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1. ABSTRACT 

As interest in biophysics and biophysical modelling has grown in the cell and 

developmental biology communities, a variety of techniques have been developed to 

measure the mechanical properties of single cells. Atomic Force Microscopy (AFM) 

has become one of the preferred methods for these measurements primarily due to its 

ease of operation and commercial availability. However, measurements on soft cells 

with a variable surface topography require an additional level of care so that the 

predicted contact area with the cell surface is accurately estimated. Using combined 

AFM and confocal microscopy I have shown that with pyramidal tipped cantilevers 

the cell body can easily deform to the shape of the tip but can also touch the 

underside of the AFM cantilever beam causing an overestimation of elasticity. Such 

artefactual increases in contact area could be avoided by using spherical tipped 

cantilevers or tips with a high aspect ratio. I examined the role of the cytoskeleton 

and cell contractility in setting single cell stiffness with AFM. 

With techniques such as AFM, the rheology of single cells is becoming increasingly 

well characterised. The next logical step in furthering our understanding of organ 

and embryo mechanics is to scale up investigations to simple tissues such as on cell 

thick monolayers. I have developed methods to measure the mechanical properties of 

MDCK epithelial cell monolayers under AFM indentation or planar extension.  

Using deep indentation of monolayers cultured on soft gels I have measured the 

evolution of mechanical properties upon the establishment of cell-cell junctions. The 

relative mechanical stiffnesses of monolayer-gel composites evolve as cell contacts 

are established and required the formation of mature contractile adherens junctions.  

To measure the planar mechanical properties of cell monolayers I designed a system 

to create monolayers freely suspended from their susbstrate between two test rods. 

Cell monolayers have a higher stiffness than their cellular constituents due to the 

organisation of the cell cytoskeleton upon the formation of matured intercellular 

junctions. 
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2. INTRODUCTION 

i. THE ROLE OF CELL MECHANICS IN PHYSIOLOGY 

Human diseases are conditions or states that not only impair bodily functions but 

threaten general health and well-being. Current research has been largely focussed 

on the molecular, microbiological, and immunological basis for pathologies. 

However, the mechanical properties of cells and tissues can also become altered in 

disease, which is often apparent in the presented symptoms. Understanding how cells 

and tissues are able to sustain external mechanical stresses is crucial in developing 

treatments and determining the origin of such pathologies.  

One typical example of single cells that require specific mechanical properties for 

their function is the red blood cell. Sickle cell anaemia is a genetic disease where 

haemoglobin is not correctly produced in red blood cells. Cells with the mutant 

haemoglobin have an altered shape that is sickle like rather than bi-concave and have 

a higher viscosity and stiffness (1). These alterations reduce the ability of cells to 

pass through small blood vessels and deliver oxygen to tissues. Sustaining external 

stress is a normal part of physiology for tissues and organs. Alveoli in the lung 

withstand large deformations during breathing, endothelial cells are exposed to fluid 

shear during blood flow and epithelia sustain peristaltic movements in the gut (2, 3). 

Cells can also sense the mechanical properties of their environment and the forces 

that are generated within them. Cells detect external forces through proteins that 

interface the extra cellular matrix to the cell membrane and the cytoskeleton (4-8). 

The mechanical properties of the environment can therefore determine cell fate. One 

classical example of this behaviour is that the stiffness of the substrate stem cells are 

cultured on to directs their differentiation (5). In cancer, a rigid mass surrounded by 

soft tissue is a characteristic of tumour development and often diagnosed through 

palpation or elastography. Changes to the mechanical properties of the extra cellular 

matrix drive cellular contractions, a malignant phenotype, and the progression of 

cancer (9, 10). Furthermore, transformed cells expressing certain oncogenes have 

increased elasticities, a characteristic that is detected by the surrounding cells which 

respond by collectively extruding the oncogenic cell from the tissue (11, 12). 
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Thus biomechanics research has entered an exciting era of investigation; where the 

mechanical properties of cells and tissues can be both a direct consequence, and a 

regulating factor of biological function and architecture. 

ii. HIERARCHY IN CELL AND TISSUE MECHANICS 

Cells are small soft objects that are highly dynamic, yet they are able to interface 

together to create large, strong and stable structures at the tissue and organ level. The 

interior of a single cell is a fluid, crowded with organelles, macromolecules, and 

structures that fulfil a variety of functions (13). Networks of subcellular filaments 

called the cytoskeleton form higher order meshes and bundles that endow individual 

cells with their elastic and rheological properties. However, these filaments are also 

dynamic and can be rapidly re-organised by the cell in response to chemical cues, 

enabling cells to migrate and change shape (14, 15). 

Since single cells are soft (having a Young’s modulus on the order of hundreds of 

Pascals) they implement additional strategies to sustain the large physiological 

mechanical stresses encountered at the tissue and organ level. Firstly, they can 

interface to the Extra Cellular Matrix (ECM). The ECM is a complex network of 

proteins and polysaccharides secreted by cells which forms into a porous, fibrous 

network allowing the diffusion of external biochemical cues (7, 13). This provides a 

strong scaffold for the cells to attach to (with individual collagen fibrils having a 

Young’s modulus on the order of MPa, and kPa for collagen gels). In bone and 

connective tissue where the ECM is abundant, it primarily bears external stresses (3). 

Cells are able to remodel and organise the ECM in response to a wound and maintain 

its mechanical integrity (16, 17). In developing embryos where there is little ECM or 

where tissues need to form an impermeable fluid barrier between compartments, a 

second strategy is adopted. Cells can interface together through specialised adhesion 

structures that tie the cytoskeletons of neighbouring cells into a mechanical 

syncytium. Many of the cavities and free surfaces of the human body are lined by a 

“one cell thick” layer of cells called epithelia that employ this strategy. Development 

offers perhaps the most vivid illustration of epithelia withstanding and exerting 

mechanical stresses through intercellular junctions. Embryonic epithelial tissues are 

under a constant tension generated by spatially restricted cellular contractions that 

coordinate tissue level deformations (18). When intercellular-junctions are disrupted, 
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embryos fail to properly develop, displaying a disaggregated ectoderm consistent 

with mechanical failure (19). Early in vertebrate development, the absence of an 

extracellular matrix (ECM) in the blastopore (20) together with the lack of effect of 

inhibition of ECM synthesis on blastopore initiation, suggest that the mechanics of 

monolayers and force generation within monolayers govern blastopore formation 

(21, 22). 

The mechanical properties of the ECM have been well characterised (3), but 

comparatively few measurements of monolayer mechanical properties exist. In this 

thesis, I sought to characterise the supracellular mechanical properties of tissue 

monolayers, and how these arise with the formation of intercellular junctions. 

iii. CYTOSKELETAL FILAMENTS 

The cytoskeleton is a cohesive meshwork of filaments that extends throughout the 

cell fulfilling a variety of functions; from motility (23) to shape change (24), cargo 

transport (25) and cell division (26). There are three main families of cytoskeletal 

filaments that are suggested to be important in setting the mechanical properties of 

cells; microfilaments (actin), microtubules (tubulin) and intermediate filaments 

(specifically the keratin subgroup). Physically, the different families of cytoskeletal 

filaments have distinct mechanical properties in terms of persistence length and 

Young’s modulus. Biochemically, cytoskeletal filaments have different binding and 

unbinding rates of their subunits, meaning that they are dynamically distinct. They 

are regulated by a myriad of ancillary proteins which allow them to form higher 

order structures, interact with other filament populations, with organelles, and the 

cell membrane. I describe the three major types of cytoskeletal filaments in further 

details in terms of their characteristics and functions and the current opinion on how 

they contribute to cellular mechanical properties. 

MICROFILAMENTS - ACTIN 

The three isoforms of actin (α, β, γ) form the most abundant protein in eukaryotic 

cells. Polymerisation of the globular monomeric form (G-actin) into filaments (F-

actin) and coalescence of filaments into networks is the main molecular mechanism 

underlying cellular morphogenesis. Actin plays a crucial role in cellular processes 

such as cytokinesis (26) and sarcomeric contraction (27), but has also been 
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established as the most important component of the cytoskeleton in setting cellular 

elastic (28) and rheological properties (29). Filaments are composed of a two 

stranded double helix with a width of 5-9nm and a repeat length of 36nm. The helix 

is coiled at a rotation angle of 167 degrees and has polarity, pointed and barbed ends 

(Figure 1 A)(13).  

Polymerisation of actin filaments can be subdivided into three different steps. The 

first step which limits the rate of polymerisation is the formation of a small actin 

nucleus from three individual monomers. This step is thermodynamically unstable. 

After a stable nucleus has formed the addition of subunits in the elongation phase is 

comparatively quicker. Actin monomers exist in two hydrolysed states; ATP bound 

and ADP bound. At the pointed end of the filament the association rate for each 

monomer hydrolysis state is equal. At the barbed end of the filament there is a 

greater affinity for ATP bound monomers, with the rate for ADP bound monomers 

similar to that at the pointed end. There is therefore net polymerisation of actin 

monomers at the barbed end and generally net depolymerisation at the pointed end of 

filaments. Once ATP bound monomers have bound to the filament, the ATP 

becomes irreversibly hydrolysed to ADP. When the monomer concentration 

available is just above the critical polymerisation concentration for the barbed end, 

and just below the critical concentration for the pointed end, the filament enters a 

steady treadmilling state. The rates of polymerisation at the barbed end and 

depolymerisation at the pointed end are balanced, in the steady state, and the 

filament remains at a constant length. In order for the cell to maintain a dynamic 

actin cytoskeleton it is necessary for there to be a large pool of monomers available 

for polymerisation and a fast treadmilling rate (13).  

The balance between polymerisation/filamentous and depolymerisation/monomeric 

actin is controlled through many regulatory proteins. To induce cell shape requires 

rapid remodelling of actin filaments. This can be accomplished through de novo 

nucleation of actin filaments and cells have evolved specialised proteins to accelerate 

filament nucleation. Actin nucleators take various forms but all reduce the rate 

limiting step of forming a new actin nucleus. To maintain the pool of free monomers 

and remove actin structures that are not required the cell uses capping, monomer 

binding and filament severing proteins. Two of the main nucleators of actin are 
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Formins and the Actin Related Protein 2/3 complex (Arp2/3). Arp2/3 binds to the 

side of pre-existing mother filaments and nucleates daughter filaments that grow as 

branches from the mother filament. This type of nucleation tends to create branched 

networks of short actin filaments (Figure 1 D). Formins bind to the barbed end of 

unbranched filaments. They promote polymerisation and elongate the filament 

facilitated by profilin. This type of actin nucleation leads to long bundles of 

filaments (Figure 1 E). 

Actin organisation in epithelia 

In epithelial cells actin is largely localised to intercellular junctions where it serves to 

coordinate stresses between cells through adherens junctions (Figure 1 B). At the 

apical membrane actin can also create small protrusions called microvilli to increase 

the apical membrane surface area (Figure 1 C). This enhancement to surface area 

enables the cells to absorb and secrete more efficiently, such as in the brush border 

of the intestine. Below the apical membrane, actin is organised into a contractile 

band that is interfaced between cells by structures called adherens junctions. The 

interface of the actin network to adherens junctions, its assembly and regulation is of 

significant interest in the community as it is these characteristics that allow cells to 

interface together mechanically (see chapter 2, section IV, Adherens Junctions). 

Actin and mechanics 

The mechanical flexibility of polymers is usually defined in the physical sciences by 

the persistence length, which is the length at which the direction of the polymer 

chain becomes uncorrelated (30). Actin filaments have a persistence length of 

~20µm which is of the order of the size of the cell. It is not therefore likely that the 

flexural rigidity of actin filaments defines the mechanical properties of cells. Rather, 

it is the assembly of filaments into crosslinked and entangled networks that govern 

cellular mechanical properties. Indeed the presence of a single species of 

crosslinking protein actin gels can go from fluid to solid elastic meshes simply by 

altering the ratio of crosslinker and filament length (31). The binding rate of 

crosslinkers thus sets the timescale and frequency response of actin networks to 

stress. Different types of actin crosslinkers and nucleators create different actin 

structures that fill a variety of functions and have different mechanical characteristics 

(Figure 2). 
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Figure 1 : The actin cytoskeleton 

(A) Schematic of an actin filament and a Transmission Electron Microscope image (13). (B) Actin 

localisation in MDCK epithelial cells in a planar view. In epithelial cells actin localises to 

intercellular junctions. The actin cytoskeletons of neighbouring cells are interfaced to one another 

through adherens junctions. (C) Side view of an epithelial cell showing the actin cytoskeleton. 

Adherens junctions in typical epithelia localise towards the apical membrane. Microvilli are actin 

rich protrusions at the apical membrane that increase the cellular apical surface area. (D) Branching 

of actin filaments by the Arp2/3 complex. (E) Formin mediated elongation of actin filaments (32). 
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Figure 2 : The mechanical properties of actin networks 

(A) Stress fibres within cells are located basally and are maintained under tension by myosin 

contractility (33). (B) The actin cortex in a dividing cell determines cell shape and mechanical 

properties (34). (C) In migrating cells, branched actin meshworks help it to polarise the direction of 

motility (13, 35). (D) Contractile actin belts within epithelia constrict the dying cell apical membrane 

to maintain barrier function during apoptosis(13). 

 

Stress fibers are contractile actin bundles that form at the base of the cell. They 

consist of bundles of filaments of alternating polarity crosslinked by α-actinin and 

myosin motor proteins (Figure 2 A). The actin cortex is a thin meshwork of 

crosslinked actin filaments below the plasma membrane and is maintained under 

tension by myosin activity. This structure controls cell shape, particularly during cell 

division (Figure 2 B). In migrating cells, the actin network is often formed into a 

thin branched meshwork at the front of the cell called the lamellipodium (Figure 2 

C). In epithelia, cells often display a contractile belt of actin located close to the cell 

apical membrane. As cells undergo apoptosis, myosin is recruited to this actin belt 

causing the dying cell to contract and eventually be extruded. In this instance the 

contraction of the actin belt enables the epithelium to remain impermeable to fluids 

as the apoptotic cell is removed (13)(Figure 2 D). 

MICROTUBULES - TUBULIN 

Microtubules are hollow tubes formed from α and β tubulin heterodimers. These 

heterodimers form longer protofilaments. The most common arrangement of a 
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microtubule is thirteen protofilaments bound together in a hollow cylinder, but a 

wide variety of structures exist within the cell (Figure 3 A). Like actin, microtubules 

have structural polarity through the different nucleotide bound states, called the plus 

and minus ends (GTP and GDP bound). The main function of microtubules is in the 

separation of daughter cell chromatids during mitosis, though they also serve as a 

mechanism for intracellular delivery of cargo via dynein and kinesin motors. 

Microtubule organisation in epithelia 

One key characteristic of epithelial cells is their apico-basal polarisation. Apical and 

baso-lateral membranes have distinct protein compositions and are separated by tight 

junctions. This polarisation is further extended to the microtubule network that have 

their plus ends oriented towards the apical membrane and minus ends towards the 

basal membrane (Figure 3 B-C). In contrast to other cell types such as fibroblasts, 

where the microtubules radiate out towards the cell cortex from the 

MTOC/centrosome, the microtubules in epithelial cells are non-centrosomal. The 

polarised network of microtubules in epithelial cells hence serves as an effective 

mechanism for the vectorial trafficking of cargo to the cell surfaces (36). 

 

Microtubule mechanics 

The tubular structure of microtubules gives them a high persistence length of ~5mm, 

which is the highest of the three cytoskeletal filament types. The high persistence 

length of microtubules would suggest that on the length scale of the cell, they act as 

load bearing structures. One theory, tensegrity, suggests that microtubules are 

mechanically significant in this respect (37, 38). This model describes the 

cytoskeleton as a combination of rigid scaffolds connected together by tensed ropes 

(a tensegrity structure such as a suspension bridge). The analogy with the cell is that 

microtubules act as the compressional elements and are interfaced to microfilaments 

that are under tension. Indeed, proteins interface the ends of microtubules to the actin 

cortex that aid in force generation in dividing cells (Figure 4 A). Microtubules can 

also be observed to buckle on external loading (38). They are also shown to be 

important in determining cell length. In elongated cells microtubules are aligned with 

the cell long axis (39). Disruption of microtubules with Nocodazole or Colcemide 

causes a reduction in cell length (Figure 4 B). This would indicate that the 
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microtubules that interface to the cell cytoskeleton bear mechanical loads (Figure 4 

C). However the role of microtubules in cell mechanics remains unclear. Indeed, 

disruption of microtubules only causes small reductions in cellular elasticity as 

measured with AFM suggesting that their principal function is not in sustaining 

mechanical load (28).  

 

Figure 3 : Microtubules 

(A) Microtubules are hollow cylindrical filaments of tubulin (13). (B) Planar view of microtubule 

organisation in epithelial cells. (C) Side view of microtubule organisation in epithelial cells.  
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Figure 4 : The mechanical properties of microubules 

(A) The tensegrity model for microtubules (38). In the tensegrity model of cells, microtubules are load 

bearing structures that are under compression, whereas actin microfilaments are under tension in the 

tensegrity structure. (B) Microtubules in a HeLa cell on micropatterned substrates (39). As cells 

spread along a line their microtubules align with the cell long axis suggesting that they can regulate 

the cell length. (C) Single microtubules in cells bend and buckle, suggesting a mechanical 

contribution to the cell morphology. 
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INTERMEDIATE FILAMENTS - KERATINS 

The largest subgroup of intermediate filaments is called the Keratins. Each filament 

is made up from an equal mixture of type one (acidic) and type two (basic) Keratin 

proteins which form heterodimers. Two heterodimers join to make a tetramer 

filament subunit. Eight parallel proto-filaments made up of tetramers makes the 

filament. Unlike microfilaments and microtubules, intermediate filaments are non-

polar (Figure 5 A).  

 

Figure 5 : Intermediate filaments 

(A) Transmission electron microscope image and schematic view of intermediate filaments (13). (B) 

Planar view of the organisation of intermediate filaments within epithelial cells. Filaments span 

throughout the cell monolayer and are interfaced between cells through desmosomes. (C) 

Intermediate filaments do not have a specific apical or basal localisation. 
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Intermediate filaments organisation in epithelia 

Intermediate filaments in epithelia are found spanning throughout the cytoplasm of 

constituent cells and are interfaced to one another by desmosomes (Figure 5 B, C). 

They are non-polar and hence do not have a specific orientation like that of 

microtubules and do not form specific mesh-works like microfilaments. 

Intermediate filament mechanics 

Intermediate filaments have a persistence length on the order of 1µm, much smaller 

than the typical cellular length scale. Indeed, intermediate filaments appear wavy 

within cells and do not display a high level of alignment or organisation. Due to their 

short persistence length and lack of higher order organisation the intermediate 

filament network would be unable to sustain compressive loading of cells. Therefore 

the role of intermediate filaments within cells is not well established though a 

number of hypotheses have been proposed. Speculation over their mechanical role 

comes from observations in some diseases with mutations in Keratin genes. 

Mutations in K5 or K14 filaments are associated with the disease Epidermolysis 

Bullosa, where increased expression of the mutant form of the protein results in 

shorter intermediate filaments. Patients with Epidermolysis Bullosa have increased 

skin fragility in the milder cases which results from blister formation and cytolysis, 

but in the more severe cases this can be fatal due to loss of tissue integrity (40). In 

Epidermolytic Hyperkeratosis, mutations in K10 result in increased tissue fragility, 

predominantly observed in the basal layers of the skin. When the Keratin 8 gene is 

ablated in mice embryonic stem cells, the embryo fails to develop past the formation 

of the liver, a stage where the mechanical stress in the embryo is increased (40). 

Moreover, the intermediate filament network is not found within the cells of animals 

such as Drosophila that have a protective exoskeleton, but is found in mammalian 

soft tissue (13). 

Within the cell Intermediate filaments often coil into disorganised bundles where 

adjacent filaments are interfaced through non-covalent bonds. From a mechanical 

perspective this may suggest that intermediate filaments could contribute some 

plastic behaviour within cells and that they may exhibit a nonlinear mechanical 

response. When cells are subjected to high levels of strain, intermediate filaments 

appear taut between cell junctions suggesting that they are load bearing (41, 42). At 
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the single filament level AFM has been used to image single intermediate filament 

morphology under mechanical deformation (Figure 6) (43). Intermediate filaments 

are remarkably extensible, able to accommodate 250% extension at forces much 

larger than the maximum tensile force that microtubules or microfilaments can 

sustain (IF~1-2nN, MT~0.6nN) (44, 45). Thus all of the evidence suggests that 

intermediate filaments are crucial in preventing the lysis of single metazoan cells but 

also in interfacing cells into a mechanical continuum. Our lack of understanding of 

the precise mechanical role of intermediate filaments within cells is partly due to the 

diversity of filaments within this group and the lack of simple chemical treatments to 

disrupt the intermediate filament network. Indeed, Orthovanadate (46) and Okadaic 

acid (47) are largely non-specific and seem to only disrupt the intermediate filament 

network in a small percentage of cells. To further our understanding of their 

contribution to tissue mechanics, genetic manipulation of keratin in cells is required 

in combination with a mechanical testing approach. 

 

Figure 6 : The mechanical properties of Intermediate filaments 

(A) Single intermediate filaments are flexible, as shown through atomic force microscopy shearing 

experiments (45). (B) In cells grown on elastic substrates, stretching the substrate stretches the cells 

and their intermediate filament networks. Upon release of the applied stretch the configuration of the 

intermediate filament network is altered suggesting a level of plasticity in response to extension (42). 
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iv. INTERCELLULAR JUNCTIONS 

There are four key categories of intercellular junctions which fulfil a variety of 

functions. Occluding junctions seal cell contacts in polarized tissues creating a size 

selective diffusion barrier between the apical and basal membranes (48, 49). Gap 

junctions facilitate intercellular communication through the exchange of ions, second 

messengers and small metabolites between neighbouring cells (50). Adherens 

junctions and desmosomes interface the cytoskeletons of constituent cells into a 

mechanical syncytium and are discussed in more detail (51-53) (Figure 7). 

 

Figure 7 : Intercellular junctions 

There are four main categories of intercellular junctions; Occluding junctions, Channel forming 

junctions, Adherens junctions and Desmosomes (13). Occluding junctions interface cells into a fluid 

impermeable barrier. Channel forming junctions enable passage of small molecules between adjacent 

cells. Anchoring junctions either mechanically interface the cytoskeletons of constituent cells together 

or link the cytoskeletons to the Extra Cellular Matrix (ECM). Adherens junctions interface the actin 

cytoskeletons of neighbouring cells whilst Desmosomes interface the intermediate filaments. 

 

CALCIUM DEPENDENT ADHESION - CADHERIN 

Connections to the ECM are mediated through the trans-membrane superfamily of 

proteins called Integrins. Connections between cells are mediated through the 

Cadherin superfamily. Cadherins are the main adhesion molecules that mechanically 

interface cells together. In developing embryos, treatment with an anti-cadherin 

blocking antibody results in disaggregation of the embryo (19, 54). In the later stages 

of embryonic development, the expression of epithelial-cadherin helps to give the 

embryo mechanical stability and cellular organisation.  
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The classical epithelial-cadherin consists of an intracellular, a trans-membrane and 

an extracellular domain. The intracellular domain is binds to the cytoskeleton 

allowing mechanical stress to be transmitted between cells through these adhesions. 

The extracellular domain consists of 5 copies of the cadherin domain motif. 

Extracellular domains of E-cadherin bind to counterparts on neighbouring cells 

through homophilic binding. Each motif in the domain acts as a flexible hinge that 

becomes rigid with the binding of Ca
2+ 

(Figure 8). In the absence of extra-cellular 

calcium, the extra-cellular domains become floppy and are rapidly degraded by 

proteolytic enzymes. Upon the addition of extracellular calcium these form bonds 

with neighbouring cells that are relatively weak and are strengthened with clustering 

of the cadherin (54, 55). This type of adhesion means that junctions are strong but 

can be disassembled easily by the sequential breaking of individual bonds. Cadherin 

contacts occur in the two main types of intercellular junctions that sustain 

mechanical stresses: Adherens junctions and Desmosomes. 

 

Figure 8 : Calcium dependent adhesion 

(A) In low calcium conditions the extracellular domains of cadherin are floppy and unaligned (13). 

(B) Upon the addition of extra cellular calcium, or the formation of cell-cell contacts cadherins 

interface to one another through homophilic connections. Because of this single cadherin bonds are 

not mechanically strong, but allow the cell contacts to remain dynamic (32). 
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ADHERENS JUNCTIONS 

Adherens junctions serve to interface the actin cytoskeletons of neighbouring cells 

(Figure 9 A). This is accomplished through the specific structure of cadherins and 

the proteins that bind the cadherin cytoplasmic tail and interface it to actin 

microfilaments. The extracellular domains of cadherin bind between neighbouring 

cells interfacing their membranes. The cytoplasmic tails of cadherin bind directly to 

a protein called B catenin. B catenin serves as a scaffold to interface alpha catenins 

that can bind to filamentous actin. p120 catenin can directly bind to the cytoplasmic 

tail of cadherin and regulates its stability at the plasma membrane (56).  

However, the precise mechanism by which cadherins interface to the actin 

cytoskeleton is still being investigated. Proteins such as Eplin, Vinculin and Myosin 

are also suggested to bind cadherin to actin filaments (32). Furthermore, the 

cytoplasmic tail of cadherin can also bind other proteins and signalling molecules 

(Figure 9 B).  

The interfacing of cadherin to the actin cytoskeleton enables the propagation of 

cytoskeletal contractility from one cell to the next. At the tissue level forces can be 

coordinated into large deformations and shape changes, which are important in 

embryonic development (18, 57). Adherens junctions and the corresponding actin 

network are normally apically located in epithelial cells (Figure 9 B). The actin 

network forms a contractile belt that runs parallel to the adherens junctions at the 

lateral cell membranes. This actin network is regulated by the formin Diaphonous 1 

and the Actin Related Protein 2/3 complex that can nucleate actin filaments (13, 32). 
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Figure 9 : The structure of adherens junctions 

(A) Transmission electron microscope image of tight junctions (O), adherens junctions (ZA) and 

desmosomes (D) (13). (B) Diagram of the different ways that cadherins can interface to the actin 

cytoskeleton (32). 

 

FORMATION OF ADHERENS JUNCTIONS 

The biological sequence of events leading to the formation of mature intercellular 

junctions has been studied extensively and is progressively becoming better 

understood (Figure 10) (51-53, 58). Adherens junctions are assembled through the 

formation of cadherin-catenin clusters following contact between the lamellipodia of 
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two nearby cells. After initial contact, additional actin is recruited to these clusters 

and the junction expands through extended contact of the lamellipodia (56, 59). This 

polymerisation of actin is facilitated through the activation of the nucleating factor 

Arp2/3 by WAVE. Then, the dendritic lamellipodial actin network is remodelled into 

a peripheral actin belt through the combined action of de novo polymerisation by 

formins (60, 61) and network rearrangement by myosin contraction and α-catenin 

(53, 62). Later, the actin belt becomes increasingly contractile, a process regulated 

by the crosstalk between the small GTPases rac1 and rhoA (63, 64). 

 

Figure 10 : Formation of adherens junctions 

Initial contacts of lamellipodia between cells are stimulated by Arp2/3 mediated crawling of cells. 

The initial contact activates Rac, WAVE and then Arp2/3 mediated polymerisation of actin filaments 

at the junctions which drives expansion of the initial contact. Then junctional actin is remodelled by 

myosin II activity and formins. This de novo polymerisation and actin remodelling by myosin and 

alpha catenin creates a contractile actin belt that is interfaced to cadherin clusters (53). 

