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Abstract 

 

Cyclin dependent kinase 1 (Cdk1) controls cell proliferation and is inhibited by 

promising anticancer agents, but its mode of action and the consequences of its 

inhibition are incompletely understood. Cdk1 promotes S and M-phases during 

the cell cycle but also suppresses endoreduplication, which is associated with 

polyploidy and genome instability. The complexity of Cdk1 regulation has made 

it difficult to determine whether these different roles require different thresholds 

of kinase activity and whether the surge of activity as inhibitory phosphates are 

removed at mitotic onset is essential for cell proliferation. Here we have used 

chemical genetics in a human cell line to address these issues. We rescued cells 

lethally depleted of endogenous Cdk1 with an exogenous Cdk1 conferring 

sensitivity to one ATP analogue inhibitor (1NMPP1) and resistance to another 

(RO3306). At no 1NMPP1 concentration was mitosis in rescued clones prevented 

without also inducing endoreduplication, suggesting that these two key roles for 

Cdk1 are not simply controlled by different Cdk1 activity thresholds. We also 

rescued RO3306-resistant clones using exogenous Cdk1 without inhibitory 

phosphorylation sites, indicating that the mitotic surge of Cdk1 activity is 

dispensable for cell proliferation.  These results suggest that the basic 

mammalian cycle requires at least some qualitative changes in Cdk1 activity and 

that quantitative increases in activity need not be rapid. Furthermore, the 

viability of cells that are unable to undergo rapid Cdk1 activation, and the 

strong association between endoreduplication and impaired proliferation, may 

place restrictions on the therapeutic use of Cdk1 inhibitor 
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Introduction 

Cyclin dependent kinase 1 (Cdk1, Cdc2, Cdc28) is a key cell cycle regulator that is 

required for cell proliferation. Small molecules that inhibit Cdk1 are potential 

anticancer agents (1-5) but their modes of action are unclear, partly because they lack 

complete specificity but, more importantly, because of our incomplete understanding 

of the way in which Cdk1 activity controls cell cycle progression. 

 Cdk1 has three key roles in the cell cycle: promotion of S and M-phases, and 

suppression of replication origin licensing during G2. Failure of the latter role leads to 

endoreduplication (consecutive S-phases without an intervening M-phase). To 

achieve such different roles Cdk1 must phosphorylate different sets of substrates at 

different phases of the cell cycle (6,7). In principle, these different sets may respond 

either to different Cdk1 specificities, achieved by association of Cdk1 with different 

cyclins, or to different threshold levels of a single Cdk1 specificity as it rises and falls 

with each cycle (8). Support for the latter (quantitative) model was recently provided 

by work in fission yeast showing that a single Cdk1-cyclin combination can fully 

support cell proliferation (9). Furthermore, using chemical genetics (10), Cdk1 was 

rendered analogue-sensitive (AS; specifically sensitive to the ATP analogue 

1NMPP1) by introducing an F80G mutation into its ATP binding site (9). In this way, 

varying the concentration of inhibitor experimentally separated the different roles for 

Cdk1.  The extent to which threshold values of Cdk1 activity similarly control the cell 

cycle in higher eukaryotes remains unclear.   

 In higher eukaryotes there are multiple Cdk paralogues but, apart from Cdk7, 

which activates Cdk1 (11,12), Cdk1 is the only Cdk required for viability of cells, or 

indeed animals (13-15). These results reflect essential roles for Cdk1 in mitosis and 

suppressing endoreduplication that, in the absence of Cdk1, are not adopted by Cdk2 
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or any other Cdk paralogue. Depletion or inactivation of Cdk1 therefore prevents 

mitosis and, in many though not all cell types, promotes endoreduplication (16-18), 

leading to polyploidy and genome instability (19,20). The role for Cdk1 in promoting 

S-phase has also been conserved, but is shared with Cdk2 and only becomes essential 

when Cdk2 is absent. Thus DT40 chicken B cells lacking functional CDK1 and CDK2 

alleles were shown to require exogenous Cdk1 for both S-phase and M-phase (21). 

Furthermore, by use of an exogenous Cdk1 carrying an F80G mutation (Cdk1-AS), 

the latter study found that low and high concentrations of 1NMPP1, respectively, 

caused cell cycle arrest in G2 and G1, consistent with the quantitative model of Cdk1. 

Cdk1 inactivation in DT40 cells does not cause endoreduplication, however, making 

DT40 cells unsuitable for assessing how endoreduplication responds to quantitative 

changes in Cdk1 activity. Inhibition of Cdk1 in other cell types can be achieved by 

use of ATP analogues such as RO3306 that preferentially inhibit Cdk1 (22), but their 

ability to inhibit other kinases is a concern. There is therefore a need to extend 

chemical genetic analyses of Cdk1 to other cell types. 

