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ABSTRACT 
 
The poor performance of global navigation satellite 
systems (GNSS) user equipment in urban canyons is a 
well-known problem, especially in the cross-street 

direction. A new approach, shadow matching, has recently 
be proposed to improve the cross-street accuracy using 
GNSS, assisted by knowledge derived from 3D models of 
the buildings close to the user of navigation devices. In 
this work, four contributions have been made. Firstly, a 
new scoring scheme, a key element of the algorithm to 
weight candidate user locations, is proposed. The new 
scheme takes account of the effects of satellite signal 
diffraction and reflection by weighting the scores based on 
diffraction modelling and signal-to-noise ratio (SNR). 
Furthermore, an algorithm similar to k-nearest neighbours 
(k-NN) is developed to interpolate the position solution 
over an extensive grid. The process of generating this grid 
of building boundaries is also optimized. Finally, instead 
of just testing at two locations as in the earlier work, real-
world GNSS data has been collected at 22 different 
locations in this work, providing a more comprehensive 
and statistical performance analysis of the new shadow-
matching algorithm. 
 
In the experimental verification, the new scoring scheme 
improves the cross street accuracy with an average bias of 
1.61 m, with a 9.4% reduction compared to the original 
SS22 scoring scheme. Similarly, the cross street RMS is 
2.86 m, a reduction of 15.3%. Using the new scoring 
scheme, the success rate for determining the correct side of 
a street is 89.3%, 3.6% better than using the previous 
scoring scheme; the success rate of distinguishing the 
footpath from a traffic lane is 63.6% of the time, 6.8% 
better than using the previous scoring scheme. 
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1. INTRODUCTION 
 
The poor performance of global navigation satellite 
systems (GNSS) user equipment in urban canyons is a 
well-known problem in terms of both accuracy and 
solution availability (Jiang et al., 2011; Groves, 2011; 
Wang et al. 2012). In contrast, a great number of day-to-
day navigation requests are made in urban areas by city 
residents. Advanced intelligent transportation systems, for 
example, rely on positioning systems for their ability to 
direct individual cars in order to maximize traffic flow and 
prioritize emergency vehicles (Bruner, J, 2008). Vehicle 
lane detection in lane guidance systems, location-based 
advertising, augmented-reality applications, and step-by-
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step guidance for visually impaired and tourists all require 
sufficient positioning accuracy to perform their functions 
(Rashid et al., 2005, You et al., 2008, Broll et al., 2008). 
However, the availability and accuracy of GNSS in urban 
areas limits the use of these applications (Wang et al., 
2012). 

 
Figure 1. The buildings cast GNSS shadows over the 

adjacent terrain. 

 
Figure 2. A schematic diagram of shadow matching.  

 

 
Figure 3: The shadow-matching concept: using direct 

signal reception to localise position 
 
The problem of GNSS performance in urban canyons 
arises because where there are tall buildings or narrow 
streets, the direct line-of-sight (LOS) signals from many, 
sometimes most, of the satellites are blocked. The 
buildings effectively cast GNSS shadows over the adjacent 
terrain. Figure 1 illustrates this. Without direct signals 
from four or more satellites, an accurate position solution 
cannot be determined. Sometimes, a degraded position 
solution may be obtained by making use of signals that can 
only be received by reflection off a building; these are 
known as non-line-of-sight (NLOS) signals (Ercek et al., 
2005; Viandier et al., 2008). 

As well as affecting the number of available GNSS signals, 
an urban canyon also affects the geometry of satellites, 
which causes lower accuracy in the cross-street direction. 
This is because signals with lines of sight going across the 
street are much more likely to be blocked by buildings 
than signals with lines of sight going along the street. This 
is illustrated by Figure 2. As a result, the signal geometry, 
and hence the positioning accuracy, will be much better 
along the direction of the street than across the street 
(Groves, 2011).  
 
For improving navigation performance in highly built-up 
areas, a variety of navigation sensors have been used to 
enhance or augment GNSS. Road vehicles typically 
combine GNSS with odometers, and map-matching 
algorithms, while pedestrian navigation users may 
combine GNSS with cell phone signals, Wi-Fi and/or dead 
reckoning using inertial sensors, magnetic compass and 
barometric altimeter (Groves, 2008; Farrell, 2008). 
However, these approaches improve the continuity and 
robustness of the position solution, but not the cross-street 
accuracy. 
 
