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Abstract— Recent developments in electron microscopy now 
permit the unambiguous reconstruction of even the smallest 
neural fibres by human experts. However, manual reconstruction 
of an interesting volume of neural tissue would take thousands of 
person-years. Techniques to automate such reconstruction are 
therefore highly desirable and currently under active 
development. Here we present a novel circle-based technique and 
assess its performance on classically stained electron 
micrographs of the molecular layer of mouse cerebellar cortex. 
We compare its performance to a recently published pixel-based 
classifier (ilastik), selected because a similar random forest 
classifier from the same group has shown promising results on 
images of neural tissue. The performance of our algorithm and 
that of ilastik are similar, achieving approximately 50% on an 
overlap-based f-measure. 
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I. INTRODUCTION 
Complete mapping of neural connectivity requires methods 

for tracing the long-range connections in white matter and 
methods for reconstructing the local circuitry in grey matter. 
Local circuit reconstruction necessitates both the accurate 
tracing of neural fibres and the accurate identification of 
functional connections between them (synapses). Our interest 
in this paper concerns automated reconstruction of these local 
grey matter circuits. 

The micro-architecture of grey matter varies between brain 
areas. Here we focus on the molecular layer of the mouse 
cerebellum. The circuits within this region are believed to be as 
complex in their connectivity as any other area, but display a 
greater degree of global order in their geometry [1]. This order 
is due to regularities in the orientation of neural fibres. For 
example, parallel fibres (arising from the ascending axons of 
granule cells) are all parallel; Purkinje cell dendrites run 
perpendicular to the parallel fibres and the dendrites of 
individual Purkinje cells lie flat in the same sagittal plane. 

A. Electron microscopy 
Reconstruction of grey matter circuitry requires imagery 

with high, ideally isotropic, resolution. For many years electron 
microscopy (EM) has achieved sufficient resolution in x and y, 

but not in z. The recent combination of block-face scanning [2] 
and focussed ion beam milling [3] (together known as FIB-
SEM) has solved this problem and is able to produce image 
volumes of sufficiently high isotropic resolution. All images 
used here were acquired using FIB-SEM. 

All EM techniques require tissue to be stained, with 
different stains varying in the structures made visible. Classical 
staining reveals a sufficient range of structures to allow 
accurate manual tracing of fibres and identification of 
synapses. An alternative extracellular stain marks only 
extracellular space and cell outer membranes. This makes 
tracing of fibres easier but identification of synapses unreliable 
in most types of neural tissue (one exception is the retina [4]). 
Many recent algorithms for automated reconstruction of local 
circuitry from high-resolution EM imagery have focussed on 
this extracellular staining. Here we use the more challenging 
but fully informative classical stain. 

Although we use FIB-SEM data, in this initial work we do 
not take advantage of its isotropic resolution, instead focussing 
on 2D sagittal slices. Since parallel fibres run orthogonal to the 
sagittal plane, in most sagittal slices the boundaries of the vast 
majority of visible fibres appear as dark convex contours, some 
containing intracellular clutter.  

B. Automated reconstruction 
While classically stained FIB-SEM imagery permits the 

accurate manual tracing of fibres and identification of 
synapses, manual reconstruction of circuits of an interesting 
size would take thousands of person-years 1 . Therefore 
automated reconstruction techniques are required. 

In this problem, as in many problems in computer vision, a 
distinction can be drawn between bottom up and top down 
approaches. Bottom up approaches construct locally optimal 
solutions directly from the image data by classification of 
pixels based on local image neighbourhood [6, 7, 8, 9, 10, 11]. 
These solutions are fast and simple to compute but do not take 
into consideration any long-range regularities in the ground 
truth solutions. The consequence of this is that a bottom up 

                                                             
1 Based on tracing rates given in [5] we estimate a 1mm3 volume of 

mouse cerebellar cortex would take between 11 and 22 thousand 
person-years to manually reconstruct. 



approach will frequently output highly non-convex boundaries 
for located structures, even though for the images we are 
considering the true boundaries are mostly convex.  