 Natural quantitative variations in Cdk1 activity are determined not only by the 

abundance of its cyclin partners but also by its phosphorylation status (23-26). Thus 

Cdk1 activity at the G2/M transition undergoes a sharp increase reflecting feedback 

mechanisms for removing its own inhibitory phosphates at residues T14 and Y15. 

This highly conserved biphasic switch mechanism (27,28) is widely believed to be 

essential for cell proliferation because interfering with it has been found to cause 

aberrant mitosis or cell cycle oscillations (29-37). Exogenous Cdk1 carrying T14A 

and Y15F mutations (Cdk1-AF) can, however, rescue a human cell line lethally 

depleted of endogenous Cdk1 (38,39) and Cdk1-AF was recently shown to support 

cell proliferation in fission yeast (9). Further investigation is therefore needed to test 
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the possibility that inhibitory phosphorylation of Cdk1, and therefore the G2/M surge 

in Cdk1 activity, is not required for the basic cell cycle in higher eukaryotes. 

 Here we have established a chemical genetic system for analysing Cdk1 

activity in a human fibrosarcoma cell line (HT2-19) known to endoreduplicate when 

Cdk1 is depleted. We have used this system to investigate how quantitative variations 

in Cdk1 activity, including the G2/M surge, affect the cell cycle.  
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Results 

 

Xenopus Cdk1-as rescues HT2-19 cells and confers 1NMPP1 sensitivity. 

In the parental HT2-19 cells used for these studies, one CDK1 allele is disrupted and 

the other is repressed by the lac repressor (40). HT2-19 cells therefore depend on the 

inducer IPTG for viability and undergo endoreduplication and apoptosis in its absence 

(40). To generate 1NMPP1-sensitive cell lines, HT2-19 cells were transfected with 

plasmids encoding PAC (puromycin N-acetyl-transferase) and either wild-type or 

F80G-mutated Xenopus laevis Cdk1 (xCdk1-WT or xCdk1-AS), as previously used in 

chicken B cells (21). xCdk1-AS, but not xCdk1-WT, rescued HT2-19 cells from 

IPTG-dependence and puromycin-sensitivity in a manner that was completely 

sensitive to 1NMPP1 (Table 1). Several puromycin-resistant, IPTG-independent 

clones were isolated and screened for sensitivity to 10 µM 1NMPP1 (Table 2). 

Because the xCdk1 expression plasmids linked xCdk1-coding DNA to a GFP reporter 

gene, clones were also screened for GFP as an initial measure of xCdk1 expression. 

None of the xCdk1-WT-rescued clones (WT1 to WT7) showed sensitivity to 

1NMPP1, regardless of GFP expression levels, whereas all xCdk1-AS-rescued clones 

(AS1 to AS13) were analogue-sensitive in the absence of IPTG. Interestingly, all 

clones except AS5 expressed detectable levels of GFP and were sensitive to 1NMPP1 

even in the presence of IPTG, suggesting that robust expression of xCdk1-AS confers 

dominant 1NMPP1-sensitivity. 

 More detailed analyses of clones AS1, AS4 and AS5 confirmed that all ceased 

to proliferate and died in response to 1NMPP1 (Figure 1A), undergoing 

endoreduplication (Figure 1B), so phenocopying parental HT2-19 cells deprived of 

Page 6 of 39Human Molecular Genetics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 7

IPTG (40). As expected, an xCdk1-WT-rescued clone (WT1) showed no such 

response. The dominant effect of xCdk1-AS in clones AS1 and AS4 was also 

confirmed, IPTG failing to rescue them from 1NMPP1-sensitivity as it did in AS5. 

Immunoblots with an antibody recognising both hCdk1 and xCdk1, or an antibody to 

the myc-tag on xCdk1, confirmed that xCdk1 was less abundant in AS5 than in AS1, 

AS4 and WT1, but still more abundant than endogenous IPTG-induced hCdk1 

(Figure 2 A, B). Flow cytometry and immunoblots with anti-GFP antibody confirmed 

that relative levels of GFP expression approximated those for xCdk1 expression, 

although xCdk1 was clearly detectable in AS5 while GFP was not (Figure 2 B, C). 

Together, these results show that xCdk1-AS can substitute for hCdk1 and confer 

1NMPP1-sensitivity, and that such sensitivity is dominant over 1NMPP1-insensitive 

hCdk1 unless xCdk1-AS is expressed at physiological levels. 

 Experiments similar to those described in Table 1 and Figure 1 were also 

carried out using expression vectors for human Cdk1 carrying mutations F80G or 

F80A (Supplementary Tables S1 and S2), but these yielded clones with only modest 

sensitivities to ATP analogues (e.g. Supplementary Figure S1) that were not analysed 

further. 

