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We consider geostrophic adjustment of a density stratified fluid in a basin of constant
depth on an f -plane in the context of linearized theory. For a single vertical mode, the
equations are equivalent to those for a linearized shallow water theory for a homogeneous
fluid. These can be solved explicitly for general initial conditions in a circular domain.
When the Rossby radius is much smaller than the basin radius, appropriate for the baro-
clinic modes, we find that the interior adjusted solution is close to that of the initial state,
except for small-amplitude trapped Poincaré waves, while Kelvin waves propagate around
the boundary, carrying the initial height field without change of form. This interpretation
allows us to extend the results to domains of arbitrary shape, containing interior islands
and with boundary gaps. In multiply-connected domains the average surface elevation on
the solid boundaries is determined as part of the solution by an application of Kelvin’s
circulation theorem.

1. Introduction

Geostrophic adjustment occurs in a rotating fluid when an an initial state relaxes to
a steady state in geostrophic balance. In the linearized theory for open systems, the
adjustment typically occur by the generation of the waves allowed by the system, which
propagate to infinity, and leave a steady state determined by geostrophic equilibrium
and the conservation of potential vorticity, see for instance Gill (1982) amongst many
works on this topic. For instance, in a long shallow channel filled with a fluid of constant
density, the adjustment takes place through Poincaré and Kelvin waves, see Gill (1976).
However, in a closed system, the adjustment takes a different form since the generated
waves cannot escape to infinity, and hence the adjusted state does not become steady, and
consists of both waves and the geostrophically balanced steady state. This situation arises
for instance in lakes, where due to the density stratification, the response to temporally
localised wind forcing is typically the generation of internal Poincaré and Kelvin waves,
together with a steady component, see for instance Stocker & Imberger (2003), Wake
et al. (2004, 2005, 2007) and Gomez-Giraldo et al. (2006) for a combination of theory,
numerical simulations, observations and experiments.

This present study is motivated by the recent numerical and theoretical study by
Luneva et al. (2012) on geostrophic adjustment in the Arctic Ocean. They considered
a homogeneous fluid in a circular basin, with idealised topography, and showed that
after the Poincaré and Kelvin waves have been damped by friction, the flow adjusts to
a quasi-steady state. Here we consider the adjustment of a density-stratified fluid in a
constant-depth basin allowing for islands within the basin (and, later, gaps in the basin
boundary). In this case, the governing equations for a single vertical mode are equivalent
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Figure 1. The basin D with outer boundary ∂D0 and possible islands with boundaries ∂Di

(i = 1, 2, . . . ).

to the linearized shallow water equations for a homogeneous fluid of constant depth on
an f -plane. This latter case was discussed by Stocker & Imberger (2003) for a linear
initial tilt of the free surface, and as expected the solution consisted of Poincaré and
Kelvin waves, and a steady geostrophic component. Here, we consider a range of initial
states, and put a special emphasis on the limit when the Rossby radius is much smaller
than the basin radius. Note that for the baroclinic vertical modes, this is the expected
normal situation. In this case we will show that the solution is dominated by the steady
geostrophic component, and boundary-trapped Kelvin waves.

In §2 we formulate the problem and obtain the governing equations for the unique
steady geostrophic component. Then in §3 we take the explicit example of a circular
basin, revisit the free waves first discussed by Lamb (1932), and formally present the full
solution as a Laplace transform. It transpires that it is simpler to solve the full problem
numerically, and these results are presented in §3.3. In §4 we return to the considering
domains of arbitrary shape with interior islands and boundary gaps and show how our
results apply in the limit when the Rossby radius is much smaller than typical geometric
dimensions. We conclude in §6.