A new approach has recently be proposed to improve the 
cross-street accuracy using GNSS, assisted by knowledge 
derived from 3D building models close to the user of 
navigation devices (Groves, 2011). As 3D building models 
are becoming more accurate and widely available 
(Bradbury, 2007; Bradbury et al., 2007), they may be 
treated as a new data source for urban navigation and used 
to improve cross-track positioning accuracy in urban 
canyons. This can be achieved by predicting which 
satellites are visible from different locations and 
comparing this with the measured satellite visibility to 
determine position. Satellite visibility predictions using a 
3D city model have been validated with real-world 
observation, demonstrating the practical potential of 
shadow matching (Bradbury, 2007; Bradbury et al., 2007; 
Suh and Shibasaki, 2007; Kim et al., 2009; Ji et al., 2010; 
Wang et al, 2012). A preliminary shadow-matching 
algorithm has been developed and demonstrated the ability 
to distinguish pavement from vehicle lane, and identify the 
correct side of street using real-world GPS and GLONASS 
measurements (Wang et al, 2011, Groves et al., 2012). 
 
However, only direct line-of-sight (LOS) signals are 
predicted in the earlier algorithm, whereas the user 
equipment can also observe diffracted and reflected signals. 
This mismatch can degrade shadow-matching performance. 
In this work, four contributions have been made. Firstly, a 
new scoring scheme, a key element of the algorithm to 
weight candidate user locations, is proposed. The new 
scheme takes account of the effects of satellite signal 
diffraction and reflection by weighting the scores based on 
diffraction modelling and signal-to-noise ratio (SNR). 
Furthermore, an algorithm similar to k-nearest neighbours 
(k-NN) is developed to interpolate the position solution 
over an extensive grid. The process of generating this grid 
of building boundaries is also optimized. Finally, instead 
of just testing at two locations as in the earlier work, real-
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world GNSS data has been collected at 22 different 
locations in this work, providing a more comprehensive 
and statistical performance analysis of the new shadow-
matching algorithm. 
 
The improved shadow-matching algorithm is described in 
Section 2, employing a set of new scoring schemes to 
acknowledge signal diffraction and reflection. Section 3 
then describes the testing of the algorithm using real-world 
GPS and GLONASS measurements, and compares 
performance of the shadow-matching algorithm using 
different scoring schemes. Finally, in Section 4, 
conclusions are drawn and future work discussed. 
 
2. SHADOW MATCHING OPTIMIZATION  
 
This section describes the full implementation of the 
shadow-matching algorithm and discusses how it was 
optimized. Section 2.1 first explains the existing shadow-
matching algorithm. Section 2.2 then gives a 
comprehensive implementation of the algorithm, which 
consists of two phases – offline phase and online phase. 
Each step in the two phases are further introduced, with 
emphasis on optimization in grid generation of building 
boundaries and a set of proposed new scoring schemes. 
 
2.1 The Existing Shadow-matching Algorithm 
 
The principle of shadow matching is simple (Groves, 
2011). Due to obstruction by buildings in urban canyons, 
signals from many GNSS satellites will be receivable in 
some parts of a street, but not others. Figure 3 illustrates 
this, noting that the boundary between the two regions is 
fuzzy due to diffraction effects at building edges 
(Bradbury, 2007). Where each direct signal is receivable 
can be predicted using a 3D city model. Consequently, by 

determining whether a direct signal is being received from 
a given satellite, the user can localise their position to 
within one of two areas of the street. By considering other 
satellites, the position solution may be refined further. At 
each epoch, a set of candidate user positions is generated 
close to the user’s low-accuracy conventional GNSS 
positioning solution. At each candidate user position, the 
predicted satellite visibility is matched with the real 
observations. The candidate position that has the best 
match between the prediction and the real observations is 
deemed the shadow matching positioning solution. This 
process can be conducted epoch by epoch, so the GNSS 
user can be either static or dynamic. Figure 2 illustrates 
this process.  

 
2.2 The Improved Shadow-matching Algorithm 
 
The new shadow-matching algorithm has two phases – the 
offline phase (the preparation step) and the online phase, 
consists of five steps, both illustrated in Figure 4. An off-
line phase is conducted to generate a grid of building 
boundaries. In the beginning of the online phase, the user 
position is first initialized, e.g. using standard point 
positioning (SPP) with GNSS pseudo-ranges. The second 
step defines the search area for the shadow-matching 
position solution. For the third step, the satellite visibility 
at each grid position is predicted using the building 
boundaries generated from the 3D city model. After that, 
the similarity of satellite visibility between prediction and 
observation is evaluated using a scoring scheme, providing 
a score for each grid point in search area. Finally, the 
shadow-matching positioning solution is generated by a 
modified k-nearest neighbours algorithm, which averages 
the grid points with the highest scores. Each of the steps is 
described in more detail below. 