 

Cells expressing xCdk1 are resistant to the Cdk1 inhibitor RO3306 

As expected from studies in other cell types (17,22), the Cdk1 inhibitor RO3306 

induced endoreduplication in parental HT2-19 cells (Figure 3A). Unexpectedly, 

however, we found that RO3306 did not induce endoreduplication in AS5 cells 

(Figure 3A). Similarly, growth curves showed that AS5 cells, though fully sensitive to 

1NMPP1, were resistant to RO3306 (Figure 3B). Furthermore, WT1 cells were also 

resistant to RO3306 (Figure 3B). These results suggest that cellular xCdk1, unlike 
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hCdk1, is resistant to RO3306, at least under the conditions used here. Importantly, 

they also show that residual hCdk1 in IPTG-independent HT2-19 derivatives, such as 

AS5, is unnecessary for the rescue of Cdk1-depleted cells by xCdk1.  

 

Titrating 1NMPP1 does not induce stable G2 arrest in AS clones 

If the amount of Cdk1 activity required to promote mitosis is greater than the amount 

required to prevent endoreduplication, it should be possible to find an intermediate 

concentration of 1NMPP1 that prevents Cdk1 from promoting mitosis while still 

allowing it to suppress endoreduplication. Under such conditions cells are expected to 

accumulate in G2 with a 4N DNA content and with no accompanying accumulation 

of higher ploidies. To test this we treated xCdk1-AS-rescued clones with a range of 

1NMPP1 concentrations and measured the effect on DNA content. Arrest in G2 

without endoreduplication will increase the 4N/2N ratio without increasing the 8N/2N 

ratio. Primary data (Supplementary Figure S2) were therefore analysed to determine 

the 4N/2N and 8N/2N DNA content ratios (Figure 4A). In all clones, except the WT1 

control, the 4N/2N ratio was increased by treatment with the higher concentrations of 

1NMPP1 but this was always accompanied by parallel increases in the 8N/2N ratio, 

indicating that no stable G2 arrest occurred.  All three AS clones, despite their 

different doubling times and kinetics of endoreduplication, appeared to have a 

threshold of ~100 nM 1NMPP1, above which endoreduplication was induced. This 

threshold was not sharp: above it the extent of endoreduplication increased gradually 

with increasing 1NMPP1 concentrations, while below it low levels of 

endoreduplication could still be detected at the latest time points. Similarly, increasing 

1NMPP1 concentrations between 0 and 310 nM resulted in increasingly delayed 

impairments to cell proliferation (Figure 4B). Thus, although a main threshold at 
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around 100 nM 1NMPP1 is detectable, reducing the amount of Cdk1 activity appears 

to reduce the probability of entering mitosis while increasing the probability of 

undergoing endoreduplication over a wide range of Cdk1 activities.  

 

Rescue of HT2-19 by xCdk1-AS with T14A/Y15F mutations 

To test whether inhibitory phosphorylation sites are essential for complementation by 

xCdk1-AS, T14A and Y15F mutations (AF) were introduced into the xCdk1-AS 

expression plasmid. When transfected into HT2-19, this construct did not generate 

IPTG-independent HT2-19 clones (Supplementary Table S2). We reasoned that this 

might reflect Cdk1AF expression that was too robust, as this is known to promote 

premature and lethal entry into mitosis (30,33,35). We therefore replaced the 

powerful CMV promoter driving xCdk1 with the human CDK1 promoter region. 

When HT2-19 cells were transfected with this modified construct, IPTG-independent, 

puromycin-resistant colonies were obtained in a 1NMPP1-sensitive manner (Table 3). 

To confirm that their survival was dependent on xCdk1-AS/AF, three of these clones 

(AS/AF4, 6 and 7) were expanded and treated with 1NMPP1 (Figure 5). In two clones 

(AS/AF6 and 7), proliferation was impaired and polyploid cells accumulated. The 

third clone (AS/AF4) was incompletely sensitive to 1NMPP1, however, suggestive of 

clonal impurity, possibly due to upregulation of residual hCdk1 activity in a minority 

of cells (40). The low frequency of complementation by xCdk1-AS/AF (Table 3) 

relative to xCdk1-AS (Table 1) suggests that, even when driving xCdk1-AS/AF 

expression with the CDK1 promoter, only those clones expressing the smallest 

amounts of xCdk1-AS/AF are viable. Consistent with this, immunoblots showed that 

xCdk1 was less abundant in xCdk1-AS/AF-rescued clones than in AS5 (Figure 5C).  
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 In previous work, HT2-19 cells rescued by exogenous hCdk1AF appeared to 

depend on residual endogenous hCdk1 for viability (39). We were therefore interested 

to know whether the same was true in cells rescued by xCdk1-AS/AF. To test this we 

treated AS/AF7 cells with RO3306, in order to inhibit residual endogenous hCdk1 

activity, and found that proliferation was unaffected, even though the cells remained 

sensitive to 1NMPP1 (Figure 6A). Moreover, when a late passage of clone AS/AF4, 

which had become largely insensitive to 1NMPP1, was challenged with RO3306, 

proliferation slowed temporarily and the emerging population showed renewed 

sensitivity to 1NMPP1 (Figure 6B). Thus RO3306 can be used to enrich for xCdk1-

rescued cells at the expense of any xCdk1-independent cells. These results show that 

proliferation of mammalian cells does not depend on the ability of Cdk1 to undergo 

inhibitory phosphorylation of T14 and Y15.  
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Discussion 

