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Abstract. A problem is formulated about how many unit-radius tubes can touch
a ball of given radius from the outside and from the inside. Upper bounds for the
maximum numbers of contacts are obtained for both interior and exterior contacts.
It is also shown that the maximum number of unit-radius tubes touching the same
orthogonal cross-section of a particular tube of radius P is [π(arcsin(P + 1)−1)−1]
and if the number of contacts takes on its maximum, then all tubes are locally
aligned.
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1. Introduction

The question of how many unit-radius perfect tubes can touch a given
ball may be considered as a generalization of a question raised by
Kuperberg, as attributed in [12] and [4], which in turn relates to the
classical “kissing number” problem. The Kuperberg problem is to de-
termine the maximum number of unit-radius infinite cylinders touching
a unit-radius ball. To the best of the author’s knowledge, the problem
is still open: it is easy to find configurations with 6 cylinders and it was
proved that 8 cylinders cannot be in contact with the ball.

An approach similar to that employed by Braß and Wenk [4] makes
it also possible to obtain the estimate of the contact numbers for perfect
tubes placed either outside or inside a sphere of arbitrary radius. The
perfect tube is a basic notion in the ideal knot problem [20].

The paper contains three main parts, each devoted to a particular
arrangement of bodies (perfect tubes and a sphere) in three-dimensional
space. The first case is considered in Section 3 where the unit tubes are
assumed to be in contact with a ball of arbitrary radius. A lemma is
proved about an extremal property of a tube of a special shape (called a
bialy). On the basis of this result, an upper bound estimate is obtained
and formulated as Theorem 1. A connection of this construction with
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2 E.L.Starostin

the Tammes problem [21] is established and discussed. This allows one
to obtain additional estimates.

The methods of Section 3 are applied in the next section to tubes ly-
ing inside a sphere of greater radius and touching the spherical surface.
The result is stated as Theorem 2. A duality property is established
between the estimates for the exterior and interior of the sphere. Sec-
tion 5 considers another type of problem when the central sphere is
replaced by a tube of an arbitrary thickness radius. An upper bound
for the number of tubes touching the same cross section of the central
tube is formulated as Theorem 3. Possible applications of the results
to various physical problems are discussed.

2. Notation and preliminaries

Let C be a space curve, piecewise of class C2: C = {r : M → R
3} with

the arc length parameter s such that t = dr
ds 6= 0 is a non-vanishing

tangent vector. We shall be dealing normally with the cases when M
is either R for an infinite curve or S1 for a closed one.

The global radius of curvature is defined in [10] as

ρG(x) = inf{Rc(x,y, z) | y, z ∈ C,x 6= y 6= z 6= x},
where Rc(x,y, z) ≥ 0 is the radius of the smallest circle containing
x,y, z, i.e.

Rc(x,y, z) =
‖x − y‖

2| sin[∠(x − z,y − z)]| ,

if x,y, z are non-collinear; otherwise, for x 6= y 6= z 6= x, Rc(x,y, z)
is assigned the value of infinity. We restrict ourselves to curves with
global radius of curvature at every point equal or greater than ρ > 0.

We define a ρ-tube T based on the axis C: T = {x ∈ R
3, ‖x − y‖ <

ρ,y ∈ C}, and the closed ρ-tube T̄ = {x ∈ R
3, ‖x − y‖ ≤ ρ,y ∈ C}. If

the axis C is closed, then we call the tube a ring.
Since the global curvature does not exceed ρ−1, the ρ-tube is em-

bedded in R
3, i.e. there exists a bijection from a straight cylinder (or a

torus) onto the infinite tube (respectively, the ring). In this paper we
fix the scale by setting ρ = 1 and all but one of the tubes we shall be
dealing with are 1-tubes. We shall call them either unit tubes or just
tubes. The only exception is the P -tube considered in Section 5.

An example of a ring that will be of particular interest to us, is a
bialy Y = T (C) with C a circle of unit radius [15]. In other words, a
bialy is a torus with no hole.

Let BR(z) = {x ∈ R
3, ‖x − z‖ ≤ R} be a ball of radius R with its

centre at z. In particular, BP ≡ BP (0) is the central ball of radius P .
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On the number of tubes touching a sphere or a tube 3

Any closed tube may be thought of as a union of balls: T̄ =
⋃

x∈C
Bρ(x).

The boundary of the ball is the sphere SR(z) = ∂BR(z). We shall also
use the notation D(r(s)) ≡ D(s) for a unit orthogonal cross-sectional
disc of a tube: D(s) = {r(s) + ν(s),ν(s) ∈ R

3,ν(s) · t(s) = 0, ‖ν(s)‖ ≤
1}.

3. Tubes touching a ball from the outside

Lemma 1. Let BP be the central ball and SR a central sphere of greater
radius R > P . Let T be a tube with axis C = {rC(s)} touching BP in
point Q = T̄ ∩ BP . Let A(C) be the intersection of the tube and the
sphere: A(C) = T̄ ∩SR. Then, for every R in the range P < R ≤ P +2,
the area of A reaches its minimum for T = Y.