 

 
Figure 4:  A workflow of the improved shadow-matching algorithm. 
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Figure 5: An example of a building boundary as azimuth-

elevation pairs in a sky plot. (The centre of the plot 
correspond to a 90º elevation or normal incidence) 

 
 

 
 

Figure 6: The process generating the grid of building 
boundaries 

 
 Step 0: Generate a Grid of Building Boundaries 
 
In the off-line phase, building boundaries at a grid of 
locations are generated. A building boundary means from 
a GNSS user’s perspective, the building’s edge determined 
for each azimuth (from 0 to 360°) as a series of elevation 
angles. The results from this step show where the building 
edges are located within an azimuth-elevation sky plot. 
Figure 5 shows an example of a building boundary 
computed from a candidate user location. Once the 

building boundary has been computed, it may be stored 
and reused easily in the online phase to predict satellite 
visibility by simply compare the elevation of a satellite 
with the elevation of the building boundary at the same 
azimuth.  

 
From the perspective of mobile devices, the algorithm 
trades time and computing power to a one-off processing 
requirement at the server side. Specifically, this is 
achieved by representing the 3D model in a specially 
designed form - building boundaries at each candidate 
positions. The logic behind the strategy is that the vast 
amount of data in a 3D city model is not of direct interest 
to the shadow-matching algorithm, only where the edges 
of the buildings are located from a user’s perspective 
matter. Thus, utilizing this knowledge, only building 
boundaries at each candidate positions are abstracted from 
the 3D model. This method saves computation load 
because individual mobile devices do not need to compute 
the building boundaries on the fly. Instead, they can 
simply request building boundaries at a certain range of 
locations, or cache a desired region. 
 
Using stored building boundaries, fewer than fifty 
comparison and addition operations are required to 
calculate an overall shadow matching score for one 
candidate position with two GNSS constellations. 
Therefore, shadow matching may be performed in real 
time on a mobile device with several hundred candidate 
positions, where necessary.  
 
Without any data compression, about 300 bytes are 
required to store a building boundary with a 1� resolution. 
If a 2�2 metre grid spacing is used for the candidate 
positions, a 1 km long 20 m wide street will contain 5000 
grid points, requiring 1.5 MB of data storage. By 
exploiting the similarities both between neighbouring 
azimuths in the same building boundary and between 
building boundaries at neighbouring grid points, 
substantial data compression should be achievable; 
possibly up to a factor of ten. 
 
Therefore, a standard 4 GB flash drive could store building 
boundary data for 2500–25000 km of road network. For 
comparison, the Greater London metropolitan area 
contains about 15000 km of road. However, as shadow 
matching is only useful in streets where conventional 
GNSS positioning is poor, the database need only contain 
building boundary data for these streets, maybe 10% of the 
total. Therefore, it should be practical to preload a mobile 
device with shadow-matching data for several cities, which 
could be kept up-to-date via the internet. 
 
A software toolkit for generating the grid of building 
boundaries from a 3D city model was developed in C++.  
Figure 6 shows the process.  
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Figure 7 The optimization used in building boundary 

generation by refining city models according to location of 
candidate user position and azimuth of interest. (Aerial 

perspective, the figure is not drawn to scale) 
 
The process can be broken into four steps. Firstly, a one 
meter by one meter horizontal grid of points, covering the 
3D city model area, is generated. The height is set to be 
1.5 meters above the terrain height measured in the 3D city 
model. Secondly, a pre-processing step is developed to 
eliminate indoor points from the generated grid in the first 
step, because the current shadow-matching algorithm is 
designed to work outdoors. Outdoor points are 
distinguished from indoor ones by testing whether the 
elevation angle of the sky at each azimuth is 90 degrees. 
Further details of the algorithms testing line-of-sight 
visibility can be found in a previous paper (Wang et al, 
2012). Thirdly, buildings that are unlikely to block satellite 
signals are eliminated from the search area, based on 
checks of their relative location from the candidate 
position of interest. Finally, the highest elevation angle for 
a visible sky at each azimuth is tested to determine the 
building boundary at each outdoor candidate position. 
 