 

DESMOSOMES 

Desmosomes possess structural similarities with adherens junctions but are 

interfaced to the intermediate cytoskeleton rather than actin. Desmosomes form 

plaques that tightly interface cells together. In physiology, diseases such as 
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Pemphigus and Epidermolysis Bullosa simplex which have altered desmosome 

function or mutations to the intermediate filaments present with symptoms such as 

skin blistering and reduced tissue strength, suggesting that these structures have a 

mechanical role in tissues. In desmosomes the transmembrane members of the 

cadherin family Desmocollin and Desmoglein form the intercellular contacts (Figure 

11). Their cytoplasmic domains interact with the proteins Plakophilin and 

Plakoglobin, which are linked to Desmoplakin that interfaces the whole complex to 

intermediate filaments (Figure 11 B). Lateral interaction of adjacent plaques 

increases the structural integrity of the desmosomes. 

 

Figure 11 : The structure of desmosomes 

(A) Transmission electron microscope images of desmosomal contacts between cells, and a zoomed in 

image of one desmosomal plaque (13). (B) Desmocolin and Desmogelin are members of the cadherin 

family of proteins that interface the membranes of adjacent cells. Their cytoplasmic tails bind to 

plackophilin and plackoglobin from the armadillo family. This complex is interfaced to the 

intermediate filament cytoskeleton through desmoplakin. 
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FORMATION OF DESMOSOMES 

Desmosomes are formed in temporally distinct stages (Figure 12) (65). Desmocollin 

and Desmoglein are recruited to the cell membrane from the Golgi through vesicular 

transport along microtubules. Following the initial contact between cells, 

desmoplakin is recruited to the cell membrane, followed by a slow translocation of 

additional desmoplakin and plakophilin to the initial cluster sites that requires 

translocation along actin microfilaments (65). These adhesions then become 

stabilised at the plasma membrane upon interfacing to intermediate filaments (66, 

67) and form mature desmosomes. 

 

Figure 12 : The formation of Desmosomes 

The initial recruitment of Desmocollin and Desmoglein to the cell membrane occurs through 

vesicular transport along microtubules. Then desmoplakin and plakophilin are recruited to the initial 

cluster sites in a process that requires actin microfilaments. These structures interface to intermediate 

filaments and form stable desmosomal junctions (65). 

 

v. RHEOLOGICAL PROPERTIES OF BIOLOGICAL MATERIALS 

LINEAR ELASTICITY 

The mechanical properties of simple materials are characterised by the response of 

the material to an external load. The scaling of deformation with the applied load 

determines the linearity of this response. In simple crystals the stress (which is 

defined as the force per unit area loaded onto the material) scales linearly with the 

engineering strain (the change length of the material with reference to its original 

length), and is defined by a constant of proportionality the Young’s modulus (68). In 

a crystal structure, the molecular determinant of this behaviour is the stretching of 

covalent bonds between atoms which are arranged into a regular lattice. After the 



33 Introduction 

 

33 

 

release of deformation the material returns to its original dimensions. Permanent 

deformation after an applied load is called a plastic deformation and is often 

observed at high levels of strain where the material begins to yield, whereas elastic 

responses are observed at low levels of strain. In general, a force acting on a given 

plane of a body is called a stress. In 3 dimensions, this is characterised by a second-

order tensor. An analogous tensor characterises the relative deformation of the body 

called the strain tensor. In linear elasticity, these tensors are related by 21 elastic 

constants. However, assuming symmetry conditions and a perfectly isotropic 

material undergoing pure deformation in one direction is characterised by two 

scalars, the Young’s modulus and the Poisson ratio. In the simplest case the Poisson 

ratio characterises the amount a material contracts in the transverse direction when 

being extended in the longitudinal direction. 

   
 

 
   Stress is the force per unit area 

  
     

  
  The engineering strain is the change in length relative to the original 

length 

   
 

 
   The Young’s modulus is the stress divided by the strain 

NON-LINEAR ELASTICITY 

Nonlinear elasticity is where the Young’s modulus does not scale affinely with the 

external stress or strain. This behaviour is often observed in materials at high levels 

of external stress or strain. Typical examples of non-linear behaviour are strain 

softening (a decreasing Young’s modulus with strain) or strain stiffening (an 

increasing Young’s modulus with strain). Non-linear elasticity can be characterised 

through the measurement of the differential elastic modulus. In these experiments, 

materials are loaded to an initial level of stress and their elastic modulus measured 

locally at this pre-stress (3, 31). 

TIME DEPENDENT MECHANICAL PROPERTIES 

In polymer melts and amorphous materials the response of the material to external 

load can also be time dependent arising from friction between molecules as they 
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flow past one another. Typical mechanical testing of the time dependent mechanical 

properties of materials incorporates measuring the temporal evolution of their strain 

under constant stress (creep) or the temporal evolution of their stress under constant 

strain (stress relaxation). Materials that display both elastic and time dependent 

characteristics are termed viscoelastic (69). 

LINEAR MODELS OF RHEOLOGY 

In homogeneous materials stress relaxation and creep measurements can be 

interpreted through simple continuum models. In the analysis of polymers, 

mechanical behaviour is often described by an empirical combination of linear 

springs and dashpots that can reproduce the observed mechanical behaviour. Simple 

models of this kind are the Maxwell model for viscous liquids and the Zener model 

for viscoelastic solids which take the following forms: 

Maxwell model for viscoelastic liquids: 

 ( )       
(
   

 
)
     

Zener model for viscoelastic solids: 

 ( )              
(
    

 
)
   

By introducing more components to the model, experimental data can be 

increasingly well fitted but the physical interpretation of models with many 

parameters start to lose their physical meaning. 

CELLULAR RHEOLOGY 

Simple continuum models can only adequately describe the rheological behaviour of 

cells in specific loading conditions over specific timescales. They fail to capture the 

universal rheological behaviour of cells that have become apparent with the 

development of new methods to probe cell mechanical properties. Instead of fitting 
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with many linear elements, experimental data can be fitted with a single decay 

exponent that spans a wide range of timescales (70). This equation is often celled a 

stretched exponential. Time is normalised in this equation to t0 which can be set to 

1sec for convenience as changing t0 does not change the value of the power law 

exponent. This characteristic means that power law rheology is often referred to as 

being time-scale independent and takes the following form: 

 ( )  (
 

  
)

  

 

Power law exponents in cells are often weak β~0.1-0.5. These intermediate values 

that range between 0 and 1 signify that cell rheology incorporates both elastic and 

viscous elements, where β=0 is a solid material and β=1 is a fluid (70). The problem 

with power law rheology is that since it is a relaxation process with no dominant 

timescale it is difficult to make a connection with underlying molecular mechanisms. 

However, theories have been proposed to make these links such as soft glassy 

rheology. 

Cells are complex heterogeneous media that exhibit complicated rheological 

properties (15, 29, 71-73). For example, cell elasticity and rheological behaviour is 

heavily dependent on the actin cytoskeleton. This is not solely an entangled network 

of polymers but also contains crosslinks, motor proteins actin as stress dipoles, and 

interfaces to other cytoskeletal networks as well as the cell membrane. Therefore the 

rheological properties of this network are highly dependent on the concentration of 

filaments and their relative crosslinking densities (74). Reconstituted actin 

meshworks can exhibit both stress softening at low filament density and stress 

stiffening at high filament density (75). Thus the mechanical properties of actin 

networks are non-linear at high strain. The added complication in interpreting the 

rheology of this network is that it is an active gel. Cells can do mechanical work 

through the hydrolysis of ATP. This can take the form of filament polymerisation or 

the movement of myosin motors along microfilaments (15). Indeed, the action of 

myosin exert high stresses on actin networks which further impacts their rheological 

behaviour. Thus the search for the appropriate mechanical model or a unifying 

theory for single cell rheology remains an active area of research. 
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vi. TISSUE MECHANICS 

INTERCELLULAR ADHESION IN TISSUE MECHANICS 

The cytoskeleton is the major determinant of single cell mechanical properties. It 

then stands to reason that to create strong and stable tissues cells need to interface 

their cytoskeletons into a mechanical syncytium. They accomplish this through 

cadherin mediated adhesion between cells and the formation of intercellular 

junctions as described in the previous chapter (see chapter 2, section IV). Thus 

forces that are generated at the cellular level can be coordinated into tissue level 

deformations. Cadherin cell contacts are under constitutive acto-myosin generated 

tension (76). This tension is increased  with the application of an external load, and 

regulates the size of intercellular junctions (59). However, intercellular junctions are 

not just passive links between cells, but rather they are continuously remodelled in 

response to changes in signalling and changes in the mechanical environment.  

In developing embryos differences in the level of intercellular adhesion is suggested 

to have a role in the spontaneous sorting of cells (differential adhesion hypothesis) 

(77). Differences in cell surface tensions drive the minimisation of the interfacial 

surface area between populations, much like the separation of immiscible liquids. 

The cellular surface tension was originally proposed to be set by the level of 

expression adhesion molecules, but recently the cortical tension in constituent cells 

has been suggested to be the driving force of this process (78). 

TISSUE MECHANICS IN EMBRYONIC DEVELOPMENT 

Embryonic morphogenesis requires the co-ordinated reshaping of tissues. Such large 

scale deformations are beyond what can be accommodated by cell shape change 

alone and requires the active re-arrangement of cells within tissues. This type of 

active re-arrangement endows tissues with fluid like or viscoelastic behaviour on 

long timescales (77, 79). There are three main mechanisms by which cells can re-

organise within a tissue. Firstly, active neighbour exchange, called intercalation, is 

when two cells that are initially second neighbours come directly in contact through 

the exchange of junctions with their direct neighbours (80). Secondly, in cell death, 

cells that are not originally neighbours come in contact through the removal of a 

dying cell from the layer. Finally, a cell that divides into two new daughter cells adds 
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mass to the epithelium. Such processes are important in convergence extension of 

embryo anteroposterior axes where the cells within the embryo narrow along one 

direction and extend in the other. There are now sophisticated methods to determine 

the relative contributions of cell elongation to tissue morphogenesis during 

development (81). 

In two dimensions, this type of mechanical behaviour can be simulated with models 

derived from the mechanics of soft matter such as foams. The network of cells 

within a tissue can we modelled with a vertex model. Here, cell vertices are 

modelled as a network of nodes joined together by elastic springs. Each cell has a 

specific target area which is modelled by an area elasticity, and a contractility. 

Intercellular junctions are also modelled as having an adhesion energy. These terms 

are incorporated into an energy function that describes the total energy of the 

network and can be minimised with either Monte Carlo or conjugant gradient 

approaches (80, 82). Increasing levels of complexity can be incorporated into the 

model by adding cell division and delamination. Vertex models have been used to 

investigate the delamination of cells at the midline of Drosophila embryos resulting 

from increased compression of cells (82). Vertex models are but one example of the 

types of computational models that can be used to simulate the mechanical behaviour 

of tissues. Potts models and 3D FEM models have also been employed to study 

convergence extension and invagination in embryos (83).  

In developing embryos, there is a large amount of cell division and re-arrangements 

with the generation of organs and sub-compartments. Once tissues reach maturity 

they enter a homeostatic state where the number of cells within the tissue is tightly 

controlled. Loss of tissue homeostasis is a hallmark of disease and is often reflected 

in the mechanical properties of tissues. 

FORCE HOMEOSTASIS IN TISSUES 

It is well known that cells can adapt to the mechanical characteristics of their 

environment. They tune their mechanical properties to match that of their substrate 

(4, 5), migrate towards particular mechanical conditions, and sense the mechanical 

stiffness of the ECM through focal adhesions (6). The interaction of cells with their 

mechanical environment is particularly important in pathologies such as poly-cystic 
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kidney disease and cancer. If we take a purely mechanistic perspective, a growing 

tumour is confined by the surrounding tissue. As the tumour grows the mechanical 

pressure exerted by the surrounding tissue on the tumour increases. The amount of 

pressure is a direct result of the mechanical properties of the tissue and the degree of 

deformation. If the rate of cell death is mechanically sensitive, and increases with 

mechanical pressure, then a critical homeostatic size exists where the rate of cell 

division is balanced by the rate of apoptosis (84). This theory can explain why 

metastasis is a relatively inefficient process, as it is only successful when a cell 

invades into a tissue of comparable mechanical properties. This phenomenon is 

incorporated into a more general theory called “the soil and seed hypothesis” where 

specific environmental conditions are required for tumour growth (84).  

There is some experimental evidence for the regulation of tissue growth by the 

mechanical properties of the environment. Cell spheroids that are exposed to 

increased osmotic pressure in their environment take longer to reach a specific size, 

and the equilibrium size is smaller with higher osmotic pressure (85). These results 

have also been confirmed in spheroids growing in gels of different mechanical 

characteristics, where increased stiffness of the surrounding matrix suppresses 

spheroid growth (86). When cells are cultured onto tensed elastic membranes, 

release of the membrane tension compresses the monolayer and increases the amount 

of live cell extrusion within the tissue as the cells try to restore a homeostatic density 

(87). This is a similar result to that observed in development where live cell 

delamination reduces tissue overcrowding in the midline of developing Drosophila 

embryos (82). To date, the majority of research has indicated that the level of either 

live cell extrusion or apoptosis within the tissue is mechanically controlled. 

However, it is also plausible that cells could divide in the direction of stress to 

transfer mass into that axis and dissipate the applied stress. This idea is particularly 

apparent in developing embryos of the fly where large numbers of dividing cells 

have a preferential orientation (88). Division and cell extrusion cause long timescale 

flow in tissues and determine their rheological properties (79). 

COLLECTIVE MECHANICAL BEHAVIOUR OF CELLULAR AGGREGATES 

Although rheological measurements of single cells are now widespread, and some of 

the mechanical behaviour of embryos can be represented through computational 
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models of development, there is a significant gap in our understanding of the 

mechanical behaviour of simple tissues. Many of the techniques that have been 

developed to study the mechanical properties of single cells cannot be easily applied 

to study the mechanical properties of cell layers. This is primarily due to the difficult 

preparation of the sample that is required. Simple tissues are often fragile and 

manually interfacing them to mechanical testing equipment with glue or adhesives 

can easily damage the sample (89, 90). Furthermore, even the simplest in vivo 

tissues often incorporate multiple layers of different mechanical properties, making 

the interpretation of mechanical testing data difficult. This leaves cultured tissues as 

the most suitable model for determining the mechanical behaviour of aggregates. 

Tissues of specific sizes and shapes can be easily prepared with micro-patterning and 

techniques from soft lithography (91-94). Much of our understanding of the 

behaviour of simple tissue mechanical properties has come from examining well 

defined patches of epithelia in vitro (91, 92), in vivo (95), or in response to typical 

wound healing assays (17, 96, 97), but purely mechanistic quantifications are 

lacking. 

vii. PHYSICAL TECHNIQUES IN THE LIFE SCIENCES 

ORGAN MECHANICAL PROPERTIES 

The mechanical properties of large tissue explants and organs have been the focus of 

bioengineering research for decades. A wide variety of samples from full organs 

(such as liver (98), lung (99), skin (100) and tendon (3)), to extra-cellular matrices 

(ECM, (101)) have been investigated through an array of mechanical testing 

techniques. Understanding organ and tissue mechanical properties is important in 

developing treatments for disease and for applications in regenerative medicine, such 

as prosthetic implants. One typical example is the relaxation of organ surfaces in 

response to a wound, which could be a surgical incision or resulting from an injury. 

The recoil of the tissue after incision gives an indication of the mechanical pre-stress 

within the material. The results obtained inform clinicians on the best way to orient 

an incision and to repair the wound (3). 

Although examination of the mechanistic properties of organs has provided advances 

to medical practise, greater attention is now being focussed on understanding the 
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mechanical properties of single cells. Modern molecular biology can be used to 

selectively disrupt biochemical signalling and subcellular structures. When 

combined with mechanical testing, the contribution of a specific protein or organelle 

in setting a cells mechanical response can be measured. This approach can provide 

new perspectives on the origins of diseases that present with symptoms related to 

mechanical failure (such as increased skin fragility). Such advances are primarily 

due to availability of new experimental techniques that have been adapted from the 

physical sciences to measure the mechanical properties of single cells. Methods to 

characterise the mechanical properties and topography of surfaces have the 

resolution to probe the relevant length scales for single cells, spatially, tens of 

microns, and nano to pico newton levels of force. 

Here, I review some of the techniques that can be used to measure the material 

properties of cells. Typically this type of mechanical testing incorporates applying a 

force to a material and monitoring the resulting deformation. However, it is 

important that cells are actively able to exert mechanical work, and generate forces 

through the hydrolysis of ATP. This phenomenon has been investigated by 

monitoring the extent to which cells are able to deform their surrounding 

environment. The most common of these methods is traction force microscopy 

which has been used to measure forces exerted by single cells (92, 102), cell 

doublets (59) and in monolayers (91, 96, 103, 104). However, these techniques do 

not enable measurements of classical material properties of cells such as the Young’s 

modulus and ultimate strength of cells and tissues, and hence I do not review them in 

detail. 

SINGLE CELL MECHANICAL TESTING 

Techniques to measure the mechanical properties of single cells typically incorporate 

a small probe such as a bead or needle to induce deformations whilst simultaneously 

measuring the applied force.  

Micropipette aspiration 

Cells can be aspirated into a micropipette of known geometry with a controlled 

pressure. The internal diameter of the micropipette is smaller than the nominal 

diameter of the cell (Figure 13 A) and the internal pressure of the pipette can be 
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finely controlled from 0.1-1000Pa. The deformation of the cell as it enters the pipette 

is monitored with optical microscopy. Changes in cellular deformation with gradual 

step increases in pressure can be used to determine the cells rheological properties. 

Either the whole cell or just part of the cell can be aspirated into the pipette 

depending on the information required (Figure 13 B). Partial aspiration allows for 

measurement of the mechanical properties and tension of the cell actin cortex (34). 

For simple interpretation of the data, the Young Laplace equation for the internal 

pressure difference in spherical bodies can be applied (Figure 13 A). The precision 

and complexity of the interpretation of the data can be increased by using finite 

element models of the aspiration, for example by modelling the cell membrane and 

cortex as independent layers. 

 

Figure 13 : Micropipette aspiration of cells 

(A) Phase contrast image of a cell being aspirated into a micropipette. The difference between the 

inside pressure P_i and outside P_e pressure in the pipette can be related to the radius of curvature 

of the cell R_c and the hemispherical cap aspirated into the pipette R_p by the cortical tension T (34). 

(B) Micropipette aspiration experiments either aspirate the whole cell or only a hemispherical cap 

depending on the mechanical property of interest (105). 
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Magnetic bead twisting cytometry 

In magnetic twisting cytometry, a magnetic field is used to apply a force to 

ferromagnetic particles, in this case specifically a torque (Figure 14 A). By 

functionalising the surface of the magnetic particles with ligands that bind to 

integrins on the cell membrane, deformations induced by rotation of the beads 

contain mechanical information about the underlying cell membrane and 

cytoskeleton (Figure 14 B-C). Typically 250nm-5µm beads are used and these are 

often partially phagocytosed by the cells. By applying an external magnetic field the 

remnant magnetic fields of the beads can be aligned in the external field direction. 

The remnant field can be measured with a magnometer and used to detect the 

deformation that is applied to the cells relative to the external field. Although this 

technique allows for the application of well-defined small forces, the interaction of 

the bead with the membrane is hard to quantify and characterise biochemically. 

Since magnetic twisting cytometry allows for acute deformation of the cell 

membrane it can be combined with other mechanical testing techniques such as 

deformable substrates (71). 

 

Figure 14 : Magnetic twisting cytometry 

(A) Small magnetic beads are functionalised and attached to the cell membrane (71). By applying an 

external magnetic field a torque can be applied to the cell. (B) SEM image of a bead tethered to the 

cell membrane. (C) Typical molecules such as integrins bind to the bead and interface it to the actin 

cytoskeleton. This means that this experimental method can be used to probe cytoskeletal dynamics 

(1). 
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Optical methods: stretcher, tweezers and bead pulling 

Optical methods in general rely on the conservation of photon momentum as a 

driving factor for the restoring force. As a focussed laser beam of photons enters a 

dielectric object of high refractive index, it becomes refracted upon entering and 

leaving the object. This causes a restoring force in the direction of the focal point of 

the laser beam. This system can be calibrated such that changes in the position of 

trapped objects relative to the focal point of the light can be translated into a force. 

Whole cells can be compressed with optical traps (Figure 15 A), or cells stretched 

by moving beads that they are attached to with optical tweezers (Figure 15 B). The 

main advantage of optical methods trap method is the high resolution of forces that 

they are able to measure. However, the maximum force that can be exerted onto the 

cells is limited by the trap stiffness (~100pN max) and whole cell methods are 

mainly useful for measuring the mechanical properties of non-adherent cell types. 

 

Figure 15 : Optical methods for measuring cell mechanical properties 

(A) The optical trap method for deforming cells (106). High powered lasers can be focussed onto the 

cell and increasing laser power results in a larger cellular deformation (right). (B) The optical 

tweezers approach can be used to manipulate beads that are tethered to the cell membrane and can 

be used to stretch red blood cells (107) (right). In addition if the beads are completely engulfed by the 

cell then tethers of cell membrane can be pulled and used to measure membrane mechanical 

properties. 
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MULTICELLULAR AGGREGATE MECHANICAL TESTING 

To better understand the contribution of cell-cell adhesion and cell interactions in 

multicellular mechanics, there have been several attempts to apply single cell 

mechanical measurements techniques to cell doublets and simple aggregates. This is 

a challenging task which requires a solution to several technical obstacles. For 

instance, aggregates of cells can be quite fragile and manipulating them prior to 

measurement is challenging. 

Cell-cell interactions with two micropipettes 

Dual micropipette assays have been used to measure intercellular adhesion. A cell is 

captured onto the end of each micropipette loaded onto a micromanipulator with 

suction. The cells are then brought together and allowed to establish adhesive 

structures on the order of minutes. The suction pressure in the pipettes required to 

separate the cells as they are pulled apart gives an indication of the magnitude of the 

adhesive force (Figure 16 A). This approach has been successfully employed to 

measure the adhesion between cells with mutant cadherin proteins (94) and also in 

cells from different tissues of a developing embryo (78). Although this technique can 

give indications of adhesion strength and surface tension it can only be applied to 

cells in suspension. In addition, only step increases in pressure can be tested rather 

than providing continuous measurements. Finally, since the cells are brought into 

contact for only a few minutes, fully mature intercellular junctions do not have time 

to form (78, 94). Even on timescales as long as 30mins full junction maturation 

cannot take place, whilst the main components of adherens junctions are formed, 

desmosomes and their interface to intermediate filament are not established (Figure 

16 B). Therefore this technique is best suited for measuring the formation of 

junctions that only take a short time to establish such as cadherin junctions or non-

specific adhesion, rather than desmosomes or fully matured contractile adherens 

junctions. 
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Figure 16 : Measuring adhesion between doublets 

(A) Suction in the pipettes can be used to capture cells and touch them together so that they form 

adhesions. The separation pressure in the pipettes then indicates the force required to separate the 

doublet (94). (B) Doublets can be prepared on either short or longer timescales to establish the effect 

of junction maturation. 

 

Micro tissue mechanical methods 

There are a few microtissue mechanical testing methods that have been developed. A 

variation of traction force microscopy is to grow a tissue between two pillars (Figure 

17 A) (108). Here, the forces exerted by contracting and beating cardiomyocyte 

tissues can be measured. Multi-cellular spheroids can be aspirated into pipettes in a 

similar way to single cell measurements to test their mechanical properties (Figure 

17 B). Mechanical measurements are the most easy to interpret if a flat regular 

shaped material is extended in the plane. One tool to measure the mechanical 

properties of embryo explants allows for the measurement of elasticity and failure 

stress. In this approach embryo explants have to be glued to the mechanical testing 

system, where the fragile samples can be easily damaged (Figure 17 C) (89, 90). To 

date very few of these measurements have been made. 
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Figure 17 : Microtissue testing 

(A) Micro muscle tissue grown between two PDMS pillars. As the cells grow they exert a contractile 

force on the gel which collapses onto the pillars (108). The beating force for cardiomyocytes can be 

measured with this approach. (B) Micropipette aspiration of a multicellular acinus (109). This can be 

used in a similar way to the cortical aspiration of single cells to infer mechanical properties. (C) 

Tensile testing of xenopus embryo explants (89). 
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Deformation of cells through elastic substrates 

Adherent cell populations can be mechanically stimulated by the deformation of 

their substrate. PDMS elastomers offer a convenient way of making thin flexible 

substrates that are bio-compatible, can easily deform, and are elastic. Deformations 

can be either uniaxial or biaxial. One example of uniaxial extension of cells is the 

diaphragm inflation test, or cell drum (110, 111). Here, the membrane is inflated in 

order to stretch the cells by air pressure. The deformation of the membrane can be 

measured with a laser beam. However imaging the cells is difficult as the focal plane 

is not flat and changes during the experiment. Membranes can also be extended 

uniaxially, to stretch cells and observe the re-organisation of subcellular filaments 

(Figure 18) (42). This technique can also be combined with other methods to 

measure the change in the mechanical response of the cells under extension or 

compression (71). However, deriving quantitative mechanical data from these 

experiments is difficult as separating the mechanical properties of the cells from 

those of the substrate is non-trivial. Additionally, when subjected to large 

deformations cells can detach from the substrate. 

 

Figure 18 : Substrate deformation methods 

(A) Cells can be stretched through extension of the elastomeric membrane substrates. However 

separating the mechanical response of the cells from that of the substrate is non-trivial. 
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viii. ATOMIC FORCE MICROSCOPY 

One technique that is becoming very common to measure cell mechanical properties 

is Atomic force microscopy (AFM). In AFM a small probe is scanned over a 

material’s surface and used to measure properties (including topography, surface 

charge, and mechanics) that can be resolved at a spatial resolution on the order of the 

probe size. Atomic force microscopy (AFM) developed in 1986 by Binnig et al (112) 

has become a used due to its relative ease of operation and the production of 

commercially available probes with sizes as small as a 2-3 nm at the probe apex. 

This makes AFM a powerful method for imaging hard surface topography such as 

mica and graphite, or in imaging biomolecules attached to these surfaces (113, 114). 

In practise, AFM probes consist of a sharp tip usually pyramidal (~2-10µm tall), 

attached to a cantilevered beam (~200µm long, 50µm wide, and a few µm thick) 

which is an extension of a larger silicon chip (Figure 19, bottom left).  

 

 

 

 Figure 19 : Atomic Force Microscopy 

The AFM cantilever is scanned in a raster fashion over the surface. Laser light is deflected from the 

back of the cantilever at a different angle as the cantilever bends. This change is monitored with a 

four quadrant photodiode and used to measure the deflection and hence the resultant force on the 

cantilever. The zoomed region shows the feedback loop maintaining a constant force or cantilever 

deflection by changing the height of the piezo.The chip is mounted onto a piezoelectric support so that 

the height of the tip above the sample can be accurately controlled.  



49 Introduction 

 

49 

 

In addition, for coarse control, the piezo is often mounted onto a stepper motor setup. 

For basic imaging, the tip is brought into contact with the sample so that the 

cantilever bends, and is scanned over the surface in a raster fashion whilst 

maintaining constant piezo height (Figure 19). The relative deflection of the 

cantilever beam over the surface gives the sample topography (Figure 19 bottom 

right). The deflections of the cantilever are small (less than 1µm) relative to the 

cantilever length, and hence can be treated as linear, and are monitored optically. To 

do this a laser is reflected onto the back of the cantilever beam towards a four 

quadrant photodiode. As the cantilever bends the angle of reflection of the laser light 

changes and changes the signal in the diode. 

