider parallel and series composition of an
arbitrary number of 2-terminal subgraphs: six of one, half dozen of the other.

3. Many authors have defined and applied decomposition trees for 2-terminal
series-parallel graphs (see footnote 16 above), and most of the present paper
is indeed concerned with this special case (Theorems 1.4 and 1.5). But the
technique set forth here is more general, and applies to graphs that are not
series-parallel but are nevertheless built up by using series and parallel com-
positions from a fixed starting set of 2-terminal “base graphs” (see section 8).
A simple example of such a result is Theorem 1.6, where the set of base graphs
is taken to be K2 and the Wheatstone bridge. It is for this reason that we
have developed the theory of decomposition trees for 2-terminal graphs that
are not necessarily series-parallel.

We have the following basic facts concerning the structure of decomposition trees.
Lemma 3.6. Let (G, s, t) be a 2-terminal graph, with G connected and loopless,

and fix a decomposition tree for it. Then the following are equivalent:
(1) The root node (G, s, t) is nice.
(2) Every node is nice.
(3) Every leaf node is nice.

Moreover, when these equivalent conditions hold, every p-node is nonseparable and
every s-node is separable.

Proof. This is an immediate consequence of Lemma 3.1.
An analogous result holds for 2-terminal series-parallel graphs.
Lemma 3.7. Let (G, s, t) be a 2-terminal graph, with G connected and loopless,

and fix a decomposition tree for it. Then the following are equivalent:
(1) (G, s, t) is 2-terminal series-parallel.
(2) Every node is 2-terminal series-parallel.
(3) Every leaf node is 2-terminal series-parallel.
Proof. This is an immediate consequence of Lemma 3.2.
Among 2-terminal graphs, the series-parallel ones can be characterized as follows.
Lemma 3.8. Let (G, s, t) be a 2-terminal graph. Then the following are equivalent:
(1) (G, s, t) is 2-terminal series-parallel.
(2) (G, s, t) has a decomposition tree in which all leaf nodes are single edges.
(3) In every maximal decomposition tree for (G, s, t), all leaf nodes are single

edges.
Proof. (1) ⇐⇒ (2) follows directly from the definition of 2-terminal series-

parallel. Furthermore, (3) =⇒ (2) is trivial because every 2-terminal graph does
possess a maximal decomposition tree. Finally, to show (1) =⇒ (3), we observe from
Lemma 3.7 that every leaf node is 2-terminal series-parallel; so if a leaf node is not
a single edge, then it must be either a series or parallel composition of two smaller
2-terminal series-parallel graphs, contradicting the hypothesis that the decomposition
tree is maximal.

Let us now note a simple but important fact that will play a key role in the
remainder of this paper.

Lemma 3.9. Let G = (G, s, t) be a 2-terminal graph, and consider a decomposition
tree for G in which the root is a p-node. [If G is nonseparable, then every decomposition
tree other than the trivial one has this property.] If G has maxmaxflow Λ, then all its
proper constituents (H, a, b) have between-terminals flow λH(a, b) at most Λ− 1.

Proof. Suppose that there is a proper constituent (H, a, b) such that λH(a, b) ≥ Λ.
Let (F, c, d) be the first ancestor of (H, a, b) that is a p-node (such a node must exist

D
ow

nl
oa

de
d 

02
/2

7/
17

 to
 1

28
.4

1.
61

.1
11

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CHROMATIC ROOTS OF SERIES-PARALLEL GRAPHS 2133

since the root is a p-node). Then one of the children of (F, c, d) is a connected series
extension (F1, c, d) of (H, a, b) [possibly (H, a, b) itself], while the other child (F2, c, d)
is connected and has no edges in common with H . Therefore, by concatenating a
cd-path from F2 with ac- and bd-paths from F1 \ H (these paths will degenerate to
empty paths if a = c or b = d, respectively), we obtain an ab-path in F that uses
only edges not in H . Therefore, in F (and hence also in G) there are at least Λ + 1
edge-disjoint paths between a and b, which contradicts the hypothesis that G has
maxmaxflow Λ.

In less formal terms, the key point of this lemma is that if a 2-terminal series-
parallel graph of maxmaxflow Λ is constructed via a sequence of series and parallel
compositions, with the last stage being a parallel composition, then every interme-
diate graph has between-terminals flow at most Λ − 1 (as well as, of course, having
maxmaxflow at most Λ).

3.4. Computing the multivariate Tutte polynomial using a decomposi-
tion tree. Let (G, s, t) be a 2-terminal graph, with G connected and loopless, and fix
a decomposition tree for it. We will now describe a simple algorithm for computing
the partial multivariate Tutte polynomials AG,s,t(q,v) and BG,s,t(q,v)—and more
generally the partial multivariate Tutte polynomials AH,a,b(q,v) and BH,a,b(q,v) for
each node (H, a, b) in the decomposition tree—given the partial multivariate Tutte
polynomials of all the leaf nodes. In particular, we will be able to compute the
multivariate Tutte polynomial

(3.3) ZG(q,v) = q2AG,s,t(q,v) + qBG,s,t(q,v) .

Before stating the algorithm, however, let us remark briefly on the different ways
that it can be interpreted. Since AG,s,t(q,v), BG,s,t(q,v), and ZG(q,v) are polynomi-
als with integer coefficients—i.e., they belong to the polynomial ring Z[q,v]—they in-
duce well-defined polynomial functions on every commutative ring R, i.e., AG,s,t : R×
RE → R and likewise for the other two. Therefore, if R is an arbitrary commutative
ring and q and {ve} are given specified values in R, then it makes sense to compute the
value (which again lies in R) of the polynomial functions AG,s,t(q,v), BG,s,t(q,v), and
ZG(q,v). This is what our algorithm will do, using only addition and multiplication in
the ring R; it thus works, without any modification, for an arbitrary choice of the com-
mutative ring R. The two most interesting choices for our purposes are the following:

• R = Z[q,v] with q and {ve} taken to be indeterminates. This allows us to
compute symbolically the various multivariate Tutte polynomials.

• R = C (or R or Q or Z) with q and {ve} given specified numerical values.
This allows us to compute the numerical values of the various multivariate
Tutte polynomials.

Let us now state the algorithm, which is in fact a trivial application of Proposi-
tion 2.3.

Algorithm 1. Fix a commutative ring R, and fix values q ∈ R and v = {ve} ∈
RE . We assume that the values of AH,a,b(q,v) and BH,a,b(q,v) are known for every
leaf node (H, a, b). Then we proceed inductively up the tree, computing AH,a,b(q,v)
and BH,a,b(q,v) using Proposition 2.3:

• If (H, a, b) is a p-node whose children (H1, s1, t1) and (H2, s2, t2) have already
been computed, we set

AH,a,b = AH1,s1,t1AH2,s2,t2 ,(3.4a)

BH,a,b = AH1,s1,t1BH2,s2,t2 +AH2,s2,t2BH1,s1,t1 +BH1,s1,t1BH2,s2,t2 .(3.4b)
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• If (H, a, b) is an s-node whose children (H1, s1, t1) and (H2, s2, t2) have al-
ready been computed, we set

AH,a,b = AH1,s1,t1BH2,s2,t2 +AH2,s2,t2BH1,s1,t1 + qAH1,s1,t1AH2,s2,t2 ,(3.5a)

BH,a,b = BH1,s1,t1BH2,s2,t2 .(3.5b)

The validity of this algorithm is an immediate consequence of Proposition 2.3.
If the ring R is in fact a field F , then this algorithm can be usefully rephrased in

terms of the “effective weights” veff(H, a, b) = BH,a,b(q,v)/AH,a,b(q,v), provided that
we are careful to avoid division by zero. The two most interesting choices of the field
F are the following:

• F = Q(q,v), the field of rational functions with rational coefficients in the
indeterminates q and {ve}. This will allow us to compute symbolically the
various multivariate Tutte polynomials.

• F = C (or R or Q). This will allow us to compute the numerical values of the
various multivariate Tutte polynomials, when q and {ve} are given specified
numerical values.

In this version, the algorithm works as follows [for simplicity we concentrate on com-
puting ZG(q,v) and veff(H, a, b)]:

Algorithm 2. Fix a field F and fix values q ∈ F and v = {ve} ∈ FE . We
assume that the values of AH,a,b(q,v) and BH,a,b(q,v) are known for every leaf node
(H, a, b), with all the AH,a,b(q,v) nonzero. We can therefore define veff(H, a, b) =
BH,a,b(q,v)/AH,a,b(q,v) for each leaf node. We now proceed inductively up the tree:

• If (H, a, b) is a p-node whose children (H1, s1, t1) and (H2, s2, t2) have already
been labeled with values veff(H1, s1, t1) and veff(H2, s2, t2), we then label
(H, a, b) with

veff(H, a, b) = veff(H1, s1, t1) ‖ veff(H2, s2, t2) .

• If (H, a, b) is an s-node whose children (H1, s1, t1) and (H2, s2, t2) have al-
ready been labeled with values veff(H1, s1, t1) and veff(H2, s2, t2), we then
label (H, a, b) with

veff(H, a, b) = veff(H1, s1, t1) ��q veff(H2, s2, t2)

provided that q + veff(H1, s1, t1) + veff(H2, s2, t2) 	= 0; otherwise, we give
veff(H, a, b) the value undefined and terminate the algorithm. In the former
case, we also mark the node (H, a, b) as carrying a prefactor q+veff(H1, s1, t1)+
veff(H2, s2, t2).

If the algorithm succeeds in labeling the entire decomposition tree (i.e., does not
encounter any value undefined), we then set ZG(q,v) equal to q[q+ veff(G, s, t)] times
the product of the prefactors associated with all the s-nodes times the product of the
AH,a,b(q,v) from all the leaf nodes.

Since this algorithm for computing veff(H, a, b) and ZG(q,v) is simply a rephrasing
of Algorithm 1 combined with (3.3), its validity follows immediately.

Of course, Algorithm 2 is not really an algorithm (i.e., a process that is always
guaranteed to give an answer) because it could fail by encountering an undefined value
at some s-node. But we can say the following:

First of all, Algorithm 2 is guaranteed to succeed when it is carried out symboli-
cally, i.e., over the field Q(q,v) of rational functions in the indeterminates q and {ve}.
More precisely, we have the following.