 
Figure 6 also illustrates the optimization of the process of 
building boundary generation. Without optimization, it 
takes an estimated 53 days to perform the process at a 1 m 
by 1 m grid of candidate positions across a 500 m by 500 
m area, using a computer with a CPU speed of 2.67 GHz. 
In order to improve the efficiency, only buildings that are 
close to the candidate position and in the direction of 
interest are tested. Figure 7 illustrates this search area. It 
should be noted that the parameters used in this example 
are manually selected based on knowledge of the 3D city 
model used in this work. Appropriate changes should be 
made if using another type of city model. After 
optimization, the time required to generate building 
boundaries at the same grid of points was reduced to less 

than 4 days, a 92.5% reduction in time compared to the 
original algorithm. 
 
 Step 1 Position Initialization (Online Phase) 
 
In the first step of shadow-matching algorithm, standard 
point positioning (SPP) using GNSS pseudo-ranges is 
conducted to acquire an initial user position. In an urban 
environment, the accuracy is often poor. Consistency 
checking may be used to identify non-line-of-sight signals 
and remove them from the position solution (Jiang et al., 
2011, Jiang and Groves, 2012). Other available positioning 
methods (e.g. Wi-Fi or Cell network solution) may be 
introduced into this step when the GNSS SPP is poor or 
unavailable.  
 
 Step 2 Determine the Search Area for Candidate 

Positions from the Building Boundaries at a Grid  
 
The second step defines the search area in which candidate 
positions are located for the shadow-matching position 
solution. A search area is defined based on an initial 
position generated in the first step. A simple 
implementation can be to draw a fixed-radius circle 
centred at the initialized position, but more advanced 
algorithms can be developed to use the knowledge from 
the initialization process to optimize the search area. 
 
For instance, if the initial position is generated using a 
conventional GNSS solution, the signal geometry, and 
hence the positioning accuracy, will be much better along 
the direction of the street than across the street. This is 
because an urban canyon affects the geometry of the 
available GNSS signals. Signals with lines of sight going 
across the street are much more likely to be blocked by 
buildings than signals with lines of sight going along the 
street. Therefore, the conventional GNSS solution has 
lower accuracy across-street and higher accuracy along-
street, which is complementary to shadow-matching 
algorithm. 
 
Thus, the along-street component of SPP solution can be 
used as a reference to define the search area and thus 
generate candidate user positions that vary more in the 
across-street direction. This is illustrated by the two 
mobile phones besides the SPP solution in Figure 2, with 
the green area representing the search area centred at the 
initial position. A more advanced shadow-matching 
algorithm would vary the size of its search area based on 
an assessment of the quality of the SPP solution. 
 
 Step 3 Predict Satellite Visibility at Each Candidate 

Position 
 
In the third step performed at each candidate position, each 
satellite’s elevation is compared with the building 
boundary elevation at the same azimuth. The satellite is 
predicted to be visible if the satellite is above the building 
boundary.  
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Figure 8: Scoring matrix giving the score for each satellite 

in shadow matching (SS22) 
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Figure 9: Scoring matrix giving the score for each satellite 

in shadow matching, which models diffraction effects 
(SS23) 
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Figure 10: Scoring matrix giving the score for each 

satellite in shadow matching, which account for weak 
signals that are likely to be caused by signal diffraction 

and reflection (SS32) 
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Figure 11: Scoring matrix giving the score for each 
satellite in shadow matching, which both models 

diffraction effects and accounts for weak signals that are 
likely to be caused by signal diffraction and reflection 

(SS33) 
 

 
 

 
Figure 12: Part of the 3D model of London used in the 

experiments. 
 
The diffraction effect is also modelled in this work (Wang 
et al., 2012). A three-degree diffraction zone is modelled 
for building boundaries both horizontally and vertically. 
Thus, in this model, from the perspective of a GNSS 
receiver, buildings are three degrees lower and narrower 
than their actual height and width. If the line-of-sight (LOS) 
falls within the diffraction region, the signal is predicted to 
be diffracted. Otherwise, it is predicted to be invisible. 
 
 Step 4: Satellite Visibility Scoring Using Scoring 

Scheme 
 
For the fourth step, the similarity of the satellite visibility 
between predictions and observations is evaluated. The 
candidate positions with the better matches will then be 
weighted higher in the shadow matching positioning 
solution. There are two stages for calculating a score for a 
candidate position. Firstly, each satellite above the 
elevation mask angle is given a score, calculated based on 
the predicted and observed visibility, using a scoring 
scheme. Secondly, the position scoring function, evaluates 
for each possible user position the overall degree of match 
between predicted and observed satellite visibility. This is 
illustrated in (1).  
 