Simply scanning the tip over the surface with the piezo at constant height can be 

problematic when the sample is soft. Indeed, excessive bending of the cantilever 

results in large applied forces and can damage the sample. Instead of using a 

constant piezo height, a feedback loop is used to maintain the deflection of the 

cantilever constant by changing the piezo height. In addition to feedback loops, other 

techniques for reduced sample interaction exist such as dynamically oscillating the 

cantilever for intermittent contact with the sample. Whilst for hard samples the 

indentation created by the AFM tip is small for soft samples even the smallest forces 

that can be applied by AFM cantilevers (typically a few hundred pN) create 

indentations that are much larger (hundreds of nm) than the apex tip geometry (a few 

nm) and hence the spatial resolution is decreased. In practice, images of soft 

biological materials such as cells often do not offer greater spatial resolution than 

that of optical microscopy. 

FORCE MEASUREMENTS WITH AFM 

Although imaging cells with AFM is not particularly advantageous, the use of AFM 

as a micromanipulator and for measuring mechanical properties of cells has become 

widespread. Instead of raster scanning the tip over the surface the deflection of the 

cantilever is monitored as a function of tip-sample separation as the tip is pressed 

into the sample. This approach is also known as a force-distance measurement 

(Figure 20). Initially the cantilever deflection stays constant until the tip reaches the 

sample (Figure 20, grey line). When the tip touches the sample the deflection begins 

to increase. The rate of deflection increase as a function of indentation depth can be 
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fitted with a contact mechanics model to extract information such as the sample 

elasticity. Several different analytical models exist, but the most commonly used is 

the Hertz model for the contact of two elastic spheres (115). In order to perform 

AFM measurements of elasticity correctly there are several guidelines that should be 

followed, which are discussed in more detail in Chapter 5. 

 

Figure 20 : force distance measurements 

Initially the tip of the cantilever is out of contact with the sample. The deflection remains constant as 

the tip is gradually lowered towards the sample surface (portion 1 of the curve). As the cantilever tip 

touches the sample the deflection increases and the sample is indented (portion 2 of the curve). The 

second portion of the curve contains information about the stiffness of the cantilever (which is 

calibrated) and the sample mechanical properties. These can be extracted by fitting a two bodied 

contact mechanics model to the data. 

HERTZIAN ELASTIC CONTACT MODELS 

The Hertz theory of elastic contact is based upon three assumptions. In order to 

satisfy these conditions the contact of the two bodies must fulfil the following 

conditions (115, 116): 

1. Continuous surfaces and small strains; the contact area is much less than the 

radius of curvature of the indenter. 

2. Elastic half space; the contact area is much smaller than the depth of the 

indented body. 
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3. The surfaces are assumed to be frictionless; only a normal force is applied to 

the surface. 

For a sample to be an infinite elastic half plane, the sample thickness must be large 

in comparison to the indentation depth. Contributions to the elasticity of the sample 

are therefore from the sample alone and not the surface that it is mounted upon. In 

measurements on cells this is of particular relevance. Cells are soft in comparison to 

common culture substrates such as glass and are often thin, such as in the 

lamellipodia. There have been some attempts to correct for the finite thickness of 

cells in indentation experiments (117), but in practise an appropriate force can be 

chosen by trial and error (checking the level of indentation at different forces) to 

satisfy point 2. At small levels of strain, rigid materials such as metals are in a linear 

elastic regime (68). For more compliant materials, such as rubber, very small strains 

can easily exceed the linear regime of elasticity. For cells, the depth of indentation 

needs to be small and accurately controlled to assume a linear elastic response. For 

this reason, opinions differ in the literature about the validity of the Hertz model for 

measuring cell elasticity. At large indentations cells exhibit non-linear behaviour 

which can be better fitted by a parallel recruitment of springs model or hyper elastic 

models (118-120). Measurement of cell elasticity at small indentation depths can be 

analysed with the hertz model and yields values that can be compared between 

treatments. 

The Hertz theory of indentation can be modified to accommodate a range of different 

indenter geometries (116). The contact of the two bodies is assumed to be linearly 

elastic within the range of indentation and hence approximated by a simple Hookean 

relation. For the contact of a spherical tip indenting a flat sample, the radius of one 

sphere is chosen to be infinite, to represent a flat surface and the elastic modulus of 

the other chosen to be infinitely rigid to represent a rigid indenter. For a detailed 

description of the fitting procedure for AFM measurements and a critical discussion 

on the different approaches see chapter 5 and articles by David C. Lin et al (121, 

122). 
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HERTZIAN CONTACT EQUATIONS FOR DIFFERENT INDENTER GEOMETRIES 

The general derivation for Hertzian contact between two elastic bodies is well 

established and described in a number of text books. For clarity I outline the key 

equations that are used in this thesis.  

 

    
(    )

 
 

(     )

  
   Combined elastic modulus E* of the sphere E and specimen 

E’ with poisson ratios of υ and υ’ respectively. For a rigid indenter E’ is infinite and 

the second term in this equation becomes zero. The combined elastic modulus is 

therefore a measurement of just the sample elastic modulus and poisson ratio. 

 

 
  

 

  
 

 

  
  Relative curvature of the indenter R’ to the specimen Rs. For a flat 

specimen Rs tends to infinity and the second term in this equation becomes zero. For 

MDCK cells, the curvature of the apical membrane Rs is roughly the same of that of 

the bead R’, making the combined curvature R = R’/2. 

   
  

 
  Indentation depth δ for spherical indentation with contact radius a 

and indenter radius R as given by the hertz model for the elastic contact of two 

spheres. 

    
 

 
 
  

    Radius of contact a between a rigid sphere of radius R and a flat 

surface with a combined modulus of E*. 

If we make the assumption that the spherical indenter is infinitely rigid and for the 

case of indenting a flat specimen we can derive a relationship between load and 

indentation depth. The load F needed to produce an indentation δ on the surface of a 

cell with elastic modulus E, radius of indenter R, and Poisson’s ratio ν. 

  
  √ 

 (    )
 

 
  

This solution can also be determined for indenters of different geometries. For the 

simplest case of a cylindrical punch, the contact area does not change with the 

indentation depth. Here “a” is the effective contact area. 
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(    )
  

The general solution for a pyramidal shaped tip is given by the Bilodeau model. Here 

Φ is the opening angle of the pyramid. 

  
             ( )

  (    )
    

For the case of AFM measurements our load is given by the spring constant of the 

cantilever and its deflection. Assuming a Hookean linear elastic behaviour with 

cantilever spring constant k and d the deflection we obtain the following for the 

indentation depth: 

  (
  (    ) 

  √ 
)
 
  

These equations are used in chapters 5 and 6 to calculate the elasticity of biological 

samples using AFM based indentation experiments. 
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3. SCOPE 

The mechanical properties of single cells are beginning to be better understood in 

relation to the biological structures that form their cytoskeleton and in the framework 

of physical models. At the organ scale, we have learnt much about biomechanics 

such as the relevant types of materials and Young’s modulus to develop prosthetic 

implants. However, techniques to measure the mechanical properties of embryos and 

simple tissues are lacking. Simple tissues, such as cell monolayers, are a model 

system in which the tissue scale mechanical properties that arise upon formation of 

intercellular junctions can be investigated.  

I sought to develop experimental techniques to measure the mechanical properties of 

cell monolayers. I first characterised the mechanical properties of single cells by 

AFM to provide a point of comparison for the mechanical properties of tissues. One 

of my initial observations was that values obtained for the mechanical properties of 

single cells were dependent on the measurement technique. In particular, AFM 

elasticity measurements appear dependent on tip geometry with pyramidal tips 

yielding elasticities 2-3 fold larger than spherical tips. In chapter 5 I investigate the 

validity of AFM elasticity measurements and some of the assumptions that are made 

when interpreting force-distance curve data. 

In the following chapters I describe two different experimental approaches that I 

have developed to measure the supracellular mechanical properties of cell 

monolayers. I investigated the emergence of monolayer supracellular mechanical 

properties which coincides with the establishment of intercellular junctions in 

chapter 6. I again used atomic force microscopy, but this time made large 

indentations into monolayer-gel composites. Although this technique allows for time 

dependent measurements of monolayer mechanical properties and is comparative 

between treatments, interpreting the results is a theoretical challenge. Hence I sought 

to develop another method to measure the planar mechanical properties of cell 

monolayers as discussed in chapter 7. I prepared freely suspended monolayers 

between two test rods and prised the test rods apart to measure their mechanical 

properties in the plane of the layer. 
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The general materials and methods for these experiments can be found in chapter 4 

but additional methods sections are incorporated to supplement each of the 

experimental chapters also. Final concluding remarks are discussed in chapter 8 and 

future work for the project in chapter 9. 
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4. GENERAL MATERIALS AND METHODS 

i. CELL CULTURE 

Madin-Darby Canine Kidney II (MDCK-II) cells were cultured at 37°C in an 

atmosphere of 5% CO2 in air in DMEM (Invitrogen, Paisley, UK) supplemented 

with 10% FCS (Invitrogen) and 1% Penicillin Streptomycin. Prior to experiment, the 

medium was replaced with Leibovitz L-15 without phenol red (Invitrogen) 

supplemented with 10% FCS. Cells were passaged every 3-4 days using standard 

cell culture protocols, and disposed of after 30 passages. When cells became 

confluent they were washed with phosphate-buffered saline (PBS) and incubated for 

30 minutes with 1% Trypsin/EDTA (Invitrogen). Cells usually detach during this 

period but the remaining cells could be detached by gently tapping the culture flask. 

Trypsin activity was stopped by re-suspending the cells in 5ml of culture medium for 

a T25 culture flask (Falcon). Cells were resuspended to a new culture flask in a 1:10 

ratio with fresh culture media. 

ii. GENERATION OF CELL LINES 

Stable cell lines were created to observe different cell structures with fluorescent 

microscopy. Cell lines were mainly created with viral infection and selection rather 

than using more traditional transfection protocols due to their low transfection ratio 

in MDCK cells. Stable cell lines were produced by Guillaume Charras. 

To visualise the cell membrane, we created a stable cell line expressing the PH 

domain of Phospholipase Cδ tagged with GFP (PH-PLCδ-GFP), a phosphatidyl-

inositol-4,5-bisphophate binding protein that localises to the cell membrane in 

epithelial cells. Briefly, PH-PLCδ-GFP (a kind gift from Dr Tamas Balla, NIH) was 

excised from EGFP-N1 (Takara-Clontech, CA, U.S.A), inserted into the retroviral 

vector pLNCX2 (Takara-Clontech), and transfected into 293-GPG cells for 

packaging (a kind gift from Prof Daniel Ory, Washington University (123)). 

Retroviral supernatants were then used to infect wild type MDCK cells. The cells 

were selected in the presence of 1 mg.ml
-1

 G418 (Merck Biosciences, Nottingham, 

UK) for 2 weeks and subcloned to obtain a monoclonal cell line with an epithelial 

phenotype.  
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For estimation of the cell volume, we created a cell line stably expressing 

cytoplasmic GFP. Briefly, wild-type MDCK were infected with retroviruses 

generated by transfecting packaging cells with pRetroQ-Ac-GFP-C1 (Clontech), 

selected with 500 ng.ml
-1

 puromycin (Merck Biosciences), and subcloned to obtain a 

monoclonal cell line with epithelial phenotype.   

To visualise different components of intercellular junctions and the cytoskeleton, we 

generated cell lines stably expressing E - cadherin - GFP, keratin 18 - GFP, Life - act 

- GFP, cytoplasmic GFP, CAAX - Cherry, and MRLC - GFP. E - Cadherin was 

excised from E - Cadherin pBAT (a kind gift of Prof Yasuyuki Fujita, Hokkaido 

University, Japan), cloned into EGFP-N1 (Takara-Clontech, CA, U.S.A), and 

inserted into the retroviral vector pRetroQAcGFPN1 (Takara-Clontech). Keratin 18 - 

GFP pLNCX was a kind gift from Prof Rudolf Leube (University of Aachen, 

Germany). Life - act - GFP, a kind gift of Dr Roland Wedlich-Soldner (MPI, 

Martinsried, Germany) was inserted into the retroviral vector pLPCX (Clontech). 

The ras CAAX box, a kind gift from Prof John Carroll (University College London, 

UK), was inserted into pcDNA3 in frame with Cherry, and mCherry-CAAX was 

then inserted into the retroviral vector pLPCX. MRLC - GFP was inserted into 

pRetroQAcGFPC1. Retroviruses and clonal cell lines were then generated as 

described earlier. Retroviral supernatants were then used to infect wild type MDCK 

cells. The cells were selected in the presence of 1 mg ml
-1

 G418 (Merck Biosciences, 

Nottingham, UK) (for pLNCX plasmids) or 500 ng ml
-1

 puromycin (for pLPCX and 

pRetroQ plasmids) for 2 weeks and subcloned to obtain a monoclonal cell line with 

an epithelial phenotype.  

For simultaneous visualisation of the keratin cytoskeleton and the cell membrane, 

cells stably expressing keratin 18-GFP were infected with CAAX-Cherry retrovirus 

before selection and subcloning.  

iii. CRYO PRESERVATION OF CELL LINES 

Cell lines that were created were stored under liquid nitrogen until use. To cryo-store 

cells, they were firstly grown to confluence in a large T75 (Falcon) flask, washed 

with PBS and detached with trypsinisation. The full cell suspension was then 

pelleted by centrifugation (Beckman-Coulter) in a 15ml falcon tube (Falcon) for 10 
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minutes at 1500 rpm. The pellet was then re-suspended in freezing medium (10% 

Dimethyl Sulfoxide (DMSO), 20% FBS, 70% culture medium), placed into a cryo-

vial (Nalgene) which was then transferred to an isopropanol freezing chamber and 

placed at -80°C overnight. Cells were then stored in liquid nitrogen. When required, 

cells could be taken out of the liquid nitrogen to resume culture. The vial was gently 

warmed until the ice pellet could be poured into a 15ml flacon tube containing 10ml 

of fresh culture media. To remove the DMSO, the suspension was centrifuged for 10 

minutes at 1500 rpm and the pellet re-suspended in 15ml of fresh culture media. The 

new suspension was transferred to a T75 flask and the cells given a week to recover 

before experiments. 

iv. CHEMICAL TREATMENTS TARGETING THE CELL CYTOSKELETON 

The controlled polymerisation and depolymerisation of cytoskeletal filaments is 

essential for basic eukaryotic survival and hence is the target for many natural plant 

toxins. Chemical inhibitors of cytoskeletal polymerisation and ancillary protein 

activity have become commercially available.  

 
Figure 21 : Chemical perturbations of the cytoskeleton 

Different chemicals and inhibitors can be used to perturb the cell cytoskeleton and were calibrated 

experimentally. Latrunculin and cytochalasin target the actin cytoskeleton through sequestering actin 

monomers and capping the barbed end of filaments respectively. Nocodazole depolymerises 

microtubules and intermediate filaments are disrupted by okadaic acid treatment, which is less 

specific. All drug treatments were incubated for 50-60mins with the exception of Okadaic acid which 

was incubated for 4hours. For measurements on freely suspended monolayers, drug treatments were 

implemented with the digestion phase, with the exception of EDTA treatment. 
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Many of these are permeable to the cell membrane making experiments easy to 

perform and informative when combined with confocal imaging. I calibrated the 

concentrations used in this thesis by imaging the targeted subcellular structures with 

fluorescent probes after drug treatment. A guideline for the concentrations used was 

the work by Rotsch et al (124). 

Latrunculin B is extracted from the sea sponge Latrunculia magnifica (13). It 

sequesters actin monomers inhibiting them from binding to the barbed end of pre-

existing filaments. This results in net depolymerisation of filaments as the pointed 

end (where depolymerisation is favourable) is unaffected. Treatment of MDCK cells 

with 750nM of Latrunculin B shows a reduction in the amount of highly localised 

fluorescent actin at the cell edge, due to the depolymerisation of filamentous 

structures (124) ( Figure 21 A) (Table 1). 

Cytochalasin D is a metabolite secreted by a variety of moulds (13). Cytochalasin D 

is a capping protein which binds to the barbed and of filaments. This prevents the 

addition of actin monomers. Treatment of 20uM cytochalasin D has a similar effect 

to latrunculin treatment on the localisation of fluorescent actin in the cell ( Figure 21 

C) (Table 1). 

Nocodazole targets tubulin dimers in the same way as latrunculin does for actin 

monomers (13). By sequestering the free tubulin dimers it causes an increase in the 

number of microtubule catastrophes and at high concentrations causes 

depolymerisation of microtubules. Addition of 10uM nocodazole to MDCK cells 

shows depolymerisation of filamentous structures. The localisation of fluorescently 

labelled tubulin in filaments moves to being diffuse in the cytosol ( Figure 21 B) 

(Table 1). 

Disrupting the keratin filament network is more difficult as there are no specific 

inhibitors of its polymerisation into filaments. A low concentration of Okadaic acid 

(0.2ug/ml) is non-specific but has been shown to disrupt intermediate filament 

structures (47). Localisation of the fluorescence from filamentous form to small 

globules can be observed but only in some cells ( Figure 21 D). In order to 
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completely disrupt the intermediate filament network a mutant strategies are 

required. 

In mature monolayers, calcium-mediated adhesion through E-Cadherin was 

disrupted by chelation of calcium from the medium by addition of 5mM of EDTA 

(Sigma), a divalent cation chelator. To prevent the formation of E-Cadherin 

mediated adhesion in replating or low calcium experiments, cells were incubated 

with 10µg/ml of an anti-E-Cadherin blocking antibody that targets the extracellular 

domain of E-cadherin blocking intercellular adhesion (Uvomorulin, Monoclonal 

Anti-E-Cadherin antibody, Sigma). The actin filament network was disrupted by 

incubation with 750nM Latrunculin B (Sigma), a small molecule that sequesters 

actin monomers. To block actin filament nucleation through the arp2/3 complex and 

formin mediated nucleation, cells were incubated with 100µM CK666 (125) (Merck 

Biosciences) and 40µM SMIFH2 (126) (Merck Biosciences), respectively. To inhibit 

myosin activity, cells were treated with 50µM Y27632 (127) (Merck Biosciences) an 

inhibitor of rho kinase or 100µM Blebbistatin (128) (Merck Biosciences) which 

inhibits myosin II ATPase.  

Cells were incubated in culture medium with the relevant drug concentration for 50 

min prior to measurement.  The medium was then replaced with imaging medium 

containing the same drug concentration such that the inhibitor was present at all 

times during measurements. Cells were treated with latrunculin B and cytochalasin D 

(to depolymerise F-actin), nocodazole (to depolymerise microtubules), Y-27632 (to 

inhibit Rho-kinase mediated contractility), and blebbistatin (to inhibit myosin II 

ATPase). All drugs were purchased from Merck-Biosciences UK (Nottingham, UK). 

To disrupt cadherin intercellular adhesion, monolayers were treated with EDTA 

(Sigma Aldrich) to chelate extracellular calcium. 
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Inhibitor Mode of action Concentration Effect 

Latrunculin B Sequesters actin 

monomers 

750nM Depolymerises actin filaments 

Cytochalasin D Caps the barbed end of 

actin filaments 

20µM Depolymerises actin filaments 

Nocodazole Sequesters tubulin 

dimers 

10µM Depolymerises microtubules 

Y27632 Inhibits Rho kinase 10-50µM Reduces myosin contractility 

Blebbistatin Myosin II 50-100µM Reduces myosin contractility 

EDTA Divalent cation 

chelator 

5mM Reduces calcium mediated 

adhesion 

CK666 Inhibits Arp2/3 

nucleation of filaments 

100µM Reduces the extent of branched 

filaments 

SMIFH2 Broad spectrum 

Formin inhibitor 

40µM Reduces actin polymerisation by 

formins 

Table 1 Chemical perturbations to the cytokskeleton 

Different chemical inhibitors used to perturb the cell cytoskeleton, their concentrations, target and 

mode of action. 

 

v. STATISTICS 

Data are reported as mean ± standard deviation except where otherwise noted. In box 

and whisker plots, boxes represent the 25
th

, 50
th

 and 75
th

 percentile and whiskers 

represent the maximum and minimum values in the data. Differences in values for 

the elastic modulus obtained using different tips and drug treatments were analysed 

by a two sample independent Student’s t-test. Statistical significance was assumed at 
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p<0.05. The coefficient of determination r
2
 was calculated as an estimation of the 

accuracy of model fit to experimental data 
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5. EXPERIMENTAL VALIDATION OF ATOMIC 

FORCE MICROSCOPY-BASED CELL ELASTICITY 

MEASUREMENTS 

i. ACKNOWLEDGEMENTS 

Stable cell lines in this chapter were generated by Guillaume Charras. Scanning 

electron microscope samples were prepared by and imaged with the supervision of 

Guillaume Charras. Thanks to Alex Winkel from JPK and Emad Moeendarbary for 

technical discussions. 

ii. INTRODUCTION 

Atomic Force Microscopy (AFM) has been used to measure the elasticity of a wide 

variety of cell-types (129) (from fish keratocytes (130), to cancer cells (131), and 

stem cells (132)), at different stages of the cell-cycle (133, 134), and in different 

parts of a developing embryo (135), as well as to evaluate changes in response to 

genetic mutations (11) or drugs (124). Such widespread use is due primarily to 

AFM’s relative-ease of operation, its high precision of force measurement, high-

spatial accuracy, and the availability of mass-produced cantilevers. 

Though AFM has very successfully been used for comparative measurements of 

cellular elasticity, the broad range of absolute elastic moduli reported for mammalian 

cells in the literature (100 Pa to 100 kPa) is intriguing (136). In contrast, other  

measurement methods such as bead tracking micro-rheology or micropipette 

aspiration give values of 100 Pa to 500 Pa for elasticity (137, 138). Such differences 

are usually ascribed to cell substructure heterogeneity and the far greater spatial 

accuracy of AFM measurements. The vast majority of AFM elasticity measurements 

utilise pyramidal-tipped cantilevers because of their wider availability. Surprisingly, 

measurements using spherical-tipped cantilevers are generally 2-3 times lower than 

measurements with pyramidal tips (139). This is often assumed to be the result of 

spatial averaging due to the larger contact area of spherical tips with the cell surface 

(140). 
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The organisation of cytoskeletal structures such as actin filaments and bundles can 

be examined with both optical and Scanning Electron Microscopy (SEM). By fixing 

and permeablising the cell membrane the sub-membranous actin cortex can be 

observed at high resolution with SEM. At the apical membrane of epithelia the actin 

cortex is arranged into a woven meshwork of thin filaments on the order of 7-10 nm 

in diameter (Figure 22). Since the cell membrane is soft and readily deforms upon 

contact with the AFM tip. The resulting contact area (hundreds of nm) is much larger 

than the tip apex (a few nm) or the mesh size of the actin network (<100nm). It is 

therefore unlikely that spatial heterogeneities in the actin network are responsible for 

variation in measured elasticity. I sought to understand the source of differences in 

elasticity between AFM and other measurement methods, as well as the dependence 

of AFM measurements on tip geometry. 

 

Figure 22 : SEM picture of the apical actin structures in MDCK cells.  

(A) Actin filaments at the apex of MDCK cells form a tight network with a small mesh size. (B) As 

seen at high magnification. Even sharp pyramidal tips at low indentation depths have a large contact 

area with the soft cell surface. It is therefore, unlikely that spatial heterogeneity in the apical actin 

network can cause the broad range of elasticity values that are observed in the literature. These 

images were acquired with the assistance of G.Charras. 

 

Several other potential sources of error exist that could affect elastic modulus 

measurements on living cells using AFM. First, errors may arise in processing of 

force-distance curves resulting from erroneous detection of the point of contact 

between the cell and the cantilever tip. Indeed, cantilever deflections at the point of 

contact are often of a similar magnitude to the measurement noise. Errors in 
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determining the point of contact inevitably affect the conversion of force-distance 

curves into force-indentation curves and therefore the estimated value of the elastic 

modulus. This point has been the focus of much attention and algorithms have 

recently been developed to better detect the contact point but their reliability has not 

been assessed experimentally on living cells (121). Second, during AFM 

measurements, the area of contact between the tip and the cell is not measured: it is 

estimated from the geometry of the tip, the indentation depth and contact mechanics 

models. To our knowledge, there exists no experimental verification of the shape of 

contact between cell and cantilever. Third, for estimation of elasticity from contact 

mechanics models, a measure of the cellular Poisson ratio is required. Because the 

cell is largely composed of fluid, it is often assumed to be incompressible with a 

Poisson ratio of 0.5, however few experimental measurements exist and these range 

between 0.3 and 0.5 (105, 141, 142).  

In this study, I used an AFM-confocal microscope setup to systematically examine 

the presence and contribution of each potential source of error to elasticity 

measurements on living cells for both pyramidal and spherical-tipped cantilevers. 

For these experiments, I used epithelial cells that stably express a Green Fluorescent 

Protein (GFP)-tagged membrane marker and image AFM-induced cell deformation 

using a confocal microscope. I show experimentally that indentation depth is 

correctly estimated from force-distance curves but also reveal that large errors occur 

in the estimation of cell-cantilever contact area when using pyramidal-tipped 

cantilevers even at moderate forces (>0.4 nN). Using cells expressing cytoplasmic 

GFP, I estimated the cellular Poisson ratio from volume measurements before and 

during AFM indentation. Finally, I discuss the implications of our findings for AFM-

based measurements of cellular elasticity and give guidelines to allow for error-free 

measurements.  

iii. MATERIALS AND METHODS 

GENERAL 

AFM measurements and confocal measurements were performed using Leibovitz-

L15 CO2 independent medium supplemented with 10% FBS. All measurements in 

this chapter were conducted at room temperature. 
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AFM FORCE DISTANCE CURVE ACQUISITION 

For AFM measurements, I utilised a JPK Nanowizard 1 (JPK, Berlin, Germany) 

interfaced with an inverted microscope (IX-81, Olympus, Berlin, Germany). For 

elasticity measurements, I used both standard pyramidal-tipped cantilevers (MSNL, 

nominal spring constant k=0.05 N/m, Veeco, Manheim, Germany) and the same 

cantilevers modified with a spherical tip. Cantilevers were calibrated by the thermal 

noise method before each experiment (143). Spherical tipped cantilevers were made 

by gluing (UV curing glue, Loctite, Hertfordshire, UK) a 15µm diameter fluorescent 

bead (Fluorospheres, Invitrogen) to the very end of the cantilever beam (Figure 23). 

During experiments, the cantilever tip was aligned over the centre of a cell and 

force-distance curves acquired with an approach speed of 3µm.s
-1

 and target forces 

ranging from 0.2-3.0 nN. This slow approach speed was chosen to minimize the 

contribution of time dependent properties of the cell to the apparent cellular elastic 

modulus (144). Forces were chosen to keep the indentation depth to less than 20% of 

the cell height such that errors resulting from the limited cell thickness were reduced 

(117, 145). Measurements were made above the cell nucleus. In epithelial cells, the 

nucleus is located close to the base of the cell and hence its contribution to the elastic 

modulus can be neglected. After the target force was reached the piezo-electric 

ceramic controlling the height of the cantilever was kept at a constant height for 10 

seconds before retraction to allow for acquisition of a confocal image of the indented 

zone.  

AFM ELASTICITY MEASUREMENTS 

Cell elasticity was evaluated from the approach phase of the force-distance curves. 