Proposition 3.10. Let (G, s, t) be a 2-terminal graph, with G connected and
loopless, and fix a decomposition tree for it. Then, for each node (H, a, b) in the de-
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composition tree, the quantities veff(H, a, b), considered as elements of the field Q(q,v)
of rational functions in the indeterminates q and {ve}e∈E(H), have the following prop-
erties:

(a) veff(H, a, b) is a rational function of q and {ve}e∈E(H) that depends nontriv-
ially on {ve}e∈E(H).

(b) At an s-node (H, a, b) with children (H1, s1, t1) and (H2, s2, t2), one can never
have q + veff(H1, s1, t1) + veff(H2, s2, t2) = 0 in Q(q,v).

Therefore, Algorithm 2 never encounters an undefined value when it is carried out
over the field Q(q,v).

Proof. Statement (a) is simply Lemma 2.1(a) since by hypothesis H is connected.
Statement (b) holds because, by (a), veff(H1, s1, t1) and veff(H2, s2, t2) depend non-
trivially on disjoint sets of indeterminates.

On the other hand, Algorithm 2 can fail when it is carried out over C (i.e., with
numerical values of q and {ve}). Suppose, for instance, that (G, s, t) [or some con-
stituent thereof] consists of an edge e in series with the parallel combination of edges
f and g. Then the multivariate Tutte polynomial for this graph is unambiguously

(3.6) ZG(q,v) = q(q + ve)(q + vf + vg + vfvg) .

But if we choose ve = −q (where q is any complex number), vf = −1/2, and vg = 1,
then Algorithm 2 first computes vf ‖vg = 0 and then tries to compute ve ��q (vf ‖vg) =
−q ��q 0, yielding an undefined result of 0/0.

It is nevertheless worth stressing once again that whenever Algorithm 2, carried
out over C (or any other field), does give an answer, that answer is guaranteed to be
correct.

In the remainder of this paper, when we use Algorithm 2 over C, we will do so
in the context of additional hypotheses that guarantee that no intermediate answer
is ever undefined.

Some remarks concerning computational complexity.
1. There exists a linear-time algorithm for taking a 2-terminal graph (G, s, t)

and finding a maximal decomposition tree for it (see [35]). Then Lemma 3.8
tells us, in particular, that (G, s, t) is 2-terminal series-parallel if and only if
all the leaves of this maximal decomposition tree are K2’s.

2. Given a maximal decomposition tree for a 2-terminal series-parallel graph
(G, s, t), Algorithm 2 provides a linear-time algorithm for computing ZG(q,v)
as well as veff(H, a, b) for every constituent (H, a, b), provided that we work
in a computational model where each field operation (in C or in Q(q,v) as
the case may be) is assumed to take a time of order 1, and provided we take
into account the possibility of failure when we work over C.

3.5. Leaf-joined trees. Given a positive integer r ≥ 2, we can form a graph
Gr

n by taking a complete r-ary rooted tree of height n ≥ 1 and then identifying all
the leaves into a single vertex. As an example, Figure 1 shows the graphs G2

3 and G3
3.

We consider Gr
n as a 2-terminal graph in which the terminals are the root and the

identified-leaves vertex. It is easy to see that Gr
n is in fact 2-terminal series-parallel,

as it can be defined recursively as follows:

Gr
1 = K

(r)
2 ,(3.7a)

Gr
n+1 = (K2 �� G

r
n)

‖r,(3.7b)

where K
(r)
2 is the graph with two vertices connected by r parallel edges, and G‖r

denotes the parallel composition of r copies of G. It then follows that Gr
n has (rn +
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Fig. 1. G2
3 is a complete binary tree of height three with all leaves identified, and G3

3 is a
complete ternary tree of height three with all leaves identified.

r − 2)/(r − 1) vertices, that the flow between its terminals is r (for n ≥ 1), and that
its maxmaxflow is r + 1 (for n ≥ 2).

In [26, Appendix B], we prove the following theorem.
Theorem 3.11. For fixed r ≥ 2, every point of the circle |q − 1| = r is a limit

point of chromatic roots for the family {Gr
n}n≥1 of leaf-joined trees of branching factor

r. [More precisely, for every q0 satisfying |q0 − 1| = r and every ε > 0, there exists
n0 = n0(q0, ε) such that for all n ≥ n0 the graph Gr

n has a chromatic root q lying in
the disc |q − q0| < ε.]

4. An abstract theorem on excluding roots. The multivariate Tutte poly-
nomial of the graph G = K2 having a single nonloop edge of weight ve is ZK2(q,v) =
q(q + ve), which has roots at q = 0 and q = −ve. Given a 2-terminal series-parallel
graph G with arbitrary complex edge weights {ve} and a fixed complex number q, we
can apply series and parallel reductions as in section 3.4 until G has been reduced to
a single edge with some “effective weight” veff ∈ C∪{undefined}. If veff 	= undefined,
then we can be sure that none of the prefactors of the form q + ve1 + ve2 generated
during the series reductions were 0, and we can therefore conclude that ZG(q,v) = 0
if and only if q = 0 or veff = −q.

This observation then gives us a strategy for determining root-free regions for
the multivariate Tutte polynomials of families of series-parallel graphs. For a fixed
q 	= 0 in the conjectured root-free region, we bound the regions of the (finite) complex
v-plane where veff can lie for any graph in the family, and we show that these regions
do not contain the point veff = −q that would correspond to a zero of ZG(q,v). If we
can do this, then we have shown that ZG(q,v) 	= 0. The precise result is as follows.

Theorem 4.1. Let q 	= 0 be a fixed complex number and let Λ ≥ 2 be a fixed
integer. Let S1 ⊆ S2 ⊆ · · · ⊆ SΛ−1 be sets in the (finite) complex v-plane such that

(1) Sk ��
V
q S� ⊆ Smin(k,�) for all k, �,

(2) Sk ‖V S� ⊆ Sk+� for k + � ≤ Λ− 1.
Now consider any 2-terminal series-parallel graph (G, s, t) and any maximal decom-
position tree for (G, s, t) in which all the proper constituents have between-terminals
flow at most Λ − 1, and equip G with edge weights ve ∈ S1. Then, for every node
(H, a, b) of the decomposition tree that has between-terminals flow λH(a, b) ≤ Λ − 1,
we have veff(H, a, b) ∈ SλH (a,b).

Now assume further that, in addition to (1) and (2), the following hypotheses hold:
(3) −q /∈ SΛ−1,
(4) −q /∈ Sk ‖V S� for k + � = Λ.
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Then, for any loopless series-parallel graph G with maxmaxflow at most Λ, we have
ZG(q,v) 	= 0 whenever ve ∈ S1 for all edges. (In particular, if −1 ∈ S1, then q is not
a chromatic root of G.)

Remarks.
1. It is implicit in condition (1) that the operation in question is always well-

defined (i.e., does not take the value undefined) or, in other words, that
q + v1 + v2 	= 0 whenever v1 ∈ Sk and v2 ∈ S�.

2. When the root of the decomposition tree is a p-node (which occurs, in par-
ticular, whenever G is nonseparable and not K2) and G has maxmaxflow
Λ, then Lemma 3.9 guarantees that every proper constituent has between-
terminals flow at most Λ−1. The root node (G, s, t), by contrast, might have
between-terminals flow as large as Λ.

Proof. Let (G, s, t), its maximal decomposition tree, and its edge weights be as
specified. We want to prove that veff(H, a, b) ∈ SλH (a,b) for all nodes (H, a, b) that
satisfy λH(a, b) ≤ Λ − 1. We shall prove this claim by induction upwards from the
leaves of the decomposition tree. By Lemma 3.8, a leaf of the decomposition tree is
an edge e of G, hence has between-terminals flow equal to 1, and veff = ve ∈ S1 by
hypothesis. So let (H, a, b) be a nonleaf node of the decomposition tree and suppose
that the children of (H, a, b), call them (H1, a1, b1) and (H2, a2, b2), have between-
terminals flow k and �, respectively. Since (H1, a1, b1) and (H2, a2, b2) are proper
constituents, we have by hypothesis k, � ≤ Λ − 1; so by the inductive hypothesis, we
have veff(H1, a1, b1) ∈ Sk and veff(H2, a2, b2) ∈ S�. Using Lemma 3.5, it is clear that
conditions (1) and (2) ensure that veff(H, a, b) ∈ SλH(a,b) holds whenever λH(a, b) ≤
Λ − 1 (which holds for all proper constituents and might or might not hold for the
root node). This proves the first half of the theorem.

As ZG(q,v) is multiplicative over blocks, and the maxmaxflow of a separable
graph is the maximum of the maxmaxflows of its blocks, it suffices to prove the
second half of the theorem when G is a loopless nonseparable series-parallel graph of
maxmaxflow at most Λ. Since the result holds trivially when G = K1, we can assume
that G has at least one edge. Therefore, by Theorem 3.3, G has a pair of vertices
s, t such that (G, s, t) is a 2-terminal series-parallel graph and, hence, described by
a maximal decomposition tree whose leaf nodes are single edges. Furthermore, by
Lemma 3.9, all of the proper constituents of (G, s, t) have between-terminals flow at
most Λ − 1. Therefore, if (H, a, b) is a proper constituent of (G, s, t) with between-
terminals flow λH(a, b) = λ, we can apply the first half of the theorem to conclude
that veff(H, a, b) ∈ Sλ.

By condition (3) [and the nesting Si ⊆ SΛ−1], we have veff(H, a, b) 	= −q whenever
(H, a, b) is a proper constituent of (G, s, t). On the other hand, the final step (at the
root of the decomposition tree) constructs (G, s, t) as the parallel composition of two
proper constituents whose between-terminal flows sum to λG(s, t) ≤ Λ, so conditions
(4) and (2), (3) together ensure that veff(G, s, t) 	= −q. Therefore, by Algorithm 2
of section 3.4, ZG(q,v) is equal to a nonzero prefactor—namely, the product over s-
nodes of q+ veff(G1, s1, t1)+ veff(G2, s2, t2), a quantity that is nonvanishing by virtue
of Remark 1 preceding this proof—multiplied by q[q + veff(G, s, t)], and is therefore
nonzero as claimed.

