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Single-mode Optical Fiber time harmonic fields (with angular frequency ω)

arbitrary radial refractive index profile n(r)

Optical Fiber Model

y r cylindrical waveguide
circular symmetry

arbitrary radial refractive index profile n(r)

direction of propagation is along the z-axis

β is the propagation coefficient
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β is the propagation coefficient
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refractive index profile
infinite uniform cladding

m is the azimuthal mode number
n is the radial mode number
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Boundary conditions:

fields are finite at the core center and

Figure 1. Schematic refractive index profiles:

(a) infinitely extended parabolic profile; (b) step-index profile; (c) truncated parabolic profile; (d) arbitrary profile
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decay to zero as r → ∞

(a) infinitely extended parabolic profile; (b) step-index profile; (c) truncated parabolic profile; (d) arbitrary profile
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Basis functions: Laguerre-Gauss polynomialsGalerkin Method
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Laguerre-Gauss polynomials

form a complete discrete set of orthonormal functions
Expansion in terms of basis functions [1]
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form a complete discrete set of orthonormal functions

satisfy the boundary conditions

represent the modal eigenfunctions for the infinitely

are the generalized Laguerre polynomials1
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represent the modal eigenfunctions for the infinitely

extended parabolic profile in circular waveguides (Figure 1a)

V is the normalized frequency and
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Matrix eigenvalue problem

A is symmetric and

the eigenvalues provide the propagation coefficients β
for the given value of m
the components of the corresponding eigenvector

dr r dr r 

A is symmetric and
has purely discrete real eigenvalue spectrum

the components of the corresponding eigenvector
represent the expansion coefficients ci2Ac c

The technique is also valid for multimode fibers
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Dispersion Characteristics
simplicity of Laguerre-Gauss basis functions allows

Dispersion Characteristics
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of the propagation coefficient, , with respect to frequency (or
wavelength) correspondingly

to define the derivatives of the propagation coefficient, the
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of the eigenvector

rather laborious at programming stage
to define the derivatives of the propagation coefficient, the
matrix equation is differentiated analytically repetitively
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of the dispersion characteristics

Numerical Results
Conclusions ReferencesConclusions

the approach provides more accurate results compared to
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Figure 3. Refractive index profile for the triple-clad fibre [3]
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FIBER PARAMETERS

can be used in the case of any arbitrary radial refractive

index profile and few-mode fibers
Figure 4. Comparative dispersion characteristics

of exemplary single-, double- and triple-clad fibers:
(a) group delay; (b) chromatic dispersion;

(c) dispersion slope; the parameters

Single-clad fiber pure SiO2 3.5 μm Fluorine, 1.782%

Double-clad fiber pure SiO3 4.2 μm, 5.2 μm Fluorine, 4.5%, 1.08%

(c) dispersion slope; the parameters
of the fiber designs are given in the table;

the triple-clad fiber was designed in [3]

Triple-clad fiber pure SiO4
4.2 μm, 8.25 μm, 

and 15 μm

Fluorine, 1.782%, 0.509%, and

1.131%
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