௣݂௢௦ሺ݆ሻ ൌ ∑ ௦݂௔௧ሺ݅, ݆, ܵܵሻ
௡
௜ୀଵ     (1) 

 
where ௣݂௢௦ሺ݆ሻ  is the position score for grid point j ; 

௦݂௔௧ሺ݅, ݆ሻ is the score of satellite i at grid point j; ݊ is the 
number of satellites above the mask elevation angle; SS is 
the scoring scheme which defines a score based on 
predicted and observed satellite visibility.  

By the end of this step, each candidate position should 
have a score to represent the degree to which it matches 
the observed satellite visibility, and thus how likely it is 
that each candidate position is close to the true location. 
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The existing scoring scheme SS22 is shown in Figure 8. 
Only direct line-of-sight (LOS) signals are considered 
using this scoring scheme, whereas the user equipment can 
also observe diffracted and reflected signals. This 
mismatch can degrade shadow-matching performance. 
 
Thus, the scoring scheme has been improved to 
acknowledge diffraction effects by diffraction modelling. 
Diffraction occurs at the edge of a building (or other 
obstacle) when the incoming signal is partially blocked, 
noting that the path taken by a GNSS signal is several 
decimetres wide. There are two approaches to predicting 
the effect of diffraction on satellite visibility using a 3D 
city model. The first one would be to numerically 
determine the diffraction field based on every physical 
factor, including the surface of building, the angle of 
incidence of the signal and the properties of the GNSS user 
equipment. This method is impractical because the 
necessary information about the building materials and 
antenna characteristics is difficult to obtain and the 
computational complexity is high. The second, much 
simpler, approach has been adopted here. This simply 
extends the building boundary used for satellite visibility 
determination by adding a diffraction region to model the 
diffraction effect around building edge. Thus, wherever the 
LOS intersects the diffraction region, the signal is 
classified as potentially diffracted instead of blocked 
(Walker and Kubik, 1996; Bradbury, 2007; Wang et al., 
2012). Both horizontal and vertical edges are considered 
for diffraction modelling. Here, a 3º-wide diffraction 
region was modelled. The improved scoring scheme SS23 
as shown in figure 9. 
As diffractions and reflections both normally result in 
weaker signal reception, the signal strength is also built 
into the new scoring scheme – SS32, as shown in figure 10. 
In this scheme, a weak signal is regarded likely to be 
reflected or diffracted, thus it is given alower weight 
compared to a strong signal. The boundary to distinguish 
weak signal from strong signal should be based on the 
signal to noise ratio (SNR).  
 
Finally, by joining both diffraction modelling and signal 
strength based scoring, a new SS33 scoring scheme is 
introduced, as shown in figure 11. It should be noted that 
the scores in these scoring schemes are based on both 
theory and experimental data. Changes may be needed 
when using GNSS receivers of other types. 

 
In Section 3, a comprehensive comparison will be 
conducted to evaluate the influence using different scoring 
schemes on performance of shadow matching. 
 
 Step 5: Positioning Using Scores at Candidate Positions 
 
The last step of the shadow-matching algorithm is to 
generate a positioning solution using scores from each 
candidate position. Shadow matching uses the pattern-
matching positioning method (Groves, 2013). As the 
process of Wi-Fi fingerprinting is similar to the this 

process in shadow matching, the algorithms used in Wi-Fi 
fingerprinting may be investigated for their potential 
implementation in shadow matching. Potential algorithms 
include, but are not limited to, k-weighted nearest 
neighbours, the Bayesian inference received signalstrength 
(RSS) location method, and the particle filter. 
 
In this work, a method similar to k-nearest neighbours is 
used to estimate the location, averaging the grid positions 
of highest scores. With the current scoring system, scores 
take integer or half-integer values. Therefore, several grid 
points typically share the highest score. The points in the 
grid with highest scores are regarded as nearest neighbors. 
For L nearest neighbors, the location estimate is conducted 
using (2) and (3) for northing and easting coordinate 
components: 
 

Northing ൌ
ଵ

௅
∙ ∑ ݊௜

௅
௜ୀଵ      (2)	

Easting ൌ ଵ

௅
∙ ∑ ݁௜

௅
௜ୀଵ    (3) 

 
where ni and ei are, respectively, the northing and easting 
coordinates of the ith high-scoring candidate positions. 
Note that L varies from epoch to epoch depending on how 
many candidate positions share the highest score. 
 