Long-range regularities can be taken into consideration 
using top down approaches. The most common top down 
approaches applied to this problem are variants of the active 
contour method [12, 13, 14]. This attempts to find the set of 
boundary contours that are well supported by the image data 
while exhibiting the regularities observed in the ground truth 
data. Such regularities can include both geometrical constraints 
(e.g. convexity) and interaction constraints (e.g. limiting 
overlap between contours). However, unlike the bottom up 
approach, the optimal solution cannot be directly constructed 
and must instead be searched for. The solution space of 
possible sets of contours is too vast to exhaustively evaluate 
and can only be searched by local refinement. It is likely to 
contain many local optima and so the quality of the found 
'optimal' solution is highly dependent on where the search 
starts. Thus, while this method is effective for propagating a 
known good set of contours to an adjacent slice, it is much less 
effective when a good quality initialisation is unavailable. 

We present a top down approach that goes further than the 
active contour method in its treatment of long-range 
regularities. Rather than simply encouraging these regularities, 
as is done in active contour methods, our circle-based fibre 
detection algorithm enforces them. This greatly reduces the 
size of the solution space and makes finding a near optimum 
solution computationally feasible. Our approach is to represent 
neural cross-sections as circular, with a quantised range of 
possible radii. This reduces the solution space to a finite set of 
candidate circles at each pixel. It then becomes possible to 
greedily construct a set of low-overlap circles that are near 

optimally supported by the data. The near circularity of fibre 
cross-sections in our data is shown in figure 1. 

We compare the performance of our circle-based classifier 
to that of ilastik [15], a recently published pixel-based 
classifier. Ilastik was chosen because a similar random forest 
classifier from the same group has shown promising results on 
images of neural tissue [6]. 

II. METHODS 

A. Data preparation 
A sample from the molecular layer of a perfusion-fixed 

mouse cerebellum was classically stained using a reduced OTO 
method [16]. The sample was then imaged in sagittal sections 
using an NVision 40 Focussed Ion Beam Scanning Electron 
Microscope (FIB-SEM), at an isotropic resolution of 9.3nm. 
Three sagittal slices from a 2548x852x512 voxel volume were 
used for this study. These slices were at least 170 voxels 
(1.6!m) apart to ensure that successive cross-sections of the 
same fibre were not correlated in shape or size. Each slice was 
split to produce a total of six half-slices. One half-slice was 
used for algorithm training, another for parameter tuning and 
the remaining four were used to generate unbiased estimates of 
algorithm performance.  

All extracellular membrane pixels in these six half-slices 
were manually labelled using TrakEM2 [17]. The remaining 
pixels were grouped by a connected component analysis. Each 
connected component object corresponds to a cross-section 
through a parallel fibre, a Purkinje cell dendrite, an interneuron 
fibre or part of a glial cell. We refer to these components as 
cells. Each cell was identified as either fibre or other. Fibres 
that abut the border of the half-slice were identified as other. 
These connected component objects were then expanded by 
two pixels via morphological dilation to produce two sets of 
ground truth objects. The fibre-only ground truth contains only 
fibre objects and is used to evaluate our circle-based fibre 
detection algorithm. The all-cell ground truth contains all 
objects and is used to evaluate ilastik. The use of two different 
ground truths for the two algorithms is discussed in more detail 
in section E. 

B. Overlap as a measure of similarity 
The overlap between two objects is defined as the 

intersection of the two objects (number of common pixels) 
divided by their union (number of pixels contained by either 
object), and is equivalent to the Jaccard index (referred to as 
the coefficient de communauté in [18]; and the coefficient of 
community in [19]). 