Of course, to apply this theorem, it is necessary to actually identify suitable sets
S1 ⊆ S2 ⊆ · · · ⊆ SΛ−1. In practice one usually starts from a specified set V ⊆ C of
“allowed edge weights”—for instance, V = {−1} for the chromatic polynomial—and
one attempts to find sets S1 ⊆ S2 ⊆ · · · ⊆ SΛ−1 satisfying S1 ⊇ V along with the
hypotheses (1)–(4) of Theorem 4.1. For any particular combination of q, Λ, and V ,
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2138 GORDON F. ROYLE AND ALAN D. SOKAL

there is always a collection of minimal regions S1 ⊆ S2 ⊆ · · · ⊆ SΛ−1, where S1 ⊇ V
and conditions (1) and (2) are satisfied. If one knows this collection of minimal regions,
then conditions (3) and (4) become a “final check” certifying that q is not a root.

In practice, though, it is almost always impossible to describe the minimal regions
even for specific values of q and Λ, let alone symbolically (but see section 5 for some
computer-generated approximations). Therefore it is necessary to bound the optimal
regions inside larger regions with shapes that are more amenable to analysis. But
it is also important to fit the bounding regions as tightly as possible to the optimal
regions, as conditions (1) and (2) cause any “unnecessary points” included in the
approximation to a region to have a cascading effect on the approximations for the
other regions, thereby incorporating still more possibly unnecessary points, and so
on.

There are, in fact, two slightly different reasons why including unnecessary points
in the regions Si can lead to poor bounds. First, if we have chosen S2, S3, . . . to be
much larger than they need to be, for the given set S1, then the bounds one obtains
from Theorem 4.1 may (not surprisingly) be much weaker than the truth. Second, it is
important to observe that even if we are ultimately interested in proving ZG(q,v) 	= 0
for weights ve lying in a specified set V , we will get from Theorem 4.1, whether we
like it or not, the same result for all ve ∈ S1. Of course, if S1 is exactly the minimal
region containing the given V and satisfying conditions (1) and (2), then nothing is
lost, as any bound valid for all series-parallel graphs of maxmaxflow Λ with weights
in V will also be valid for weights in S1 (since any v lying in the minimal region S1 is,
in fact, the veff for a suitable 2-terminal series-parallel graph of maxmaxflow Λ and
between-terminals flow 1, with edge weights in V). But if the chosen S1 is significantly
larger than the minimal region, then even the best-possible bound for weights in S1

may be much weaker than the corresponding bound for weights in V . In particular, if
S1 extends much outside the “complex antiferromagnetic regime” |1+ve| ≤ 1—where
“much outside” means, roughly, more than a distance of order 1/|q|—then one expects
the q-plane roots of ZG(q,v) to grow exponentially in Λ rather than linearly (see [17]
for further discussion, and see also footnote 19 below).

The simplest types of regions to manipulate analytically are discs, especially discs
centered at the origin, and so it is natural to try to bound the optimal regions inside
suitable discs. If one insists on using discs centered at the origin, then it furthermore
matters whether one uses the v-variables, the y-variables, or the t-variables. If one
makes a poor choice—e.g., the optimal regions are either far from being discs, or far
from being centered at the origin in the chosen variables—then one will obtain poor
bounds, e.g., bounds that grow exponentially rather than linearly in Λ.

It turns out that the optimal regions are not too far from being discs centered
at the origin if we use the t-variables , but are quite far from being discs centered at
the origin if we use the v- or y-variables. We shall therefore use the t-variables in the
remainder of this paper. Let us recall that the important points v = −1, v = ∞, and
v = −q correspond to t = 1/(1− q), t = 1 and t = ∞, respectively. We can therefore
reexpress Theorem 4.1 in the language of transmissivities {te}. For simplicity we
suppress the statements about veff (or teff) and concentrate on the conclusion that
ZG(q,v) 	= 0.

Theorem 4.2. Let q 	= 0 be a fixed complex number and let Λ ≥ 2 be a fixed
integer. Let S1 ⊆ S2 ⊆ · · · ⊆ SΛ−1 be sets in the (finite) complex t-plane such that

(1) Sk ��
T S� ⊆ Smin(k,�) for all k, �,

(2) Sk ‖Tq S� ⊆ Sk+� for k + � ≤ Λ − 1,
(3′) 1 /∈ SΛ−1,
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(4) Sk ‖Tq S� ⊆ C for k + � = Λ (i.e., does not ever take the value undefined).
Then, for any series-parallel graph G with maxmaxflow at most Λ, we have ZG(q,v) 	=
0 whenever ve/(q + ve) ∈ S1 for all edges.

In particular, to handle chromatic polynomials it suffices to arrange that
1/(1− q) ∈ S1.

Remark. Condition (3) states merely that the set SΛ−1 avoids the point t = 1,
but in practice we will always have SΛ−1 ⊆ {|t| < 1}. Indeed, if SΛ−1 contains any
point with |t| = 1 (resp., |t| > 1), then by condition (1) its closure SΛ−1 must contain
the point t = 1 (resp., t = ∞); and while this is not explicitly forbidden, it is hard to
see how one could satisfy all the hypotheses (1)–(4) in such a case.

Proof of Theorem 4.2. This is almost a direct translation of Theorem 4.1 into
transmissivities. Indeed, conditions (1) and (2) here are direct translations of condi-
tions (1) and (2) of Theorem 4.1. Condition (3′) here is equivalent to the hypothesis in
Theorem 4.1 that the sets lie in the finite v-plane, while condition (3) of Theorem 4.1
is equivalent to the hypothesis here that the sets lie in the finite t-plane. Finally,
condition (4) here is a direct translation of condition (4) of Theorem 4.1.

Since the regions Si are assumed increasing, the condition (1) is most stringent
for � = Λ− 1, and it reduces to

(1′) Sk ��
T SΛ−1 ⊆ Sk for all k.

Furthermore, there is a simple but very useful sufficient condition for condition (1),
(1′) to hold.

Lemma 4.3. If there exists r > 0 such that

(4.1) D(r2) ⊆ S1 ⊆ S2 ⊆ · · · ⊆ SΛ−1 ⊆ D(r) ,

where D(r) = {t ∈ C : |t| ≤ r}, then condition (1) of Theorem 4.2 holds.
Proof. Sk ��

T S� ⊆ D(r) ��T D(r) = D(r2) ⊆ Smin(k,�).

5. Discs in the t-plane. In this section we shall prove the following strength-
ening of Theorem 1.4.

Theorem 5.1. Fix an integer Λ ≥ 2, and let G be a loopless series-parallel graph
of maxmaxflow at most Λ. Let ρ�Λ be the unique solution of

(5.1) (1 + ρ)Λ = 2(1 + ρ2)Λ−1

in the interval (0, 1) when Λ ≥ 3, and let ρ�2 = 1. Then the multivariate Tutte
polynomial ZG(q,v) is nonvanishing whenever |q − 1| ≥ 1/ρ�Λ (with ≥ replaced by >
when Λ = 2) and the complex edge weights v = {ve}e∈E satisfy

(5.2) ve = −1 or

∣∣∣∣ ve
q + ve

∣∣∣∣ ≤ ρ
X − 1

1− ρX

(again with strict inequality when Λ = 2), where

(5.3) ρ =
1

|q − 1| and X =

(
2

1 + ρ

)1/(Λ−1)

.

Furthermore we have ρ�Λ > (log 2)/(Λ − 3
2 log 2), so that, in particular, all the

roots (real or complex) of the chromatic polynomial PG(q) lie in the disc |q − 1| <
(Λ− 3

2 log 2)/ log 2.
Remark. We shall see in Lemma 5.6 that under the hypothesis |q − 1| ≥ 1/ρ�Λ

(i.e., ρ ≤ ρ�Λ) we have

(5.4) ρ
X − 1

1− ρX
≥ ρ2 ,
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so that the conclusion of Theorem 5.1 holds under the more stringent but simpler
condition

(5.5) ve = −1 or

∣∣∣∣ ve
q + ve

∣∣∣∣ ≤ 1

|q − 1|2 .

We shall prove Theorem 5.1 by exhibiting regions S1 ⊆ S2 ⊆ · · · ⊆ SΛ−1 of the
complex t-plane that satisfy the conditions of Theorem 4.2 when |q − 1| ≥ 1/ρ�Λ and
for which the set S1 corresponds precisely to (5.2). Since in this section we shall
always be working in the t-plane, we shall henceforth drop the superscripts T from
the operators ‖Tq and ��T . Let us also recall that, in the t-plane, series connection ��
is simply multiplication.

Before beginning this proof, it is instructive to engage in some informal motivation
of our constructions.

If we want to handle the chromatic polynomial using Theorem 4.2, then we must
certainly have 1/(1 − q) ∈ S1. The set of minimal regions Si that contain the point
1/(1 − q) and satisfy the first two conditions of Theorem 4.2 can be approximated
by computer, because these conditions can be viewed as rules for constructing each
Si from certain others. By imposing a fine grid on the disc |t| < 1 and “rounding”
each complex number to the closest grid point, we can restrict our attention to a finite
number of points. We start by marking t0 = 1/(1−q) as belonging to S1 (and hence to
each Si); we then iteratively construct approximations to the regions S1, S2, . . . , SΛ−1

by using conditions (1) and (2) of Theorem 4.2 until the approximations are closed
under further application of the rules.17 If the resulting region SΛ−1 is contained in
the open unit disc {|t| < 1}, then Theorem 4.2 implies that q is not a chromatic root
for any graph of maxmaxflow Λ.

Repeating these experiments for a range of different values of q and moderate
values of Λ suggests that although the minimal regions are generally complicated
shapes, they are often loosely “disc-like” and can be bounded reasonably well by a
disc in the t-plane centered at the origin. Some examples with Λ = 3 are shown in
Figure 2, and a more extensive set of plots is included with the preprint version of
this paper at arXiv.org.18

In fact we need to be a bit more careful, because every region Si must contain
the point t0 = 1/(1 − q), but taking the smallest region S1 to be a disc of radius
ρ = |t0| = |1/(1 − q)| cannot give very good bounds. Indeed, with this choice of S1

there exist graphs G of maxmaxflow Λ having roots ZG(q, v) = 0 with v ∈ S1 and q
growing exponentially in Λ (more precisely, like 2Λ).19

17For instance, for Λ = 3 the rules are simply S1 ⊆ S2, S1 ‖S1 ⊆ S2, S1S2 ⊆ S1, and S2S2 ⊆ S2.
18See the ancillary files S1S2 2.2.pdf, S1S2 2.4.pdf, and S1S2 3.0.pdf. Each of these files shows

S1 and S2 in the complex t-plane for Λ = 3 and a set of values of q defined by q − 1 = Reiθ , where
R takes the specified value (2.2, 2.4 or 3.0) and θ = kπ/180 for k = 0, 5, 10, . . . , 180. These plots use
the conventions explained in the caption of Figure 2.