Cell cycle control by Cdk1 is fundamental to eukaryotic biology, and an attractive 

target for the control of malignant disease (1-5), but it remains incompletely 

understood.  In this study we have established a chemical genetic system for 

specifically inhibiting Cdk1 activity in mammalian cells, and have used it to study the 

effects of quantitative variations in Cdk1 activity and the importance of inhibitory 

Cdk1 phosphorylation for cell proliferation.  

 Our system was based on human HT2-19 cells that undergo endoreduplication 

and apoptosis when endogenous Cdk1 is depleted. These cells displayed a similar 

phenotype when rescued with a Xenopus-derived, analogue-sensitive Cdk1 (xCdk1-

AS) and treated with the ATP analogue 1NMPP1. Thus, while enzyme inhibition and 

depletion can have different biochemical and phenotypic effects (41,42), this does not 

appear to be the case for Cdk1.  Even when xCdk1-AS was greatly overexpressed (e.g. 

in clones AS1 and AS4), the same 1NMPP1-induced phenotype was observed, and 

was dominant over endogenous hCdk1. The same clones grew normally in the 

absence of 1NMPP1, albeit somewhat slower than parental cells. These results 

suggest that excess xCdk1 out-competes endogenous Cdk1 for binding to its normal 

cyclin partners, and has minimal non-physiological interactions with other host 

proteins.  

 Based on the quantitative model of Cdk1 action, we expected that partial 

inhibition of Cdk1 might prevent its ability to promote mitosis but not to suppress 

endoreduplication. Over a range of 1NMPP1 concentrations, however, none was 

found to prevent mitosis without also inducing endoreduplication. In principle this 

could be explained if HT2-19 cells endoreduplicate only after entering but failing to 

Page 11 of 39 Human Molecular Genetics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 12

complete mitosis, as appears to happen in some cells, including chicken B cells with 

inhibited Cdk1(21), and spontaneously endoreduplicating megakaryocytes and 

trophoblasts (43). Other cells, however, including primary mouse fibroblasts (16,44) 

and HT2-19 cells (45), endoreduplicate from G2, without entering mitosis. In the 

quantitative model, therefore, the threshold of Cdk1 activity required to suppress 

endoreduplication in HT2-19 cells is expected to be lower than that for promoting 

mitosis, so that an intermediate level of Cdk1 activity should exist that prevents 

endoreduplication without promoting mitosis, resulting in G2 arrest. The failure to 

detect robust G2 arrest at any 1NMPP1 concentration suggests that, at least in HT2-19 

cells, preventing endoreduplication without promoting mitosis is achieved by 

qualitative rather than quantitative differences in Cdk1 activity. We cannot rule out, 

however, that quantitative control is most typical, and that HT2-19 cells are a special 

case where the thresholds for preventing endoreduplication and promoting mitosis 

happen to coincide. It will in any case be important to define the mechanism used by 

HT2-19 cells to prevent endoreduplication prior to mitosis, and to determine whether 

it applies in other cell types. If the inability of Cdk1 inhibitors to prevent mitosis 

without also inducing endoreduplication is seen in various cell types, this will need to 

be taken into account in the therapeutic use of Cdk1 inhibitors so as to avoid the risk 

of inducing genome instability in normal or tumour cells.  

 An attractive model to explain the observed link between inhibiting mitosis 

and inducing endoreduplication can be found by considering the subcellular 

localisation of the only essential Cyclin partners for Cdk1, CyclinA2 and CyclinB1 

(13). CyclinA2 is the most likely Cdk1 partner involved in preventing 

endoreduplication because its nuclear location during G2 (46) allows access to the 

replication origin licensing factors implicated in mediating the suppression of 
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endoreduplication by Cdk1 (47). In contrast, Cyclin B1 is cytoplasmic during G2 

(46), and so prevented, until nuclear membrane breakdown, from acting on the 

nuclear Cdk1 targets implicated in promoting mitosis. Our results may therefore be 

explained by the co-inhibition of CyclinA2/Cdk1 and CyclinB1/Cdk1 by 1NMPP1, 

making it impossible to prevent mitosis without also permitting endoreduplication. 

