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Epigenetic changes have been associated with ageing and cancer. Identifying and interpreting epigenetic
changes associated with such phenotypes may benefit from integration with protein interactome models.
We here develop and validate a novel integrative epigenome-interactome approach to identify differential
methylation interactome hotspots associated with a phenotype of interest. We apply the algorithm to cancer
and ageing, demonstrating the existence of hotspots associated with these phenotypes. Importantly, we
discover tissue independent age-associated hotspots targeting stem-cell differentiation pathways, which we
validate in independent DNA methylation data sets, encompassing over 1000 samples from different tissue
types. We further show that these pathways would not have been discovered had we used a non-network
based approach and that the use of the protein interaction network improves the overall robustness of the
inference procedure. The proposed algorithm will be useful to any study seeking to identify interactome
hotspots associated with common phenotypes.

E
pigenetic changes, including aberrations in DNA methylation (DNAm), are a common hallmark of many
complex diseases1,2. Aberrant DNA methylation has also been associated with age3–8, which is, by far,
the strongest demographic risk factor for many common diseases including cancer, diabetes and

Alzheimer’s9,10. Thus, it is of biological and clinical interest to identify molecular pathways which may become
epigenetically deregulated through age-associated DNA methylation. However, a common difficulty, shared by
all genomic analyses, is the identification and interpretation of the observed molecular changes.

The most common approach to genomic analysis starts with the identification of differentially altered features
(e.g. differentially expressed genes or differentially methylated regions) and subsequent biological interpretation
using Gene Set Enrichment Analysis (GSEA)11. However, as shown by many studies in the gene expression field
(see e.g. Ref. 12), this approach can miss important biological pathways, because the inference does not take the
pathway or network structure into account and because changes affecting individual features are often of a small
magnitude. Thus, a number of statistical approaches have emerged which use the pathway/network structure in
the inference procedure12–14. These approaches directly infer network modules and altered pathways which
subsequently facilitates the biological interpretation. Interestingly, while there exists a significant number of
studies using these integrative network approaches in the context of gene expression12–29, there is a surprising lack
of applications to the DNA methylation context30. Given that DNA methylation is implicated in the regulation of
gene expression, it makes sense to also investigate the integration of a protein interactome with such epigenetic
data. Indeed, the main key question we wanted to address here is whether DNA methylation changes associated
with a given phenotype of interest occur randomly or not in the context of a human interactome model. In fact,
we hypothesized that DNA methylation changes associated with cancer or age might cluster in the human
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interactome, targeting specific molecular pathways, in the same way
that gene expression and copy-number changes also appear to target
specific molecular pathways (see e.g. Ref. 31).

To address our hypothesis we collected DNA methylation data
sets generated using the Illumina Infinium platform32, focusing our
attention on gene promoter regions and on age as the phenotype of
interest. Although other genomic regions may be more predictive of
gene expression33, we here restrict to promoter regions since to date
most of the data sets with available age information have been
generated with the Infinium 27k platform, which by definition is
restricted to CpGs in the promoter regions. Our focus on age is
further motivated by the following. First, there is now substantial
evidence that age-associated DNAm changes can be common to
many different tissue types5–7,34. Moreover, while studies have
reported individual genes and pathways that undergo age-associated
changes in gene expression35–41, consistency of age-associated gene
expression changes appears to be very weak38 in comparison to the
changes observed at the DNA methylation level. Indeed, recent
studies have reported tissue independent DNAm based age-
predictors42,43. Second, it has already been demonstrated that age-
associated DNAm changes do not happen randomly across the
genome3–7. For instance, while most of the genome undergoes age-
associated hypomethylation, promoters of high CpG density
upstream of key developmental and tumour suppressor genes
undergo preferential hypermethylation with age4–7. It is therefore
natural to investigate age-associated DNAm changes in the context
of the human interactome, since this may help identify specific
molecular pathways or functional gene modules that underpin the
aging process and which may indicate the risk of future disease. Thus,
the second key question which we address here is whether specific
molecular pathways are targeted by age-associated aberrant DNA
methylation and whether this is tissue specific or not.

Results
Integration of DNA methylation with a protein interaction net-
work. We first aimed to demonstrate that integration of DNA
methylation with a protein interaction network (PIN) can make
biological sense. To show this, we integrated Illumina Infinium
DNA methylation beadarray data covering 27,000 CpGs32 with a

human protein interaction network of over 10,000 proteins44. The
main Illumina Infinium data sets used are listed in Table 1. The
integration was done by assigning to each protein in the network
the methylation profile of the CpG closest to the transcription start
site of the corresponding gene (Methods). The resulting networks
contained on the order of 8000 genes/proteins and over 100,000
interactions. We observed that the integration led to methylation
profiles of neighboring genes in the network being on average
more highly correlated (as assessed over normal tissue samples)
than those of non-neighbors (SI Fig. S1). Interestingly, this effect
was of a magnitude comparable to that seen in gene expression
studies (SI & SI Fig. S1). These findings indicated to us that the
built integrated networks can be exploited to extract biologically
meaningful information.