19Just take G = K
(k)
2 (i.e., k edges in parallel), which has maxmaxflow k. Consider q < 0,

and write q = −Q for simplicity. Then ρ = 1/(1 + Q), and the point t = −ρ = −1/(1 + Q) ∈ S1

corresponds to v = Q/(Q+2). Then Z
K

(k)
2

(q, v) = q+(1+v)k−1 vanishes when [(2Q+2)/(Q+2)]k =

Q+ 1, which occurs for large k at Q = 2k − k − 1 +O(k2/2k).
What is going on here is that v = Q/(Q+2) is strongly ferromagnetic: for Q � 1 we have v ≈ 1,

hence y = 1+ v ≈ 2; so putting k such edges in parallel leads to a weight that grows like 2k. Similar
behavior will occur whenever S1 contains any point having |1 + v| uniformly larger than 1. Indeed,
we expect large roots in the q-plane whenever S1 contains any point having |1 + v| − 1 � 1/|q|.
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(a) q = 3.125 + 0.569i ≈ 1 + 2.2eπi/12 (b) q = 2.905 + 1.100i ≈ 1 + 2.2eπi/6

(c) q = 2.100 + 1.905i ≈ 1 + 2.2eπi/3 (d) q = 1.000 + 2.200i ≈ 1 + 2.2eπi/2

(e) q = −0.100 + 1.905i ≈ 1 + 2.2e2πi/3 (f) q = −0.905 + 1.100 ≈ 1 + 2.2e5πi/6

Fig. 2. Computer-generated approximations to S1 (dark blue) and S2 (light green) in the
complex t-plane, for Λ = 3 and selected values of q. Note that we always have S1 ⊆ S2 and
S1 = {t0}∪ t0S2, where t0 = 1/(1− q). The points t0 and t0 �� t0 = t20, which both belong to S1, are
shown as dark blue + and ×, respectively. The circle |t| = 1 is shown for reference in dashed black.
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However, a slight modification works, namely, we take each region Si to be a
“point + disc”

(5.6) Si = {1/(1− q)} ∪D(ri),

where D(ri) is a closed disc of radius ri centered at the origin. This choice results in
a situation that is both amenable to analysis and also yields good bounds when the
radii ri are suitably chosen, as we will prove in this section.

The disc D(r1) must have radius at least ρ2 because it must contain the point
t0 �� t0 = 1/(1− q)2. So choose some r1 ≥ ρ2; this choice of r1 sets a lower bound on
the possible values for r2 because S1 ‖q S1 ⊆ S2. Continuing in this fashion, r1 and
r2 determine the minimum allowable value for r3; then r1, r2, and r3 determine the
minimum allowable value for r4; and so on. Ultimately this process determines a min-
imum allowable value for rΛ−1; and if rΛ−1 ≤ ρ, then the set of radii r1, r2, . . . , rΛ−1

yields a set of regions Si defined by (5.6) that satisfies the conditions of Theorem 4.2.
We formalize this observation in the following proposition.

Proposition 5.2. Let Λ ≥ 2 be a fixed integer; then let q be a fixed complex
number satisfying |q− 1| > 1, and set t0 = 1/(1− q) and ρ = |t0|. If the real numbers
r1, r2, . . . , rΛ−1 satisfy

(5.7) ρ2 ≤ r1 ≤ r2 ≤ · · · ≤ rΛ−1 ≤ ρ

and

(5.8) rs ≥ max{|te ‖q tf | : te ∈ D(rk), tf ∈ D(r�), k + � = s}
for 2 ≤ s ≤ Λ − 1, then the set of regions S1, S2, . . . , SΛ−1 defined by

(5.9) Si = {1/(1− q)} ∪D(ri)

satisfies the conditions of Theorem 4.2.
Proof. We need to show that the four conditions of Theorem 4.2 hold. Condition

(1) holds by Lemma 4.3 with r = ρ. To check condition (2), we observe that

(5.10) Sk ‖q S� = ({t0} ∪D(rk)) ‖q ({t0} ∪D(r�)) = {t0} ∪ (D(rk) ‖q D(r�))

because t0‖q t = t0 for every t. Therefore condition (5.8) on the radii is exactly what is
needed to ensure that Sk‖qS� ⊆ Sk+�. Condition (3′) holds because SΛ−1 ⊆ D(ρ) and
ρ < 1. Finally, condition (4) fails only if there are te ∈ Sk and tf ∈ S� (with k+� = Λ,
though we do not even need to use this constraint) such that tetf = 1/(1 − q), but
this is impossible because |tetf | ≤ ρ2 < ρ = 1/|1− q|.

To apply this theorem, we need to be able to bound the modulus of

(5.11) te ‖q tf =
te + tf + (q − 2)tetf

1 + (q − 1)tetf

when te ∈ D(rk) and tf ∈ D(r�). Since the maximum modulus of te ‖q tf occurs when
te and tf are on the boundaries of their respective discs, let us define for x, y ∈ [0, ρ)
the function

(5.12) fq(x, y) := max{|te ‖q tf | : |te| = x, |tf | = y} .

If we bound (5.11) in the most naive way by replacing the numerator by an upper
bound and the denominator by a lower bound, and we furthermore use |q − 2| ≤
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|q− 1|+ 1 to express the q-dependence in terms of the single number |q− 1|, then we
get

(5.13) fq(x, y) ≤ Fq(x, y) :=
x+ y + (|q − 1|+ 1)xy

1− |q − 1|xy =
x+ y + (ρ−1 + 1)xy

1− ρ−1xy
.

The condition x, y ∈ [0, ρ) ensures that the denominator of Fq(x, y) is strictly positive.
Therefore, given the chosen value of r1, we can define a sequence of radii r2, r3, . . .
satisfying (5.8) using the iteration

(5.14) rs = max{Fq(rk, r�) : k + � = s}

(stopping the iteration whenever a result rs becomes ≥ ρ). It is immediate that
r1 ≤ r2 ≤ · · · . If the iteration remains well-defined up to s = Λ − 1 and satisfies
rΛ−1 ≤ ρ, then the radii satisfy the hypotheses of Proposition 5.2. (Henceforth let us
write F in place of Fq to lighten the notation.)

At first sight, this seems rather unappealing for analysis because the max in (5.14)
appears difficult to handle. However, this difficulty is illusory because it turns out
that F is actually an associative function.

Lemma 5.3. Let G be a function of the form

(5.15) G(x, y) =
x+ y +Axy

1 +Bxy
,

where A, B are arbitrary constants. Then

(5.16) G(x,G(y, z)) = G(y,G(x, z)) = G(z,G(x, y)) .

Proof. Direct calculation shows that

(5.17) G(x,G(y, z)) =
(x+ y + z) +A(xy + yz + xz) + (A2 +B)xyz

1 +B(xy + xz + yz) +ABxyz
,

which is clearly symmetric under all permutations of {x, y, z}.
Corollary 5.4. If F is given by (5.13) and r2, . . . , rΛ−1 by (5.14), then

(5.18) F (rk, r�) = F (r1, rk+�−1)

for all pairs k, � of positive integers such that k + � ≤ Λ.
Proof. We prove this by induction on s = k+�. The result clearly holds for s = 2.

So suppose that the result is true for all k′ + �′ < k + �. Then

(5.19) F (rk, r�) = F (F (r1, rk−1), r�) = F (r1, F (rk−1, r�)) = F (r1, rk+�−1)

and the result holds.
The key point of this lemma (which was used implicitly in the proof) is that all

the terms in (5.14) are actually the same, and so we can arbitrarily choose any one of
them to define rs. So let us take rs+1 = F (r1, rs), i.e.,

(5.20) rs+1 =
[1 + (ρ−1 + 1)r1]rs + r1

1− ρ−1r1rs
.
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2144 GORDON F. ROYLE AND ALAN D. SOKAL

Since the map rs �→ rs+1 is a Möbius transformation, we can obtain an explicit
expression for rk.

Lemma 5.5. For fixed real numbers r1 and ρ 	= 1, define a sequence r1, r2, . . . ∈
R ∪ {∞} by

(5.21) rs+1 =
[1 + (ρ−1 + 1)r1]rs + r1

1− ρ−1r1rs
.

Then

(5.22) rk = ρ
(1 + r1/ρ)

k − (1 + r1)
k

(1 + r1)k − ρ(1 + r1/ρ)k
.

Proof. The map rs �→ rs+1 is a (real) Möbius transformation of the form

(5.23) x �→ ax+ b

cx+ d

whose coefficients can be displayed in a suitable matrix

(5.24) M =

(
a b
c d

)
=

(
1 + (ρ−1 + 1)r1 r1

−ρ−1r1 1

)
.

By standard results on Möbius transformations, the matrix Mk represents the kth
iterate of this transformation. Now, the matrix M has eigenvalues 1+r1/ρ and 1+r1,
and it can be diagonalized by M = QDQ−1, where

D =

(
1 + r1/ρ 0

0 1 + r1

)
,(5.25)

Q =
1

1− ρ

(
1 −ρ
−1 1

)
,(5.26)

Q−1 =

(
1 ρ
1 1

)
.(5.27)

It follows immediately that Mk = QDkQ−1 and so

(5.28) Mk =
1

1− ρ

(
(1 + r1/ρ)

k − ρ(1 + r1)
k ρ[(1 + r1/ρ)

k − (1 + r1)
k]

(1 + r1)
k − (1 + r1/ρ)

k (1 + r1)
k − ρ(1 + r1/ρ)

k

)
.

Treating this as a Möbius transformation and applying it to r0 = 0, we get rk =
(Mk)12/(M

k)22 and thus

(5.29) rk = ρ
(1 + r1/ρ)

k − (1 + r1)
k

(1 + r1)k − ρ(1 + r1/ρ)k
.

This also reproduces the correct value at k = 1.
Remarks.
1. The formula (5.22), once we have it, can of course be proven by an easy

induction on k. But we thought it preferable to give a more conceptual proof
that shows where (5.22) comes from. Note also that we can rewrite (5.22) as

(5.30) rk = ρ
Xk − 1

1− ρXk
, where X =

1 + r1/ρ

1 + r1
;

this will be useful later.
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2. The reasoning in Lemma 5.3, Corollary 5.4, and Lemma 5.5 can be made
even more explicit by observing that the associative function G(x, y) =

(x + y + Axy)/(1 + Bxy) is actually conjugate to Ĝ(X,Y ) = XY : it suf-
fices to make the Möbius change of variables X = f(x) := (1 + αx)/(1 + βx)
with

α =
A±√

A2 + 4B

2
,(5.31a)

β =
A∓√

A2 + 4B

2
,(5.31b)

and we then have

(5.32) f
(
G
(
f−1(X), f−1(Y )

))
= XY .