This model could be qualitative or quantitative in that CyclinA2/Cdk1 and 

CyclinB1/Cdk1 may have different substrate specificities or similar specificities but 

different levels of activity. Another possibility is that there are indeed two distinct 

thresholds, as predicted in the quantitative model, but that cells maintain Cdk1 

activity at a level between these thresholds only briefly before a mechanism is 

activated allowing cyclin degradation without the normal requirement for reaching 

anaphase. Further chemical genetic studies involving Cdk1-Cyclin fusion proteins and 

more detailed analyses of cell cycle kinetics are required to explore these possibilities.  

 The chemical genetic approach used in this study relied on the unexpected 

observation that the F80G mutation confers 1NMPP1-sensitivity more effectively in 

xCdk1 than in hCdk1. We also discovered a further unexpected benefit in using 

xCdk1, namely that rescued cells are resistant to 0.5  M RO3306. This may facilitate 

chemical genetic analyses of Cdk1 in other RO3306-sensitive host cells by avoiding 

the need to modify host cell CDK1 alleles. The basis of RO3306-resistance in xCdk1-

rescued cells requires further investigation, however, given that xCdk1 

immunoprecipitated from Xenopus egg extracts is inhibited by 0.5  M RO3306 (48). 

This apparent discrepancy could be explained if xCdk1 is more RO3306-resistant 

when bound to human cyclins than Xenopus cyclins, although a structural basis for 

this is hard to envisage. Alternatively, differences (e.g. in ATP concentrations) 

between in vitro assay conditions and the cellular environment may be responsible. 
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 Here we exploited the RO3306-resistance of xCdk1-rescued cells to clarify the 

role of inhibitory phosphorylation of Cdk1. Although theoretical models predict that 

inhibitory phosphorylation of Cdk1 need not be essential for establishing sustained 

cell cycle oscillations (49-51), most experimental evidence has been to the contrary 

(29-37). Our previous observation that Cdk1-depleted HT2-19 cells could be rescued 

by a hCdk1AF provided the first experimental evidence in support of a non-essential 

role for inhibitory phosphorylation (38). Further analysis, nevertheless, suggested that 

rescue by hCdk1AF was impaired when the small amount of residual endogenous 

Cdk1 was depleted by RNA interference (39). In the present study, however, rescue 

of Cdk1-depleted HT2-19 cells by xCdk1-AS/AF was not only sensitive to 1NMPP1 

but also resistant to RO3306, indicating that xCdk1-AS/AF is able to support cell 

proliferation without the assistance of any endogenous Cdk1. The apparent difference 

in the abilities of hCdk1AF and xCdk1AS/AF to complement Cdk1-depleted cells 

may be genuine. Thus full complementation may only be possible within a narrow 

window of Cdk1AF expression, and this may be more difficult to achieve with 

hCdk1AF than with xCdk1-AS/AF. Alternatively, although the siRNA used to deplete 

residual Cdk1 did not affect hCdk1/AF expression (39), it may have impaired 

proliferation via other off-target effects.  

 Our results suggest that the basic cell cycle, in mammalian cells as in fission 

yeast, can support cell proliferation without the need for inhibitory phosphorylation of 

Cdk1. This conclusion contrasts with previous reports showing that transient 

expression of Cdk1AF causes aberrant mitoses (33,37) suggesting that inhibitory 

phosphorylation is indispensable. Transient expression, however, allows little control 

over the level of Cdk1AF, which is clearly a key variable in its influence on the cell 

cycle. Furthermore, transient expression only allows the effects of gene expression to 
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be observed for a limited number of cycles.  In contrast, our analysis depends on the 

stable expression of Cdk1AF at levels that are not only compatible with, but also 

necessary for, cell viability. The fact that inhibitory phosphorylation is so well 

conserved presumably reflects its importance in both mediating G2-arrest as a 

response to DNA damage (52,53) and refining the efficiency of the fundamental Cdk-

based cell cycle oscillator (36). These roles are almost certainly required to ensure 

genome stability during extensive cell proliferation, and it will be interesting to assess 

genome stability in clones such as AS/AF7. Given that the first Cdk-based cell cycles 

to evolve presumably lacked the ability to undergo inhibitory phosphorylation, it is 

less surprising that such simplified cycles can be effective than that they can still be 

effective in human cells. The ability of cell proliferation to persist after ablating the 

mechanism responsible for the late G2 surge in Cdk1 activity suggests again that the 

potential of therapies based on inhibiting only Cdk1 may be limited. 
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Materials and Methods 

 

Construction of Cdk1 expression plasmids. 

The key plasmids used in this study are summarised in Table 4.  

 Human Cdk1 (hCdk1) expression plasmids were as follows. To express hCdk1 

and hCdk1-AS a derivative of pBSgptCDK1-WT-HA (39) lacking the haemagglutinin 

tag was made (pBSgpt/CDC) and oligonucleotide-mediated mutagenesis 

(QuikChange, Agilent) was used to introduce the F80G (TTT>GGT) mutation, 

generating pBSgpt/CDC2as. The 6.3 kb BamH1 fragments from pBSgpt/CDC and 

pBSgpt/CDCas were then cloned into the BamH1 site of pBL-Puro (54) to generate 

pPuroCDC and pPuroCDC2as, respectively. To express hCdk1 with an F80A 

mutation (hCdk1-AS’), a PCR mutagenesis protocol was used to introduce the F80A 

mutation (TTT>GCT) into pPuroCDC, generating pPuroCDC2as’. 