2. Formulation

We consider an incompressible, inviscid density stratified fluid with basic density ρ0(z)
bounded above by a free surface at z = η and below by a rigid boundary at z = −H,
contained in a basin D, with outer vertical boundary ∂D0, possibly containing islands
also with vertical boundaries ∂Di (i = 1, 2, . . . ) (Figure 1) Then the linearized long-wave
equations on an f -plane are, in conventional notation,

ux + uy + wz = 0 , (2.1)

ρ0(ut − fv) + px = 0 , (2.2)

ρ0(vt + fu) + py = 0 , (2.3)

pz + gρ = 0 , (2.4)

ρt + ρ0zw = 0 . (2.5)

Here p, ρ are the perturbation pressure and density respectively. The boundary conditions
are

ζt − w = 0 , z = 0 , (2.6)

p− gρ0ζ = 0 z = 0 , (2.7)

w = 0 , z = −H (2.8)

u.n̂ = 0 , on ∂D , (2.9)

where ∂D = ∂D0 ∪ ∂D1 ∪ . . . , and, for definiteness, n̂ is the unit inward normal for D. It
is now useful to introduce the vertical particle displacement η. In the linearized theory
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this is defined by

ηt = w . (2.10)

Then note that η(z = 0) = ζ and the density equation (2.5) integrates to

ρ = −ρ0zη . (2.11)

A solution of this system of equation and boundary conditions can now be sought using
separation of variables, see Gill (1982) for instance. That is, we write

η = η̃(x, y, t)φ(z) , (u, v) = (ũ, ṽ)(x, y, t)hφz(z) , p = η̃(x, y, t)c2ρ0(z)φz(z) . (2.12)

Here c2, h are separation constants which will be specified below. Then the modal function
φ(z) satisfies the boundary value problem

c2(ρ0φz)z − gρ0zφ = 0 , −H < z < 0 , (2.13)

c2φz = gφ , z = 0 , and φ = 0 , z = −H . (2.14)

Here c is the linear long wave speed. In general, there are infinitely many solutions,
which can be ordered by an index m, so that φ0, c0 is the barotropic mode, and φm, cm,
(m = 1, 2, . . . ) are the baroclinic modes, ordered so that the cm decrease as m increases.
We fix attention on just one mode, and then find that

η̃t + h(ũx + ṽy) = 0 , (2.15)

h(ũt − fṽ) + c2η̃x = 0 , (2.16)

h(ṽt + fũ) + c2η̃y = 0 , (2.17)

This system can now be recognised as the linearized shallow water equations with equiv-
alent depth h defined by setting c2 = gh. We remove the ˜ from η, u, v, and note that
(2.16, 2.17) separate to give,

utt + f2u+ gηxt + gfηy = 0 , (2.18)

vtt + f2v + gηyt − gfηx = 0 , (2.19)

and so (2.9) becomes

ηnt − fηs = 0, on ∂D, (2.20)

where s is a displacement around each ∂Di such that (ẑ, n̂, ŝ) forms a right-handed sys-
tem. This definition reflects the fact that Kelvin waves cycle anti-clockwise around the in-
side of the outer boundary ∂D0 but clockwise around the island boundaries ∂D1, ∂D2, . . . .

These equations are to be solved for an unbalanced density distribution released from
rest,i.e.

η = ηI(x, y) , u = v = 0 , at t = 0 . (2.21)

Equations (2.15, 2.16, 2.17) give the potential vorticity equation

vxt − uyt − (f/h)ηt = 0 , (2.22)

which integrates to

vx − uy − fη/h = −(f/h)ηI . (2.23)

It is thus possible, as in unbounded flow, to proceed directly to the unique steady solution
ηS(x, y) consistent with the initial conditions. In steady flow equations (2.18, 2.19) give
the geostrophic relations

u = −(g/f)ηy, v = −(g/f)ηx, (2.24)
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and (2.23) becomes the inhomogeneous modified Helmholtz equation

∇2η −K2η = −K2ηI , (2.25)

where horizontal distances have been scaled on L, a typical basin scale, and K = fL/c is
a Kelvin number measuring the basin scale in Rossby radii and also giving the number
of inertial periods required for a Kelvin wave to cycle the basin. Note that a = 1/K is
the Rossby radius non-dimensionalised on the basin scale. Equation (2.25) is to be solved
subject to the boundary conditions, from (2.20), that

η = αi , on ∂Di, (i = 0, 1, 2, . . . ), (2.26)

where the constants αi give the time-average interface displacements at the boundaries
and remain to be determined. When no island is present, α0 follows immediately from
the conservation of mass, ∫