A spin-glass (SPG) algorithm to detected differential methylation
interactome hotspots. We next wanted to assess if differential
methylation associated with a given phenotype of interest targets
specific regions of the protein interaction network (a property we
call modularity). To address this, one must search the interactome
for connected subnetworks where the association with the phenotype
is stronger than in the rest of the network. These subnetworks we
interchangeably call ‘‘hotspots’’ or ‘‘EpiMods’’ (Epigenetic Modules).
To find hotspots associated with cancer and age, one could adapt a
number of previously published algorithms including jActive
Modules45, BioNet14 or DEGAS21. However, we also wanted to
explore other algorithmic alternatives, and so we here considered a
computationally very efficient spin-glass (SPG) module detection
algorithm46 (Methods, Fig. 1). The efficiency of the spin-glass
algorithm stems from a local greedy implementation which maxi-
mises a relative weight density (called modularity) centred around
specific seeds46,47, and where, in our case, the weight edges reflect the
combined strength of association of each gene’s DNAm profile with
the phenotype of interest (Fig. 1, Methods). The seeding strategy
used is described in Methods. The statistical significance of any
inferred modules was assessed further using a permutation scheme
(1000 permutations) in which the node statistics were randomly
permuted over the network followed by recomputation of the
modularity values (Methods). Those modules with an adjusted
P-value , 0.05 were declared as hotspots/EpiMods.

Table 1 | Summary of the Illumina 27 k DNAm data sets used. Columns list the abbreviation used for data set, tissue type (LBC 5 liquid based
cytology, WB 5 whole blood), number of samples, number of each cell-type or disease state (N 5 normal, CIN2 5 cervical intraepithelial
neoplasia of grade 2 or higher, C 5 cancer, G 5 good prognosis cancer, P 5 poor prognosis cancer, MSC 5 mesenchymal stem cell, HPC 5

hematopoietic progenitor cell), phenotype considered or age-range, and data reference

Dataset

Tissue Number Type Phenotype Ref

LBC1 Cervix LBC 48 24N 1 24CIN21 N/CIN21 GSE37020
OVC1 Ovary 177 72G 1 105P outcome (G/P) GSE20080
CVX Cervix 63 15N 1 48C N/C GSE30759
ENDO Endometrium 87 23N 1 64C N/C GSE33422

Tissue Number Type Ages Ref

UKOPS WB 261 148N 1 113C 50–84 GSE19711
T1D WB 187 187N 24–74 GSE20067
ALSc WB 92 92N 34–88 GSE41037
FCTX Brain 133 133N 16–101 GSE15745
TCTX Brain 127 127N 15–101 GSE15745
SKIN Skin 50 50N 18–72 E-MTAB-202
BUCCAL Saliva 84 84N 21–55 GSE28746
CD4TC Blood 24 CD41 T-cells 16–69 GSE20242
CD14MC Blood 26 CD141 Monocytes 16–69 GSE20242
MSC Bone marrow 8 MSC 21–85 GSE17448
HPC Blood 12 HPC CD341 0–41 E-MTAB-487
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An attractive feature of the spin-glass algorithm is its simplicity in
that it is characterised by just one main free parameter, c, which can
be tuned on simulated and training data to optimize a complex trade-
off between the number of inferred modules, their sizes, the average
overlap between the modules and a GSEA enrichment quality metric
(SI Fig. S2). In fact, the sizes of the inferred modules is key since we
observed that in general small modules (sizes ,10) did not lead to
significant modularity values, while very large modules (.200) were
non-unique and highly redundant. We found that the optimal para-
meter choice was c < 0.5, since at this value, modules in the desired
size range 10–100 genes were generated (SI Fig. S2).

Benchmarking of the spin-glass algorithm. In order to further
justify the use of the local greedy spin-glass (SPG) algorithm, we
compared it to two other but closely related module detection me-
thods: an agglomerative fast greedy (FG) non-local algorithm48 and
a non-greedy non-local spectral decomposition (SD) algorithm49

(SI Methods). These other algorithms attempt to maximise a
modularity score similar to that of the spin-glass algorithm46, but
differ substantially in the inference procedure, allowing us to assess
both the impact of ‘‘greediness’’ and locality. To provide an
independent and objective assessment of these algorithms, we
compared their ability to detect (i) biological modules on the
interactome defined by gene expression modules from the Mole-
cular Signatures Database (MSigDB)11, and (ii) modules generated
by a simulation model (Methods). In both scenarios, the spin-glass
algorithm at our previously determined optimal parameter (c 5 0.5)
performed markedly better in finding modules that overlapped more
strongly with the known biological and simulated modules (SI
Fig. S3).

We also decided to benchmark our algorithm on real data. We
applied it to four data sets (LBC1, OVC1, CVX, ENDO, Table 1) in
order to find cancer diagnostic (LBC1, CVX, ENDO) and prognostic
(OVC1) EpiMods. Consistent with the results obtained on simulated
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Figure 1 | The EpiMod spin-glass algorithm: algorithm for the discovery of differential methylation hotspots (‘‘EpiMods’’). For each gene in the protein

interaction network we choose the CpG closest to the transcription start site and evaluate a statistic (e.g t-statistic) of association between DNA

methylation and the phenotype of interest (here we depict a binary phenotype). These statistics are then combined to assign weights to the edges of the

interactome. Next, for each of the top significantly differentially methylated genes (‘‘seeds’’), a local community detection algorithm is applied to identify

a module containing the seed and maximising the sum of weights. These modules are then checked to see if their modularity (i.e. total weights) are

significant against distributions obtained by random permutations of the observed node statistics. Finally, the modules whose modularity is significantly

larger than what would be expected by chance constitute the hotspots, called ‘‘EpiMods’’, and represent the candidate modules to be subsequently

validated in the independent datasets.
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data, we observed that the spin-glass algorithm detected, on average,
smaller sized modules and a substantially higher fraction of modules
with significant modularity as assessed using the random permuta-
tion scheme described earlier (Table 2). In line with this, the mod-
ularities were also higher for the spin-glass algorithm (Table 2 & SI
Fig. S4). Thus, all these results demonstrate that the spin-glass algo-
rithm (tuned with c 5 0.5) is more powerful than the other closely
related module detection algorithms.

