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ABSTRACT 

Multiple sclerosis (MS) is an inflammatory demyelinating and degenerating disease of 

the central nervous system (CNS) that typically starts with a relapsing-remitting course 

of neurological deficits.  Among the enigmas in the disease are 1) the cause of the 

neurological deficits, 2) the cause of the demyelination, 3) the cause of the 

degeneration, and 4) the cause of the disease itself.  This thesis examines the novel 

hypothesis that tissue hypoxia might illuminate at least some of these enigmas.  Tissue 

hypoxia can easily account for loss of function in a tissue as heavily dependent on 

oxidative phosphorylation as the CNS, and it can similarly selectively kill cells such as 

oligodendrocytes and neurons/axons if they are reliant on oxidative metabolism.  

Hypoxia can also promote inflammation in tissues and thereby reduce the threshold for 

the initiation of inflammatory disease.  Three experimental models have been examined, 

namely experimental autoimmune encephalomyelilits (EAE, a common model of MS), 

an experimental model of the demyelinating Pattern III MS lesion, and animals rendered 

temporarily hypoxic due to placement in an atmosphere of 10% oxygen.  We provide 

chemical, physical and therapeutic evidence that tissue hypoxia is, in part, responsible 

for 1) neurological dysfunction in EAE, 2) the demyelination in the model Pattern III 

lesion, in association with nitric oxide and superoxide, 3) by extension, perhaps 

neurodegeneration, and 4) a sensitization of the CNS to pro-inflammatory conditions, 

including evidence of the special sensitivity of oligodendrocytes to hypoxia.  We 

conclude that true tissue hypoxia is a hitherto-unrecognised, but potentially important, 

factor in several of the cardinal characteristics of MS.   
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HYPOTHESES 

1. Hypoxia mediates neurological dysfunction in rMOG EAE and in the 

development of demyelination in the experimental Pattern III Lesion. 

 

2. Intrinsic regional and cellular vulnerabilities of the normal spinal cord to 

hypoxia render it susceptible to hypoxia-mediated damage. 
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CHAPTER ONE 

INTRODUCTION 

 

1.1.0.0 Multiple Sclerosis 

Multiple sclerosis (MS) was first described by Charcot in the 1860s, and, more than a 

hundred years later, it remains the prototypical immune-associated, demyelinating 

disease of the central nervous system (CNS). Although largely idiopathic in nature, an 

interplay between viral infection (Cook et al., 1995; Herndon, 1996), genetics 

(Compston, 1997) and the environment (Weinshenker et al., 1989) has been implicated 

in the aetiology of MS. This enigmatic disease, traditionally considered a white matter 

phenomenon, is now realised also to affect the grey matter. The pathology is 

characterised by multifocal, perivascular inflammation and focal destruction of myelin, 

resulting in a typically relapsing, but ultimately progressive, degenerative disorder. The 

majority of MS patients initially follow a relapsing/remitting disease course 

(relapse/remitting MS; RRMS), associated with periodic relapses of neurological 

dysfunction, which are often related to a site of observable pathology (Compston and 

Coles 2008). This relapsing phase begins early in adulthood, but is extremely variable 

with regard to its nature and duration, and it is often subsequently followed by a 

progressive (secondary progressive MS; SPMS) disease course. In a small proportion of 

patients (10-20%), a progressive disease is exhibited from the onset in the absence of 

relapses (primary progressive MS; PPMS). Inflammatory demyelinating, focal white 

matter lesions appear to dominate the pathology in RRMS, whereas the progressive 

phase is associated with diffuse atrophy of the white and grey matter (Miller et al., 
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2002), in addition to subtle pathological changes in the normal appearing white matter 

(NAWM) (Allen and McKeown, 1979; De Groot et al., 2001). Anti-inflammatory, 

immunomodulatory and immunosuppressive therapies are regarded as only being 

effective during the early, relapsing stage of the disease (Leary and Thompson, 2003). 

Clinical manifestations of MS are heterogeneous, but are thought primarily to be 

a consequence of aberrant electrical properties of axons due to demyelination. However, 

increasing evidence suggests that inflammation, in the absence of demyelination, can 

also cause neurological dysfunction, (Moreau et al., 1994; Bitsch et al., 1999). The 

mechanisms responsible are not, however, understood, and form the basis of some of 

this thesis. The type of deficit exhibited is largely determined by the anatomical location 

of the lesion. Initial symptoms usually include, but not restricted to, limb weakness, 

sensory disturbances, visual problems, gait instability, and ataxia (Hauser and 

Oksenberg, 2006). As the disease progresses, bladder dysfunction, fatigue and heat 

insensitivity are common (Hauser and Oksenberg, 2006). In advanced disease, cognitive 

deficits have also been reported. Nevertheless, the variability of the neurological disease 

course, and the fact that much of the disease is clinically silent, has massive 

implications for therapy. 

Despite numerous histopathological studies and recent advances in magnetic 

resonance (MR) technology, the MS lesion is not well understood. The mechanism(s) 

responsible for the initiation and evolution of an MS lesion, and its correlation with the 

expression of a neurological deficit, are largely unknown, and will be a focus of this 

thesis.  

 

 



 
 

3 

 

1.2.0.0 Pathology of MS lesions  

The pathological hallmark of MS is the presence of large demyelinated lesions at any 

site in the CNS (Charcot, 1868), however, there is a predilection for the optic nerves, 

spinal cord, brain stem, periventricular areas (Stadelmann et al., 2011), and subpial grey 

matter (Bo et al., 2003). Characteristic features of white matter lesions include 

demyelination, oligodendrocyte loss (Lucchinetti et al., 1999; Barnett and Prineas, 

2004), preferential loss of small calibre axons (Evangelou et al., 2001), impaired 

remyelination (Chang et al., 2002) and astroglyosis. However, different molecular 

events take place in different regions of a given lesion, thereby making it difficult to 

unravel the molecular mechanisms involved in the pathogenesis of MS. Thus, the 

mechanisms involved in plaque formation are still unclear. Some researchers propose 

that the spectrum of lesion pathologies indicates pathogenic heterogeneity (Lucchinetti 

et al., 2000), whereas others have proposed that an initial homogeneous pathogenic 

mechanism is involved in the formation of a new lesion (Barnett and Prineas, 2004). 

Barnett and Prineas reported the presence of two different types of lesions within the 

same patient, and thus propose that a stage-dependent sequence of pathology occurs 

whereby a lesion may progress from the first stage (oligodendrocyte apoptosis) to the 

second stage (T-cell mediated inflammation) (Barnett et al., 2009).  

 

Traditionally, MS was considered as a disease predominantly affecting the white matter, 

but it is now clear that grey matter damage is a fundamental component of the disease 

that is affected from the earliest stages in both RRMS and PPMS, becoming more 

prominent in the secondary progressive stage (Kutzelnigg et al., 2005; Fisniku et al., 

2008; Fisher et al., 2008). Indeed, the presence of grey matter pathology is not 
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surprising given that the cell bodies of axons in white matter tracts reside within the 

grey matter. It is easy to appreciate how damage to the white matter may affect the grey 

matter and vice versa. Unlike demyelination in the white matter, cortical demyelination 

is thought to affect not only motor function but also cognitive function (de Stefano et 

al., 2003; Deloire et al., 2011). Moreover, cortical pathology not only plays a key role in 

clinical progression (Calabrese et al 2010), but its accumulation is thought to represent 

the transition from RRMS to SPMS (Stadelmann, 2011).  

It has previously been shown that cortical lesions may form secondary to white 

matter damage, due to Wallerian degeneration (Cifelli et al., 2002). However, more 

recent studies have shown that cortical demyelination not only occurs distal to white 

matter pathology (Bo et al., 2007; Antulov et al., 2011), but can also evolve faster than 

white matter pathology (Geurts and Barkhof, 2008; Calabrese et al., 2010). In contrast 

to white matter lesions, evidence of significant lymphocyte infiltration, BBB disruption 

and complement deposition has not yet been found in grey matter lesions (Bo et al., 

2003; Brink et al., 2005; van Horssen et al., 2007). Meningeal inflammation is often 

associated with cortical demyelination, particularly in the progressive stages of disease 

(Magliozzi et al., 2007, 2010; Howell et al., 2012), but it has more recently been 

described to additionally occur in the acute stages of disease (Lucchinetti et al., 2011). 

 

 1.2.1.0 Heterogeneity of Lesions 

Lucchinetti et al., (2000) classified MS lesions into four lesion subtypes; patterns I-IV, 

based on differences in immunological parameters among patients. Moreover, the 

pathology of all the lesions in a given individual was found to conform to one pattern 

(Lucchinetti et al., 2000; Konig et al., 2008). The lesion subtypes are described to differ 
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with regard to their morphological characteristics (Lucchinetti et al., 2000) and the 

mechanisms of tissue injury (Lassmann et al., 2001). Patterns I and II exhibit 

perivascular inflammation, with associated demyelination and evidence of 

remyelination. Deposition of immunoglobulin and complement are specific to Pattern II 

lesions. Pattern III lesions also contain an inflammatory infiltrate, but have ill-defined 

lesion boundary, selective loss of myelin associated glycoprotein (MAG), apoptosis of 

oligodendrocytic cells, and often a preserved rim of myelinated axons surrounding an 

inflamed blood vessel. Pattern IV lesions have well-defined boundaries comprising an 

inflammatory infiltrate dominated by T-lymphocytes and macrophages, with 

oligodendrocyte apoptosis confined to a rim of periplaque white matter adjacent to an 

area of active myelin destruction (Lucchinetti et al., 2000).  

 

1.2.2.0 Lesion Evolution in the white matter 

Classical active MS lesions are primarily found in patients with acute or relapsing 

disease, and initially exhibit an acute phenotype which develops to a more chronic form. 

Acute plaques are comprised of macrophages containing similar stages of myelin 

degradation, dispersed throughout the entire lesion (Lassmann, 2011). Chronic active 

plaques, are comprised of macrophages with early stages of myelin degradation 

concentrated at the lesion edge, whilst in the core, macrophages with later stages of 

myelin debris are observed, or they may have disappeared (Lassmann, 2011). The 

classical active lesions evolve in a concentric manner, whereby different stages of 

plaque formation are found in close vicinity. Four distinct zones of the lesion are 

recognised; the periplaque white matter, the initial ‘pre-phagocytic’ lesion, the early 
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active lesion and the late active lesion. These zones may vary in size, thus reflecting the 

speed of lesion development or their stage of evolution (Lassmann, 2011). 

 

1.2.2.1 Preactive lesion 

The white matter can appear to be normal upon superficial examination, by eye, or by 

MRI, but in reality the NAWM is often highly abnormal, showing biochemical and 

histological abnormalities (Allen and McKeown, 1979). One interesting feature is the 

presence of clusters or nodules of activated microglial cells, characterised by the 

expression of major histocompatability (MHC) class II molecules (De Groot et al., 

2001). These microglial nodules have also been found to be closely associated with 

stressed oligodendrocytes (van Noort et al., 2010), and express the inflammatory 

cytokines tumor necrosis factor-α (TNF-α) and interleukin-10 (IL-10) (van Horssen et 

al., 2012). No evidence of leukocyte infiltration, demyelination, or axonal damage is 

evident in such areas (Allen and McKeown, 1979; De Groot et al., 2001; van Horssen et 

al., 2012). These lesions can be found in the CNS of MS patients irrespective of disease 

subtype and duration, although they tend to occur more frequently in the vicinity of 

active lesions (van Horssen et al., 2012). Due to the frequency, and characteristics of 

these lesions, it is believed that not all preactive lesions develop into demyelinating 

lesions, but rather spontaneously resolve. Thus, this lesion is thought to represent the 

earliest, and potentially reversible, stage of the formation of an MS plaque.  
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1.2.2.2 Periplaque white matter  

In a more established lesion, the periplaque white matter is the region of tissue adjacent 

to the lesion. Although myelin and oligodendrocytes remain intact, diffuse, perivascular 

inflammatory infiltrates are present, with only few lymphocytes scattered throughout 

the parenchyma in addition to generalised microglial activation, characterised by the 

expression of CD68 (Marik et al., 2007). Occasionally, dystrophic axons are seen, and 

may represent either initial axonal injury that precedes demyelination, or secondary, 

Wallerian degeneration (Evangelou et al., 2000). 

 

1.2.2.3 Initial ‘pre-phagocytic’ lesion 

Adjacent to the periplaque white matter, is the initial (Marik et al., 2007) or pre-

phagocytic (Barnett and Prineas, 2004) zone of the active lesion. Here, the largely intact 

myelinated tissue exhibits extensive oligodendrocyte apoptosis, with early microglial 

activation (Barnett and Prineas, 2004; Henderson et al., 2009), microglial NADPH 

oxidase activity (Fischer et al., 2012), and oxidised DNA and lipids (Haider et al., 

2011). This zone contains an increased number of axonal spheroids and end bulbs 

(Marik et al., 2007), that are surrounded by normal myelin sheaths. Astrocytes show an 

up-regulation of glial fibrillary acidic protein (GFAP), and appear to have, in part, lost 

their polarity (Sharma et al., 2010). In Pattern III lesions, there is a profound loss of the 

most distal myelin proteins of the oligodendrocytes; myelin-associated glycoprotein 

(MAG) and cyclic nucleotide phoshodiesterase (CNPase) (Lucchinetti et al., 2000). 
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1.2.2.4 Early active lesion 

The early active demyelinating lesion comprises large numbers of 

microglia/macrophages which contain myelin degradation products with 

immunoreactivity for all the major and minor myelin proteins (Bruck et al., 1995). This 

zone contains the highest density of axonal spheroids or end bulbs (Ferguson et al., 

1997; Trapp et al., 1998; Kornek et al., 2000), with some oligodendrocte loss. Large 

protoplasmic astrocytes are present, many of them having lost their polarity and 

expression of α-synuclein at the astrocytic end feet (Sharma et al., 2011). 

 

 1.2.2.5 Late active lesion 

The late active lesion is the zone closest to the centre of the plaque. Here, the density of 

macrophages is decreased compared to that seen in early active lesions. Myelin is 

completely lost, and any remaining macrophages contain later stages of myelin 

degradation (myelin basic protein; MBP and proteolipid protein (PLP), or contain oil 

red O-reactive lipids (Bruck et al., 1995). Axonal density is reduced, and only a few 

axonal spheroids or end bulbs remain (Lassmann, 2011). A subset of lesions, have been 

reported to contain a considerable number of oligodendrocytes (Raine et al., 1981; 

Prineas et al., 1989), which are thought to be recruited from the pool of progenitor cells, 

and is associated with the early stages of remyelination (Patrikios et al., 2006; Bramow 

et al., 2010). 
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1.2.3.0 Cortical lesions 

To date, three types of cortical lesion have been described; leukocortical lesions, which 

extend out from the white matter into the cortex, intracortical lesions, which radiate 

from microvessels, and subpial lesions, which project from the pia into the cortex (Bo et 

al., 2003a,b). In early stage MS, leukocortical lesions appear to be most common 

(Lucchinetti et al., 2011), whereas in later stage disease, subpial lesions are the most 

abundant form of cortical demyelination (Bo et al., 2003a). During the early stages of 

MS, myelin-laden macrophages are present to different extents, depending on the lesion 

subtype; leukocortical lesions contain the largest numbers, and subpial lesions, the 

lowest (Lucchinetti et al., 2011). Inflammation is also associated with cortical lesions in 

early disease (Lucchinetti et al., 2011). Leukocortical and subpial lesions, in particular, 

predominantly show severe to moderate T-cell inflammation. Occasionally, neuritic 

swelling, oligodendrocyte loss and focal neuronal injury are also evident (Lucchinetti et 

al., 2011). Cortical lesions in progressive disease are somewhat different. No T-cells or 

B-cells are evident in intracortical and subpial cortical lesions, but there can be 

profound microglial activation (Bo et al., 2003b). Actively demyelinating plaques are 

rare (Peterson et al., 2001; Bo et al., 2003a, b), however, transected neurites and 

apoptotic neurons within the demyelinated cortex have been reported (Peterson et al., 

2001). 

 

1.2.4.0 Slowly expanding lesions of progressive disease 

Classical active MS plaques are rare in progressive disease, although some focal 

demyelinated white matter lesions are still present (Lassmann et al., 2007). Some of 

these pre-existing plaques show a slow, gradual expansion of the lesions at their 
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margins (Prineas et al., 2001). Unlike classical active lesions, slowly expanding lesions 

containing macrophages with all stages of myelin degradation are rare or absent. Rather, 

these lesions are characterised by a rim of activated microglia at the lesion edge. T-cells, 

if present, are primarily found perivascularly. Ongoing myelin destruction occurs in the 

absence of any significant inflammation, but it is found in close concert with activated 

microglia and complement deposition (Prineas et al., 2001). BBB damage, assessed by 

the leakage of serum proteins, is not evident (Hochmeister et al., 2006). The centre of 

the plaque is characterised by a dense astrocytic scar accompanied by demyelination, 

which is associated with a complete loss of oligodendrocytes and a substantial decrease 

in axonal density (Mews et al., 1998).  

 

 

1.3.0.0 The pathogenesis of MS: ‘outside-in’ or ‘inside-out’? 

The classical pathological spectrum associated with MS includes BBB breakdown, 

inflammation, demyelination and degeneration. Due to the overwhelming inflammatory 

nature of the disease, it was traditionally assumed that some abnormality in the adaptive 

immune repertoire, against a CNS antigen(s), was the primary trigger for the infiltration 

of peripheral immune cells and their subsequent ‘attack’ on myelinated axons, thereby 

initiating the formation of the infamous inflammatory demyelinating MS lesion 

(McFarland and Martin, 2007). Consequently, a substantial amount of research was 

conducted, over the past several decades, to deduce the immunological mechanism(s) 

that may be involved. It was proposed that interferon-γ (IFN-γ) secreting, myelin-

reactive T-helper 1 (Th1) cells initiate the macrophage-mediated destruction of normal 

myelin. Indeed, both the Th1 cytokine profile of MS patients with active disease (Imam 
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et al., 2007), and the similarities to the T-cell mediated experimental animal model of 

the disease, uphold and support such a hypothesis. A great deal of knowledge has been 

gained from studies focusing on this ‘outside-in’ hypothesis of MS (Stys et al., 2012), 

including, but not restricted to, the elucidation that a strong genetic association with 

immune regulation exists (Sawcer et al., 2011), the illumination of mechanisms of 

immune-mediated damage to CNS components (Hertz et al., 2010), and the 

development of immune-modulating pharmacological agents (Menge et al., 2008). 

However, inconsistencies exist, and with recent observations raising a number of 

questions with regard to the exact sequence of events, the ‘outside-in’ hypothesis has 

been challenged by some. The earliest changes in the myelin begin peri-axonally, 

involving a uniform widening of the inner myelin lamellae, often in areas distant to 

inflammatory foci (Rodriguez and Scheithauer, 1994) with the outer myelin wraps still 

intact. Histological studies on early MS lesions are consistent with these observations, 

showing that the innermost myelin protein, MAG, is preferentially lost (Aboul-Enein et 

al., 2003). If damage was primarily mediated by immune cells, it is suspected that the 

outermost myelin regions would be affected first. The lack of T-cell or B-cell 

infiltration in early areas of active demyelination and oligodendrocyte loss (Barnett and 

Prineas, 2004; Henderson et al., 2009), also raises the question of whether MS is in fact 

an autoimmune disease. Neuropathalogical studies have shown that the NAWM of MS 

patients commonly exhibits pathological abnormalities, such as microglial activation 

(De Groot et al., 2001; Barnett and Prineas, 2004), oligodendrocytic stress (van Noort et 

al., 2010), myelin pallor and oligodendrocytic apoptosis (Barnett and Prineas, 2004), 

and even axonal changes (Trapp et al., 1998), in the absence of an adaptive immune 

response. These studies, therefore propose a putative ‘inside-out’ hypothesis (Stys et al., 

2012), whereby an unknown trigger initiates oligodendrocytic damage, which in turn 
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activates the innate immune system, and elicits the involvement of the adaptive immune 

system.  Indeed, stressed oligodendrocytes have been found to co-cluster with, and 

activate, microglia, within preactive lesions, the supposed earliest stage of MS lesion 

formation (van Noort et al., 2010), corroborating such a hypothesis. However, the 

primary trigger that may induce oligodendrocyte damage has yet to be discovered.  

These studies clearly raise important questions regarding the aetiology of MS, and have 

significant implications for the treatment of the disease. Nevertheless, the cause of MS 

currently remains an enigma. 

 

1.4.0.0 Mediators of dysfunction and tissue damage 

1.4.1.0 Nitric Oxide 

The inflammatory process results in the release of a number of toxic mediators, some of 

which have been found directly to affect axonal conduction and induce structural 

damage. One such mediator, nitric oxide (NO), is synthesised by the enzyme nitric 

oxide synthase (NOS), which catalyses the reaction of arginine with one molecular 

oxygen to produce citrulline and NO (Bredt, 1999). To date, three isoforms of NOS 

have been identified, the constitutively-expressed endothelial NOS and neuronal NOS, 

and the transcriptionally regulated iNOS. The former two are normally present in the 

CNS and account for nanomolar concentrations of NO in a calcium dependent manner, 

whereas the latter inducible isoform is responsible for the high concentrations of NO 

seen at sites of inflammation. Indeed, increased iNOS mRNA expression is evident in 

MS plaques (Bö et al., 1994). In vivo, NO is rapidly degraded into its metabolites nitrate 

and nitrite, and their concentrations can be a direct indication of NO levels in body 

fluids. Increased NO metabolite levels have been found in the cerebrospinal fluid (CSF) 
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of MS patients (Yamashita et al., 1997; Cross et al., 1998; Giovannoni et al., 1998), and 

appear to correlate with disease activity and course (Svenningsson et al., 1999; Rejdak 

et al., 2004). Increased iNOS and NO levels have also been found in experimental 

autoimmune encephalomyelitis (EAE) (Lin et al., 1993; Hooper et al., 1995), an 

experimental model of MS, with the former also correlating with disease severity 

(Okuda et al., 1995). The levels of iNOS have been found to be most pronounced during 

the peak of the disease, corresponding with complete hind limb paralysis, whereas they 

are absent during the recovery phase of the disease (Okuda et al., 1995).  

NO has been proven to mediate a reversible conduction block, not only in 

normal axons (Redford et al., 1997; Shrager et al., 1998), but also in demyelinated 

axons, which are particularly vulnerable (Redford et al., 1997). Thus, low levels of NO 

would selectively mediate conduction block in demyelinated axons (Smith and 

Lassmann, 2002).  Although the exact mechanism of NO-mediated conduction block is 

unclear, it is thought to involve the modulation of ion channels, including sodium (Li et 

al., 1998) and potassium (Kurenny et al., 1994) channels, which would affect 

conduction. Although calcium channels are not prominently expressed along myelinated 

axons, they are present at sites of demyelination (Kornek et al., 2001). These too can be 

affected by NO (Kurenny et al., 1994), resulting in impaired conduction. Direct 

modulation of the sodium-potassium (Na
+
/K

+
) ATPase by NO (Guzman et al., 1995) 

may result in axonal depolarisation, and a subsequent conduction block. Alternatively, 

NO may impair mitochondrial energy metabolism (Bolanos et al., 1994, 1997; Brown et 

al., 1995), and ultimately cause conduction block. Besides NO, numerous cytokines are 

also present in the inflammatory milieu. Some of these cytokines, for example tumour 

necrosis factor-α (TNF-α) and IFN-γ, exert some of their actions through the induction 



 
 

14 

 

of iNOS expression (Goodwin et al., 1995; Hu et al., 1995; Goureau et al., 1997), and 

thus NO.  

 Besides its ability to induce dysfunction, NO has also been implicated in 

structural damage, arguably due to NO-mediated mitochondrial dysfunction. As will be 

described below, mitochondrial dysfunction can have a significant impact on 

physiological function. Oligodendrocytes and axons are particularly vulnerable to NO 

exposure (Smith et al., 1999; Smith and Lassmann, 2002). Although NO induces 

conduction block in demyelinated axons (Redford et al., 1997), demyelinated axons that 

are exposed to both, NO and metabolic stress, degenerate (Smith et al., 2001). Several 

lines of evidence suggest that NO directly affects mitochondrial function (Bolanos et 

al., 1994; Brown and Cooper, 1994; Mitrovic et al., 1994; Erevinska et al., 1995). NO 

has been shown to irreversibly damage mitochondrial respiratory chain complexes II 

through to IV (Bolanos et al., 1994) and succinate dehydrogenase (Mitrovic et al., 

1994), in vitro. Moreover, NO competitively inhibits the consumption of molecular 

oxygen, at the level of complex IV (Brown and Cooper, 1994), resulting in a decrease in 

oxygen consumption and the ATP/ADP ratio (Erecinska et al., 1995). Consequently, an 

energy insufficiency ensues, the consequence of which will be discussed in further 

detail below. Thus, vulnerable cell types, such as oligodendrocytes and neurons, are 

presumably unable to withstand such an insult, and therefore respond by initiating a 

cascade of events resulting in cell death. Consistent with this notion, oligodendrocytes 

have been found to be particularly vulnerable to NO exposure in vitro (Mitrovic et al., 

1994). Accordingly, the tissue damage in the ‘hypoxia-like’ Pattern III MS lesion has 

been attributed to NO-mediated mitochondrial damage (Aboul-Enein et al., 2005) in 

vulnerable cell types. 
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 1.4.2.0 Reactive oxygen and nitrogen species  

Under physiological conditions, basal levels of reactive oxygen species (ROS) and 

reactive nitrogen species (RNS) are routinely generated by various tissues; but although 

inherently toxic they pose very little threat owing to a highly developed set of defence 

and repair mechanisms present in cells. Nevertheless, during certain events, such as 

inflammation, there is an overproduction of these toxic mediators, or a failure in the 

antioxidant mechanisms, and then damage to lipids, proteins and nucleic acids may 

ensue, ultimately leading to cell death.  

ROS/RNS include superoxide, peroxynitrite and the hydroxyl radical, all of 

which are produced as part of the inflammatory response. Superoxide is produced by a 

one-electron reduction of oxygen, and it is the precursor of most other forms of ROS. 

Aberrant superoxide production occurs under adverse conditions, particularly when 

mitochondria are damaged (Murphy, 2009), a well-recognized feature of MS lesions 

(Mahad et al., 2008). Dismutation of superoxide produces hydrogen peroxide (H2O2), 

which in turn can be fully reduced to water, or partially reduced to the notorious 

hydroxyl radical. Superoxide can also react with NO, in a reaction that is limited by the 

rate of diffusion of both radicals, to produce peroxynitrite. Superoxide can be formed in 

vivo in a number of ways, one of which is the mitochondrial respiratory chain. Some 

components of the respiratory chain e.g. ubiquinone, leak electrons directly to molecular 

oxygen. As oxygen accepts one electron at a time, superoxide is released (Halliwell and 

Gutteridge, 1985). The rate of electron leakage, and superoxide production, increases 

with the oxygen concentration (Turrens et al., 1982). Paradoxically, mitochondrial 

superoxide production is also reported to increase in response to low oxygen 

concentrations (Chandel et al., 1998; Guzy and Schumacker, 2006). Besides the 
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mitochondrial respiratory transport chain, another abundant source of superoxide is the 

respiratory burst system of activated microglia and macrophages, whereby copious 

amounts of the free radical are generated on the microglial outer membrane during 

oxygen dependent destruction of pathogens, and released into the surroundings (Gilgun 

Sherki et al., 2004).  