Proof. In the following proof we consider only tubes which touch the
P -ball at fixed Q. Since we seek a tube of minimal intersection area,
we may restrict our consideration to tubes that only overlap with SR

on an interval of their axial arc length shorter than πR. We show first
that for any such tube with non-planar axis C, there exists a tube with
planar axis having the same area of intersection with the R-ball.

Consider a generalized cone with its vertex in the origin and defined
by the curve C. The squared curvature of C can be decomposed as
κ2

C = κ2
Cn + κ2

Cg, where κCn is the normal curvature and κCg is the
geodesic curvature. The conical surface may be developed into a plane,
so that C is mapped into G, a planar curve with curvature κG = κCg.
Note that since the global curvature of C does not exceed 1, this is
certainly also true for G.

The area of intersection of the tube T (C) with the R-sphere may be
computed as

Area(A(C)) =

= lim
max ∆si→0

∑

i

Area((SR ∩ B1(rC(si + ∆si)))\(SR ∩ B1(rC(si)))). (1)

Here we used the fact that, for any sk < sl < sm,

B1(rC(sk)) ∩ [B1(rC(sm))\B1(rC(sl))] = ∅, (2)

because of the constraint on the global curvature.
Developing the conical surface does not change the distances on the

surface. In particular, this implies rC(si) = rG(si), rC(si + ∆si) =
rG(si + ∆si) (here and below r ≡ ‖r‖). The relation between the balls
Eq. (2) also remains valid: this follows from the fact that distances
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between the balls B1 may only increase. Consider an elementary area

∆ACi = Area((SR ∩ B1(rC(si + ∆si)))\(SR ∩ B1(rC(si)))) =

= Area(SR ∩ (B1(rC(si + ∆si))\B1(rC(si)))) =

= Area(SR ∩ ∆B(rC(si), rC(si + ∆si),∆rCi)) =

= Area(SR ∩ ∆B(rG(si), rG(si + ∆si),∆rGi)) + O((∆si)
2) =

= ∆AGi + O((∆si)
2),

where ∆rCi ≡ ‖rC(si + ∆si)− rC(si)‖ = ∆si +O((∆si)
2) and ∆rGi ≡

‖rG(si + ∆si) − rG(si)‖ = ∆rCi + O((∆si)
2). We can write

Area(A(C)) =

= lim
max ∆si→0

∑

i

Area((SR ∩ B1(rG(si + ∆si)))\(SR ∩ B1(rG(si)))) =

= Area(A(G)).

In other words, we have showed that the planar tube G has the same
area of intersection with the R-sphere.

Now we may restrict ourselves to considering only planar axes for
some interval s ∈ [0, L]. Let s = 0 corresponds to a section that is in
contact with the P -ball and s = L to a section outside the (P +2)-ball.
The function r(s) starts at r(0) = P + 1.

We consider first the case when the function r(s) is monotonic. We
are interested in the angle α measured from the tangent t(s) = r′(s) to
the direction of r(s) (Fig. 1). If r(s) = r0(s) is an arc of a unit-radius
circle with centre A at distance P +2 from the origin, then it is easy to
compute α = α0 from the triangle 4OAB, applying the law of cosines:

(P +2)2 = 1+r2−2r cos(π
2 +α0). Then α0(r) = arcsin (P+2)2−1−r2

2r . No
other curve with constrained curvature can have a magnitude of α(r)
less than α0(r), because the curvature of r0(s) is maximal.

Indeed, assume the contrary, i.e. that there exists a curve E which
has an angle α(r) < α0(r) and the curvature of E does not exceed 1.
Consider a circle C1 with centre A1 such that it has the common tangent
with E in the point where both C1 and E intersect the circle of radius r
with centre O. The distance OA1 is greater than r, but OA1 < OA and
the circle C1 intersects the (P +1)-circle while the curve E only touches
the same (P + 1)-circle, hence, at least a piece of E lies inside C1, but,
according to Theorem 1 in Section 1.3 of Ref. [2], E , having smaller
curvature, must lie outside C1 (or they coincide). This contradiction
proves that the angle α0(r) is minimal.

Let T0 be the unit tube with r0 as its axis. Take some point on the
axis r? ≡ r0(s

?) and consider the ball B1(r
?). Its intersection with the

R-sphere is denoted by Z? = SR ∩ B1(r
?). Now take a small ∆r, then
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Figure 1. To the definition of the angle α.

there exists a small ∆s such that ‖r0(s
? + ∆s)‖ = ‖r?‖ + ∆r. Define

Zd = SR ∩B1(r1) for such r1 that ‖r1‖ = ‖r?‖+∆r. Compute the area
of the difference

∆A = Area(Zd\Z?) = Area(SR ∩ (B1(r1)\B1(r
?))) ≥

≥ Area(SR ∩ (B1(r0(s
? + ∆s))\B1(r

?))).

The inequality follows because the smaller α is, the smaller is the
distance between two neighbouring balls sitting at levels r? and r1.

