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Steady periodic and solitary waves propagating in a twoedisional fluid bounded above by a flexible
sheet - which may be viewed as modeling an ice sheet - aredeoesi in deep water. The nonlinear
elastic model is based on the special Cosserat theory ofdélgséic shells proposed by Toland (2008) for
this problem. Numerical solutions are computed via confdrmapping and a pseudo-spectral method.
New solitary waves are found by using a continuation metloditow the branch of elevation waves.
The results extend Guyenne and Parau’s findings (GuyeriP&&u (2012)). Itis shown that, for periodic
waves, far along the branches the profiles become overhgiagiah ultimately approach configurations
with a trapped bubble at their troughs.

Keywords flexural-gravity, elevation branch, overhanging waves

1. Introduction

The flexural-gravity (FG) wave problem is concerned withadiefations of a thin elastic sheet on the
surface of a fluid as it responds to and generates hydrodyrexuitation. Both bending and gravity act
as restoring forces. FG wave theory can be applied in ofésdod polar engineering in the study of large
floating structures (such as floating runways) or to undedstiae response of floating ice sheets, either
used as runways or roads or responding to oceanic waves. F&s\aee often generated by moving
loads such as vehicles or a landing aircraft. Large-ang#itdeflections of the ice sheets, including
fully localized structures (Wilson (1958)) and periodicwea (Hegarty & Squire (2002)), have been
observed in the experiments. In order to understand foresponses, it is crucial to know the free
response of the system, such as periodic and solitary waMesse will be considered in the highly
nonlinear regime in this paper.

For simplicity we assume that the flow is two-dimensionalisoid and irrotational. The large
floating structure or ice sheet resting on the top of the flaiithodeled as a thin elastic plate responding
to bending forces, while its inertia and forces due to sltvietg are neglected. For the ice sheet problem,
this is a reasonable approximation. The pressure jumpeagkbytthe solid due to flexing can be modeled
with varying levels of complexity. The simplest model is aelar Euler beam theory whereby the
pressure jump i© 3¢, wherel is the free surface graph. The flexural rigidity coefficienDi =
ﬁ, whereE is the Young’s modulusy the Poisson ratio and the thickness of the plate. A

nonlinear model often used is the Kirchoff-Love (hencdfaenoted as KL) model where the pressure
jump is equal toD 82k wherek is the curvature of the sheet. There are many results for @e F
problem with the KL model. Periodic waves were firstly stubliyy Forbes (1986) and Forbes (1988),
and extended to large amplitude by Vanden-Broeck & Pa28a1). Generalized solitary waves were
considered by Vanden-Broeck & Parau (2011) in the longen@gime in a fluid of finite depth and
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by Milewski et al (2011) in the vicinity of the phase speed minimum in deep wdteParau & Dias
(2002), free solitary waves were considered in water ofdidigpth. Using the normal form analysis,
they found there was a critical depth above which there wersmall amplitude solitary waves since
the associated nonlinear Schrodinger equation (NLS) atefocusing type. In other words, free
solitary waves bifurcating from infinitesimal periodic ves/can only exist in relatively shallow fluids.
Most recently, Milewskiet al (2011) showed that solitary waves also occurred in deeprnaie they
were of a new type in that they arose along a branch of gemedatiolitary waves of finite amplitude.
These latter two references also considered extensivefptbedproblem modelling a moving load on
floating ice.

Although the KL model is widely used in the literature, it dogot appear to have an energy for-
mulation. It also does not allow the computation of overtiaggvaves of large amplitude. Recently,
Toland (2008) and Plotnikov & Toland (2011) used the Codsbery of hyperelastic shells satisfying
Kirchhoff’s hypotheses to arrive at a system with variadilstructure governing the FG problem. In this
case, the pressure jump due to bending across the elasticasitits corresponding potential energy
are of the form

D (ass;<+%:<3), /szs (1.1)

wheres is the arc-length. Both this model and the KL model reduceh® Euler beam model for
small surface deflections, however this model is expressquliiely geometric terms and therefore
does not preclude complex surface shapes. Henceforthsmp#per all computations will use this
model. Toland (2008) has rigorously proved the existend&®periodic waves for it and, numerically,
Blyth et al (2011) studied periodic waves in the absence of gravity. €Bog & Parau (2012) have
computed both depression and elevation solitary waveshaiist below the minimum of phase speed
at finite amplitude in deep water. Milewskt al (2012) have extended the two-dimensional problem
modulational analysis to the arbitrary depth three-dirferad problem for all three elastic models.
They obtain Benney-Roskes-Davey-Stewartson (BRDS) nadidunl equations and contrast the three
models in the weakly nonlinear regime. Whilst they find thed models are qualitatively similar at
small amplitude, this is of course not true for the large atmgé solutions considered in this paper.