Superoxide itself is relatively harmless; it is in fact its reaction products such as 

peroxynitrite and hydroxyl radical that are potent mediators of damage. Peroxynitrite 

initiates DNA strand breaks, and subsequent activation of poly (ADP-ribose) synthetase 

(Szabό, 1996). This enzyme depletes local ATP stores in an attempt to repair the 

damaged DNA, which results in cell death due to metabolic failure (Szabό, 2003). 

Peroxynitrite is also thought to induce axonal damage, with characteristics similar to 

acute axonopathy (Smith et al., 1999). 

Oxidative damage has been detected biochemically (Vladimirova et al., 1998; 

Bizzozero et al., 2005; Qin et al., 2007) and immunohistochemically (Haider et al., 

2011), in the tissue of patients with MS, suggesting an important role for ROS/RNS in 

MS. Furthermore, a recent study has reported a role for free radical-mediated 

mitochondrial damage, which is followed by axonal damage prior to any demyelination, 

in murine EAE (Nikić et al., 2011).  Furthermore, elevated concentrations of 3-

nitrotyrosine (3-NT), a marker of peroxynitrite-mediated damage, has  also been found 

in MS (Cross et al., 1998; Liu et al., 2001) and EAE lesions (Cross et al., 1997). In 

acute lesions, cells of mononuclear/macrophage lineage and hypertrophied astrocytes 

express 3-NT, whereas no such expression was detected in chronic lesions (Oleszac et 

al., 1998). Due to these findings, and others, oxidative/nitrative stress is increasingly 
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recognised to play an important role in the pathogenesis of demyelination and 

neurodegeneration in MS.  

 

1.5.0.0 Energy insufficiency as a mechanism of neurological 

dysfunction and tissue damage 

Understanding the mechanisms responsible for the expression of a neurological deficit 

and tissue injury in MS represents a challenging yet active area of research. Increasing 

evidence suggests that ultimately an energy insufficiency may represent a key event in 

MS (Smith et al., 2001; Aboul-Enein et al., 2005; Mahad et al., 2008). Indeed, the 

selective vulnerability of small diameter axons in MS (Evangelou et al., 2001), supports 

such a hypothesis as smaller axons have a large surface to cytoplasmic volume ratio, 

rendering them more susceptible to damage (Aboul-Enein et al., 2005).  

ATP is a vital substrate required for a number of physiological cellular 

processes, including signal transduction, ionic balance and macromolecule synthesis 

and transport. It is therefore not surprising that ATP depletion can have devastating 

consequences on cellular function and survival. Although energy insufficiency currently 

represents one of many hypotheses of axonal degeneration in chronically demyelinated 

axons (Bechtold and Smith, 2005; Trapp and Stys, 2009), it can also account for the loss 

of function, and structural damage to vulnerable cell types. The maintenance of sodium 

ion homeostasis is paramount to ensure physiological functioning, thus a disruption to 

the ionic gradients can have a considerable impact. Essentially a decrease in the 

intracellular ATP pool results in the failure of the Na+/K+ ATPase. This ionic pump is 

exceptionally ATP consuming (Ames, 2000), and is responsible for the maintenance of 

the ionic membrane gradient. Failure of the pump therefore prevents extrusion of 
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sodium ions, resulting in sodium loading within the cell. Presumably, vulnerable cell 

types, such as oligodendrocytes and neurons, would be particularly affected by such an 

energy insufficiency.  

Sodium loading is further promoted in axons, following demyelination, due to 

the redistribution of sodium channels along the axolemma (Bostock and Sears, 1978; 

Felts et al., 1997). Once the intracellular sodium increases above its nominal 

concentration (Stys et al., 1997), the sodium-calcium exchanger (NCX), responsible for 

exchanging extracellular sodium for intracellular calcium, operates in reverse. 

Consequently, calcium accumulates within the axons, and calcium-mediated 

degenerative pathways are initiated (Trapp and Stys, 2009). Indeed, demyelinated axons 

in patients with chronic MS show signs of calcium-activated protease activity, e.g. 

fragmented neurofilaments, depolymerised microtubules, and fewer organelles (Dutta et 

al., 2006).The energy deficit needs to be quite severe before calcium-mediated 

degenerative pathways are activated, but it seems reasonable to predict that an energy 

deficit of a smaller magnitude may result in more subtle deficits, such as aberrant 

axonal conduction and, thereby, neurological dysfunction. However, the ability of an 

energy deficit to induce neurological dysfunction remains to be proven.  

 Essentially, any mechanism that impairs ATP production during inflammatory 

demyelination is likely to result in energy insufficiency. It has been proposed that a 

number of factors conspire to compromise ATP production in MS (Aboul-Enein et al., 

2005; Mahad et al., 2008), including NO, ROS/RNS, and hypoxia/ischaemia, however 

they most likely exert their toxic effects on mitochondria, as will be described in further 

detail below. 
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1.5.1.0 Mitochondrial dysfunction 

Mitochondrial dysfunction is increasingly recognised as an important mediator of 

damage in both acute (Mahad et al., 2008) and chronic (Lu et al., 2000; Dutta et al., 

2006; Mahad et al., 2009; Witte et al., 2009) MS lesions. Functional defects in the 

mitochondrial respiratory chain complex IV, in addition to COX-I, its catalytic 

component, have been described in acute, Pattern III MS lesions (Mahad et al., 2008).  

Mitochondrial complex I activity is substantially reduced in chronic MS lesions (Mahad 

et al., 2009), whilst complex I and III activity is decreased in non-lesional motor cortex 

of MS patients (Dutta et al., 2006). The decrease in complex I and III activity in non-

lesional motor cortex is accompanied by a decrease in γ-aminobutyric acid (GABA) 

mediated inhibitory input (Dutta et al., 2006). Thus, it has been proposed that the energy 

demand of demyelinated axons increases, not only due to the diffuse distribution of 

sodium channels (Craner et al., 2004; Waxman et al., 2004), but also increased firing 

due to the loss of inhibitory inputs from interneurons. The ensuing failure of the 

Na+/K+ ATPase, following inevitable sodium loading, has been attributed to a 

population of dysfunctional mitochondria that are supplied by the upper motor neuron, 

by some researchers (Dutta and Trapp, 2011).  

As mentioned briefly above, a number of different mediators are capable of 

provoking mitochondrial dysfunction in inflammatory lesions, including, but not limited 

to, NO (Bolanos et al., 1997; Brorson et al., 1999; Heales et al., 1999; Beltran et al., 

2000) and ROS/RNS (Lu et al., 2000). Despite its ability to directly affect 

mitochondrial function, NO is also a precursor for a number of ROS/RNS, one of which 

is particularly deleterious to mitochondria. As described above, the reaction between 

NO and superoxide, results in the formation of peroxynitrite. Besides its detrimental 

effects on DNA, peroxynitrite can also irreversibly damage mitochondrial respiratory 
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complexes II to IV (Bolaños et al., 1994, 1995), an event that is thought to precede cell 

death (Bolaños et al., 1995). Thus, irreversible damage mediated by peroxynitrite may 

lead to neurotoxicity, ATP depletion and ultimately cell death (Bolanos et al., 1995, 

1996).  

Evidently, unravelling the exact mechanisms of energy failure in MS during the 

different stages of disease is important and may provide the basis for the development 

of novel therapeutic strategies. 

 

 

1.6.0.0 Animal models of MS 

1.6.1.0 Experimental Autoimmune Encephalomyelitis  

EAE is an animal model of MS that dates back to the 1900s, with the discovery that 

rabbits inoculated with human spinal cord homogenate develop spinal cord 

inflammation and paralysis (Koritschoner and Schweinburg, 1925; Gold et al., 2006; 

Stromnes and Goverman, 2006). Since then, there has been much progress in inducing 

EAE, particularly through the development of a mineral oil-based adjuvant by Jules 

Freund which results in disease after a single injection of a CNS encephalitogen 

emulsified in the adjuvant (Freund et al., 1947). Encephalitogens used for the induction 

of EAE can be purified myelin proteins, recombinant proteins, synthesised peptides, or 

whole brain and spinal cord homogenates (Wallström and Olsson, 2008). Although no 

animal model can reflect the entire pathological spectrum of this insidious disease, EAE 

shows neurological signs, immunological and histopathological similarities with MS 

(Hohlfeld and Wekerle, 2001), and the disease can be induced in a number of different 
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species, through either active or passive immunisation. The former type of 

immunisation refers to the co-injection, with adjuvant, of myelin antigens, such as 

MBP, PLP and MOG, whereas the latter involves the adoptive transfer of 

encephalitogenic T-cells. Various factors, including genetic susceptibility, species, age, 

sex, the type and preparation of antigen employed, and the dose and administration 

route, influence the pathogenesis, sensitivity, clinical course of the disease, and the 

pathology of EAE (Teixeira et al., 2005). Thus, in essence, each animal species and 

type of EAE, potentially allows the study of one or more aspects of MS. Nevertheless, 

differences in the nature, size and the distribution of lesions throughout the CNS exist, 

between EAE models and the human disease (Storch et al., 1998). Furthermore, EAE is 

essentially an autoimmune disease principally mediated by T-cells (Ben Nun et al., 

1981) that enter the CNS, recruit circulating monocytes and activate resident microglia. 

These effector cells are central to the induction of inflammatory damage in EAE 

(Berger et al., 1997), but whether this is an accurate model of MS remains uncertain. In 

the majority of susceptible rodent strains, the disease presents as an ascending flaccid 

paralysis, beginning with a limp tail, followed by unilateral and subsequent bilateral 

hind limb paralysis, progressing to the forelimbs, and ultimately death. This pattern is 

entirely unlike MS, a point which is often ignored and not understood (Simmons et al., 

1984).  

In the last three decades, rats and mice have become the preferred choice of 

animal model for EAE studies (Teixeira et al., 2005; Stromnes and Goverman, 2006). 

Although it is possible to induce EAE in mice, producing a chronic-progressive or 

relapsing-remitting disease with demyelination, they are relatively resistant to EAE, 

with highly variable degrees of incidence and time of attack, and the need for an 

ancillary adjuvant to induce disease (Teixeira et al., 2005). Furthermore, in comparison 
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with susceptible rat strains, multiple injections of high doses of antigen are required, 

with the additional use of pertussis toxin as an adjuvant supplement. However, the 

discovery that MOG (or MOG peptides), a minor myelin component, can induce 

chronic paralytic EAE in mice, including the previously resistant C57BL/6 mice (Amor 

et al., 1994; Slavin et al., 1998), has facilitated the generation of numerous transgenic 

mice. MOG is a myelin encephalitogen in that it not only elicits an encephalitic T-cell 

response, but also widespread antibody-mediated CNS demyelination (Johns et al., 

1995; Gold et al., 2006), resulting in a chronic relapsing or progressive disease in both a 

homogeneous and relatively predictable manner (Storch et al., 1998). In C57BL/6 mice, 

the transgenic introduction of either myelin-specific MHC class I CD8+ antigen, or 

MHC class II CD4+ antigen, T cell receptors, into all T cells results in spontaneous 

disease (Bettelli, 2007; Johnson et al., 2010). Similarly, the introduction of myelin-

specific human T cell receptors and human MHC antigens also yields spontaneous 

disease in mice (Ellmerich et al., 2005; Friese et al., 2006). Although the humanised 

models have been suggested to provide significant improvements over the conventional 

models (Friese et al., 2006), the mice rapidly develop a monophasic, chronic disease 

course, with poor recovery (Jones et al., 2008; Soulika et al., 2009).  

MOG induced EAE in the female dark agouti (DA) rat, yields a relatively 

predictable and reliable disease course that more fully represents the pathology and 

clinical course of MS (Storch et al., 1998). At lower doses of MOG (50μg), an acute 

progressive disease course with increasing neurological deficit is observed, whereas at 

higher doses (200μg), a progressive relapsing disease course develops, with relapses 

superimposed upon a slowly increasing neurological deficit, beginning approximately 

12-14 days post injection (Papadoupoulos et al., 2006a,b). The pathology of MOG 

induced EAE in the DA rat, has been found to resemble the pathological spectrum of 
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MS, more so than the other EAE models available (Storch et al., 1998), and thus it can 

represent one of the better EAE models in which to study factors related to MS. 

 

 1.6.2.0 LPS dorsal column model of the MS Pattern III lesion 

The direct intraspinal injection of the pro-inflammatory agent lipopolysaccharide (LPS) 

into the dorsal column of Sprague Dawley rats induces a focal demyelinating lesion that 

exhibits characteristics of the human Pattern III lesion (Felts et al., 2005; Marik et al., 

2007). Within 8 hours, an inflammatory response is elicited in the dorsal columns, but 

the myelin sheaths remain intact at this time (Felts et al., 2005). Following initial 

microglial activation, a functional disturbance begins in astrocytes, namely retraction of 

foot processes, and loss of aquaporin IV and connexin proteins (Sharma et al., 2010).  

The early stages of this lesion are associated with massive precipitation of fibrin, 

particularly on the surface of activated macrophages and microglia (Marik et al., 2007). 

Preferential loss of MAG begins between 5 and 7 days, with demyelinated lesions 

persisting between 9 and 14 days once formed (Felts et al., 2005), and is accompanied 

by profound axonal degeneration (Marik et al., 2007). Interestingly, the lesions form at 

the base of the dorsal columns, rather than at the site of the injection of LPS (Felts et al., 

2005). The lesion persists indefinitely, even if is properties may change (e.g. 

remyelination), and encompasses more than 50% of the cross-sectional area of the 

dorsal columns (Felts et al., 2005). By 28 days, the lesions are largely remyelinated, 

primarily by Schwann cells (Felts et al., 2005).  

The development of tissue injury in the LPS lesion resembles that of the human 

Pattern III lesion, thus a common mechanism of damage is thought to exist (Marik et 

al., 2007). However, the exact sequence of events that leads to the formation of 
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‘hypoxia-like’ demyelination remains unclear. It is clear that focal microglial activation 

results in the production of a number of toxic mediators, including NO, that are capable 

of inducing mitochondrial dysfunction, thereby promoting ‘hypoxia-like’ injury of the 

axons and supporting cells (Marik et al., 2007).  Thus the tissue injury, is currently 

attributed largely to mitochondrial dysfunction as a consequence of oxygen and nitrogen 

radicals, such as NO (Marik et al., 2007). However, administration of the broad-

spectrum anti-inflammatory agent dexamethasone, did not reduce the extent of LPS-

induced demyelination, despite significantly reducing the number of cells expressing 

iNOS (Felts et al., 2005). Therefore, although NO likely plays an important role in the 

development of ‘hypoxia-like’ demyelination, it may not be the only factor involved. 

 

1.7.0.0 Cerebral Blood Flow, Oxygenation and Metabolism  

The brain is a highly oxidative organ that relies on an efficient supply of nutrients to 

maintain normal function and tissue viability. The dependence of cells on a constant and 

plentiful supply of ATP requires an adequate provision of oxygen, which essentially 

depends on the vasculature. Values for cerebral blood flow (CBF) and oxygen 

consumption (CMRO2) are species-specific, with larger values being associated with 

smaller animals (Siesjo, 1978). In rat, the CBF has been reported to be 0.8–1.1 ml/min 

per gram wet weight of tissue, and the reported whole brain CMRO2 rate 3.4–4.6 

µmol/min per gram wet weight (Erecińska and Silver, 2001). 

Increases in CBF have been reported to occur in areas that are expected to be 

activated by a specific stimulus, for example, in the visual cortex in response to a visual 

input (Ances et al., 1999; Colebatch et al., 1991; Lassen and Friberg, 1988; Lu et al., 
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2004), or in the motor cortex during finger movement (Allison et al., 2001). Although it 

is relatively established that under basal conditions in the rodent brain, oxygen and 

glucose consumption, and blood flow are coupled to local brain function (Yarowski and 

Ingvar, 1981; Fox and Raichle, 1986; Fox et al., 1988 Clarke and Sokoloff, 1999), there 

were controversies as to whether such a coupling exists between these parameters 

during physiological activation. Some groups reported a good correlation between CBF, 

and oxygen uptake and glucose utilisation (Yarowski and Ingvar, 1981; Di Rocco et al., 

1989; Clarke and Sokoloff, 1999), whereas others reported that, during activation, the 

CBF and glucose utilisation increased by 53–55%, while oxygen consumption increased 

only by 5% (Fox and Raichle, 1986; Fox et al., 1988). Fox and colleagues proposed that 

this uncoupling of CBF and CMRO2 suggested that the metabolic needs of the tissue 

are met, in part, by non-oxidative metabolism (i.e. glycolysis). Indeed, such a notion 

was supported years later by studies showing activity-induced increases in lactate 

concentration in different brain areas (Figley and Stroman, 2011). It is now generally 

accepted that following physiological activation, (1) CBF increases with metabolic 

demand, (2) CBF and glucose utilisation increase more than oxygen utilisation, and (3) 

oxidative and glycolytic pathways are involved in satisfying the increased metabolic 

demand (Figley and Stroman, 2011). 

More than 90% of the oxygen consumed by the brain is used by mitochondria 

during the oxidation of glucose, to produce energy in the form of ATP (Schiamanna and 

Lee, 1993). The consumption of oxygen and glucose is adjusted to meet regional 

metabolic demand (Sokoloff, 1981; Yarowski and Ingvar, 1981; Fox and Raichle, 1986; 

Fox et al., 1988; Clarke and Sokoloff, 1999). Since glycogen stores are limited in the 

brain, a permanent supply of glucose is essential to maintain brain function. 
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Accordingly, a cessation of oxygen and glucose supply leads to unconsciousness and 

coma within less than 10 sec (Clarke and Sokoloff, 1999).  

Metabolism in the brain is highly compartmentalized, in that, within a given cell, 

there is more than one pool of a given metabolite (Siegel et al., 2006). This 

compartmentalisation is due to the specialised cellular and subcellular localisation of 

transporters, enzymes and metabolic pathways, allowing brain cells to carry out specific 

functions and remain independent (Siegel et al., 2006). Cerebral metabolism is thus a 

complex process, where continuous interactions between neurons and glial cells are 

crucial for correct functioning of the brain (Hertz et al., 1999).  

The traditional view of cerebral energy metabolism was that aerobic respiration 

of glucose was solely responsible for yielding energy in neurons and glia. However, 

each cell type preferentially uses different metabolic substrates and pathways for the 

production of ATP under physiological conditions. Besides glucose, neurons and glial 

cells can additionally utilise lactate, pyruvate, glutamate and glutamine as metabolic 

substrates (Zielke et al., 2009). Among these substrates, lactate is increasingly emerging 

as an important energy source for the brain (Schurr et al., 1999; Gallagher et al., 2009; 

Smith et al., 2003; Boumezbeur et al., 2010; Belanger et al., 2011). Recent evidence 

also suggests that lactate is an important product of glycolysis, in addition to pyruvate 

(Schurr and Payne, 2007). Moreover, a putative mitochondrial lactate oxidation 

complex, which allows entry and oxidation within mitochondria, has been described to 

exist in neurons (Hashimoto et al., 2008). Interestingly, growing evidence suggests that 

neurons can use lactate as an energy source (Schurr et al., 1997; Bouzier et al., 2000; Qu 

et al., 2000; Serres et al., 2005; Boumezbeur et al., 2010; Bellanger et al., 2011), and 

even show a preference for lactate, over glucose when both are available (Itoh et al., 



 
 

27 

 

2003; Bouzier-Sore et al., 2006; Bellanger et al.. 2011). Accordingly, increasing 

evidence suggests that neurons and astrocytes may share some sort of “coupled lactate 

metabolism”, a mechanism by which astrocytes glycolytically convert glucose to 

lactate, and release it into the extracellular space, where it can be taken up into 

neighbouring neurons to be utilised as a metabolic substrate for oxidative 

phosphorylation (Vibulsreth et al., 1987; Walz and Mukerji, 1988; Magistretti et al., 

1999). More recently, oligodendrocytes have been found to be vital suppliers of lactate 

to axons (Fünfschilling et al., 2012; Lee et al., 2012), via the lactate transporter MCT-1 

(Lee et al., 2012).The process of oxidative phosphorylation yields 38 moles of ATP 

from just one mole of glucose compared to a meagre two moles of ATP for every mole 

of glucose via glycolysis. Therefore, it is understandable why oxygen is essential to 

ensure an efficient rate of energy metabolism, particularly in metabolically demanding 

cells such as neurons and oligodendrocytes. 

Most of the energy consumed by the brain is used for the restoration of the 

membrane resting potential, following neuronal depolarisation, which is accomplished 

by the Na
+
/K

+
 ATPase (Attwell and Laughlin, 2001). Neuronal activity is reported to 

account for almost 80% of the energy consumed by the brain (Sibson et al. 1998; 

Rothman et al. 1999), whereas, neurotransmitter recycling utilises 3–5% of the total 

energy used by the brain (Magistretti and Pellerin, 1996; Sibson et al., 1998; 

Magistretti, 1999; Ames, 2000; Attwell and Laughlin, 2001). Therefore, an impairment 

of energy metabolism can have significant consequences on CNS function. 
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1.8.0.0 Hypoxia and the CNS 

1.8.1.0 The inherent vulnerability of the CNS to hypoxia 

The structural organisation and intrinsic characteristics of the CNS render it particularly 

vulnerable to hypoxia/ischaemia-induced damage. The brain’s substantial energy 

requirements, its limited capacity to store excess glucose, and its poor vascular supply, 

all contribute to the process of hypoxic tissue damage. 

The brain and spinal cord rely on a continuous, rich blood supply to sustain 

ongoing activity. If blood flow is arrested, unconsciousness ensues within 6-7s (Kabat 

and Anderson, 1943; Hansen et al., 1985) and irreversible brain damage occurs within 

minutes. Although the brain comprises only 2% of the body weight, it is estimated to 

receive 15% of the cardiac output, and, 20% and 10% of the oxygen (Afifi and 

Bergman, 2005) and glucose (McKenna et al., 2006) consumed by the entire body, 

respectively. Thus, the brain is a very metabolically expensive organ. This high demand 

for metabolic energy has important implications for the evolution of the brain and its 

function. In fact, the availability of energy essentially limits brain size (Aiello and 

Wheeler, 1995), and determines the circuitry and activity patterns (Mitchison, 1992; 

Koulakov and Chklovskii, 2001) and neural codes (Levy and Baxter, 1996; Baddeley et 

al., 1997; Balasubramanian et al., 2001). Moreover, the energy supplied to the CNS is in 

the form of oxygen and glucose, and the rate of their consumption and utilisation, 

respectively, is high. Despite the considerable reliance on these substrates for energy, 

the CNS has very little in the form of glycogen stores to sustain energy metabolism at 

times of high demand, compared with other tissues such as liver and muscle.. 

Astrocytes are the principal storage sites of glycogen in the CNS (Cataldo and 

Broadwell, 1986), although it is not known whether all astrocytes store glycogen, and if 
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they store glycogen at the same concentration. Indeed, the greatest accumulation of 

glycogen occurs in areas of high synaptic density (Phelps, 1972; Brown and Ransom, 

2007), and the utilization of such stores has been found to sustain neuronal activity 

during periods of hypoglycaemia (Suh et al., 2007). Nevertheless, during periods of 

ischaemia in vivo, the glycogen stores are rapidly depleted, concurrently with ATP 

(Swanson et al., 1989). Thus, despite the presence of these stores, and their role in 

providing energy substrates when the blood-borne glucose is insufficient to meet the 

demand (Brown et al., 2003; Choi et al., 2003), they are relatively inadequate. The 

stores are essentially there to supplement the glucose available to maintain energy 

metabolism, not to be the main or sole source of substrate. Therefore, during 

hypoxic/ischaemic insults, it is not surprising that the glycogen stores are unable to 

maintain substrate delivery.     

Through evolution, the brain has developed a thick parenchyma, which is 

disproportional to its vasculature. The major arteries that enter at the cranial vault at the 

base of the brain are distributed to bifurcate and anastomose on the cortical surface, 

giving off smaller nutrient arteries that penetrate the parenchyma. These small diameter 

penetrating arteries only have a capillary network to provide collateral flow (Moody et 

al., 1990), with each penetrating artery supplying the given surrounding area of tissue 

(Nishimura et al., 2007). Particular areas of the brain, including the cortex, centrum, 

basal ganglia, and thalamus, are supplied by a single penetrating artery (Moody et al., 

1990), rendering them particularly vulnerable to hypoperfusion. Similarly areas that lie 

between two major arterial supplies, known as watershed zones, are also vulnerable to 

hypoperfusion. The best known watershed zones in the brain lie between the anterior 

and middle cerebral circulations, and the middle and posterior cerebral circulations. 

Another watershed zone also exists in the tegmentum of the brain stem.  
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Similar to the brain, the spinal cord also has a vascular architecture which 

renders it vulnerable to hypoxia, whereby major arteries, the ventral and the two dorsal 

spinal arteries supply the cord, promoting segmental vulnerabilities. The ventral spinal 

artery, supplying the ventral and central portions, and the grey matter core, gives off 

smaller end-arteries that penetrate the ventral spinal cord parenchyma.  The dorsal 

spinal arteries, however, descend on the dorsal surface of the spinal cord, and are fed by 

dorsal feeding arteries. The dorsal spinal arteries supply the periphery through the 

circumferential pial network, a rich anastamotic network on the surface of the spinal 

cord that sends penetrating branches into the white matter at all levels of the spinal cord 

(Tveten, 1976; Hayashi et al., 1983). Both the ventral spinal artery and the dorsal spinal 

arteries are dependent on segmental contributions from feeding arteries, along the length 

of the cord. The number of feeding vessels that contribute to each, however, has been 

found to be variable; the average number of arteries contributing to the ventral spinal 

artery is 7, whereas the average number of arteries contributing to the dorsal spinal 

arteries is 25 (Tveten, 1976).  For the ventral spinal artery, these feeding arteries were 

more frequent at C5 and C6, and from T11 to L1, and less frequent at C1-C3, T1-T3 

and caudal to L2 (Tveten, 1976). The presence of one dominant feeding vessel of the 

lumbar segment has been previously reported in the rat (Tveten, 1976), similar to the 

human artery of Adamkeiwicz. However, later studies have suggested that there are in 

fact three to five such vessels between T11 and L4 vertebral segments (Schievink et al., 

1988). The vascular architecture of the brain and spinal cord does not appear to be 

optimal, with particular intrinsic characteristics rendering the CNS vulnerable to 

hypoxic damage, rather than preventing it.  
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1.8.2.0 Effects of hypoxia on the CNS 

Multiple intrinsic and extrinsic mechanisms exist within the CNS to maintain a suitable 

level of oxygen availability. Hypoxia refers to a decrease in the availability of oxygen, 

or a decrease in the partial pressure of oxygen (pO2; LaManna, 2007). At physiological 

partial pressures, haemoglobin is saturated with oxygen, and even a slight decrease in 

the ambient oxygen does not influence the haemoglobin saturation, and tissue oxygen 

availability remains the same (LaManna, 2007). When the arterial pO2 falls below 12 

kPa, a condition known as hypoxaemia (lower blood oxygen) ensues. Successful long-

term adaptation is possible when the hypoxic exposure is mild (below 12 kPa but above 

6 kPa), and it is these adaptations that allow mammals to live at high altitudes 

(LaManna et al., 2004). Mild hypoxia does not usually lead to any tissue damage; 

therefore, there are no problems for humans up to an altitude of 3000 m (LaManna, 

2007). However, between 4 and 6 kPa, there is a good chance of permanent damage and 

with longer exposure below 4 kPa, the hypoxia is severe and results in loss of 

consciousness and neurodegeneration (LaManna, 2007). Indeed, mountain climbers 

often ascend to higher altitudes than 3000 m, and although high altitude illness is the 

most common disturbance reported, neurological conditions such as mental 

disturbances (Ryn, 1988), focal neurological deficits (Song et al., 1986) and transient 

global amnesia (Litch and Bishop, 2000) have also been reported. Cortical atrophy has 

been found on MRI in 92% of Everest (8848 m) climbers, and subcortical lesions were 

found on MRI of inexperienced climbers who were not adequately acclimatized (Fayed 

et al., 2006). Furthermore, such high altitude exposures have been found to provoke 

subtle white and grey matter changes that mainly affect the brain regions that are 

associated with motor activity (Paola et al., 2008). 
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 Systemic compensatory changes that occur in response to mild hypoxia include 

increased ventilation, increased haematocrit, decreased core temperature, weight loss 

and bicarbonate ion excretion (LaManna et al., 2004). For instance, exposure of rats to 

hypobaric hypoxia for a week or more, more than doubles their ventilatory rates 

(LaManna et al., 2004). This increased ventilation results in a decrease in the arterial 

partial pressure of carbon dioxide and subsequent bicarbonate ion excretion by the 

kidney to reduce the blood alkalosis. A fall in core body temperature has also been 

described following exposure to mild hypoxia (Wood, 1991; Mortola, 1993; Mortola et 

al., 1994; Wood and Gonzales, 1996). The drop in temperature is a transient 

phenomenon, lasting only for a few days before returning to basal levels, and may 

suggest decreased metabolism. Furthermore, studies in humans have reported appetite 

suppression and subsequent body weight loss at high altitudes due to hypoxic conditions 

(Westerterp et al., 1994; Westerterp et al., 1999; Shulka et al., 2005). 