In our application we have A = 1 + ρ−1 and B = −ρ−1, hence, α = ρ−1 and
β = 1 (or the reverse). Therefore, defining Rk = f(rk) := (1+ρ−1rk)/(1+rk),
we have simply Rk = Rk

1 , which is equivalent to (5.22). Further information
on associative rational functions in two variables can be found in [8].

The final step in proving Theorem 5.1 is to show that, for suitable q, we can choose
r1 ≥ ρ2 and have rk ≤ ρ for 1 ≤ k ≤ Λ − 1. Whenever this is the case, the radii
r1, r2, . . . , rΛ−1 defined by (5.21), (5.22) will satisfy the conditions of Proposition 5.2,
and hence the set of nested point + disc regions Si will satisfy the conditions of
Theorem 4.2, thereby certifying that ZG(q,v) 	= 0 whenever G is a series-parallel
graph of maxmaxflow at most Λ and ve/(q + ve) ∈ S1 for all edges e.

The simplest choice is to take r1 = ρ2 exactly; then from (5.22) we have

(5.33) rk = ρ
Xk − 1

1− ρXk
, where X =

1 + ρ

1 + ρ2
.

When this choice works (i.e., satisfies rk ≤ ρ for 1 ≤ k ≤ Λ− 1), it yields the minimal
regions Si of the form (5.9) that satisfy the conditions of Proposition 5.2. However,
a slightly better choice is to take rΛ−1 = ρ exactly; simple algebra using (5.22) then
shows that

(5.34) rk = ρ
Xk − 1

1− ρXk
, where X =

(
2

1 + ρ

)1/(Λ−1)

.

When this choice works (i.e., satisfies ρ2 ≤ rk ≤ ρ for 1 ≤ k ≤ Λ − 1), it yields the
maximal regions Si of the form (5.9) that satisfy the conditions of Proposition 5.2,
and, hence, the largest allowed set S1 of edge weights.20 The following lemma shows
that these two choices work in precisely the same set of circumstances, namely, when
ρ ≤ ρ�Λ, where ρ�Λ is defined by (5.1), (5.35). In the borderline case ρ = ρ�Λ both
choices yield the same sequence, which satisfies both r1 = ρ2 and rΛ−1 = ρ. But when
ρ < ρ�Λ we get different sequences, and we prefer to use the second choice because it
yields a larger region S1.

Lemma 5.6. For ρ ∈ (0, 1) and integer Λ ≥ 2, the following are equivalent:
(a) There exist real numbers r1, . . . , rΛ−1 satisfying (5.21) and ρ2 ≤ r1 ≤ · · · ≤

rΛ−1 ≤ ρ.

20Of course, for people who care only about the chromatic polynomial, these two choices are
equally good. They differ only in the allowed set of edge weights ve = −1.
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(b) The sequence defined by (5.33) satisfies ρ2 ≤ rk ≤ ρ for 1 ≤ k ≤ Λ− 1.
(c) The sequence defined by (5.34) satisfies ρ2 ≤ rk ≤ ρ for 1 ≤ k ≤ Λ− 1.
(d) (1 + ρ)Λ ≤ 2(1 + ρ2)Λ−1.
(e) ρ ≤ ρ�Λ, where ρ�Λ is the unique solution of

(5.35) (1 + ρ)Λ = 2(1 + ρ2)Λ−1

in the interval (0, 1) when Λ ≥ 3, and ρ�2 = 1.
Let us remark that (5.35) has ρ = 1 as a root, so that after division by ρ − 1 it

reduces to a polynomial equation of degree 2Λ− 3.
Proof of Lemma 5.6. Fix ρ ∈ (0, 1) and r1 > 0 and define a sequence r1, r2, . . . , rΛ−1

by (5.21), (5.22) or, equivalently, fix ρ ∈ (0, 1) and X > 1 and define r1, r2, . . . , rΛ−1

by (5.30). It is then easy to see that we have r1 ≤ r2 ≤ · · · ≤ rΛ−1 < ∞ if and only if
X < ρ−1/(Λ−1) [so that the denominator in the expression (5.30) for rk is positive for
all k ≤ Λ − 1] and each rk is an increasing function of X (for fixed ρ) in the region
1 < X < ρ−1/(Λ−1). If we furthermore want to have r1 ≥ ρ2 and rΛ−1 ≤ ρ, then we
must have

(5.36)
1 + ρ

1 + ρ2
≤ X ≤

(
2

1 + ρ

)1/(Λ−1)

(note that [2/(1 + ρ)]1/(Λ−1) < ρ−1/(Λ−1)), and by the just observed monotonicity in
X , this condition is necessary and sufficient. This proves the equivalence of (a), (b),
and (c). Moreover, there exists such an X if and only if

(5.37)
1 + ρ

1 + ρ2
≤
(

2

1 + ρ

)1/(Λ−1)

,

which is equivalent to (d). So (a)–(d) are all equivalent.
Finally we shall prove the equivalence of (d) and (e). We do this in slightly greater

generality than is claimed, namely, for all real Λ ≥ 2. Consider the function

(5.38) fΛ(ρ) = Λ log(1 + ρ)− (Λ− 1) log(1 + ρ2) .

Clearly (d) holds if and only if fΛ(ρ) ≤ log 2. Now the first two derivatives of fΛ(ρ)
are

f ′
Λ(ρ) =

Λ

1 + ρ
− 2(Λ− 1)ρ

1 + ρ2
,(5.39a)

f ′′
Λ(ρ) = −4(1 + ρ+ ρ2 − ρ3) + (Λ − 2)(3 + 4ρ+ 2ρ2 − 4ρ3 − ρ4)

(1 + ρ)2(1 + ρ2)2
.(5.39b)

For 0 ≤ ρ ≤ 1 we manifestly have 1+ρ+ρ2−ρ3 ≥ 1+ρ ≥ 1 and 3+4ρ+2ρ2−4ρ3−ρ4 ≥
3+ρ2 ≥ 3, so that fΛ is strictly concave on [0, 1] whenever Λ ≥ 2. We have fΛ(0) = 0,
f ′
Λ(0) = Λ > 0, fΛ(1) = log 2, and f ′

Λ(1) = −(Λ− 2)/2. Therefore, for Λ > 2, there is
a unique ρ�Λ ∈ (0, 1) satisfying fΛ(ρ

�
Λ) = log 2; and for ρ ∈ [0, 1) we have fΛ(ρ) ≤ log 2

if and only if ρ ≤ ρ�Λ. This proves the equivalence of (d) and (e) for all real Λ > 2.
When Λ = 2, (d) holds for all ρ ∈ [0, 1], so (d) is again equivalent to (e) with ρ�2
= 1.

We have now completed the proof of the main part of Theorem 5.1. All that
remains is to prove the final statement that ρ�Λ > (log 2)/(Λ− 3

2 log 2) for all integers
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Λ ≥ 2 or, equivalently (in view of Lemma 5.6d,e), that (1 + ρ)Λ < 2(1 + ρ2)Λ−1

when ρ = (log 2)/(Λ− 3
2 log 2). We shall actually prove this for all real Λ > 5

2 log 2 ≈
1.732868 (this ensures that ρ < 1). Taking the logarithm of 2(1 + ρ2)Λ−1/(1 + ρ)Λ,
substituting for Λ in terms of ρ, and parametrizing by ρ ∈ (0, 1), we see that this is
equivalent to the following claim.

Lemma 5.7. The function

g(ρ) = ρ

[
log 2 +

(
log 2

ρ
+ 3

2 log 2− 1

)
log(1 + ρ2)

−
(
log 2

ρ
+ 3

2 log 2

)
log(1 + ρ)

]
(5.40a)

= ρ log

(
2

1 + ρ

)
− (log 2) log

(
1 + ρ

1 + ρ2

)
− (32 log 2− 1) ρ log

(
1 + ρ

1 + ρ2

)
(5.40b)

is strictly positive for 0 < ρ < 1.
Proof. The second derivative of g is given by g′′(ρ) = h(ρ)× ρ/[(1+ ρ)2(1+ ρ2)2],

where
(5.41)
h(ρ) = −(2− 3

2 log 2)ρ
4−(4−2 log 2)ρ3−(8−5 log 2)ρ2−(12−14 log 2)ρ+(232 log 2−6) .

All the coefficients of h(ρ) are strictly negative except for the last (constant) term, so
we have h′(ρ) < 0 for all ρ ≥ 0. Since h(0) = 23

2 log 2−6 > 0 and h(1) = 34 log 2−32 <
0 and h is strictly decreasing for ρ ≥ 0, it follows that h(ρ) has exactly one positive
real root ρ∗ and that it lies between 0 and 1 (by computer ρ∗ ≈ 0.417876). Therefore
g is strictly convex on [0, ρ∗] and strictly concave on [ρ∗,∞). Since g(0) = g′(0) = 0,
we have g(ρ) > 0 for ρ ∈ (0, ρ∗]. Moreover, since g(ρ∗) > 0 and g(1) = 0 and g is
strictly concave on [ρ∗, 1], we have g(ρ) > 0 for ρ ∈ [ρ∗, 1). Hence g(ρ) > 0 for all
ρ ∈ (0, 1), as claimed.

Remark. A straightforward calculation shows that the large-Λ asymptotic behav-
ior of ρ�Λ is given by

(5.42) ρ�Λ = (log 2)

[
1

Λ− 1
+

3 log 2− 2

2(Λ − 1)2
+

25 log2 2− 24 log 2 + 6

6(Λ− 1)3
+ · · ·

]

and hence

(5.43)
1

ρ�Λ
=

Λ− 1

log 2
− 3 log 2− 2

2 log 2
− 23 log 2− 12

12(Λ− 1)
+ · · · .

So the inequality ρ�Λ > (log 2)/(Λ− 3
2 log 2) captures the first two terms of the large-Λ

asymptotic behavior.
We have now completed the proof of Theorem 5.1.