Existence and validation of age-EpiMods in blood tissue. Having
tested and fined tuned the spin-glass algorithm, we next applied it to
the problem of identifying hotspots of age-associated differential
methylation (‘‘age-EpiMods’’). Given the small effect size of age on
the DNA methylome we argued that a relatively large number of
samples would be needed to robustly identify age-EpiMods. Thus,
as a discovery set, we used a large-scale Infinium 27k study profiling
DNAm levels in whole blood samples from 261 postmenopausal
women, 148 from healthy women and 113 from age-matched
women with ovarian cancer (UKOPS data set, Table 1)50. Disease
status was used as a covariate in the linear regression model between
age and DNA methylation to ensure that results were not
confounded by the presence of ovarian cancer50. We integrated the
resulting regression statistics with our human interactome model
resulting in a network of approximately 8000 nodes and over
100,000 interactions (Fig. 2A). As seeds, we chose the top ranked
genes (assigned CpGs) from the linear age DNAm regression model.
These seeds we also call ‘‘GAMPs’’ (Genes with Age-associated
Methylation change in their Promoters). Importantly the previ-
ously determined choice c 5 0.5 in the spin-glass algorithm was
near optimal also in this data set (SI Fig. S5). Thus, the choice c 5

0.5 appears to be an optimal choice across different data sets and in
relation to different phenotypes.

Application of the EpiMod algorithm to the integrated network
identified 12 fairly unique age-EpiMods (individual Monte Carlo
FDR , 5%) each containing at least 10 genes (SI Table. S1,
Fig. 2B & 2C). Since 113 of the 261 samples were from women with
active ovarian cancer, we checked that these hotspots were also
retrieved in the subset of 148 samples from healthy women.

Indeed, we observed that 10/12 (83%) were also retrieved in the
healthy subset, indicating that the algorithm is robust to subsampling
and that the majority of these EpiMods reflect changes that are
observed in normal tissue. We note that fewer EpiMods (8 at a
FDR , 0.05, i.e 4 fewer) would have been discovered had we applied
the EpiMod algorithm to only the 148 healthy samples.

Since the spin-glass algorithm is of a greedy nature, the resulting
inferred modules could represent spurious artefacts. Thus, it is key to
validate the inferred age-EpiMods on independent data, and thus
also demonstrate that the algorithm can make robust findings. As
validation, we used data from 187 independent whole blood samples
from type1-diabetics (T1D data set, Table 1). We thus asked if the
hotspot nature of the 12 age-EpiMods is also recapitulated in this
independent data set. We note that this constitutes a stringent valid-
ation whereby we assess if the precise EpiMods of the discovery set
are associated with age in the test set more strongly than randomly
picked genes from the network. Remarkably, of the original 12 age-
EpiMods, 6 (50%) validated as hotspots in the T1D data set (Fig. 2D,
Fig. 3A). To assess the significance of this further, we randomly
redefined 12 EpiMods on the network (matched for module size
and local topology, see SI Methods) and found that on average
(as estimated over 100 randomisations) only 2% of the 12 random
EpiMods are expected false positives. Thus, none of the 6 validated
age-EpiMods are likely to be false positives. Reassuringly, these 6 age-
EpiMods attained significant or marginally significant age-modular-
ity scores in an additional whole blood data set (ALSc, Table 1,
Fig. 3B). Importantly, we also checked that the directionality and
significance of individual age-EpiMod members was validated for 6
of the 12 age-EpiMods in the independent data (SI Fig. S6, Fig. 3A).
We also constructed predictive age methylation scores in the test set
samples, using only significant EpiMod members in the discovery
set, and these scores correlated with age in 10 of the 12 age-EpiMods
(SI Fig. S7, Fig. 3A). Using either method, 10 of the 12 age-EpiMods
(83%) validated in terms of their constituent members being assoc-
iated with age and with the same directionality as in the discovery set.
Together, all these results indicated to us that age-EpiMods in blood
tissue exist.

Biological significance of age-EpiMods. Given that proteins
involved within a given cellular process are more likely to be
connected and to form communities in the network51–54, we
performed a GSEA11 on each of the 6 age-EpiMods that validated
in whole blood tissue to ascertain their biological significance (SI
Table S2). Each of these age-EpiMods was strongly enriched for
specific biological functions, which were also largely unique to
each module (Table 3, SI Table S2). One of the EpiMods,
consisting of 19 genes, was strongly enriched for transcription
factors and PolyComb Group gene Targets (PCGTs)55, which are
genes that are repressed in stem cells by the PRC2 complex (SI
Table S2, Fig. 2C). Another two EpiMods (FZD2 & GRIA2) were
highly enriched for genes in the WNT/beta-Catenin signaling and
glutamate receptor pathways, respectively (Table 3). Two further
EpiMods (CD247 & LCK), which were significantly larger in size,
were highly enriched for genes implicated in immune response
pathways.