D
η = M =

∫
D
ηI , (2.27)

for M a constant determined by the initial conditions. When islands are present condition
(2.20) can first be integrated around each island to give

d

dt

∮
∂η

∂n
ds = 0, on ∂Di, (i = 0, 1, 2, . . . ), (2.28)

showing the circulation is constant around each island throughout the adjustment (Kelvin’s
theorem, as used in Lin (1941) for irrotational flow and by Rhines (1969), Johnson
(1989)for rotating flow). Thus the steady solution must also satisfy the conditions∮

∂η

∂n
ds =

∮
∂ηI
∂n

ds = Γi(say), on ∂Di, (i = 0, 1, 2, . . . ), (2.29)

and these additional conditions determine the constants αi. The problem for ηS is non-
standard and is solved most directly both analytically (as in Johnson (1989)) and nu-
merically by exploiting the linearity of (2.25) first solving (2.25) subject to

η = 0 on ∂Di, (i = 0, 1, 2, . . . ), (2.30)

to obtain ηS0 (say) and then solving,for each j, the homogeneous form of (2.25) (with
ηI = 0) subject to

η = 1 on ∂Dj , η = 0 on ∂Di, (i 6= j), (j = 0, 1, 2, . . . ), (2.31)

to obtain solutions η(j) with island circulations

Gij =

∮
∂Di

∂η(j)

∂n
ds . (2.32)

The steady surface displacements at the islands are then given by the matrix equation

Gα = Γ, (2.33)

for G = {Gij}, α = {αj}, Γ = {Γ̂i}, where

Γ̂i = Γi −
∮
∂Di

∂ηS0

∂n
ds . (2.34)

and the full interface displacement is given by

ηS = ηS0 +
∑
j

αjη
(j). (2.35)
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The general form for ηS in a circular domain without islands is given in §3 and the form
of ηS for an arbirary domain at large Kelvin number is discussed in §4.

The contribution of the waves to the evolution follows by eliminating u, v from (2.23)
to give the inhomogeneous Klein-Gordon equation

ηtt +K2η −∇2η = K2ηI , (2.36)

where t has been scaled on L/c, the time for a Kelvin wave to cycle the basin. The solution
thus consists of the sum of the steady solution ηS , a Kelvin wave, and a superposition of
free Poincaré waves satisfying the homogeneous form of (2.36). The form for a circular
domain is found as a Laplace transform in §3.

3. A circular domain without islands

For a circular domain of radius L equation (2.36) and boundary condition (2.20) be-
come

(rηr)r
r

+
ηθθ
r2
− ηtt −K2η = −K2ηI , (3.1)

rηrt +Kηθ = 0 , at r = 1 . (3.2)

for polar co-ordinates (r, θ). Since the problem is linear, we can make the Fourier az-
imuthal decomposition

η =

∞∑
−∞

ηn exp (inθ) . (3.3)

Omitting the Fourier subscript n, we find that (3.1) reduces to

(rηr)r
r
− n2η

r2
− ηtt −K2η = −K2ηI , (3.4)

while the boundary condition (3.2) and the initial condition (2.21) reduce to

rηrt + inKη = 0 , at r = 1 . (3.5)

η = ηIn(r) , ηt = 0 , at t = 0 . (3.6)

3.1. Free waves

First, we examine the free wave modes, as in Lamb (1932). Thus we set ηI = 0 and seek
solutions for which

η = F (r) exp(−iωt) (3.7)

Then the set (3.4, 3.5) reduce to

(rFr)r
r
− n2F

r2
+ ω2F −K2F = 0 , (3.8)

ωrFr − nKF = 0 , at r = 1 . (3.9)

The solution of (3.8) which is smooth at r = 0 is

F = Jn(κr) where κ2 = ω2 −K2 . (3.10)

The boundary condition then gives

ωκJ ′n(κ)− nKJn(κ) = 0 . (3.11)

This determines ω as a function of K and the transverse wavenumber n. For each n
there are an infinite number of Poincaré wave solutions, all superinertial, that is κ2 =
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ω2−K2 > 0. There is also a single subinertial mode where κ2 = −γ2 < 0, and we replace
(3.10, 3.11) with

η = In(γr) where γ2 = K2 − ω2 . (3.12)

ωγI ′n(γ)− nKIn(γ) = 0 , n = 1, 2, · · · . (3.13)

The dispersion relation (3.11) can be solved numerically, or graphically as by Lamb
(1932). When n = 0, the only solutions are the superinertial Poincaré waves with κ = j′s0,
the zeros of J ′0, indexed by s = 1, 2, 3, · · · , and so

ω2 = K2 + j′2s0 .