The non-contact portion of the curve was fitted with a line and the contact portion 

with the Bilodeau model for pyramidal contact or the Hertz model for spherical 

contact (115). For a given force F the indentation depth δ depends on the Poisson 

ratio υ, the elastic modulus of the sample E, and terms that relate to the contact area 

derived from the tip geometry:  

           
      

 
 

  (    )
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with Rr the reduced indenter radius, (where Rc is the radius of curvature of the cell 

surface, and Rs is the radius of the spherical indenter) and Φ the opening angle of the 

pyramid. For accurate estimation of the point of contact I used a previously 

developed algorithm (146) and implemented it in MATLAB (MathWorks, Natick, 

MA, U.S.A). Briefly, each experimental data point in the curve is in turn taken as the 

point of contact and a least squares minimisation is used to fit the non-contact 

portion up to the current point of contact and the contact model thereafter. The 

summed error of the two fits is calculated for each point and the point in the curve 

which has the smallest corresponding summed fit error is taken to be the correct 

contact point. The value of the elastic modulus was then calculated by fitting the 

contact portion with a lone fitting parameter.  

AFM MEASUREMENTS OF INDENTATION DEPTH 

For comparison with confocal microscopy measurements, I computed the indentation 

depth for given forces from force-curves. Indentation depths δ were taken as the 

piezo displacement z from the contact point minus the cantilever deflection d.  

      

The extracted indentation depth was corrected for any drift in piezo height using data 

extracted from the piezo strain gauge during the confocal measurement. 

CONFOCAL MICROSCOPY 

For combined AFM and confocal measurements, I used an FV1000 confocal head 

attached to our inverted microscope (Olympus). All imaging was carried out with a 

60x oil immersion objective (UPLSapo, NA=1.35, Olympus). The underside of 

pyramidal cantilevers could be visualised by collecting reflected laser light (647nm 

laser) and in these images, the tip could be identified as a dark region on the 
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cantilever surface. For spherical tips, the beads could be imaged by exciting them 

with a 647nm laser and collecting light at 680nm. GFP in the cells was excited with 

a 488nm laser and light was collected at 525nm.  

CONFOCAL MEASUREMENTS OF INDENTATION DEPTH 

To confirm the correct detection of the point of contact from force-distance curves, I 

compared the indentation depth derived from AFM measurements with depths 

measured optically by confocal microscopy for a range of forces (0.2-3.0nN). An x-z 

confocal image of the cell was acquired with 0.1µm steps in z along a line parallel to 

the cantilever long axis passing through the centre of the tip to give a side view of 

the cell before indentation (Figure 24). The cantilever was approached towards the 

cell surface until it reached the target force and another x-z confocal image was 

acquired while the cantilever height was kept constant (Figure 24). The cell 

membrane profile was extracted at each x position by fitting the fluorescence 

intensity profile with a Gaussian function. The peak of the Gaussian was taken to be 

the membrane position at x. Cell profiles were extracted prior to and during 

indentation. 

For spherical tips, the indentation depth was found by subtracting the cell profile 

during indentation from the cell profile prior to indentation. This height difference 

was fitted with a parabola and the peak of the parabola was taken to be the 

indentation depth. The x-z geometrical profile of the pyramidal tip was extracted 

from SEM images. The indentation depth was found by fitting the x-z tip geometry 

to the indented x-z membrane profile. To find the correct position in x of the tip 

apex, the fitting procedure was repeated for each point in the profile and the summed 

squared error was calculated. The position in x with the lowest fit error was taken to 

be the correct location of the apex of the pyramidal tip (Figure 26). The indentation 

depth was found by subtracting the height of the indented membrane profile from the 

height of a parabola fit of the pre-indented membrane profile, at the tip apex. The 

full analysis for indentation depth measurement was implemented in MATLAB. 
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QUALITATIVE CONTACT AREA ANALYSIS 

For qualitative analysis of the area of contact, confocal stacks of cells expressing 

PH-PLCδ-GFP were acquired prior to and during AFM indentation. The cell surface 

was then rendered with iso-surfaces using Imaris (Bitplane AG, Zurich, Switzerland) 

and examined to find areas with geometries that matched the geometry of the 

cantilever tip. Membrane-cantilever contact area could also be visualised in colour 

combined x-z confocal slices (MetaMorph, Molecular Devices, CA, U.S.A) showing 

the cell profile before and during indentation.  

COMPRESSIBILITY MEASUREMENTS 

To measure cell compressibility, cells expressing cytoplasmic GFP were cultured in 

a 1:100 ratio with wild-type cells such that they retained their epithelial phenotype. 

Confocal image stacks of cells expressing a cytoplasmic GFP were acquired prior to 

and during AFM indentation. During the experiments, cantilevers with spherical tips 

were brought into contact with the cell surface reaching a target force of 10 nN, large 

enough to cause an indentation excluding ~10% of the cell volume.  After the target 

force was reached the cantilever was maintained at a constant height for 300 seconds 

while a confocal image stack was acquired. The background noise of the image 

stacks was removed by plotting a histogram of the pixel intensities and fitting a 

Gaussian function to the low intensity pixels.  The threshold intensity of the image 

was chosen to be the mean of the fit plus two standard deviations.  The image stacks 

were then low pass filtered, thresholded, binarised, and subjected to a round of 

erosion-dilation to create a contiguous cell volume image devoid of isolated pixels. 

The pixels were summed for each optical slice and multiplied by the x-y pixel area 

and the z (0.42µm) step size to calculate the cell volume before and during AFM 

indentation.  

SCANNING ELECTRON MICROSCOPY 

All imaging was performed on a JEOL 7401 high resolution field emission scanning 

electron microscope (JEOL, Herts, UK). Prior to imaging, cantilevers were coated 

with platinum-palladium using an ion beam coater. Images were acquired with a 35˚ 

tilt to allow visualisation of cantilever tip profiles. 
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iv. RESULTS 

To verify the validity of AFM-based cellular elasticity measurements, I decided to 

utilise MDCK epithelial cells that form confluent cellular monolayers with a large 

thickness (~8-10 µm). These cells allow for easy determination of the indentation 

depth by confocal microscopy and their large height reduces errors of elasticity 

measurement due to the limited thickness of the cells (117). First, I verified the 

elastic modulus of cells stably expressing PH-PLCδ-GFP and wild-type cells when 

measured with a spherical tip (322±97 Pa and 380±107 Pa respectively, N=110 cells 

in each case). Next, I showed that measurements obtained on the same cells on the 

same day with pyramidal tips gave ~2-fold higher elasticities than with spherical tips 

for both the WT and PH-PLCδ-GFP cells (Figure 23, target force 0.4nN, p<0.01 for 

both cell types). To exclude any error arising from unknown tip geometry, I imaged 

cantilever tips after the experiment using scanning electron microscopy (SEM, 

Figure 1 b, c). Both had the expected geometry (pyramidal tip height of ~2 µm and 

spherical tip radius of 7.5µm). It is a good assumption that only small errors 

occurred in the measurement of tip-sample separation (a closed loop control 

parameter measured by a strain gauge) and cantilever deflection (AFM parameter). 

Hence, any discrepancy in the measured elastic modulus must arise from the 

estimation of the contact point, the contact area, or the cellular Poisson ratio, and 

therefore I examined each of these possibilities.  
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Figure 23 : Pyramidal tips and spherical tips give significantly different values of elasticity for the 

same cells. 

(a) The elastic modulus of MDCK cells measured with cantilevers with pyramidal tips is greater than 

values obtained from cantilevers with spherical tips (for PH-PLCδ cells Espherical = 322±97 Pa, 

Epyramidal = 689±444, p*<0.01, and for WT cells Espherical = 380±138 Pa, Epyramidal = 819±660 Pa, 

p**<0.01).  (b) Scanning electron Microscope image of a spherical tipped cantilever used in the 

confocal and AFM measurements (scale bar = 10µm). (c) SEM image of a pyramidal tipped 

cantilever (scale bar = 5µm). (d) Simple geometric considerations allow calculation of the clearance 

g between the cell and the end of the cantilever. This clearance is the maximum indentation depth that 

can be used in force measurements. g: clearance between the cell and the end of the cantilever, s: 

distance between the tip centre and the cantilever edge, c: angle between the horizontal and the 

cantilever, h: height of the pyramidal tip. 
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SPHERICAL-TIPPED CANTILEVERS ALLOW FOR CORRECT ESTIMATION OF 

CELLULAR ELASTICITY 

Firstly, I extracted the indentation depth made with the spherical indenter from 

confocal images of the cell profile before and during indentation (Figure 24 A-C). 

For each point along the x-axis I extracted the position of the cell membrane before 

and during indentation (Figure 24 B), with the maximal displacement of the 

membrane being the indentation depth (Figure 24, Materials and Methods). I 

compared the indentation depths evaluated with this method and those obtained from 

AFM force-curve fitting. Both gave similar values for a range of applied forces (0.2-

3.0nN) and depths measured by confocal microscopy plotted against depths 

measured by AFM force-curve fitting were well fitted by a straight line of slope 1 

(r
2
=0.87, Figure 24 D). This confirms that the force-curve fitting algorithm I was 

using accurately determines the point of contact between the cell and the cantilever, 

and hence the indentation depth. 

I then fitted the indentation depth data from force distance curves with a hertz model 

for spherical indentation (Figure 24 E). This fit yielded a Young’s modulus of 

301Pa, close to the value obtained when fitting AFM force-indentation curves 

directly. However, it is possible to see that at low indentation depths the quality of 

the fit is poor. The Hertz model assumes contact between perfectly smooth objects. 

In reality the surface of cells is not flat and is covered in membrane ruffles and other 

structures. The surfaces of epithelial cells are covered in small actin rich protrusions 

called micro-villi that increase the apical surface area. These heterogeneities make 

the elasticity and indentation depths poorly defined at small forces as these structures 

bend and deform, leading to a systematic deviation of the data from the model. For 

the majority of the data points and for force indentation data at a well-defined range 

of indentation depth the Hertz model provides an accurate description. 
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Figure 24 : Spherical tipped indenters correctly measure cell elasticity  

(a) Colour combined image of the membrane profile of a cell prior to (red) and during (green) 

indentation with a spherical tip (scale bar=10µm). Areas where the cell has not been deformed are 

visualised in yellow and areas where the cell membrane has been displaced by indentation can 

clearly be identified by the difference in localisation of the red (before indentation) and green (during 

indentation) channels (arrows). (b) The absolute position of the membrane can be tracked by fitting a 

Gaussian function to the intensity profile in the z direction for each x position. The peak of the fit is 

taken to be the position of the membrane before (red) and during (green) indentation. (c) The 

difference in cell profiles (blue) can be fitted with a parabola (green) to find the maximum indentation 

depth. (d) Indentation depths measured using confocal microscopy or estimated from the AFM force-

distance curves were well correlated indicating that the contact point is correctly determined from 

force-curve analysis. N=20 measurements for each data point. (e) The optical microscopy determined 

indentation depth as a function of applied force can be fitted with the Hertz model for a reduced tip 

radius of curvature R=4µm and a Poisson ratio of 0.5 yielding an elastic modulus of E=301 Pa, 

r
2
=0.80. N=20 measurements for each data point. 

 

Next, I asked whether the geometry of contact between the cell and the indenter was 

spherical. Isosurface rendering of confocal stacks revealed that the contact area was 

a spherical cap for all of the forces examined (Figure 25). These data suggest that 

for spherical indenters one can correctly infer the geometry of contact between cell 

and tip solely from knowledge of the sphere radius and the depth of indentation. To 

test this further, I fitted the confocal microscopy measurements of the indentation 

depth as a function of applied force using the Hertz contact model. Using a reduced 

indenter radius Rr=4µm to account for cell curvature and a Poisson ratio ν=0.5, my 
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experimental data was best fit to the theoretical model for an elasticity E=301 Pa 

(Figure 24 , r
2
=0.80, N=20 measurements for each data point), comparable to the 

original measurements using AFM only. 

PYRAMIDAL TIPS OVERESTIMATE CELLULAR ELASTICITY FOR FORCES OVER 

0.4NN 

Using the same approach, I qualitatively examined the contact geometry between 

pyramidal-tipped cantilevers and cells for the same range of forces. For low forces, 

the contact between the indenter and the cell membrane displayed a clear pyramidal 

shape (0.2 nN, Figure 25) though the cantilever underside appeared in close 

proximity to the cell membrane. 

 

 

 Figure 25 : Qualitative analysis of the contact geometry. 

(a) At low applied force (0.2nN), the indentation in the cell membrane is solely due to the pyramidal 

tip (arrow). (b) At higher forces (3.0nN), the contact area is increased by additional contact between 

the underside of the cantilever and the cell surface (arrows). (c, d) 3D iso-surface reconstructions of 

the cell surface show that at low forces (0.2nN) contact geometry is pyramidal (c, red arrow) but that 

at  higher force the underside of the cantilever beam comes into contact with the cell in addition to 

the tip (d, tip: red arrow, cantilever underside: white arrow). Scale bars = 10µm. 
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At larger forces, the cantilever underside clearly came into contact with the cell apex 

in addition to the tip and this was very apparent in isosurface reconstructions (3 nN, 

Figure 25). This suggested that even for forces routinely utilised for elasticity 

measurements (1-10nN), the contact area between the cell and the cantilever can 

have contributions both from the pyramidal tip and from the cantilever underside.  

I assessed what influence this extra contact area had on elasticity measurements. 

Firstly, I verified that the curve fitting algorithm correctly determined the depth of 

indentation for cantilevers with pyramidal tips. Indentation depths extracted from 

confocal images correlated well with depths extracted from AFM force-curves 

(Figure 26, r
2
=0.54) suggesting that the contact point is correctly identified. Second, 

I plotted the indentation depth measured by confocal microscopy as a function of 

force applied. Fitting this curve with the theoretical relationship for pyramidal 

indenters gave an elasticity E=785Pa (Figure 26, r
2
=0.90), ~two-fold larger than for 

spherical indentations but similar to that obtained directly from AFM measurements. 

As I had confirmed that spherical-tips correctly measure elasticity, I plotted the 

theoretical indentation depth for a pyramidal tip on a material of elasticity E=301 Pa 

(Figure 26). At low forces, the indentation depth measured by optical microscopy 

was close to that predicted for the elasticity measured using spherical indenters, 

whereas at high forces the indentation depths measured by microscopy were 

significantly smaller than predicted for a pyramidal indentation of the cell (Figure 

26). Inspection of the contact area geometry pointed to an explanation for these 

results: at low forces, the contact area was pyramidal indicating that only the tip 

contacted the cell surface, whereas at high forces it was not. Careful examination of 

my images of cell indentation with pyramidal cantilevers revealed close apposition 

between the cantilever underside and the cell surface for the full force range, 

suggesting that the cantilever contacts the cell in addition to the tip. This was 

particularly apparent at high forces (Figure 26) and lead to an underestimation of the 

contact area resulting in an overestimation of elasticity. Next, in view of the large 

area of contact between the cantilever underside and the cell at high forces, I asked if 

the experimental depth versus force curve might be better approximated by using a 

theoretical relationship for indentation by a flat ended cylindrical punch with radius 
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a=5µm, comparable to the area of contact between the cantilever underside and the 

cell (estimated from Figure 23). For flat ended punches, the force F scales as (116): 

  
   

(    )
  

with E the elasticity, a the contact radius, δ the indentation depth, and ν the Poisson 

ratio.  

 

Figure 26 : At high forces the area of contact for pyramidal tips can be underestimated 

(a) Membrane profile of an MDCK cells expressing PH-PLCδ before (red) and during (green) 

indentation with a pyramidal cantilever with a force of 3.0 nN (b) Membrane profile of the cell before 

(red) and during (green) indentation by a pyramidal tipped cantilever for the cell shown in a. (c) The 

indentation depth is found by fitting the indented profile with the x-z profile of the pyramidal tip. (d) 

The indentation depth measured by confocal microscopy correlates well with the indentation depth 

estimated from AFM force-distance curves, R
2
=0.54. Each data point represents the average of N=20 

measurements.  (e) Indentation depth as a function of force applied. The indentation depth plotted as 

a function of applied force (diamonds) did not follow the theoretical model for a pyramidal indenter 

for a material of E=301 Pa at high forces (indicated by the grey region).  Instead the behaviour 

tended towards that of a flat ended cylindrical punch plus an offset from the pyramidal tip 

indentation. Each data point represents the average of N=20 measurements. 
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Fitting this theoretical relationship to my experimental data (Figure 26) yielded a 

good fit at higher forces for an elasticity of E=344 Pa (r
2
=0.92), comparable to the 

elasticity measured with spherical indentation. At higher forces, the indentation 

depth increased linearly with force as expected from the above scaling (Figure 26). 

POISSON RATIO MEASUREMENTS 

Finally, to determine the cellular Poisson ratio, cells expressing GFP in their 

cytoplasm were seeded into a mixed monolayer and cell volume was measured with 

confocal microscopy before and during AFM indentation. I chose an indentation 

force large enough to yield an indentation of ~ 10% of the cell volume. Cell volume 

was identical before and during AFM indentation (Figure 27, p=0.79). Isosurface 

reconstruction of the cell volume before and after indentation showed that the cell 

bulges outwards when compressed by the microsphere (Figure 27). These data 

suggest that a Poisson ratio of 0.5 is a good estimate calculating the elasticity of 

MDCK cells. Although the volume measurements obtained with confocal 

microscopy are only accurate to ~10%, small uncertainties in the value of the 

Poisson ratio do not have a large impact on the final value of the young’s modulus 

that is obtained. This source of uncertainty is not larger than the heterogeneities 

between cells that provide a much larger contribution to deviations in elasticity data. 
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Figure 27 : Measurement of cell compressibility 

(a) Cell volume is conserved before and during indentation indicating that the cell is incompressible 

(p=0.79) and that a Poisson ratio of 0.5 is a good assumption when measuring elasticity. Typically 

there is a 10% error on measurements of cell volume using this method. N=22 measurements for each 

case. (b) Colour combined images of cell before (red translucent) and during AFM indentation 

(green). Reconstructions of the cell volume show that under large indentation the cell bulges 

outwards to conserve its volume (before = red, white arrow, during = green, black arrow). MDCK 

cells used in these experiments were typically 8µm tall and a diameter of 15µm. Assuming a typical 

columnar shape the expected volume is ~1500µm
3
. 
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CYTOSKELETAL CONTRIBUTIONS TO CELLULAR ELASTICITY 

Having shown that elasticity measurements with pyramidal tips overestimate cellular 

elasticity even at low forces, I re-verified the effect of drugs perturbing the 

cytoskeleton and contractility on cellular elasticity using spherical indenters (Figure 

28). Depolymerisation of the F-actin cytoskeleton with Cytochalasin D (20 µM) and 

Latrunculin B (750nM) led to an approximately two-fold decrease in elasticity 

(ECytochalasin = 147±73 Pa, p*<0.01, ELatrunculin = 227±106 Pa, p**<0.01). 

Depolymerisation of microtubules with Nocodazole (10µM) did not have such a 

dramatic effect but nonetheless reduced cellular elasticity significantly (ENocodazole = 

285±106 Pa, p***<0.01). Drugs disrupting cellular contractility either by inhibiting 

myosin II ATPase (Blebbistatin, 50µM) or Rho-kinase activity (Y27632 ,10µM) did 

not affect cellular elasticity (EBlebbistatin = 377±129 Pa, P=0.65, EY27632 = 380±165 Pa, 

p=0.85).  

ACCURATE MEASUREMENTS WITH PYRAMIDAL TIPS  

Pyramidal-tipped cantilevers offer high spatial accuracy and hence achieving reliable 

measurements of cellular elasticity with these remains a highly desirable outcome. 

When using standard pyramidal tips (1-2 µm height), a threshold indentation depth 

δmax can be chosen based on the clearance g between the tip apex and the cantilever 

beam edge as well as the angle of the cantilever to the horizontal (Figure 23 D). 

Using indentation depths below δmax ensures that all contact area is entirely due to 

the pyramidal tip. Simple geometrical considerations show that this threshold can be 

calculated as: 

      (   )         ( ) 

With g the clearance, s the distance between the tip and the cantilever edge, h the 

height of the tip, and c the angle between the cantilever and the horizontal (Figure 

23 D). As a proof of principle, I fitted force distance curves up to an indentation 

depth of ~0.6µm (resulting from indentation forces up to ~0.06 nN) and obtained an 

elastic modulus of 499±407 Pa for wild-type MDCK cells, not significantly different 

from those obtained by spherical shaped indenters (p=0.15, Figure 28). 
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Figure 28 : Effect of drug treatments on cellular elasticity 

(a) Depolymerising actin filaments with cytochalasin D and latrunculin B caused the most noticeable 

effects on the cell elastic modulus decreasing it approximately two-fold. Depolymerising microtubules 

with Nocodazole only caused a small but significant decrease in elasticity (-25%, p<0.01). Inhibiting 

contractility with Blebbistatin and Y27632 did not have a significant effect on the cell elastic 

modulus. Fitting force curves obtained from control cells using pyramidal tipped cantilevers up to 

~0.6µm indentation depth gave an elastic modulus close to that obtained with spherical tips (p=0.15). 

The number of measurements performed for each experiment is displayed on the respective bar. Each 

measurement is performed on an individual cell and was repeated on three different days with fresh 

samples. 

 

v. DISCUSSION 

AFM has become the method of choice for measuring cellular elasticity, however 

values of cellular elasticity reported in AFM measurements are large compared to 

those reported by other methods and measurements performed using spherical tips 

give significantly lower elasticities than pyramidal tips. I have provided the first in-

depth experimental validation of AFM-based cellular elasticity measurements and 

show that measurements with spherical-tipped cantilevers provide a more accurate 

measure of elasticity, whereas measurements with pyramidal-tipped cantilevers can 

lead to extraneous contact between the cantilever and the cell surface if the target 

force is set too high. This leads to an overestimation of the measured elasticity. I 

identified three possible sources of error for AFM based elasticity measurements: i) 
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errors in measurement of indentation depth, ii) errors in estimation of tip-cell contact 

area, iii) errors in the cellular Poisson ratio. Firstly, I experimentally validated the 

fitting algorithm used to detect contact between the cell and the cantilever by 

measuring AFM indentation depths using confocal microscopy and comparing these 

to indentation depths obtained from AFM force-distance curves for a range of 

applied forces (0.2-3.0nN).  Both methods gave similar values showing that the 

fitting algorithm used (146) correctly identified the point of contact and hence 

indentation depth for both spherical and pyramidal tips. The main benefit of being 

able to use an automated fitting algorithm is that it increases data throughput in 

comparison to having to manually identify the contact point in each curve. Typical 

automated methods include using the first and second derivatives of smoothed data 

in order to identify the contact point. The major issue with the method is that the 

force curves can often be noisy making identification of the correct derivatives 

difficult. The method that I used (described by David C Lin (121)) involves 

sequentially moving through the dataset and finding the best fit as if each data point 

was the contact point. The fit with the lowest mean square error will have the contact 

point in the correct position. The method however requires analysis of fitting for all 

of the points in the dataset in turn and can become time consuming for large amounts 

of data. However, my experimental measurements have shown this to be a reliable 

way of automatically determining the contact point in AFM force-curve data. 

Having verified the quality of the curve fitting algorithm (by showing a good 

agreement between the indentation depths obtained using AFM and confocal 

microscopy, Figure 24 d), I used confocal microscopy to examine tip-cell contact 

geometry during indentation. For spherical tips, the tip-cell contact area was a 

spherical cap as expected and fitting the indentation depths determined by confocal 

microscopy versus force applied gave an elastic modulus similar to that derived by 

fitting force distance curves. In contrast, for pyramidal tips, the tip-cell contact area 

was pyramidal at the lowest force examined (0.2nN) but for larger forces it was not. 

Indeed, in addition to the pyramidal contact expected from the cantilever tip, the 

underside of the cantilever came into contact with the cell, even dominating at high 

forces (Figure 26). This led to an underestimation of the contact area and indentation 

depth for a given force, errors that translated into an overestimation of the cellular 
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elasticity. Unlike previous measurements, my validated measurements with spherical 

tips were comparable in magnitude to elasticities obtained using other measurement 

methods such as micropipette aspiration or micro rheology (100-500 Pa (137), 

(138)). Having shown that elasticity measurements performed using pyramidal tips 

can lead to errors in measurement, I re-examined the effect of drugs that disrupt the 

cytoskeleton or inhibit contractility on cell elasticity using spherical-tipped indenters. 

In line with measurements performed by others, I confirmed that drugs that 

depolymerised the F-actin network reduced the cell elastic modulus approximately 

two-fold. I found that disrupting microtubules using nocodazole led to a small (-

25%) but significant decrease in cellular elasticity. Such a subtle decrease would 

certainly be overlooked in conditions where the tip-cell contact area is poorly 

controlled and point to a small contribution of microtubules to cell mechanics. 

The high spatial accuracy afforded by pyramidal-tipped cantilevers makes it a 

desirable tool for mapping spatial variations in cellular elasticity. Mapping the 

spatial variation in elasticity arising from small mesh structures such as the apical 

actin network is not possible due to the small mesh size (~30 nm) and the large 

contact area between the AFM tip and the soft cell. However, it is possible to map 

the local stiffness of the cell which coincides with much larger actin rich bundled 

structures such as stress fibres. In the case of epithelial cells it is possible to see 

enriched actin adherens junctions which are stiffer than the main body of the cell 

(13, 144).  

However, great care needs to be used in making local elasticity measurements and 

interpreting them. The highly varying cell surface topography at cell junctions or at 

large local structures such as stress fibres means that it is difficult to avoid contact 

errors (Figure 29). There are two approaches to avoid errors due to extraneous 

contact between the cantilever underside and the cell surface. First, the clearance 

between the tip apex and the underside of the cantilever could be increased by using 

very long tips (several microns). This would ensure that contact with the cell is 

solely due to the cantilever tip. When using the more common shorter tips (1-2 µm), 

I have shown that setting a threshold indentation depth based on the clearance 

between the cantilever and the cell surface allows for correct measurements, 
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assuming that the surface is flat. Further precautions should be taken when making 

local AFM measurements. 

 

Figure 29 : Mapping of MDCK mechanical properties at different applied forces 

Height maps at an applied force of 0.4nN (a) and 3.0nN (d) respectively, and their corresponding 

elasticity maps (b and e). At low applied force, a larger elastic modulus between cells coincides with 

the localisation of actin rich adherens junctions (13, 144). At higher applied forces the junctions 

appear broader (e). This is an artefact that arises from extraneous contact between the cantilever and 

cell the surface. (c, f) Confocal images of the cell membrane at low and high applied forces. (c) At 

low applied force the indentation made by the tip into the cell membrane has a well-controlled shape. 

(f) At higher applied forces the cantilever beam touches the sample causing an increase in the force 

exerted onto the cantilever and hence a higher apparent elasticity. 

 

vi. SUMMARY 

I have outlined some of the potential sources of error in measuring the elasticity of 

cells using atomic force microscope based indentation measurements. With the 

increasing number of researchers interested in cell mechanics and interdisciplinary 

research, it is vital to standardise measurement protocols to avoid erroneous 

measurements. In addition to using spherical tipped cantilevers, considerations must 

be made about the level of force and indentation that are used to avoid contact 

between the cantilever underside and the cell as well as to minimise any influence 

from the stiffness of the substrate that cells are plated on. Particular care needs to be 

taken with samples that have a highly varying topography or that are very soft. 