Tissue specific and tissue-independent age-EpiMods. Next, we
wanted to determine the tissue-specificity of the 12 age-EpiMods
identified in the original discovery set. We collected additional
DNAm data sets from other normal tissue types, including skin,
buccal, brain and fractionated purified blood cell types (CD41 T-
cells and CD141 monocytes) (Table 1)5,34,42. Correlations of the age-
EpiMods with age in these additional data sets was assessed using
three different complementary evaluation frameworks, as done on
the independent whole blood data sets. Two of these evalua-
tions assess the consistency of directionality and significance of
individual EpiMod members without regard to the network

Table 2 | Comparison of the spin-glass (SPG) algorithm to the other
two module detection algorithms, spectral decomposition (SD)49

and fast-greedy (FG)48 in data sets LBC1, OVC1, CVX and
ENDO. The SPG algorithm was ran here with 100 seeds in all data
sets. Columns label the number of modules of size $ 10 (nMod), the
average size of these modules (AvSize), the fraction of these with
significant modularity values f (P , 0.05), and the average mod-
ularity of the modules (AvMod)

nMod AvSize f (P , 0.05) AvMod

LBC1
SPG 21 208 0.52 1.58
SD 32 211 0.25 1.27
FG 14 502 0.36 1.18
OVC1
SPG 23 108 0.22 1.57
SD 29 262 0.10 1.43
FG 13 593 0.08 1.44
CVX
SPG 24 44 0.50 3.51
SD 56 129 0.09 2.20
FG 17 434 0.29 2.60
ENDO
SPG 30 99 0.63 3.08
SD 24 301 0.33 1.81
FG 9 809 0.11 1.57
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structure, while the third evaluation assesses specifically the network
hotspot nature of the age-EpiMods. Thus, for each age-EpiMod in
each data set we obtained three different P-values to assess validation
at various levels. Remarkably, we observed that the three age-
EpiMods with seeds SOX8, GRIA2 and FZD2 were largely tissue
independent, validating across most, if not all, of the other normal
tissue types (Fig. 3C–F). These age-EpiMods also correlated with age
in purified CD41 T-cells and more marginally so in CD141

monocytes (Fig. 3G–H), further supporting the view that these
associations are not driven by changes in cell-type composition.
In contrast, the immune response age-EpiMods showed more
variability and were not consistently validated across other normal
tissue types (Fig. 3C–F), suggesting that these may be driven by
changes in cell type composition. Supporting this view, these age-
EpiMods generally did not validate in the purified blood cell types
(Fig. 3G–H), and they exhibited strong overlaps with markers of
granulocytes and lymphocytes (Binomial test P , 1025)56. Venn
diagrams summarising the degree of tissue-specificity of the age-
EpiMods illustrate that most of the 12 age-EpiMods are indeed
specific to blood (Fig. 4A), with only SOX8, GRIA2, FZD2 age-
EpiMods being largely tissue independent (Fig. 4C). The tissue
specificity of detected age-associated changes in DNAm was
further confirmed at the level of individual top ranked GAMPs
within each data set and tissue type (Fig. 4B & 4D).

Although the validations demonstrate overall consistency in terms
of directionality and significance of the age-associations of EpiMod
members, we next wanted to determine if it is the same EpiMod
members driving the significance across all data sets, or if the sig-
nificance is driven by different genes in different data sets. We
focused on the three age-EpiMods SOX8, GRIA2 and FZD2, since
these were validated in most data sets. Heatmaps of the age-assoc-
iated t-statistics revealed striking consistency (Fig. 5). For instance,
in the SOX8 module, UTF1, POU3F3 and FOXD3 all showed the
same directional age-associated methylation patterns in the three
large whole blood data sets (Fig. 5A). Similarly, in the FZD2 module,
many genes (e.g. SFRP1, FZD2, ROR2, DKK1, FZD9, WNT3A)
showed consistent associations across most data sets (Fig. 5C). In
contrast, in the GRIA2 module, fewer genes showed consistent asso-
ciations (Fig. 5B).

The observation that the age-EpiMods SOX8, GRIA2 and FZD2,
validated across multiple tissue types including purified CD41 T-
cells which have a high-turnover rate, suggests that the observed age-
associated changes must be due to underlying changes in the long-
lived stem-cell populations. We first tested this in mesenchymal stem
cells (MSC) from the bone marrow of 8 patients spanning a wide age-
range57. As before, we tested the association with age using the 3
different aforementioned methods. The hotspot nature was recapi-
tulated marginally for GRIA2 (P 5 0.07) and FZD2 (P 5 0.07), while
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the directionality and significance of the age-associations of indi-
vidual genes was validated in the case of the SOX8 and FZD2 modules
(SI Fig. S8), clearly implicating the specific genes in these modules as
undergoing age-associated DNAm changes in stem cells. We also
analysed 12 samples of hematopoietic progenitor (HPC) cells (7 from
cord blood and 5 samples all with ages $ 28)58. However, in this set
the hotspot nature of the three age-EpiMods was not observed, pos-
sibly due to a narrower age-range and the fact that all samples were
relatively young (under the age of 41). In spite of this, the linear age
correlation test P-values still showed marginal trends towards sig-
nificance for the same two modules (SOX8, FZD2) that validated in
mesenchymal stem cells (SI Fig. S9).

EpiMod algorithm outperforms non-network based approach.
Having established the existence of a number of biologically
significant age-EpiMods, we next wanted to assess the importance
of the EpiMod algorithm itself in making this discovery. To assess
this, we compared the EpiMod method to a simple non-network
based approach. First, we perfomed a simple GSEA on a number
of top-ranked GAMPs from the discovery set, where the number of
genes used for the GSEA was matched to the number of unique
EpiMod members making up the original 12 age-EpiMods. Not
unexpectedly, two of the key functional terms, namely WNT-
signaling and glutamate receptors, were not picked out by the non-
network based GSEA (Fisher-test P 5 0.24 (WNT) and P 5 0.19

Figure 3 | Tissue specificity and tissue-independence of the 12 age-EpiMods from the UKOPS discovery cohort in whole blood. Each panel plots for

each of the 12 age-EpiMods, the -log10 of the P-values (y-axis) of 3 different validation tests: ‘‘Stat’’ is the linear correlation test P-value testing the

correlation of the age-associated t-statistics in UKOPS against the corresponding statistics in the validation set. ‘‘Score’’ is the linear correlation test

P-value from correlating an age-predictive methylation score in the test set against age using only EpiMod gene members which were significant in the

discovery UKOPS cohort. ‘‘Mod’’ is the P-value from the randomisation test (1000 Monte Carlo runs) testing for significance of the ‘‘hotspot’’

modularity values. Each panel A to H represents one different data set (see Table 1). (A-B) are in whole blood, (C-D) in brain tissue, (E) skin, (F) buccal,

(G) CD41 T-cells and (H) CD141 monocytes.