In this paper, we study large amplitude FG travelling wawetsiep water using the nonlinear elastic-
ity model proposed by Toland (2008). Both periodic and aofitvave bifurcation branches are followed
to highly nonlinear regimes. For this model there are bathiaion and depression solitary waves (de-
pression waves are waves whose midpoints lie below the meager tevel), however in Guyenne &
Parau (2012) the branch of elevation waves was not fulpla@®d. Hence, we extend their and show
that these waves’ branch includes the side-by-side asgavhbeveral depression solitary waves, as a
“snaking” bifurcation is traced. For periodic waves, we\pde evidence for overhanging waves which
ultimately approach a limiting configuration with a freefsue profile touching itself at one point.

This paper is structured as follows. In 82, we briefly preseadnformal mapping technique used
for the steadily travelling potential flow wave problem. I8,8ve present the numerical results for
solitary waves. Periodic waves, mainly focusing on the baaging waves, are discussed in 84, and
some concluding remarks are presented in 85.

2. Formulation

Consider a train of waves propagating steadily at a cong&datity c on the surface of a two-dimensional
fluid of infinite depth and bounded above by an elastic shegtoducing cartesian coordinates with



Two-Dimensional Highly Nonlinear Flexural-Gravity WaviesDeep Water 3o0f12

gravity acting in the negativg-direction, and taking a frame of reference moving in x@irection
with the wave results in a steady flow characterised by thecitgl (—c,0) asy — —o. The fluid is
assumed to be ideal and the flow to be irrotational. We canititesduce a potential functiog, such
that the fluid velocity fieldu,v) = (—c+ @, @ ). With the displacement of elastic sheet is designated
byy = {(x), the governing equations are

Gx+@y=0 for —o <y < (¢
®——¢c @—0 asy — —oo

(2..1)
—(—Cc+ @)+ @ =0 aty=¢

J(@+ @) —co+ i+ ($+0k) =B aty=¢

whereds = —% > in Cartesian coordinates. Helds the Bernoulli constant. For solitary waves , the

V1+4%

flow approaches a uniform stream characterised by a consthtity (—c, 0) in the far fieldx — +co.
Choosingy = 0 on the free surface in the far field, it follows from the laktlte equations (2..1) that
B= <. For periodic wavesB can be determined by choosigg= 0 as the mean water level, i.e. by
imposing

1 rl/2
; /4/2 Zdx =0 2..2)

wherel is the wavelength. The system (2..1) has been nondimenigieday choosing

D \1/4 D \1/8 D3g\ 1/8
o) G () 2-3)
as the units of length, time and potential respectively. egris the density of the fluid and is the
acceleration due to gravity.

We shall solve the problem by a boundary integral methode&éapproaches have been developed
over the years (see Vanden-Broeck (2010) for a review antidureferences). Here we follow the
approach used by Dyachen&bal (1996) and later by Milewsket al (2012) for the FG problem. The
main idea is to conformally map the physical domain into tivedr half-plane of a new complex plane
whose horizontal and vertical coordinates will be denoted landn. The map itself can be defined as
the solution of the boundary value problem

Yeg +Yqn =0 for—eo<n <0
y=Y(,n) atn=0 (2..4)
y~n asn — —o

whereY (&) = {(x(&,0)). The harmonic conjugate variabké,n) is defined through the Cauchy-
Riemann relations for the analytic functiat€,n) =x(&,n) +iy(&,n). In the transformed plane, we
defineX (&) = x(&,0), ®(&) = @(&,0) andW(&) = Y(&,0), wherey is the harmonic conjugate of the
potentialg. From elementary harmonic analysis one obtains

Qg =[], X=&-Y] (2..5)
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where.Z is the Hilbert transform with the Fourier symbagn(k), i.e.,
HNf] = F 1 isgnk).F[f]]. (2..6)

where.Z is the Fourier transform ang? ! is its inverse. By application of the relation (2..5) and
chainrule, the kinematic boundary condition is reducethéosimple expressio#; = 0 (i.e. the stream
function is constant on the free surface), and the dynamiotdary condition to