For n 6= 0 it is sufficient to consider only n = 1, 2, 3, · · · , as the case n < 0 is recovered by
replacing ω with −ω. Likewise we can take K > 0 (for the northern hemisphere) without
loss of generality, as K < 0 is also recovered by replacing ω with −ω. Let

Φ(κ) =
κJ ′n(κ)

nJn(κ)
= 1− κJn+1(κ)

nJn(κ)
,

and the dispersion relation becomes

K

ω
= ± K

(K2 + κ2)1/2
= Φ(κ) .

Here the alternate signs correspond to ω > 0, < 0 respectively. Note that when κ →
0,Φ(κ) ≈ 1 − κ2/2n(n + 1). Otherwise Φ → ±∞ as κ → jsn, the zeros of Jn(κ), and
Φ = 0 at κ = j′sn, the zeros of J ′n(κ), where for each fixed n, j′sn < jsn. Consequently,
Φ(κ) varies from 1 to −∞ in 0 < κ < j1n passing through zero at κ = j′1n, then from ∞
to −∞ in j1n < κ < j2n, passing through 0 at κ = j′2n, and so on. There are clearly then
an infinite number of intercepts with the left-hand side K/ω, one with ω < 0 in each
interval j′sn < κ < jsn, and one with ω > 0 in each interval jsn < κ < j′(s+1)n. There may

also be an intercept for the case ω > 0 for 0 < κ < j′1n if K2 < n(n + 1), which can be
interpreted as a Kelvin wave. The subinertial case can be analyzed in a similar manner.
Let

Ψ(γ) =
γI ′n(γ)

nIn(γ)
= 1 +

γIn+1(γ)

nIn(γ)
,

so that the dispersion relation (3.13) becomes

K

ω
= ± K

(K2 − γ2)1/2
= Ψ(γ) .

In this case it is readily shown that only the case ω > 0 is possible, and then only if
K2 > n(n + 1), since now Ψ(γ) increases from 1 to ∞ for 0 < γ < ∞. A typical set of
values is shown in Table 1, where for each n we index the modes with s = ±1,±2,±3, · · ·
according to the magnitude of the roots, and the sign is that of ω. In general for each
|s|, |ω increases with n, and for each n, |ω increases with |s|; also, for each fixed n, |s|,
the negative frequencies are larger in absolute value than the positive frequencies, but
converge in absolute value as |s| increases.

In the limit of special interest when K →∞, for the super initial waves ω scales with K
and then the superinertial Poincaré waves are given by κ ≈ j′sn, the zeros of J ′n, indexed
by s = 1, 2, 3, · · · , and so

ω2 ∼ K2 + j′2sn .

Note that as K → ∞, the frequencies accumulate towards K, that is, in dimensional
variables towards the inertial frequency f . However, for the sub-inertial Kelvin wave,
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s +1 +2 +3 −1 −2 −3

n = 1 1.51 5.39 8.58 −2.35 −5.46 −8.61
n = 2 1.93 6.59 9.91 −2.80 −6.64 −9.92

Table 1. Frequencies ω for n = 1, 2 and s = ±1,±2,±3 when K = 1

although γ ≈ K, the frequency remains of order unity, given by, from (3.13),

ω ∼ nIn(K)

I ′n(K)
∼ n , n = 1, 2, · · · .

This is valid when K2 > n(n+ 1).

3.2. The initial-value problem and the steady state

The initial value problem for the nth Fourier mode is the set (3.4, 3.5, 3.6). This can be
solved with Laplace transforms. Note that the mass constraint (2.27) is automatically
satisfied by all modes n 6= 0, and for the mode n = 0 becomes∫ 1

0

η0 rdr =
M

2π
=

∫ 1

0

ηI0 rdr . (3.14)

The final solution consists of a sum of free waves and the steady solution, ηS(r), for each
Fourier component, given by

(rηSr)r
r

− n2ηS
r2
−K2ηS = −K2ηI(r) , (3.15)

with the boundary condition, a simplified form of (2.33),

ηS = 0 at r = 1 , when n 6= 0 , (3.16)