To evaluate the quality of a set of algorithm-generated 
objects we make use of the overlap measure in a multi-step 
process. The first step is to calculate a list of candidate 
pairings comprising all pairings, with a non-zero overlap, of an 
algorithm-generated object with a ground truth object. Next, 
the candidate pairing with the highest overlap is identified and 
moved to a list of matched pairings. All remaining candidate 
pairings containing one or other member of the matched pair 
are removed from the candidate list. The process is repeated 
starting with the identification of the pairing with the highest 
overlap from the current candidate list. This is continued until 

 
Figure 1. The cross-sections of many fibres are well represented by 
circles. Top-left: a cluster of fibre cross-sections; Top-middle: their 
manually traced ground truth; Top-right: the best fitting circles and their 
percentage overlap with the ground truth; Bottom: the distribution of 
fitted circle overlap for all fibre cross-sections. The best fitting circle for a 
ground truth object is that with the same centre of gravity and area. 
Overlap is a measure of agreement between two shapes and is defined in 
section II.B 



no candidate pairings with non-zero overlap remain. Next, we 
define the matched overlap for ground truth and algorithm-
generated objects. If an object occurs in a pairing in the 
matched list (it cannot occur more than once) then its matched 
overlap is set to be the overlap of the pairing. All other 
matched overlaps are set to zero. Precision is defined as the 
mean matched overlap for algorithm-generated objects. Recall 
is defined as the mean matched overlap for ground truth 
objects. We then take the harmonic mean of precision and 
recall to get the f-measure, a commonly used metric for 
evaluating the similarity between a set of algorithm-generated 
objects and a set of ground truth objects. This overlap-based f-
measure is equivalent to the Dice coefficient (referred to as the 
coincidence index in [20]). 

C. The circle-based fibre detection algorithm 
Our algorithm represents fibre cross-sections as circles. Our 

set of candidate fibres for an image is therefore the set of 
circles, centred on pixels and with radii from a discrete set, 
which are fully contained within the image. We compute a 
feature vector for each candidate circle (section C.1) and 
compute, on the basis of it, a 'fibreness' score (section C.2). We 
then select a subset of candidate circles on the basis of this 
score and the constraint that fibre circles should have limited 
overlap (section C.3). 

1) The fibreness feature vector 
Our algorithm makes use of a map of oriented Basic Image 

Features (oBIFs [21, 22]) computed from the responses of a 
bank of six 2D derivative-of-Gaussian linear filters. BIFs are a 
classification of local image structure into seven different 
classes on the basis of approximate local symmetry. oBIFs 
augment the BIF with a quantised orientation, the computation 
of which depends upon the BIF type. Different BIF types have 
either zero, four or eight possible orientations, giving 23 oBIF 
types. The computation of BIFs depends on two parameters, a 
filter scale (") and a 'flat' threshold (#). Figure 2 shows a 
sample BIF map. For this work we set " = 1.75 and # = 0.085. 

The fibreness feature vector for a candidate circle is based 
on the distribution of oBIFs within an annular region. This 
region is co-centred with the circle and has inner and outer 
radii of 0.6 and 1.3 times the circle radius. As our fibre model 
is circularly symmetric, rather than using absolute orientation, 
we use a system of quantised, unsigned orientations measured 
relative to the radius vector from the circle centre to the oBIF 
location. We call this system of features rBIFs. Maintaining the 
same precision of orientation quantisation as for the 23 oBIFs 
results in 17 rBIFs. Figure 2 shows the annular region for a 
particular candidate circle, along with the distribution of rBIFs 
within it. For this work we use the mean square-rooted rBIF 
histogram across 8 overlapping quadrants as our feature vector. 

2) A fibreness score  
For our training half-slice, as well as computing fibreness 

feature vectors for each candidate circle, we also compute a 
fibreness score. This score measures how consistent the circle 
is with the ground truth. The score is computed as the 
maximum overlap between the circle and any of the ground 
truth fibre objects. We use logistic regression to learn an 
approximation of the relationship between the fibreness feature 
vector and the fibreness score. 