Outlining the protocols used to measure cell elasticity and exposing them to constant 
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review will help increase measurement accuracy and consistency on different cell 

types, and allow comparative between research groups. This will be of particular 

benefit to researchers working at the interface between biology and physics.  
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6. THE EMERGENCE OF MONOLAYER TISSUE 

LEVEL MECHANICAL PROPERTIES COINCIDES 

WITH THE FORMATION OF ADHERENS 

JUNCTIONS 
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ii. INTRODUCTION 

In spite of our understanding of the biological mechanisms for intercellular junction 

formation, little is known about how tissue-scale mechanical properties evolve or to 

what extent each type of junction contributes. This is primarily due to the lack of 

non-destructive approaches enabling measurement of supracellular mechanical 

properties and their temporal evolution during the transition from isolated cells to 

strongly linked monolayers. Indeed, the presence and relative scale of intercellular 

tension within epithelia is usually probed using laser ablation, an approach that 

cannot be used to repeatedly interrogate the same region of interest because of its 

destructiveness (147). Intercellular junctions are dynamic structures allowing 

neighbour exchange and re-arrangement in collective cell migration and 

development. Therefore understanding the establishment of new intercellular 

junctions, the recruitment of proteins to intercellular junctions and their maintenance 

is important in our fundamental understanding of collective cell behaviours. 

To measure the evolution of monolayer mechanical properties with the formation of 

intercellular junctions, I monitored the apparent rigidity of epithelial cell monolayers 

cultured on soft collagen gels using deep Atomic Force Microscopy (AFM) micro-

indentation. Time-resolved measurements of the apparent rigidity of monolayer-gel 

composites combined with localisation studies and perturbation by chemical 

inhibitors showed that supracellular tissue-scale monolayer mechanical properties 
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emerged over the course of two hours and correlated with the formation of adherens 

junctions but not desmosomes.  

iii. MATERIALS AND METHODS 

GENERAL 

AFM measurements and confocal measurements were performed using Leibovitz-

L15 CO2 independent medium supplemented with 10% FBS. All measurements in 

this chapter were conducted at room temperature, but samples were returned to the 

incubator between measurements in time-course experiments. 

CELL CULTURE: REPLATING ASSAY 

To observe junction reformation measurements were made 30-40 minutes after 

plating 7 million cells onto a collagen gel coating the bottom of 50mm petri dish, a 

number of cells sufficient to yield a confluent monolayer. During this initial period, 

cells attached strongly to the substrate but did not reform intercellular junctions. 

Subsequently, the formation of intercellular junctions was followed with confocal 

microscopy and changes in monolayer apparent rigidity could be followed by AFM. 

Inducing cellular junction reformation with a calcium switch showed qualitatively 

similar results to the replating assay. 

MEASUREMENT OF MONOLAYER APPARENT RIGIDITY 

To measure monolayer supracellular properties, I utilised a specialised Atomic Force 

Microscope with a piezoelectric ceramic with a 100μm z-range (JPK CellHesion 

200, JPK, Berlin, Germany) interfaced to an inverted microscope (IX-71, Olympus, 

Berlin, Germany). The long z-piezo range of this system facilitates indentation with 

large depths and ensures complete separation of the cantilever tip from the sample 

when the piezoelectric ceramic is retracted. Monolayers were deformed with AFM 

cantilevers with a nominal spring constant of 0.1N/m and a tip formed of a 20µm tall 

flat cylinder of radius 5µm (Nanosensors, Neuchatel, Switzerland). This allowed for 

contact with a whole single cell. Force-distance curves were acquired with an 

approach velocity of 5µm/s up to a target force of 25nN resulting in an indentation 

depth of ~15μm for cells seeded on top of a collagen gel. This indentation depth is 
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~2-fold larger than cell height and leads to measurable deformation field in the  

monolayer plane. 

 

Figure 30 : Experimental setup and analysis of cellular deformation 

(A) Samples are indented with a spherical tipped cantilever to a depth of ~1 µm. This signifies that 

deformation is localised to one single cell. The cantilever deflection as a function of indentation can 

be fitted with contact mechanics models to measure the stiffness of the indented cell. The small depth 

of indentation prevents artefacts arising from the large stiffness of the glass substrate. (B) To measure 

the mechanical properties of monolayers grown on gels, indentations were performed using a 

cylindrical punch tip up to an indentation depth of ~15µm (larger than the cell height). This induces a 

deformation not only in the cell contacted by the cantilever tip but also in neighbouring cells. 

Therefore, the measured applied force results from a combination of the cell stiffness, the monolayer 

supracellular mechanical properties, and the elasticity of the collagen gel. (C) Experimental force-

distance curve data. At the start of approach, the cantilever is far from the sample and it is slowly 

lowered towards the sample. While it stays out of contact, the force applied stays constant and zero. 

Upon contact between the AFM cantilever tip and the sample, additional travel of the piezoelectric 

ceramic results in increasingly deep indentations and the force applied increases sharply with 

indentation depth. Force curves obtained in these experiments displayed a linear relationship 

between force and indentation (inset, slope = 1.11±0.04, N=26 curves), as would be expected for 

indentation of homogenous elastic materials in this geometry. (D) The cellular strain field away from 

the location of indentation was measured by analysing the displacement of intercellular junctions at 

mid-height in zx profiles of the monolayer using a custom written matlab routine. Confocal zx profiles 

of monolayers were acquired before and during indentation. Intercellular junctions could be 

identified morphologically as bright vertical bars in E-cadherin GFP cell monolayers. Indentation 

occurred on the right hand side of the images and the shape of the AFM cantilever is indicated by 

dashed grey lines. The location of intercellular junctions along the line profile (green line) is 

indicated by red dots. Green arrows indicate two intercellular junctions belonging to one cell close to 

the centre of indentation before indentation. Red arrows indicate the same junctions during 

indentation. (E) The GFP fluorescence intensity along the line profile (green line in D) could be 

compared before (green arrowheads in D, E) and during (red arrowheads in D, E) AFM indentation. 

Peaks in fluorescence intensity correspond to the location of intercellular junctions and these were 

used to calculate the cellular length (S), the change in cellular length (Sindent-Spre-indent) and the 

engineering strain (ε=(Sindent-Spre-indent)/ Spre-indent) along the curvilinear profile. 
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The slow approach speed used was chosen to minimise the contribution of 

viscoelastic properties of the system to the measured apparent rigidity. Force-

distance curves were analysed using a Hertzian contact model to yield an apparent 

rigidity with the JPK data analysis software. 

MEASUREMENT OF TEMPORAL CHANGES IN MONOLAYER APPARENT 

RIGIDITY 

I monitored temporal changes in monolayer apparent rigidity by measuring changes 

in monolayer apparent elasticity using two different approaches.  

First, I positioned the AFM cantilever above a chosen area and acquired force-

distance curves at 2min intervals for 3h using the JPK control software. A phase 

contrast image of the cantilever and the monolayer was captured immediately after 

each rigidity measurement.  

Second, I acquired measurements in multiple positions in a petri at defined time 

points after replating (defined time-point measurements) and returned monolayers to 

the incubator in between measurements. I measured monolayer apparent rigidity at 

1h, 2h30, and 5h after replating. At each time point, AFM force-distance curves were 

collected at 5 different positions per time point in several petri dishes giving a total 

of over 30 measurements for each experimental condition. Each petri dish remained 

out of the incubator for less than 10min at each measurement time point.  

PREPARATION OF COLLAGEN GELS 

Collagen gels were made according to manufacturer protocols in a 7:2:1 ratio of 

collagen (Nitta Gelatin, Japan): 5x DMEM (PAA, Germany): reconstitution buffer 

(4.77 g HEPES and 2.2 g NaHCO3 in 100 ml of 0.05N NaOH). The solution was 

mixed on ice before transfer to 50mm glass bottom petri dishes (Intracell, UK) and 

gelation at 37°C for 30 minutes before use. Gels of different thicknesses were made 

according to the type of experiment.  

For confocal imaging thin gels were generated to accommodate the short working 

distance (~300µm) of high magnification objectives (UPLSAPO, 60x water 

immersion, N.A. = 1.2, Olympus). To do this, 350µl of Cell matrix type I-A solution 
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was mixed with 100 µl of sterile 5x Dulbecco’s Modified Eagle Medium and 50µl of 

sterile reconstitution buffer on ice. Then, 550μl of the reconstituted collagen solution 

was placed into a 50 mm glass bottomed petri dish (Intracell, Herts, UK) covering 

the entire glass surface of the dish. The majority of the solution was removed to 

obtain a thin collagen gel (>100µm thick) and incubated at 37°C for 30 minutes to 

allow for gelation. The collagen gel was washed with culture medium and cells were 

seeded onto it. 

For AFM measurements thicker gels are required to allow approximation as elastic 

half planes under large indentation. Collagen gel solution was made as previously 

described but a volume of 775µl was deposited in the petri dish and left to gel, 

giving a thickness >200µm. 

To conserve reagents when transfecting cells by electroporation, miniaturised gels 

were created covering a smaller area of the glass bottom dish surface. Silicon 

elastomer rings (Quicksil, World precision instruments, Florida USA) ~0.5cm in 

diameter were attached to the base of the culture dish. 20µl of reconstituted collagen 

solution was deposited within the ring, left to gel, and washed with 40µl of culture 

media. 

To image the reformation of intercellular junctions following a calcium switch, low 

calcium gels were made. Calcium was removed from FBS and from 5xDMEM by 

adding 0.06g/ml of Chelex beads to these solutions (Chelex 100 Sodium Form, 

Sigma). Solutions containing Chelex beads were left in the fridge overnight with 

constant agitation, and sterilised by filtration through a 0.2µm filter (Appleton 

woods, Birmingham, UK).  

MEASUREMENT OF INDENTATION DEPTH AND STRAIN FIELD IN THE 

MONOLAYER WITH COMBINED AFM AND CONFOCAL MICROSCOPY 

For combined AFM-confocal measurements, a specialised microscope platen was 

fitted onto the confocal microscope stage to interface with the AFM head (JPK). All 

imaging was carried out with a 60x water immersion objective (UPLsapo, N.A. = 

1.2, Olympus). To image the cantilever shape, a 10,000 MW fluorescent dextran 

(alexa 647, Invitrogen) was added to the medium and imaged by exciting the dye 
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with a 647nm laser and collecting light at 680nm. The cantilever tip appeared as a 

dark shadow against the bright medium. GFP in the cells was excited with a 488nm 

laser and light was collected at 525nm. The AFM tip was brought into contact with 

the cell layer. The AFM tip was then lowered into the cell layer to create a ~15 μm 

deep indentation using the AFM manual stepper motors. The resulting indentation 

and deformation of the cell layer was visualised by taking an X-Z profile image 

(with a pixel size of 0.2µm by 0.2µm). 

ANALYSIS OF CELLULAR DEFORMATION PROFILES RESULTING FROM DEEP 

AFM INDENTATION 

Confocal images were acquired before and during AFM indentation. Images were 

analysed using custom software written in Matlab (Mathworks, Natick, MA, USA). 

Briefly, images were imported into Matlab and a line profile drawn following the 

base of the cells. This line of interest was smoothed and its points interpolated using 

a cubic spline. The displacement along the line was measured by measuring the 

Euclidean distance at each pixel. Intercellular junctions along the lines were 

identified as local maxima in fluorescence intensity along the line profile. The strain 

in cells within the monolayer could then be measured as the relative change in length 

between junctions before and during indentation. 

STATISTICS 

Values within the text are given as mean±standard deviation and statistical 

significance determined using a student’s T-test, where statistical significance was 

assumed when p<0.01. Data in charts are displayed as box and whisker plots 

showing the median, 1st quartile, 3rd quartile represented by the box and maximum, 

minimum represented by the whiskers. 

iv. RESULTS 

AFM MICRO-INDENTATION CAN PROBE TISSUE-SCALE MECHANICAL 

PROPERTIES 

I reasoned that by applying deep indentations onto cell monolayers growing on soft 

substrates, I should be able to probe the supracellular tissue-scale mechanical 

properties of monolayers (Figure 30). In my experiments, I used MDCK II cells as a 
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junction-forming epithelial cell model and cultured them on top of thick collagen 

gels (thickness~200µm) with an elasticity seven-fold lower than that of the cells 

(Ecollagen=66±8Pa) (11, 12). I measured the mechanical properties of monolayer-gel 

composites using cantilevers with a cylindrical tip giving a constant contact area of a 

size similar to the cellular apical surface area. Indentations larger than the monolayer 

thickness (~10-15µm) induced a deformation field that propagated through 

intercellular junctions over several cell diameters (Figure 31).  

MONOLAYER-GEL COMPOSITE RIGIDITY 

The restoring force opposing deformation results from a combination of the indented 

cell stiffness, the monolayer supracellular mechanical properties, and the collagen 

gel elasticity. As a mechanical indentation problem, this is reminiscent of a tensed 

membrane (148) or a thin stiff film (149) on a soft elastic half space. However, 

determining the relative contributions of monolayer tissue-scale planar elasticity 

(41), pre-stress (150) and tension poses a difficult theoretical challenge. The force 

applied by the AFM cantilever at any given indentation depth is resisted by the 

restoring forces due to elasticity of the cell contacted by the tip, by tension in the 

monolayer (76), by elastic deformation of the monolayer, and by elastic deformation 

of the collagen substrate. To my knowledge there is no widely accepted analytical 

formula for determining all the film properties from the indentation data. Asides 

from analysing the stress distributions, this problem is further complicated by the 

multiple factors that contribute to apparent monolayer rigidity including: 

anisotropies in elasticity within the monolayer (28, 41), the monolayer Poisson ratio, 

cellular tension/pre-stress resulting from myosin contractility (34, 151), as well as 

force-coupling between cells (18, 76) and between cells and the substrate (102). 

Although some finite element models of this indentation problem do exist (149, 150) 

I did not pursue this, choosing to focus on the biological aspects of the research. A 

finite element model and further data analysis would be a valuable avenue of future 

research to understand the different mechanical contributions to the monolayer-gel 

composite rigidity. 
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Figure 31 : the emergence of monolayer supracellular mechanical properties coincides with the 

formation of intercellular junctions. 

(A-B) Confocal profiles of a cell monolayer grown on a soft collagen gel, before (A, s.b=20µm) and 

during (B, s.b=20µm) AFM indentation. Indenting the monolayer to a depth at least equal to the cell 

height induced a strain field in the plane of the monolayer, evident from the deformation of 

intercellular junctions in profile images (arrowhead, A-B). The monolayer (green) is visualised 

through expression of a GFP-tagged membrane marker and the profile of the AFM cantilever is 

visualised through exclusion of a fluorescent dye added to the extracellular medium (red). (C) 

Monolayer profile before (green) and during indentation (red). Arrows indicate the position of 

intercellular junctions in cells expressing GFP-tagged E-cadherin (before indentation: green arrows, 

during indentation: red arrows). The indentation was maximal close to the site of contact (white 

arrow, s.b.=10µm). (D) Fluorescence intensity along a line bisecting the monolayer shown before 

and during indentation. Peaks in fluorescence show the position of intercellular junctions. The 

cellular strain can be calculated from the change in distance between neighbouring junctions along 

the curvilinear deformation profile. Strain was maximal close to the indented cell and decayed with 

increasing distance from the site of indentation. (E) Average cellular strain in the first and second 

nearest cells to the centre indentation. Error bars represent standard deviations. (F) Average 

monolayer apparent rigidity for control monolayers, monolayers treated with EDTA, and collagen 

gels without cells. Dissociation of intercellular junctions by calcium chelation by EDTA led to a large 

reduction in monolayer apparent rigidity (p*<0.01, p**<0.01). (G) Temporal evolution of monolayer 

apparent rigidity obtained from time-resolved measurements (black line) or from measurements at set 

time-points (box plots). (H) Monolayers with mature intercellular junctions were established over the 

course of the first 120min of measurement. Phase contrast images of cell monolayers at different 

time-points after replating. The AFM cantilever is visible above the monolayer as a dark shadow 

(s.b.=50µm).  
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I chose to quantify the monolayer mechanical properties probed in my experiments 

as an apparent rigidity of the monolayer-collagen gel composite. This rigidity is 

expressed in Pascals (Pa), as in AFM measurements of single cell elasticity, to 

enable simple comparison between experimental conditions. Examination of 

experimental force-distance data revealed that applied force scaled linearly with 

indentation depth, as would be expected in indentation experiments of a homogenous 

elastic half-space with cylindrical punches. However, it is important to note here that 

my measurements do not represent a true Young’s modulus: i) the sample has 

heterogeneous mechanical properties since the cells and the collagen substrate have 

very different elasticities (Ecollagen~60Pa and Ecells, z~400Pa) and the monolayer 

mechanical properties are anisotropic (Ecells, z~400Pa and Ecells, xy~5kPa at 10% 

strain), ii) it does not operate within the traditional small strain regime assumed by 

many  contacts mechanics models when interpreting measurements, iii) I measured 

the combined mechanical contributions from tension and elasticity within the cells 

and the collagen substrate as well as tension between the cells and the substrate.  

Despite these limitations, my experimental results indicate that deep AFM 

indentation of monolayer-gel layers is sensitive to monolayer supracellular 

mechanical properties. Indeed, deep AFM indentation induces a strain field in the 

plane of monolayers that extends over several cell diameters (Figure 31). Given that 

the planar stiffness of MDCK monolayers is 10 times larger than the transversal 

stiffness of MDCK cells (28, 41) and ~2 orders of magnitude larger than the 

elasticity of collagen gels, we expect restoring forces resulting from the planar 

deformations of monolayers to dominate. Furthermore, I have shown that my 

apparent rigidity measurements are sensitive to the presence of intercellular junctions 

(Figure 31). Thus, whilst I have demonstrated experimentally that deep AFM 

indentation of monolayers growing on soft collagen gels can probe the temporal 

evolution of monolayer mechanics, I leave the delineation of the relative mechanical 

contributions of each factor to future theoretical and experimental studies. 

To evaluate the sensitivity of my experimental approach to the presence of 

intercellular junctions interfacing cells into a monolayer, I compared the apparent 

rigidity of control monolayers with that of the collagen gel alone, and with 
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monolayers in which intercellular adhesion had been disrupted through calcium 

chelation. Control monolayers grown on gels had a larger apparent rigidity than the 

collagen substrate alone (Econtrol=181±33Pa, Egel=66±8Pa, p**<0.01) while 

monolayers disaggregated by EDTA had a rigidity closer to, but larger than that of 

the gel (EEDTA=94±21Pa, p*<0.01 when compared to control monolayers (Figure 

31) indicating that my measurements were indeed sensitive to the presence of 

intercellular junctions and suggesting that these give rise to supracellular mechanical 

properties. To further test this hypothesis, I examined the temporal evolution of 

apparent rigidity during the formation of intercellular junctions. Thirty minutes after 

replating cells onto a collagen gel, I sampled apparent rigidity at 2 min intervals. All 

curves examined shared the same characteristics (N=3 curves, black line, Figure 

31): i) apparent rigidity increased steadily and quasi-linearly for ~120min before 

reaching a maximum 150min after replating, ii) apparent rigidity then decreased 

slowly over the next 150min. Qualitatively and quantitatively similar results were 

also obtained when measuring monolayer apparent rigidity at chosen time-points 

after replating: 60 minutes after replating, monolayer apparent rigidity was 

approximately 2-fold larger than the rigidity of collagen gels alone 

(E60mins=237±65Pa, Egel=66±8Pa, p<0.01), a maximum in rigidity was reached at 150 

mins (E150mins=269±50Pa), and rigidity then decreased significantly after 300 mins 

(E150mins=269±50Pa, E300mins=196±49Pa, p<0.01). The steep increase in apparent 

rigidity observed over the first 150min correlated with complete reformation of 

intercellular junctions while the slow decrease observed afterwards accompanied 

compaction of the cells (Figure 31). In contrast, collagen gels alone examined in 

identical conditions did not display any changes in mechanical properties (Figure 

31, grey line). Together, these results show that apparent rigidity is sensitive to 

changes in monolayer supracellular mechanical properties and that intercellular 

junctions play a fundamental role in integrating individual cells into a tissue-scale 

mechanical syncitium. 

THE EMERGENCE OF MONOLAYER SUPRACELLULAR RIGIDITY REQUIRES 

THE FORMATION OF ADHERENS JUNCTIONS BUT NOT DESMOSOMES 

I sought to link the observed temporal change in apparent rigidity with the formation 

of adherens junctions and desmosomes. Live cell imaging revealed that the two main 
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components of adherens junctions, E-cadherin and F-actin, localised to cell-cell 

contacts forming well-defined intercellular adhesions within 150 minutes (Figure 32 

A,B) concomitant with increase in monolayer apparent rigidity (Figure 31 G). 

Disrupting E-cadherin mediated adhesion with a blocking antibody or 

depolymerising actin filaments with latrunculin B prevented the formation of 

intercellular junctions (Figure 32 A,B) and the accompanying increases in apparent 

rigidity (Figure 32 C). In contrast, a well-defined intercellular intermediate filament 

network did not reform within this 150min time frame (Figure 32 D), consistent 

with the reported slow maturation of desmosomes at cell junctions (152). This 

suggested that intermediate filaments did not significantly contribute to the apparent 

rigidity measured by deep AFM indentation, perhaps because this technique induces 

strains (<15%, Figure 31 E) that are small compared to the ~60% strain needed to 

tense keratin intermediate filament networks in suspended monolayers (41). Hence, 

in deep indentation measurements, intermediate filaments are unlikely to be taut 

between cell junctions and bearing mechanical stress. These data suggested that the 

increase in apparent rigidity observed in my measurements was due to the formation 

of adherens junctions but not desmosomes.  

PERTURBATIONS TO ALL STAGES OF ADHERENS JUNCTION FORMATION 

ABOLISH INCREASES IN APPARENT RIGIDITY ACCOMPANYING 

INTERCELLULAR JUNCTION FORMATION 

I then investigated how perturbation of the biological mechanisms leading to 

adherens junction formation affected the emergence of tissue-scale mechanical 

properties. Actin plays two major roles in adherens junction formation: first, 

polymerisation into a dendritic network via the arp2/3 complex enables lamellipodial 

crawling (153) and, second, this network is reorganised into a contractile actin belt 

via myosin contractility (53), α-catenin mediated inhibition of arp2/3 (62), and 

formin-mediated polymerisation (60, 61). (Figure 33 D) suggesting that the 

junctional F-actin network generated by the arp2/3 complex (154, 155) does not play 

a strong mechanical role.  
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Figure 32 : Adherens junctions and desmosomes in monolayer mechanical properties 

(A,B,D) All images are single confocal planes. The zx profile for each xy image is shown directly 

below it (s.b.=10 μm). Localisation of E-cadherin-GFP (A) and Life-act-Ruby (B, an F-actin 

reporter) localisation in cells 1h and 2h30 after replating onto collagen gels. E-cadherin and F-actin 

localisation to intercellular junctions can be inhibited by addition of anti E-cadherin blocking 

antibodies (A) or latrunculin B (B, a drug leading to F-actin depolymerisation) to the medium. (C) 

Apparent monolayer rigidity at 4 different time-points for control monolayers (white), monolayers 

treated with anti-E-Cadherin antibody (red), or latrunculin B (blue) (p*<0.01). The emergence of 

monolayer tissue-scale mechanical properties depended strongly on the assembly of a junctional F-

actin network and the formation of E-cadherin mediated intercellular adhesions. (D) Localisation of 

keratin intermediate filaments visualised using keratin-18 GFP at different time-points after 

replating. An interconnected intercellular keratin network is not reformed between cells within 2h30.  
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When I blocked lamellipodial crawling with the arp2/3 inhibitor CK666 (125), 

poorly interconnected monolayers formed as cells were unable to establish initial 

contacts (Figure 33 A), and the establishment of tissue-scale mechanical properties 

was severely impeded (Figure 33 D). Surprisingly, in mature monolayers, arp2/3 

inhibition did not affect apparent rigidity 

Linear F-actin arrays generated by formins are also present at intercellular junctions 

(60, 61) and I investigated their contribution to monolayer apparent rigidity. Upon 

inhibition of formin activity with the broad spectrum inhibitor SMIFH2 (126), 

intercellular junctions appeared to form normally and some actin remodelling 

occurred (Figure 33 B) but apparent rigidity was significantly lower than in control 

conditions at all time points (Figure 33 B,D). These results confirm that formin 

mediated polymerisation of actin is required in the later steps of adherens junction 

maturation and indicate that linear actin arrays generated by formins play a 

significant role in monolayer supracellular rigidity. 

INTERCELLULAR TENSION GENERATED BY MYOSIN CONTRACTILITY IS A 

MAJOR CONTRIBUTOR TO APPARENT RIGIDITY 

Concomitant with the generation of linear arrays of F-actin by formins, junctional F-

actin is also remodelled by myosin activity downstream of rho-kinase (53). Myosin 

contractility plays a fundamental role in cell and tissue mechanics generating cortical 

tension in single cells (34, 156), intercellular tension (59, 76, 102) as well as tissue-

level tension (41) and deformations (18). Hence, I examined the role of myosin 

contractility on the establishment of monolayer tissue-scale mechanical properties. 

Inhibition of myosin II with blebbistatin abolished the increases in monolayer 

apparent rigidity that accompanied intercellular junction formation (Figure 33 E) 

and reduced the apparent rigidity of mature monolayers to that of the collagen gel 

(Fig. 3E). Upon inhibition of Rho kinase by Y-27632, I observed a reduction in 

active F-actin remodelling at adherens junctions (Figure 33 C), junctions appeared 

less taut between cells (Figure 33 C), and the increase in monolayer apparent 

rigidity upon junction formation was severely impeded (Figure 33 E). Previous 

work has shown that myosin II isoforms play complementary roles in cell 

monolayers and are regulated by different signalling pathways (157) with myosin 
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IIA controlled by ROCK and MLCK, while myosin IIB depends on Rap1. The 

identical effect of myosin II inhibition and ROCK inhibition therefore suggests that 

myosin IIA plays a dominant role in setting monolayer supracellular rigidity. 

Together, these results suggest that myosin-mediated tension rather than cellular 

elasticity is the prime determinant of monolayer tissue-scale mechanical properties. 

In my measurements, increased apparent rigidity could either be due to an increase in 

Young’s modulus of the cell monolayer concomitant with intercellular junction 

formation or to the establishment of a tissue-scale tension. The former hypothesis is 

supported by the role of actin nucleators in governing monolayer apparent rigidity 

and the notion that the actin cytoskeleton is the main determinant of cellular 

elasticity (28) (Figure 33 D), while the latter is supported by the effect of inhibitors 

of myosin contractility (Figure 33 E). One way of determining which of the two 

hypotheses is correct is to examine the width of the indentation profile generated by 

indentation to a chosen depth. If the change in apparent rigidity is due to an increase 

in elasticity, then the indentation profile should not change, instead the force 

necessary to create the indentation does. Conversely, if changes in apparent rigidity 

are due to the generation of a surface tension by the monolayer, the width of the 

indentation profile should increase significantly (148, 149). To test this 

experimentally, I acquired images of the indentation profile of monolayers 

expressing fluorescently-tagged membrane markers in response to a 15 μm deep 

indentation before and after disruption of intercellular junctions by calcium chelation 

with EDTA. In control monolayers, the indentation profile had a width larger than 

150 μm (black curve, Figure 34 A, top Figure 34 B), whereas EDTA treatment 

reduced this width to ~90 μm (grey curve, Figure 34 A, bottom Figure 34 B). 