To compute the area of the entire intersection, we have to integrate
∆A over r ∈ [P + 1, rcr]. The last inequality above shows that the
minimum is achieved for the unit circular axis, i.e. for a bialy.

The case of nonmonotonic r(s) may be reduced to the monotonic
case by cutting off the pieces of the tube axis where r is less than its
already achieved maximum, i.e. for s ∈ K, where K = {s : r(s) <
max

0<σ<s
r(σ)} The remaining pieces are to be shifted and glued together

to make r(s) continuous. It may happen that the resulting r(s) is not
smooth. Still, for this piecewise smooth curve, we again have α(r) ≤
α0(r). Denote by rj ≡ r(sj) the points of the tangent discontinuities,
sj < sj+1, rj ≤ rj+1. The area of intersection of the initial tube T can
be estimated as follows:

Area(SR ∩ T ) ≥
∑

j

Area(SR ∩ Tj) −
∑

j

Area(SR ∩ B1(rj)), (3)

where Tj is the unit tube based on r(s) for [sj , sj+1].
Consider an interval where the shortened curve r is smooth. Suppose

it lies between the levels rj and rj+1. Applying the same argument
as above, we can show that the axis of a tube that has the minimal
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intersection area with the R-sphere and that connects the levels rj and
rj+1 is a circular arc r0. Then,

∑

j

Area(SR ∩ Tj) ≥
∑

j

Area(SR ∩ T 0
j ).

Inserting the last estimate into Eq. (3) yields

Area(SR ∩ T ) ≥
∑

j

Area(SR ∩ T 0
j ) −

∑

j

Area(SR ∩ B1(rj)) =

= Area(SR ∩ T 0),

where T 0 =
⋃

j
T 0

j is (a piece of) the bialy. 2

Theorem 1. Let tubes Ti, i = 1, . . . , n, be such that

1. Ti ∩ BP = ∅.
2. Ti ∩ Tj = ∅, i 6= j.

3. T̄i ∩ BP = Qi, Qi = {qik ∈ R
3, k = 1, ...,mi ≥ 1} (qik is the k-th

contact point of the i-th tube with the central P -ball; the i-th tube
has mi contact points).

4. ∀i, k ∃σik : D(σik)∩BP+2 = ∅, D(sik)∩BP = qik, ∞ < σi0 < si1 <
σi1 < si2 < σi2 < . . . < sik < σik < si,k+1 < . . . < σi,m−1 < sim <
σim < ∞.

Then the total number of contacts is bounded:
n
∑

i=1
mi ≤ Ñ(P ), where

the function Ñ(P ) will be defined below. If mi = 1, i = 1, . . . , n, then
the alternating condition 4 can be omitted and the theorem claims that
n ≤ Ñ(P ).

Proof. First of all, we note that the intersections of tubes with any
sphere concentric with the central ball are disjoint because the tubes
are disjoint. We will consider further only spheres of radius R such that
P ≤ R ≤ P + 2. As follows from the above lemma, the minimum area
of intersection of the tube with a sphere of radius R is achieved when
the part of the tube inside the sphere takes the shape of a fragment of a
bialy and the centre of the bialy is located at the (maximally possible)
distance P + 2 from the centre of the ball. For the sake of definiteness,
let us fix the origin of the reference frame at the centre of the ball with
the centre of the bialy lying on the z-axis and its circular axis being in
the xz-plane. Then the bialy is described by the equation

y2 +

(

√

x2 + (z − P − 2)2 − 1

)2

= 1. (4)
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On the number of tubes touching a sphere or a tube 7

We are interested in its intersection with the sphere SR given by

x2 + y2 + z2 = R2. (5)

The intersection domains are shown in Fig. 2 for P = 1, R = 2 (left)
and R = 3 (right).

Figure 2. 9 unit bialies touching the unit ball and clipped with the sphere of radius
R = 2 (left) and R = 3 (right).

The boundary of the overlapping region on the surface of the sphere
satisfies the equation

[R2 − 2(P + 2)z + (P + 2)2]2 = 4[x2 + (z − P − 2)2], (6)

which is obtained after elimination of y from Eqs. (4) and (5).
Let us introduce cylindrical coordinates by setting x = ρ cos φ, y =

ρ sinφ, z = z. Then Eq. (6) may be represented as a quadratic equation
4Uz2 − 4V z + W = 0 with coefficients depending on P , R and φ:

U = (P + 1)(P + 3) + cos2 φ, V = (P + 2)[R2 + (P + 2)2 − 2],

W = [R2 + (P + 2)2]2 − 4(P + 2)2 − 4R2 cos2 φ.