 In contrast to the systemic changes, organ specific adaptations are primarily 

found in the capillary bed and the components involved in metabolism (LaManna et al., 

2004), and the brain is no different. Physiologically, the tissue pO2 varies spatially and 

temporally, with the mean tissue pO2 lower than the venous pO2, and there are many 

low values (Sick et al., 1982; LaManna et al., 2004). The CNS undergoes significant 

adaptations in order to preserve tissue oxygen and the energy supply required to support 

cellular functions. One such adaptation is an increase in CBF. An increase in CBF in 

response to hypoxia was previously described, when Kety and Schmidt (1948) recorded 

an average CBF increase of 137 ± 9% in seven young men, whilst breathing 10% 

oxygen. Similarly, Severinghaus and colleagues (1966) reported a mean CBF increase 

from 42 ± 2 ml/100g of brain tissue per minute to 51 ± 4 ml/100g of brain tissue per 

minute after 6-12 hours at altitude, and a subsequent decrease to 47 ± 3 ml/100g of 
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brain tissue per minute. A possible reason as to why the CBF re-normalises could be 

due to the increase in haematocrit, or packed red blood cell volume (Lefant and 

Sullivan, 1971; Xu and LaManna, 2006), by day 3 of exposure to mild hypoxia (Xu et 

al., 2004). Increase in haematocrit level allows an increase in the oxygen content of the 

circulating blood, and restoration of oxygen delivery at the pre-hypoxic rate of blood 

flow rate. An increase in cerebral blood volume, which also occurs in response to acute 

hypoxia (Shockley and LaManna, 1988; Julien-Dolbec et al., 2002), is associated with 

an increase in the capillary mean transit time (Shockley and LaManna, 1988), that is the 

average time it takes for any unit of blood to travel from the arterial end of the capillary 

to the venous end (Xu and LaManna, 2006). An increase in capillary transit time 

increases the time available for the unloading of vital nutrients such as oxygen and 

glucose. This increase in glucose influx across the BBB is seen as an adaptation to 

chronic exposure to mild hypoxia (Harik et al., 1994). There is also an increase in 

capillary density, by week 1 of exposure to prolonged hypoxia, which results in a 

decrease in the inter-capillary distance, and thus decreased diffusion distance (LaManna 

et al., 2004).  In the rat brain, the capillary density almost doubles, thereby decreasing 

the inter-capillary distance from approximately 50 to 40 µm (Lauro and LaManna, 

1997). Not only is there an increase in capillary density, there is also an increase in 

glucose transporter 1 (GLUT-1), as measured by molecules per milligram of 

microvessel (Xu and LaManna, 2006). Interestingly, endothelial cell activation was 

reported in response to prolonged hypobaric hypoxia (Dore-Duffy et al., 1999). 

Exposure to hypoxia resulted in the expression of specific markers associated with 

endothelial cell activation, such as cell surface adhesion molecules, whose expression 

increased in a time dependent manner from 0 to 2 weeks. Induction of endothelial MHC 

class II molecules in addition to increased constitutive expression of GLUT-1 was 
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observed within 24 hours of exposure, and an increase in constitutive expression of 

MHC class I by 48 hours (Dore-Duffy et al., 1999). By 3 weeks of exposure to hypoxia, 

the endothelial cells returned to their quiescent state (Dore-Duffy et al., 1999). 

 

1.8.0.0 Hypoxia and MS 

Increasing evidence from neuropathological, microarray and imaging studies suggest 

that hypoxic conditions may exist within MS lesions. Firstly, the demyelination in 

Pattern III MS lesions has been described to occur by a ‘hypoxia-like’ mechanism, due 

to the pathological similarities this lesion shares with acute white matter stroke lesions 

(Aboul-Enein et al., 2003). As described above, the characteristic feature of Pattern III 

lesions is the striking, preferential loss of MAG (Lucchinetti et al., 2000), a myelin 

protein concentrated in periaxonal regions of the myelin sheath, most distal to the 

oligodendrocyte cell body (Trapp and Quarles, 1984), and a common feature of acute 

white matter stroke lesions. Other myelin proteins, PLP and MBP, which are located in 

compact myelin, and MOG, which is expressed on the surface of oligodendrocytes and 

their processes, initially remain well preserved in this lesion subtype (Lucchinetti et al., 

2000; Lassmann, 2003). In these lesions, areas of MAG loss are associated with 

increased expression of hypoxia-inducible transcription factor-1α (HIF-1α), 

predominantly in oligodendrocytes, astrocytes and some endothelial cells (Aboul-Enein 

et al., 2003). Although the expression of HIF-1α can be induced by hypoxia-

independent factors, its presence in the ‘hypoxia-like’ MS lesion is suggestive that 

oxygen concentrations within the lesion may actually be low. Secondly, microarray 

studies of the NAWM have revealed an up-regulation of a number of genes involved in 

hypoxic pre-conditioning (Graumann et al., 2003). However, these studies have 
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attributed the findings to an energy insufficiency, consequent to NO-mediated 

mitochondrial dysfunction, rather than to hypoxia per se.  

  Vascular disturbances could easily lead to tissue hypoxia, and indeed such 

abnormalities have been described in MS patients. Cerebral hypoperfusion has been 

reported in MS patients since 1983 (Swank et al., 1983; Brooks et al., 1984; Lycke et 

al., 1993; Sun et al., 1998), however, it was not until the development of dynamic 

susceptibility MRI that this phenomenon regained interest (Law et al., 2004; Adhya et 

al., 2006). Law et al (2004), described a decrease in CBF and an increase in mean 

transit time throughout the NAWM of patients with RRMS, compared with that of 

control subjects. Similarly, Adhya et al (2006) found a significant reduction in both the 

CBF and CBV in patients with RRMS and patients with PPMS in comparison to 

controls. Interestingly, more recently, a profound decrease in CBF in the NAWM was 

found in patients with early RRMS, precisely within the first five years of symptoms 

(Varga et al., 2009), suggesting that perfusion abnormalities are present, even in the 

very early stages of disease.  It seems reasonable that these perfusion abnormalities have 

a considerable effect on tissue oxygenation, particularly given that atrophy would not be 

expected at this stage of the disease, and would therefore not account for the decrease in 

CBF. However, increases in CBF and CBV have also been described in a longitudinal 

study, as early as three weeks prior to, and at the time of Gd-DTPA enhancement in 

patients with early RRMS, and mean disease duration of 30.9 months (Wuerfel et al., 

2004). Besides this pattern of perfusion, Wuerfel and colleagues (2004) also described 

decreases in CBF and CBV, and an increase in the mean transit time, in the T1-

hypointense region of lesions that developed ring enhancements, which is consistent 

with previous studies (Haselhorst et al., 2000). Such lesions, are typically focal, and 

exhibit a hyperintense ring at the lesion margin on un-enhanced T1-weighted images, 
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and are thought to persist for long periods of time (Guttmann et al., 1995). The 

perfusion changes associated with the T1-hypointense region has therefore been 

proposed to play a part in the development of a subcategory of focal MS lesions 

(D'haeseleer et al., 2011). 

 More recently, MS has controversially been associated with a reduced CNS 

venous blood drainage, referred to as chronic cerebrospinal venous insufficiency 

(CCSVI) (Zamboni et al., 2009; Al-Omari and Rousan, 2010; Simka et al., 2010). 

CCSVI is characterised by obstruction at different levels of the internal jugular veins, 

vertebral veins, azygous system, and the lumbar venous plexus (Zamboni et al., 2009). 

It is hypothesised that CCSVI stretches the venous walls, which leads to the 

extravasation and degradation of erythrocytes, and subsequent peri-venular iron deposits 

(Singh and Zamboni, 2009). These iron deposits in turn initiate inflammation and 

plaque generation. Indeed, such an abnormality would also be expected to have a 

considerable effect on tissue oxygenation.  However, CCSVI remains a particularly 

controversial topic among the MS community, with other groups unable to reproduce 

the original findings (Doepp et al., 2010; Baracchini et al., 2011; Mayer et al., 2011). 

 

1.9.0.0 Detection of Tissue hypoxia 

Hypoxia is a feature of a number of pathological conditions, yet it represents a 

phenomenon that has not been routinely measured in vivo. This, in part, could be due to 

the limitations associated with traditional invasive methods, such as oxygen 

microelectrodes, and non-specific extrinsic hypoxia markers. However, there have been 

significant improvements in the techniques available to measure CNS oxygen tension in 

vivo.  Such techniques exploit the chemical and physical properties of oxygen in order 
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to acquire a relatively accurate measurement. Such methods include polarography, 

optical probes, electron paramagnetic resonance, nuclear magnetic resonance, positron 

emission tomography and mass spectrometry (Ndubuiza and LaManna, 2007). 

Alternatively, indirect measurements of oxygen concentration, such as haemoglobin 

saturation, cytochrome oxidase redox state, and NADH redox state, also give an 

indication of tissue oxygen concentration. Although, these techniques may differ with 

regard to their sensitivity, accuracy, and ability to measure repetitively (Swartz, 2007), 

no one technique is able to map the oxygen distribution of the brain in vivo.  

The expression of a number of genes is altered in response to hypoxia (Leonard 

et al., 2003; Manalo et al., 2005; Xia et al., 2009). This response to hypoxia is mediated 

by the transcription factor HIF-1α, and, therefore, its presence within tissue is often 

used as an indicator of hypoxia. Pimonidazole, a chemically stable, water soluble drug 

that can cross the BBB and is routinely used in tumour studies, represents another 

means to detect tissue hypoxia. This drug is thought to facilitate the measurement of 

oxygen gradients at the cell level. The mechanisms of action of HIF-1α, pimonidazole, 

and fibre-optic oxygen probes, will be discussed in further detail below. 

 

1.9.1.0 Hypoxia inducible factor (HIF-1α) 

HIF is a heterodimer comprising a constitutively expressed stable β-subunit and an 

oxygen-sensitive α-subunit (Wang et al., 1995; Semenza, 2000). Both HIF-α and HIF-β 

are continuously transcribed and translated, however the HIF-α subunit is subject to 

oxygen-dependent post-translational modifications. Under normoxic conditions, 

conserved proline residues in the oxygen degradation domain, Pro
402

 and Pro
564

 in HIF-

1α (Schofield and Ratcliffe, 2004; Coleman and Ratcliffe, 2007), are hydroxylated by 
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prolyl hydroxylate enzymes (PHDs) (Bruick and McKnight, 2001). In order to 

hydroxylate proline residues on HIF-1α, the PHDs require iron and 2-oxoglutarate as 

substrates in addition to oxygen (Schofield and Zhang, 1999). The hydroxylation of 

either proline residue creates a recognition and binding site for an E3 ubiquitin ligase, 

von Hippel-Lindau protein (VHL), which rapidly targets HIF-1α for proteasomal 

degradation (Maxwell et al., 1999; Ivan et al., 2001; Jaakkola et al., 2001; Kilmova and 

Chandel, 2008). A second oxygen-sensitive control of HIF activity is mediated by the c-

terminus, which contains the c-terminal transactivation domain (CAD; Coleman and 

Ratcliffe, 2007). The HIF-1α CAD is responsible for recruiting the transcriptional co-

activators p300 and CREB-binding protein (CBP; Coleman and Ratcliffe, 2007; 

Kilmova and Chandel, 2008). Under normoxic conditions, HIF-1α CAD activity is 

suppressed by the hydroxylation of a conserved asparagine residue, Asn
803

, by factor 

inhibiting HIF (FIH), which, like the PHDs, requires iron and 2-oxoglutarate as 

substrates in addition to oxygen (Schofield and Ratcliffe, 2004). 

 Under hypoxic conditions, HIF-α is not hydroxylated by either PHDs or FIH, 

allowing it to translocate into the nucleus, dimerise with HIF-β and bind to specific 

hypoxia-responsive elements (HRE) in promoter regions of its target genes (Kilmaova 

and Chandel, 2008). It has been estimated, at least in vitro, that more than 50% of the 

genes that respond to hypoxia are regulated directly or indirectly by HIF (Elvidge et al., 

2006). 

 The cellular responses mediated by hypoxic stabilisation of HIF-α include 

changes in energy metabolism, cell growth, survival and migration (Coleman and 

Ratcliffe, 2007). For instance, HIF promotes the delivery of oxygen to hypoxic areas via 

the up-regulation of growth factors involved in angiogenesis, such as vascular 

endothelial growth factor (VEGF), and can promote the delivery of glucose via the up-
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regulation of glucose transporters, such as GLUT-1. Thus, it is no wonder that HIF is 

sometimes considered the master regulator of hypoxia. 

 

1.9.2.0 Pimonidazole 

Pimonidazole is a chemical compound that allows the detection of hypoxia during life. 

It is often used as a marker of hypoxia in tumour studies (Raleigh et al., 1998; Wykoff 

et al., 2000; Janssen et al., 2002; Airley et al., 2003; Hoskin et al., 2003; Hutchison et 

al., 2004; van Laarhoven et al., 2006), and currently represents one of the best ways in 

which to detect cellular hypoxia. Following administration, pimonidazole is metabolised 

as depicted in Figure 1.9.2.0. Briefly, in the presence of adequate oxygen, pimonidazole 

is subject to oxidative metabolism to an amine oxide, or conjugation to sulfotransferase 

or glucuronyl transferase all of which are readily excreted (Arteel at al., 1998). 

Pimonidazole is also subject to a series of reduction steps, whereby nitroreductases such 

as NADPH and NADH transfer electrons to the parent compound. Oxygen, is the rate 

limiting factor, and competes for the transfer of the first electron to pimonidazole, 

reoxidising the nitro-intermediate pimonidazole, thereby preventing further reduction of 

pimonidazole by nitroreductases (Arteel et al., 1998). In the absence of oxygen, the 

nitro-intermediate pimonidazole is further reduced, and can bind to thiol containing 

molecules such as glutathione and proteins to form pimonidazole adducts. The location 

of these adducts can then be determined by immunohistochemistry using antibodies 

directed against the bound pimonidazole.  

 In addition to hypoxic labelling, pimonidazole has been found to label normoxic 

tissues, raising the suspicion that its ability to bind may not be oxygen dependent in all 

cases, and may in fact also depend on the presence of specialised nitroreductases (Cobb 
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et al., 1990). However, neither the distribution of nitroreductases (Arteel et al., 1995), 

nor the redox state of nitroreductases (Arteel et al., 1998), influences the binding ability 

of pimonidazole.  

 Correlations between pimonidazole binding and other endogenous hypoxia 

markers have been carried out in a number of tumour studies (Raleigh et al., 1998; 

Wykoff et al., 2000; Janssen et al., 2002; Airley et al., 2003; Hoskin et al., 2003; 

Hutchinson et al., 2004; van Laarhoven et al., 2006)). In cervical carcinomas, a mild, 

yet statistically significant correlation between pimonidazole binding and HIF-α, and 

GLUT-1 was found (Airley et al., 2003; Hutchinson et al., 2004), whereas no 

correlation between pimonidazole labelling and VEGF was found (Raleigh et al., 1998). 

Pimonidazole binding was found to correlate with GLUT-1 in bladder carcinoma 

(Wykoff et al., 2000; Hoskin et al., 2000). It appears that the correlation between 

pimonidazole binding and other endogenous markers, is not absolute, and may 

sometimes depend on the model being examined. Nevertheless, pimonidazole represents 

an alternative yet novel way of labelling the CNS for hypoxia during life. 
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Figure 1.9.2.0:  Metabolism of pimonidazole in vivo 
(a) In vivo, under normoxic conditions, pimonidazole is rapidly metabolised and eliminated from the 

body, by oxidation or conjugation. (b) In the absence of oxygen pimonidazole is reduced by 

nitroreductases to a nitro-intermediate; however, oxygen is the rate limiting factor at this point, and can 

oxidise the nitro-intermediate back to pimonidazole (c). In hypoxic cells, the nitro intermediate is subject 

to a series of reductions (d), until reduced pimonidazole can bind to thiol (SH-) containing molecules 

resulting in the formation of pimonidazole adducts (e). Adapted from Arteel et al., 1998. 
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1.9.3.0 Fibre optic oxygen sensitive probes 

Optical oxygen probes are based on the ability of oxygen to act as a fluorescence 

quencher, thereby decreasing the lifetime of an excited, immobilised lumniphore 

(Kautsky, 1939; Klimant et al., 1995). Specially formulated dyes, designed for their 

highly efficient oxygen quenching capabilities, have facilitated oxygen measurement in 

vivo. In essence, collision between the lumniphore and molecular oxygen results in a 

change in energy state, and thus, deactivation of the luminescent indicator molecule. 

Accordingly, an inverse relationship between the oxygen concentration and luminescent 

decay time exists, whereby a low oxygen concentration is associated with a long decay 

time. The advantage these probes provide over traditional electrodes is that they do not 

consume oxygen and so reach equilibrium. Moreover, they offer relatively high spatial 

and temporal resolution. 
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CHAPTER TWO 

 
HYPOXIA AND DYSFUNCTION 

 

2.1.0.0 INTRODUCTION 

The mechanisms through which neuroinflammation can cause neurological dysfunction 

remain unclear. Traditionally, neurological dysfunction in MS has been attributed to 

demyelination, and axonal degeneration. However, increasing evidence suggests that 

inflammation, in the absence of demyelination, is also capable of causing significant 

clinical deficits (Youl et al., 1991; Moreau et al., 1996; Bitsch et al., 1999). Alterations 

in the conduction properties of axons are thought to underlie a number of symptoms, 

particularly during the relapse-remitting stage of the disease (Smith and McDonald, 

1999). Negative symptoms during relapse (e.g. blindness, numbness, paralysis), have 

been attributed to conduction block, whereas axonal hyperexcitability is thought to 

cause positive symptoms (e.g. tingling sensations). Demyelinated axons are particularly 

susceptible to such changes in electrical activity; however, myelinated axons can also be 

affected.  NO, a toxic mediator found to be elevated in MS (Bo et al., 1994), has 

emerged as a key mediator of such electrical disturbances. NO can induce reversible 

conduction block in normal axons (Redford et al., 1997; Shrager et al., 1998), through 

mechanisms such as ion channel modulation (Kurenny et al., 1994; Li et al., 1998; 

Smith and Lassmann, 2002), inhibition of mitochondrial energy metabolism (Bolanos et 

al., 1994; Brown et al., 1995), and the disruption of synaptic transmission (Kilbinger et 

al., 1996; Holscher et al., 1997; Kara and Friedlander, 1998; Smith and McDonald, 

1999). However, besides the release of toxic mediators, inflammation might also 

promote a hypoxic environment within the tissue. Indeed, a ‘hypoxia-like’ mechanism 
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of tissue injury is suggested to occur in Pattern III MS lesions (Aboul-Enein et al., 

2003), and genes associated with hypoxic pre-conditioning have been found to be up-

regulated in NAWM (Graumann et al., 2003). Hypoxia can directly impair neuronal 

function, and therefore, if present in MS, may not only induce tissue damage, but may 

also play a role in the expression and progression of a neurological deficit. We therefore 

examined the rMOG EAE model of MS for evidence of hypoxia. 

 

2.1.1.0 Aims 

1. To determine whether the spinal cord inflamed by EAE is hypoxic 

2. To determine the role of hypoxia in causing neurological deficits rMOG 

EAE. 

3. To determine the efficacy of acute normobaric hyperoxia on function in 

rMOG EAE 

 

4. To establish the effects of combination therapy (iNOS inhibition, 

antioxidant, and oxygen) on the disease course of rMOG EAE 

 

2.1.2.0 Hypothesis 

Hypoxia mediates neurological dysfunction in the first peak of rMOG EAE. 
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2.2.0.0 MATERIALS AND METHODS 

2.2.1.0 Induction of rMOG-EAE 

All animals were randomized into cages and treatment groups, prior to the experiments, 

and left to acclimatise for at least 7 days. The N-terminal sequence (aa 1-125) of rat 

recombinant MOG (rMOG; a gift from C. Linington, University of Aberdeen, UK) was 

used to induce EAE in adult female DA rats (Harlan, UK; 150g- 190g). Animals (n = 

191) were injected subcutaneously in the rear flank near the base of the tail, with 0.2 ml 

of a hard emulsion comprising 0.100 ml rMOG in 0.100 ml incomplete Freund’s 

adjuvant (IFA; Sigma-Aldrich, USA), under general anaesthesia (2% isoflurane in room 

air). Control animals received 0.2 ml injections of an emulsion of IFA and saline (n = 

19), or saline (n = 19) alone. 

 

2.2.2.0 Neurological Evaluation  

Rats were daily weighed and examined blindly throughout the course of the 

experiments to determine the degree of neurological deficit using a 10-point scoring 

system (Table 2.2.2.0). Briefly, neurological scores were assigned on a scale of 0 to 10, 

whereby the final score represented the total of all the individual scores. The 

neurological assessment comprised examination of tail and bilateral hind limb muscle 

strength (normal, weak, paralysed). The scores corresponded to the following clinical 
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deficit: 0 = normal muscle strength; 1 = muscle weakness; 2 = complete muscle 

paralysis.  
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Neurological Deficit 

Tail tip weakness 

Tail weakness 

Tail paralysis 

Abnormal gait 

Abnormal toe spreading 

Unilateral hind limb weakness 

Bilateral hind limb weakness 

Unilateral hind limb paralysis 

Bilateral hind limb paralysis 

Moribund 

 

 

Table 2.2.2.0: Conventional scoring scale for evaluating neurological deficit 

Table showing the criteria used to evaluate the extent of neurological deficit in animals immunised with 

rMOG. A score of one was given for each of the deficits outlined in the table to give a total score out of 

ten. 
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2.2.3.0 Selection of animals  

2.2.3.1 rMOG EAE disease time course 

During various stages of the disease (asymptomatic (prior to deficit), first peak (within 

3 days of onset of deficit), remission (at least two days of functional improvement 

following an initial deficit), and relapse (at least two days of increasing severity of 

deficit following the remission period)), animals were grouped into cohorts of eight 

animals comprised of an IFA control (n=15 in total), a saline control (n=15 in total), and 

6 animals displaying a range of neurological deficit scores (n=75 in total). 

 

2.2.3.2 One hour oxygen therapy in rMOG EAE 

At the onset of neurological deficit, rMOG animals were placed in pairs based on the 

similarity and timing of their neurological deficit as dictated by their 10-point 

neurological score, and each animal of the pair was randomly assigned to receive either 

room air (n=12) or normobaric hyperoxia (~98%, n=12). IFA (n=2 per treatment) and 

saline (n=2 per treatment) controls were also included. Animals were housed in a 

purpose-built chamber (BioSpherix, USA), for the duration of the treatment (1 hour), 

and temperature, oxygen concentration, and carbon dioxide concentration were 

monitored and controlled throughout. Prior to, and following treatment, animals were 

subjected to a more rigorous neurological assessment using a 25-point scale (Table 

2.2.3.2). Thus each hind limb was assessed for stretch withdrawal, pinch withdrawal, 

toe spreading, spasticity, and plantar placement with a maximum of two points awarded 

for each measure (ten points per hind limb), with a score of zero indicating normal 
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function.  Tail function (0-3 points) and hip flexion (0-2 points) were also assessed, for 

a total maximum score of 25 points.   
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Neurological Deficit Score 

Hind limbs 

 Stretch Withdrawal 

  Delayed, Weak, Partial 1 

  No Response 1 

 Pinch Withdrawal 

  Delayed, Weak, Partial 1 

  No Response 1 

 Toe Spreading 

  Incomplete, Asymmetrical Foot 

Splaying or Toe Spreading 

1 

  No Response 1 

 Spasticity 

  Partial rigidity or immobilization, 

some residual movement 

1 

  Complete rigid spasticity 1 

 Plantar Placement 

  Attempted but unsuccessful or 

incomplete plantar placement during 

walking 

1 

  No attempted plantar placement 

during walking 

1 

Tail 

  Tail tip weakness 1 

  Tail weakness 1 

  Complete tail paralysis 1 

Hip 

  Asymmetrical, some flexion 1 

  Complete Absence of flexion, or 

dragging 

1 

 

 

Table 2.2.3.2: Enhanced scoring scale for the evaluation of neurological deficit  

Table outlining the criteria used to evaluate the extent of neurological dysfunction in animals immunised 

with rMOG, prior to and following treatment with one hour of oxygen. A score of one was given for each 

deficit, resulting in a total score out of 25. 
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2.2.3.3 7-day combination therapy 

To assess the relative contributions of oxygen, NO and superoxide to functional 

impairment in EAE, the effects of prolonged normobaric hyperoxia (~75% oxygen), 

iNOS inhibition (1400W; Enzo Life Sciences Ltd, UK), mitochondrially targeted 

antioxidant therapy (MitoQ, a kind gift from M. Murphy), and a combination of all the 

therapies, was investigated. Animals (n = 85) were randomly assigned to one of five 

treatment groups; oxygen (n=17), 1400W (iNOS inhibitor; n = 17), MitoQ (antioxidant; 

n = 17), All (n = 17) and controls (n = 17), at least 7 days prior to immunisation. Oral 

administration of MitoQ (500 μM), via the drinking water, began on the day of 

immunisation, and was monitored daily. All other treatments began on the day of 

disease onset. 1400W (10 mg/ml in sterile saline) was administered daily 

intraperitoneally, to animals in the 1400W and All, treatment groups, from disease 

onset. The remaining animals were daily administered intraperitoneal injections of 

saline alone, from disease onset. Treatment was continued for 7 days post-disease onset. 