Hence, I concluded that formation of intercellular junctions leads to the 

establishment of a tissue-scale tension rather than an increase in monolayer 

elasticity, consistent with recent traction force-microscopy experiments (102). 
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Figure 33 : Inhibition of the molecular mechanisms leading to adherens junction formation 

impedes the emergence of monolayer tissue-scale mechanical properties 

(A-C) All images are single confocal planes. The zx profile for each xy image is shown directly below 

it (s.b.=10 μm).  (A) Localisation of E-Cadherin and Life-Act-Ruby in cells treated with the arp2/3 

inhibitor CK666 at 1h and 2h30 after replating. Treatment with CK666 prevents cell crawling and the 

formation of monolayers with extensive adherens junctions (red). (B) Localisation of E-Cadherin and 

Life-Act-Ruby in cells treated with the broad spectrum formin inhibitor SMIFH2 at 1h and 2h30 after 

replating. Treatment with SMIFH2 significantly delays actin polymerisation and decreases monolayer 

apparent rigidity reached at each time-point (blue). (C) Localisation of E-Cadherin and Life-Act-

Ruby in cells treated with the rho-kinase inhibitor Y27632 at 1h and 2h30 after replating. Treatment 

with Y27632 inhibits rho kinase prevents the formation of contractile actin bundles at adherens 

junctions and leading to reduced monolayer stiffening (green). (D, E) Monolayer apparent rigidity at 

different time-points in control monolayers and monolayers treated with inhibitors of F-actin 

polymerisation (D) and (E) myosin contractility (blebbistatin in yellow), (p*<0.01, p**=0.03). 

 

APPARENT RIGIDITY DECREASES ON LONG TIMESCALES WITH THE 

OPTIMISATION OF CELL PACKING 

In my time-resolved measurements, I observed that monolayer apparent rigidity 

increased over the first ~150 minutes after replating before decreasing in the 

following 150 minutes (E150mins=269±50Pa, E300mins=196±49Pa, p<0.01). 

Furthermore, monolayers that were left to grow overnight showed a trend towards 

further reductions in apparent rigidity (E300mins=196±49Pa, Emature=181±33Pa, 
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p=0.06). I have established that the initial increase in monolayer apparent rigidity 

results from the formation of adherens junctions. In this process, cells spread to 

establish initial contacts and recruit actin and myosin to intercellular junctions 

increasing monolayer tension and hence apparent rigidity (Figure 34). Following 

this initial step, the height of intercellular junctions increases as they mature, cell 

morphology changes from spread to cuboidal, and cells condense (Figure 31). When 

I measured the average cell projected area over time, I found that its evolution 

mirrored the evolution of apparent rigidity (grey line, Figure 34 D): projected area 

first increased significantly between 60 and 150 mins before decreasing significantly 

at 300 mins and overnight (black line, Figure 34 D). I envisaged two different 

possible causes for the decrease in cellular projected area after 150min. First, 

following formation of intercellular junctions, cells may seek to minimise the 

intercellular stresses they are exposed to by moving with respect to one another 

within the monolayer (103). Second, cell division may decrease tissue tension by 

increasing cell density (79). Examination of time-lapse movies of monolayer 

formation revealed that cell divisions were rare during the first 300 mins following 

replating. However, over the same time period, cell density increased significantly 

(Figure 34 B) and cell movements relative to one another could be observed, 

suggesting that cell rearrangement within the monolayer played a significant role in 

increasing cell density and decreasing cell projected area. After overnight 

maturation, cell density increased significantly (p<0.01 compared to 300 mins) 

though elasticity only showed a trend towards decreasing, suggesting that cell 

division may play a role in tension homeostasis but that cell rearrangements 

dominate over the time-frame of my experiments. Together, these data reinforce the 

notion that tension is at homeostasis in tissues and that this can be reached through 

changing cell packing density by rearrangement, apoptosis, or mitosis (87, 91, 92, 

96). 
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Figure 34 : Monolayer apparent rigidity results from a tissue-scale monolayer tension and cell 

rearrangements within the monolayer alter monolayer tension 

(A) Monolayer indentation profile as a function of distance to the centre of indentation. Disrupting 

intercellular adhesion with EDTA (grey line) reduced the spatial extent of the indentation profile 

compared to control monolayers (black line). Curves are averaged over 10 experiments. (B) Images 

of a control monolayer (top) and EDTA treated monolayer (bottom) with the indentation profiles 

highlighted in yellow. (C) Temporal evolution of cell density averaged over 5 monolayers. Data 

points are represented as mean±SD. (D) Temporal evolution of projected cell area (black line) and 

apparent rigidity (grey line) over the course of intercellular junction formation and maturation. Data 

points are represented as mean±SD and are averaged over N=5 experiments. 

v. DISCUSSION 

Using time-lapse imaging and time-resolved mechanical measurements together with 

chemical perturbations, I have shown that the formation of intercellular junctions is 

accompanied by an increase in monolayer apparent rigidity that reflects the 
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emergence of tissue-scale mechanical properties. This phenomenon was critically 

dependent on the sequence of molecular steps leading to the formation of mature 

adherens junctions and coincided with it temporally (Figure 35). In contrast, during 

the 150 minute time-course over which increases in apparent rigidity were observed, 

an intercellular network of intermediate filaments linked by desmosomes did not 

reform and its presence in mature monolayers did not correlate with increased 

apparent rigidity. Perturbation of each of the steps leading to the assembly of mature 

contractile adherens junctions significantly affected monolayer mechanical 

properties. Disruption of lamellipodial extension through arp2/3 inhibition prevented 

stiffening, consistent with its role in the initial formation of intercellular contacts and 

their subsequent broadening. However, in mature monolayers, inhibition of arp2/3 

did not affect apparent rigidity, in contrast to recent laser ablation experiments 

suggesting a role for arp2/3 in junctional tension (155), something perhaps due to 

incomplete maturation of adherens junctions in gene depletion experiments. 

Perturbation of formin mediated actin polymerisation decreased monolayer apparent 

rigidity in forming and mature monolayers, consistent with the notion that formins 

generate contractile F-actin arrays (158).  

My data show that the main contribution to monolayer apparent rigidity was tension 

due to actomyosin contractility. Indeed, examination of the monolayer indentation 

profile before and after disruption of intercellular adhesions revealed that apparent 

rigidity was primarily dominated by tension within the monolayer. Recent traction 

force microscopy experiments have shown that total traction force increases linearly 

with the number of cells in colonies (92), suggesting that the linear increase in 

apparent rigidity I observed over the first 150 min after replating reflects a 

progressive increase in the number of cells interfaced to one another around the 

location of the indentation. Chemical perturbation experiments further confirmed the 

role of tension in the increase in monolayer apparent rigidity concomitant with 

intercellular junction formation. Indeed, depolymerisation of the actin cytoskeleton 

by latrunculin treatment or inhibition of myosin contractility both resulted in a near 

total loss of stiffening associated with monolayer formation. My results are 

consistent with recent work showing that intrinsic actomyosin activity constitutively 

exerts tension on E-cadherin at intercellular junctions (76, 102).  
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Figure 35 : Perspective view: The emergence of monolayer tissue-scale mechanical properties 

coincides with intercellular junction formation 

After plating, spreading cells form lamellipodia resulting from the formation of a dendritic network of 

F-actin downstream of arp2/3 (red, 1). Upon contact of lamellipodia from neighbouring cells, E-

cadherin clusters interface the membranes of contacting cells (green, 2). The dendritic F-actin 

network is then remodelled at the cell junctions through de novo filament polymerisation by formins 

and myosin-mediated remodelling (3). Later, an intercellular keratin filament network linked by 

desmosomes is established (blue, 4). Monolayer apparent rigidity increases concurrently with this 

sequence of events and inhibition of each of these molecular mechanisms perturbs the emergence of 

monolayer tissue-scale mechanical properties. Actomyosin contractility creates a tissue tension that 

is the major determinant of monolayer apparent rigidity. 

 

In time-resolved AFM measurements, monolayer apparent rigidity initially increased 

over the course of two hours, reaching a peak before decreasing significantly 

between 2.5-5 hours after replating. Examination of temporal evolution of projected 

cell area and cell density suggested that decreases in apparent rigidity may be due to 

cell rearrangement within the monolayer to reach an energetically optimal 

configuration. Indeed, recent studies show that regulatory mechanisms involved in 

maintaining tissue tensional homeostasis can cause cells to apoptose (87) or migrate 

within the monolayer to minimise intercellular shear stresses (103). My data suggest 

that two temporally distinct steps may be necessary to reach optimal monolayer 

configuration from dissociated cells: first, cells adopt a high tension state to rapidly 

reform intercellular junctions, then, following confluence, cells optimise their 

arrangement within the monolayer to return to tissue tensional homeostasis. In 
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summary, I have shown that the establishment of mature contractile adherens 

junctions is accompanied by the emergence of tissue-scale mechanical properties and 

my technique paves the way to understand the molecular mechanisms underlying the 

integration of stresses generated by individual cells into a tissue-level tension. 

vi. SUMMARY 

Here I have shown the importance of the establishment and maturation of 

intercellular junctions in setting monolayer mechanical properties. The main 

drawback of this method is the interpretation of the mechanical measurements. The 

ability to dissect the contribution of pre-stress, elasticity and the effect of having a 

composite material would be greatly beneficial. However, I did not pursue this in my 

doctoral work as I had developed another tool to probe the mechanical properties of 

monolayers in the monolayer plane, free from their substrate. The advantage of this 

approach is the simple interpretation of the stress-strain response to evaluate 

monolayer elasticity. 

 



105 Characterising the planar mechanics of cultured cell monolayers 

 

105 

 

7. CHARACTERISING THE PLANAR MECHANICS OF 

CULTURED CELL MONOLAYERS 

i. ACKNOWLEDGEMENTS 
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helped with the development of the tissue deformation tracking routine. Guillaume 
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immunostaining experiments to verify cell polarity. 

ii. INTRODUCTION 

To date, research in cell mechanics has primarily focused on isolated cells and much 

is now known about their mechanical properties in both normal physiology and 

disease (15). Comparatively little is known about the mechanics of simple tissues 

such as monolayers but recently experiments combining traction force microscopy 

with deformation analysis have begun to shed light on this topic. Within monolayers, 

stresses are propagated over several cell diameters by intercellular adhesion, cells 

migrate to minimise intercellular shear stress (103) and the collective motion of cells 

within monolayers displays behaviours reminiscent of a glass transition (71, 96). 

Despite these advances, our knowledge of monolayer mechanical properties such as 

stiffness or ultimate strength remains poor due to lack of an appropriate experimental 

technique. Extrapolation of these parameters from single cell measurements is not 

possible due to radical differences in cytoskeletal organisation associated with the 

formation of intercellular junctions. Present measurements of intercellular adhesion 

energy are restricted to durations over which intercellular junctions cannot fully 

mature (on the order of minutes) (58, 94). Direct experimental measurements on 

monolayers with mature intercellular junctions would greatly enhance our 

understanding of the mechanics of epithelial morphogenesis (80, 159) and the effect 

of pathologies on tissue strength (51). 

To fill this gap I developed a versatile new system that allows investigation of the 

tensile planar mechanical properties of epithelial cell monolayers in isolation from 

their substrate. I interfaced the technique with high resolution confocal imaging of 



106 Characterising the planar mechanics of cultured cell monolayers 

 

106 

 

subcellular structures and proteins that constitute cell junctions and the cytoskeleton. 

In addition, I designed this system such that forces can be measured as the 

monolayer is stretched, to extract the elasticity and intercellular adhesion strength of 

monolayers. Through the spatial organisation of their cytoskeleton and interfacing 

via specialised intercellular adhesions, cells create a tissue that has a much higher 

elastic modulus than measured in single cells (28, 29, 41).  

iii. DEVELOPMENT OF A DEVICE TO MEASURE PLANAR MONOLAYER 

MECHANICS 

The general principle of the system to characterise monolayer mechanics is simple: 

monolayers suspended between the extremities of two test rods are slowly extended 

by prising the rods apart with a micromanipulator. The applied force can be 

measured by monitoring the bending of the soft test rod during monolayer extension. 

My mechanical characterisation setup addresses four key requirements: (i) 

monolayers must be free from their substrate such that only the monolayer is load-

bearing to allow for simple interpretation of the stress-strain response, (ii) attachment 

of the samples to the test rods must require minimal manipulation, (iii) live 

microscopy imaging at the cellular and subcellular level must be possible during 

mechanical stimulus, (iv) measurements must be quantitative to enable comparison 

between treatments.  

Below I describe the necessity of, and solution to, each of these design requirements 

in further detail. The details of the device design and measurement protocols are 

contained within the materials and methods section (Chapter 7 section V). 

(I) MONOLAYERS MUST BE FREE FROM THEIR SUBSTRATE 

Tensile testing of materials is a traditional method for establishing their mechanical 

properties such as elasticity and ultimate strength due to the simplicity of 

measurement and interpretation. Although this works well for materials such as 

metals and polymers, biological samples have additional requirements that need to 

be addressed by the experimental technique. For example, these experiments need to 

be carried out in a fluid environment to keep the cells alive. Indeed, combining the 

practicalities of both cell culture and mechanical testing presents a particular 

challenge. 



107 Characterising the planar mechanics of cultured cell monolayers 

 

107 

 

A common method to stretch cells is to culture them onto elastic substrates and 

mechanically activate the cells through substrate stretching. The difficulty with this 

approach is that decoupling the mechanical response of the cells from the substrate is 

non-trivial. Measuring mechanical properties such as ultimate strength are not 

possible with this approach as the durability of the cell-substrate composite is 

dominated by the elastic substrate.  

To generate cell monolayers free from a substrate with minimal manipulation, cells 

were cultured on a temporary sacrificial substrate created by polymerising a drop of 

collagen between the two rods. Cells were seeded onto this scaffold and cultured 

until the monolayer extended from one test rod to the other covering the whole 

collagen substrate and part of each test rod (Figure 36). Prior to mechanical testing, 

the collagen was removed by enzymatic digestion leaving the monolayer attached to 

the test rods by cell-substrate adhesion but devoid of substrate and freely suspended 

in between (Figure 36).  

(II) ATTACHMENT OF THE SAMPLES TO THE TEST RODS MUST REQUIRE 

MINIMAL MANIPULATION 

Culturing the cells onto the test rods and then removing the substrate by enzymatic 

digestion is a physically non-invasive way of removing the substrate. Previous 

approaches require the use of tissue adhesives to attach samples to testing apparatus 

(89). The disadvantage of physically manipulating samples and using adhesives is 

that biological samples are fragile and can become damaged during attachment. The 

digestion approach requires no user manipulation of the sample or glue to affix it. By 

preparing the sample between two test rods, the monolayer is readily available to 

stimulate mechanically simply by prising the test rods apart. 



108 Characterising the planar mechanics of cultured cell monolayers 

 

108 

 

 

Figure 36 : Experimental setup for measuring the mechanical properties of cell monolayers.  

(A) Left: line drawing, right: microscopy image. Cell layers (green) were cultured on a sacrificial 

collagen scaffold gelled between the test rods (red in line drawing and immunostain, s.b = 100 µm). 

(B) After enzymatic digestion, the collagen layer was completely removed leaving the monolayer 

freely suspended between the two test rods as evidenced by the loss of collagen immunostaining (red).  

 

(III) LIVE MICROSCOPY IMAGING AT THE CELLULAR AND SUB-CELLULAR 

LEVEL MUST BE POSSIBLE DURING MECHANICAL STIMULUS  

In order to address this design requirement I developed a mechanical testing setup 

that could be interfaced onto the standard stage of an inverted optical microscope. 

The mechanical testing equipment (Figure 37) consisted of two micromanipulators 

and a top-down macroscope to image test rod positions. A manual micromanipulator 

kept one rod stationary, while a motorised micromanipulator controls the 

displacement of the other.  

The simplest form of the test rod design is where both rods are rigid. The devices 

consisted of a U shaped capillary, the arms of the U shape being the test rods and the 

bend acting as a point for attachment to the culture dish. A hinge was introduced into 

one of the arms by making a small break at the capillary base and threading it with a 

flexible wire making it easy to manipulate. Prising the rods apart at the top strains 

the monolayer directly, making these devices convenient for high magnification 
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imaging. Monolayers can be imaged at high resolution using conventional top down 

microscopes with dipping objectives that have a long working distance and high 

numerical aperture. Imaging devices at high magnification with inverted 

microscopes poses more of a challenge due to the comparatively shorter working 

distance of the objectives and the additional complication of the presence of the 

coverslip. To solve this problem, devices could be prepared in the first instance 

without attaching them permanently to the bottom of the culture dish. Then devices 

could be flipped over before imaging bringing monolayers closer to the bottom of 

the coverslip and within the working distance of the high magnification objectives. 

 

Figure 37 : Schematic diagram of the mechanical testing setup 

(A) Petri dishes containing monolayer culture devices were mounted onto the microscope stage. The 

motorised micromanipulator (Physik Instrumente M126.DG1) arm was brought into contact with the 

soft test rod and the manual micromanipulator (Physik Instrumente M105.30) arm with the reference 

rod. The device test rods could be prised apart, thereby extending the cell monolayer, using the 

motorised manipulator for accurate control over extension and strain rate. Monolayer extension was 

imaged with an inverted microscope (red light path giving the bottom left image) and the positions of 

the test rods were monitored with a top-down macroscope (Canon FD macrolens) (blue light path 

giving the top left image) allowing measurement of strain and stress. In some experiments, a feedback 

loop was implemented to achieve constant stress or constant strain at 10Hz.  
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(IV) MEASUREMENTS MUST BE QUANTITATIVE TO ENABLE COMPARISON 

BETWEEN TREATMENTS. 

This initial device design did not enable measurement of the force required to extend 

the monolayer. To generate quantitative measurements of monolayer mechanical 

properties, I developed the test rods system to allow for force measurements. 

Devices consisted of three main components (Figure 38): (i) a U-shaped glass 

capillary with one long arm that acts as a rigid reference rod, and a short arm that 

connects to the flexible test rod, (ii) a flexible test rod made of NiTi metal wire with 

a small enough bending rigidity for sub milli-Newton forces to induce a deflection 

precisely measurable by the macroscope, (iii) a small rigid reference sleeve on the 

flexible test rod that can be used to determine its unstressed position. Forces applied 

onto the monolayer during extension were determined by measuring the deflection d 

of the wire relative to its predicted unstressed position (Figure 39 A, B) and fitting 

d(y) with a simple cantilevered beam model (Figure 39 C, D).  

 

Figure 38 : Test rod device design 

The device was enclosed inside a 5cm Petri dish. In the image, d is the flexible rod deflection, s the 

motor displacement and L the length of the monolayer, and the monolayer is shown in green (~2mm 

wide). These devices are ~4cm in length with the capillaries used being 1mm in diameter. The flexible 

wire is 100µm in diameter (see section V, Device fabrication). By making both of the test rods rigid, 

the strain on the monolayer could be directly controlled. These devices could be flipped over to bring 

the monolayer into the working range of higher magnification objectives on an inverted microscope. 

In devices for high magnification imaging thinner capillaries were used 0.8mm in diameter and 

thicker wire 200µm diameter (see section V, Device fabrication). 
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Figure 39 : Measurement of forces 

(A) Colour combined image showing the macroscope view of a force measurement device with the 

flexible wire in the stressed (green, monolayer attached) and relaxed (red, ruptured monolayer) states 

(scale bar = 5mm). (B) Images from time lapse acquisitions were separated into three regions of 

interest (scale bar = 5mm) (ROI). By inverting the images, the position of the static (ROI 1), 

reference (ROI 2) and flexible (ROI 3) rods could be found by fitting a Gaussian intensity profile for 

each row of pixels successively. (C) The extracted position of the reference rod can be extrapolated to 

obtain the predicted unstressed position of the flexible rod (red). By subtracting the stressed position 

(blue) of the flexible rod from its predicted unstressed position (red), I obtained the deflection which 

can be fitted with a cantilevered beam model (D).  

 

FORCE MEASUREMENTS ON MONOLAYERS 

Force measurements were possible with this system by the correct calibration of the 

wire mechanical properties and accurate measurement of the rod deflection with 

image analysis. In order to measure the force exerted on the monolayer during 
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extension, macroscope images were acquired during extension at regular time 

intervals. The images were then analysed post hoc to obtain values for the stress and 

strain at each timepoint. Macroscope images were subjected to a Gaussian filter to 

smooth the image and reduce the influence of background noise and separated into 

three regions of interest to identify the static rod, the reference sleeve, and the 

flexible rod. The extremity of the reference glass sleeve was identified manually to 

measure the length of the flexible arm. The images were inverted and a Gaussian 

intensity profile fitted along the x direction for each row of pixels to identify the 

peak corresponding to the rod position. The static rod maxima were fitted with a line 

to identify the reference position, which was then used in calculating the strain on 

the monolayer.  

To measure the deflection of the flexible test rod, the position of the peaks of the 

Gaussian fits were extracted and compared to the rod’s predicted “unstressed” 

position. The unstressed position was computed from the projection of the portion of 

the flexible arm within the sleeve (i.e. that is unable to bend). This portion was fitted 

with a straight line which represents the predicted position of the flexible test rod 

with no restoring force from the cell sheet. The rod deflection d(y) was computed as 

the difference between the position of the unstressed bar and the actual measured 

position. The force was then calculated by fitting the whole rod deflection with the 

equation for a simple cantilevered beam(160): 

   
  ( )      

(    )  
 

   
   

 
 

Here, I is the area moment of inertia of the wire, r the wire radius, and E its elastic 

modulus. The engineering strain ε was measured by normalising the monolayer 

extension (measured length minus initial length) to the initial length.  
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The stress σ was computed by dividing the measured force F by the cross sectional 

area of the monolayer, which was estimated from the measured monolayer width 

(measured from microscope images, t ~2mm) and the average monolayer thickness 

(d ~10µm).  

   
 

   
 

WIRE CALIBRATION 

For the calculation of the force the quantity E, the elastic modulus of the NiTi wire 

was calibrated. I devised a simple loading experiment where different loads of 

plasticine were attached to the end of a 4 cm long piece of wire and the deflection 

due to gravity measured. The mass of the NiTi wire was neglected and the system 

treated as a cantilevered beam loaded at its end. The deflection of several different 

wire samples were measured with 5 different weights, and the experiment repeated 5 

times on different days. The deflection was measured using the macroscope camera 

setup. By measuring the length of the wire with Vernier callipers I calculated the 

elastic modulus of the wire to be 86.5±5.3 GPa, close to the manufacturer’s estimate 

of 75 GPa. 

SOURCES OF ERROR  

Assuming that the wire is manufactured well with good quality control by the 

manufacturer there is not a high source of error with the associated wire elasticity 

and diameter. The elasticity of the wire was recalibrated with the loading 

measurements described above and was re-calibrated for new batches of wire. The 

wire diameter verified with digital vernier callipers. The main general source of error 

with this measurement is the detection of the wire positions with the macrosope and 

hence the calculation of the deflection and applied force. The deflection only scales 

linearly with the applied force but is limited in the fact that it is optically measured. 

To minimise error from this source, the wire intensity profile was fitted with a 

Gaussian to provide sub-pixel resolution on the position. The deflection was 

evaluated along the full length of the wire cantilever and then fitted with a cantilever 

beam model to minimise noise in the measurement. This method can accurately 
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measure sub milli-newton forces with a precision of ~5-10µN. This can be improved 

upon by implementing a digital force transducer (see Chapter 9 Future work). 

iv. VALIDATION AND CALIBRATION OF THE METHOD 

I verified the method with a series of control measurements. Firstly, I needed to 

confirm that the cells remained viable during the experiments, that they were alive, 

and retained their epithelial characteristics. Secondly, I needed to verify that the 

mechanical measurements were correct by calibrating with a classic material of 

known mechanical properties. 

CELL VIABILITY 

To verify that cell monolayers were healthy after removal of the substrate I 

conducted a live/dead assay (Figure 40). Propidium Iodide, a non-permeable nucleic 

acid marker only enters the cell and stains the nucleus on loss of membrane integrity, 

which is an early sign of cell death. To determine the location of nuclei within live 

monolayers, I treated them with Hoechst 34332, a membrane permeable nucleic acid 

marker to observe the position of the cell nuclei without membrane permeation. Over 

a duration of 3 hours, no fluorescent signal from the propidium iodide could be 

observed indicating that cell membranes were not compromised. As a control for the 

correct function of propidium iodide measurement the cell membrane was 

permeablised with a detergent Triton X at the end of the experiment. Upon 

permeablisiation of the cell membrane fluorescent signal could be seen from the 

propidium iodide which co-localised with the original Hoechst staining. 
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Figure 40 : Validation of cell 

viability through live-dead 

assay and immunostaining 

(A) Cell viability within monolayers 

devoid of a substrate was checked 

using a live/dead assay. The nuclei 

of live cells were stained with the 

cell permeant nuclear stain Hoechst 

33342 (1µg/ml for 5 min). To detect 

cells with compromised membranes, 

propidium iodide, a cell impermeant 

nuclear marker, was included in the 

medium at all times (1 µg/ml). 

Hoechst staining was imaged with a 

405 nm laser (shown in red in the 

image) and propidium iodide (PI) 

was excited at 568nm (shown in 

green in the image).  As a control 

for PI staining, I permeabilised the 

membrane of cells on a substrate 

(top left image). Upon 

permeabilisation with Triton-X100, 

cellular nuclei were intensely 

stained with propidium iodide and 

colocalised with Hoechst staining 

appearing yellow. Next, I imaged 

monolayers devoid of a substrate 

for at least 210 minutes in the 

presence of propidium iodide. 

During that time no propidium 

iodide staining was observed and 

Hoechst staining did not show any 

signs of nuclear condensation or 

fragmentation, indicating that the 

monolayers remained healthy. After 

210 mins, to verify that propidium 

iodide was present in the medium 

and able to stain the nuclei, I 

permeablised the cells with the 

addition of tritonX to the medium. 

This resulted in rapid and intense 

propidium iodide staining of the 

monolayer (bottom centre image). 

Together, these images indicate that 

the cells within the monolayer are viable for much longer than the time course of my experiments 

(~10min). (B-E) To verify that monolayers retained their epithelial polarity after collagen digestion, 

freely suspended monolayers were fixed 3h after removal of the substrate and immunostained with 

antibodies against classical epithelial polarity markers. In each image, red shows the localisation of 

the actin cytoskeleton visualised with phalloidin-TRITC staining and blue shows the nucleus labelled 

with DAPi. (B) As in polarised monolayers cultured on substrates, F-actin was enriched at cell 

junctions and apically. (C) The tight junction protein ZO-1 (white) localised to distinct puncta at the 

apical side of cell-cell junctions. (D) β-catenin (green), a component of adherens junctions remained 

localised to cell junctions. (E) GP135 a marker of apical transport channels labelled the apical 

membrane of the cells. Together, these images demonstrate that the cells within the monolayer retain 

their characteristic epithelial polarisation for at least 3h after substrate removal. 
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Having confirmed cell viability, I checked that the apical-basal polarity of the cells 

was maintained for the duration of the experiments. Immunostaining of apical and 

junctional markers was performed to test the maintenance of cell polarity in 

collaboration with Julien Bellis. The cell nuclei were stained with DAPi in all 

experiments. F-actin was stained with phalloidin and localised to cell junctions and 

apically as expected for adherens junctions and micro-villus structures. Secondly, to 

verify the maintenance of mature and stable cell junctions monolayers were stained 

for ZO-1 and Beta-Catenin. ZO-1 is a protein involved in the formation of tight 

junctions that localises at cell junctions, near to the apical cell membrane. Beta-

Catenin is a protein involved in the formation of adherens junctions and therefore 

localises at intercellular junctions. Finally, cells were stained for GP135, a marker of 

apical ion channels in the cell membrane, was strongly apical in the stained cells. 