6. The case Λ = 3. Theorem 1.4 is a strong result because it provides a linear
bound for the chromatic roots of series-parallel graphs in terms of the maxmaxflow
Λ, thereby achieving our main objective. Furthermore, the constant 1/ log 2 cannot
be reduced below 1 (see [26, Appendix B]) and so it is reasonably close to optimal.
However, the result applies uniformly for all Λ, its proof involves a number of steps
where expressions are replaced by fairly naive upper bounds, and it only involves the
magnitude of q − 1. Thus, for all these reasons, Theorem 1.4 does not give a very
precise picture of the root-free region for any particular value of Λ.
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In this section we consider how to get sharper results for the simplest nontrivial
case, namely, for Λ = 3. In this case, the bound given by Theorem 1.4 is that
chromatic roots for series-parallel graphs of maxmaxflow 3 are contained in the disk

(6.1) |q − 1| ≤ 2/(log 2) ≈ 2.8853900818 .

An immediate improvement can be obtained from Theorem 5.1 by using the exact
value of ρ�3, which gives the slightly better bound

(6.2) |q − 1| ≤ 1/ρ�3 ≈ 2.6589670819 .

Both of these regions ultimately relied on the quantity Fq given by (5.13) as
an upper bound for the true value fq. We can do better by computing a numer-
ical approximation to the actual value fq(ρ

2, ρ2), and then imposing the condition
fq(ρ

2, ρ2) ≤ ρ that arises out of Proposition 5.2 with Λ = 3. Since fq(ρ
2, ρ2) depends

on q and not just on |q−1|, this procedure will lead to a region with no simple analytic
description. As te ‖q tf is given by a ratio of symmetric multiaffine polynomials in te
and tf [cf. (5.11)] and D(ρ2) is a circular region, the Grace–Walsh–Szegő coincidence
theorem [22, Theorem 3.4.1b] implies that

(6.3) max
te,tf∈D(ρ2)

|te ‖q tf | = max
t∈D(ρ2)

|t ‖q t| ,

and so we can compute an approximation to fq(ρ
2, ρ2) by letting t range over the

(discretized) boundary ofD(ρ2) and taking the maximum value of |t‖qt| thus obtained.
Then for each fixed angle θ we can set 1/(1− q) = ρeiθ and use the bisection method
to determine the maximum possible value of ρ. Figure 3 shows how this bound (shown
as a green solid curve) compares with the circular regions (6.1) and (6.2). This bound
is the optimal bound obtainable from Theorem 4.2 under the assumption that S1 is
chosen to be a point + disk region S1 = {1/(1− q)} ∪D(ρ2).

At this point it is natural to inquire: What is the best possible result? Otherwise
put, can we describe exactly the closure of the set of all chromatic roots of all series-
parallel graphs of maxmaxflow Λ = 3 or, at least, the outer boundary of this set?
In [25] one of the authors gave a computer approximation to this boundary, but he
suspects that this approximation may become poor near the real axis, in part because
this boundary is likely to be fractal-like rather than smooth.

As previously mentioned, we show in [26, Appendix B] that for each fixed r ≥ 2,
every point of the circle |q − 1| = r is a limit point (as n → ∞) of chromatic roots of
the family {Gr

n}n≥1 of leaf-joined trees of branching factor r, which have maxmaxflow
Λ = r + 1. Moreover, numerical calculations suggest (though we have no proof) that
the chromatic roots of these leaf-joined trees always lie inside the circle |q − 1| = r.
This led us to conjecture that the exact answer to our question is the chromatic roots
of series-parallel graphs of maxmaxflow Λ always lie inside the disc |q − 1| < Λ − 1,
and this bound is sharp.

That would be neat, but it is false! In fact, a counterexample can be found by
a simple modification of a leaf-joined tree. Let us first recall [32, Example 2.2] the
multivariate Tutte polynomial of a cycle C:

(6.4) ZC(q,v) =
∏

e∈E(C)

(q + ve) + (q − 1)
∏

e∈E(C)

ve .

In particular, if we consider a cycle of N +1 edges, where N edges carry weight v and
the last edge carries weight −1, we have

(6.5) ZC(q,v) = (q − 1)[(q + v)N − vN ] ,
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−2 −1 0 1 2 3 4
−3
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1
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Fig. 3. Different bounds on the chromatic roots for Λ = 3: the bound based on fq (green
solid curve), the bound |q − 1| = 2.6589670819 based on Fq (red dashed circle), and the bound
|q − 1| = 2/ log 2 ≈ 2.8853900818 from Theorem 1.4 (blue dot-dashed outer circle). The inner circle
|q − 1| = 2 is also shown for reference (dotted gray).

which vanishes whenever t = v/(q + v) is an Nth root of unity. It follows that if we
consider any 2-terminal graph G = (G, s, t) and form the graph H consisting of N
copies of G together with one K2 connected in a cycle, then H has a chromatic root
whenever the effective transmissivity teff(G, s, t) is an Nth root of unity.

We show in [26, Appendix B] that it is easy to compute the effective transmissivity
for leaf-joined trees symbolically, as a function of q. We can then plot the curve in
the complex q-plane, where |teff(Gr

n, s, t)| = 1. For r = 2, we find that this curve
stays within the disc |q − 1| < 2 when n ≤ 4, but that it strays slightly outside this
disc when n = 5. (On the circle q − 1 = 2eiθ, |teff(G2

5, s, t)| reaches a maximum value
≈ 1.08448 at θ ≈ ±0.679954π, corresponding to q ≈ −0.071413 ± 1.68881i.) If we
now consider the graph H consisting of N = 3 copies of G2

5 together with one K2

connected in a cycle—note that H has maxmaxflow 3 and has 94 vertices—we see
that H has a chromatic root whenever teff(G

2
5, s, t) is a cube root of unity. Solving

teff(G
2
5, s, t) = e±2πi/3 for q, we find 31 roots, of which one (q ≈ −0.144883∓1.651418i)

has |q − 1| ≈ 2.009462 > 2.

7. The real antiferromagnetic regime. The chromatic polynomial corre-
sponds to the special case of the multivariate Tutte polynomial in which all the edge
weights ve take the value −1. However, it is often the case that results valid for this
limiting case also hold throughout the “real antiferromagnetic regime” where edge
weights ve ∈ [−1, 0] are chosen independently for each edge. Expressed in transmis-
sivities, we get te ∈ Cq, where Cq is the curve defined parametrically by

(7.1) Cq =

{
v

q + v
: v ∈ [−1, 0]

}
.
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In the complex t-plane, Cq traces out a circular arc that runs from the origin (when
v = 0) to the point 1/(1− q) [when v = −1]. In this section we will show how we can
handle this case by a minor modification of the argument given in section 5, thereby
proving Theorem 1.5. In fact, we shall prove the following slight strengthening of
Theorem 1.5, which is identical to Theorem 5.1 except that ve = −1 is replaced by
−1 ≤ ve ≤ 0.

Theorem 7.1. Fix an integer Λ ≥ 2, and let G be a loopless series-parallel graph
of maxmaxflow at most Λ. Let ρ�Λ be the unique solution of

(7.2) (1 + ρ)Λ = 2(1 + ρ2)Λ−1

in the interval (0, 1) when Λ ≥ 3, and let ρ�2 = 1. Then the multivariate Tutte
polynomial ZG(q,v) is nonvanishing whenever |q − 1| ≥ 1/ρ�Λ (with ≥ replaced by >
when Λ = 2) and the complex edge weights v = {ve}e∈E satisfy

(7.3) −1 ≤ ve ≤ 0 or

∣∣∣∣ ve
q + ve

∣∣∣∣ ≤ ρ
X − 1

1− ρX

(with strict inequality in the second expression when Λ = 2), where

(7.4) ρ =
1

|q − 1| and X =

(
2

1 + ρ

)1/(Λ−1)

.

The first step in the proof of Theorem 7.1 is the following simple lemma, which
shows how to combine a pair of families C1 ⊆ C2 ⊆ · · · ⊆ CΛ−1 and D1 ⊆ D2 ⊆
· · · ⊆ DΛ−1, each of which satisfies the “parallel condition” (2) of Theorem 4.2, into
a single family that also satisfies the “parallel condition.”

Lemma 7.2. Let C1 ⊆ C2 ⊆ · · · ⊆ CΛ−1 and D1 ⊆ D2 ⊆ · · · ⊆ DΛ−1 be subsets
of the complex t-plane satisfying

Ck ‖q C� ⊆ Ck+� whenever k + � ≤ Λ− 1 ,(7.5a)

Dk ‖q D� ⊆ Dk+� whenever k + � ≤ Λ− 1 .(7.5b)

Now define the sets S1 ⊆ S2 ⊆ · · · ⊆ SΛ−1 by

(7.6) Sk =

k⋃
i=0

(Ci ‖q Dk−i)

with C0 = D0 = {0}. Then

(7.7) Sk ‖q S� ⊆ Sk+� whenever k + � ≤ Λ− 1 .
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Proof. If k + l ≤ Λ− 1, we have

Sk ‖q S� =
k⋃

i=0

�⋃
j=0

(Ci ‖q Dk−i) ‖q (Cj ‖q D�−j)

=

k⋃
i=0

�⋃
j=0

(Ci ‖q Cj) ‖q (Dk−i ‖q D�−j)

⊆
k⋃

i=0

�⋃
j=0

(Ci+j ‖q Dk+�−i−j)

=

k+�⋃
i=0

(Ci ‖q Dk+�−i)

= Sk+� .(7.8)

In section 5 we treated the chromatic-polynomial case by taking C1 = · · · =
CΛ−1 = {t0}, where t0 = 1/(1− q), and Di = D(ri). The fact that t0 ‖q t = t0 for all
t—which is very special to chromatic polynomials—then ensures that all the terms
1 ≤ i ≤ k in (7.6) equal {t0}, while the term i = 0 equals D(rk). So we indeed have
Sk = {t0}∪D(rk) as stated in Proposition 5.2, and the proof of the parallel condition
(2) given as part of the proof of Proposition 5.2 is a special case of Lemma 7.2.

To treat the real antiferromagnetic regime, we will take C1 = · · · = CΛ−1 = Cq and
Di = D(ri) with r1 ≤ r2 ≤ · · · ≤ rΛ−1. The invariance of the real antiferromagnetic
regime under parallel connection (which is most easily seen in the v-plane or y-plane)
then guarantees that Ck ‖q C� ⊆ Ck+�. It follows that

(7.9) Sk = (Cq ‖q D(rk−1)) ∪D(rk),

where we have set r0 = 0 and hence D(r0) = {0}. The sets Sk are no longer point
+ disc, but rather stalk + disc: for S1 the “stalk” is precisely the curve Cq, while
for higher Sk the “stalk” gets increasingly “fattened out” by parallel connection with
D(rk−1). Figure 4 illustrates this situation for Λ = 3 and q = −2 + 3i: the “stalk”
for S2 is the cone-shaped region Cq ‖q D(r1) that runs from D(r1) to the point t0 =
1/(1− q).