 Xenopus laevis Cdk1 (xCdk1) expression plasmids were as follows. The 

previously described (21) constructs for expressing xCdk1-WT and xCdk1-AS were 

used initially. These (here named pXlCdkWT-mycEGFP and pXlCdkAS-mycEGFP) 

contained Xenopus laevis Cdk1myc cloned into pIRES2-EFGP (Clontech) with or 

without the F80G mutation (TTT>GGT).  To express xCdk1-AS/AF, QuikChange 

mutagenesis was used to introduce the AF mutation (T14A, Y15F; 

ACATAT>GCATTT) into pXlCdkAS-mycEGFP, generating pXlCdk1AS/AF-

mycEGFP. To allow co-selection for Puromycin resistance, these three plasmids were 

cotransfected with pBL-Puro (54). Alternatively they were modified to carry a 

puromycin resistance cassette by linearizing at their unique AflII site, end-filling and 

ligating to a 1.4 kb EcoRI/XhoI end-filled fragment from pBL-Puro, generating 

pXlCdkWT-mycEGFP-puro, pXlCdkAS-mycIRESeGFP-puro and 
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pXlCdkAS/AFmycIRESeGFP-puro. Finally, to place xCdk1-AS/AF expression under 

the control of the human Cdk1 promoter, an end-filled 7kb AseI/EcoR1 fragment was 

isolated from pXlCdkAS/AFmycIRESeGFP-puro and ligated to an end-filled 3.6 kb 

BamH1/NotI fragment from pPuroCDC, to generate pXlCdkAS/AFmycIRESeGFP-

puro-HP. 

 

Cell growth and transfection of HT2-19 cells and derivatives 

Growth and transfection of cells was as previously described (40). IPTG (2mM final 

concentration) was added to the medium for routine growth of HT2-19, but removed, 

unless indicated otherwise, during selection and maintenance of transfectants. For 

transfections, up to 10
7
 cells were electroporated with 10 µg FspI-linearised plasmid 

DNA and distributed in 10 cm diameter petri dishes at ~10
6
 cells per dish. After 24-48 

hours selection was initiated. Where required, puromycin (InvivoGen) was added to a 

final concentration of 0.4 µg/ml. Stock solutions of 1NMPP1 (Toronto Research 

Chemicals) and RO3306 (Calbiochem) were dissolved in dimethyl sulphoxide before 

diluting in medium to the indicated final concentrations. 

 

Generation of 1NMPP1-sensitive clones 

HT2-19 cells were transfected with 10  g (unless stated otherwise) of the following 

plasmids. Table 1: pXlCdkWT-mycEGFP-puro or pXlCdkAS-mycIRESeGFP-puro 

(both linearised with FspI). Table 2: pXlCdkWT-mycEGFP or pXlCdkAS-

mycIRESeGFP (each cut with PvuII and cotransfected with 1  g pBL-Puro). Table 3: 

SpeI-linearised pXlCdkAS-mycIRESeGFP-puro or BstB1-cut 

pXlCdkAS/AFmycIRESeGFP-puro-HP. Table S1: SpeI-linearised pPuroCDC or 

pPuroCDCas. Table S2: SpeI-linearised (5  g) pPuroCDC or pPuroCDCas’. 
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Growth Curves 

Known numbers of cells, e.g. 25000, 12500 and 5000, cells were plated into three 

wells (2.5 cm diameter) of a 12-well plate, harvested 2, 4 or 7 days later, respectively, 

and counted in a haemocytometer to determine the number of doublings. Error bars 

show the average and standard deviations for at least three independent experiments. 

 

Flow Cytometry 

For DNA content analysis nuclei stained with propidium iodide (PI) were prepared as 

previously described (40). Samples were incubated overnight at 4°C and then 

analysed on a FacsCalibur (BD Biosciences) using the 488nm laser. For GFP 

expression analysis, cells were trypsinised and resuspended in cold phosphate 

buffered saline solution and analysed immediately.  

 

Western Blotting 

Cells were lysed in RIPA buffer (0.75M NaCl, 5%v/v NP40, 2.5% v/v DOC, 0.5% 

w/v SDS and 0.25M Tris, pH8) containing protease inhibitors (Complete; Roche). 