3. COMPARISON OF VISIBILITY PREDICTION 
SCORING USING EXPERIMENTAL DATA 
 
The different scoring schemes were tuned and compared 
using experimental data to improve the accuracy and 
reliability of shadow matching. Section 3.1 introduces the 
3D city model of the Aldgate area of central London, used 
in the shadow matching experiments. Real-world data sets 
are collected at sites within the city model area, scattered 
on major roads and minor roads, at and between junctions. 
Section 3.2 describes the methods and logics behind 
implementations of each step of shadow matching. Section 
3.3 presents details of selected experimental sites. The 
experimental results are compared and analysed in Section 
3.4 - 3.6. 
 
3.1 City Models 
 
A real 3D city model of the Aldgate area of central 
London, supplied by ZMapping Ltd, has been used. The 
model has a high level of detail and decimetre-level 
accuracy. Figure 12 shows an aerial view of the city model 
used in this work. 
 
The software toolkit developed for this study stores and 
processes 3D city model data using Virtual Reality 
Modelling Language (VRML), an international standard 
format. Model data in other formats can be transformed to 
VRML. Buildings in VRML format are represented by 
structures, which in turn compromise polygons (normally 
triangle meshes). 
 

429



 

Figure 13: The experimental sites in urban canyons. It shows the experimental sites location in the satellite image in real world. 
 

 

Figure 14. Left: A photo taken in the experiment on 
Billiter Street, which is a narrow street. Right: a photo 

taken in the same experiment on Fenchurch Street. 

3.2 Shadow Matching Implementation 
 
In the offline phase, a 1 meter by 1 meter grid has been 
generated, and the building boundaries determined at each 
grid point as defined earlier in the paper. They are stored 
in a specially defined format in a database. 
 

In the online phase, position initialization is not conducted 
because this study focuses on comparing the different 
scoring schemes. Different methods used in positioning 
initialization can result in very different initial positions, 
so in order to prevent initialization errors from 
contaminating the following scoring step, the search area 
for each site is centred at the true position. The search area 
for each site is defined as everything within a radius of 20 
meters,  except for the indoor points. Four scoring schemes 
are deployed at every sites in the satellite visibility scoring 
step. The modified k-nearest neighbours algorithm is used 
to determine the positioning solution of shadow-matching 
algorithm, using (2) and (3). 
 
3.3 Experimental Site Selection 
 
To compare the performance of shadow matching using 
different scoring schemes, experiments were conducted at 
11 pairs of sites, resulting in GNSS data at 22 locations in 
central London on 23/07/2012. In each pair, two survey-
grade GNSS receivers (Leica Viva) were set up on 
opposite sides of each street (Leadenhall Street, Billiter 
Street and Fenchurch Street), standing on a footpath close 
to the traffic lane. GPS and GLONASS observation data 
were recorded at a 1 Hz rate simultaneously for 10 minutes 
at each pair of locations. For the purpose of increasing the 
reliability of the experiments, each site was visited twice at 
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an interval of approximately 4 hours, allowing the satellite 
geometry to change completely. The first round is denoted 
r1, the second round is denoted r2. Thus, in total, 7 hours 
and 20 minutes of GNSS data was recorded in 44 
observation periods at 22 different locations. A summary 
of the experimental sites is shown in Table 1; their 
locations are presented in Figure 13. Figure 14 shows two 
of the narrow streets in the experimental area. 
 
3.4 Signal to Noise Ratio (SNR) Empirical Value 
 
The signal to noise ratio (SNR) is introduced as an 
indicator of satellite signal quality in the shadow-matching 
system. An empirical analysis was first conducted to 
observe the level of SNR in the experimental data. This is 
because SNR can vary significantly between different 
types of GNSS receiver. The SNR of the L1 C/A code 
signal recorded by the Leica Viva GNSS receiver is shown 
in figures below. Figure 15a shows a period of 
observations with typical ‘strong’ SNR values; Figure 15b 
shows the same period of observation, but with typical 
‘weak’ SNR values. The figure also shows that when the 
signal is strong, the SNR value typically remains stable 
(normally around 50 dB-Hz); whereas when the signal is 
weak, it changes dramatically and the value tends to be 
lower (normally below 40 dB-Hz). 
 