2

c
55+ Y+4 =B (2.7)
whereJ £ XEZ +Y§2 and.# takes the form
 Kxx {xQxxKx K3 . 1 rKee Ke 3
‘”*1+Z3*(1+52)2+2*2{J +(J)£+K} 2..8)

and
_ Reer — XegYe

K J3/2

(2..9)

Equation (2..7) together with; = 1 — JZ’[Y¢], completes the formulation as a system of integro-
differential equations. The unknowns are solvingndY in the case of solitary waves. For periodic
waves, we takd3 as an unknown and (2..2) needs to be satisfied. In all conipnsathe waves are
assumed to be symmetric with respeckte 0. The nonlinear algebraic-differential equation (2.s7) i
solved using a collocation method with a set of cosine basistfons whose coefficients are solved with
Newton’s method. That is, we set

N

Y(&)= ' jé /L
( J;aJCOS(JTT /L)

with the a; as unknowns to be solved through Newton iteration. The émug?..7) is evaluated on
uniform grid points in[0,L] with the Hilbert transform and derivatives obtained by gsiine Fourier
multipliers, while the nonlinear terms are computed in theggical space. For solitary waves the period
L is chosen sufficiently large such that the solution doesimange whet is further increased whilst for
periodic waves we choode= 17 (see Section 4. is also chosen sufficiently large so that the solution
no longer changes N is increased. The method was used successfully in Mileeiskii(2012).

3. Solitary Waves

Some insight into the problem can be gained by first considdimear periodic waves. The equations
(2..1) have the exact “trivial” solutiopp = —cx, { = 0 which corresponds to a uniform stream. Writing
@ = —cx+ ¢ and linearising (2..1) by assuming tHa{ and|{| are small leads to periodic waves with
speed given by the dispersion relation (see for exampler&gual (1996) for details)

¢ = %+k3 (3..1)

wherec is the phase speed akdhe wavenumber.
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The phase speed has a global minimugac* for k = k* where

1/4 /
Kt — (%) ~0.7598 ¢ =1/3%1 +3°1 ~1.3247 (3..2)

Whilst periodic nonlinear waves can bifurcate from dqysolitary waves bifurcate generically from
particulark corresponding to extrema of phase speed. There, the gragu $p equal to the phase
speed, a necessary condition for the existence of weakllingam solitary waves. If the extremum
occurs at finitek, the solitary waves will generally have decaying oscilipttails. Whether or not
solitary waves bifurcate from a finiteextremum can be decided using normal form analysis. Assymin
¢ = eA(ex) € f-c.c. +0(g), c = c* + £2C+ 0o(£?), wheree is a small parameter, one can show that
the envelope of the carrier oscillation is governed by tleady cubic nonlinear Schrodinger equation
(NLS)

. 3/8 1 98,02

K'CA+ TAXX = ﬂ'?’ |AI“A (3..3)
The derivation is well known, so we omit the details here. ab de found in Parau & Dias (2002),
and a more complete derivation of the time dependent NLSteguean be found in Guyenne & Parau
(2012) or Milewskiet al (2011). Since (3..3) does not support localised soluti@n the corresponding
time-dependent NLS is defocusing) it predicts the nonterise of small amplitude solitary waves.
Nevertheless, Milewsket al (2011) and Guyenne & Parau (2012) found solitary waves Wiitite
amplitude and < ¢* for the full potential system (2..1).

The amplitude-speed bifurcation diagram for both elevediod depression solitary waves are shown
in Figure 1. The depression branch mostly reproduces thet ifSGuyenne & Parau (2012) (although
we extend the branch continuously de= 0). It is clear from the figure that both branches start at
finite amplitudes foic = ¢* ~ 1.3247. This is different from the well-known case of graviigpillary
solitary waves which bifurcate from a train of infinitesinpariodic waves (see Vanden-Broeck (2010)
for a review). Typical profiles of the depression solitaryweare shown in Figure 2. As in Guyenne
& Parau (2012) we find that as the speedecreases, the depression solitary waves become steeper,
eventually with an overhanging profiles. Further down theveuthe profile develops a point of contact
with a “trapped bubble” at the trough. For even smaller valofee the profiles become self-intersecting
which is nonphysical, but mathematically well-defined. ®ioins can be computed for all values of
¢ down to a static state = 0 at which point there is no flow and the only fluid effect is hystatic
pressure. (Of course, the solution branch continues syrivaly for ¢ negative.) A similar trapped
bubble structure has also been found in capillary-graviyes by Vanden-Broeck & Dias (1992). In all
the computations of Figure 2, 2048 Fourier modes were usédrenphysical domain size is changed
appropriately for the sake of accuracy depending on theydeftthe solution.