Samples (40 µg total protein each) were separated on SDS-polyacrylamide gels and 

transferred to Hybond ECL membranes (Amersham). Membranes were probed 

overnight with the following antibodies diluted in 5% milk: mouse anti-Cdc2p34 

(Santa Cruz biotechnology; 1:1000 dilution), rabbit anti-c-myc (Abcam, 1:10,000 

dilution), mouse anti-GFP (Roche, 1:1000 dilution) or rabbit anti-β-tubulin (Cell 

Signalling, 1:1000 dilution), After the addition of the appropriate species-specific 

horseradish peroxidase-conjugated secondary antibody and further washes, proteins 
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were visualised using ECL reagents (Thermo Scientific) following manufacturers’ 

instructions. 
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Legends to Figures 

 

Figure 1. Xenopus Cdk1-AS rescues HT2-19 cells and confers 1NMPP1 

sensitivity. A. Growth curves are shown for one xCdk1-WT-rescued clone (WT1), 

three xCdk1-AS-rescued clones (AS1, AS4, AS5) and parental HT2-19 cells in the 

presence or absence of 10 µM 1NMPP1 or 2 mM IPTG, as indicated. B. The xCdk1-

rescued clones in A were analysed for DNA content by flow cytometry of propidium 

iodide-stained nuclei after culturing in 10 µM 1NMPP1 for the indicate times. 

Tetraploid (8N) peaks are marked (�).   

 

Figure 2. Analyses of protein expression in xCdk1-rescued clones. A. The same 

clones as in Figure 1 were grown in the presence (-) or absence (+) of IPTG for 7 

days before immunoblotting lysates with a Cdk1 antibody that detects hCdk1 and 

xCdk1. The same blot was reprobed to detect 5eta-tubulin (β-tub). B. The lysates 

described in A (-IPTG samples) were immunoblotted and probed with antibodies to c-

myc, GFP or beta-tubulin, as indicated. C. Flow cytometric analyses of GFP in cells 

from the same cultures analysed in B. 

 

Figure 3. Cells expressing xCdk1 are resistant to the Cdk1 inhibitor RO3306. A. 

HT2-19 cells (left) or AS5 cells (right) were grown for 72h in medium containing 0, 

0.5 or 1.0 µM RO3306, as indicated, and analysed for DNA content. 2N (*), 4N (=), 

8N (�) and 16N (�) peaks are marked. B. Cell proliferation was monitored in cultures 

of WT1 (top) or AS5 (bottom) supplemented with 0.5 µM RO3306, with or without 10 

µM 1NMPP1 as indicated 

 

Figure 4. Endoreduplication and proliferation of xCdk1-AS-rescued clones at 

different 1NMPP1 concentrations.  A. Clones WT1, AS1, AS4 and AS5 were 
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treated with the indicated concentrations of 1NMPP1 and analysed for DNA content 

by flow cytometry at the indicated times after 1NMPP1 addition. Shown are 4N/2N 

(top) and 8N/2N (bottom) ratios of DNA content. B. Growth curves are shown for 

WT1, AS1, AS4 and AS5 in medium with no 1NMPP1 or with concentrations of 

1NMPP1 between 0 and 10 µM.  

 

Figure 5. Clones rescued with xCdk1-AS/AF are sensitive to 1NMPP1. A. Growth 

curves are shown for three xCdk1-AS/AF-rescued clones (AS/AF4, AS/AF6, AS/AF7) 

grown in medium with concentrations of 1NMPP1 between 0 and 10 µM.  B. DNA 

content analysis of the indicated clones grown in the presence (+) or absence (-) of 

10 µM 1NMPP1 for 7 days. Peaks of fluorescence are labelled as in Figure 3. C. 

Immunoblot detection of xCdk1-AS/AF and endogenous hCdk1 in the indicated 

clones. All lysates except that in lane 1 were from cultures grown without IPTG.  

  

Figure 6. AS/AF clones proliferate in RO3306 and maintain sensitivity to 

1NMPP1. A. (Top) Growth of AS/AF7 cells in medium with or without 10 µM 

1NMPP1 (NM) or 0.5 µM RO3306 (RO), as indicated. (Bottom) DNA content 

analyses of cells harvested at day 7.  B. Clone AS/AF4 was passaged for 2 weeks in 

the absence of RO3306. This late passage culture (AS/AF4(lp)) was then split, 

passaging one culture with and one without RO3306 (0.5 µM) for a further 12 days, 

the last 7 days being in the presence or absence of 10 uM 1NMPP1 and monitored 

for cell numbers (top). DNA content analyses of cells harvested at day 7 are shown 

(bottom). 
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Table 1. Complementation of HT2-19 by xCdk1-AS 

 

aNo.  