Therefore, we have z = z(φ) = V ±
√

V 2−UW
2U (for R ≤ P + 2, only the

sign “−” is meaningful).
Now we can compute the intersection area

S =

2π
∫

0

ρ(φ)
∫

0

R
√

R2 − ρ2
ρ dρ dφ = R

2π
∫

0

(

R −
√

R2 − ρ2(φ)

)

dφ =

= 4R

π/2
∫

0

(R − z(φ)) dφ =
1

2
SR − 4RZ(P,R), (7)

where SR = 4πR2 is the entire area of the sphere SR and Z(P,R) ≡
π/2
∫

0
z(φ) dφ. The last integral may be expressed in terms of elliptic

integrals.
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Let us consider the function N = N(P,R) = SR

S ,

N−1 =
1

2
− 1

πR
Z(P,R). (8)

We will show that, for fixed P > ε > 0, N has a minimum in the
interval R ∈ (P, P + 2) for some R∗(P ). To this end, we note first that
for R = P and R = P + 2 both the function Z(P,R) and its derivative
with respect to R may be expressed in elementary functions:

Z(P,R)|R=P =
π

2
P, (9)

Z(P,R)|R=P+2 =
π

2

(

2
√

(P + 2)2 − 1 − (P + 2)

)

, (10)

∂Z(P,R)

∂R

∣

∣

∣

∣

R=P
=

π

2

(

1 − 2
√

2(P + 1)(P + 2)

)

> 0, (11)

∂Z(P,R)

∂R

∣

∣

∣

∣

R=P+2
=

π

2

(

2(P + 2)
√

(P + 2)2 − 1
− 1

)

> 0. (12)

The derivative of N−1

∂N−1(P,R)

∂R
=

1

πR2

(

Z(P,R) − R
∂Z(P,R)

∂R

)

has different signs at the ends of the interval:

∂N−1(P,R)

∂R

∣

∣

∣

∣

∣

R=P

=
1

P
√

2(P + 1)(P + 2)
> 0

and
∂N−1(P,R)

∂R

∣

∣

∣

∣

∣

R=R+2

= − 1

(P + 2)2
√

(P + 2)2 − 1
< 0.

Applying the Weierstraß intermediate value theorem to the function
∂N−1(P,R)

∂R , we conclude that there exists R∗ ∈ (P, P + 2) such that
∂N−1(P,R)

∂R

∣

∣

∣

R=R∗
= 0, which implies that the function N(P,R) has a lo-

cal minimum on that interval. In order to find R∗, we solve numerically
the equation

Z(P,R) − R
∂Z(P,R)

∂R
= 0. (13)

Thus, for given P , the number of contacts cannot exceed Ñ(P ) =
N(P,R∗(P )). A graph is shown in Fig. 3. The function Ñ(P ) may be
computed with arbitrary precision. Numerical computation suggests
that for all fixed P > 0 there is only one local minimum of N(P,R).
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Figure 3. Shaded (yellow) region with boundary Ñ(P ) corresponds to forbidden
numbers of contacts of unit-radius tubes with the ball of radius P from the outside,
resp., with the sphere of radius P + 4 from the inside. The upper (blue) curve rep-
resents the estimate Eq. (14). The lower (red) curve represents the improved upper
bounds of Eqs. (15) and (16). Small circles correspond to the estimates obtained
with spherical codes (see Remark 4). The cross marks the proved solution of the
Tammes problem for 24 circles (N = 12).

However, the uniqueness property in no way affects the correctness of
the estimate Ñ(P ) because any R-sphere may be taken. 2

Remark 1. As can be seen from numerics, the function Z(P,R) is
convex in the range (P, P + 2) for any fixed P > 0. Taking this to be a
fact, we can thus consider the Legendre transform G(P,Q) of Z(P,R).
Solving Eq. (13) is then equivalent to searching for a root Q∗ of G.

Remark 2. For the extreme value of radius R = P + 2, Eq. (7)
with Eq. (10) immediately implies S = 4πR(R −

√
R2 − 1) which is

exactly the area of intersection of an infinite cylinder and an R-sphere
centred on the axis of the cylinder. The cylinder crosses SR orthogonally
and the intersection consists of two spherical caps, each bounded by a
unit-radius circle on the surface of the R-sphere. In the case of a unit
bialy crossed with a sphere which passes through the bialy’s centre, the
intersection is also a pair of spherical caps of the same size (cf. Fig. 2
(right)). Indeed, the intersection must contain a pair of spherical caps,
resulting from the intersection of the R-sphere with two disjoint unit
balls centred at the axis of the bialy. Hence, the intersection area is
bounded from below by S.

Inserting Eq. (10) into Eq. (8), we can obtain the estimate

N− ≡ N(P, P + 2) =
R

R −
√

R2 − 1
=

P + 2

P + 2 −
√

(P + 1)(P + 3)
,

(14)
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which is also shown in Fig. 3 as a solid line.
Remark 3. The estimate Eq. (14) can be improved. Assume that

there are N+ contacts. Then the tubes must cross the (P + 2)-sphere
at least 2N+ times. The minimal area of every crossing is that of a
unit spherical cap. Therefore the number N+ cannot exceed one half
of the maximum number n0 of free unit-radius circles packed on the
sphere. The latter number corresponds to the solution of the Tammes
problem [21] which is to find the configuration of a given number nT

of points on the sphere that maximizes the minimum distance between
any pair of points. The extremal configuration is called a spherical code
[6]. A number of upper bounds are known for the Tammes problem.
In Ref. [14], Fig. 1 presents a composite curve that corresponds to the
two upper bounds proved by Robinson in §§ 9.1 and 9.5 of Ref. [17]. In
our terms, his expressions may be rewritten as follows:

n0 <
12(πR2 + Σ2)

