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Slngle'm()de OQUCaI Fiber OQUCaI Fiber Model @ time harmonic fields (with angular frequency w)
€ arbitrary radial refractive index profile n(r)
, r @ cylindrical waveguide Scalar wave equation & direction of propagation is along the z-axis
L\ B @i‘g & circular symmetry © pis the propagation coefficient
9 \>/) /) e € radially inhomogeneous AY +k2n?(r)¥ =0 @ Kk, is the free-space wavenumber
refractive index profile
€ Infinite uniform cladding
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Figure 1. Schematic refractive index profiles: d2 1 d 5 9 m2 5 Boundarv COndItIOnS:
(a) infinitely extended parabolic profile; (b) step-index profile; (c) truncated parabolic profile; (d) arbitrary profile —2 +——+ kO N (I’) — —2 — ﬁ Rmn (I’) — O ] o
dr r dr r & fields are finite at the core center and
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Galerkin Method Basis functions: Laguerre-Gauss polynomials Laguerre-Gauss polynomials
Expansion in terms of basis functions [1] Y nl T2 w2y € form a complete discrete set of orthonormal functions
b, (X(r)) = > | exp(—x(r) / 2)X(r) L, (X(r)) © satisfy the boundary conditions
_ﬂro (n T m)'_ & represent the modal eigenfunctions for the infinitely

(1,0) = Y e (r) exp(-imo)

L (x) are the generalized Laguerre polynomials extended parabolic profile in circular waveguides (Figure la)
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V is the normalized frequency and X(r)=V (r/ro)

n2(r)_%_ﬁ2 Rmn(r) =0

Matrix eigenvalue problem & the eigenvalues provide the propagation coefficients

o — . . for the given value of m
€ A s symmetric and

_ _ € the components of the corresponding eigenvector
has purely discrete real eigenvalue spectrum represent the expansion coefficients c,
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The technique is also valid for multimode fibers

€ simplicity of Laguerre-Gauss basis functions allows

Dispersion Characteristics A Q’A A
ahn

dg> . dA to analytically determine —

i dp =C —C do ' dw’ dow’
© the group slowness, z,, dispersion, D, and dispersion slope, DS, % -S/km]:% do  do e d*c are the first and second derivatives
are proportional to the first, second and third order derivatives ol s / )] 2rc d’f d’g2  (d’A dA de dw dw?
of the propagation coefficient, 3 with respect to frequency (or | PS (nm- m)]__ 12 dw? do? =C ( a)szZC dodo of the eigenvector
wavelength) correspondingly dD . .
Ds[ps/(an -km)]z— 427 43A 12A) de dA dp? ) d% € rather laborious at programming stage
€ to define the derivatives of the propagation coefficient, the da P :CTEd 3jc+30T£d Zjd +3cT(d — de . © thereward is more accurate and faster evaluation
matrix equation is differentiated analytically repetitively of the dispersion characteristics
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_ _ _ Shigeela s e S, o) 1 i, LI Figure 4. Comparative dispersion characteristics
Index proflle and few-mode fibers _ _ o of exemplary single-, double- and triple-clad fibers:
Double-clad fiber pure SiO3 4.2 ym, 5.2 um Fluorine, 4.5%, 1.08% (a) group delay; (b) chromatic dispersion;
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riple-clad fiber pure S04 and 15 um 1131% of the fiber designs are given in the table;

the triple-clad fiber was designed in [3]
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