SNR values of all satellites recorded by two identical 
Leica Viva receivers in the experimental period show that 
the SNR mainly ranges between 25 dB-Hz and 55 dB-Hz 
with an average of 40 dB-Hz. Thus, in those scoring 
schemes that account for the observed signal quality, 
signals with SNR > 40 dB-Hz are regarded as strong and 
signals with SNR ≤ 40 dB-Hz is regarded as weak. 
 
3.5 Score Map of Candidate Positions 
 
At the true position of each experimental site, a 20 meter 
radius circle is used to generate candidate positions. The 
pre-calculated candidate grid of building boundaries is 
loaded in the on-line phase of shadow matching. At each 
observation epoch, comparison is made between the 
predicted and observed satellite visibility. Each of the four 
score schemes is applied to the results for comparison. To 
illustrate the distribution of scores at the grid points, 
Figure 16 shows an example of score map for 
experimental sites G011 (left) and R011 (right). 
 
In Figure 16, the score of candidate positions ranges 
mainly at the cross-street direction. As G011 and R011 are 
located at different sides of a street, it is clearly 
demonstrated that the shadow matching algorithm is 
sensitive to changes in the across-street direction, but less 
sensitive in the along-street direction. This is in line with 
expectations and complements conventional GNSS 
positioning, which is generally more precise in the along-
street direction. There are some spaces that between 
buildings fall within the search area, but the highest 

scoring points are mostly in the correct street. In order to 
evaluate the performance across all of the experimental 
data, statistical analysis was conducted. 

Table 1. A summary of experimental sites 
Site Name 1st Round 2nd Round 

G001, R001 09:05-09:15 13:07-13:17 

G002, R002 09:35-09:45 13:19-13:29 

G003, R003 09:10-10:00 13:31-13:41 

G004, R004 10:05-10:15 13:44-13:54 

G005, R005 10:18-10:28 13:58-14:08 

G006, R006 10:33-10:43 14:11-14:21 

G007, R007 10:45-10:55 14:23-14:33 

G008, R008 10:59-11:09 14:36-14:46 

G009, R009 11:14-11:24 14:49-14:59 

G010, R010 11:31-11:41 15:03-15:13 

G011, R011 11:47-11:57 15:15-15:25 

 

 
(a) 

 

 
(b) 

Figure 15a (top). A period observation of typical strong 
signal (SNR on L1 of GPS PRN 2, on experimental site ID 
G001_r1); 15b (bottom). A period observation of typical 

weak signal (SNR on L1 of GLONASS 18, on 
experimental site ID G001_r1) 
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     (a)      (b) 
Figure 16. Shadow-matching score map of experimental sites G011 (a) and R011 (b) using 3x3 scoring scheme SS33 (at epoch 

11:55:40 23 July 2012). The circles represent the candidate positions. The red bar is where the shadow-match positioning 
solution is. Refer to Figure 13 for the true location of each site. For illustration purposes, a 50 meter-radius circular search area 

centered at each truth position is used.
 

 

 
Figure 17. The average bias and RMS between shadow matching positioning solution from true position for each experimental 

sites using the 2 * 2 scoring matrix. 
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Figure 18. The average bias between shadow matching positioning solution from true position for each experimental sites 
using the 2 * 3 scoring matrix. 
 

 
Figure 19. The average bias between shadow matching positioning solution from true position for each experimental sites 

using the 3 * 2 scoring matrix. 
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Figure 20. The average bias between shadow matching positioning solution from true position for each experimental sites 

using the 3 * 3 scoring matrix. 
 
3.1 Statistical Analysis 
 
Two indicators, average bias and root mean square error 
(RMS), are used for each experimental site to evaluate the 
performance of shadow matching. The bias is transformed 
from local coordinates (Northing and Easting) to the 
along-street and across street direction. In order to 
compare shadow matching using the different scoring 
schemes, the average biases and RMS at each site are 
compared in Figures 17 - 20, noting that the statistics 
cover a 10 min observation period, during which the 
constellation geometry changes slowly, so the results are 
highly correlated over time. The y-axis is in meters. Where 
separate statistics are calculated for the two different 
observation periods at the same site, results for which may 
be considered independent.  A few sites are missing from 
the results because fewer than four satellites were observed 
so an SPP solution could not be computed and the GNSS 
receivers used for this experiment would not record the 
measurement due to the design of their software. 
 