To learn this relationship, the fibreness score is computed 
for all circles, centred on pixels and with integer radii from 6 to 
77 pixels, whose annular regions are fully contained within the 
training half-slice. A two-pass targeted sample is used to select 
approximately 65,000 training circles from this x, y, r volume. 
In the first pass, points are picked such that the distribution of 
radii in the sample matches the distribution of fibre radii in the 
ground truth. In the second pass, points are picked from this 
first sample such that the distribution of fibreness scores is 
uniform. This targeted sample of training points was found to 
result in much improved fibre-finding performance compared 
to a random sample. 

3) Fibre finding 
Fibreness feature vectors are calculated for a range of 

candidate circles, centred on pixels and with a selection of 
integer radii, whose annular regions are fully contained within 
the test half-slice. The selected radii are geometrically sampled 
from the range 6 to 77, with a multiplier of 1.17. The weight 
vector learned via logistic regression is used to generate a 
predicted overlap score for every candidate circle from its 
fibreness feature vector, producing an x, y, r score volume. The 
global maximum of this score volume is found and the circle 
associated with this x, y, r is selected as a potential 'found 
fibre'. If the mean luminance of the image within this circle is 
above a threshold (24% of maximum intensity) the circle is 
retained as a confirmed found fibre. Otherwise, the circle is 
rejected as being wholly within a mitochondrion. If the circle is 
retained, all other circles that would overlap significantly with 
the found fibre are excluded from subsequent selection. Circle 
overlap is deemed significant when one circle would contain 
the other’s centre. The global maximum of remaining non-
selected, non-excluded points in the score volume is selected 

 
Figure 2. Top-left: the BIF map corresponding to the image region shown in 
figure 1. Top-right: an expanded view of the area indicated in the top-left 
image. This shows the annular region associated with a candiate circle 
overlaid on the oBIF map for the area. Bottom: the distribution of rBIFs 
within the annular region shown in the top-right image. 

 



and the process repeated until a pre-determined minimum 
predicted fibreness score (65%) is reached. The stopping score 
and grey level mitochondrion exclusion threshold are set by 
maximising the overlap-based f-measure achieved against a 
separate tuning half-slice. Overlap is calculated between the 
found circles and the fibre-only ground truth objects.  

D. The ilastik pixel classifier algorithm 
1) The classifier 

Ilastik [15] is a recently published pixel-based random 
forest classifier. A similar classifier has been reported by the 
same group to perform well at finding cell boundaries in 
electron microscope images of neural tissue [6]. The version of 
ilastik used for this study (v0.5) has a range of image features 
available, including ones based on similar derivative-of-
Gaussian filters as those used in the BIF scheme. These 
features are available at a range of scales, ranging from " = 0.3 
to " = 10. The classifier trained here uses all features at all 
scales and is trained on the full extra-cellular membrane pixel 
labelling for the training half-slice. Labelled membrane pixels 
are assigned to one ilastik class and all unlabelled pixels are 
assigned to a second class. 

At each training iteration, ilastik outputs an estimate of the 
probability that each pixel is extracellular membrane. This 
probability estimate is thresholded, assigning pixels with 
estimated probability $ 0.5 to the membrane category and the 
remaining pixels to the non-membrane category. During 
training, ilastik minimises the pixel error between this post-
threshold category labelling and the ground truth membrane 
labelling.  

2) Post-processing 
The final output of ilastik is an estimate of the probability 

that each pixel in the test image is extra-cellular membrane. As 
in [6] this probability map is converted into a set of algorithm-
generated objects using the watershed algorithm, using all 
pixels with a low membrane probability as seeds and removing 
all segments below a certain size. Additionally, we also 
independently subject all remaining segments to morphological 
closing. This fills holes and cracks in segments without 
merging or splitting any segments. All three post-processing 
parameters are optimised by maximising the overlap-based f-
measure achieved against a separate tuning half-slice. Overlap 
is calculated between the algorithm-generated objects and the 
all-cell ground truth objects. 