Daily monitoring and assessment of neurological deficit was performed by a blind 

assessor.  

 

2.2.4.0 Intravenous and tissue probes 

Four hours prior to perfusion, intravenous injections of pimonidazole (60mg/kg in 

sterile saline; HPI Inc, USA), and dihydroethidium (DHE) (1μg/ml in DMSO, Sigma 

Aldrich, UK) were administered into each of the saphenous veins, under light 

anaesthesia (2% isoflurane in room air, or oxygen, as appropriate). Animals that were 

part of the acute oxygen therapy study were maintained in their respective treatment 

condition, from the beginning of treatment, until perfusion. Prior to perfusion, a 

laminectomy was performed at the T13/L1 vertebral level, under general anaesthesia 
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(2% isoflurane in room air, or oxygen, as appropriate), so as to expose the cord. A small 

hole was made in the dura, approximately 700 μm lateral to the midline, and the 

neighbouring dorsal spinous process stabilised using a secure haemostat. A tapered-tip 

(<50 μm) oxygen-sensitive optical probe (OxyMicro, WPI inc, USA) was then inserted 

at an angle of 12 degrees from vertical into the grey matter, through the hole in the dura, 

to a depth of 1100 μm and then retracted 100 μm.  Subsequent oxygen and temperature 

measurements were recorded continuously (1 Hz) using OxyMicro software (WPI inc, 

USA) for at least five minutes following stabilization of the recording.  The oxygen 

probe was calibrated prior to use on a daily basis.  

 

All protocols for animal research were carried out in accordance with UK Home Office 

scientific procedures act and an appropriate project license.  

 

2.2.5.0 Tissue Processing 

Animals were perfused transcardially with phosphate-buffered saline (PBS; Sigma-

Aldrich, USA), followed by 4% paraformaldehyde (PFA) for fixation, under general 

anaesthesia (2% isoflurane in room air, or oxygen, as appropriate). Spinal cord tissue 

was harvested and post-fixed in 4% PFA overnight, with subsequent cryoprotection in 

30% sucrose (BDH International, UK) in PBS. The spinal cords were cut into 5 

segments comprising the sacral, lumbar, upper lumbar, lower thoracic and mid-thoracic 

regions of cord, and embedded in cryomoulds containing OCT medium (Leica, UK). 

The tissue was frozen by immersion in pre-cooled isopentane (VWR International, UK) 

in liquid nitrogen. Sections were cut to a thickness of 12 µm with a cryostat (Leica 

Microsystems, Germany) at -20
0
C, and thaw-mounted onto glass slides. The sections 

were stored frozen at -20
0
C until use. 
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 2.2.6.0 Histology 

 2.2.6.1 Immunohistochemistry/Immunofluorescence (IHC/IF) 

The cryosections were air dried for at least two hours prior to any histology.  First, 

sections were washed in 0.1M PBS and pretreated with 0.3% hydrogen peroxide (Sigma 

Aldrich) in neat methanol (VWR International, UK), or methanol alone, for 

immunofluorescence, for 15 minutes, to quench endogenous peroxidase activity, 

followed by PBS washes. Where necessary, sections were additionally pre-treated with 

1mg/ml sodium borohydride (NaBH4; Sigma Aldrich) in PBS, twice, for 5 minutes each 

(Table 2.2.6.1). For 8-hydroxydeoxyguanosine immunohistochemistry, tissue was 

additionally pre-treated with a buffer containing 100µg/ml RNase A (Sigma Aldrich), 

150mM sodium chloride and 15mM sodium citrate, for 1 hour at 37
o
C, followed by 2N 

hydrochloric acid, and 1M Tris-base, for 5 minutes each. Non-specific binding was 

blocked with the appropriate blocking buffer (Table 2.2.6.1), for 30 minutes. Tissue was 

then incubated overnight at 4
o
C with the primary antibody. Negative controls were 

incubated with blocking buffer alone.  

Primary antibodies were detected with either, horse anti-mouse, or goat anti-

rabbit biotinylated secondary antibodies (1:200, Vector Laboratories Inc, UK), followed 

by visualisation using an avidin-biotin complex horseradish peroxidise kit (Vectastain 

Elite ABC kit, Vector Laboratories), with diaminobenzidine (DAB) (Vector 

Laboratories) as the chromogen. Sections were finally dehydrated in graded alcohol to 

xylene, and coversliped in DPX mounting medium (BDH). PBS washes were carried 

out between all steps. 

For immunofluorescence, mouse primary antibodies were detected with a horse 

anti-mouse biotinylated secondary antibody (1:200, Vector), followed by a streptavidin-
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FITC (Fluorescein isothiocyanate) conjugated antibody (1:200, Invitrogen, UK), and 

rabbit primary antibodies were detected with a goat anti-rabbit Cy3 conjugated 

secondary antibody (1:200, Invitrogen). Sections were then coversliped with vectashield 

aqueous mounting medium (Vector). PBS washes were carried out between all steps. 
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Table 2.2.6.1: Antibody details for IHC/IF 

Antibody Target Isotype 
Pre-

Treatment 

Blocking 

Buffer 
Dilution Source 

Mouse Anti-

Rat ED1 

Activated 

macrophages/ 

microglia 

Mouse 
IgG1 

None 

 

5% horse serum 
(NHS; Vector 

Labs) 

in 0.01% PBS-
triton 

 

1:200 AbD Serotec 

Mouse Anti-

P47phox 
NADPH oxidase subunit 

Mouse 
IgG1 

None 

 
5% NHS 

in 0.01% PBS-

triton 
 

1:50 
Santa Cruz 

Biotechnology 

Mouse 

Hydroxyprobe-

1-Mab anti-

pimonidazole 

Pimonidazole adducts 
Mouse 

IgG1 

1mg/ml 

NaBH4 

 

0.25% casein 
(VWR) 

 in 0.1% PBS-

triton 

 

1:500 HPI Inc 

Mouse Anti-

RECA-1 
Rat endothelial cells 

Mouse 

IgG1 
None 

 

5% NHS 

in 0.01% PBS-
triton 

 

1:200 Abcam 

Mouse Anti- 

8-oxo-dG 
Oxidative DNA damage 

Mouse 
IgG2b 

RNase buffer, 

2N HCl, 

1M Tris base 

 
5% NHS 

in 0.01% PBS-

triton 
 

1:500 Trevigen 

Mouse Anti- 

Β-tubulin III 
Neurons Mouse 

IgG2b 

1mg/ml 

NaBH4 

 

5% NHS 

in 0.01% PBS-
triton 

 

1:200 Sigma 

Rabbit Anti-

Pimonidazole 
Pimonidazole adducts 

Rabbit  

IgG 

1mg/ml 

NaBH4 

 
5% goat serum  

(NGS; Vector 

Labs)  

in 0.01% PBS-

triton 

 

1:200 HPI Inc 

Rabbit Anti-

iNOS 

Inducible nitric oxide 

synthase 

Rabbit 

IgG 
None 

 

5% NGS 

 in 0.01% PBS-
triton 

 

1:200 
BD Transductions 

Ltd 

Rabbit Anti-

GFAP 
Astrocytes 

Rabbit 

IgG 

1mg/ml 

NaBH4 

 

5% NGS 
 in 0.01% PBS-

triton 

 

1:500 Dako 

Rabbit Anti-

HIF-1α 

Hypoxia inducible 

factor-1 α 

Rabbit 

IgG 

1mg/ml 

NaBH4 

 

5% NGS 

 in 0.01% PBS-
triton 

 

1:500 Millipore 

Rabbit Anti-

IBA 
Macrophages/microglia 

Rabbit 

IgG 

1mg/ml 

NaBH4 

 

5% NGS 
 in 0.01% PBS-

triton 

 

1:200 Wako Chemicals 

Rabbit Anti-

P22phox 
NADPH oxidase subunit 

Rabbit 

IgG 
None 

 

5% NGS 

 in 0.01% PBS-
triton 

 

1:100 
Santa Cruz 

Biotechnology 
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2.2.6.2 Myelin chemical stain 

Sections were stained with luxol fast blue (LFB)/periodic acid Schiff 

(PAS)/haematoxylin to assess demyelination. Sections were taken to 100% ethanol 

(VWR) with gentle shaking in 70% ethanol, followed by 90% ethanol for 5 minutes 

each. The sections were then incubated overnight at 50
0
C with LFB solution: 0.1% LFB 

(BDH) in acidified 95% ethanol (1.0g LFB, 1000ml 95% ethanol, 0.5ml glacial acetic 

acid). The following day the sections were removed from the LFB solution, and washed 

well in running tap water. Subsequently, the sections were differentiated by cycling 

through saturated lithium carbonate (Merck, Germany) for 30 seconds, followed by 

70% ethanol, washing with running tap water in between each step. This was continued 

until the stain was removed from non-myelinated tissue. Next, the sections were 

initially oxidised in 1% periodic acid (VWR) for 20 minutes at room temperature (RT), 

and then incubated in neat Schiff’s reagent (VWR) for 20 minutes at RT, once again 

washing in running tap water after each step. Finally, the sections were counterstained 

in neat Harris haematoxylin (VWR) for 2 minutes, washed in running tap water, 

differentiated until clear in 1% acid alcohol, and then washed well in running tap water. 

Dehydration through graded alcohol was performed by 5 minute incubations in 70% 

and 90%, followed by two x2 minute incubations in 100% ethanol, and then two 

incubations in 100% xylene for more than 2 minutes. The slides were then mounted 

using DPX mounting medium (VWR). 
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2.2.7.0 Microscopy 

2.2.7.1 Light Microscopy and Quantification 

Tissue developed using the peroxidase development system (DAB) was viewed with an 

Axiophot light microscope (Zeiss, Germany), and photographed with a Nikon D300 

camera (Nikon, USA). The illumination was kept consistent throughout image 

acquisition. Captured images were imported into Image J (NIH, Bethesda, MD) and 

converted from RGB 24 bits per pixel (bpp) to grey scale 8 bpp images.  Analysis of the 

intensity of the labelling with pimonidazole was carried out by manually demarcating 

the spinal white and grey matter, and measuring the pixel intensity above a set 

threshold.  Quantification of ED1 and iNOS immunoreactivity was performed by 

counting the number of pixels above a set threshold, and expressed as the percentage of 

cross-sectional area coverage.  Quantification of vessel count and size was performed 

using the automated ‘analyse particles’ tool, on binary images, and subsequently filtered 

for size and circularity.  All the quantification was performed blind. 

  

 

2.2.7.2 Confocal Laser Microscopy 

Fluorescent images were obtained using a Zeiss LSM5 Pascal confocal microscope, 

with a x40 objective. Excitation wavelengths of 488 nm and 543 nm were provided by 

argon and helium-neon gas lasers, respectively. Emission filters BP505-570, BP505-

530, and LP560 were used to obtain the images. 

 

 2.2.8.0 Disease parameters 

The change in neurological deficit score on the last day, the total cumulative score, and 

the score on the day of perfusion, were used to indicate disease severity. Thus, these 
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parameters were taken into consideration when assessing the contribution of various 

pathological markers to the expression of a neurological deficit.  

 

2.2.9.0 Statistical Analysis 

Pearson correlation coefficients were used to assess association between variables 

where indicated.  

A one-way analysis of variance (ANOVA) with a Bonferroni correction was used to 

compare pimonidazole labelling, oxygen probe measurements, blood vessel diameter, 

and blood vessel number between groups as indicated.  A single sample t-test was used 

to assess the difference between one hour of treatment with oxygen, or room air, using 

the difference in score change between paired animals. An independent t-test was used 

to assess differences in neurological deficit score between the control group and each 

treatment group respectively (1400W, MitoQ, oxygen, and ALL). A one-tailed 

significance is stated for the acute oxygen and long term therapy studies, based on the a 

priori hypothesis that treatment would reduce the observed neurological deficit. Q-Q 

plots were used to assess whether the data were normally distributed.   
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2.3.0.0 RESULTS 

  

2.3.1.0 Clinical course of rMOG EAE 

Subcutaneous injection of 100 μg rMOG in female DA rats induced a relapsing disease 

(Figure: 2.3.1.0 A), characterised by ascending motor paralysis, with a typical disease 

onset of 9 days post-induction (PI) and an incidence of 96%. The onset of disease was 

coupled with a loss in body weight. Within this first peak of disease, disease severity 

varied from tail weakness to a complete flaccid paralysis of the lower limb extremities. 

The first peak of the disease was characterised histopathologically by the infiltration of 

large numbers of inflammatory cells, particularly near the root entry zones and subpial 

white matter, in the absence of any obvious demyelination (Figure: 2.3.1.0 B). This first 

peak of disease was followed by a remission phase (13-17 days PI), at which point some 

evidence of demyelination, indicated by the loss of LFB staining, was observed. The 

remission phase was followed by an aggressive relapse phase (18 days PI), during 

which the demyelination was extensive (Figure: 2.3.1.0 B), and a spastic, rather than 

flaccid, paralysis was dominant. Neither asymptomatic nor control animals displayed 

any evidence of neurological disability, or a loss in body weight. 
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Figure 2.3.1.0: EAE time course: Inflammatory and demyelinating aspects 
(A) Graph showing the average scores for neurological deficit over the course of rMOG EAE in DA rats. 

Values are mean ± S.D. The two peaks in neurological deficit appear to be caused by different 

mechanisms. Dysfunction in the first peak is thought, partly from current observations, to occur via a 

mechanism that arises primarily from inflammation, whereas dysfunction in relapse (second peak) 

appears to be due primarily to demyelination. (B) Transverse spinal cord sections stained with LFB/PAS, 

and counterstained with hematoxylin (B-top, scale bar 500 µm), and high magnification of the top of the 
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dorsal column (DC) (B-bottom, scale bar 25 µm). Demyelination, revealed by the loss of LFB staining 

(blue) is absent during the first peak, which is characterised by massive infiltration of inflammatory cells 

(*). Loss of LBF staining is particularly visible in the spinal cord of animals in relapse (arrow), and 

remission (arrow), although to a lesser extent.  All micrographs are representative. 
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 2.3.2.0 Inflammation over the time course of rMOG EAE 

 2.3.2.1 ED1 labelling as a correlate of disease severity 

Microscopically, symptomatic rMOG animals exhibited varying amounts of spinal 

inflammation, characterised by ED1 immunoreactivity, which was largely absent from 

asymptomatic, and control animals (Figure: 2.3.2.1). At the early stages of disease 

(neurological deficit score 3), ED1 positive cells were predominantly found near the 

root entry zones, and subpial areas in the white matter (Figure: 2.3.2.1 Ai), however, as 

the disease progressed towards the peak of neurological deficit (neurological deficit 

score 7-9) the inflammatory cells were found to penetrate deeper into the parenchyma. 

At this stage of disease, perivascular cuffing was common. The extent of inflammation 

eased during remission, however, ED1 immunoreactivity during relapse was profound 

(Figure: 2.3.2.1 Ai).  At this stage of disease, the inflammation was not restricted to the 

subpial white matter, but, rather involved the entire white matter, and grey matter, 

although to a much lesser extent. These areas in which ED1 immunoreactivity was 

profound commonly appeared oedematous.  

 Throughout the time course of rMOG EAE, there was a notable change in ED1 

cell morphology. At first peak, the cells displayed the characteristic activated, amoeboid 

morphology, however during remission and relapse stages of disease, the cells displayed 

a ‘foamy’ debris-engulfing morphology (Figure: 2.3.2.1 Aii). 

 The extent of inflammation progressively increased within the first three days of 

disease, but varied considerably thereafter (Figure: 2.3.2.1 Bi). The extent of 

inflammation was directly related to the neurological deficit score at perfusion (p< 

0.001, r
2
=0.792, n=71, Figure: 2.3.2.1 Bii). Thus, the spinal cords of animals with a 

higher neurological deficit score were more inflamed than those of animals with a lower 

neurological deficit score. During the first peak of disease, the inflammation followed 
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the ascending nature of the disease: most extensive in the caudal portions of spinal cord, 

and decreasing more rostrally (Figure: 2.3.2.1 Biii). Similarly, in remission and relapse 

stages of disease, the extent of inflammation was largest most caudally, but decreased in 

the lumbar cord, before increasing in the rostral portions of the cord (Figure: 2.3.2.1 

Biii). No such labelling was evident in control animals. 
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Figure 2.3.2.1: ED1 labelling in rMOG EAE  
(Ai) Transverse spinal cord sections labelled with ED1, a marker of activated macrophages/microglia, at 

different stages of rMOG EAE. At the early stages of the disease, during the first peak (score 3), activated 

macrophages/microglia are present sub-pially, however, as the disease progresses (scores 7 and 9), 

activated cells begin to penetrate deeper into the parenchyma, and numerous perivascular cuffs can be 

seen (arrows). Scale bar 500 µm. Examination of these ED1 cells at high magnification (Aii) shows a 

change in morphology from an amoeboid phenotype, in the first peak, to a foamy debris-engulfing 

macrophage phenotype, during remission and relapse. Scale bar 25 µm. (Bi) Scatter plot showing the 

relationship between the extent of ED1 labelling and the number of days from first symptoms. (Bii) 

Scatter plot showing that ED1 labelling increases with the severity of the disease. (Biii) Graph showing 

the rostro-caudal extent of ED1 labelling at different stages of the disease (mean ± S.E.M). All 

micrographs are representative (Contols n=20; asymptomatics n=7; first symptoms n=29; remission n=7; 

relapse n=7).   
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 2.3.2.2 iNOS expression occurs in the first 3 days following onset of the 

disease 

In rMOG EAE, iNOS expression, although negligible, was only evident in symptomatic 

animals during the first peak of disease (Figure: 2.3.2.2). iNOS immunoreactivity was 

largely found in the root entry and exit zones, at the early stages of disease (neurological 

deficit score 3), but was also found in perivascular cuffs at the peak of disease (Figure: 

2.3.2.2 A). iNOS was largely expressed in the first three days following disease onset 

(Figure: 2.3.2.2 Bi), and therefore, did not correlate well with the neurological deficit 

score at perfusion (Figure: 2.3.2.2 Bii). Thus, an animal terminated with a neurological 

deficit score of 9 on day 5 following the onset of disease, would generally have less 

iNOS than an animal terminated with a neurological deficit score of 7 on day 3 

following the onset of disease. The rostro-caudal gradient of labelling was similar to 

ED1, with iNOS expression greatest most caudally (Figure: 2.3.2.2 Biii). iNOS was 

absent from asymptomatic animals, and those that were in remission or relapse, and 

control animals.   
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Figure 2.3.2.2: iNOS expression in rMOG EAE 
(A) Transverse spinal cord sections labelled with an anti-iNOS antibody. iNOS expression is only evident 

in the first peak of disease, specifically in the first three days following onset in rMOG animals (n=29) 

(A; Bi). Scale bar 500 µm. Labelling for iNOS is absent in IFA controls (n=20), asymptomatic controls 

(n=7) and rMOG animals in remission (n=7) and relapse (n=7) (A; B). (Bii) Scatter plot showing the 

correlation between the extent of iNOS labelling and the score at perfusion. Although iNOS expression is 

increased in symptomatic animals, there does not appear to be any obvious correlation with disease 

severity. (Biii) Graph showing labelling for iNOS along the length of the spinal cord, at different stages of 

disease (mean ± S.E.M). All micrographs are representative. 
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2.3.3.0 Hypoxia is a feature of rMOG EAE 

 2.3.3.1 rMOG EAE Spinal tissue labels positive for hypoxia 

Pimonidazole, an intravenous probe that allows the detection of low tissue oxygen 

concentrations during wakefulness, ostensibly, was administered to all animals prior to 

perfusion, and the bound drug subsequently detected immunohistochemically. During 

the first peak of disease, spinal tissue from symptomatic rMOG animals labelled 

positive for pimonidaozle (Figure: 2.3.3.1). The labelling was most obvious in the 

spinal grey matter, although punctuate cellular labelling was also observed in the white 

matter, particularly in perivascular cuffs, extending out of the grey matter (Figure: 

2.3.3.1 Ai, Aii). Immunohistochemistry with an antibody against HIF-1α, an alternative 

marker of hypoxia, yielded a similar pattern of labelling within the grey and white 

matter.  Neuronal labelling for pimonidazole and HIF-1α was especially prominent, 

with the intensity of labelling increasing with neurological deficit (Figure: 2.3.3.1 Aii, 

Aiii). At remission, the grey matter labelling for both pimonidazole and HIF-1α 

disappeared, however, by relapse, some grey matter labelling returned, but intense 

pimonidazole labelling of foci in the white matter was also observed (Figure: 2.3.3.1 A). 

No such labelling was evident in asymptomatic, or control animals.  

 The grey matter pimonidazole labelling correlated temporally with the onset of 

neurological deficit (Figure: 2.3.3.1 Bi). That is, labelling for pimonidazole was most 

prominent in the first three days following disease onset, and thus, during the first peak 

of disease expression. Similarly, the extent of grey matter pimonidazole labelling 

increased with the magnitude of the neurological deficit (p = 0.029, r
2 

= 0.405, n = 29, 

Figure: 2.3.3.1 Bii). Spatially, labelling for pimonidazole precisely followed the 

ascending nature of the disease (Figure: 2.3.3.1 Biii). The labelling was most intense in 

the most caudal regions of the cord (lumbar p< 0.001, n = 70; sacral p = 0.043, n = 67, 
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serving the paralysed hind limbs and tail respectively), and decreased rostrally. 

Pimonidazole labelling positively correlated with HIF-1α labelling (p = 0.05, r2 = 

0.343, n = 65).  

 To determine whether this tissue hypoxia was cell specific, or a general 

phenomenon, double label immunofluorescence was conducted with a range of cell 

specific markers. Interestingly, astrocytes, neurons and in particular oligodendrocytes, 

labelled positive for pimonidazole (Figure: 2.3.3.1 C). Macrophages/microglia generally 

did not label positively for pimonidazole, although there were a few exceptions (Figure: 

2.3.3.1 C). 
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Figure 2.3.3.1: Labelling for tissue hypoxia in rMOG EAE 
(A) Transverse lumbar spinal cord sections labelled with anti-pimonidazole, at different stages of disease 

progression. Positive pimonidazole labelling is virtually absent in IFA control animals, but is increased in 

the grey matter of first peak (scores 3-9) rMOG EAE animals (Ai, scale bar 500 µm; Aii, scale bar 25 
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µm). Similarly, labelling for HIFα, an independent marker of hypoxia, is increased in the ventral motor 

neurons of symptomatic animals (Aiii, scale bar 25 µm).  The pimonidazole grey matter labelling is 

increased during the first three days of disease (Bi), and also increases with disease severity (Bii). 

Although, animals in remission and relapse showed decreased grey matter labelling (A; Bi), animals in 

the relapse had intense foci of pimonidazole labelling in the white matter (Ai). (Biii) Graph showing the 

intensity of pimonidazole labelling along the length of the cord, for animals with differing severity of 

neurological deficit (Mean ± S.E.M), showing a gradient of labelling which follows the ascending nature 

of the disease (contols n=20; asymptomatics n=7; first symptoms n=29; remission n=7; relapse n=7). (C) 

Scatter plot showing the correlation between pimonidazole and HIF-1α labelling. (D) Confocal laser 

microscopy of transverse spinal cord sections labelled with anti-pimonidazole, and anti-IBA (microglia), 

anti-GFAP (astrocytes), anti-β-tubulin (neurons), and anti-CA2 (oligodendrocytes) antibodies. Co-

localisation of these cell specific markers (arrows) with pimonidazole suggests a generalised tissue 

hypoxia. Scale bar =100 µm. All micrographs are representative.  
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2.3.3.2 The oxygen concentration of spinal cord tissue is low in rMOG EAE 

Measurements of spinal oxygen concentration, taken using an oxygen-sensitive probe 

revealed that rMOG animals expressing a neurological deficit consistently had lower 

spinal oxygen concentrations than control animals (first peak p = 0.007, relapse p = 

0.029, Figure: 2.3.3.2 A). The average spinal cord oxygen concentration of control 

animals was 34.99 ± 2.7 mmHg (mean ± S.E.M), whereas for rMOG animals with a 

neurological deficit score of nine was 20.06 ± 3.9 mmHg (mean ± S.E.M). Moreover, 

the oxygen concentration varied inversely with the magnitude of the deficit (p< 0.001, r
2 

= 0.619, n = 71, Figure: 2.3.3.2 A, B) and with the severity of the disease represented by 

the change in neurological deficit score on the day of perfusion (Figure: 2.3.3.2 C). The 

spinal oxygen concentration was found to only mildly correlate inversely with the 

pimonidazole labelling (p = 0.06, r
2
 = -0.331, n = 68, Figure: 2.3.3.2 D). 
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Figure 2.3.3.2: Spinal oxygen probe measurements in rMOG EAE 
 (A) Representative records from animals during different stages of rMOG EAE. The records show 

readings at first in air, then the lower oxygen concentration when the probe is inserted into the spinal grey 

matter, and finally the reading in air upon withdrawal.  The spinal oxygen concentration is lower in 

rMOG animals compared to IFA controls. Furthermore, the animals in the first peak of disease exhibiting 

a more severe neurological deficit, and animals with relapse disease, had significantly lower (*p<0.05, 

ANOVA with Bonferoni correction) spinal oxygen concentrations than IFA controls (B; mean ± S.E.M).  

(C) A scatter plot showing the correlation between the spinal oxygen concentration and the score change 

on the day of perfusion. Animals with increasing severity of disease at the time of termination (first peak 

animals), generally had lower spinal oxygen concentrations. (D) A scatter plot showing the correlation 

between pimonidazole (immunohistochemical marker) labelling, and spinal tissue oxygen concentration 

(contols n=20; asymptomatics n=7; first symptoms n=29; remission n=7; relapse n=7). 
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2.3.4.0 Vascular changes over the time course of rMOG EAE 

 

Hypoxia is known to induce many downstream changes, one of which is alterations in 

the vascular architecture. Therefore, evidence of such changes was sought over the time 

course of rMOG EAE. During the first peak of disease, increases in vessel size probably 

representing vasodilation, were observed in asymptomatic and symptomatic rMOG 

animals (p = 0.001) along the length of the cord (Figure: 2.3.4.0 A, Bi), compared to 

those of control animals. The average vessel size in the spinal cord of animals in 

remission and relapse was smaller than controls (Figure: 2.3.4.0 Bi). However, at these 

later stages of disease (relapse), the total number of vessels was increased in the caudal 

segments of the spinal cord, but particularly in the lumbar and sacral segments (Figure: 

2.3.4.0 Bii), compared to control animals (p=0.003). Furthermore, many of these vessels 

had a fenestrated appearance, particularly in the white matter. Symptomatic animals at 

the first peak of disease also displayed a moderate increase in vascular density 

compared to control animals. The longer term vascular changes were associated with a 

concomitant increase in cross-sectional area of the whole spinal cord, a measure of 

oedema (Figure: 2.3.4.0 Biii). 
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Figure 2.3.4.0: Vascular changes during the course of rMOG EAE 
(A) Spinal grey matter labelling with anti-RECA1. At the acute stage of the disease (first peak), vessel 

size is increased, relative to IFA controls, and rMOG animals in remission and relapse. As the disease 

progresses, the vascular density increases, particularly in animals in relapse. (Bi) Graph showing the 

average vessel size along the length of the cord in animals at the different stages of disease (mean ± SEM. 