We can choose the radii ρ2 = r1 ≤ r2 ≤ · · · ≤ rΛ−1 ≤ ρ exactly as in section 5,
and this guarantees that Dk ‖q D� ⊆ Dk+�.

To complete the proof of Theorem 7.1, it therefore suffices to verify the “series
condition” (1) of Theorem 4.2. We shall do this, once again, by using Lemma 4.3
with r = ρ. Since ρ2 = r1 ≤ r2 ≤ · · · ≤ rΛ−1 ≤ ρ, it suffices to verify that

(7.10) Cq ‖q D(rΛ−2) ⊆ D(ρ) .

We shall prove the stronger statement that

(7.11) Cq ‖q D(ρ) ⊆ D(ρ) .

Indeed, we shall prove also a strong converse to this statement, although we shall not
make use of this converse.

Lemma 7.3. Let q be a fixed complex number such that |q−1| > 1, let ρ = 1/|1−q|,
and let Cq be defined by (7.1). Then a complex number t satisfies {t} ‖q D(ρ) ⊆ D(ρ)
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Fig. 4. The boundaries of the discs and stalks when q = −2 + 3i.

if and only if t ∈ Cq. [Otherwise put, we have Cq ‖q D(ρ) ⊆ D(ρ), and Cq is the largest
set with this property.]

Proof. It is easiest to change variables once again and consider the situation in the
complex y-plane, where parallel connection is simply multiplication, ye ‖Y yf = yeyf ,
and the curve Cq corresponds to the segment [0, 1]. The relationship between y and t
is given by the Möbius transformation

(7.12) y =
(q − 1)t+ 1

−t+ 1
.

Since D(ρ) is a closed disc in the complex t-plane having the point t0 = 1/(1− q) on
its boundary, the image of D(ρ) in the complex y-plane is a closed disc DY (ρ) having
the origin y0 = 0 on its boundary.21 (Here we have used |q−1| > 1. If |q−1| = 1, then
DY (ρ) is a closed half-plane having the origin on its boundary, while if |q − 1| < 1,
then DY (ρ) is the closed exterior of a disc having the origin on its boundary.) Now,
for any closed disc D having the origin on its boundary, it is easy to see that a complex
number y satisfies yD ⊆ D if and only if y ∈ [0, 1]. Back in the t-plane, this says that
t ∈ Cq.

Combining these results, we have the following.
Proof of Theorem 7.1. We choose the radii ρ2 = r1 ≤ r2 ≤ · · · ≤ rΛ−1 ≤ ρ exactly

as in section 5, which guarantees that D(rk) ‖q D(r�) ⊆ D(rk+�). Then Lemmas 7.2,
7.3, and 4.3 guarantee that the sets Sk defined by (7.9) satisfy the conditions (1) and
(2) of Theorem 4.2. Conditions (3′) and (4) of Theorem 4.2 are verified exactly as in
the proof of Proposition 5.2.

21The center of the disc DY (ρ) is the point c = [(q − 1)ρ2 + 1]/(1 − ρ2)—and the radius is of
course |c|—but we do not actually need this explicit formula for c.
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The fact that Lemma 7.3 gives a necessary and sufficient condition suggests that
there is something natural about the real antiferromagnetic regime ve ∈ [−1, 0]. On
the other hand, our strategy of proof does not really require us to prove the strong
statement (7.11); it would suffice to prove the slightly weaker statement (7.10) [or
perhaps even weaker bounds], and this might allow a somewhat larger set of weights
ve. In particular, the proof of Theorem 1.2 given in [30] works naturally for the
complex antiferromagnetic regime |1+ ve| ≤ 1 (see [17] for the changes when one goes
beyond this), so it is reasonable to ask whether the bounds in terms of maxmaxflow
can be extended to this case, possibly with a worse constant (but still growing only
linearly in Λ). We do not yet know the answer. As a warm-up, it might be helpful
to study the intersection of the complex antiferromagnetic regime with the real axis,
namely, the “extended real antiferromagnetic regime” ve ∈ [−2, 0].

One somewhat unsatisfying aspect of Theorem 7.1 is that one obtains the same
bound on the zero-free region (namely, |q− 1| ≥ 1/ρ�Λ) no matter where in the regime
−1 ≤ ve ≤ 0 the edge weights v = {ve}e∈E lie. But we know, for any fixed graph
G, that the chromatic roots shrink towards q = 0 as v → 0 [31, Lemma A.1], and it
is natural to expect that this behavior occurs uniformly for all graphs (or at least all
series-parallel graphs) of a given maxmaxflow Λ. So it would be desirable to find an
improved version of Theorem 7.1 in which the bound would shrink (hopefully linearly)
towards q = 0 as v → 0. Indeed, for Theorem 1.2 there exists a variant bound [30,
Corollary 5.5] of precisely this kind: it involves the weighted maximum degree

(7.13) Δ(G,v) = max
x∈V

∑
e�x

|ve| .

In a similar way one might hope that for Theorem 7.1 there exists a variant bound
involving the weighted maxmaxflow in which |ve| is interpreted as the capacity of the
edge e, i.e.,

(7.14) Λ(G,v) = max
x �=y

λG(x, y;v) ,

where

λG(x, y;v) = max flow from x to y with edge capacities |v|(7.15a)

= min cut between x and y with edge capacities |v|.(7.15b)

One approach to proving such a bound might be to replace the discrete sequence of
sets S1 ⊆ S2 ⊆ · · · ⊆ SΛ−1 of Theorem 4.1 by a continuous nested family {Sλ}0≤λ≤Λ,
but we have not yet succeeded in making this work. We therefore leave it as an open
problem to find a suitable v-dependent variant of Theorem 7.1.

8. Generalization to non-series-parallel graphs. In this section we show
how our constructions can be generalized to handle graphs that are not series-parallel
but are nevertheless built up by using series and parallel compositions from a fixed
starting set of 2-terminal “base graphs.” We begin by stating an abstract theorem
on excluding roots, which generalizes Theorems 4.1 and 4.2 to the non-series-parallel
case (section 8.1). Then we apply this result to prove Theorem 1.6 (section 8.2).

8.1. Generalized abstract theorem on excluding roots. Here is Theo-
rem 4.1 generalized to the non-series-parallel case.

Theorem 8.1. Let q 	= 0 be a fixed complex number and let Λ ≥ 2 be a fixed
integer. Let S1 ⊆ S2 ⊆ · · · ⊆ SΛ−1 be sets in the (finite) complex v-plane such that

(1) Sk ��
V
q S� ⊆ Smin(k,�) for all k, �,

(2) Sk ‖V S� ⊆ Sk+� for k + � ≤ Λ− 1.
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Fig. 5. The graphs (K2 �� D) ‖ (K2 �� D) and (K2 ��W) ‖ (K2 ��W).

Now consider any (loopless connected) 2-terminal graph (G, s, t) and any nontriv-
ial decomposition tree for (G, s, t) in which all the proper constituents have between-
terminals flow at most Λ−1. Suppose that we equip G with edge weights {ve} such that
for every leaf node (H, a, b) of the decomposition tree, we have veff(H, a, b) ∈ SλH (a,b).
Then, for every node (H, a, b) of the decomposition tree that has between-terminals
flow λH(a, b) ≤ Λ− 1, we have veff(H, a, b) ∈ SλH (a,b).

Now assume further that, in addition to (1) and (2), the following hypotheses hold:
(3) −q /∈ SΛ−1,
(4) −q /∈ Sk ‖V S� for k + � = Λ.

Then, for any (G, s, t) and {ve} as above, such that G has maxmaxflow at most Λ,
we have ZG(q,v) 	= 0.

The proof of Theorem 8.1 is a minor modification of that of Theorem 4.1 and is
left to the reader. There is also an obvious translation of Theorem 8.1 to the t-plane
along the lines of Theorem 4.2, of which the statement and proof are again left to the
reader.

8.2. Wheatstone bridge. The Wheatstone bridge is the 2-terminal graph W =
(W, s, t) obtained from W = K4 − e by taking the two vertices of degree 2 to be the
terminals s and t. Note that although K4 − e is a series-parallel graph, W is not
a 2-terminal series-parallel graph (by Corollary 3.4, because W + st = K4 is not a
series-parallel graph).

Now define the class W of 2-terminal graphs to be the smallest class that contains
both K2 (with the two vertices as terminals) and W and is closed under series and
parallel composition. Figure 5 shows some graphs inW : the first is a 2-terminal series-
parallel graph, while the second has used W = (W, s, t) in place of the “diamond”
D = (K2 �� K2) ‖ (K2 �� K2).

For the Wheatstone bridge, simple calculations [e.g., using (2.24), (2.29)] show
that if vf = −1 for every edge, then the partial Tutte polynomials (2.25), (2.26) are
given by

AW,s,t = (q − 2)(q − 3) ,(8.1a)

BW,s,t = 2(q − 2) ,(8.1b)

and, hence,

(8.2) veff(W, s, t) =
2

q − 3
.

Expressed in terms of transmissivities, this yields

(8.3) teff(W, s, t) ≡ veff
q + veff

=
2

(q − 1)(q − 2)
.
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The maximum flow between the terminals of the Wheatstone bridge is equal to 2.
Therefore, as far as the chromatic roots of graphs in W are concerned, the Wheat-
stone bridge just behaves as a sort of “superedge” with capacity (in the flow-carrying
sense) equal to 2 and effective transmissivity given by (8.3): that is the upshot of
Theorem 8.1.

Now suppose that S1 ⊆ S2 ⊆ · · · ⊆ SΛ−1 is a set of regions in the complex t-plane
certifying (via Theorem 4.2) that a particular value of q is not the chromatic root of
any series-parallel graph of maxmaxflow at most Λ. Then, by Theorem 8.1, the same
set of regions will suffice for graphs in W of maxmaxflow at most Λ, provided only
that 2/[(q − 1)(q − 2)] ∈ S2.