ηSr = 0 at r = 1 , when n = 0 . (3.17)

Note that the boundary condition (3.17) ensures that ηS automatically satisfies the mass
constraint (3.14) in full. The ordinary differential equation (3.15) with the boundary
condition (3.16) can be readily solved in terms of Bessel functions as follows

ηS = AnIn(Kr) +BnKn(Kr)

+K{In(Kr)

∫ 1

r

Kn(Kr) ηI rdr −Kn(Kr)

∫ 1

r

In(Kr) ηI rdr} ,
(3.18)

where the constants An, Bn are determined by the boundary condition (3.16) or (3.17),
and the requirement that the solution be bounded as r → 0. Thus we get that

AnIn(K) +BnKn(K) = (0,M0) as n ≥ 1, n = 0 , Bn = K

∫ 1

0

In(Kr) ηI rdr ,

(3.19)
where M0 is determined by the mass constraint (3.14). Note that in the limit of interest
when K → ∞, ηS is order unity. Indeed, except in a boundary layer near r = 1 of
thickness a = 1/K, (3.15) shows that ηS ≈ ηI .

Then to solve the initial value problem, we introduce φ(r, t) = η − ηS , the difference
between the full solution and the steady-state solution. In the unbounded linear problem
φ is a transient response that decays at large time due to Poincaré wave radiation. Here,
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in the bounded domain φ consists of constant amplitude free Poincaré modes and Kelvin
waves cycling around the boundary, together satisfying,

φtt =
(rφr)r
r
− n2φ

r2
−K2φ , (3.20a)

φrt = inKφ , on r = 1 , (3.20b)

φ = φI = ηI − ηS , φt = 0 , at t = 0 . (3.20c)

Next we take a Laplace transform

Φ(r, σ) =

∫ ∞
0

exp (−σt)φ(r, t) dt , φ(r, t) =
1

2πi

∫
C

exp (σt)Φ(r, σ) dσ . (3.21)

Here C is a contour in Re[σ] > 0 from ε − i∞ to ε + i∞, where ε > 0 is chosen so that
all singularities of Φ lie to the left of C. Then the equation set (3.20) becomes

σ2Φ =
(rΦr)r
r

− n2Φ

r2
−K2Φ + σφI , (3.22a)

σΦr = inKΦ + φIr , on r = 1 , (3.22b)

This ordinary differential equation boundary value problem can now be solved explicitly,

Φ = CnIn(γr) +DnKn(γr)

− σ

γ
{In(γr)

∫ 1

r

Kn(γr)φI rdr −Kn(γr)

∫ 1

r

In(γr)φI rdr} ,
(3.23)

where γ2 = σ2+K2 and the constants Cn, Dn are determined by the boundary conditions,

Cn[σγI ′n(γ)− inKIn(γ)] +Dn[σγK ′n(γ)− inKKn(γ)] = φIr(1) ,

Dn = −σ
γ

∫ 1

0

In(γr)φIr rdr .
(3.24)

As a function of σ, Φ(σ, r) has poles at σ = −iω where

ωγI ′n(γ) + nKIn(γ) = 0 , γ2 = K2 − ω2 .

The frequencies so determined are precisely those of the free waves determined in section
2.1, see (3.11) and (3.13) where γ = iκ, κ2 = ω2 −K2 in the former case. In the limit of
interest when K →∞, the Poincaré waves have high frequencies ω scaling with K (as in
§2.1) and have amplitudes of order a = 1/K, most readily inferred directly from (3.22).
On the other hand in this same limit, the Kelvin wave has an order unity frequency,
an order unity amplitude, and is confined to the outer boundary within a layer of order
a. Hence the complete solution then consists essentially of simply the steady solution,
adjusted at the boundary by a Kelvin wave.