(Bii) Graph showing the vascular density, along the length of the cord in animals at different stages of 

disease (mean ± S.E.M). (Biii) Graph showing that the cross-sectional area of the whole spinal cord (a 

measure of oedema) was greater over time in animals with EAE when compared with controls (mean ± 

S.E.M) (contols n=20; asymptomatics n=7; first symptoms n=29; remission n=7; relapse n=7). 
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2.3.5.0 NADPH oxidase subunit expression during the first peak of disease 

 

NADPH oxidase is a major consumer of molecular oxygen during the respiratory burst, 

generating large amounts of superoxide. Thus multi-label immunofluorescence using 

antibodies against NADPH oxidase subunits p22
phox

 and p47
phox

 was performed. In 

control animals, labelling for p22
phox

 was observed, however no labelling for p47
phox

 

was evident (Figure 2.3.5.0). In the first peak of disease, animals with moderate 

neurological deficit (neurological deficit score of five) displayed increases in p22
phox

 

and p47
phox

 labelling, particularly surrounding inflamed vessels (Figure: 2.3.5.0). As the 

magnitude of the deficit increased, the extent of labelling and co-expression of these 

markers also increased (Figure: 2.3.5.0). 
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Figure 2.3.5.0: NADPH Oxidase subunit labelling in first peak EAE 
Confocal laser microscopy of transverse spinal cord sections labelled with NADPH oxidase subunits 

p22phox (red) and p47phox (green). Labelling for p22phox is evident in the spinal cord of all animals, but 

the extent of labelling is increased in rMOG animals exhibiting a neurological deficit. Labelling for 

P47phox is absent in IFA control animals, however perivascular expression of p47phox is observed in 

rMOG animals expressing a neurological deficit. In animals with more severe disease (score 9), 

perivascular co-expression of the subunits is evident (arrow). 
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2.3.6.0 Histopathology of the white matter foci of pimonidazole labelling in 

relapse animals 

 

As mentioned previously, intense foci of pimonidazole labelling were observed in the 

white matter of animals in relapse (Figure 2.3.6.0 A). These foci were found at various 

places in the white matter, but predominantly in the oedematous region of the spinal 

cord. At high magnification, reactive swollen astrocytes, was seen amongst 

phagocytosing inflammatory cells (Figure 2.3.6.0 Aii). These regions were commonly 

found to be sparse in vasculature, abundant in ED1 positive cells, and largely 

demyelinated (Figure 2.3.6.0 B). 
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Figure 2.3.6.0: Intense pimonidazole foci in the white matter of relapse animals 

(Ai) Light micrograph of a lumbar spinal cord section from an rMOG animal in relapse, labelled for 

pimonidazole. Intense pimonidazole-positive foci are evident in the white matter of relapse animals. Scale 

bar 500 µm. (Aii) High magnification of pimonidazole-positive foci, showing labelling of cells tentatively 

identified as hypertrophied astrocytes (arrow), in addition to other cells. Scale bar 25 µm.  (B) Adjacent 

sections labelled for pimonidazole (i), ED1 (ii), and RECA-1 (iii), or stained with LFB (iv).  The 

observed foci of intense pimonidazole labelling correspond with areas of extensive ED1-positive cell 

infiltration, comparatively sparse vascular supply, and demyelination. Scale bars 100 m.  All 

micrographs are representative. 
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2.3.7.0 Normobaric oxygen therapy in rMOG EAE  

 2.3.7.1 One hour of normobaric hyperoxia partially restores function 

Given that hypoxia is an early feature of rMOG EAE that correlates quantitatively, 

temporally and spatially with the first peak of disease, pairs of rMOG symptomatic 

animals (matched for neurological deficit) were treated with one hour of normobaric 

hyperoxia, or room air as a control, to determine whether acute oxygen therapy could 

restore lost function. Treatment with only one hour of 100% oxygen resulted in partial 

restoration of function, with increased sensation and restoration of the hindlimb stretch 

and pinch withdrawal reflexes being the most common changes observed.  

Most rMOG animals exposed to 100% oxygen showed an improvement in 

neurological deficit score on the 25-point scale following treatment, relative to their 

counterparts treated with room air (Figure: 2.3.7.1 A). In some instances, there was no 

change, or a worsening, in neurological deficit score, following hyperoxic treatment, 

compared to the room air counterpart. However, on average, the cohort of animals 

exposed to 100% oxygen showed a statistically significant improvement in score (p = 

0.014, n = 24), compared to the cohort of animals exposed to one hour of room air 

(Figure: 2.3.7.1 B).  
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Figure 2.3.7.1: The effects of one hour of normobaric oxygen therapy on rMOG 

EAE 

(A) Plot showing the change in score rMOG EAE animals, following one hour of therapy (normobaric 

100% oxygen n=12, or room air n=12), using the 25-point scale. A negative change in score indicates a 

functional improvement. (B) Bar graph showing the average (+/- S.E.M.) neurological deficit score, 

before and after breathing room air (control) or 100% oxygen.  (*p<0.05, repeated measures ANOVA, 

n=24).  
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2.3.7.2 Labelling for hypoxia decreases following one hour of oxygen therapy 

Histological evaluation of spinal cord tissue from animals exposed to one hour of 

normobaric oxygen, revealed a decrease in labelling for hypoxia (Figure: 2.3.7.2). The 

extent of pimonidazole labelling in IFA control animals did not change following 

exposure to 100% oxygen, with some faint neuronal, and grey matter labelling still 

evident at high magnification (Figure: 2.3.7.2 A). Spinal cord tissue from rMOG 

animals exposed to room air, labelled positive for hypoxia, indicated by the intense 

pimonidazole immunoreativity. However the spinal cords from animals exposed to 

100% oxygen showed no evidence of pimonidazole labelling, and thus hypoxia. Rather, 

the labelling was less than that observed in IFA control animals. The lack of neuronal 

labelling, in particular, was surprising (Figure: 2.3.7.2 A). Similarly, in IFA control 

animals, labelling for HIF-1α did not change following 100% oxygen therapy, but 

neuronal HIF-1α was completely lost in rMOG animals exposed to 100% oxygen 

(Figure: 2.3.7.2 B). 
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Figure 2.3.7.2: Labelling for hypoxia following acute normobaric oxygen therapy 

Micrographs of the spinal ventral grey matter of animals from the acute oxygen therapy study, showing 

labelling for pimonidazole (A) and HIF-1α (B). In IFA controls, pimonidazole labelling does not appear 

to change following exposure to 100% oxygen, however, in symptomatic rMOG animals, pimonidazole 

labelling is decreased substantially (A). Exposure to 100% oxygen does not affect the extent of HIF-1α 

labelling in IFA controls, however, in symptomatic rMOG animals, the extent of labelling is decreased 

considerably (B). The lack of any neuronal pimonidazole or HIF-1α labelling, following 100% oxygen in 

symptomatic animals is striking. Scale bar 25 µm. All micrographs are representative. 
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 2.3.7.3 One hour hyperoxia does not increase oxidative damage 

  Oxygen therapy can be associated with increased oxidative damage, so the tissue was 

examined to determine the magnitude of such damage. Oxidative DNA damage, as 

indicated by 8-Oxo-2’-deoxyguanosine (8-Oxo-dG) labelling, was not a common 

feature of rMOG EAE. Clusters of 8-Oxo-dG positive cells, when observed, were 

located predominantly surrounding vessels in the white matter, co-localising with DHE 

(Figure: 2.3.7.3 A). Animals treated with 100% oxygen generally displayed a decrease 

in the size, and fluorescent intensity of these white matter clusters (Figure: 2.3.7.3 A). 

The uncanny co-localisation of 8-Oxo-dG and DHE raised the potential problem of 

fluorescence bleed through, however, these clusters were also observed in DAB labelled 

tissue (Figure: 2.3.7.3 B), and sections with DHE-induced fluorescence alone, thereby 

ruling out fluorescence bleed through. 
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Figure 2.3.7.3: ROS labelling following acute normobaric oxygen therapy 

(A) Light micrographs of ventral horn grey matter in lumbar spinal cord cross-sections labelled with 

antibodies to 8-Oxo-dG.  No difference in the extent of labelling is evident between IFA controls and 

animals with EAE during the first peak of disease, or animals treated with room air and animals treated 

with normobaric oxygen. Scale bar 25 µm. (B) Fluorescence microscopy images of sections through the 

lumbar spinal cord white matter from animals with EAE during the first peak of disease, labelled with 

DHE in vivo and antibodies to 8-Oxo-dG obtained with a confocal microscope reveal co-localization of 8-

Oxo-dG-positive cells and DHE-induced fluorescence. No increase in 8-Oxo-dG or DHE-induced 

labelling is evident following treatment with normobaric oxygen as compared to room air, in fact a 

tendency to reduced labelling is observed.  Scale bar 200 m. (C) Spinal cord section labelled for 8-Oxo-

dG with the DAB detection method, and an adjacent section labelled for 8-Oxo-dG and DHE-induced 

fluorescence, The pattern of labelling observed when tissue is labelled with antibodies against 8-Oxo-dG 

using DAB as the chromogen, is the same as when tissue is labelled fluorescently in conjunction with 

DHE-induced fluorescence, confirming co-localisation of DHE and 8-Oxo-dG is real and not bleed 

through. Scale bar 25 µm. All micrographs are representative. 
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2.3.8.0 7-day combination therapy in rMOG EAE 

  Inflammation, hypoxia, and oxidative damage (although minimal in this model), have 

been shown to be features of rMOG EAE. Therefore, their relative contributions to 

functional impairment in EAE were assessed by treating these pathopysiological aspects 

of the disease, individually, and collectively. Five, 7-day treatment regimes, 

commencing on the onset of neurological deficit, comprised of groups designated as 

controls, an iNOS inhibitor (1400W), 75% normobaric oxygen, a mitochondrially 

targeted antioxidant (MitoQ), and a combination of the three (ALL) (Table 2.3.8.0).  

 Control rMOG animals followed the standard course of EAE, with an average 

peak neurological deficit score of 6.6 ± 0.5 (mean ± SEM), within three days of the 

onset of disease (Figure: 2.3.8.0). By five days following the onset of disease, animals 

in the control group entered the remission stage of the disease, with an average 

neurological deficit score of 5.3 ± 0.6 (mean ± SEM), and they remained in this stage 

until termination (n=14) (Figure: 2.3.8.0). It is worth noting that the 10-point scale used 

to evaluate the neurological deficit is by no means linear. Thus an animal with a 

neurological deficit score of 7 displays complete bilateral hindlimb weakness with 

absent or incomplete plantar placement, and is therefore unable to walk. An animal with 

a neurological deficit score of 5 displays complete tail paralysis, with an abnormal, 

wobbly gait, but is able to walk. 

 Administration of 1400W, oxygen, MitoQ, and ALL treatment regimes resulted 

in amelioration of the disease severity, compared with controls, respectively (Figure: 

2.3.8.0). Animals treated with 1400W followed an attenuated disease course, with an 

average peak neurological deficit score of 6.0 ± 0.5 (mean ± SEM), and a termination 

end score of 5.0 ± 0.5 (Figure: 2.3.8.0). The average neurological deficit score was 

significantly lower than the control group only on day one of treatment with 1400W 
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(p=0.015, n = 15). Animals treated with MitoQ, also followed an attenuated disease 

course, with an average peak neurological deficit score of 5.8 ± 0.7, and a terminal 

neurological deficit score of 5.1 ± 0.9 (Figure: 2.3.8.0). The average neurological deficit 

score on the first day of treatment with MitoQ was significantly lower than controls (p= 

0.047, n=17). However, the average neurological deficit was not significantly lower 

than control animals on any other day of treatment. Animals treated with 75% oxygen 

had an average peak neurological deficit score of 5.4 ± 0.6, and a terminal neurological 

deficit score of 3.6 ± 0.5 (Figure: 2.3.8.0). Treatment with 75% oxygen resulted in a 

statistically significant improvement after one day (p=0.028, n=15), and a significantly 

reduced neurological deficit at day 7, when compared with control animals breathing 

room air (p=0.019, n=15). Animals treated with a combination of the three treatments 

(ALL), followed a particularly attenuated disease course, with an average peak 

neurological deficit score of 4.9 ± 0.8, and a terminal score of 3.3 ± 0.8 (Figure: 

2.3.8.0). This group had a significantly lower average neurological deficit score than 

control animals, at all time points after day 1 (p< 0.05, n = 15), with the exception of 

days 4 and 5. 

 The variation in neurological deficit score observed in the oxygen and ALL 

treatment groups represented a decreased efficacy of these treatments in animals that 

were recruited when neurological deficit score at disease onset was 3 or more. Oxygen 

and combination therapy was particularly effective in animals that displayed a 

neurological deficit score of 1, at onset of disease. In these treatment groups, reversal of 

tail paralysis was frequently observed. Moreover, function was completely restored in 

some animals. Differences in the final numbers represented morbidity, or animals that 

had to be culled for ethical reasons, and were therefore omitted from the study. 
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Table 2.3.8.0: 7-day combination therapy 

treatment regime 
Days from Onset of Symptoms/Days of therapy 

Therapy 
Onset of 

Therapy 

Route of 

Administration 
1 2 3 4 5 6 7 

CONTROL n/a n/a n=17 n=17 n=17 n=17 n=17 n=15 n=15 

1400W 
Onset of 

symptoms 
Intraperitoneal n=17* n=17 n=17 n=17 n=17 n=17 n=17 

OXYGEN 
Onset of 

symptoms 

Inhalation 

(purpose-built 

chamber/tent) 

n=17* n=17 n=15 n=15 n=15 n=15* n=15* 

MITOQ 
Day of 

immunisation 

Oral (in 

drinking water) 
n=17* n=17 n=17 n=16 n=16 n=16 n=16 

ALL 

MitoQ 

treatment 

began on the 

day of 

immunizatio

n. 

 

Oxygen and 

1400W 

additionally 

administered 

at the onset 

of symptoms 

Oral, 

intraperitoneal, 

inhalation 

n=17* n=17* n=16* n=16 n=16 n=15* n=15* 

 

A 

B 
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Figure 2.3.8.0: Combination therapy in rMOG EAE 
(A) Table showing the different treatment regimes employed and numbers of animals throughout the 

study and statistical significance (* p<0.05). (B) Graph showing the average changes in neurological 

deficit (non-linear 10 point scale) over the course of rMOG EAE following five treatment regimens; 

control, MitoQ, 1400W, 75% normobaric oxygen, and ALL. Treatment began at the onset of neurological 

deficit, and was maintained for the next 7 days. The graph shows that the ALL group had a significantly 

(* p<0.05) lower neurological deficit score than controls at all time points after day 1, with the exception 

of days 4 and 5. Notably, animals receiving the ALL treatment regimen were able to walk throughout the 

course of disease, and were significantly less affected at trial termination than control animals. Values are 

means ± S.E.M. 
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2.4.0.0 DISCUSSION 

 

The present study reveals that tissue hypoxia is quantitatively, spatially and temporally 

related to neurological dysfunction in rMOG-induced EAE, and perhaps causally 

related. Furthermore, the study provides evidence that acute and chronic treatment with 

normobaric hyperoxia partially restores lost function, and attenuates the disease 

severity, respectively.  Thus, hypoxia plays a crucial role in the development and 

progression of neurological dysfunction in rMOG EAE, a model of MS 

 

2.4.1.0 Inflammation mediates neurological dysfunction during the first 

peak of disease in rMOG EAE 

Inflammation, demyelination and axonal degeneration are the cardinal features of MS, 

however, the relationship of these pathological events to the onset, and progression of 

neurological disability is yet to be fully elucidated. Inflammation has been implicated in 

the induction of clinical deficits in MS, in the absence of demyelination (Bitsch et al., 

1999), and the current results suggest that the neurological deficit, during the first peak 

of rMOG EAE, is also mediated by inflammation alone. In the current study, the extent 

of inflammation, characterised by the presence of activated macrophages/microglia, 

correlated well with the severity of the disease. Activated macrophages and microglia 

were found most extensively at the midline and lateral borders of the dorsal columns, 

and at the superficial lamina of the dorsal grey matter, and they were present more 

diffusely in the rest of the grey matter. These sites are eloquent areas of the nervous 

system, and damage would be expected to cause neurological deficits. Neurons of the 

motor cortex, associated with hind limb movement, project to the spinal lumbar 

enlargement (Li et al., 1990), with a somatotopic arrangement of hind limb nerves in the 

mediolateral compartments of the dorsal horns (Molander and Grant, 1985; Woolf and 
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Fitzgerald, 1986; Rivero-Melián and Grant, 1991; Paxinos, 1995). Similarly, the 

ascending collaterals of primary afferent fibres are somatotopically arranged in the 

dorsal column, with fibres from the tail found close to the midline, and fibres from the 

hind limbs at the lateral borders more rostrally (Paxinos, 1995). Therefore, 

inflammation affecting these specific areas provides a possible explanation for the 

motor deficits observed in this study.  

 Activated macrophages/microglia were present at all stages of the disease, but a 

change in cell morphology was observed during remission and relapse. A typical 

amoeboid, activated phenotype was found during the first peak of disease, whereas a 

‘foamy’, phagocytic phenotype was prevalent during remission and relapse stages of 

disease, accompanied by extensive demyelination. The morphological changes 

associated with the demyelination in addition to the absence of iNOS during the 

remission and relapse stages of disease, conform to the notion that the dysfunction 

during first peak of rMOG EAE is inflammation-mediated, whereas relapse is largely 

driven by demyelination. The levels of the anti-inflammatory interleukin, IL-10, known 

to inhibit cytokine release from macrophages (Fiorentino et al., 1991), are drastically 

increased during remission (Kennedy et al., 1992), explaining the alleviation of 

neurological deficit during this stage of disease. During relapse, the widespread 

demyelination is known to be elicited by anti-MOG antibodies (Linington and 

Lassmann, 1987; Linington et al., 1988). However, despite these findings, the question 

as to how inflammation causes dysfunction still remains. 

 

2.4.2.0 Hypoxia- a mediator of neuroinflammation-induced neurological 

dysfunction 

The mechanisms through which neuroinflammation cause neurological dysfunction 

remain unclear. In the last few decades, NO has emerged as a likely culprit. Indeed, 
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moderate levels of iNOS were expressed by the activated macrophages/microglia, in the 

current study, with expression occurring primarily during the first three days following 

the onset of neurological deficit. Such a temporal pattern of expression implicates NO 

in the onset of neurological deficits. Indeed, the inhibition of iNOS has been found to 

decrease the clinical deficits and inflammation in EAE by some researchers (Cross et 

al., 1994; Zhao et al., 1996; Brenner et al., 1997). However, in the current study iNOS-

positive cells were restricted to the subpial white matter and perivascularly, not in the 

grey matter where motor neurons reside. Thus NO may only account for a part of the 

neurological dysfunction in rMOG, indicating that other factors may also play a role. 

Inflamed tissue undergoes drastic shifts in tissue metabolism. Changes include 

nutrient depletion, increased oxygen consumption, and ROS/RNS production (Taylor 

and Colgan, 2007; Kominsky et al., 2010). A common downstream consequence of 

such changes is tissue hypoxia (Kokura et al., 2002; Saadi et al., 2002; Karhausen et al., 

2004). Our findings suggest that the rat spinal cord also becomes hypoxic, during the 

inflammatory phase of rMOG EAE, confirmed by two independent methods 

immunohistochemically, using the biochemical marker pimonidazole, and an anti-HIF-

1α antibody, and optically, using an oxygen-sensitive optrode. Although different in 

principle, both methods yielded similar results in that the spinal grey matter of 

symptomatic rMOG animals had lower oxygen concentrations than that of control 

animals. However, the poor correlation between the intensity of pimonidazole labelling 

and spinal oxygen concentrations can possibly be explained by a number of factors. 

Firstly, pimonidazole is administered to the animals during a dynamic stage of the 

disease, a period when their neurological deficit is rapidly progressing, and can 

therefore change within the span of a few hours. Thus an animal with a neurological 

deficit score of 3 at the time of intravenous administration of pimonidazole may have 
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progressed to a neurological deficit score of 4 by the time of probe insertion and spinal 

oxygen measurement. Secondly, immunohistochemical detection of tissue hypoxia 

using pimonidazole, does not give an absolute oxygen value, as does the oxygen-

sensitive probe. Rather, the output is merely an arbitrary value. DAB does not follow 

Beer-Lamberts law therefore the intensity does not relate to the amount of pimonidazole 

bound.  

The hypoxia appeared to be a global epiphenomenon, affecting all cell types 

within the spinal cord, however, the grey matter labelled particularly obviously for 

hypoxia. Given that the grey matter requires greater vascular perfusion and oxygen 

delivery than the white matter (Leenders et al., 1990; Helenius et al., 2003), the fact that 

the spinal grey matter labels for hypoxia in rMOG EAE is not surprising. In line with 

the current data, the spinal cord grey matter has been found to be especially susceptible 

to ischemic insults (DeGirolami and Zivin, 1982). In the current study, neurons and 

surrounding grey matter in the lumbo-sacral cord showed a tendency to label more 

intensely for hypoxia than other segments. Interestingly, motor neurons that innervate 

the tail (Grossmann et al., 1982) and hind limbs (Mong, 1990) are most concentrated 

within this segment of the spinal cord. Thus suggesting that hypoxia may directly affect 

spinal motor neurons, resulting in dysfunction. Indeed, synaptic transmission in the 

dorsal horn has been shown to be particularly vulnerable to hypoxia (Fukuda et al., 

2006). Hypoxia can also induce metabolic depression via the downregulation of 

particular mitochondrial genes (Benita et al., 2009). Interestingly, a downregulation of 

mitochondrial genes has been observed in the normal appearing grey matter in rMOG 

EAE (Zeiss et al., 2008).  Perhaps, in the case of EAE, metabolic depression may be 

detrimental rather than protective, or protective at the expense of function.  
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The hypoxia was found to be associated temporally, spatially and quantitatively 

with the neurological deficit. Thus, the hypoxia was prevalent during the first three days 

following onset of the neurological deficit, with a descending gradient along the rostro-

caudal axis. Furthermore, the hypoxia increased with increasing neurological deficit. 

These findings suggest that tissue hypoxia may contribute to the expression, and 

progression, of a functional deficit in rMOG EAE.  

The transcription factor HIF-1α, an important mediator of hypoxia-induced 

responses, is prominently expressed within glia, macrophages and some endothelial 

cells in active MS lesions (Aboul-Enein et al., 2003). The current study reports the 

additional presence of HIF-1α in neurons and inflammatory cells of symptomatic rMOG 

animals. The intensity of the HIF-1α labelling correlated well with the intensity of the 

pimonidazole labelling, thus further strengthening the finding that the spinal cord in 

hypoxic in rMOG EAE. In cancer research the correlation between HIF-1α and 

pimonidazole has been somewhat varied. Some studies report a significant correlation 

between the labels (Goethals et al., 2006), whereas others report a poor, insignificant 

correlation (Janssen et al., 2002; Begg, 2003). These discrepancies have been attributed 

to differences in the biology of individual tumours. HIF-1α is the principal regulator of 

the adaptative response to hypoxia, and perhaps inflammation.  

 

2.4.3.0 Hypoxia-induced vascular changes  

HIF-1α has been estimated, at least in vitro, to regulate more than 50% of the genes that 

respond to hypoxia (Elvidge et al., 2006). One such gene is VEGF, a crucial mediator of 

angiogenesis. The present study reports increased vascular density at relapse and 

remission in rMOG EAE, compared to controls. Moreover these vessels had a 

fenestrated, abnormal appearance, and this is in line with previous findings in EAE 
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(Seabrook et al., 2010). Although angiogenesis is a common compensatory response 

following inflammation (Cramer et al., 2003; Walmsley et al., 2005), and hypoxia 

(LaManna et al., 1992), there is a difference between physiological and pathological 

angiogensis. Physiological angiogenesis is a tightly regulated process, mediated by a 

number of growth factors, and pro-angiogenic cytokines, as well as angiogenic 

inhibitors. A disruption in the balance of these mediators leads to aberrant angiogenesis. 

Although a pro-angiogenic environment has been reported to exist in MS lesions 

(Holley et al., 2010; Seabrook et al., 2010), and EAE (Seabrook et al., 2010), the 

fenestrated and abnormal appearance of the vessels during the angiogenic relapse stage 

of EAE, in the current study, suggests that the angiogenesis may be pathological, 

thereby propagating the disease process. This hypothesis is supported by the fact that 

the infusion of VEGF exacerbates the neurological deficit in EAE (Proescholdt et al., 

2002), whereas treatment with a VEGFR-2 receptor antagonist ameliorates neurological 

deficit (Roscoe et al., 2009).  

 

 

2.4.4.0 Potential causes of hypoxia during neuroinflammation 

Under inflammatory conditions, tissue hypoxia will ensue when the oxygen demand of 

the cells outweighs the supply. Increases in metabolic demand may result from the 

recruitment and activation of inflammatory cells such as myeloid cells, and 

lymphocytes, whereas alterations in the supply of nutrients may result from the vascular 

disturbances, such as thrombosis, or endothelial cell damage/dysfunction. 

Inflammatory cells of different lineage have significantly different metabolic 

and oxygen demands. Whereas cells of myeloid lineage, such as neutrophils and 

macrophages, rely almost exclusively on glycolysis for energy, lymphocytes 
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predominantly use oxidative phosphorylation (Fox et al., 2005; van Raam et al., 2008). 

These differences in energy metabolism are thought to influence the nature of the 

immune response. Neutrophils are primarily glycolytic, have few mitochondria, and 

therefore produce very little energy from respiration (Borregaard and Herlin, 1982). 

This unique phenotype is thought to ensure that myeloid cells can function at the very 

low oxygen concentrations that are associated with inflammatory lesions. Up-regulation 

of HIF-1α in these cells is essential to survival, and function (Cramer et al., 2003; Kong 

et al., 2004; Kong et al., 2007). T-lymphocytes, in comparison, rely heavily on 

oxidative phosphorylation, and therefore utilise glucose, amino acids and lipids as 

energy sources (Kominsky et al., 2010). Cell migration during the recruitment of 

inflammatory cells, requires large amounts of actin turnover, and is therefore 

metabolically expensive (Pollard and Borisy, 2003; Kominsky et al., 2010). In addition, 

proliferation of inflammatory cells can also be very metabolically demanding (Greiner 

et al., 1994). Once at the site of inflammation, the nutrient, energy and oxygen demands 

increase, for processes such as phagocytosis. 