4Σ1 + Σ2 + Σ3
, for 12 ≤ n0 ≤ 24 (15)

and

n0 <
6(πR2 − Σ2 + 2Σ3)

2Σ1 + Σ3
, for n0 ≥ 24, (16)

where Σ1 is a spherical area of an equilateral triangle of side 2γ (we
denote its angles by β1), Σ2 is a halved spherical area of a regular
quadrangle of side 2γ (we denote its angles by β2) and Σ3 is a spherical
area of a triangle with two sides equal to 2γ and included angle 2π−4β1.
The formulas for the areas Σ1, Σ2 and Σ3 are as follows:

Σ1 = R2(3β1 − π), β1 = arccos

(

cos 2γ

1 + cos 2γ

)

,

Σ2 = R2(2β2 − π), β2 = 2arcsin

( √
2

2 cos γ

)

,

Σ3 = R2(π − 4β1 − 2β3), β3 = arctan

(

1 + cos 4β1

sin 4β1 cos 2γ

)

.

The right-hand sides of Eqs. (15), (16) give upper bounds for the num-
ber of unit circles that can be packed on a sphere of radius R = csc γ.
For our problem, this implies that the number N + of bialies that touch
the ball of radius P = R−2 = csc γ−2 does not exceed n0/2. The curve
corresponding to the bounds Eqs. (15), (16) is presented in Fig. 3.

Remark 4. The solutions to the Tammes problem are currently known
with proofs only for all nT ≤ 14 and for nT = 24. A variety of existing
numerical algorithms have produced presumably extremal configura-
tions. The best solutions currently known are collected and updated
on the web site [19] for all nT ≤ 130.
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On the number of tubes touching a sphere or a tube 11

Suppose we know the spherical code for a particular nT = 2m,
m ∈ Z

+. The table [19] gives us the minimal value of the angle 2γ
between the centres of the spherical caps on the unit sphere. In other
words, nT unit circles may be packed on the sphere of radius R = csc γ.
Therefore, not more than N = m bialies can be in contact with the
ball of radius P = csc γ − 2. Discrete points with coordinates (P,N)
are shown in Fig. 3 for N ≤ 65. They were computed with the data
from [19].

One can observe in Fig. 3 that the estimate based on spherical codes
approaches Ñ as the radius P increases. For smaller P , the spherical
code estimates are getting closer to the curve of Eq. (14), while remain-
ing better. Note also that two parts of the bound Eqs. (15) and (16)
meet each other at a point for N = 12, where both right-hand side
expressions equal 24 which corresponds to the isolated proved solution
to the Tammes problem [17].

Example 1. Let the central ball be of unit radius. With Eq. (8), we
can compute N(1, 2) ≈ 10.858914 < 11. If we assume that there could
be as many as 11 bialies touching the unit ball, then the total area of
their overlappings with the sphere of radius 2 should exceed S2, which
is impossible.

Fig. 4 shows a symmetrical arrangement of 9 bialies touching the
unit ball. Although gaps are seen between the bialies, it is not possible
to add more bialies without moving those nine. Nevertheless, it is still
not clear whether a configuration with 10 tubes exists or not.

Figure 4. 9 unit bialies touch a unit ball. In the right figure they also touch a sphere
of radius P = 5 from the inside (see Example 2 in Sec. 4).

The constructions of six infinite cylinders touching a central ball
(see Ref. [4]) does not contain a so-called rattler, i.e. a cylinder without
contacts with other cylinders. This is not the case for the configuration
presented in Fig. 4.

Another example of arrangement of tubes will be given at the end
of the following section (Example 3).
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12 E.L.Starostin

4. Tubes touching the surface of a ball from the inside

The approach developed above for the case when the tubes lie entirely
outside the ball, may be adapted to the problem of tubes belonging to
the interior of the ball. Of course, now we consider only rings. We start
with modifying Lemma 1 and formulate

Lemma 2. Let SP , P > 2 be a central sphere and SR another central
sphere of a smaller radius R < P . Let T be a tube inside SP with axis
C touching SP in point Q = T̄ ∩ SP . Let A(C) be the intersection of
the tube and the R-sphere: A(C) = T̄ ∩ SR. Then for all R such that
P − 2 ≤ R < P the area of A reaches its minimum if T = Y.

The proof is similar to the proof of Lemma 1.
Proceeding in the same way as in the exterior case we can compare

the area of intersection of a bialy with an R-sphere and obtain the
analogue of Theorem 1. However, it is possible to get a better upper
bound if we consider how the remaining parts of the tubes can be
packed inside a sphere of radius P − 2.