3.3. Numerical results

Although the expressions (3.21, 3.23) formally provide an explicit solution for φ, in
general the integrals involving φI are quite difficult to evaluate: it is simpler to solve
(3.20) directly by high-accuracy spectral discretisation. Here (3.20) is discretised with 128
Chebyshev points over −1 ≤ x ≤ 1, following Fornberg (1995), and using an appropriate
parity condition to extend the solution to negative r. This extension avoids stringent CFL
conditions at the origin and automatically copes with the polar co-ordinate singularity
there. The spatially discretised equations were integrated forward in time with an Adams-
Bashforth method. Integrations at higher resolutions differed by less than 10−8 from



Geostrophic adjustment in a closed basin 9

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

x

η

Figure 2. A cross-section along the line y = 0 of the initial surface perturbation ηI0 for an
axisymmetric (n = 0) top-hat profile (thin line) and the steady adjusted solution ηS (bold line).
Here a = 0.05 so the Rossby radius is one-twentieth the basin radius. The steep initial step has
been smoothed by a layer of thickness of order a.
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Figure 3. A snapshot at t = 10 along the line y = 0 of the surface perturbation η (thin line)
for the top-hat profile of Figure 2. As in 2, the bold line gives the steady adjusted solution ηS .
There is no Kelvin wave in the evolution and the Poincaré waves have amplitudes, wavelengths
and non-dimensional periods of order a. The average surface displacement over the interval
0 ≤ t ≤ 10 is graphically indistinguishable from ηS .

those presented here. For small K (large a) when the Rossby radius is large compared
to the basin diameter, the rotational effects are weak and the flow evolves similarly to
non-rotating flow. Hence, the results presented here are for a = 0.05,K = 20, when the
Rossby radius is one twentieth the basin radius, the non-dimensional inertial period is
approximately π/10, and the Kelvin wave cycles the basin in a non-dimensional time of
approximately 2π.

3.3.1. Case 1. Axisymmetric flow: n = 0.

Consider the top-hat initial condition

ηI0 = − tanh[(r − r0)/rw], (3.25)

for a downward step of height 2 centred at radius r0 (taken as 0.5 here and below) and of
width rw (taken as 0.025 here and below). Figure 2 shows this initial condition and the
steady adjusted solution ηS where the steep initial step has been smoothed by a layer of
thickness of order a = 1/K.

Figure 3 shows a snapshot at t = 10 of the surface perturbation η for this initial profile.
As the flow is axisymmetric no Kelvin wave is excited in the evolution and, for the small
value of the Rossby radius a here, the Poincaré waves have amplitudes, wavelengths and
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Figure 4. A cross-section along the line y = 0 of the initial surface perturbation ηI1 for an
azimuth one (n = 1) profile (thin line) and the steady adjusted solution ηS (bold line). As in
Figure 2, a = 0.05 so the Rossby radius is one-twentieth the basin radius. The steep initial
step has been smoothed by layers of thickness of order a. A second layer of thickness a at the
boundary adjusts the interior steady solution to the zero-displacement condition at the wall.

non-dimensional periods of order a. The average surface displacement over the interval
0 ≤ t ≤ 10 is graphically indistinguishable from ηS . The effect of the Poincaré waves
averages to zero over sufficiently many inertial periods.

3.3.2. Case 2. Non-axisymmetric single-azimuth flow: n = 1.

Case 2a. A stepped profile

Consider azimuthal dependence n = 1, with the initial radial profile

ηI1 = 0.5{1 + tanh[(r − r0)/rw]}, (3.26)

giving an upward step of height 1 (at r = r0 and of width rw, as above). Figure 4 shows
this initial condition and the steady adjusted solution ηS where the steep initial step
has been smoothed by layers of thickness of order a and a second layer of thickness a
at the boundary adjusts the interior steady solution to the zero-displacement condition
at the wall, effectively the condition that there can be no tangential gradient in the
steady solution at a solid boundary and consequently no normal component of velocity
there. Figure 5 shows a snapshot at t = 10 of the surface perturbation η for this initial
profile. Here the flow is not axisymmetric so a single Kelvin wave mode is excited in the
evolution. The wave has amplitude of order the difference between the initial and steady
states at the wall, period of order 2π and is confined to with a distance of order the
Rossby radius of the boundary. This can be simply modelled by adding the appropriate
Kelvin wave mode of this amplitude to the steady solution as shown by the dashed line
in Figure 5. For the small value of the Rossby radius a here it is sufficient to use the
asymptotic expression for the Bessel function to give the simple Kelvin wave term

ηK = ηI1(1) exp [−K(1− r)] cos(θ − t). (3.27)