 During phagocytosis, neutrophils and macrophages increase their oxygen 

consumption by as much as fifty fold in the generation of ROS (Gabig et al., 1979; 

Baboir et al., 1984). This process known as the respiratory burst, is mediated by the 

oxygen-dependent enzyme NADPH oxidase. The core enzyme itself is comprised of 

five phagocytic oxidase (phox) subunits; p40
phox

, p47
phox

, p67
phox

, p22
phox

 and p91
phox

. 

In resting leukocytes, the enzyme is kept inactive through differential distribution of 

these subunits between the plasma membrane and cytosol. The cytosolic complex 

consists of p40
phox

, p47
phox

, p67
phox

 subunits. Upon exposure to a variety of stimuli, the 

p47phox is hyperphosphorylated, resulting in the translocation of the complex to the 

plasma membrane where it associates with the remaining two subunits, to form the 



 
 

112 

 

active oxidase (Baboir, 1999). The current study provides evidence that the expression 

of NADPH oxidase subunits p22phox and p47phox is increased in rMOG animals 

expressing a neurological deficit, compared to control animals. Furthermore, co-

expression of the two subunits, indicative of functional enzyme complex, was more 

prevalent in animals with a high neurological deficit score and predominantly localised 

perivascularly. NADPH oxidase expression has recently been described in MS lesions 

(Fischer et al., 2012). In line with the present findings, Fischer et al described increased 

expression of p22phox and p47phox in ‘pre-phagocytic’ lesions. Furthermore, they 

show that NADPH oxidase subunit expression is decreased in macrophages that have 

taken up myelin debris (Fischer et al., 2012). Besides increased oxygen consumption, an 

increased affinity of glucose transporters for glucose, and thus glucose uptake, has been 

reported, during activation of the respiratory burst (Ahmed et al., 1997). Indeed, energy 

needed to fuel NADPH oxidase is primarily derived from extracellular glucose, which is 

quickly metabolised by the hexose monophosphate shunt to produce NADPH (Kiyotaki 

et al., 1984; Rist et al., 1991; Ahmed et al., 1997). Thus, the presence, and activity of 

NADPH oxidase in rMOG EAE, may account for some of the metabolic changes that 

would eventually lead to tissue hypoxia. Certainly, the perivascular localisation of the 

functional enzyme complex, in the present study, ensures a continuous supply of 

essential nutrients required for the respiratory burst.  Consequent to the perivascular 

distribution of inflammatory cells, the distance between the blood vessel and the 

surrounding tissue will be increased, and the available oxygen and glucose, for the 

remaining tissue will be decreased. Cells must be within 100-200μm from a vessel to 

prevent detrimental effects (Carmeliet and Jain, 2000; Kirk et al., 2004), thus this 

increased distance and decreased nutrient availability may pose a threat to the survival 

of the surrounding tissue. Despite this, polymorphisms in the p47phox subunit that 



 
 

113 

 

increase its expression have been shown to ameliorate the disease and pathology in EAE 

(Becanovic et al., 2006). This finding suggests that, independent of tissue damage, ROS 

may play a role in modulating the immune response (Lassmann and van Horssen, 2011). 

Blood vessels can become damaged during the inflammatory process, resulting 

in the disruption of supply and thereby tissue hypoxia. Endothelial damage or an 

inflammatory reaction at the vessel wall may result in the activation of haemostasis, 

followed by thrombotic occlusion and microcirculatory disruptions (Lassmann, 2003). 

The perivascular nature of functionally active NADPH oxidase complexes, as reported 

in the current study, represents a potent source of ROS which could easily initiate such 

a cascade of events.  Alternatively, the reaction could be the result of either an antibody 

mediated response, whereby recognition of an antigen within the vessel wall, or a 

cytokine mediated response (Lassmann, 2003), can result in endothelial activation and 

the subsequent upregulation of adhesion molecules (Millan et al., 1997; Lassmann, 

2003).  

CD8+ T-cells auto-reactive for MBP have also been suggested to play a role to 

play in vascular damage in EAE (Huseby et al., 2001). Huseby and colleagues induced 

EAE by the passive transfer of MHC class I restricted T cells directed against MBP. 

The animals developed widespread CNS inflammation, with inflammatory lesions 

characterized by perivascular tissue damage (Huseby et al., 2001). It is thought that 

myelin basic protein liberated from demyelinating lesions diffuses to nearby vessels, 

where it is presented to cytotoxic T-cells, resulting in the initiation of an inflammatory 

response (Lassmann, 2003).  
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2.4.5.0 Hypoxia during relapse 

Besides evidence of global tissue hypoxia during the first peak of disease, intense foci 

of pimonidazole labelling, were found in the white matter of animals in the relapse stage 

of disease. Indeed, these areas of hypoxia were found to be largely demyelinated, 

packed full of ‘foamy’ macrophages, positive for NADPH oxidase and relatively sparse 

in vasculature, probably as a result of dispersion due to oedema. It is reasonable to 

propose that a combination of the factors described above may result in local ischaemia, 

and thus foci of pimonidazole labelling. Alternatively, these areas may represent glial 

scars, as reactive astrocytes were evident in the foci. Astrocytes are thought to 

contribute to the pathogenesis of MS by inhibiting remyelination (Nair et al., 2008). 

They might achieve this through the formation of a glial scar, which can act as a 

physical barrier around demyelinated lesions. The scars are composed of interwoven 

astrocytic processes, held together by tight junctions (Eng et al., 1987; Reier and Houle, 

1988). Glial scars have been reported in MS (Holley et al., 2003), and EAE (Matsumoto 

et al., 1992).     

 

2.4.6.0 Oxygen therapy in rMOG EAE 

 2.4.6.1 One hour oxygen therapy 

Given the current finding that hypoxia correlates quantitatively, spatially and temporally 

with the neurological deficit in rMOG EAE, it seemed reasonable to explore the effect 

of increasing tissue oxygenation on the neurological dysfunction in this model of MS. 

The current study shows that the loss of function in rMOG EAE animals was partially 

restored following acute administration of normobaric oxygen (NBO), in the current 

study. The promptness of this restoration of function supports the suggestion that the 

neurological deficit in rMOG EAE is at least partly due to hypoxia. Indeed, hypoxia 
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may explain the occurrence of some symptoms such as fatigue, often observed in MS 

patients (Freal et al., 1984; Krupp et al., 1988; Bakshi et al., 2000), although fatigue in 

MS is complex and may be attributable to a number of factors. These findings are 

consistent with the historical observations that vasodilators such as histamine, can 

improve symptoms in patients with MS (Brickner, 1955; Brickner, 1958). In these 

studies, patients frequently displayed drastic functional improvements within only an 

hour of a histamine injection. This acute improvement became known as “relief by 

flush”, due to the flushing of the skin in response to the vasodilation (Brickner, 1955). 

Interestingly, the therapy was only efficacious in patients in which symptoms had been 

present for only a few weeks (Brickner, 1995). Consistent with this historical 

observation, the present data suggest that the oxygen-sensitive period in EAE only 

persists for the first few days following the onset of neurological deficit, implying that 

the therapeutic window is narrow and the timing of therapy crucial, for an observable 

functional benefit. 

 The promptness of the restoration of function following NBO was surprising, 

given that the arterial haemoglobin (Hb) oxygen saturation (SaO2) is normally 97% 

whilst breathing room air. However, inspiring 100% oxygen at 1 atmosphere (ATM) 

increases the SaO2 to 100% and the total oxygen content of the blood by approximately 

20 ml/L (Beynon et al., 2012). This increase is accounted for by an increase in the 

amount of oxygen dissolved in plasma (Beynon et al., 2012). Furthermore, oxygen 

delivery from capillaries has been described to occur radially, with each capillary 

supplying a cylindrical volume of tissue surrounding it (Krogh, 1919). This area of 

supply has been proposed to increase if the oxygen tension is increased (Krogh, 1919), 

as with therapeutic hypoxia. Therefore, it is understandable how an increased tissue 

oxygenation can be achieved with NBO therapy. 
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 Re-oxygenation of hypoxic tissue, particularly at high atmospheric pressures, 

has previously been associated with an increase in oxidative stress and damage (Clark, 

2008). However, the current preliminary histological examination of ROS and oxidised 

DNA did not reveal evidence of such damage. This finding is consistent with previous 

studies that also show no detectable increase in oxidative damage, following NBO 

(Singhal et al., 2002). However, the safety of prolonged oxygen administration remains 

unclear and requires further investigation. 

  

 2.4.6.2 One hour oxygen therapy reverses labelling for hypoxia 

Given that NBO can partially restore function in rMOG EAE, it was of interest to 

determine whether it could also reverse the labelling for hypoxia. Indeed, a decrease in 

the labelling for markers of hypoxia was observed in control and symptomatic animals.  

Furthermore, the labelling in rMOG animals that exhibited a neurological deficit and 

were treated with NBO, was lower than that in IFA control animals exposed to NBO. 

Although this observation is difficult to interpret, it may represent differences in the 

physiological properties of the tissue in the respective groups. It seems reasonable to 

propose that the inflammation and subsequent oxygen debt in the spinal cords of rMOG 

animals creates a steep oxygen diffusion gradient, resulting in more oxygen being 

extracted from the blood. Conversely, there is no such inflammation or oxygen debt in 

the spinal cords of control animals, thus a smaller diffusion gradient would exist, 

resulting in less oxygen to be extracted from the blood. Increased oxygen concentrations 

in the tissue will lead to rapid metabolism and excretion of pimonidazole (Arteel et al., 

1998), and rapid degredation of HIF-1α (Maxwell et al., 1999; Ivan et al., 2001; 

Jaakkola et al., 2001; Kilmova and Chandel, 2008). Therefore, if more oxygen is 



 
 

117 

 

available in spinal cord tissue of rMOG animals, there will be a decrease in the 

immunoreactivity of these markers. 

  

2.4.6.3 7-day combination therapy 

Due to its ability to impair axonal conduction (Redford et al., 1997; Shrager et al., 1998) 

and mitochondrial energy metabolism (Bolanos et al., 1994; Brown et al., 1995), NO 

has been viewed as a key inflammatory mediator of neurological dysfunction. More 

recently, a role for ROS/RNS has also emerged (Qi et al., 2006; Nikić et al., 2011). 

Accordingly, the present study set out to identify the relative contributions of each of 

these factors, in addition to hypoxia, to the development and progression of 

neurological dysfunction in rMOG EAE. The present results describe a transient 

improvement of animals treated with 1400W, an iNOS inhibitor, and MitoQ, a 

mitochodrially targeted antioxidant, compared with non-treated controls, thereby 

suggesting a role for NO and superoxide in the production of neurological deficits. 

Although the administration of these agents individually did not result in a statistically 

significant improvement in the neurological deficit score, when the agents were 

administered together with oxygen a significant, and biologically important, 

improvement in walking ability was achieved. The improvement was evident in the first 

few days following the onset of disease, when iNOS is expressed within the tissue. 

During this period, NO likely promotes mitochondrial dysfunction (Bolanos et al., 

1994; Brown et al., 1995), thereby exacerbating an energy deficit resulting from 

inadequate oxygenation.   

 The decreased efficacy of 1400W and MitoQ, when administered alone was 

somewhat surprising. We have found the expression of iNOS to be very variable 

between different EAE trials, suggesting that although NO can be an important cause of 
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neurological dysfunction it may not be the only factor involved. Previous studies have 

reported conflicting results with iNOS inhibition in EAE, with some reporting a 

functional benefit (Zhao et al., 1996; Brenner et al., 1997), whilst others report a 

worsening of neurological dysfunction (Willenborg et al., 1999). These discrepancies 

may either reflect the heterogeneous nature of different EAE models, differences in the 

type of inhibitor employed, or differences in the timing of the therapy. Mitochondrial 

membrane potential drives MitoQ uptake and accumulation into the mitochondrial 

matrix (Liberman and Skulachev, 1970; Ross et al., 2005). Therefore, although the 

administration of MitoQ had some effects on the disease course, its therapeutic efficacy 

may have been attenuated by the loss of mitochondrial membrane potential. Indeed, 

mitochondrial pathology and loss of membrane potential has been described in EAE (Qi 

et al., 2006; Nikic et al., 2011). 

 The present results suggest an important role for hypoxia in the 

production of neurological deficits in rMOG EAE, and that the therapeutic window is 

narrow. This finding may explain why many of the hyperbaric oxygen (HBO) trials 

failed, 30 years ago (Bennett and Heard, 2010). Many of the trials were designed to 

detect an effect of daily, short exposures to HBO on disease course over the course of a 

few months, rather than an acute effect on symptoms. Thus, the trials did not aim to 

recruit patients with early disease, or during relapses. Such factors have been 

highlighted as key determinants of therapeutic benefit in the current study; we therefore 

believe that the HBO trial data are not relevant in this context.  

 

2.4.7.0 Conclusion 

The current study provides chemical, physical and therapeutic evidence that 

neurological deficits in rMOG EAE can arise from tissue hypoxia. Moreover, the 
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hypoxia is quantitatively, spatially and temporally associated with the onset and 

distribution of neurological dysfunction. Early treatment with NBO not only alleviates 

the hypoxia, but is also effective in reducing the severity of the neurological deficit. 

Although further studies are necessary to investigate the best therapeutic regimen, these 

novel findings provide further insight into the pathogenesis and pathophysiology of 

EAE, and perhaps also MS.  
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CHAPTER THREE 

 

THE DORSAL COLUMN LPS LESION 

 

3.1.0.0 INTRODUCTION 

Demyelination is a cardinal feature of MS, but the mechanism(s) by which it occurs 

remain uncertain.  Many favour an autoimmune mechanism, but examination of the 

early forming lesion indicates roles for innate immunity (Barnett and Prineas, 2004) and 

‘hypoxia-like’ (Aboul-Enein et al., 2003) mechanisms. The intraspinal injection of LPS 

into the rat dorsal column induces a focal, inflammatory demyelinating lesion (Felts et 

al., 2005) and has been demonstrated to be an accurate model of the MS Pattern III 

lesion (Marik et al., 2007). Pattern III lesions are characterised by the preferential loss 

of MAG, which is associated with nuclear condensation and fragmentation in 

oligodendrocytes (Lucchinettti et al., 2000). HIF-1α positive oligodendrocytes, 

astrocytes and endothelial cells are also found within areas of MAG loss in Pattern III 

lesions (Aboul-Enein et al., 2003). These pathological findings are similar to that seen 

in white matter stroke, thereby leading to the suggestion that a common mechanism of 

injury exists, that is, a ‘hypoxia-like‘ metabolic tissue injury (Aboul-Enein et al., 2003). 

Indeed, loss of the mitochondrial proteins of COX-I and COX-IV of respiratory 

complex IV, and general reduction of mitochondrial density, has also been found in 

Pattern III lesions (Mahad et al., 2008). In agreement with this, microarray studies on 

the NAWM of MS patients have revealed an up-regulation of a number of genes 

consistent with an energy deficit (Graumann et al., 2003). To date, however, the data 

have been interpreted as a hypoxic pre-conditioning, rather than hypoxia per se. Thus, 

the demyelination in the Pattern III MS lesion has been attributed to an energy deficit 
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arising from NO-mediated mitochondrial inhibition (Aboul-Enein et al., 2003).  Indeed 

NO is capable of interfering with mitochondrial function in the brain, through the 

inhibition of respiratory chain complex II, III and especially IV activity (Bolanos et al., 

1994), and reversibly inhibiting oxygen consumption (Schweizer and Richter, 1994). 

Despite this, NO may not be sufficient to induce structural damage acting alone. Indeed, 

treatment with dexamethasone was found to suppress iNOS activity, but did not affect 

the extent of demyelination (Felts et al., 2005). Besides NO, increases in ROS and 

hypoxia (Taylor and Colgan, 2007) are also evident within the inflammatory milieu. NO 

itself can promote mitochondrial superoxide production via NO-mediated mitochondrial 

damage, and subsequent ATP depletion (Murphy, 2009), and can increase the 

vulnerability of cells, such as oligodendrocytes, to hypoxia, by raising the apparent Km 

of mitochondrial complex IV for oxygen (Brown and Cooper, 1994). Thus we propose 

an alternative mechanism for causing demyelination involving hypoxia, NO and 

superoxide, and have therefore, examined the animal model of the human lesion for 

evidence of these pathological features. 

 

3.1.1.0 Aims 

1. To determine whether the DC LPS lesion labels for hypoxia. 

2. To identify whether superoxide production is increased within the lesion. 

3. To investigate the pathological factors that may contribute to the ‘hypoxia-like’ 

demyelination. 

 

3.1.2.0 Hypothesis 

Hypoxia precedes demyelination in the experimental Pattern III lesion. 
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3.2.0.0 MATERIALS AND METHODS 

3.2.1.0 Surgery 

A laminectomy was performed between T12 and T13 vertebral levels in adult male 

Sprague Dawley rats (312g ± 31.9, mean ± S.D.). A small hole was made in the dura, a 

drawn glass micropipette inserted into the right dorsal column, and 0.5μl of LPS 

(Salmonella enteric serotype abortus equi, Sigma-Aldrich) (100ng/µl saline) injected at 

depths of 0.7 and 0.4 mm, respectively (n = 3 rats per time point). The location of the 

injection site was marked with charcoal. Control animals received injections of saline 

alone (n = 2 per time point).  

 

3.2.2.0 Tissue Processing 

Pimonidazole (60 mg/kg in sterile saline), and DHE (1μg/ml in DMSO) were 

administered intravenously into the saphenous veins of all animals, under light 

anaesthesia (2% isofluorane), with recovery, 4 hours prior to perfusion. Animals were 

perfused trans-cardially with PBS, followed by 4% PFA, at 0.5, 1, 2, 3, 7 and 14 days 

post-LPS injection and the spinal cord harvested. Spinal cords were transected at the 

site of the injection and the rostral portion processed for resin sections and the caudal 

portion processed for cryosections. Tissue was post-fixed overnight in 4% PFA prior to 

either post-fixation in 4% glutaraldehyde in 0.15M phosphate buffer, or cryoprotection 

in 30% sucrose in PBS, for resin processing or immunohistochemical analysis, 

respectively. Frozen tissue used for immunohistochemistry was processed as described 

previously (section 2.2.5). 
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3.2.3.0 Histology  

 3.2.3.1 IHC/IF 

Spinal cord sections were air dried for a few hours prior to any histology. Spinal cord 

tissue from the site of the injection of LPS was examined immunohistochemically using 

a range of markers for inflammation, hypoxia, and ROS (Table 3.2.3.1). Briefly, 

sections were washed with PBS, prior to incubation with either 0.3% H2O2 in neat 

methanol, or neat methanol alone for IHC and IF, respectively. Sections were blocked 

in the appropriate blocking buffer for 30 minutes, before incubation in primary antibody 

overnight at 4
o
C. Primary antibodies were visualised either using the DAB/peroxidase 

or fluorescent reporter systems. For the detection of superoxide production, spinal cord 

sections were washed in PBS and mounted in Vectashield medium, prior to confocal 

microscopy. 
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Table 3.2.3.1: Antibody Details for IHC/IF 
 

Antibody 

 

Target Isotype 
Pre- 

Treatment 
Blocker Dilution Supplier 

Rabbit 

Anti-iNOS 

 

Inducible Nitric Oxide 

Synthase 

 

 N/A 

 

5% goat serum 

mixed in PBS 
containing 0.1% 

Triton X-100 

 

1/200 

BD 
Transductions 

Laboratories 

Franklin Lakes, 
NJ 

Mouse 

Hydroxyprobe-

1-Mab anti-

pimonidazole 

 

Pimonidazole 
adducts 

 

 NaBH4 

 

0.25% casein  

mixed in PBS 
containing 0.1%  

Triton X-100 (for 

IHC) 
 

5% goat serum 

mixed in PBS 

containing 0.1% 

Triton X-100 (for 

IF) 
 

1:500 

 

 
 

 

 

1:200 

HPI Inc 

Rabbit 

Hydroxyprobe-

1-Mab anti-

pimonidazole 

 

Pimonidazole 

adducts 

 

 NaBH4 

 

5% goat serum 
mixed in PBS 

containing 0.1% 

Triton X-100 

 

1/200 HPI Inc 

Rabbit 

Anti-HIF-1α 

 

Active Hypoxia Inducible 

Factor-1α 
 

 NaBH4 

 

5% goat serum 

mixed in PBS 
containing 0.1% 

Triton X-100 

1/500 
Milipore Inc 

Billerica, MA 

Rabbit 

Anti-GLUT-1 

 

 

Glucose transporter  N/A 

 
5% goat serum 

mixed in PBS 

containing 0.1% 
Triton X-100 

1/200 Abcam 

Mouse 

Anti-VEGF 

Vascular endothelial  

growth factor 
 

 N/A 

 

5% horse  mixed 
in PBS containing 

0.1% Triton X-

100 
 

1/500 

Abcam 

 
 

Mouse 

Anti-GFAP 

 

 

Astrocytes  NaBH4 

 

5% goat serum 

mixed in PBS 
containing 0.1% 

Triton X-100 

 

1/400 Sigma 

 

Rabbit 

Carbonic 

anhydrase 2 

(CA2) 

 

Oligodendrocytes  NaBH4 

5% goat serum 
mixed in PBS 

containing 0.1% 

Triton X-100 
 

1/200 

Kindly 

provided by Dr 

N. Gregson 
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 3.2.3.2 Resin Sections 

Spinal cord tissue was cut into 0.5 mm thick segments and post-fixed in 1.5% osmium 

tetroxide in 0.15 M phosphate buffer, with subsequent dehydration in graded alcohols, 

passed through propylene oxide and embedded in resin (Taab Laboratories, 

Aldermaston, UK). Sections were cut to a thickness of 1 µm on an ultramicrotome 

(Leica Microsystems, UK), and stained with 0.1% thionin acetate and 1% aqueous basic 

acridine orange. Stained sections were then mounted in DPX mounting medium and 

examined with light microscopy. 

 

3.2.4.0 Microscopy 

 3.2.4.1 Light Microscopy and Quantification 

Tissue developed using the peroxidase detection system was viewed using an Axiophot 

light microscope (Zeiss, Germany) and pictures taken with a Nikon D300 camera 

(Nikon, USA). All analysis and quantification was performed blind. Analysis of the 

intensity of the labelling with pimonidazole was performed by tracing around the spinal 

cord sections (white and grey matter, and grey matter alone), and measuring the pixel 

intensity using Image J (National institute of health, USA). Quantification of iNOS and 

HIF-1α positive cells was carried out using Image J. Briefly, the images were made 

binary, and then the dorsal columns of each spinal cord section were delineated using 

the freehand selection tool, before using the ‘analyze particles’ tool to count the number 

of positive cells. The same criteria were used for each image, and area measurements 

were carried out concurrently. 
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3.2.4.2 Confocal Laser Microscopy 

Fluorescent images were obtained using a Zeiss LSM5 pascal confocal microscope, 

with a 40x objective. Excitation wavelengths of 488 nm and 543 nm were provided by 

argon and helium-neon gas lasers, respectively. Emission filters BP505-530, BP505-

570, and LP560 were used for obtaining the images. 

 

3.2.5.0 Statistical Analysis 

All data were tested for normality using either the Kolmogorov-Smirnov or the Shapiro-

Wilk test, depending on the size of the data set, and for stability of variances using the 

Levene’s test. Data that were not normally distributed were evaluated using non-

parametric statistics as indicated. P-values of 0.05 (*), 0.01 (**) and 0.001 (***), were 

considered as statistically significant.  All statistical analyses were carried out using 

SPSS version 14.0 (USA). 

 

3.2.5.1 Statistical Analysis of Pimonidazole Intensity 

The pixel intensity of the pimonidazole labelling was normally distributed in all spinal 

cord sections examined.  Therefore, the percentage of pixels labelled with an intensity 

greater than the control mean plus one standard deviation were counted and compared 

to the appropriate vertebral segment-matched control using a two-way ANOVA; the 

room air treatment group and saline-injected group served as controls in each of the 

respective experiments.  

 

2.3.6.2 Statistical Analysis of Other Labels 

A linear regression model was used to compare the iNOS, HIF-1α and RECA-1 

cell densities between LPS-injected animals and saline-injected controls. This was 
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followed by a pairwise comparison at the different time points using an independent t-

test. 
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3.3.0.0 RESULTS 

 

3.3.1.0 Intraspinal injection of LPS induces a focal demyelinating lesion 

The intraspinal injection of LPS into the dorsal columns induced a focal demyelinating 

lesion commencing around 3 days post injection (Figure 3.3.1.0). At the early time 

points (0.5, 1 and 2 days), tissue integrity was largely maintained although evidence of 

inflammation was observed in the dorsal white matter. At 3 days post injection, the 

tissue was largely oedematous and there was evidence of demyelination, particularly at 

the base of the dorsal columns. By 7 days, post injection, the demyelination was more 

extensive, and was localised to the ventral half of the dorsal column, with some 

evidence of tissue oedema (Figure 3.3.1.0). Debris-filled macrophages were also 

observed within the lesion at 7 days. At 14 days post injection, the lesions were 

comprised of demyelinated axons, axons associated with cells (Felts et al., 2005), and 

debris-filled macrophages (Figure 3.3.1.0).  
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Figure 3.3.1.0: Formation of a demyelinating lesion following intraspinal LPS 

injection 
(A-C) Light micrographs of transverse spinal cord sections at the level of the injection of saline (A) or 

LPS (B, C). (A) In saline-injected control animals, tissue appears to be relatively normal, with no 

apparent pathology. (B, C) Following the intraspinal injection of LPS, a focal demyelinating lesion 

appears to form between 3 and 7 days post-injection. In the acute lesion (0.5-2 days post-injection), little 

or no demyelination is present. At 3 days post-injection, several debris-filled macrophages are evident in 

the dorsal columns of LPS-injected animals (C iv, arrowheads). (C v) At 7 days post-injection the lesion 

is oedematous, with some evidence of demyelination. (C vi) By 14 days, the lesion contains demyelinated 

axons, several debris filled macrophages (arrowheads) and axons in association with cells (arrows). Scale 

bars 200µm (A, B), and 100µm (C). All Micrographs are representative. 
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3.3.2.0 The acute DC LPS lesion labels positive for hypoxia 

 

3.3.2.1 Acute transient pimonidazole labelling in the DC LPS lesion 

The intravenous probe pimonidazole was used to detect tissue hypoxia in the DC LPS 

lesion. Pimonidazole immunoreactivity was evident in the grey matter and dorsal 

columns of LPS-injected animals at all the time points examined (Figure 3.3.2.1 A, B). 

However, labelling for pimonidazole was only statistically significantly increased in the 

grey matter of LPS-injected animals at 1 day (p< 0.001) and 2 days (independent t-test, 

p = 0.014) post injection, compared with saline-injected controls. In the acute lesion, 

before any demyelination was evident, labelling for pimonidazole was prominent, 

particularly at 1 day post injection, with a band of intense labelling visible in the 

adjacent grey matter ‘cradling’ the base of the dorsal column (Figure 3.3.2.1 A). The 

grey matter labelling was specific to neuronal cell bodies and the surrounding 

extracellular matrix. Of all the time points examined, labelling for hypoxia was most 

intense at 1 day post LPS injection (Figure 3.3.2.1 A, B).  By 2 days, the intensity of 

pimonidazole labelling decreased in the grey matter, although this still remained 

increased in comparison with saline-injected controls. The Spearman‘s Rank order 

correlation test identified that the intensity of pimonidazole labelling in the acute DC 

LPS lesion strongly correlated with the iNOS cell density (p = 0.08, r
2
 = 0.701, n = 9), 

suggesting that the intensity of pimonidazole labelling increases concomitantly with the 

iNOS cell density.  