These data show that, in the absence of substrate, monolayers stayed healthy and 

maintained their characteristic epithelial apico-basal polarisation for at least 3h 

(Figure 40 B-E).  

ELASTICITY CALIBRATION 

To validate my experimental setup, I measured the elasticity of calibrated thin 

PDMS strips (Figure 41 A). PDMS strips of different stiffnesses were created by 

mixing PDMS with different proportions of crosslinker or by varying baking time 

and temperature. Baking for shorter periods and lowering the concentration of 

crosslinker both result in softer strips. Briefly, PDMS was mixed thoroughly at the 

following ratio of primer to crosslinker 10:1 and 20:1, degassed and then spin-coated 

onto a silicon wafer. Wafers were then baked at 50 or 75 degrees for 4h or 90 min 

depending on the desired properties. Strips were generated by scraping the layer of 

PDMS with a scalpel. Their thickness was measured with confocal microscopy to be 

approximately d~50µm. Strips could be placed onto the extremities of devices ready 

for extension by reversible bonding of the PDMS to the test rods. Devices were 

custom made with a 0.3mm NiTi diameter wire due to the thicker and stiffer nature 

of the test material. To verify the measured elasticities with an independent method, 

the length of PDMS strips were measured under vertical load by adding defined 

masses to one extremity. One end of the PDMS strip was secured to the edge of a 

workbench and a small clip added to the other end. To increase the applied load, 
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additional clips were added. The length of each strip of PDMS at each load was 

measured using a pair of vernier callipers. The lengths were measured for five 

different loads and the elastic modulus calculated from the slope of the stress-strain 

response. Elasticities measured with this method were similar to those measured 

with the devices and values reported in the literature (161, 162). 

 

Figure 41 : Calibration of the testing device by comparison with other materials and methods 

(A) The elastic moduli of PDMS strips measured using either the stretching device or gravity loading 

were in good agreement with one another as well as values reported in the literature (161, 162). (B) 

Measured ultimate strain and force response of freshly polymerised collagen gels and cell 

monolayers. Monolayers had a 3-fold higher average ultimate strain than freshly polymerised 

collagen gels.  Because gels were much thicker (~1 mm) than the cell monolayers (~10µm), they 

displayed a much larger force response in experimental measurements (C). Therefore, ascertaining 

the mechanical properties of the cell monolayer in a composite measurement experiment is complex.  
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As an additional control I measured the stress strain response of the collagen scaffold 

and compared this to suspended monolayers. Suspended monolayers had very 

different mechanical properties to the collagen scaffold. Scaffolds were much stiffer 

and have a much lower ultimate strain than measured for monolayers (Figure 41 B, 

C). Freely suspending monolayers allows for direct measurement of their mechanical 

properties without the influence of the substrate.  

CORRECTION IN THE MEASURED STRAIN DUE TO CHANGES IN THE 

MONOLAYER REST LENGTH 

Upon examining the layer morphology after substrate digestion it is possible to see 

that the layers are not flat. This signifies that the layers have no pre-stress, but also 

implies that the zero extension does not correspond to zero planar strain. In the initial 

stages of extension the monolayers are “unravelled” until they become taut. In order 

to correct for this offset    I employed a small correction to the monolayer rest 

length and hence the strain (Figure 42). The fact that the monolayers are not flat 

arises due to the geometry of the collagen scaffold that is formed between the test 

rods. By using simple geometrical considerations, the difference in the rest length 

and the distance between the test rods can be conservatively estimated to be about 

5% and is incorporated as a correction to the strain in measurements of elasticity and 

ultimate strain. 
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Figure 42 : Calculation of monolayer rest length 

(A) When I compared images of monolayers attached to substrate to images after substrate removal, 

cells attached to substrate (left, OC: On Collagen) appeared more spread and had a larger projected 

surface area than cells without substrate. Indeed, culture of monolayers on my devices introduces a 

small offset between monolayer rest length (Lattached) and initial test rod separation (L0). Hence, a 

small extension must be applied to the monolayers before they become taut (D). The first step of my 

culture process involves polymerising a small drop of collagen between the two test rods. Because the 

drop remains suspended between the two rods by capillarity, it acquires a characteristic dumbbell 

shape before it gels (red, B and E). Next, cells are seeded onto the collagen and grow to cover the 

upper surface of the collagen matrix (green, B). Due to the geometry of the collagen scaffold, the rest 

length of the cell layer is larger than the distance between the test rods. Hence, after digestion of the 

collagen, the cell monolayer is not taut between the rods (C), though cell contraction (A, PS) may 

compensate for some of the extra length. Therefore, a small extension must be applied to the 

monolayer before it becomes flat at zero strain (D). After substrate removal, the monolayer sags 

under its own weight between the two test-rods and this may be the source of the slight anisotropy in 

long axis orientation observed prior to strain application. (E) Simple geometrical considerations 

approximating the shape of the collagen scaffold to a triangular wedge suggest that monolayer rest 

length L attached is larger than the original separation between test rods L0 by ~5%.  
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v. MATERIALS AND METHODS 

GENERAL 

Measurements were performed using Leibovitz-L15 CO2 independent medium 

supplemented with 10% FBS. All measurements in this chapter were conducted at 

room temperature. 

DEVICE FABRICATION 

Separate devices were used for force measurement and high magnification imaging 

due the short working distance of high magnification immersion objectives (280 µm 

for a 60x UPLSAPO water immersion objective, N.A=1.2). 

Device fabrication: Force measurement devices 

Thick walled borosilicate capillaries (l=100 mm, 5 µl graduated micropipette, 

Camag, Muttenz, Switzerland) were heated in their centre for a few seconds with a 

micro-pen blowtorch (Gosystem, Cheshire, UK) and bent into a “U” shape. The 

extremities of the capillary were brought to within 1.5 mm of one another. 

Capillaries were cut to size by gently breaking them with pliers. One arm was left 

long (~34mm) to act as a rigid reference rod and the other cut short (~4mm) to serve 

as a connection for the flexible test rod (Figure 38). A small length of capillary was 

cut to make a reference sleeve (~4mm). This covers a portion of the flexible test rod 

close to its connection to the rigid rod allowing for manipulation by the motorised 

micromanipulator, and projection of the un-deflected position of the flexible wire 

(Figure 37). A 0.1 mm diameter NiTi alloy wire (Euroflex, Pforzheim, Germany) 

was cut to length, dipped into UV curing glue (Loctite Glassbond, Henkel, Cheshire, 

UK) and threaded into the static rod. Another wire of similar length was dipped in 

glue, threaded firstly into the reference sleeve, and then into the connection for the 

flexible rod. The glue was cured by exposing to UV light for 5 minutes on a UV 

transilluminator (VWR, Leicestershire, UK). Two pieces of Tygon tubing (~4mm 

length, 0.25 mm i.d., 0.76mm o.d., Norton Performance Plastics, Ohio, USA) were 

dipped into glue, threaded onto the end of each the wire and exposed to UV light for 

5 minutes. Excess Tygon tubing and wire was cut from the end of the devices. 

Finished test rod devices were washed in 70% ethanol followed by water. The test 

rods were glued to the bottom of 50 mm plastic bottomed petri dishes (BD flacon, 
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Oxford, UK) making sure that the ends of the rods were more than 1mm above the 

bottom of the dish. Prior to adding the collagen support layer, a small block of 

PDMS (1mm by 4mm wide) was placed in between the flexible and static rods to 

keep them at a constant separation until the cells had been seeded.  

Device fabrication: High magnification imaging devices 

A similar manufacturing process was used with the exception that thinner capillaries 

(od. 0.9 mm, 1 µl capillary, Camag) and thicker 0.2 mm NiTi wire were used. By 

making the reference sleeve capillary cover the full length of the flexible rod, both of 

the testing rods are rigid, with one rod acting as a “hinged lever” (Figure 38). This 

adaptation of the device allows for the strain on the monolayer to be directly 

controlled. To image with high magnification objectives (working distance 

~280µm), the device had to be positioned as close to the bottom of the dish as 

possible. To accomplish this, the device was temporarily secured into a glass 

bottomed petri dish (Intracell, Herts, UK) with a small amount of plasticine (Blu 

Tak, Bostik, Leicester, UK) and the cells cultured as normal. Once cells were 

confluent, the culture medium was removed from the dish, and the device flipped 

over before being attached to the bottom of the dish with hot glue. Using this 

method, the monolayer could reproducibly be suspended approximately 100-200µm 

above the bottom of the dish, within reach of high magnification objectives. 

CELL CULTURE ON DEVICES  

Collagen type 1A (Cellmatrix, Nitta Gelatin inc., Japan) was reconstituted on ice in 

the following proportions: 5 parts collagen, 2 parts water, 2 parts 5xDMEM (PAA, 

Colbe, Germany) and one part sterile reconstitution buffer (2.2 g NaHCO3 in 100ml 

of 0.02 N NaOH and 200 mM HEPES). A 10µl droplet of reconstituted collagen 

solution was deposited between the device test rods and stayed suspended by 

capillarity. Devices were placed at 37ºC for 90-120 minutes and allowed to dry 

giving a thin layer of collagen between the test rods. The collagen support was 

rehydrated by depositing a 10µl droplet of culture medium on the collagen and scant 

medium on the base of the dish to maintain a humidified atmosphere. Confluent 

flasks of MDCK cells were re-suspended to a concentration of 5 million cells per ml. 

The culture medium was aspirated from the collagen support, and a 5µl droplet of 

the re-suspended cell solution (corresponding to ~25000 cells) was placed onto the 
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collagen support and incubated at 37ºC for 30 minutes. Care was taken whilst 

seeding the cells onto the devices to ensure that the cell suspension remained on the 

top of the scaffold and that coverage included the rods themselves. The Petri dish 

containing the device was then filled with 6ml of culture medium such that the test 

rods were completely submerged. The PDMS block was removed from between the 

rods. After 48-72 hours, the collagen scaffold was removed by enzymatic digestion 

with 2 mg.ml
-1

 type 2 collagenase solution (Worthington, NJ, USA) in Leibovitz L-

15 solution (Invitrogen, Paisley, UK) with 10% FBS for one hour. The collagenase 

solution was then gradually exchanged from the dish with Leibovitz L-15 solution 

and 10% FBS.  

IMMUNOSTAINING OF CULTURE SETUP 

To establish the effectiveness of the collagenase digestion, devices were fixed before 

and after treatment and stained with antibodies against collagen. To minimise use of 

reagents, miniature devices were made and enclosed in a glass bottomed chamber 

with a diameter of 10 mm. Devices had two rigid rods made by bending a capillary 

and cutting the ends to a final length of 5 mm. MDCK cells stably expressing PH-

PLCδ-GFP were cultured on the devices as previously described and then fixed with 

1.5 % paraformaldehyde in DMEM at room temperature for 15 minutes. When 

washing samples, partial fluid exchanges were necessary to prevent damage to the 

monolayer.  Devices were stained with a monoclonal mouse anti-collagen antibody 

(Sigma Aldrich, Gillingham, UK, dilution: 1:25, 1 hour) followed by a goat anti-

mouse Alexa 647 secondary antibody (Invitrogen, dilution: 1:100, 1 hour). Blocking 

steps and washes were performed with a solution of PBS with 10 mgml
-1

 BSA. To 

obtain profile view images of the culture devices stained samples were imaged the 

same day with a 10x (UPLSAPO) objective with confocal ZX slices were taken with 

a pixel size of 4.5 µm. 

IMMUNOSTAINING OF MONOLAYERS TO ASSESS CELL POLARITY 

After removal of their substrate and being put under tension for 3 hours, monolayers 

were fixed in 4% formaldehyde in PHEM buffer for 20 min (120mM PIPES, 50mM 

HEPES, 20mM EGTA and 4mM magnesium acetate), permeabilised for 30 min in 

0.5% Triton X-100, blocked 30 min in 0.05% BSA-PBS and incubated overnight 
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with following primary antibodies: ZO-1 (rabbit, 1:50 dilution, Invitrogen), β-

catenin (mouse, 1:100 dilution, Invitrogen) or gp135 (mouse, 1:20, a kind gift from 

Prof Karl Matter, UCL), incubated 6 hours with secondary antibodies (Rat anti-

mouse Alexa488 for β-catenin or gp135, Invitrogen) or Alexa 647 (for ZO-1, goat 

anti-rabbit, Invitrogen), and counterstained with DAPi and Phalloidin-TRITC (1:200 

dilution, Invitrogen). Acquisitions were done on a SPE Leica confocal microscope 

equipped with a 63x dipping objective. z-stacks were acquired with a 0.5 µm step 

and zx-sections were then generated using Imaris (Bitplane) software. 

MICROSCOPY TECHNIQUES 

Microscopy 

Wide-field imaging was performed on an Olympus IX-71 inverted microscope. 

Confocal imaging was performed on an Olympus IX-81 equipped with an FV-1000 

confocal head. For imaging the entire epithelial sheet, a 2x objective (2x PLN, 

Olympus) was used. For high resolution imaging samples were imaged using a 60x 

water immersion objective (UPLSAPO, Olympus, N.A = 1.2, W.D = 280 µm). 

Fluorescent proteins were imaged using the following excitation and emission: GFP 

was excited at 488 nm and emission was collected at 525 nm, m-Cherry was excited 

at 543 nm and emission was collected at 617 nm. 

Macroscopy 

The test rods were imaged using a Canon FD macro-lens (Canon, Surrey, UK) 

interfaced to a Hamamatsu EMCCD camera (Hamamatsu Orca ER, Hamamatsu UK, 

Hertfordshire, UK) piloted with micromanager (Vale Lab, UCSF(163)) and held in a 

custom support giving a top down view of the dish (Figure 37).  The dish was 

mounted onto a custom made white Perspex stage which gives high contrast with the 

black oxide finish of the NiTi wire, enabling accurate tracking of the rod positions.  

VOLUME CHANGE AND PROTEIN LOCALISATION MEASUREMENTS 

To image protein localisation and cell volume during extension at high 

magnification, confocal images and stacks with 0.47 µm steps in z were acquired 

after digestion with collagenase and then at five successive 0.3 mm increments in 

extension. The strain in the monolayer was measured using macroscope images of 

the whole device. 
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IMAGE ANALYSIS  

All image analysis for quantitative measurements was implemented in MatLab 

(Mathworks, Natick, MA, USA). 

 

Calculation of the tissue-level strain field by texture correlation 

To estimate the real strain field in the sheet under tension, I used sum of squared 

difference template matching(164). The sheet was subdivided into a grid (with a 

node spacing of 15 pixels) (Figure 47, 0%, blue). The displacement of the grid 

nodes from one image to the next was found by computing the intensity cross-

correlation of small image areas (30 by 30 pixels) around each node at subpixel 

resolution within a region of 90 by 90 pixels in the subsequent frame (Figure 47, 

50%, blue). The correct position from one frame to the next was taken as the one 

with the highest correlation. The template was updated from one frame to the next. 

The deformation of each grid element relative its original dimensions allows 

computation of the strains εxx, εyy, and εxy at different extensions (Figure 47). Strain 

distributions were almost uniform across the sheet up until delamination. 

Segmentation of monolayers into individual cells 

Cells stably expressing E-cadherin-GFP were imaged with a 60x magnification 

objective to observe changes of cell shape and cellular arrangement within the 

monolayer under tension. In collaboration with Loic Peter, I developed routines for 

the segmentation of monolayers. To segment the images we followed a Hessian-

based method for the detection of curvilinear structures (165), which in this case are 

ridges of intensity. We first pre-processed the image I by applying a Gaussian filter, 

and then we computed each pixel in the Hessian matrix: 
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This matrix is always real-valued and symmetric and thus has two real eigenvalues 

  (   ) and  (   ) (with       ). At the top of a ridge of intensity we expect the 
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smallest eigenvalue to be negative with a high absolute value, while the associated 

eigenvector  ⃗  gives the direction perpendicular to the ridge. We thus define a local 

measurement of ridgeness  (   ) at each pixel(   ), as: 

 (   )   {
     (   )   

  (   )     (   )   
 

  is therefore high on ridges, while remaining close to   on other parts of the image. 

Thresholding   returns a first approximation of the location of the ridge. To increase 

accuracy and ensure that each edge will be segmented as a single line, the position of 

the ridge is then computed by fitting the Taylor second-order polynomial  (   )( ) 

in the direction  ⃗  independently for each pixel. As described in (165), we keep (   ) 

only if the derivative   (   ) vanishes on the interval   
 

 
 
 

 
 . 

Since we are observing a cellularised tissue, we can assume that the map of the edges 

will be a closed mesh. Although most of the pixels are correctly classified by treating 

them independently, holes in the middle of a line or isolated detection artefacts can 

remain. This prompts the development of a restoration method. We first delete all of 

the objects which have less than a user-specified number of pixels, in order to 

suppress the isolated false positives. We then locate dead ends in my segmentation 

result (points which are located at the extremity of a line and attempt to close the 

mesh (Figure 43)).  Each dead-end   at the extremity of a line   is evolved according 

to the following rule: either we can prolong   until another part of the mesh is 

successfully encountered, or   is deleted.  

Let us denote    the tangent vector of the line   at  .  For each point   classified as 

belonging to an edge, we define a score   ( ) measuring the relevance to link   to 
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Where (   ) are the polar coordinates of the point   in the polar coordinate system 

of pole   and polar axis   . This represents a compromise between distance to   and 

deviation with respect to         and denotes the distance between   and   beyond 
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which  ( )     . The constant   balances the importance of the distance criterion 

relative to the direction criterion and is user specified. For        accurate 

segmentation was achieved. If one or more points   have a positive score,   is linked 

to the one showing the best score. If not, the dead-end is treated as a segmentation 

artefact and removed (Figure 43). 

 

Figure 43 : Segmentation of monolayers 

(A) Using a Hessian based approach, we identify ridges of intensity in images of E - cadherin GFP 

labelled cells. By treating pixels independently we can identify the cell edges but do not always obtain 

an entirely closed mesh (red). (B) Dead ends (blue dots) are identified at the extremity of unclosed 

lines and are evolved according to a selection rule. (C) For each dead end, we look for edge pixels 

(shown in red) in the semicircle of radius      oriented according to   .  If none are found,   and the 

line it belongs to are deleted. A score   ( ) is computed for each of the pixels within the semicircle 

(for example, the green pixel) and   linked to the pixel   having the highest score. For the case shown 

in (C),   will be linked vertically to the closest pixel because it maximises both the distance and 

direction criteria. (D) The final segmentation result shows the original pixels identified using the 

Hessian approach in green, pixels that are added by the restoration are shown in red, and pixels that 

are removed by the restoration are shown in blue. 
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Calculation of cellular-level strain 

The cellular strain tensor was calculated as outlined (81). After segmenting 

monolayers into individual cells (Figure 48), the principal axes of inertia were found 

from the cell area. The average resting orientation and length of the principal axis 

was compared at different extensions to determine the average strain of the cells 

within the layer. 

MECHANICAL MEASUREMENT PROTOCOLS 

Initial loading measurements 

Petri dishes containing devices were mounted onto the microscope stage and secured 

with plasticine. The motorised micromanipulator arm was positioned at the top 

extremity of the reference sleeve and the manual micromanipulator arm at the top of 

the reference rod. Monolayers were extended at a rate of 0.01 mm.s
-1

 (~1%.s
-1

) until 

failure. Monolayers were imaged at a frame rate of 0.5 s/frame at low magnification 

with the inverted microscope and the test rod positions were imaged with a top down 

macroscope. 

Creep measurements 

A feedback loop was used to keep the level of stress constant following a step 

increase in stress. This custom feedback routine was written and implemented in 

LabView (National Instruments, Austin, Texas, USA). To evaluate the creep 

response at two different stress amplitudes the motor was driven 0.3 mm at a speed 

of 0.75 mm.s
-1

 (~75%.s
-1

), giving a stress of ~3.0kPa (High stress) or driven 0.1 mm 

giving a stress of ~0.7kPa (Low stress). Under these conditions, target stress was 

reached in less than ~0.5s and maintained for 200s.  

Stress relaxation measurements 

For stress relaxation measurements, a custom feedback routine was written and 

implemented in LabView (National Instruments, Austin, Texas, USA). Monolayers 

were initially subjected to a pre-conditioning cyclic loading (8 cycles, at a speed of 

0.01 mm.s
-1

 or 1%.s
-1

, 0.3 mm initially then a 0.1mm amplitude cycle). For stress 

relaxation measurements the motor was driven 0.3 mm at a speed of 0.75 mm.s
-1

 

(~75%.s
-1

), giving a strain of ~20-30 %. The strain was measured with the 

microscope images and maintained constant by the feedback routine. 
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Fitting monolayer stress relaxations 

To measure the monolayer apparent viscosity, I fitted the stress relaxation data after 

5 seconds with the standard linear solid model. The standard linear solid consists of a 

spring - dashpot (with apparent elasticity E2 and viscosity η) in parallel with another 

spring (elasticity E1) (166). In this model, stress decays exponentially with a time 

constant    
 

  
⁄  when the material is subjected to a step strain   at t     ( )  

    [      
  

  ⁄ ]. 

Dependence of elasticity on load cycle number and strain rate 

For cyclic loading measurements, monolayers were initially subjected to a 0.3mm 

extension at 0.01mms
-1

 (~1%.s
-1

) and then left at constant strain for ~500 seconds. 

Monolayers were then subjected to three different amplitudes of loading cycles 

(~3%, ~10% and 20% in amplitude) and the stress strain response of each cycle 

calculated. The elasticity was measured from the slope of the extension phase of 

each cycle. To examine the effect of strain rate on measured elasticity, monolayers 

were initially subjected to a 0.3mm extension at 0.01mms
-1

 (~1%.s
-1

) and then left at 

constant strain for ~500 seconds. Cyclic loading was then performed at the following 

drive rates; 0.005 mms
-1

, 0.01 mms
-1

, 0.02 mms
-1

, and 0.05 mms
-1

 (respectively 0.5, 

1, 2, and 5%.s
-1

) for 0.05mm (~5%) cycles. 

vi. RESULTS 

TISSUE-LEVEL MECHANICS 

Using the experimental setup, I characterised the mechanical properties of 

monolayers of Madine-Darby Canine Kidney (MDCK-II) cells, a classic epithelial 

cell model. In the following, unless otherwise noted, I report the engineering strain: ε 

= ΔL/L0, with ΔL the monolayer length change and L0 its original length (Figure 

42). 

TIME DEPENDENT MECHANICAL PROPERTIES 

Living tissues are intrinsically viscoelastic with both physical and biological 

phenomena contributing to their time-dependent mechanical properties. Measured 

physiological strain rates in monolayer covered tissues range from ~0.04%.s
-1

 in 

developing drosophila embryos (81) and tens to hundreds of %.s
-1

 in alveolar 
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epithelium and mitral valve tissue (167, 168). To investigate the time-dependent 

mechanical properties of monolayers, I characterised their creep response to two 

distinct step increases in stress, respectively with high (3 kPa) and low stress (0.7 

kPa). When the monolayers were subjected to low stress loading, strain increased 

rapidly in response to stress application before reaching a plateau that subsisted over 

200s (Figure 44, grey line). In contrast, when high stress loading was applied, no 

plateau was reached and strain increased continually with time (Figure 44, black 

line). Plotting these response curves in log-log scale revealed that monolayer creep 

followed a power law in response to high stress step loading but not following low 

stress step loading (Figure 44, inset), suggesting that monolayers behave as 

viscoelastic solids below a certain critical stress and as complex fluids above. Power 

law creep responses had an exponent β=0.15±0.03, slightly less than generally 

reported for single cells (β~0.3-0.5,(70)). Consistent with the observations upon low 

stress loading, stress relaxation of monolayers also reached a plateau after ~50s 

(Figure 45), suggesting a limit elastic behaviour. Estimates of relaxation rates for 

computational models and comparative studies could be obtained by fitting stress 

relaxations with appropriate rheological models (Figure 45). The time-scales needed 

to reach a plateau in low stress creep and stress relaxation experiments (~50s) 

suggest that the short time scale response likely arises from biochemical properties 

of the cell, such as the turnover of the actin cytoskeleton (t1/2 ~ 10s in MDCK cells 

(56)). However, further work will be necessary to fully explore the rheological 

behaviours of monolayers and determine what biological mechanisms underlie their 

time-dependent mechanical behaviour. 
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Figure 44 : Mechanical properties of monolayers 

(A) Creep response following step application of low (0.7 kPa, light grey) and high (3 kPa, dark grey) 

stress. The plotted responses are averaged over at least 6 experiments each. At low stress, following a 

rapid increase in strain, monolayers reached a plateau that lasted for the remainder of the 

experiment. At high stress, no plateau was reached and strain increased continually with time. Inset: 

Creep response curves plotted in log-log scales. The creep response at high stress (dark grey) was 

well fitted by a linear function with slope β=0.15±0.03; whereas at low stress the creep response was 

not linear. (B) Stress-extension curves shown for 12 different monolayers. All curves displayed three 

distinct regimes of loading: i) an initial “toe” region (blue box) as the monolayer becomes loaded 

under tension, ii) a linear extension regime (green box) from which an elastic modulus can be 

calculated, iii) a plateau (red box) which corresponds to plastic deformation and eventual failure. (C) 

Deformation of a monolayer under stretch. Images acquired by bright-field microscopy for a 

monolayer at 0 and >80% extension. At >80% extension, the monolayer delaminated from the test 

rods (arrows) suggesting that cell-cell adhesion is stronger than cell-substrate adhesion for this 

geometry. s.b =1mm.  
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Figure 45 : Stress relaxation in monolayers 

(E) Stress relaxation in monolayers. After initial extension with a strain rate of 75%.s-1, stress 

relaxed to ~40% of its initial value over ~50s. At longer timescales, a plateau was reached and stress 

remained constant for up to 400s. (F) Percentage relaxation as a function of time for monolayers 

stretched fast and slowly. Curves averaged over n = 4 measurements show that for slow strain rates 

(dark grey) stress relaxation is reduced from 68 % to 34 % in the initial 30 seconds of relaxation 

compared to fast strain rates (light grey). (G-H) Stress relaxation in monolayers loaded at high 

(75%.s
-1

, G) and low (1%.s
-1

, H) strain rates. (G) Representative monolayer stress relaxation after 

high strain rate loading. Monolayers loaded at high strain rates (75%.s
-1

) had biphasic stress 

relaxations with a high amplitude fast initial phase followed by a lower amplitude slower phase. After 

the first 5 seconds following loading, the relaxation of monolayers loaded at high strain rates could 

be well fitted with the standard linear solid model and yielded an apparent viscosity η~0.3±0.1MPa.s 

(N=6, blue). (H) Representative stress relaxation after low strain rate loading. Monolayers loaded at 

low strain rates (1%.s
-1

) had largely monophasic stress relaxations and the fast response observed in 

response to high strain rate loading was absent. After the first 5 seconds following loading, the 

relaxation of monolayers loaded at low rates could be well fitted with the standard linear solid model 

and yielded an apparent viscosity similar to that of the fast loading rates (p=0.78 when compared to 

one another). 