The branch of elevation solitary waves, which was not exgaldully in Guyenne & Parau (2012), is
far more complicated. The detail of the amplitude-speeadrbétion diagram are shown in Figure 3, and
same curve on energy-speed axes are shown in Figure 5. Thgyeriesteady solitary waves is given

by

c 1 1 (YeeXe — XegYe)?
Energy — —Z/YdEnLE/YZngEJrE/( & “‘Js/z‘f“‘ & ge. (3..4)
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Fic. 1. Elevation (solid curve) and depression (dashed curve)chemof solitary wave solutions. More detail of
the elevation wave branch is shown in Figure 3.

Fic. 2. Free-surface profiles of depression solitary waves, tomar the bifurcation poirt (top) to the static state
¢ = 0 (bottom). From top to bottonc = 1.3,c = 0.7,c = 0.3, c = 0.0nly part of the horizontal domain is shown.
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Fic. 3. The “snaking” bifurcation of the elevation branch of salitavaves. Starting from the ‘star’ and following
the path) — @ — @ — @ — (. The waves corresponding to the circled numbers have the paopagation
speedc = 1.25 and the profiles are shown in Figure 5. There is a turningtfi@tween every two adjacent circled
numbers. The sharp nature of the second turning point @dlas a ‘square’) is shown in more detail.
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Fic. 4. Typical profiles of the elevation solitary waves at speed1.25. From top to bottom, the profiles correspond
to @D — ® labeled in Figure 3 respectively.
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Fic. 5. Energy-speed bifurcation diagram of elevation solitaryega The curve begins from the star and is com-
puted up to the circle. The path has been labeled with arrde dashed line represents the translating speed
¢ = 1.25, and the intersection points with solid curve corresptorttie circled number&) — © in Figure 3.

The curves exhibit multiple turning points. Such multiplening points have also been found in
the bifurcation diagram of the elevation capillary-grgwsblitary waves by Diagt al (1996). The
profiles corresponding to the labelled points on the curveshown in Figure 4. The elevation wave
numerical computations required a large number of Fouriedes (typically 8192) and domain size
(typically L=400) since the solitary waves can be very brodthe computations were stopped after
passing through the forth turning point when two almost cletey separated depression solitary waves
appear. At this point the solution becomes very sensitivesfgmably since the waves are far apart their
separation is sensitive to perturbations) and more aceuoahputations became prohibitive. At turning
points the parameter along the curve had to be changed, antlemeated between usidd0) andc in
order to complete the curve.

From the profiles in Figure 4 and the corresponding energyrd¢dtion diagram in Figure 5, one
sees that the solutions either have two or four main troujlegg each “arm” of the energy bifurcation
figure the number of troughs doesn’t change and the sepadititance between the troughs is the main
qualitative change in the solutions. The profi@sand @ have approximately twice the energy @f
@ and(® since they have double the number of similar amplitude thsug

4, Periodic Waves

In this section we use the nonlinear elasticity model of mdI€2008) to calculate weakly nonlinear and
fully nonlinear solutions for periodic waves. Such resulese previously computed by Vanden-Broeck
& Parau (2011) for the KL model. For simplicity we assumatttihe water is of infinite depth. Solutions
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for weakly nonlinear periodic waves can be constructedyaically by using a Stokes expansion, i.e.
an asymptotic expansion in powers of the wave amplitudetowi|1915) used the Stokes expansion to
study capillary-gravity waves and his results showed thatpntrast to pure gravity waves, there may
be many families of solutions with a given base period.