Although pimonidazole does not label myelin, leading to the less obvious 

labelling of the white matter, some punctate, cell-specific labelling was observed in the 

dorsal columns of LPS injected animals, particularly evident at 1 day post injection 

(Figure 3.3.2.1 A). Morphological analysis of these cells suggested that they may be 
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composed of oligodendrocytes and astrocytes, therefore double label IF was carried out 

to confirm their identity. This revealed that pimonidazole-positive cells co-labelled with 

CA2, a marker of oligodendrocytes (Ghandour et al., 1980), and GFAP, a marker of 

astrocytes (Figure 3.3.2.1 C). No such labelling was present in saline-injected controls. 
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Figure 3.3.2.1: Pimonidazole immunohistochemistry in the LPS dorsal column 

lesion 

(A) Spinal cord sections at the level of the injection of saline (0.5 days post-injection) or LPS, at 0.5, 1, 2, 

7 and 14 days post-injection labelled with an antibody against bound pimonidazole adducts. Labelling for 

pimonidazole is substantially increased in the grey matter and the dorsal columns of animals injected with 

LPS, compared with saline-injected controls, particularly in the acute lesion (0.5-2 days post-injection). 

Scale bar 200µm. (B) Graphical representation of the intensity of pimonidazole labelling over the time 

course of the LPS dorsal column lesion (control n=2 per time point; LPS n=3 per time point). Labelling 

for pimonidazole is most intense at 1 day post-LPS injection, but decreases thereafter. Statistical 

significance was determined by an independent t-test, comparing saline-injected and LPS-injected 

animals at each time point, * p<0.05, *** p<0.001. Values are mean ± SD. (C-top) Double label 

immunofluorescence with antibodies against pimonidazole (false-coloured red) and CA2 (green) showing 

that a subset of oligodendrocytes label positively for pimonidazole. (C-bottom) Double label 

immunofluorescence with antibodies against pimonidazole (false-coloured red) and GFAP (blue), 

showing that a subset astrocytes also label for pimonidazole. Scale bar 100 µm. All micrographs are 

representative. 
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3.3.2.2 HIF-1α expression in increased in LPS-injected animals 

HIF-1α is expressed in some MS lesions, therefore immunohistochemistry was used to 

identify whether HIF-1α is expressed in the dorsal columns of LPS-injected animals, to 

corroborate our findings with pimonidazole. HIF-1α expression was increased in the 

dorsal columns of LPS-injected animals, compared with saline-injected controls (Figure 

3.3.2.2 A, B). Labelling for HIF-1α was statistically significantly increased at 0.5 days 

(p = 0.022) and 2 days (p = 0.004), post injection. Although extensive labelling was also 

observed at 1 day post-injection, this did not reach statistical significance in our sample 

(p = 0.059). Cytoplasmic and nuclear HIF-1α labelling was seen as early as 0.5 days 

post injection, in the dorsal columns of LPS-injected animals, and at all other time 

points examined (Figure 3.3.2.2 A). Up to, and including, 2 days post injection, these 

HIF-1α-expressing cells, identified as glial cells based on their morphology, were found 

scattered throughout the dorsal columns and did not show a preference for the injection 

side. Moreover, labelling for HIF-1α was also increased in the adjacent grey matter in 

these animals. However, at the subsequent time points the expression of HIF-1α was 

primarily localised to the injection side of the dorsal white matter. The labelling for 

HIF-1α was particularly impressive at 3 days post-LPS injection, where it seemed to be 

expressed by activated macrophages/microglia, within the demyelinating lesions and 

surrounding vessels. At 14 days post LPS injection, endothelial expression of HIF-1α 

was also evident, in addition to the glial expression observed at the earlier time points. 

Saline-injected controls only displayed basal levels of HIF-1α expression within the 

dorsal white matter: very little HIF-1α was observed in the adjacent grey matter (Figure 

3.3.2.2 A, B). 
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Figure 3.3.2.2: HIF-1α immunohistochemistry in the LPS dorsal column lesion 
(A) Spinal cord sections at the level of the injection of saline (0.5 day post-injection), and LPS at 0.5, 1, 

2, 3, 7 and 14 days post-injection, labelled with an antibody against HIF-1α. HIF-1α immunoreactivity is 

increased in LPS-injected animals compared with saline-injected control animals.  HIF-1α positive cells 

are evident in the dorsal column, and adjacent grey matter, of LPS-injected animals. Scale bar 200 µm. 

All micrographs are representative. (B) Graphical representation comparing the HIF-1α cell density 

between saline-injected and LPS-injected animals at all the time points examined. Values are mean ± S.D. 

(n=2 for controls, per time point; n=3 for LPS, per time point). Statistical significance determined by an 

independent t-test comparing the mean cell density between LPS-injected and saline-injected animals, at 

each time point, * p<0.05, **p<0.01. 
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3.3.2.3 The expression of Hypoxia inducible proteins is increased following LPS 

injection 

HIF-1α regulates the transcription of a number of genes. GLUT-1 and VEGF are two 

such genes, and their increased expression in response to hypoxia is well established. 

GLUT-1, expressed on both endothelial cells and glia within the CNS, was increased in 

the dorsal columns of LPS-injected compared with saline-injected controls (Figure 

3.3.2.3 A), particularly at 0.5 days post injection. In the dorsal columns of saline-

injected animals, GLUT-1 was primarily expressed on endothelial cells (Figure 3.3.2.3 

A), however, at the early time points (0.5 and 1 day post LPS-injection), GLUT-1 

expression was seen on endothelial and glial cells. This change in pattern of expression 

probably contributed to the increase in GLUT-1 labelling observed at these early time 

points. By 2 days, the expression of GLUT-1 decreased to that observed in saline-

injected controls (Figure 3.3.2.3 A), with expression restricted to endothelial cells. 

Similarly at the subsequent time points, the extent of GLUT-1 labelling in LPS-injected 

animals was comparable to that seen in saline-injected controls.  

VEGF, a key signal protein responsible for the stimulation of neovascularisation 

and angiogenesis, was clearly expressed in the dorsal columns of LPS-injected animals, 

at all time points examined (Figure 3.3.2.3 A). In the acute lesion, particularly at 0.5 and 

1 day post injection, VEGF was diffusely distributed throughout the dorsal columns, 

with no preference for the injection side (Figure 3.3.2.3 A). However, at the subsequent 

time points, the labelling was observed on endothelial cells. Saline-injected controls did 

not show any evidence of such labelling.  

 Despite the expression of VEGF, there was no apparent increase in vascular 

density within the dorsal columns of LPS injected animals, at any of the time points 
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examined, compared with saline-injected controls. Rather, the vascular density of the 

dorsal white matter in LPS-injected animals was decreased, if not comparable to that of 

control animals (Figure 3.3.2.3 B). However, a considerable degree of variation in the 

vascular density was observed in the control group at different time points (Figure 

3.3.2.3 B). 
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Figure 3.3.2.3: Expression of HIF-1α regulated genes in the LPS dorsal column 

lesion 
(A, left) Spinal cord sections at the level of the injection of saline (0.5 days post-injection), and LPS at 

0.5, 1, 2, 3, 7 and 14 days post-injection, labelled with an antibody against GLUT-1. GLUT-1 

immunoreactivity is increased in the dorsal columns of LPS-injected animals compared with saline-

injected control animals. The increase in immunoreactivity is particularly evident in the acute lesion (0.5-

1 day post-injection), due to the additional expression of GLUT-1 in glia (arrow). (A, right) Spinal cord 

sections at the level of the injection of saline (0.5 days post-injection), and LPS at 0.5, 1, 2, 3, 7 and 14 

days post-injection, labelled with an antibody against VEGF. VEGF immunoreactivity is evident in the 

dorsal columns of animals injected with LPS, at all time points examined. In the acute lesion (0.5-2 days 

post-injection), VEGF immunoreactivity is dispersed throughout the dorsal white matter, however, at the 

subsequent time points, VEGF immunoreactivity is largely restricted to endothelial cells No such 

labelling is evident in the spinal cords of saline-injected controls. Scale bar 200µm. All micrographs are 

representative. (B) Graphical representation of the vascular density within the dorsal columns of animals 

injected with saline or LPS at 0.5, 1, 2, 3, 7, and 14 days post-injection (control n=2 per time point; LPS 

n=3 per time point). Vascular density was relatively comparable between the two groups at all the time 

points examined, with the exception of day 7 post-injection. Values are means ± S.E.M. 
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3.3.3.0 Reactive oxygen and nitrogen species  

 

3.3.3.1 Lateralisation of superoxide production in the acute DC LPS lesion 

Superoxide production was assessed using the intravenous fluorescent probe DHE, and 

was present at basal levels in the spinal cords of saline-injected animals (Figure 3.3.3.1). 

In these animals, uniform superoxide production was typically observed within the 

dorsal columns and grey matter, with particularly prominent neuronal labelling. 

Following the intraspinal injection of LPS, superoxide production appeared to be 

elevated in the dorsal columns and/or grey matter, at most, if not all, the time points 

examined, compared with saline-injected controls (Figure 3.3.3.1). Interestingly, at 1 

day post-injection, there was a lateralisation of superoxide production in the adjacent 

grey matter, on the side of the injection (Figure 3.3.3.1).  
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Figure 3.3.3.1: Lateralisation of superoxide production following LPS-injection 

Confocal laser micrographs of spinal cord sections at the level of the injection of saline (left) and LPS 

(right) at 1 day post-injection, examined for DHE-induced fluorescence. DHE-induced fluorescence is 

evident in saline-injected controls in the grey matter (GM) and dorsal white matter (DC). Following the 

injection of LPS, there is a complete lateralisation of DHE-induced fluorescence in the adjacent grey 

matter, on the side of the injection. Scale bar 200µm. All micrographs are representative.  
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3.3.3.2 Acute iNOS expression following intrapinal LPS injection 

The expression of iNOS is a well documented feature of MS lesions, and its expression 

was acutely increased in the dorsal columns following the intrapinal injection of LPS. 

The expression of iNOS was observed at the earliest time point examined, 0.5 day post 

LPS injection (p< 0.001), but the iNOS-positive cell density was greatest at 1 day (p<  

0.001), before decreasing considerably by 2 days (p = 0.011) post-injection (Figure 

3.3.3.2 A, B). iNOS positive cells were primarily found dispersed diffusely throughout 

the dorsal columns of LPS-injected animals, with no clear preference for the side 

injected. However, some positive cells were also found in the adjacent grey matter, with 

a dense cluster localised in the grey matter at the base of the dorsal columns (Figure 

3.3.3.2 A). This pattern of labelling was particularly obvious at 1 day following the 

injection of LPS. No such labelling was present in saline-injected controls, or in LPS-

injected animals after 2 days post-injection (Figure 3.3.3.2 A, B). 
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Figure 3.3.3.2: iNOS immunoreactivity in the LPS dorsal column lesion 
(A) Spinal cord sections from saline-injected and LPS-injected animals, 0.5, 1 and 2 days post-injection, 

at the site of the injection. iNOS positive cells are prominently expressed at 0.5 and 1 day following LPS 

injection. Positive cells can be seen scattered throughout the dorsal columns, with large clusters in the 

adjacent grey matter. The expression of iNOS is considerably decreased by 2 days post-injection. No such 

labelling is evident in saline-injected controls. Scale bar 200µm. Micrographs are representative. (B) 

Graphical representation comparing the iNOS cell density between saline-injected and LPS-injected 

animals at 0.5, 1 and 2 days post-injection. Values are mean ± S.D. (n=2 for controls, per time point; n=3 

for LPS, per time point). Statistical differences were determined by an independent t-test, * p<0.05, *** 

p<0.001. 
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3.3.3.3 Labelling for nitrotyrosine residues follows the spatio- temporal pattern 

of iNOS 

Nitrotyrosine is the molecular footprint of peroxynitrite, and its transient expression was 

observed in the dorsal columns of LPS-injected animals (Figure 3.3.3.3). The labelling 

followed the spatio-temporal pattern of labelling seen with iNOS. Accordingly, 

nitrotyrosine was present as early as 0.5 days post LPS injection, but most prominent at 

1 day, before decreasing by 2 days post-injection (Figure 3.3.3.3). Nitrotyrosine-

positive cells were observed diffusely dispersed throughout the dorsal columns, with 

aggregates of nitrotyrosine-positive cells at the base of the dorsal column. As with other 

labels, there was no apparent lateralisation of labelling for nitrotyrosine on the side of 

the injection. No such labelling was evident in saline-injected controls (Figure 3.3.3.3) 

or in LPS-injected animals after 2 days post-injection. 
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Figure 3.3.3.3: Nitrotyrosine immunoreactivity in the acute lesion 
Micrographs of spinal cord sections at the level of the injection of saline (top row) or LPS (bottom row), 

labelled with an antibody against 3-NT. In the acute lesion (0.5-2 days), immunoreactivity for 3-NT is 

evident in the dorsal columns of LPS-injected animals, but is absent in saline-injected controls. NT-

positive cells can be seen dispersed throughout the dorsal white matter, however clusters of NT-positive 

cells are also observed in the adjacent grey matter and at the base of the dorsal columns. By 2 days post-

injection, immunoreactivity for NT is decreased considerably. Scale bar 200µm. Micrographs are 

representative.  
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3.4.0.0 DISCUSSION 

The results show that the direct intraspinal injection of LPS into the rat spinal cord 

results in acute, transient tissue hypoxia, with a concomitant increase in NO and 

superoxide production, prior to the onset of demyelination. Moreover this ‘toxic trio’ 

appears to influence the exact topographical location of the demyelinated lesion that 

forms two weeks later.  

 

3.4.1.0 Hypoxia is an early feature of the DC LPS lesion 

LPS is a common inflammagen that is frequently used to induce an innate immune 

response in the CNS (Andersson et al., 1992; Bell and Perry, 1995; Stern et al., 2000). 

In the CNS this endotoxin exerts its actions via Toll-like receptor 4 (TLR4) (Hoshino et 

al., 1999) on resident microglia (Lehnardt et al., 2003), initiating a cascade of events 

that can ultimately lead to neurodegeneration. Sites of inflammation are often hypoxic, 

due to the altered metabolism of the tissue and vascular disturbances. Accordingly, the 

current study demonstrates that prior to the occurrence of demyelination, the rat spinal 

grey and white matter labels positive for pimonidazole, a marker of hypoxia, with the 

extent of labelling greatest at 1 day post LPS injection. The labelling of the grey matter 

for hypoxia was not surprising given that it represents a highly metabolic compartment 

of the CNS that is dominated primarily by excitatory synapses (Abeles, 1991; 

Braitenberg and Schuz, 1998). These synaptic terminals are rich in mitochondria, 

highlighting synapses as major consumers of metabolic energy (Wong-Riley, 1989; 

Wong-Riley et al., 1998). Considering that the majority of the energy used by the grey 

matter goes on signalling processes (Attwell and Laughlin, 2001), one can assume that 
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although the grey matter is well vascularised, the demand for oxygen simply outweighs 

its supply, rendering it vulnerable to becoming hypoxic. 

Besides, the grey matter labelling, the current study reports that 

oligodendrocytes and astrocytes, within the dorsal white matter label positive for 

pimonidazole, 1 day post LPS injection.  These results suggest that oligodendrocytes 

and astrocytes that reside in the base of the dorsal column are vulnerable to hypoxia 

following the intraspinal injection of LPS. This is in line with previous studies that have 

shown that chronic hypoperfusion of the rat forebrain causes preferential death of 

oligodendrocytes, in vivo (Masumura et al., 2001). The vulnerability of 

oligodendrocytes to hypoxia/ischemia is increasingly being recognised, and is largely 

attributed to a number of their intrinsic properties. During myelination, 

oligodendrocytes synthesise approximately three times their weight in membrane per 

day, and eventually support this membrane which accounts for up to a hundred times 

the weight of the cell body (McLaurin and Yong, 1995; Connor and Menzies, 1996; 

Ludwin, 1997; McTigue and Tripathi, 2008; Bradl and Lassmann, 2010). Thus, 

oligodendrocytes are particularly metabolically demanding cells that need to consume 

large amounts of ATP and oxygen (McTigue and Tripathi, 2008) to support and 

maintain their extensive membrane. This high metabolic rate inevitably leads to the 

production of the toxic by-products H2O2 and ROS. Furthermore, the enzymes required 

to synthesise the myelin require iron as a co-factor, resulting in extremely high 

intracellular concentrations of ROS and iron. Indeed, oligodendrocytes contain the 

largest intracellular stores of iron in the brain (Cheepsunthorn et al., 1998; Thorburne 

and Juurlink, 1996), which can predispose them to ROS-mediated damage by evoking 

free radical formation and lipid peroxidation (Braughler et al., 1986; Juurlink, 1997) via 

the fenton reaction. Despite their high ROS-generating potential, oligodendrocytes have 
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a limited capacity to scavenge ROS, containing very low levels of glutathione 

(Thorburne and Juurlink, 1996). Under inflammatory conditions, where the metabolic 

demands of the tissue are higher than the supply of oxygen, it is not surprising that 

oligodendrocytes were found to be hypoxic in the current study.  

The study also found that some astrocytes become hypoxic following LPS-

injection. Astrocytes, unlike oligodendrocytes, have inherent hypoxia-inducible and 

anti-oxidant (Eftekharpour et al., 2000) responses. Moreover, astrocytes are the 

principal site for glycogen storage in the CNS (Phelps, 1972), and they are able to up-

regulate anaerobic isoforms of glycolytic enzymes in response to hypoxia (Marrif and 

Juurlink, 1999). Nevertheless, functional disturbance of astrocytes, defined by the 

retraction of astrocytic foot processes at the glia limitans, loss of aquaporin IV (AQ-4), 

and the loss of connexins, which are of fundamental importance for the formation of 

gap junction between astrocytes and oligodendrocytes, has been recently described in 

the LPS dorsal column lesion (Sharma et al., 2010). Although astrocytes can adapt to 

hypoxic conditions by glycolytic ATP production alone (Swanson, 1992), they are 

particularly vulnerable to the resultant acidosis (Giffard et al., 1990; Swanson et al., 

1997). This sensitivity has been attributed to the fact that astrocytes express an 

electrogenic sodium bicarbonate co-transporter that mediates an inward sodium current 

(Chen and Swanson, 2003), and is thought to explain astrocytic death following 

prolonged hypoxia (Giffard et al., 2000). Therefore, perhaps hypoxia precedes and 

potentially acts as a precursor to the functional disturbances noted in astrocytes 

following the injection of LPS into the dorsal column. 

The transcription factor HIF-1α, an important mediator of hypoxia-induced 

responses, has been found to be prominently expressed within glia, macrophages and 

some endothelial cells, in active MS pattern III lesions (Aboul-Enein et al., 2003). The 
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current study reports the presence of HIF-1α positive cells in the dorsal column of 

animals injected with LPS, at all time points examined. Evidence of HIF-1α expression 

was observed as early as 0.5 days post-injection, with the number of HIF-1α positive 

cells greatest at 1 day post-injection. Moreover, genes, whose expression is under the 

transcriptional control of HIF-1α, were also increased in the dorsal columns following 

LPS injection. This finding is consistent with previous studies that show HIF-1α 

expression in oligodendrocytes, astrocytes and some endothelial cells within Pattern III 

lesions (Aboul-Enein et al., 2003).  

At first glance, one might assume that the stabilisation and accumulation of HIF-

1α confirms that the cells within the dorsal columns of LPS-injected animals are 

hypoxic. However, the interpretation of HIF-1α expression is more complex owing to 

the fact that this transcription factor is not only stabilised under hypoxic conditions via 

stabilisation of oxygen-sensitive enzymes involved in its degradation (Semenza, 2007), 

but is also stabilised by a variety of other mechanisms, including the action of NO 

adducts (Mateo et al., 2003; Kasuno et al., 2004; Peyssonnaux et al., 2005) and ROS 

(Brunelle et al., 2005; Guzy et al., 2005; Mansfield et al., 2005). Therefore, determining 

the exact trigger of HIF-1α stabilisation in an environment where both inflammation 

and hypoxia are present is complicated. Indeed, the expression of HIF-1α occurring 

simultaneously with pimonidazole labelling, particularly at the early time points, makes 

one more inclined to believe that it is the declining concentration of oxygen itself that 

leads to stabilisation of the transcription factor in this model. 

Different cell types would be expected to react differently to low oxygen 

concentrations depending on their capacity to adapt to such an environment. Indeed, the 

stabilisation and subsequent nuclear translocation of HIF-1α in macrophages under 

inflammatory conditions can occur in an oxygen-dependent and oxygen-independent 
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manner (Peyssonnaux et al., 2005). However, hypoxic activation is important, 

potentiating the bactericidal activities of these inflammatory cells (Cramer et al., 2003; 

Peyssonnaux et al., 2005). Active immune cells are adapted to survive in a hypoxic 

milieu, and one such adaptation is a switch to glycolysis (Oda et al., 2006), which is 

facilitated by the expression of HIF-1α. This is consistent with the finding that 

macrophage-like appearing cells label positive for HIF-1α at 3 days post LPS injection 

in the current study.  

HIF-1α supports glycolysis in a number of ways, one of which is the up-

regulation of glucose transporters, namely GLUT-1, a glucose transporter expressed by 

endothelial cells and glial cells. The present study found an increase in expression of 

GLUT-1 in the dorsal columns of LPS-injected animals, which is consistent with 

previous findings that hypoxia induces an up-regulation of this glucose transporter 

(Boardo and Pardridge, 2002), in what appeared morphologically to be endothelial cells 

and glia. Curiously, glial expression of GLUT-1 was only evident in animals injected 

with LPS, and in saline-injected controls GLUT-1 expression was restricted to 

endothelial cells. This shift in the pattern of expression implies that glial cells within the 

dorsal columns may have switched to glycolysis, in response to HIF-1α signalling, and 

additional glucose is required to fuel this process to prevent ATP depletion and 

subsequent cell death. Indeed, astrocytes are capable of switching to glycolytic ATP 

production under hypoxic conditions (Swanson, 1992), and are the primary glial cell 

that express GLUT-1 transporters. Perhaps the astrocytes that up-regulate their 

expression of GLUT-1 are also the ones that do not label for hypoxia. 

A major function of HIF-1α under inflammatory conditions is the promotion of 

angiogenesis (Cramer et al., 2003; Walmsley et al., 2005). VEGF is crucial for 

angiogenesis, and its expression is controlled by HIF-1α. VEGF initiates angiogenesis, 
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allowing the tissue to increase its oxygen supply. We report evidence of VEGF 

expression in the LPS dorsal column lesion at all the time points examined. The 

expression of VEGF in the lesion was initially suspected to represent a compensatory 

response to increase the delivery of oxygen and other metabolic substrates by increasing 

vascularisation (Shweiki et al., 1992; Marti and Risau, 1999). However, an increase in 

the vascular density was not observed following the injection of LPS in the current 

study. This finding may be explained by the pattern of expression of VEGF throughout 

the time course of lesion development. At the early time points, labelling was 

predominantly cellular, whereas at the later time points labelling progressively became 

restricted to endothelial cells. This perhaps suggests that VEGF may exert a 

pathological effect in the LPS DC lesion. VEGF is a known mediator of vascular 

permeability (Dobrogowska et al., 1998; Rosenstein et al., 1998; Proescholdt et al., 

1999; Croll et al., 2004), and recent evidence shows that glial-derived VEGF drives 

BBB disruption and subsequent neuroinflammation in mice (Argaw et al., 2012). 

Moreover, hypoxia-induced VEGF expression has also been reported to cause vascular 

leakage (Schoch et al., 2002). Given that the early expression of VEGF appears to 

coincide with tissue hypoxia in the LPS DC lesion, BBB disruption and vascular 

leakage may represent functions of VEGF during the early stages of neuroinflammation. 

Croll et al (2004) showed that low doses of VEGF infused directly into the neocortex of 

rats does not result in any significant vascular proliferation, even following 7 days of 

infusion.  Furthermore, VEGF-mediated changes in vascular permeability have been 

found to precede the angiogenic response in vivo (Croll et al., 2004). Perhaps, a similar 

situation exists in the LPS DC lesion, and angiogenesis may be evident if searched for 

at subsequent time points.  
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3.4.2.0 NO, superoxide and nitrotyrosine are present in the acute DC LPS 

lesion 

NO is a messenger molecule, which has been studied extensively for its physiological 

and pathophysiological functions. The inducible isoform of NOS, iNOS, is expressed in 

a number of tissues including the CNS, and is regarded as a key source of ROS/RNS 

(Licinio et al., 1999). Pattern III MS lesions show profound up-regulation of iNOS 

(Marik et al., 2007). As described previously (Felts et al., 2005), the intraspinal 

injection of LPS into the dorsal column results in an acute, transient expression of 

iNOS. This NOS isoform produces large amounts of NO, resulting in its rapid 

summation within a local region. The diffusion of NO away from its cellular source is 

thought to be more significant than reactions within the NO producing cell itself 

(Lancaster, 1994). NO is estimated to diffuse in and out of cells thousands of times in a 

second (Beckman and Koppenol, 1996). Although NO has a multitude of potentially 

toxic effects, many of these are probably mediated by the oxidation products of NO. 

One such oxidation product is the highly potent peroxynitrite anion, formed when NO 

reacts with superoxide. The current study reports that the intraspinal injection of LPS 

results in an increase in superoxide production, particularly in the acute lesion, as 

detected by DHE fluorescence. Visualisation of ROS in vivo has previously been proven 

extremely challenging, due to their highly reactive and unstable nature. However, DHE, 

by virtue of its ability to permeate cell membranes is increasingly being employed to 

monitor superoxide production (Bindokas et al., 1996; Owusu-Ansah et al., 2008). 

Initially, DHE was thought to react with superoxide to produce ethidium, which 

intercalates with DNA resulting in red fluorescence (Rothe and Valet, 1990; Carter et 

al., 1994). However, recent studies suggest the DHE and superoxide in fact react to 

produce 2-hydroxyethidium (Zhao et al., 2003; Zhao et al., 2005). Similar to ethidium, 

2-hydroxyethidium also intercalates with DNA resulting in a red fluorescence that is 
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distinctly different from the fluorescence of ethidium (Zhao et al., 2003; Zhao et al., 

2005). Thus, if the correct excitation wavelengths are employed, DHE can be used as an 

in vivo probe for the detection of superoxide production. During inflammation, 

excessive superoxide may be produced enzymatically by NADPH oxidases, which are 

located on the cell surface of polymorphonuclear cells and macrophages (Babior, 2000; 

Babior et al., 2002; Vignais, 2002), and non-enzymatically by dysfunctional 

mitochondria. However, superoxide is relatively unstable, and therefore spontaneously 

dismutates to form oxygen and hydrogen peroxide (Fridovich, 1978). When NO levels 

are elevated, superoxide reacts with NO in a diffusion-limited manner (Huie and 

Padmaja, 1993) such that almost every collision results in the irreversible formation of 

peroxynitrite (Beckman and Koppenol, 1996). Peroxynitrite is a highly reactive free 

radical, with a very short half-life, and therefore interacts with proteins near the site of 

generation.  3-Nitrotyrosine is a putative footprint of tyrosine residues that have been 

nitrated by peroxynitrite, and is considered a useful measure of NO-mediated damage. 