Theorem 2. Let tubes Ti, i = 1, . . . , n, be such that

1. Ti ∩ BP = Ti, P ≥ 3.

2. Ti ∩ Tj = ∅, i 6= j.

3. T̄i ∩ SP = Qi, Qi = {qik ∈ R
3, k = 1, ...,mi ≥ 1} (qik is the k-th

contact point of the i-th tube with the central P -sphere; the i-th
tube has mi contact points).

4. ∀i, k ∃σik : D(σik) ∩ BP−2 = D(σik), D(sik) ∩ SP = qik, 0 ≤ si1 <
σi1 < si2 < σi2 < . . . < sik < σik < si,k+1 < . . . < σi,m−1 < sim <
σim < Li, where Li is the axis length of the i-th ring.

Then the total number of contacts is bounded:
n
∑

i=1
mi ≤ Ñin(P ),

where the function Ñin(P ) will be defined below.

Proof. Condition 4 means that between the contacts to the P -sphere
each tube has to enter the (P−2)-ball so that there should exist a cross-
sectional disc belonging to this small ball. This is always possible for
P ≥ 3. Now we take the i-th ring and we shall normally omit the index
i in the sequel for simplicity.

Let r(s), s ∈ M , sik < s < si,k+1 be the axis of the piece(s) of
the i-th ring inside the (P − 2)-ball. Then r? ≡ min

s∈M
r(s) ≤ P − 3,

because otherwise no cross-section would be immersed in the (P − 2)-
ball. The plane of the section D(r?) passes through the origin and the
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On the number of tubes touching a sphere or a tube 13

tube touches the surface of the ball of radius ρ ≤ |P −4| at a point that
belongs to D(r?). Note that the ρ-ball lies inside the closed tube for
3 ≤ P < 4. Then, since all the tubes are disjoint, it follows immediately
that only one ring has room inside the (P − 2)-ball, i.e. Ñin(P ) = 1,
P ∈ [3, 4).

Now let P ≥ 4. We consider a sphere of radius R ≤ P − 2 and a
piece of ring inside this sphere. We are interested in determining the
minimal normalized area of the intersection of the ring with the R-
sphere. If r? ≥ R − 1 for this piece of the ring, then we may apply
Lemma 1 and claim that the minimal area is reached when the piece
is part of the bialy. If the ring sinks deeper into the (P − 2)-ball, i.e.
if r? < R − 1, then nothing prevents the ring from crossing the R-
sphere orthogonally and the intersection is simply a pair of spherical
caps bounded by unit circles.

We need not consider tubes that enter the (P − 4)-ball. Indeed, let
N−1(P − 4, R0) be the normalized intersection area for a bialy that is
in contact with the (P − 4)-ball. The bialy is crossed with the sphere
of some radius R0 ∈ (P − 4, P − 2). Now consider another bialy that
touches a ball of smaller radius P1 < P − 4. It is always possible to
choose the radius of the crossing sphere R1 = R0P1/(P − 4). Then,
N−1(P1, R1) ≥ N−1(P − 4, R0), because we have proportionally de-
flated both the contacting ball and the crossing sphere, but left the
thickness radius of the bialy unchanged. Since we are seeking a mini-
mum of N−1 among all possible configurations of the ring, it is sufficient
to consider only the bialies with centres at SP−2. These bialies touch
the (P − 4)-ball. Then the intersection area is given by Eq. (7), but
we should formally substitute P → P − 4 in the expressions for the
coefficients U, V,W .

Now we can define the function Nin(P,R) ≡ N(P − 4, R) where N
is given by Eq. (8). For fixed P ≥ 4, Nin has a minimum in the interval
R ∈ (P −4, P −2): Ñin(P ) = min

R∈(P−4,P−2)
Nin(P,R), which is an upper

bound to the number of contacts of the rings with the P -sphere. The
graph and the estimate in the interior case are essentially the same as
in the exterior one, only shifted along the P -axis by 4 (Fig. 3). Thus,
we establish the duality property of the estimate: the same value serves
both to bound the number of unit tubes touching the surface of the
small P -ball from the outside and of the larger (P + 4)-ball from the
inside. 2

Remark 5. The alternating condition 4 in the formulation of Theo-
rem 2 cannot be omitted as can be seen from the following example.
Consider two bialies arranged so that they touch each other along a
circle. They can be packaged into a sphere of radius P =

√
2 + 1 < 3.
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14 E.L.Starostin

To reduce the contacts to the sphere to one point for each bialy, one
can increase P by an arbitrary small value and move the bialies ac-
cordingly. Clearly, condition 4 is violated for such a configuration. At
the same time, we have m1 + m2 = 1 + 1 = 2 = n which exceeds
the above upper bound Ñin(P ) = 1, for P up to 4. Note also that
in the analogue of Theorem 1 mentioned above (before formulation of
Theorem 2) condition 4 can be left out exactly as in Theorem 1.

Example 2. On the right of Fig. 4 one can see a symmetrical ar-
rangement of 9 bialies touching a sphere of radius P = 5 from the
inside. This is the same configuration as that considered in Example 1
in Sec. 3. Similarly, our estimate excludes an arrangement of 11 tubes,
but not 10.