Again, for the small value of the Rossby radius a here, the Poincaré waves have ampli-
tudes, wavelengths and non-dimensional periods of order a, making up the small differ-
ence between the dashed and solid lines in Figure 5. The average surface displacement
over intervals long compared to the inertial period 2π/a but short or comparable to the
Kelvin wave period 2π is indistinguishable from the combined steady and Kelvin wave so-
lution with the average over times long compared to the Kelvin wave period approaching
ηS .
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Figure 5. Snapshots at t = 10 along the lines y = 0 (upper) and x = 0 (lower) of the surface
perturbation η (thin line) for the n = 1 profile of Figure 4. As in Figure 4, the bold line gives the
steady adjusted solution ηS . The dashed line gives the sum of the steady solution and the single
Kelvin wave mode, with period of order 2π and confined to within a distance of order the Rossby
radius of the boundary. The Poincaré waves have amplitudes, wavelengths and non-dimensional
periods of order a.

Case 2b. A uniformly sloping profile: closed form solution

For azimuthal dependence n = 1 with initial radial profile, giving a uniformly sloping
initial surface displacement,

ηI1 = r, (3.28)

the interior flow is already in geostrophic balance and the solution can be obtained explic-
itly without requiring the steady solution. Writing ψ(r, t) = η(r, t) − r and introducing
the Laplace transform, Ψ(r, σ), so

(rΨr)r
r

− Ψ

r2
− (σ2 +K2)Ψ = 0, (3.29a)

σΨr + iKΨ = iK on r = 1, (3.29b)

gives

Ψ(r, σ) =
iKI1(γr)

σγI ′1(γ) + iKI1(γ)
=

iKI1(γr)

σγI ′0(γ) + (iK − σ)I1(γ)
, (3.30)

where γ = (σ2+K2)1/2 and we have used the relation γI ′1(γ) = γI0(γ)−I1(γ) . Summing
the residues at the zeros of the denominator in the Bromwich integral gives ψ(r, t). In
the limit of large K (small a) only the residue corresponding to the Kelvin wave remains
non-zero, giving the result (3.27), where here ηI(1) = 1.
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3.4. The large K limit

Example 2b shows that in the circular domain in the small a, large K = 1/a limit the
leading order (in a) response for any n consists of the steady response plus a mode
n Kelvin wave. For more general initial conditions the leading order response consists
of the steady state response plus a superposition of boundary-confined Kelvin waves.
Moreover, the average over time periods long compared to the Poincaré waves periods is
closely estimated by this combined response. Now the uniformly first-order (in a) steady
solution satisfies equation (2.25) subject to the boundary conditions (2.26) as noted in §2
and since a is small, the form of the steady solution follows straightforwardly. Away from
the boundary, and outside regions where the initial elevation varies on scales of order a
or less,

ηS = ηI , (3.31)

and the initial elevation is unchanged. Rapidly-varying regions of η0 are smoothed by
layers of thickness a, and a similar layer of thickness a can be present around the boundary
to satisfy the circulation constraint. The remainder of the response is the Kelvin wave
response, confined to within a distance a from the boundary. Thus we introduce the scaled
normal co-ordinate ξ = K(1 − r) ≥ 0. Then the leading order Kelvin wave response,
ηK(ξ, θ, t) satisfies

ηKξξ − ηK = 0, ξ > 0, (3.32)

subject to

ηKξt − ηKθ = 0, on ξ = 0, t > 0, (3.33a)

ηK(1, θ) + ηS(1, θ) = ηI(1, θ), on ξ = 0, t = 0. (3.33b)

The solution of (3.32), (3.33) is

ηK(ξ, θ, t) = F (θ + t) exp(−ξ), (3.34)

where

F (θ) = ηI(1, θ)− ηS(1, θ) = ηI(1, θ)− α0. (3.35)

The departure of the initial surface displacement at the wall from its long term average
(α0) propagates at the constant dimensional longwave speed c around the wall (with the
wall to the right, as expected) without change of form.