 

TIME INDEPENDENT MECHANICAL PROPERTIES 

I decided to focus on monolayer mechanical properties at strain rates between 0.5-

5%.s
-1

 that are relevant for embryonic morphogenesis where only very slow 

deformations take place (~0.04%.s
-1

,(81)). To determine the elasticity and ultimate 

strength of monolayers, I acquired stress-extension curves until failure (Figure 44 
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B). For strain rates between 0.5-5%.s
-1

, I did not observe any significant differences 

in measured elastic moduli, indicating that loading was quasi-static (Figure 44). I 

settled on a strain rate of 1%.s
-1

 for my measurements. All stress-extension curves 

shared the following characteristic features: i) a “toe” region where stress increased 

slowly and non-linearly between 0 and ~25% extension, ii) a linear region between 

~25% and ~50% extension, iii) mechanical failure (for extensions >70%), following 

a plateau of the curve. Monolayer stiffnesses were computed from the slope of the 

stress-strain curves in the linear region where monolayer differential stiffness was 

constant (Figure 46 B). Measured stiffnesses averaged E=20 ± 2 kPa, two orders of 

magnitude larger than the elasticity of MDCK cell monolayers probed in the 

transversal direction by AFM (28). The average strain at failure was a remarkable 69 

± 14 % with failure occurring by delamination, suggesting that adhesion of 

monolayers to the test rods was weaker than cell-cell adhesion (Figure 44 C). In 

cyclic loading experiments, monolayer stiffness did not vary significantly with 

loading cycle for small amplitudes (~3%) but did for larger amplitudes (~10-20%) 

(Figure 46 C, D). This suggested that MDCK monolayers underwent partial 

fluidization for large strain amplitudes, consistent with the existence of a threshold 

stress in my creep experiments and reports examining fluidization in single MDCK 

cells (71). 

CELLULAR-LEVEL MECHANICS 

To understand how monolayers could withstand such large deformations, I analysed 

deformations at the cell and tissue level. Monolayer deformations can occur through 

two mechanisms: shape change of the constituent cells, or re-organisation of cellular 

arrangement within the monolayer, a process known as intercalation (169). One 

mechanical hallmark of intercalation is that the tissue-level strain tensor does not 

match the cellular-level strain tensor (81) and therefore I compared tissue-strain to 

cell-strain during extension. 
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Figure 46 : Elastic properties of monolayers 

(A) Dependence of monolayer elasticity on strain rate. The measured monolayer elasticity did not 

significantly differ over a broad range of drive rates (0.005 - 0.05 mms
-1

, 0.5-5%.s
-1

). N= 5 

experiments for each rate. (B) Differential stiffness of monolayers sampled in 10% increments in 

extension did not vary significantly between ~25% and 55% extension. (C) After initial application of 

stress and subsequent relaxation, monolayers were subjected to cyclic oscillations with an amplitude 

of 10% strain while driving length change at a rate of ~1%.s
-1

. As the cycle number increased, the 

slope of the loading phase decreased. (D) Elastic modulus as a function of cycle number for different 

strain amplitudes. For the lowest strain amplitude (~3%), the elastic modulus remained constant with 

increasing cycle number. At higher amplitudes (10 and 20%), the elastic modulus showed a 

significant decrease with increasing cycle number.  
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Figure 47 : Monolayer mechanics at the tissue level 

(A) Using texture correlation, the position of nodes in the blue grid in the monolayer at rest could be 

tracked in the stretched monolayer. s.b=1mm. (B) This allowed computation of the strain fields εxx, 

εxy and εyy. (C) εxx was quasi uniform throughout the monolayer with values close to the engineering 

strain computed from the applied extension (50±6%). εyy was also quasi uniform throughout the sheet 

with average values close to zero (-3±4%). Some contraction was apparent at the edges, typical for a 

material of this geometry. εxy was also quasi uniform throughout the monolayer during extension 

(0±6%). In the graphs, n denotes the number of grid cells that have a given strain. 

 

I measured the tissue-level strain by computing the displacement of a grid of points 

within the monolayer using low magnification images (texture correlation, Figure 47 

A). The tissue-strain εxx throughout the monolayer was tightly distributed around the 

value of the imposed engineering strain (Figure 47 B). In the transverse direction, 

tissue-strain εyy was tightly distributed around zero (Figure 47 C) but displayed a 
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small inward contraction at the outer boundaries. This level of homogeneity in the 

strain distribution within monolayers, suggest that monolayer cellular constituents 

have similar mechanical properties such as elasticity. Indeed, in AFM measurements 

on MDCK cells there is a much smaller variation in the measured Young’s modulus 

than in other cell types such as HeLa cells (29, 144).  

 

Figure 48 : Monolayer mechanics at the cellular level 

(A) 3D isosurface reconstruction of cells within a monolayer before (red) and after (green) extension. 

Cell height decreased with extension (side view: black arrowheads: 0% strain, white arrowheads: 

50% strain) but cellular projected area increased (top view). (B) Cell volume was conserved during 

extension, suggesting that the constituent cells are close to being incompressible. (C-E) Segmented 

images of cells expressing E-cadherin-GFP were used to calculate the cellular deformations before 

and during stretch. (F) The calculated cellular strain matched the monolayer strain near perfectly 

indicating that no intercalation takes place during extension. (G) The orientation of cell long axes 

prior to stretch was widely distributed with a small bias along the x-axis but, during stretch, cells 

orientations were nearly exclusively aligned with the direction of extension. The anisotropy of 

alignment calculated as A = 1 - (% aligned perpendicular)/(% aligned parallel) almost doubled when 

the cells were subjected to 39% strain. 
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Since there was no large contraction of the monolayer in the “y” direction I 

examined the deformation of the cells perpendicular to the monolayer plane. Three-

dimensional isosurface reconstructions of cells within the monolayer during 

extension revealed that the increase in projected surface area of the monolayer 

(Figure 48 A, B, top view, red before extension, green at 50% strain) was 

accompanied by thinning of the cells (Figure 48 A, side view) perpendicular to the 

monolayer plane, thereby maintaining cell volume close to being constant to within 

about 10% of the measured volume (Figure 48). This indicated that the large 

increase in projected surface area was not accommodated by the small magnitude of 

the inward contraction noted at outer boundaries, but rather by preferential thinning 

of the monolayer in the transverse direction. This also suggested that, as expected 

from their cytoskeletal organisation, monolayers have anisotropic mechanical 

properties. During wound healing experiments, monolayers are put under tension by 

the migration of leader cells at the wound edge leading to the highly heterogeneous 

distribution for εxy that guides collective migration of cells within the monolayer 

(103). In contrast, in my experiments εxy was tightly distributed around zero 

presumably due to the uniform displacement applied to the monolayer and the far 

more rapid application of stress. The homogeneity of the strain field demonstrates 

that the cell properties, in particular their stiffnesses, are uniform across the 

monolayer. The absence in suspended epithelia of the typical patterns of cell 

displacements visible on dense epithelia migrating on a substrate (103) confirmed 

the requirement for strong cell-substrate interactions in the emergence of collective 

migration patterns. 

Cellular-level strain was characterised by measuring changes in cellular long axis 

length and orientation from segmented images of monolayers expressing E-cadherin 

GFP (Figure 48) (81). During extension, the cellular-level strain matched tissue-

level strain, suggesting that no intercalation took place. Average long axis 

orientation changed from having a small level of orientation anisotropy at rest, 

possibly due to small magnitude stresses arising after substrate removal, to 

displaying a much stronger anisotropy when the sheet was stretched. Together these 

data show that cultured monolayers extend solely due to shape change of their 

cellular components with no intercalation. Consistent with these mechanical 
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measurements, on the time-scales of the experiments (~5min), microscopy 

examination of the cells did not reveal cell re-arrangement or division. 

SUB-CELLULAR MECHANICS: CYTOSKELETAL DEFORMATION DURING 

EXTENSION 

The cytoskeleton plays a major role in single cell mechanical properties and, in 

tissues, loss of function mutations affecting cytoskeletal and adhesive proteins lead 

to increased fragility. I examined cytoskeletal organisation during monolayer 

extension paying particular attention to protein constituents of adherens junctions 

and desmosomes, key structures in intercellular junctions. 

In adherens junctions, adjacent cell membranes are tethered to one another by 

classical cadherins (E-cadherin in epithelial cells) that are linked intracellularly to 

the actomyosin cytoskeleton thus integrating neighbouring cells into a mechanical 

syncytium (54). Removal of the collagen substrate led to a general rounding of the 

cells and a reduction in projected surface area due to loss of basal adhesion (Figure 

49, Figure 42) but no change in the localisation of E-cadherin was observed. E-

cadherin distribution was not affected by extension (Figure 49 A-C). F-actin 

remained localised to intercellular junctions (Figure 49 D-F) but had a somewhat 

less uniform distribution under strain displaying some enrichment at tricellular 

junctions. Myosin regulatory light chain (MRLC), a component of myosin II whose 

phosphorylation controls contractility, displayed a dramatic change in localisation 

upon removal of the substrate and under strain. Localisation changed from being 

cytoplasmic to punctate and junctional (Figure 49 G-I), reminiscent of myosin 

localisation in embryonic epithelial tissues (18) and suggesting a role for myosin 

contractility in monolayer mechanics. 
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Figure 49 : Subcellular organisation in stretched monolayers 

OC: On collagen, PS: pre-stretch, % indicates the percentage strain (s.b=10 µm). (A-C) E-cadherin 

GFP remained localised to cell junctions in all conditions. (D-F) Life-act GFP, an F-actin marker, 

remained localised at cell junctions throughout extension but appeared less uniform at low stretch. 

(G-I) The regulatory light chain of myosin was primarily cytoplasmic in cells on collagen (G), but 

underwent a dramatic relocalisation to cell junctions pre-stretch (H) and at high extension (I). (J-L) 

The keratin 18 filament network spanned the entire monolayer on collagen (J) and looked largely 

bundled prior to extension (K). Application of stretch induced rearrangement of the filaments, 

suggesting that they served to transmit stress across cell boundaries (arrowhead). (M) Keratin 

filaments (green) formed an intercellular network with nodes at the cell centres (white arrows) that 

linked cells to one another across cell boundaries (blue) in stretched monolayers. (N), keratin 

filaments (green) appeared tensed across cell junctions (blue) perpendicular to the direction of 

extension (white arrows) and bundled (grey arrows) at cell junctions parallel to the direction of 

extension. 
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Desmosomes link the keratin intermediate filaments of neighbouring cells to one 

another forming a second supracellular cytoskeletal network. Genetic mutations of 

keratins or desmosomal proteins result in fragile epithelia (51). On collagen, keratin 

localised perinuclearly with short wavy segments linking cells to one another 

(Figure 49 J-N). After removal of collagen, keratin filaments remained perinuclear 

and, at high strain, filaments became aligned in the direction of stretch. When 

imaged at higher magnification, a keratin supracellular network was clearly visible 

and filaments straddling intercellular junctions appeared taut and aligned parallel to 

the direction of extension (Figure 49 M, N, arrows). This change in conformation 

from wavy at low strain to taut at high strain suggested that keratins are involved in a 

non-linear mechanical response of the monolayer to stretch, as proposed by others 

(37, 43) and consistent with the mechanical properties of isolated keratins and 

keratin networks in cells (43, 45).  

SUBCELLULAR PERTURBATIONS LEAD TO CHANGES IN TISSUE-LEVEL 

MECHANICS 

I examined how perturbations at the molecular scale affected mechanics at the tissue-

scale. The filamentous actin network is a key contributor to cellular elasticity in 

isolated cells and, in monolayers, it is the main component of adherens junctions. 

When I depolymerised the actin cytoskeleton of monolayers with latrunculin B, their 

stiffness decreased by ~50% compared to controls (Elatrunculin=10±6 kPa, p<0.01, 

Figure 50), demonstrating the importance of F-actin for monolayer stiffness. Next, I 

asked if myosin contractility contributed to monolayer mechanics based on its 

localisation to intercellular junctions (Figure 49). Treatment of monolayers with 

Y27632, an inhibitor of rho-kinase mediated contractility, led to a significant ~36% 

decrease in stiffness (EY27632=13±6 kPa, p<0.01). Hence, myosin contractility 

contributes to monolayer elasticity. Ultimate strain did not change with treatments 

affecting F-actin or contractility (Figure 50 C). 
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Figure 50 : The actin cytoskeleton and intercellular adhesion contribute strongly to monolayer 

mechanics.  

(A) Average loading curves for monolayers treated with Latrunculin B (dashed light grey line), 

Y27632 (dashed dark grey line), and EDTA (black line) compared to control monolayers (light grey 

line). (B) Monolayer stiffness was significantly reduced by treatment with latrunculin B, Y27632, or 

EDTA (Ncontrol=12, Nlatrunculin=12*, NEDTA=8**, NY27632=11***, p < 0.01 for all measurements). (C) 

Ultimate strength was not significantly reduced by treatment with latrunculin B or Y27632 but was 

significantly reduced by treatment with EDTA (**). (D) EDTA treated monolayers showed a 

considerable reduction in their adhesion energy density (p<0.01 **).  

 

INTERCELLULAR ADHESION IN MONOLAYERS 

During ultimate strength measurements, control monolayers normally failed by 

delamination from the test rods, suggesting that failure occurred through rupture of 

cell-substrate adhesions. To induce failure through rupture of intercellular adhesions, 

I concentrated stresses by narrowing tissue width by nicking the unstressed sheet 

prior to extension (Figure 51). Under these conditions, failure occurred at local 

strains of 110±18 %, more than doubling monolayer length. Cracks initiated in the 

monolayer close to the nicked region and propagated perpendicularly to the direction 

of stretch across the sheet width. Knowing the monolayer elasticity (E=20 kPa) and 
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choosing the cell diameter a~10 µm as a natural length-scale within the monolayer, I 

could estimate the intercellular adhesion energy density per unit area Γ within the 

monolayer: Γ=aσ
2
/2E=0.07 N.m

-1
 with σ=17±3 kPa the ultimate stress (Figure 52). 

The average force required to separate two cells within the monolayer is 

Fdoublet~Ftotal/N~1.7 µN with Ftotal~202µN the applied force onto the monolayer at 

rupture and N~120 the average number of cells in the narrowed monolayer width.  

Experiments on cell doublets brought into contact for ~30min yield a separation 

force F~200 nN (94), almost 9 times lower than in monolayers, perhaps reflecting 

the less mature intercellular junctions formed during the shorter intercellular contact 

time. 

 

Figure 51 : Images of monolayer fracture 

(A, B) To induce failure through intercellular adhesion rupture in control monolayers, a nick was 

made in the sheet to concentrate stresses (white arrow). Monolayers failed at high strain by crack 

formation (B, 126% strain, arrows). Cracks within the monolayer formed in the region of highest 

local tissue strain (arrows). With EDTA treatment (C-D), cracks formed within the monolayer and 

propagated perpendicularly to the direction of extension (white arrows). s.b=1mm.  
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To verify the well-known importance of intercellular adhesion for monolayer 

mechanics, I disrupted cell-cell adhesion by treatment with EDTA, a divalent cation 

chelator that blocks cadherin-mediated adhesion. Monolayers treated with EDTA 

still retained sufficient integrity to withstand a small strain (<20%) but at moderate 

strain (~25%), cracks formed within the monolayer propagating perpendicularly to 

the direction of stretch (Figure 51). Monolayers had significantly reduced stiffnesses 

and intercellular adhesion energy densities compared to controls (E=0.8±0.4 kPa and 

Γ=8.10
-5

 N.m
-1

, p<0.01 in both cases) (Figure 50 D), quantitatively confirming the 

well-studied role of cadherin-mediated intercellular adhesion in monolayer integrity. 

 

Figure 52 : Estimating the adhesion energy density from experiments 

I derive an estimate of the adhesion energy density in MDCK monolayers by using a standard 

fracture mechanics approach. It consists of comparing the variations of elastic and surface energies 

when the length a of a crack increases by δx. The elastic energy released by the crack growth can be 

calculated from the tissue strain and the tissue stiffness (for simplicity, linearity here is assumed). The 

increase in adhesion energy is Γδx. At failure, the released elastic energy becomes greater than the 

cost in adhesion energy, causing catastrophic crack growth and failure. In an epithelium, the average 

cell length is chosen as the characteristic length scale “a” for the initial mechanical defects (or 

internal crack size).  

 

vii. DISCUSSION 

Using a novel culture system, I give the first detailed characterisation of monolayer 

mechanical properties at the tissue, cellular, and subcellular scales. Live imaging 

during mechanical testing allowed me to relate cellular and subcellular level 

phenomena to tissue level mechanics. I have shown that on short timescales, 
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extension of monolayers results solely from deformation of their constituent cells 

rather than intercalation and monolayers can withstand more than a doubling in 

length before failure through rupture of intercellular junctions. Monolayer stiffness 

were two orders of magnitude larger than the elasticity of their constituent cells 

measured in the transversal direction by AFM (28) in monolayers grown on glass 

substrates, pointing to a large anisotropy in monolayer mechanical properties. The 

actin cytoskeleton accounted for half of the stiffness of monolayers, presumably due 

to its importance in forming intercellular junctions. A closer inspection of the time-

dependent behaviour also revealed that monolayers display complex time-dependent 

rheological properties. As in single cells (71), application of high amplitude cyclical 

strain loading led to partial fluidisation of the monolayers but the exact biological 

mechanisms underlying this behaviour remains unknown. Consistent with 

experiments in embryos and isolated cells (15, 18), myosin contractility contributed 

significantly to monolayer mechanics, as suggested by localisation of MRLC to 

intercellular junctions. Within monolayers, the average force required to separate 

two cells was ~1.7µN, ~9 fold larger than measured in pairs of isolated cells (94), 

perhaps due to the more natural configuration of the cells or the fuller maturation of 

intercellular junctions. Based on these measurements and the contribution of actin to 

the monolayer stiffness, at fracture the actin network in each individual cell bears 

~840nN, comparable to the maximal line tensions of ~400nN borne by stress fibres 

(33). As expected, disruption of cell-cell adhesion led to a dramatic fragilisation of 

cell sheets. Taken together, these data paint a picture of monolayer mechanics where 

cells adhere strongly to one another and therefore can pull strongly on one another 

through myosin contractility, leading to the development of a tissue-level tension 

and as a result higher stiffness. Furthermore, such a process may be self-reinforcing 

with higher tensions leading to myosin recruitment (170) and increased myosin duty 

ratio (171). Imaging of intermediate filaments revealed that their aspect changed 

from wavy to taut with increasing monolayer extension, suggesting that at high 

strains they become load-bearing and therefore may be involved in a non-linear 

mechanical response of the monolayer as previously proposed (37, 43). Such an 

interpretation would be consistent with the fragile epithelium symptoms observed in 

patients with mutations in keratins or desmosomal proteins (51) but will necessitate 

further study. Together my experimental methods pave the way for quantitative 
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investigations of monolayer mechanics at the subcellular, cellular, and tissue level 

and they should be widely applicable to any cell type forming strong intercellular 

junctions. 

During development, embryonic morphogenesis is in large part due to changes in the 

organisation and mechanics of epithelial monolayers. Over the past decade, 

researchers have devised many experimental and computational techniques to study 

the mechanics of morphogenetic events but a detailed understanding has been 

hindered by a lack of tools to directly characterise monolayer mechanics. For 

example, measurements of embryonic epithelial tension by laser cutting rely on 

monitoring tissue recoil, something that depends both on monolayer tension and 

stiffness. Though laser cutting successfully allows for comparative measurements of 

tension to be performed, combining it with my techniques would allow for 

deconvolution of tension and stiffness and hence absolute measurements. In 

computational models of epithelia, the contribution of cytoskeletal components (in 

particular actomyosin contractility) to monolayer mechanics is often accounted for 

by spring networks and line tensions acting in bulk or at intercellular junctions (80, 

159). However, estimating the value of the corresponding parameters has proven 

challenging. Based on my measurements of monolayer stiffness for a range of 

biological and chemical perturbations, suitable estimates of these parameters can be 

obtained. Direct experimental measurements of monolayer mechanics combined 

with computational models will therefore allow for a better understanding of 

multicellular aggregate mechanics. 

viii. SUMMARY 

The main goal of this thesis was to develop a device that could measure the 

mechanical properties of monolayers in the tissue plane. I determined the elasticity, 

time dependent properties and strength of cell monolayers. I achieved these primary 

goals and have made links to the cell cytoskeleton and the architecture of adherens 

junctions that give monolayers their supracellular mechanical properties. Further 

investigation would be required with mutant cell lines targeting intercellular 

adhesion and the cytoskeleton to further determine which structures are load bearing 

and are important in setting monolayer planar mechanical properties. 
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8. CONCLUDING REMARKS 

I have measured the mechanical properties of both single MDCK epithelial cells and 

those of the simple epithelial tissues. In my initial measurements of single cell 

mechanical properties using atomic force microscopy (AFM), I identified that 

pyramidal tips yield elasticity values that are 2-3 fold higher than those obtained 

with spherical tips. This was due to an underestimation of the area of contact 

predicted by the hertz model for low aspect ratio pyramidal tips. In the literature 

there is a broad range of values reported for the elastic modulus of biological 

materials. In particular, there is a large variation between measurements made with 

different experimental tools on the same cell type. Modifications to current methods 

such as using spherical AFM tips are important to standardise mechanical 

measurement protocols, in order to obtain comparable data between experimental 

techniques.  

Using AFM I found that the Young’s modulus of MDCK cells to be ~400Pa when 

probed at small strain. This value was heavily dependent on the integrity of the actin 

cytoskeleton. However, this value is not necessarily the most informative 

measurement, as in most physiological cases monolayers and simple tissues are 

deformed in the plane. Currently experimental tools to probe the planar mechanical 

properties of cell monolayers are lacking and hence I developed methods to fill this 

gap. 

MDCK monolayers were grown onto thick collagen gels and used large AFM 

indentation measurements to measure the monolayer-gel composite mechanical 

properties. I have shown this measurement protocol to be sensitive to the 

establishment of intercellular junctions and the net monolayer tension. However, I 

did not quantitatively evaluate the level of tension independently from the monolayer 

elasticity. This investigation would benefit from further analysis of the indentation 

response of composite materials to large indentation and perhaps a finite element 

model to better interpret the data. Despite this limitation, I have shown that this 

method can yield valuable information about the mechanical properties that coincide 

with the formation of adherens junctions. Due to the ease of operation of AFM, time 

resolved measurements of the mechanical properties are easy to perform. Since cells 
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can be replated onto the substrate, this method offers a reference measurement just 

after replating, where no intercellular junctions have been established as a baseline 

value. 

In parallel with this method I developed a novel tool to stretch monolayers directly in 

the monolayer plane. Using this technique I have shown that monolayers display 

non-linear elastic and complex rheological properties. Tensile testing of monolayers 

yielded an elastic modulus that is ~20 times larger than the value obtained via AFM 

measurements. Furthermore monolayers exhibited increased “fluid like” behaviour 

when exposed to large stresses. This type of response has previously been reported in 

single cells in response to stretching of their substrate (71). 

The reason for the increased elastic modulus when measuring in the monolayer plane 

is due to the subcellular structures that are stimulated with this type of loading. 

Epithelial cells form actin rich intercellular junctions that are highly contractile. 

Actin is known to be one of the main determinants of the mechanical properties of 

single cells, and hence actin rich structures are important mechanically. AFM 

indentation cannot probe the mechanical properties of intercellular junctions and 

hence their mechanical contribution is often overlooked. Furthermore, I have shown 

that the intermediate filament network becomes taut between cells and may 

contribute to monolayer mechanical properties at high strain. Again this could be 

overlooked in indentation measurements where strains are purposefully kept small. 

One of the most interesting results of these measurements was the ability of 

monolayers to accommodate large levels of strain without mechanical failure. 

Specialised adhesion structures interface the cytoskeletons of monolayer constituent 

cells endowing monolayers with a high resistance to fracture. 

Although much is now known about the mechanical behaviour of single cells and 

whole organs, comparatively less is known about the mechanical behaviour of 

simple multicellular aggregates. There have been some seminal advances in 

understanding aggregate mechanical behaviour, particularly in their collective 

migration (96, 103, 172) and the coordination of forces during development (81, 

173). The work presented in this thesis provides one of the first mechanistic 

characterisations of simple epithelial tissues, and provides links with the biological 
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determinants of monolayer mechanical properties. This data will be highly valuable 

for computational studies of epithelia that require calibration with experimental 

values. The methods presented in this thesis pave the way for a new level of tissue 

characterization. By bridging across the relevant length-scales and time-scales these 

tools provide a unique foundation on which to build a more general and accurate 

understanding of tissue physiology and pathologies. 
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9. FUTURE WORK 

ADDITIONAL DESIGN MODIFICATIONS TO THE MONOLAYER STRETCHER 

 

Optimising the imaging setup 

The device design and described in chapter 7 addresses several of the key 

requirements to measure monolayer mechanical properties. The one major 

disadvantage is that different devices had to be created to image the cell monolayer 

at high magnification and to perform mechanical measurements. This was largely 

due to the working distance limitations of inverted microscope high magnification 

objectives. Force measurement devices had to be created with enough clearance from 

the bottom of the petri dish so that there was no physical contact with the 

cantilevered beam. This would result in friction and an overestimation of forces. 

There are two possible solutions to this problem. Firstly, with further development 

the whole design with the macroscope could be made smaller allowing for enough 

room for a top down dipping objective to be used to image the monolayer. This 

would remove the need to use inverted microscopes and associated problems with 

working distance. Secondly, force measurement devices can be flipped over in the 

same way as for the high magnification devices but a spacer used to maintain a 

specific level of clearance from the bottom of the petri dish. 

Long timescale measurements 

One of the main problems with long timescale measurements with these devices is 

delamination of cells from the testing rods. On long timescales monolayers are 

contractile, and this contractile force increases the degree of delamination. In order 

to solve this problem, one of two strategies can be adopted. Firstly, the area of 

contact between the monolayer and the test rod can be increased in comparison to the 

suspended monolayer. This reduces the stress at the point of contact with the test rod 

and hence the degree of delamination. This can be accomplished by cutting away 

part of the monolayer that is suspended as described in chapter 7, or by increasing 

the area of the extremities of the test rods that cells are cultured onto. 
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Short timescale measurements 

In the described method forces are measured optically through the deflection of a 

cantilevered beam. The rate of sampling is hence limited to the speed at which the 

camera can acquire images and process them. For short timescale measurements on 

the order of 10ms, this is a limiting factor. By modifying the system to incorporate a 

high speed force transducer measurements can be obtained at a much higher 

sampling rate, which is necessary to observe fast relaxation dynamics such as the 

redistribution of pressure throughout cells. 

CORTICAL POLARISATION GUIDES ORIENTED CELL DIVISION 

In collaboration with Julien Bellis, we have shown that cells within monolayers that 

are under stretch have oriented cell divisions. This is an interesting observation in the 

context of embryo mechanics and development, where cell division could serve to 

relax tissue level stresses. By stretching monolayers with the system that I have 

described in chapter 7 and immunostaining layers, my preliminary results suggest 

that cell shape elongation causes cortical accumulation of proteins such as Numa and 

Gaplhpai that orient the mitotic spindle along the cell long axis. 

FRACTURE MECHANICS OF EPITHELIAL LAYERS 

In chapter 7 I have made initial characterisations of the fracture mechanics of 

epithelial cell monolayers. By cutting away part of the layer I created a critical crack 

that propagates through the monolayer, and estimated the adhesion energy density. 

Cutting the cell layer in this fashion is not particularly accurate and characterising 

fully the fracture mechanics of these layers requires a different approach. By 

interfacing the setup with a laser cutting system, the whole monolayer could be 

placed under a constant stress and single cell junctions cut to relieve stress. This 

could enable for the first time, measurement of the stress along intercellular 

junctions quantitatively through the stress released at the monolayer level. 
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