Example 3. An approximation of the ideal Borromean rings was
proposed in [5] (Fig. 5). The whole structure was composed of three
identical rings each having a plane centreline made of four circular arcs.
There is room in the central part of the structure for a ball of radius√

7 − 2 and each ring touches the ball twice.
The rings may be placed inside a sphere of radius

√
7 + 2 so that

each ring has two contact points with the sphere. Thus, in both cases,
the total number of contacts is 6, while we have 7 < Ñ(

√
7 − 2) =

Ñin(
√

7+2) < 8 for the upper bound function. So, it does not rule out
the existence of another structure with 7 contact points for the same
radii of the inner ball and the outer sphere, but 8 points are forbidden.

Figure 5. Borromean rings made of pieces of tubes with circular axes. In the right
figure the same rings have unit radius of thickness and touch a sphere of radius
P =

√
7 + 2.

5. On the number of tubes touching a given tube

In this section we prove a theorem related to the situation when instead
of a ball there is a tube in the centre.
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On the number of tubes touching a sphere or a tube 15

Theorem 3. Let T0 be a tube of radius P and D0 be its arbitrary
section. Let unit tubes Ti, i = 1, . . . , n, be such that

1. Tλ ∩ Tµ = ∅, λ 6= µ; λ, µ = 0, . . . , n, and

2. T̄i ∩ D0 = Qi, Qi = {qik ∈ R
3, k = 1, ...,mi ≥ 1} (qik is the k-

th contact point of the i-th tube, i = 1, . . . , n). It belongs to the
cross-sectional disc Dik with normal nik.

Then the number of touching unit tubes n does not exceed π arcsin(P +
1)−1)−1. If each unit tube has exactly one contact with the central one
(mi = 1) and P = csc π

n − 1, then all n + 1 discs D0 and Di1 lie in the
same plane.

Proof. Without loss of generality, we place the centre of the disc D0

into the origin and we call it the central disc. Let rik be the centres
of the other discs Dik, ‖rik‖ = P + 1, i = 1, . . . , n, k = 1, ...,mi. The
tangent to the axis of the central tube in the origin n0 is the normal
to the central disc and it is orthogonal to all rik, i.e. the centres of
all n + 1 discs lie in the same plane P0 which also contains D0. Since
D0 ∩Dik = {qik} 6= ∅, we may write BP ∩ B1(rik) = {qik} 6= ∅, i.e. the
balls BP and B1(rik) have no common interior points. The last is also
true for the balls B1(rik) and B1(rjl) (i 6= j), because, for any i, the
interior of B1(rik) belongs to Ti and the tubes do not overlap.

Clearly, the number n of unit tubes is not greater than the number of
unit balls touching the central ball, all having their centres coplanar.
But that number, in turn, cannot exceed the kissing number in R

2,
which is [π(arcsin(P + 1)−1)−1] for unit circles contacting the common
central circle of radius P (see Fig. 6). This proves the first claim of the
theorem.

1

O

1

1

1
P

P

Figure 6. Sections of the balls by the plane P0 orthogonal to the axis of the central
tube.

Now suppose that all the balls belong to different tubes (mi = 1)
and that P = csc π

n − 1. We have n coplanar points ri1 ∈ P0, each at
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16 E.L.Starostin

distance P + 1 from the origin and the distance between each pair of
them is at least 2. This is only possible if they are vertices of a regular
n-gon and they may be renumbered so that ‖∆rj‖ = 2, ∆rj ≡ rj+1−rj,
j = 1, . . . , n (we identify rn+1 ≡ r1). This means that the piece of tube
corresponding to rj is in contact with both the central tube and two
other tubes, Tj±1. The tangent to the axis of the j-th tube at rj is nj ,
the normal to Dj . Then nj ·rj = 0 and nj ·∆rj = 0, which implies that
nj is normal to the plane P0, i.e. all Dj ∈ P0. 2

Example 4. If the central tube also has the same unit radius of
thickness, then n ≤ 6.

Remark 6. To avoid situations when one tube may have an arbitrary
number of contacts with the central disc, e.g. by having its axis coplanar
with the disc, an additional condition can be included requiring that
the unit tubes should be sufficiently “straight”, i.e. that the radius of
curvature should be larger then P + 1.

Corollary. Let the maximum allowed number of tubes be in contin-

uous contact with the central tube whose axis is r0(s), s being the arc
length parameter. Then the second part of Theorem 3 implies that the
vector field ∆rj0(s) ≡ rj(s) − r0(s) is relatively parallel [3].