Table 3 | Biological significance of the 6 validated age-EpiMods derived in whole blood tissue. We list the seed (GAMP) defining the
EpiMod, the size of the EpiMod, a significantly enriched biological function, the Benjamini-Hochberg false discovery rate (FDR) and example
genes making up the EpiMod

age-EpiMod Size Function FDR Example genes

FZD2 33 WNT & b-catenin signaling , 10230 FZD2, SFRP1, WNT3A
SOX8 19 PCGTs, TF-activity , 1025 SOX8, UTF1, POU5F1
GRIA2 15 Glutamate receptors , 0.001 GRIA2, GRIA3, GRIP1
LCK 169 T-cell activation , 10230 LCK, IL2RG, IL2RB
CD247 83 T-cell activation , 10230 CD247, CD3E, IL2
PLAT 11 Complement/Coagulation , 0.01 PLAT, F10, F3
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(glutamate-receptors). To further demonstrate the power of the
EpiMod strategy, we next selected, from the 12 age-EpiMods in the
discovery cohort, those EpiMod members which were significant
(P, 0.05) while also discarding the 12 GAMPs which were used to

seed these EpiMods. There were a total of 75 significant EpiMod
genes. We posited that these genes would constitute more robust
markers of age-associated differential methylation than those we
would identify using a non-network based approach. We thus

SERPINA1
ELANE

FZD2

SSTR2

SOX8

GRIA2

LAMB1

CD247

67
10

69

3

6

3

2

2

66

7
1 3

6

72

11

C) D)

Top 100 GAMPs
(whole blood)

Top 100 GAMPs
(all tissues)

EpiMod Validation
(whole blood)

EpiMod Validation
(all tissues)

GRIA2SERPINA1
SSTR2

PLAT
FZD2
SOX8
LCK

CD247

TNK1 ELANE
BLOC1S2

LAMB1

Whole
Blood Brain

Skin Buccal

UKOPS

T1DALSc 54
6

41

6

4

18

4

16

53

5
6 3

5

43

5

UKOPS T1D
ALSc SZc

Whole
Blood Brain

Skin Buccal

A) B)

Figure 4 | Venn diagrams illustrating consistency of GAMPs and age-Epimods found within tissues and between tissues. (A) Diagram illustrating age-

EpiMods validated at the 5% level (node-weight permutation) in UKOPS, T1D and ALSc whole blood data sets. (B) Overlaps between top 100 ranked

GAMPs in four separate blood datasets. (C) Overlaps in modules validated at the 5% level using Fisher combined independent probability across different

tissue types. (D) Overlaps between top 100 ranked GAMPs across tissue types using UKOPS, SKIN, BUC and FCTX as representatives for whole blood,

skin, buccal and brain respectively. Note the considerably lower consistency in (D) than in (B).

WholeH
Blood

Brain

SOX8 module GRIA2 module FZD2 module

Key

0 >2< 2

HyperMHypoM

Reg.Stat.

WholeH
Blood

Brain WholeH
Blood

Brain

U
KO

P
S

T1
D

A
LS

c

FC
TX

TC
TX

S
K

IN

BU
C

FZD5
PI4K2A
CORO1A
IGFBP4
FZD4
NDP
LRP6
WNT7A
FZD2
FZD9
WNT2
WNT3A
DKK1
ROR2
SFRP1
WNT4
FZD10
WIF1
WNT7B
FZD8
TSPAN12
SFRP2
FZD6
WNT5A
WNT3
FZD7
LRP5
WNT1
ANTXR1
FZD1
RSPO1
CTHRC1
DKK2

A) B) C)

U
KO

P
S

T1
D

A
LS

c

FC
TX

TC
TX

S
K

IN

BU
C

SOX10
EGR2
ACP5
POU5F1
POU3F4
PRRX2
HHEX
ALX4
SOX2
ALX1
OLIG2
POU3F1
NKX2 2
DLX5
SOX8
SOX11
POU3F3
UTF1
FOXD3

U
KO

P
S

T1
D

A
LS

c

FC
TX

TC
TX

S
K

IN

BU
C

GRIP1

CD6

SOX4

PRLH

SDCBP

PICK1

GRIA3

PVRL4

GRM3

PRLHR

GRIA2

GRIK1

SLC6A4

CADM1

CSPG4

Figure 5 | Heatmaps of age-associated regression statistics of age-EpiMod member genes across whole blood (UKOPS, T1D, ALSc), brain (FCTX,
TCTX), skin and buccal (BUC) data sets. (A) SOX8-module. (B) GRIA2-module. (C) FZD2-module.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 3 : 1630 | DOI: 10.1038/srep01630 7



compared the absolute t-statistics of these significant EpiMod genes
in three independent whole blood data sets, to the corresponding
statistics for a random selection of significant GAMPs from the
discovery set. Across the three independent test data sets, we
observed that significant EpiMod genes from the UKOPS dis-
covery set generally attained higher absolute statistics (preserving
the same directionality as in the discovery set) than the genes used
for benchmarking (combined Fisher test P , 0.001, Fig. 6). Thus, we
can conclude that the EpiMod algorithm allows improved biolo-
gical interpretation of age-associated changes in DNA methylation
without compromising the robustness of the identified age-
associated markers, and this is important in light of recent reports
questioning the value of network-based methods59.