The approach in [6] is to deliberately produce an over-
segmentation of super-voxels from the watershed stage and 
train another random forest classifier to merge these super-
voxels. This functionality is not available in ilastik. However, 
we simulated a 'perfect' super-voxel merging algorithm by 
relaxing the one-to-one matching constraint when scoring the 
algorithm-generated objects against the ground truth. This has 
the effect of merging any algorithm-generated objects that 
maximally overlap with the same ground truth object. 
However, even after re-tuning the watershed parameters under 
this relaxed scoring regime, this did not result in a significant 
improvement in performance. This suggests that the addition of 
a voxel-merging stage would not result in a significant 
improvement in the performance of ilastik on our data. This 

may be due to the fact that not all the features used in [6] are 
available in ilastik. However, it appears that the tissue used in 
[6] was prepared using extra-cellular staining. Therefore 
another possibility is that it is simply not possible to produce a 
true under-segmentation from the membrane map that can be 
generated from the more cluttered classical staining. 

E. Algorithm comparison 
Our algorithm has a different aim than many other 

algorithms designed to reconstruct neural fibres from electron 
micrographs. Most 2D algorithms (including ilastik) try to 
identify all cell parts in the image, producing a dense labelling 
of pixels. Our algorithm only attempts to find closed 2D fibre 
cross-sections, producing a sparse labelling of fitted circles. It 
is not clear what the fairest way to compare these two differing 
outputs is. It could be argued that the additional objects found 
by ilastik might be harder to accurately find than the fibres to 
which the circle-based algorithm limits itself. To determine if 
this was the case, the recall for the fibre-only ground truth was 
compared for both algorithms. Recall gives credit for all parts 
of algorithm-generated objects that overlap the ground truth but 
does not penalise any parts that do not overlap the ground truth. 
Using this measure, the relative performance of the two 
algorithms was much the same as that observed when 
comparing their f-measure scores evaluated against their 
different ground truths. This suggests that ilastik does not find 
non-fibres harder to detect than fibres and that, despite the 
different ground truths used for evaluation, the algorithms can 
be fairly compared using their respective f-measures. 

III. RESULTS 

A. Circle-based algorithm 
Figure 3 shows the fibre circles found by our algorithm on 

one of the test half-slices, along with the fibre-only ground 
truth objects for the half-slice. Note that many of the circles 
with zero matched overlap do actually overlap with a true fibre 
object. However, the algorithm scoring only permits one found 
circle to be associated with each true fibre, so only the circle 
that most overlaps with each ground truth fibre will contribute 
to the f-measure. 

The labelling produced by our circle-based algorithm is 
sparse. The found circles are predominantly constrained to the 
areas of the image where the ground truth fibres exist, with few 
circles found in areas where there are no fibres. For the 
example half-slice shown, only 11% of the found circles 
(47/442) are placed completely outside of the ground truth 
fibres, despite this 'non-fibre' area accounting for 66% of the 
slice. 

However, there are many objects that are not well found. 
35% (160/455) of true fibres are not well matched by any 
found circle (i.e. have a matched overlap of less than 50%). 
The algorithm seems to find most small, round fibres well but 
struggles to find larger, irregular fibres. It also seems to miss 
some very small fibres. Many of the fibre cross-sections that 
are not well found are pre-synaptic boutons (marked B in 
figure 3). These are points where a fibre swells and makes a 
synapse and their cross-sections are both large and irregular. 



Figure 4 shows how the distribution of overlap scores 
varies with the size and eccentricity of the true fibres (data 
pooled across all four test half-slices). The algorithm fails to 
find fibre cross-sections well if they are very small (<188 

pixels), very large (>1397 pixels) or too irregular in shape 
(eccentricity>1.4). The poor performance on very small and 
very large fibres remains when only very circular fibres are 
considered (data not shown). 