4. Adjustment in arbitrary domains for large K

The generalisation of the results of §3 for large K to the arbitrary basin with islands of
§2 follows immediately. Provided the boundary geometry is slowly-varying on the (small)
scale of the Rossby radius, so Kelvin wave energy is not scattered into Poincaré waves,
the leading order (in a) flow can be expressed as the sum of steady, ηS , and Kelvin wave,
ηK , components where the steady component satisfies (2.25) throughout D subject to
the boundary conditions (2.26). The Kelvin wave component satisfies (3.32) at each ∂Di
provided ξ is generalised to be the normal distance, scaled on a, measured inwards from
the relevant boundary. The boundary condions at each ∂Di become

η
(i)
Kξt + η

(i)
Ks = 0, on ∂Di, t > 0, (4.1a)

η
(i)
K = ηI − αi = ki(s) (say) , on ∂Di, t = 0, (4.1b)
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Figure 6. The basin D with islands with boundaries ∂Di (i = 1, 2, . . . ) and outer boundary
∂D0 split into sections ∂D0j (j = 1, 2, . . . ) by gaps Gj .

where s is the arc length (measured anti-clockwise around ∂D0 and clockwise around

∂Di, i = 1, 2, . . . ). The solution η
(i)
K is thus

η
(i)
K (ξ, s, t) = ki(s− t) exp(−ξ), (4.2)

with, again, the departure of the initial surface displacement on each ∂D from its long
term average (αi) propagating around the boundary at (dimensional) speed c with the
wall to the right and without change of form.

In practice basins may not be completely closed and small gaps may be present in the
outer boundary. This certainly applies to the Arctic ocean, but is also usually the case
even for large lakes. Figure 6 shows a typical basin with gaps Gj , (j = 1, 2, . . . ) breaking
the outer boundary ∂D0 into sections ∂D0j (with ∂D0j extending clockwise from Gj). The
analysis above extends directly provided allowance is made for the absence of a circulation
condition on ∂D0. If all gaps are wider than the relevant Rossby radius then the steady
elevation α0j on ∂D0j is given simply by the upstream elevation of the corresponding
boundary of gap Gj , and the steady component ηS satisfies (2.25) subject to the boundary
conditions (2.26), but taking the values α0j on each section ∂D0j . The Kelvin wave
on each section is driven, as above, by the difference between the initial elevation and
the average α0j but, for the broken outer boundary, rapidly propagates out of the flow
domain. If any gap Gj is narrower than the Rossby radius then the determination of
the constant steady elevation on ∂D0j is unchanged if α0j−1 = α0j (which is so if the
adjustment occurs in the basin rather than between gaps with different initial surface
elevations) so there is no incompatibility in the steady elevations on either boundary of
Gj , but otherwise depends on the details of the gap geometry.

5. Discussion

Our main conclusion is that for baroclinic vertical modes when the non-dimensional
Rossby radius a is small the boundary has little effect on the interior solution. Indeed,
apart from the presence of small-amplitude O(a) Poincaré waves which are trapped,
conservation of potential vorticity implies that the steady interior solution for the height
field is hardly changed from the initial state. Since this applies to each vertical mode, if
the Rossby radii of the modes are small (in fact it is sufficient for the Rossby radius of the
lowest vertical mode present to be small) and interior potential vorticity smooth then it
is unnecessary to separate the potential vorticity into vertical modes to follow the interior
adjustment. Of course, this final interior steady potential vorticity distribution, being in
geostrophic balance, will be accompanied by a geostrophic velocity field generated during
the adjustment process, but this velocity follows immediately from the usual geostrophic
relations for the horizontal velocities. Near the boundary a superposition of Kelvin waves
decaying towards the interior over distances of order the Rossby radius carry the initial
surface displacement around the boundary without change of form.
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Although our detailed analysis has been for a circular domain of constant depth, in
the small O(a) limit, the results extend readily to domains of arbitrary shape containing
islands whether the basins are completely closed or with outer boundaries broken by
gaps. In this case, we suggest that during adjustment, such gaps and islands have a large
(order unity) local effect but that for large K this is confined to an unsteady region of
width a = 1/K close to the gaps and islands.

Two unrelated nonlinear effects can appear in the evolution. Firstly, with larger initial
displacements the velocities engendered can be sufficiently large that the advection of
potential vorticity can be important. Secondly, the Kelvin wave disturbance propagating
around the boundary can break even at small amplitude if the initial tangential gradients
are sufficiently large. These effects will be examined in more detail elsewhere.
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