Discussion
Here we have explored the integration of DNAm profiles with a
human interactome and have demonstrated that hotspots of differ-
ential methylation associated with phenotypes such as cancer and age
exist. In order to identify the hotspots we adapted a powerful module
detection algorithm (the spin-glass SPG algorithm). The algorithm
was tested extensively, optimized and benchmarked against two clo-
sely related module detection algorithms (FG & SD), demonstrating
its superiority (SI Figs. S2–S4). Three key aspects of the algorithm are
worth emphasizing. First, it is computationally efficient and scalable
to large networks thanks to a local greedy implementation. Second,
the implementation used does not seriously compromise the robust-
ness of the inference procedure: indeed, we were able to infer hot-
spots of differential methylation which then validated as network
hotspots in completely independent data (Fig. 2), thus demonstrat-
ing that the algorithm can make robust findings. Third, the algorithm
has a tunable parameter that directly controls the sizes of the inferred

modules. This is important since we observed that the size of an
inferred module influenced the probability of the module being a
false positive (Table 2).

Given the improved performance of the SPG algorithm against FG
and SD, we also wondered how it would compare to some of the other
module detection algorithms. Thus, we compared SPG to three
popular algorithms: jActiveModules45, BioNet14 and DEGAS21 (see
Methods for details of parameter choices). Like SPG, jActive
Modules allows for a local search strategy centred around selected
seeds, thus allowing for a direct comparison, while BioNet and
DEGAS perform the module search recursively and globally, respect-
ively. The comparison of these algorithms showed that BioNet and
DEGAS only identified a relatively small number of significant mod-
ules, with high robustness observed only in the case of BioNet (SI
Fig. S10). jActiveModules and SPG both identified similar number of
significant modules, with a similar fraction of modules identified in
the training set validating in the test sets (SI Fig. S10). We also point
out these two algorithms inferred distinct modules. For instance, the
GRIA2 module, which was validated by SPG in all data sets consid-
ered here, was not detected and not clearly validated using
jActiveModules. Thus, we can see that the spin-glass algorithm used
here compares favourably to some of the existing module detection
algorithms.

In our main analysis, where we focused on age as the phenotype of
interest and on whole blood tissue, we were able to validate age-
EpiMods in several independent whole blood data sets, supporting
the view that DNAm changes do not occur randomly in the context
of the human interactome. Using DNAm data from other normal
tissues, we showed that the majority of the hotspots/Epimods were
tissue-specific (Figs. 3–4), but also found three age-EpiMods which
validated independently of tissue type (Figs. 3–5). Two of these age-
EpiMods (SOX8, FZD2) were significantly enriched for transcription
factors and PCGTs, implicating specific stem cell differentiation
pathways. These particular age-EpiMods were also seen to correlate
with age in mesenchymal stem cells. As with the age-PCGT signature
we had derived previously and which has been shown to be largely
tissue-independent6 (see also Ref. 5,60), the observation made here
that members of these EpiMods consistently correlate with age in a
variety of different tissue and cell types is a clear indication that these
age-associated epigenetic modules represent generic age-epigenetic
phenomena not driven by changes in cell-type composition. The
third tissue-independent age-EpiMod was highly enriched for G-
protein and glutamate receptors.

It is of interest to discuss further the potential biological signifi-
cance of these three age-EpiMods. One of the most consistently age-
correlated genes in the SOX8 EpiMod was UTF1. A recent study61 has
shown that UTF1 is a chromatin-associated protein necessary for
stem cell differentiation. Hence, the observation that UTF1’s pro-
moter region becomes consistently hypermethylated with age could
imply that the differentiation capacity of adult stem cells is compro-
mised with age. A second independent observation is that UTF1
expression is a stronger marker of efficient iPSC reprogramming
than other traditional markers (e.g. OCT4)62. Interestingly, it has
been observed that the efficiency and safety of iPSC reprogramming
decreases with the age of the adult differentiated cells used63,64. Thus,
lower expression of UTF1 as a result of age-associated hypermethy-
lation could potential contribute to this observation. To test if gene
expression of UTF1 decreases with age will require access to large
sample collections of CD341 HPCs from human donors, as DNAm
profiles derived from mice or other model organisms are unlikely to
capture the age cumulative effects of environmental stressors which
humans are exposed to naturally and which are assumed to underlie
the observed age-associated changes in DNA methylation. Indeed, in
a genome-wide study using MeDIP-Seq, we did not observed major
changes in DNAm comparing HPCs from young and old mice (per-
sonal communication, data not shown). Our EpiMod analysis also
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implicated other factors which may play similar or analogous roles
to UTF1, such as for instance SOX8 itself. The age-EpiMod FZD2
implicated many members of the WNT/beta-Catenin signalling
pathway (e.g. SFRP1, FZD2, FZD9, WNT3A) all of which appear
to become consistently hypermethylated with age. This is another
striking finding, since the WNT-signalling pathway has been the
subject of intensive study in ageing65–67. In fact, these studies indi-
cate that WNT signalling activity is increased with age potentially
increasing stem cell self-renewal function whilst blocking differ-
entiation. However, another study reported that WNT target gene
expression in osteoblast precursors decreases with age, albeit this
too is an observation made in mice68. These relations are further
complicated by the fact that we observe simultaneous hyper-
methylation in the promoters of important receptors (e.g FZD2,
FZD9) and that of SFRP1, which is a key negative regulator of the
WNT-pathway. Hence, although promoter hypermethylation and
silencing of SFRP1 is often observed in cancer and preneoplastic
lesions69,70, it is unclear what the effect of this may be in the
background of promoter FZD2 & FZD9 hypermethylation. The
functional significance of the FZD2 age-EpiMod is therefore
unclear and analysis of large-scale gene expression data sets did
not reveal a consistent pattern (data not shown). The third tissue-
independent age-EpiMod involved glutamate receptors (e.g.
GRIA2) and the prolactin releasing hormone receptor PRLHR.
Strikingly, these two genes showed strong promoter age-associated
hypermethylation across almost all of the data sets analysed.
Interestingly, there are reports documenting that glutamate recep-
tors play an important role in dietary restriction, ageing and pos-
sibly also in modulating age-associated immunosenescence71,72.