To construct “Wilton ripples”, we introduce a small paraeretwhich is a measure of the amplitude
of the wave, so that the wave reduces to a uniform streagn-a® and write the expansions

¢ = oxtep @yt
{ = €L+ +e%G+ -

C = Cop+&Ci+e%Cr+e%Cca+--

B = Bo+£Bl+£ZBz+SSB3+"'

Substituting this ansatz into the system (2..1) and eqggtawers ofe lead to a succession of linear
systems. These linear systems can be solved, although thenaiof algebra increases rapidly as the
order increases. At leading order,

{1(x) = coskx (4..1)
@1 (x,y) = coe¥sinkx (4..2)
3= %+k3 (4..3)

The definition ofe is such that the coefficient of ckgin (4..1) is 1. The leading order solution (4..1)-
(4..3) is the solution to the linearized problem and (4 s3hie dispersion relation (3..1). It has a global
minimum defined by (3..2) and there are particular valudsfof which linear waves of wavenumbers

k andmk travel at the same speed. nf> 2 is an integer these waves can be used to construct other
solutions with the same period as (4..1). To see this, write

o 1 _ 1 3
=tk = mk+(mk) (4..4)

and solve fok. This leads to

k 1 v 4.5

- |mwermr D) @.5)
Therefore when (4..5) is satisfied the solutions (4..1) d@n@) need to be replaced by

{1(X) = coskx+ Apcosmkx (4..6)

@L(x,y) = co€¥sinkx+ Amcoe™Ysinmkx (4..7)

whereAn, is a constant. The value @&, is then found at higher order in the expansions in power. of
The existence of many families of solution comes from th¢ tlaat the value of\y, is not unique. For
example calculating solutions up to second order showd\ﬂmati%. The details of the calculations are
identical to those presented by Vanden-Broeck & Paraa12fr the KL model since the two models
agree up to second order. For> 2, it is necessary to go to higher order to impose the soltgbil
condition for Ay, and the Wilton ripples no longer agree even at small amg@ituBigure?? shows
typicalm = 3 profiles. Clearly, at large amplitudes, such profiles ageloverturning points.

Lastly we consider the limiting configuration of very steegripdic waves. In the fully nonlinear
regime, overhanging profiles are typical in water wave @pid in the presence of additional surface
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¢=1.5656, y(0)=0.7247

) — — = ¢=1.7015, y(0)=0.9337
sl y(0)

- ¢=1.8046, y(0)=1.4913

Fic. 6. Typical profiles of large amplitude Wilton-like periodic fieral-gravity waves fom = 3. Note that one of
the profiles is overhanging.

effects such as surface tension. This has been found aradlytfor pure capillary waves (Crapper
(1957)) and computed numerically for capillary-gravityipédic waves (see Vanden-Broeck (2010) for
a review). Furthermore, these overhanging waves ultimagbroach limiting configurations in which
the free surface touches itself at one point forming a “teppubble”. Forbes (1988) suggested that
overhanging waves should also occur in the FG problem. Tasaonfirmed numerically by Vanden-
Broeck & Parau (2011) using the KL model, however, due tmerical difficulties, the computations
had to be stopped much before a profile with a trapped bubbdergached. Overhanging waves up
to the configuration with a trapped bubble, and beyond thgthysical self-intersecting profiles, can
easily be computed when the nonlinear elastic model of To{2A08) is used.

As an example of our numerical experiments, we chasagthe wavelength to avoid the critical
values (4..5). The results are presented in Figure 7, anel @®ained with 512 grid points (256 Fourier
modes) and\¢ ~ 0.012, and are unchanged within graphical accuracy when tirbaciof grid points
is increased. As propagating speedecreases, the periodic waves demonstrate overhangirgustr,
and finally reach static configurations corresponding+o0 where the only hydrodynamic effect is the
hydrostatic pressure. The self-intersecting structutberstatic state has been partially enlarged in the
bottom graph for clarity.

5. Conclusions

An efficient numerical procedure to compute nonlinear stdékckural-gravity free-surface flows is im-

plemented. The flow is assumed to be potential and a simplgseceative nonlinear elastic model is
used to model the floating structure. Solitary and periodizeg are computed. New elevation solitary
waves are found. These complement the results of Guyennar&R2012). For periodic waves, the
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Fic. 7. Typical profiles of overhanging structure in periodic flexiugravity waves. Top: profiles with different
propagating speed,= 0.9 (circles),c = 0.7 (dot-dashed curved,= 0.5 (dotted curve)¢ = 0.3 (dashed curve) and
¢ = 0.1 (solid curve). Bottom: the periodic waves reach ‘limiticgnfiguration corresponding to the static state.

present elastic model enables the computation of overhgngaves even beyond the limiting configu-
ration where the free surface touches itself at one pointil3tMhis beyond the scope of this paper, we
believe that the stability problem for both branches oftaogjiwaves could be particularly interesting.
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