So, under the same hypothesis |q − 1| ≥ 1/ρ�Λ as in Theorem 5.1, let us again
choose point + disk regions (5.6) with radii rk given by (5.34). We then have

(8.4) r2 = ρ
X2 − 1

1− ρX2
, where ρ =

1

|q − 1| and X =

(
2

1 + ρ

)1/(Λ−1)

.

Therefore, these regions suffice to show that q is not a chromatic root of any graph
in W whenever we have

(8.5)
2

|q − 2| ≤
X2 − 1

1− ρX2

in addition to the hypothesis |q− 1| ≥ 1/ρ�Λ. We have therefore proven the following.
Theorem 8.2. Fix an integer Λ ≥ 3, and let G = (G, s, t) be a 2-terminal

graph in the class W such that G has maxmaxflow at most Λ. Then the chromatic
polynomial PG(q) is nonvanishing whenever

(8.6) |q − 1| ≥ 1/ρ�Λ and |q − 2| ≥ 2(1− ρX2)

X2 − 1
,

where ρ�Λ is defined by (5.1) and ρ and X are defined by (8.4).
When Λ = 3, the condition (8.5) becomes particularly simple as it reduces to

(8.7) |q − 2| ≥ 2 .

The disk |q − 2| < 2 extends only slightly beyond the disk |q − 1| < 1/ρ�3 with the
greatest protrusion 4 − (1 + 1/ρ�3) ≈ 0.34103 . . . occurring on the positive real axis.
Thus, the region guaranteed to contain the chromatic roots of the graphs in W of
maxmaxflow 3, given by the union of the discs |q − 1| < 1/ρ�3 and |q − 2| < 2 (the
left-hand picture of Figure 6), is only slightly larger than the region |q − 1| < 1/ρ�3
guaranteed to contain the chromatic roots of series-parallel graphs of maxmaxflow 3.

For Λ > 3, the right-hand side of (8.5) is not independent of ρ, and so the
corresponding region is not quite a circular disk (as it depends on the phase of q),
but rather a slightly squashed disk. Nevertheless, the corresponding region always
extends slightly past the region |q − 1| < 1/ρ�Λ, with maximum protrusion again on
the positive real axis (see the right-hand picture of Figure 6 for Λ = 4).

In order to obtain a simple sufficient condition depending only on |q− 1|, we can
use the trivial bound |q − 2| ≥ |q − 1| − 1 = ρ−1 − 1. After some simple algebra we
find that a sufficient condition on ρ for (8.5) to be satisfied is that

(8.8)

(
2

1 + ρ

)2/(Λ−1)

≥ 1 + ρ

1− ρ+ 2ρ2
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−2 0 2 4

−2

0

2

(a) Λ = 3

−4 −2 0 2 4 6

−4

−2

0

2

4

(b) Λ = 4

Fig. 6. Circles |q− 1| = 1/ρ∗Λ (red dashed) and |q− 1| = 1/ρ∗∗Λ (black dotted) and the boundary
of the region (8.5) (blue solid curve) for (a) Λ = 3 and (b) Λ = 4.

Table 1

Values of ρ�Λ, ρ
��
Λ , 1/ρ�Λ, 1/ρ

��
Λ for 2 ≤ Λ ≤ 10.

Λ ρ�Λ ρ��Λ 1/ρ�Λ 1/ρ��Λ
2 1 1 1 1
3 0.376086 0.333333 2.658967 3
4 0.240380 0.219471 4.160076 4.556417
5 0.177591 0.165204 5.630929 6.053134
6 0.141038 0.132841 7.090297 7.527812
7 0.117041 0.111213 8.544040 8.991750
8 0.100054 0.095697 9.994599 10.449611
9 0.087388 0.084008 11.443181 11.903688

10 0.077577 0.074877 12.890449 13.355246

or, equivalently, that

(8.9) (1 + ρ)Λ+1 ≤ 4(1− ρ+ 2ρ2)Λ−1 .

This condition is handled by the following analogue of Lemma 5.6.
Lemma 8.3. For ρ ∈ (0, 1) and real Λ > 2, the following are equivalent:
(a) (1 + ρ)Λ+1 ≤ 4(1− ρ+ 2ρ2)Λ−1.
(b) ρ ≤ ρ��Λ , where ρ��Λ is the unique solution of

(8.10) (1 + ρ)Λ+1 = 4(1− ρ+ 2ρ2)Λ−1

in the interval (0, 1).
Deferring temporarily the proof of this lemma, let us observe that from (5.1) it

follows easily that

(8.11)

(
2

1 + ρ�Λ

)1/(Λ−1)

=
1 + ρ�Λ
1 + ρ�Λ

2 <
1 + ρ�Λ

1− ρ�Λ + 2ρ�Λ
2 ,

so that the condition (8.8) is false when ρ = ρ�Λ or, in other words, we have ρ��Λ < ρ�Λ
whenever Λ > 2 (see Table 1). We have therefore proven (subject to the proof of
Lemma 8.3) the following corollary.

Corollary 8.4. Fix an integer Λ ≥ 3, and let G = (G, s, t) be a 2-terminal
graph in the class W such that G has maxmaxflow at most Λ. Then the chromatic
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polynomial PG(q) is nonvanishing whenever

(8.12) |q − 1| ≥ 1/ρ��Λ ,

where ρ��Λ is the unique solution of

(8.13) (1 + ρ)Λ+1 = 4(1− ρ+ 2ρ2)Λ−1

in the interval (0, 1).
Since the bound |q−2| ≥ |q−1|−1 holds as equality when q is real and q > 2, we

see that the condition (8.8) is also necessary for (8.5) when q is real and positive or,
in other words, the circle |q − 1| = 1/ρ��Λ coincides with the boundary of the region
(8.5) on the positive real axis, but lies outside of it elsewhere. Figure 6 shows how
these regions compare for Λ = 3, 4.

Proof of Lemma 8.3. Consider the function

(8.14) fΛ(ρ) = (Λ + 1) log(1 + ρ)− (Λ− 1) log(1− ρ+ 2ρ2) .

Its first two derivatives are

f ′
Λ(ρ) =

Λ + 1

1 + ρ
− (Λ− 1)(4ρ− 1)

1− ρ+ 2ρ2
(8.15a)

f ′′
Λ(ρ) = − (6 + 4ρ+ 18ρ2 − 24ρ3 + 4ρ4) + (Λ − 2)(4 + 8ρ+ 8ρ2 − 16ρ3 − 4ρ4)

(1 + ρ)2(1− ρ+ 2ρ2)2
.(8.15b)

For 0 ≤ ρ ≤ 1 we manifestly have 6 + 4ρ + 18ρ2 − 24ρ3 + 4ρ4 ≥ 4ρ − 4ρ3 ≥ 0 and
4+ 8ρ+8ρ2 − 16ρ3 − 4ρ4 ≥ 4− 4ρ4 ≥ 0 with strict inequality when 0 < ρ < 1, hence,
fΛ is strictly concave on [0, 1] whenever Λ ≥ 2. We have fΛ(0) = 0, f ′

Λ(0) = 2Λ > 0,
fΛ(1) = log 4, and f ′

Λ(1) = −(Λ − 2). Therefore, for Λ > 2, there is a unique
ρ��Λ ∈ (0, 1) satisfying fΛ(ρ

��
Λ ) = log 4 and for ρ ∈ [0, 1) we have fΛ(ρ) ≤ log 4 if and

only if ρ ≤ ρ��Λ . This proves the equivalence of (a) and (b) for all real Λ > 2.
Finally, let us deduce Theorem 1.6 as an immediate consequence of Corollary 8.4,

by proving that ρ��Λ > (log 2)/(Λ − log 2) for all integers Λ ≥ 3 or, equivalently (in
view of Lemma 8.3), that (1+ρ)Λ+1 < 4(1−ρ+2ρ2)Λ−1 when ρ = (log 2)/(Λ− log 2).
We shall actually prove this for all real Λ > 2 log 2 ≈ 1.386294. Taking logarithms
and parametrizing by ρ ∈ (0, 1), we see that this is equivalent to the following claim.

Lemma 8.5. The function

g(ρ) = ρ

[
2 log 2 +

(
log 2

ρ
+ log 2− 1

)
log(1− ρ+ 2ρ2)

−
(
log 2

ρ
+ log 2 + 1

)
log(1 + ρ)

]
(8.16a)

= 2ρ log

(
2

1 + ρ

)
− (log 2) log

(
1 + ρ

1− ρ+ 2ρ2

)
− (log 2− 1)ρ log

(
1 + ρ

1− ρ+ 2ρ2

)
(8.16b)

is strictly positive for 0 < ρ < 1.
Proof. The second derivative of g is given by g′′(ρ) = h(ρ) × ρ/(1 + ρ2 + 2ρ3)2,

where

(8.17) h(ρ) = −(12−4 log2)ρ4−12ρ3−(2+8 log 2)ρ2−(24−16 log2)ρ+(20 log 2−6) .

All the coefficients of h(ρ) are strictly negative except for the last (constant) term, so
we have h′(ρ) < 0 for all ρ ≥ 0. Since h(0) = 20 log 2−6 > 0 and h(1) = 32 log 2−56 <
0 and h is strictly decreasing for ρ ≥ 0, it follows that h(ρ) has exactly one positive
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real root ρ∗ and that it lies between 0 and 1 (by computer ρ∗ ≈ 0.417655). Therefore
g is strictly convex on [0, ρ∗] and strictly concave on [ρ∗,∞). Since g(0) = g′(0) = 0,
we have g(ρ) > 0 for ρ ∈ (0, ρ∗]. Moreover, since g(ρ∗) > 0 and g(1) = 0 and g is
strictly concave on [ρ∗, 1], we have g(ρ) > 0 for ρ ∈ [ρ∗, 1). Hence g(ρ) > 0 for all
ρ ∈ (0, 1), as claimed.

Remark. A straightforward calculation shows that the large-Λ asymptotic behav-
ior of ρ��Λ is given by

(8.18) ρ��Λ = (log 2)

[
1

Λ− 1
+

log 2− 1

(Λ− 1)2
+

16 log2 2− 15 log 2 + 6

6(Λ− 1)3
+ · · ·

]

and, hence,

(8.19)
1

ρ��Λ
=

Λ− 1

log 2
− log 2− 1

log 2
− 10 log 2− 3

6(Λ− 1)
+ · · · .

So the inequality ρ��Λ > (log 2)/(Λ− log 2) captures the first two terms of the large-Λ
asymptotic behavior.
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