Besides the three age-EpiMods discussed above, two others
(TNK1, LAMB1) (SI Table S1) are of particular interest, although
their validation was not consistent across the different data sets and
tissues. The TNK1 age-EpiMod was a fairly large module consisting
of 446 genes, hence why the age-modularity was not validated in
other data sets. However, this module did validate in terms of the
directional consistency and significance of individual regression
statistics (SI Fig. S6 & S7). Interestingly, TNK1 is a late-onset
Alzheimer’s disease gene as determined by a recent meta-analysis
of GWAS studies73. The LAMB1 age-EpiMod was strongly enriched
for laminins, including besides LAMB1, also LAMA1, LAMA4,
LAMA3, LAMC3 (SI Table S1), which are a family of extracellular
matrix glycoproteins implicated in cell adhesion and differentiation,
and which we have found to be associated with early stages of cervical
cancer (data not shown).

It is important to emphasize that the discovery of the three tissue-
independent age-EpiMods implicating key molecular pathways was
only made possible through an integrative interactome-epigenome
strategy. Indeed, previous meta-analysis studies on age-associated
DNAm changes (e.g. Ref. 34) have not reported the existence or
importance of the SOX8, FZD2 and GRIA2 age-EpiMod members.
Reinforcing this, we found that an ordinary GSEA on a matched
number of top ranked GAMPs in the discovery UKOPS cohort
yielded non-significant odds ratios of enrichment for the WNT-
signalling and glutamate receptor pathways. We also showed that
genes significantly associated with age and which were implicated
by the EpiMod analysis defined more robust age-associated DNAm
markers (Fig. 6). These results therefore attest to the power of an
integrative network strategy since it simultaneously facilitates bio-
logical interpretation while also identifying more robust markers, spe-
cially if these markers are associated with relatively small effect sizes.

In summary, we have shown that differential methylation inter-
actome hotspots exist, and specifically, have discovered tissue-
independent age-epigenetically deregulated hotspots enriched for
stem cell differentiation pathways. The integrative network algo-
rithm developed here could help elucidate the biological and clinical
significance of epigenetic changes associated with common diseases.

Methods
The protein interaction network. We downloaded the Human Protein Reference
Database (HPRD) interaction network from Pathway Commons
http://www.pathwaycommons.org44 (13th June 2012). The HPRD network used
here consisted of approximately 10,000 proteins with over 200,000 documented
interactions. When restricted to the genes annotated on the Infinium 27k array and
with probes passing quality control criteria, the resulting networks contained
typically on the order of 8000 nodes and just over 100,000 interactions (edges).

Integration and edge weighting scheme. For each gene g represented in a
methylation dataset, denote the methylation state of the probe nearest to the
transcription start site by bg. Given a phenotype of interest, denote by tg the statistic
(usually, a t-statistic) resulting from the statistical test correlating the phenotype to bg.
In the case of age, we used linear regressions t-statistics, while in normal/cancer
comparisons we used a two-sided t-test. This allows us to attach a weight wgh between
every pair of genes g and h in the underlying protein interaction network (PIN):

wgh~
tg

�� ��z thj j
2 tj jmax

where jtjmax is the maximum absolute t-statistic assigned by the test to any gene. Note
that if g and h do not interact we set wgh 5 0. This yields a weighting of each edge
between 0 and 1, with larger weights denoting two neighbors both significantly
associated with the phenotype of interest.

Identifying hotspots of alterations using a greedy spin-glass algorithm. With the
choice of edge weighting regime above, the task is to search the network for
subnetworks of exceptionally large average weight density (‘‘modules’’ or ‘‘hotspots’’)
in relation to the network as a whole. The average weight density of a subnetwork we
call modularity49.

In order to identify the hotspots we adopted a greedy spin-glass algorithm from46,
which allows community detection in weighted networks specified by a weighted
adjacancy matrix W. The justification for using this algorithm is as follows. First, we
sought an algorithm that would allow flexibility in the level of mutual exclusivity of
the inferred modules. Since proteins often lie in many distinct functional pathways,
the algorithm must allow for some overlap between the inferred modules. On the
other hand, the algorithm must also avoid inferring modules of very high overlap
since this represents unwanted redundancy. One of the attractive features of the spin-
glass algorithm is its simplicity in that it is characterized by only 1 main free tunable
parameter, called c with 0 # c # 146, which, as we show here, directly controls the
average size and hence overlap/redundancy of the inferred modules. Secondly,
inference of modules in large-scale networks can be computationally demanding and
unstable49. Thus, a greedy approach is attractive because it can offer the scalability and
computational efficiency needed for our application. The stability of the modules
inferred using a greedy approach can always be tested a posteriori using validation/
test data sets, a strategy that we also adopt here. Importantly, the spin-glass algorithm
allows for a greedy approach by starting the search of modules from seed nodes,
defined as the nodes with the largest statistics, or alternatively as those with the largest
average weights (i.e the average over nearest neighbors). Both seed choices are pos-
sible, although the former leads to less redundancy in the sense that seeds are more
spread out across the network. The top number of genes ranked by largest absolute
statistic were declared as seeds. In the case of the data sets and phenotypes considered
here we typically focused on the top 100 seeds because these always passed an FDR
correction threshold of 0.05 based on their univariate P-values. It is important to
point out here that not all seeds lead to modules of higher-than-average modularity,
since some seeds may represent isolated nodes of association.