Proof. Since the vector ∆rj0(s) does not vary in magnitude, we may
write

drj(s)

ds
=

dr0(s)

ds
+ ω × ∆rj0(s), (17)

where ω is the angular velocity of rotation of the orthogonal frame
{n0(s),∆rj0(s),n0(s) × ∆rj0(s)} as s varies. Computing the cross-
product of Eq. (17) with n0(s) yields ω · n0(s) = 0, because the

tangent
drj(s)

ds is parallel to n0(s). In other words, the twist rate of
the vector field ∆rj0(s) is zero. Representing the vector ω as a sum of
two components ω = ω1∆rj0(s) + ω2n0(s) × ∆rj0(s), we find

d∆rj0(s)

ds
= −ω2∆r2

j0(s)n0(s),

i.e. the derivative of the vector ∆rj0(s) remains tangential to r0(s). 2

Example 5. Suppose that the axis r0(s) is smoothly closed. Let the
other tubes be closed, too. We denote by Lk j the linking number of
r0(s) and rj(s). Then the writhing number of each of the curves r0(s)
and rj(s) equals Lkj and, consequently, it is integer. This follows from
the famous Călugăreanu-White-Fuller theorem Lk = Tw + Wr [9],
because the twisting number vanishes.

The property of the relative parallelism and an integer writhe (for
closed configurations) may be applied to describe toroidal conforma-
tions produced as a result of DNA condensation, characterized by
hexagonal lattice packing [16, 13]. In particular, a dense packing of
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On the number of tubes touching a sphere or a tube 17

crystallized DNA exists in virus capsids [8]. The above consideration
implies that the toroids as a whole cannot take an arbitrary shape, once
we assume the existence of 6 adjacent strands everywhere. Similarly,
nematic phases of long polymers should obey the same rules. Another
possible application could be the theory of multistrand cables and wire
ropes [7].

6. Concluding remarks

1. Condition 4 in Theorem 1 about the existence of a section outside
the (P +2)-ball (and its analogue in Theorem 2) is natural because
it allows another piece of tube to come into contact, thus excluding
a situation where a tube warps nearly around the ball and can
have an arbitrary large number of contacts. Introduction of the
above condition makes meaningful the question about how many
pieces of tubes can come into contact with the ball. However, con-
dition 4 plays no role in the upper bound estimates of the number
of contacting tubes.

2. As mentioned by Gray [11], the volume of a tube does not depend
on its curvature. This is true if the thickness radius does not exceed
the (global) radius of curvature. A generalization to tubes of varying
thickness is possible. An example of this is the strip-like intersection
of a tube and a sphere (cf. Lemma 1).

3. The paper [18] deals with equilibria of a tubular polymer chain
attracted to a spherical organizing centre. In particular, an upper
bound for the number of contacts is estimated to be of order P 3/2

(in our notation). Fig. 3 suggests that this estimate does not fit
the behaviour of Ñ . This can be justified by taking into account
the limited flexibility of the polymer (DNA) which may imply an
upper bound constraint on the local curvature of the axis. Indeed,
for the extreme case of absolutely rigid straight cylinders an upper
bound of order P 3/2 may be obtained [4]. The approach employed
above may be readily extended to tubes of limited flexibility.

4. Recently, a tube model has been proposed to better understand the
geometry of protein folding [1]. In view of this approach, the esti-
mates for the contact numbers may be useful when applied to glob-
ular proteins to count exposed fragments of the amino acids chain.
One can also suggest that the above estimates may serve as steric
constraints for the validation of computed secondary structures of
RNA.
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12. Heppes, A. and L. Szabó: 1991, ‘On the number of cylinders touching a ball’.

Geometriae Dedicata 40, 111–116.
13. Hud, N. V. and K. H. Downing: 2001, ‘Cryoelectron microscopy of lambda

phage DNA condensates in vitreous ice: The fine structure of DNA toroids’.
Proc. Natl. Acad. Sci. USA 98(26), 14925–14930.

14. Kottwitz, D. A.: 1991, ‘The densest packing of equal circles on a sphere’. Acta

Cryst. A 47, 158–165.
15. Kusner, R.: 2002, In: Physical Knots: Knotting, Linking, and Folding Geomet-

ric Objects in R
3, eds. J. A. Calvo, K. C. Millett, E. J. Rawdon, Vol. 304

of Contemporary Mathematics, Chapt. On thickness and packing density for
knots and links. American Mathematical Society.

16. Livolant, F., A. M. Levelut, J. Doucet, and J. P. Benoit: 1989, ‘The highly
concentrated liquid-crystalline phase of DNA is columnar hexagonal’. Nature

339, 724–726.
17. Robinson, R. M.: 1961, ‘Arrangement of 24 points on a sphere’. Mathematische

Annalen 144, 17–48.
18. Schiessel, H., J. Rudnick, R. Bruinsma, and W. M. Gelbart: 2000, ‘Organized

condensation of worm-like chains’. Europhysics Letters 51(2), 237–243.
19. Sloane, N. J. A., R. H. Hardin, W. D. Smith, et al., ‘Tables of Spherical Codes’.

Published electronically at www.research.att.com/ ∼ njas/packings/.
20. Stasiak, A., V. Katritch, and L. H. Kauffman (eds.): 1998, Ideal Knots, Vol. 19

of Series on Knots and Everything. World Scientific.
21. Tammes, P. M. L.: 1930, ‘On the origin of number and arrangement of the

places of exit on the surface of pollen-grains’. Recueil des Travaux Botaniques
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