Cells 

Selection reagent  bColonies  

Puromycin IPTG 1NMPP1  WT AS 

106 + + -  37 (100%) 78 (100%)  

106 + - -  32 (86%) 54 (69%) 

106 + - +  24 (64%) 0 (0%) 

a number of HT2-19 cells electroporated 

b colony numbers resulting from transfection with expression plasmids for xCdk1-WT 

(WT) or xCdk1-AS (AS).  
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Table 2. Preliminary analysis of HT2-19 clones rescued by xCdk1-WT or xCdk1-

AS  

 

 b1NMPP1-sensitivity   b1NMPP1-sensitivity  

aClone - IPTG + IPTG cGFP aClone - IPTG + IPTG cGFP 

WT1 - - ++ AS1 + + ++ 

WT2 - - - AS2 + + ++ 

WT3 - - - AS3 + + NT 

WT4 - - + AS4 + + + 

WT5 - - - AS5 + - - 

WT6 - - + AS6 + + ++ 

WT7 - - - AS7 + + + 

    AS8 + + + 

    AS9 + + ++ 

    AS10 + + + 

    AS11 + + + 

    AS12 + + + 

    AS13 + + + 

a WT and AS colonies selected in puromycin but no IPTG after transfection with 

xCdk1-WT or xCdk1-AS expression constructs, respectively, were analysed. 

b Proliferation judged by phase-contrast microscopy was unaffected (+) or impaired (-

) by addition of 10 µM 1NMPP1 in the presence or absence of IPTG. 

c GFP expression judged by fluorescence microscopy was strong (++), detectable (+) 

or undetectable (-). NT = not tested. 
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Table 3. Complementation of HT2-19 by xCdk1-AS/AF 

 

aNo.  

Cells 

 Selection reagent  bColonies  

 Puromycin IPTG 1NMPP1  AS AS/AF 

106  + + -  140 (100%) 123 (100%)  

3x106  + - -  239 (57%) 12 (3%) 

3x106  + - +  0 (0%) 0 (0%) 

a number of HT2-19 cells electroporated 

b colony numbers resulting from transfection with expression plasmids for xCdk1-AS 

(AS) or xCdk1-AS/AF (AS/AF).  
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Table 4. Summary of plasmids 

  

Plasmid Name Cdk1 encoded aPro   bMark cRef 

pBL-Puro - - Puro 1 

pBSgptCDK1-WT-HA hCdk1-WT hCdk1 Gpt 2 

pBSgpt/CDC hCdk1-WT hCdk1 Gpt  

pBSgpt/CDCas hCdk1-AS hCdk1 Gpt  

pPuroCDC hCdk1-WT hCdk1 Puro  

pPuroCDCas hCdk1-AS hCdk1 Puro  

pPuroCDCas' hCdk1-AS’ hCdk1 Puro  

pXlCdkWT-mycEGFP   xCdk1-WT CMV Neo 3 

pXlCdkAS-mycEGFP xCdk1-AS CMV Neo 3 

pXlCdkAS/AF-mycEGFP xCdk1-AS/AF CMV Neo  

pXlCdkWT-mycEGFP-puro xCdk1-WT CMV Neo, Puro  

pXlCdkAS-mycEGFP-puro xCdk1-AS CMV Neo, Puro  

pXlCdkAS/AFmycEGFP-puro xCdk1-AS/AF CMV Neo, Puro  

pXlCdkAS/AFmycEGFP-puro-HP xCdk1-AS/AF hCdk1 Neo, Puro  

a Promoters driving Cdk1 expression: CMV, cytomegalovirus immediate early 

promoter; hCdk1, promoter region from human Cdk1 gene. 

b Markers encoding proteins (Gpt, guanosine-hypoxanthine phospribosyltransferase; 

Puro, puromycin N-acetyl-transferase; Neo, aminoglycoside 3‘-phosphotransferase) 

conferring resistance to mycophenolic acid, puromycin and neomycin, respectively. 

C 1) (54). 2) (39) 3) (21).  
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Abbreviations 

1NMPP1: 4-Amino-1-tert-butyl-3-(1’-naphthylmethyl)pyrazolo[3,4-d]pyrimidine. AS: 

analogue-sensitive. Cdk: Cyclin Dependent Kinase. siRNA: small interfering 

ribonucleic acid.  WT: wild-type. 
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Figure 1. Xenopus Cdk1-AS rescues HT2-19 cells and confers 1NMPP1 sensitivity.  
95x50mm (300 x 300 DPI)  
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Figure 2. Analyses of protein expression in xCdk1-rescued clones.  
89x93mm (300 x 300 DPI)  
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Figure 3. Cells expressing xCdk1 are resistant to the Cdk1 inhibitor RO3306.  

71x59mm (300 x 300 DPI)  
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Figure 4. Endoreduplication and proliferation of xCdk1-AS-rescued clones at different 1NMPP1 
concentrations.    

180x154mm (300 x 300 DPI)  
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Figure 5. Clones rescued with xCdk1-AS/AF are sensitive to 1NMPP1.  

105x130mm (300 x 300 DPI)  
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84x39mm (300 x 300 DPI)  

 

 

Page 39 of 39 Human Molecular Genetics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