It is shown in Figure 17 - 20 that the along street average 
bias is typically higher than the across street one. As 
shadow matching was designed to improve the cross-street 
positioning, and may be combined with conventional 
GNSS and other possible techniques, this is not considered 
to be a problem. 
 
Further statistics have been computed to average the bias 
and RMS error using each scoring scheme, the results are 
shown in Figure 21. Similarly, Figure 22 also compares 

different scoring schemes for their effects on shadow 
matching performance in terms of success rate of 
positioning error with certain meters. It can be seen from 
both graphs that different scoring schemes have a 
relatively small influence on the performance of shadow 
matching, which means the shadow matching performance 
is not very sensitive to the scoring schemes. However, 
there is a small improvements using the new SS33 scoring 
scheme. For example, in Figure 21, the new scoring 
scheme improves the cross street accuracy with an average 
bias of 1.61 m, with a 9.4% reduction compared to the 
original SS22 scoring scheme. Similarly, the cross street 
RMS is 2.86 m, a reduction of 15.3%.  
 
As the street is around 10 meters wide, a positioning 
accuracy better than 5 meters is considered good enough to 
determine the correct side of the street, while a positioning 
accuracy better than 2 meters is considered good enough to 
distinguish the foot path from a traffic lane. Figure 20 
shows success rate in terms of achieving a cross-street 
error within 1, 2, 3, 4, and 5m. It shows that the success 
rate for determining the correct side of a street is 89.3%, 
3.6% better than using the previous SS22 scoring scheme; 
the success rate of distinguishing the footpath from a 
traffic lane is 63.6% of the time, 6.8% better than using the 
previous SS22 scoring scheme. 
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Figure 21. The average bias and RMS that is averaged 
between all experimental sites, using different scoring 

matrix in shadow matching algorithm. 
 

 
Figure 22. The success rate of positioning error using 

shadow matching in cross-street direction. 
 
4 CONCLUSION AND FUTURE WORK 
 
In this work, four contributions have been made. Firstly, a 
new scoring scheme, a key element of the algorithm to 
weight candidate user locations, is proposed. The new 
scheme takes account of the effects of satellite signal 
diffraction and reflection by weighting the scores based on 
diffraction modelling and signal-to-noise ratio (SNR). 
Furthermore, an algorithm similar to k-nearest neighbours 
(k-NN) is developed to interpolate the position solution 
over an extensive grid. The process of generating this grid 
of building boundaries is also optimized. Finally, instead 
of just testing at two locations as in the earlier work, real-
world GNSS data has been collected at 22 different 
locations in this work, providing a more comprehensive 
and statistical performance analysis of the new shadow-
matching algorithm. 

 
Figure 23. Conventional GNSS positioning solution using 

weighted least square (WLS) at site G003. 
 
In the experimental verification, the new scoring scheme 
achieves an average cross street accuracy to 1.61 m, a 
9.4% improvement over the previous scheme, while the 
cross street RMS error is 2.86 m, a 15.3% improvement. 
Figure 22 shows that the success rate for determining the 
correct side of a street is 89.3%, a 3.6% improvement, 
while the success rate for distinguishing the footpath from 
a traffic lane is 63.6%, a 6.8% improvement. 
 
Conventional GNSS positioning performs relatively poorly 
in the across street direction, and better along the street. 
Figure 23 shows the conventional GNSS positioning 
solution at point G003_r1 using weighted least square 
(WLS). It demonstrates that the cross street position from 
the conventional GNSS solution can vary by 40 meters. As 
shadow matching has a cross-street accuracy of a few 
meters, it is highly complementary to conventional GNSS 
positioning methods. 
 
In future work, shadow matching using GPS and 
GLONASS data from a smartphone will be tested. Four-
constellation shadow-matching performance will also be 
predicted by combining GPS and GLONASS data from 
two different epochs, separated in time. The Bayesian 
inference received signal strength (RSS) location method, 
and the particle filter may be investigated for the shadow 
matching positioning algorithm. Further investigations will 
be conducted to improve the shadow-matching algorithm. 
 
To obtain an accurate and reliable position solution in 
challenging urban environments, shadow matching must 
be combined with conventional GNSS positioning, NLOS 
signal detection and other techniques that exploit the 3D 
mapping, such as height aiding. This concept is known as 
intelligent urban positioning (IUP) and is introduced in 
Groves et al (2012b). IUP may also be extended to 
incorporate other techniques, such as Wi-Fi, Bluetooth 
Low Energy, and MEMS inertial sensors. 
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