B.  Algorithm comparison 
The mean f-measure performance of the circle-based 

algorithm assessed against the fibre-only ground truth is 50.5 
+/- 1.5%2 with a standard deviation of 0.9%. The mean f-
measure for ilastik assessed against the all-cell ground truth is 
51.6 +/- 3.7% with a standard deviation of 2.3%. These mean f-
measures are very similar and the difference between them is 
not significant given the confidence intervals.  

IV. DISCUSSION 
89% of the circles found by the circle-based algorithm 

overlap the sparse fibre-only ground truth to some extent. In 
this respect, the algorithm has managed to distinguish areas of 
fibre from areas of non-fibre reasonably well. Assessed 
quantitatively via the overlap-based f-measure, the algorithm 
achieves parity with a random forest classifier of a type that has 
been shown to achieve promising results against other electron 
microscope data. This suggests that this approach merits 

                                                             
2 95% confidence interval of the mean 

 
Figure 3. The fibre circles found by our algorithm overlaid on a sample test slice with fibre-only ground truth objects highlighted in yellow. The numbers 
indicate the percentage matched overlap between the found fibre circle and its paired ground truth object. Each ground truth object can only be paired with 
one circle, so some circles are assigned a score of zero even though they overlap a ground truth object. Green circles have a high matched overlap ($50%); 
orange circles have a low matched overlap (<50%); red circles have a matched overlap of zero. Pre-synaptic boutons are marked with B. 

 
Figure 4: Left: the overlap achieved by our algorithm as a function of the  
eccentricity of  true fibres. Right:  the overlap achieved by our algorithm as a 
function of the area of true fibres. Box bounds indicate 25th and 75th 
percentiles. Whisker bounds indicate 2.5th and 97.5th percentiles. Note that 
an equal number of data points contribute to each box-whisker column, 
resulting in non-uniform x-axes. 



further study. Additionally, a comparison of the output of the 
two algorithms (not shown) reveals that, while many fibres are 
well found by both algorithms, there are subsets of fibres that 
are only well found by one algorithm. This suggests that there 
is a benefit to be gained if a way can be found to usefully 
combine the two approaches. 

 In general our algorithm finds high overlap circles for low 
eccentricity (i.e. close to circular) fibres and fails to find high-
overlap circles for more eccentric fibres (figure 4). This 
suggests that the algorithm does well when the true fibre cross-
sections are a good fit for the circular constraint it imposes on 
found fibres. One obvious step would be to relax the constraint 
that found fibres be circles. By permitting found fibres to be 
ellipses, the model fibres would be a better fit for the high 
eccentricity fibre cross-sections. However, it remains to be 
shown whether an exhaustive search of the solution space is 
still possible with this more complex model.  

However, eccentricity is not the full story. Even when 
constrained to highly circular fibres, very small and very large 
fibres are still not well found (data not shown). The width of 
the annular region of interest for which the rBIF histogram is 
calculated is proportional to the radius of the candidate fibre 
circle. Permitting this relationship to vary for fibres of different 
radii may improve the performance of the algorithm for small 
and large fibres. 

Many of the large irregular, poorly found fibre cross-
sections are pre-synaptic boutons. These contain a significant 
amount of intracellular clutter in the form of vesicles and 
mitochondria. The BIFs associated with this clutter are similar 
to those associated with fibre boundaries, so this clutter may 
also contribute to the poor match between found circles and 
boutons. Introducing new image features that permit this clutter 
to be clearly distinguished from extracellular membrane may 
therefore improve the algorithm's performance for bouton 
cross-sections. 

Further work is required for both algorithms to determine to 
what extent performance at detecting 2D fibre cross-sections 
translates into performance at reconstructing fibres in 3D from 
these cross-sections. One the one hand, 3D performance might 
be expected to be worse than 2D as an error in a single slice 
could assign an entire section of neurite to the wrong neuron. 
On the other hand, pooling information across slices could 
result in higher reconstruction fidelity.  
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