In detail, the spin-glass algorithm reduces the problem of community/module
detection into finding the ground state of an infinite ranged Potts spin glass46. Briefly,
communities/modules are found via a Hamiltonian

H sf gð Þ~{
X

i=j

Wij{cpij
� �

d si,sj
� �

where si denotes the community that node i belongs to, Wij is the weighted adjacency
matrix of the network, and where pij describes the probability of an edge between
nodes i and j according to some appropriate null model. In the above expression, d (si,
sj) is the Kronecker delta and c . 0 is the tunable parameter of the algorithm. It can be
shown that this Hamiltonian rewards internal edges (i.e. those within an inferred
subnetwork, or equivalently within the same spin state) as well as non-edges between
inferred subnetworks, while also penalizing internal non-edges, and edges between
different subnetworks46. The choice of parameter c controls the relative energy con-
tributions of edges and non-edges occuring both internally and externally of the
inferred subnetworks46. An alternative expression for the Hamiltonian is in terms of
adhesion coefficients, ars,

H sf gð Þ~
X

svr

ars

where r and s denote the spin states (i.e communities), and where the adhesion
coefficient between spin states r and s is defined by

ars~mrs{cE mrs½ �pij

In the above, mrs denotes the number of edges between r and s and the second term
denotes the expectation of this number under the null model. Thus, minimisation of
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the Hamiltonian is equivalent to the minimisation of overall adhesion46. In fact, one
can use a local greedy algorithm, adding a node i to the existing seed community s only
if its adhesion to s, ais, is higher than the adhesion to the rest of the network (r), air, that
is, if

Dasr i?sð Þ~air{aisv0

In this work, we use as null models, random graphs with the same vertex degrees,
amounting to a rewiring of the network. Under such a null model, pij 5 kikj/2E where
E is the total number of edges.

For each seed we thus obtain a module (if present) minimising the overall adhesion
using a simulated annealing procedure as implemented in the spin-glass.community
function of the igraph R package. We point out again that the existence of a module
associated with a given seed is not automatic since growing a module from a given
seed as described above may not lead to reductions in the overall adhesion. Typically,
one finds that approximately 50% of seeds are not associated with any module.

Tuning the parameter c. The spin-glass algorithm has one main tunable parameter
(c), which determines the size of the inferred modules. We tuned c to yield modules in
the size range 10 to 100 genes. There are two justifications for focusing on this size
range. First, unsupervised linear decomposition methods like PCA or ICA performed
on gene expression data (see e.g74) suggest that co-regulated gene modules are
typically on the order of 1% of the number of genes measured. In our network of
,8000 nodes this amounts to ,80 genes. A second more compelling justification was
provided by a detailed analysis of the module size distribution, the mutual exclusivity
of the resulting modules and an overall GSEA enrichment metric. This strategy
allowed us to gauge the trade-off between the uniqueness of the modules (favouring
smaller modules) and biological interpretation (favouring larger modules and
requiring modules to be typically of size $10). We found that c < 0.5 was optimal in
the sense that it generated a reasonable number of gene modules of size $10 while
also exhibiting minimal overlap. In comparison, c 5 1 yielded much larger,
overlapping modules, leading to significant redundancy in downstream GSEA
analyses. Briefly, to estimate the GSEA quality score we first computed Q 5 S1#i#j

max (ORi, 100) where j 5 5 and ORi is the odds ratio of the i’th top ranked GSEA
enriched term. The odds ratios were computed for each significantly non-overlapping
module of size $10 and finally Q was rescaled according to the expected value for a
module of the same size to get a ‘‘GSEA enrichment score’’ q given by q 5 Q/E[Qjm]
with m denoting the module size.

Statistical significance and external validation of modules. It is important to
establish the statistical significance of the modularity values associated with the
inferred communities or modules. The modularity M of each community C is simply
the total weight of all edges in C, i.e.

M Cð Þ~
X

g,h[V Cð Þ
wgh

where C has edge weights wgh and nodes V Cð Þ. Permuting the edge weights over the
network would yield the wrong null distribution to compare to since the edge weights
themselves already contain the topological nearest neighbor information. Instead of
this, we compare the distribution of modularity values with the ones expected by
permuting the absolute t-statistics among nodes. By performing 1000 permutations,
we can thus assess the statistical significance of the observed modularity values by
counting the fraction of permutations which lead to higher modularities. We note
that the modules inferred previously, i.e from the unpermuted node statistics, are kept
fixed in this procedure and are not inferred de novo. In other words, only the assigned
node attributes (i.e the absolute t-statistics) change between permutations, thus
yielding an adjusted P-value for each separate module. We refer to the resulting
modules which are significant at the 5% level, as EpiMods.

To validate the EpiMods in external data we used two complementary strategies
designed to test different aspects of the EpiMods. To validate the significance and
directionality of the DNAm changes associated with the gene members of the
EpiMods, we generated starburst scatterplots, comparing the t-statistics of differential
methylation in the discovery set against the corresponding t-statistics in the valid-
ation set. To demonstrate that the EpiMods validate as hotspots of differential
methylation in the network, we computed the modularities in the validation set, and
then tested the significance of these modularities against random permutations of the
node statistics in this same validation set.

Availability. We have implemented the EpiMod algorithm as an executable R-script
which is freely available on request, or from http://code.google.com/p/epimods/.
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