Labelling for 3-nitrotyrosine is evident in the dorsal column following the intraspinal 

injection of LPS, and corresponds precisely with the pattern of iNOS expression. This 

finding strengthens the argument that NO and superoxide are present in the acute lesion, 

and lead to the formation of peroxynitrite. Nitrotyrosine residues are also a feature of 

acute, but not chronic MS lesions (Liu et al., 2001). The nitration of tyrosine residues in 

proteins results in the inhibition of phosphorylation, which is crucial to cellular 

regulation and signal transduction (Martin et al., 1990). However, the transient presence 

of 3-nitrotyrosine suggests that some kind of repair/removal mechanism exists to take 

care of damaged proteins, and potentially limit the propagation of damage. The fate of 

nitrated proteins currently remains unclear. Protein nitration is typically viewed as a 

cumulative, destructive process, however, evidence suggests that nitrated proteins are 
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either degraded (Souza et al., 2000) or subjected to enzymatic ‘denitration’ (Gow et al., 

1996; Kamisaki et al., 1998), the latter of which implies that protein nitration is a 

dynamic process which is reversible (Aulak et al., 2004).  

      

3.4.3.0 Hypoxia, NO and superoxide can coalesce to promote ‘hypoxia-like’ 

demyelination 

The demyelination consequent to the intraspinal injection of LPS has been described as 

‘hypoxia-like‘, and so it resembles the human MS Pattern III lesion that has previously 

been attributed to mitochondrial dysfunction as a result of exposure to NO (Aboul-

Enein et al., 2003). Although NO probably plays a key role, it may not be sufficient to 

cause damage alone. Indeed, treatment with dexamethasone, despite reducing the 

inflammation and suppressing iNOS expression, does not reduce the extent of 

demyelination following the intraspinal injection of LPS (Felts et al., 2005). In the LPS 

dorsal column lesion, the demyelination occurs primarily at the base of the dorsal 

column, but there is no tendency for iNOS positive cells to accumulate in this area. 

Instead, clusters of iNOS positive cells are seen in the adjacent grey matter, cradling the 

base of the dorsal column. This adjacent grey matter also labels intensely for hypoxia, 

and excessive superoxide production. Moreover, labelling for this ‘toxic trio’ is greatest 

at 1 day post LPS injection, 2 days prior to oligodendrocyte loss within the lesion 

(Schonberg et al., 2007). Thus, the results suggest that perhaps hypoxia, NO and 

superoxide may work synergistically to induce damage in vulnerable cells such as 

oligodendrocytes, thereby promoting ‘hypoxia-like’ demyelination. Indeed, the spatio-

temporal nature of the hypoxia, NO and superoxide in LPS-injected animals, appears to 

determine the exact topographical location of the demyelinated lesion two weeks later, 
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suggesting that these toxic mediators may work together to mediate the structural 

damage.  

Although hypoxia, NO and superoxide are all independently capable of inducing 

mitochondrial damage (Bolanos et al., 1994; 1995; 1997; Brorson et al., 1999; Heales et 

al., 1999; Weinberg et al., 2000), collectively they become a formidable force. NO 

increases the apparent Km of respiration for oxygen (Brown and Cooper, 1994; Mander 

et al., 2005), i.e. the amount of oxygen required for cellular respiration, thus sensitising 

the brain and/or spinal cord to hypoxia (Mander and Brown, 2004). Furthermore, 

prolonged exposure to NO leads to a persistent, non-competitive inhibition of complex I 

and other respiratory enzymes by S-nitrosylation (Clementi et al., 1998; Beltran et al., 

2000), and this has been found to be enhanced by hypoxia (Frost et al., 2005). The 

presence and aberrant production of superoxide increases the potential for damage, 

firstly by elevating free iron levels (Flint and Emptage, 1990; Liochev and Fridovich, 

1994; Keyer and Imlay, 1996), thereby increasing the rate of DNA damage, and 

secondly by promoting the formation of peroxynitrite. Excessive peroxynitrite leads to 

the nitration of proteins, inhibition of mitochondrial proteins, depletion of cellular 

energy, DNA damage, and eventually cell death (Virag et al., 2003; Korhonen et al., 

2005).  Oligodendrocytes have a limited capacity to scavenge ROS and they contain 

enormous intracellular stores of iron (Thorburne and Juurlink, 1996; Cheepsunthorn et 

al., 1998), rendering them particularly vulnerable to such an insult.  

On one hand, the presence of hypoxia in addition to elevated NO is 

counterintuitive. One would expect an increase in oxygen concentration, or hyperoxia, 

to result from mitochondrial inhibition by NO. However, molecular oxygen is an 

essential substrate required for the production of NO (Stuehr and Nathan, 1989; Leone 

et al., 1991), and previous studies have reported that after 24 hours of macrophage 
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activation in vitro, all the oxygen consumed by these cells is non-mitochondrial, and 

that 90% of this is due to iNOS activity (Garedew and Moncada, 2008). Indeed, NOS 

requires 2 oxygen molecules for every NO molecule produced. Given that the half-life 

of NO in vivo is approximately 1 s, then 170 nmol of oxygen/min would be required per 

gram of tissue to maintain a steady concentration of 1 µM NO (Beckman and Koppenol, 

1996). Tissue dysoxia, a characteristic feature of septic shock, has been attributed to the 

overproduction of NO, which induces a mitochondrial defect and leads to a decrease in 

oxygen extraction by tissues (Rees et al., 1998; Garedew and Moncada, 2008). Indeed, 

copious amounts of NO are produced during chronic inflammatory and degenerative 

disorders such as MS; therefore, a similar mechanism to that of septic shock may exist 

in such conditions (Moncada and Erusalimsky, 2002) perpetuating the hypoxic 

environment. By virtue of its ability to inhibit cytochrome oxidase, NO shifts the 

electron transport chain to a more reduced state, which is known to enhance superoxide 

formation (Boveris and Chance, 1973). Studies utilising isolated mitochondria have 

shown that exogenous NO can also generate superoxide anions (Poderoso et al., 1996). 

Paradoxically hypoxia-induced ROS production has been shown to occur in a number 

of different tissues, in vitro (Chandel et al., 1998; Guzy et al., 2006). This mechanism of 

superoxide generation, which occurs at the level of complex III, is thought to involve 

the stabilisation of HIF-1α (Chandel et al., 2000), thus mediating the response to 

hypoxia. In this mechanism, the mitochondrial respiratory chain acts as an oxygen 

sensor, by the concomitant release of hydrogen peroxide with superoxide, the former of 

which decreases the activity of PHD thereby stabilising HIF-1α (Chandel et al., 1998; 

Guzy and Schumacker, 2006). Furthermore, this stabilisation can be blocked with 

mitochondrial-targeted antioxidants (Chandel et al., 1998; Guzy and Schumacker, 

2006). Besides its ability to induce mitochondrial ROS formation, hypoxia can also 
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enhance iNOS expression. The promoter region of iNOS contains a hypoxic response 

element (HRE), and its expression can therefore be regulated by HIF-1α (Melillo et al., 

1995; Palmer et al., 1998). Furthermore, hypoxia-induced iNOS expression has been 

demonstrated in vivo (You and Kaur, 2000; Kaur et al., 2006a). It is of interest that 

hypoxia, NO and superoxide, are all associated with one another, such that NO can 

promote both hypoxia (Rees et al., 1998; Garedew and Moncada, 2008) and superoxide 

(Poderoso et al., 1996), whilst hypoxia can promote the formation of NO (Melillo et al., 

1995; Palmer et al., 1998; You and Kaur, 2000; Kaur et al., 2006) and superoxide 

production (Chandel et al., 1998; Chandel et al., 2000; Guzy and Schumacker, 2006). 

Thus this ‘toxic trio’ may not only lead to cell damage, but may also potentiate the 

toxicity via interacting with one another. The toxic effects of the hypoxia, NO and 

superoxide presumably spread to neighbouring tissue, potentially explaining why the 

lesion forms where it does. 

Collectively, the current findings suggest that hypoxia, NO and superoxide may 

work in concert to induce an energy deficit in vulnerable cells such as oligodendrocytes 

in the LPS dorsal column lesion. Oligodendrocytes, by virtue of their dependence on 

oxidative metabolism, large surface area, and high polyunsaturated fatty acid content, 

are presumably highly susceptible to such an insult. Indeed, oligodendrocytes are 

vulnerable to hypoxia (Husain and Juurlink, 1995; Back et al., 2002), in addition to NO 

(Mitrovic et al., 1994), and NO mediated damage. In an environment that is 

simultaneously governed by all three toxic mediators, one might suspect that 

oligodendrocytic mitochondria may become dysfunctional. This in part, is probably due 

to enhanced production of superoxide anion, and thereby peroxynitrite formation.  

Hypoxia has been found to increase the inhibitory effect of NO on mitochondria (Frost 

et al., 2005), and increase the formation of ROS, potentiating the extent of 
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mitochondrial dysfunction (Li and Jackson, 2002; Dada et al., 2003; Schumacker, 

2003). In the LPS dorsal column model, the oligodendrocytes reside in an actively 

inflammed environment, with large populations of iNOS positive cells. Therefore, there 

is increased potential for the formation of ROS/RNS, and hence, a scope for 

mitochondrial dysfunction. The ensuing mitochondrial damage would impinge on the 

ability of mitochondrial to produce ATP (Murphy, 2009), thereby leading to an energy 

deficit in affected oligodendrocytes, and demyelination. Despite these findings, 

however, a recent study has found that oligodendrocytes can survive without functional 

mitochondrial complex IV, and do so by increasing their glycolytic capacity 

(Fünfschilling et al., 2012). Although this novel finding has important implications for 

CNS metabolism, the study was carried out in normal animals, in which there would 

presumably be a continuous supply of nutrients required to sustain an increased 

glycolytic rate in oligodendrocytes. During neuroinflammation, however, the metabolic 

demand of the tissue may outweigh the supply of nutrients such as glucose that is 

essential for glycolysis. Thus, perhaps during pathological conditions, such as 

neuroinflammation, this mechanism of increasing the glycolytic capacity in 

oligodendrocytes to ensure survival would fail. 

 

3.4.4.0 Conclusion 

Demyelination in this proven model of the hypoxia-like, Pattern III MS lesion is 

preceded by labelling for hypoxia, NO and superoxide, all of which can compromise 

energy production. These toxic mediators can independently impair mitochondrial 

function, but they can also act synergistically to suppress ATP production further, 

eventually causing cell death.  The findings suggest that within the inflamed CNS, 
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oligodendrocytes are particularly vulnerable to an energy crisis that is mediated by this 

‘toxic trio’, resulting in ‘hypoxia-like’ demyelination. Furthermore, the 

pathophysiological alterations observed in some astrocytes, namely labelling for 

hypoxia, may be indicative of a role for dysfunctional astrocytes in the development of 

a demyelinating lesion. 

Clearly, the findings of this study warrant further research. Identifying the cause 

of hypoxia in these lesions, and the mechanisms through which it causes damage, may 

provide further insight into the sequence of events that lead to demyelination in MS. 

Thus therapeutic strategies targeted to increase oxygen delivery, inhibit iNOS and 

scavenge ROS, may prove beneficial in limiting the extent of structural damage. 
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CHAPTER FOUR 

 

VULNERABILITY OF THE CNS TO HYPOXIA 

 

4.1.0.0 INTRODUCTION 

The brain is a metabolically expensive organ, consuming 20% and 10% of the total 

oxygen (Afifi and Bergman, 2005) and glucose (McKenna et al., 2006), consumed by 

the body, respectively. Despite this, due to the toxicity of oxygen (Acker, 2005 ), many 

mechanisms exist not only to maintain low oxygen conditions in the brain during ‘rest’, 

but also to increase oxygenation during periods of activity (Allison et al., 2000). Thus, 

the oxygen tension of the brain is spatially and temporally heterogeneous. It seems 

reasonable to presume that due to the vascular architecture, limited glycogen stores, and 

other intrinsic characteristics, the brain is inherently susceptible to hypoxic insults. 

Indeed, cortical atrophy has been found in Everest climbers (8848m), and subcortical 

lesions in inexperienced climbers (Fayed et al., 2006).  In addition to such regional 

vulnerabilities, selective cellular vulnerabilities also exist. Neurons (Goldberg and Choi, 

1993) and oligodendrocytes (Husain and Juurlink, 1995; Lyons and Kettenmann, 1998) 

are particularly vulnerable to perturbations of oxygen concentration, compared with 

microglia and astrocytes, in culture (Lyons and Kettenmann, 1998). This selective 

vulnerability is thought to be due to differences in their metabolic make-up (Belanger et 

al., 2011), and susceptibility to oxidative stress, essentially due to cellular differences in 

the capacity to scavenge free radicals effectively (Juurlink et al., 1997).  

Although hypoxia is an important signal that regulates a wide range of 

physiological responses, it is also a feature of a number of pathological conditions, 
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including inflammation. However, the role hypoxia plays in such conditions is unclear. 

Hypoxia essentially results in the depletion of cellular ATP stores and a subsequent 

switch to anaerobic glycolysis, which requires a continuous supply of glucose. Given 

that vascular disruption and nutrient supply are frequently associated with 

inflammation, one can imagine that hypoxia may potentiate the inflammatory response, 

even in the CNS. Indeed, severe hypoxia is increasingly being recognised as a 

neuroinflammagen (Ock et al., 2005), with hypoxia-induced microglial activation 

suggested to contribute to neuronal damage in stroke as well as in neurodegeneration 

(Gonzalez-Scarano and Baltuch, 1999). Despite this, little is known about the effects of 

acute, moderate hypoxia on the naïve spinal cord. MS lesions, characterised by chronic 

neuroinflammation, show a predilection for the spinal cord. The current study therefore 

aims to investigate the histopathological correlates of acute hypoxia in the rat spinal 

cord, to gain an insight into how it may contribute to neuropathology. 

  

 4.1.1.0 Aims 

1. Identify regions of vulnerability to hypoxia, in the rat spinal cord. 

2. Identify cellular vulnerabilities to hypoxia. 

3. Determine histopathological changes in response to acute hypoxia. 

 

4.1.2.0 Hypothesis 

Regional and cellular vulnerabilities to hypoxia exist in the rat spinal cord. 
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4.2.0.0 MATERIALS AND METHODS 

4.2.1.0 Animals 

Female Dark Agouti (DA) rats (163.7g ±7.8, mean ± standard deviation; SD) were 

exposed to normobaric hypoxia by substituting oxygen with nitrogen using a ProOx 110 

controller (Biospherix Ltd, Salem, NY) in a closed hypoxia chamber (Biospherix Ltd). 

The hypoxic environment was gradually introduced by decreasing the oxygen from 21 

to 10% over 20 minutes, prior to continuous exposure to 10% oxygen for 6 hours (h) (n 

=3), 24 h (n = 6), 48 h (n = 6) and 72 h (n = 6). Control animals were kept in the same 

chamber, on different days, but exposed to room air (21% oxygen) (n = 6). Food and 

water were available ad libitum. 

 

4.2.2.0 Tissue Processing 

A pimonidazole (HPI Inc, Burlington, MA) dose of 180 mg/kg body weight was 

administered intravenously into the saphenous vein of all animals, under light, brief 

anaesthesia, with 2% isoflurane, 4 hours prior to perfusion. All animals were terminally 

anaesthetised with isoflurane, and trans-cardially perfused with phosphate-buffered 

saline, and then 4% paraformaldehyde (PFA) for fixation. To visualise the spinal cord 

vasculature, animals exposed to 6 hours of 10% oxygen were additionally perfused with 

the fluorescent carbocyanine lipophilic dye, DiI (Molecular Probes, Eugene, OR) prior 

to PFA perfusion, as previously described (Li et al., 2008). The spinal cords were 

harvested and post-fixed in 4% PFA overnight, prior to cryoprotection in 30% sucrose. 

The spinal cords were then segmented into 1cm pieces, and frozen by immersion in 

isopentane pre-cooled in liquid nitrogen, and samples stored at -80
0
C until cut. Twelve 
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micron thick transverse sections (or 20 µm-thick sections for the study of the 

vasculature) were cut with a cryostat (Leica Microsystems, Germany) at -20
0
C, and 

thaw-mounted onto glass slides. The sections were stored frozen at -20
0
C until use. 

  

4.2.3.0 Histology 

 4.2.3.1 IHC/IF 

Cyrosections (12μm thick) were air dried and examined immunohistochemically or 

immunofluorescently for a range of markers (Table 4.2.3.1), as described previously 

(section 2.2.3.1). 

4.2.3.2 Double label IHC  

Double label IHC with anti-pimonidazole and anti-RECA1 antibodies was performed 

on tissue from animals exposed for 6 hours to 10% oxygen and perfused with DiI, to 

identify areas of vulnerability to hypoxia. Double label IHC with anti-pimonidazole and 

OX-6 antibodies, was also performed on tissue from animals exposed to 24, 48 and 72 

hours 10% oxygen, to determine whether there was a tendency for cells capable of 

antigen presenting to become activated in hypoxia-susceptible areas of the cord. 

Sections of spinal cord containing vasculature labelled with the lipophillic dye 

DiI (Invitrogen, UK), were imaged using a LSM 5 Pascal confocal microscope (Zeiss), 

prior to proceeding with the IHC protocol. The sections were then processed as above 

(section 2.2.3.1) with mouse monoclonal antibody against pimonidazole. After 

developing with DAB, the sections were rinsed in running tap water before incubating 

in 3% H2O2 in PBS for 20 minutes. Next, the sections were incubated with avidin for 15 

minutes, briefly rinsed in PBS, and then incubated with biotin for 15 minutes 
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(Avidin/Biotin Blocking kit; Vector Laboratories Ltd). PBST (0.1% BSA in PBS 

containing 0.2% Triton-X 100) washes were performed between each step.  Sections 

were incubated with blocker (10% horse serum in PBS containing 0.1% Triton X-100) 

for at least 30 minutes before incubating with either mouse anti-RECA1 or mouse OX-6 

primary antibodies, overnight at 4
o
C. The following day, the sections were processed as 

normal by incubating with biotinylated horse anti-mouse secondary antibody followed 

by incubation with ABC. Finally, RECA-1 and/or OX-6 immunoreactivity was 

developed using DAB-Ni (Vector Labs), which yields a black colour, followed by 

dehydration and mounting, as described above. 
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Table 4.2.3.1: Antibody details for IHC/IF 

Antibody 
Target 

 

Isotype 

Pre- 

Treatment 

Blocker Dilution Supplier 

Mouse 

Hypoxyprobe-1-

Mab Anti-

pimonidazole 

Pimonidazole 

adducts 

Mouse 

IgG1 
NaBH4 

0.25% casein (VWR 

International, UK), 

in PBS containing 
0.1%  Triton X-100 

1:500 

 

HPI Inc 

 

 

Mouse Anti- 

Ox-6 
MHC-II Ia 

Mouse 

IgG1 
N/A 

5% horse serum 
(Sigma) in PBS 

containing 0.1% 

Triton X-100 

10% horse serum for 

double label IHC 

1:600 

 

Abcam 

 

Mouse 

Anti-RECA-1 

Rat Endothelial 
Cells 

Mouse 
IgG1 

N/A 

5% horse serum 

(Sigma) in PBS 

containing 0.1% 
Triton X-100 

10% horse serum for 

double label IHC 

1:200 Abcam 

Mouse 

Anti-rat ED1 

 

Activated 

Macrophages 
/Microglia 

(phagocytes) 

Mouse 
IgG1 

N/A 

 

5% horse serum 

(Sigma) in PBS 
containing 0.1% 

Triton X-100 

 

1:200 
Serotec 

 

Mouse Anti-

GFAP 
Astrocytes 

Mouse 
IgG1 

N/A 

 

5% horse serum 

(Sigma) in PBS 
containing 0.1% 

Triton X-100 

 

1:200 Sigma 

Rabbit Anti-

pimonidazole 

Pimonidazole 

adducts 

Rabbit  

IgG 
NaBH4 

 

5% goat serum 

(Sigma) in PBS 

containing 0.1% 
Triton X-100 

 

1:200 

 

HPI Inc 

 

 

Rabbit Anti-

TLR4 
Toll-like receptor 

4 

 

 

IgG 

 

 

Target retrieval 

solution, pH6.1 

(DAKO) at 40oC 
for 40 minutes 

 

 

5% goat serum 

(Sigma) in PBS 

containing 0.1% 
Triton X-100 

 

1:200 Abcam 
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Rabbit Anti-

inducible nitric 

oxide synthase 

(iNOS) 

iNOS 

(activated 

macrophages/ 

microglia) 

Rabbit 

IgG 
N/A 

 

5% goat serum 
(Sigma) in PBS 

containing 0.1% 

Triton X-100 

 

1:200 
BD 

Transductions 

Rabbit Anti-

GFAP 
Astrocytes 

Rabbit 
IgG 

N/A 

 

5% goat serum 

(Sigma) in PBS 
containing 0.1% 

Triton X-100 

 

1:500 DAKO 

 

Rabbit Anti- 

carbonic 

anhydrase 2 

(CA2) 

 

Oligodendrocytes 
Rabbit 

IgG 
NaBH4 

 

5% goat serum 
mixed in PBS 

containing 0.1% 

Triton X-100 

 

1/200 
Kindly provided 

by N. Gregson 

Rabbit  

Anti-NG2 

Chondroitin 

sulphate 

proteoglycan 

(oligodendrocyte 

precursor cells) 

 

 

IgG 

 

Target retrieval 
solution, pH6.1 

(DAKO) at 40oC 

for 40 minutes 

 

 

5% goat serum 
(Sigma) in PBS 

containing 0.1% 

Triton X-100 

 

1:500 Millipore 

Goat Anti-P-

Selectin 
P-Selectin 

 

 

IgG 

 

Target retrieval 
solution, pH6.1 

(DAKO) at 40oC 

for 40 minutes 

 

 

5% goat serum 
(Sigma) in PBS 

containing 0.1% 

Triton X-100 

 

1:50 Santa Cruz 

Rabbit  

Anti-IBA 

Macrophages 
/Microglia 

Rabbit 
IgG 

N/A 

 

5% goat serum 

(Sigma) in PBS 
containing 0.1% 

Triton X-100 

 

1:500 

(IHC) 

1:200 

(IF) 

WAKO 
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4.2.4.0 3D Reconstruction  

In order to determine the distribution of pimonidazole labelling in relation to the 

vasculature, a 3D reconstruction was performed on serial sections that were double 

labelled with anti-pimonidazole and anti-RECA1 antibodies using a software 

programme known as Reconstruct (Fiala, 2005). Briefly, micrographs of the serial 

sections, of a region of interest, were loaded into the software (Figure: 4.2.4.0 A), prior 

to manual alignment of individual sections. Next, areas of pimonidazole labelling and 

the vasculature were manually delineated in each section (Figure: 4.2.4.0 B-C), and 

linked to one another, so that one vessel or pimonidazole region in one section was 

recognised in an adjacent section. DiI confocal images were then overlaid onto their 

respective DAB-labelled sections to confirm whether all the delineated vessels were, in 

fact vessels. Subsequently, the sections were reconstructed into a 3D scene, using the 

software, and the distances between individual vessels and pimonidazole labelled 

regions were calculated.  
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Figure 4.2.4.0: 3D reconstruction of serial histological sections  

(A) Serially immunolabelled sections (pimonidazole: brown, RECA-1: black) were photographed and 

imported into the software. (B) Sections were manually aligned, and pimonidazole positive regions 

(yellow), and RECA-1
+ 

vessels (blue), delineated. (C) This was repeated for every section to enable 

accurate reconstruction. 
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 4.2.5.0 Microscopy 

4.2.5.1 Light Microscopy and Quantification 

Tissue stained with DAB was viewed using an Axiophot light microscope (Zeiss, 

Germany) and pictures taken with a Nikon D300 camera (Nikon, USA). The 

illumination was kept constant throughout image acquisition. Analysis of the intensity 

of the labelling with pimonidazole was carried out by tracing around the spinal cord 

sections (white and grey matter, and grey matter alone), and measuring the pixel 

intensity using Image J (National institute of health, USA). Quantification of OX-6 

positive cells, and phenotype, was carried out manually, at different levels of the cord 

using Image J. Quantification of all other markers was carried out using the ‘analyse 

particles’ tool, on thresholded images, to determine the number, and occasionally the 

size, of positively labelled cells. The same criteria were used for each image, and area 

measurements were carried out concurrently.  

 

 4.2.5.2 Confocal Laser Microscopy 

Confocal fluorescent images were obtained using a Zeiss LSM5 Pascal confocal 

microscope, with a 40x objective. Excitation wavelengths of 488 nm and 543 nm were 

provided by argon and helium-neon gas lasers, respectively. Emission filters BP505-530 

and LP560 were used for obtaining the images. 
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4.2.6.0 Statistical Analysis  

All data were tested for normality using either the Kolmogorov-Smirnov or the Shapiro-

Wilk test, and the stability of variances assessed using the Levene’s test. Data that were 

not normally distributed were evaluated using non-parametric statistics as indicated. P-

values of p<0.05 (*), p<0.01 (**) and p<0.001 (***), were considered as statistically 

significant.  All statistical analyses were carried out using SPSS version 14.0 (USA). 

 

4.2.6.1 Statistical Analysis of Pimonidazole Intensity 

The pixel intensity of the pimonidazole labelling was normally distributed in all spinal 

cord sections examined.  Therefore, the percentage of pixels labelled with an intensity 

greater than the control mean plus one standard deviation were counted and compared 

to the appropriate vertebral segment-matched control using a two-way ANOVA; the 

room air treatment group and saline-injected group served as controls in each of the 

respective experiments.  

 

4.2.6.2 Statistical Analysis of Other Labels 

The data obtained from sections labelled with RECA-1 followed a normal distribution, 

therefore, the independent t-test was used to compare the RECA-1 cell density, at each 

spinal cord segment, between the four groups (24h 10%, 48h 10%, 72h 10% and 21% 

oxygen) in the acute hypoxia study. The data obtained from sections labelled with OX-6 

did not follow a normal distribution, and were therefore analysed using the Mann-

Whitney U test. A repeated measures ANOVA was used to compare the cumulative 

RECA-1 and OX-6 cell densities, between 10% and 21% oxygen. Regression analysis 
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followed by a Mann-Whitney U test (pairwise comparison) was used to compare the 

mean cell density of IBA, TLR4 and NG2 data between the two experimental groups. 

Pearson’s Correlation was used to determine if there was any correlation between the 

intensity of pimonidazole labelling and RECA cell density.  
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4.3.0.0 RESULTS 

4.3.1.0 Exposure to mild hypoxia induces weight loss in DA rats 

Exposure of DA rats to 10% oxygen for 24, 48 or 72 hours induced loss of body weight 

(Figure: 4.3.1.0). The weight loss, recorded as a percentage of the initial body weight, 

increased with the duration of exposure to 10% oxygen. Following 24 hours of 

sustained 10% oxygen exposure, an average of 5% of the initial body weight was lost, 

increasing to 7% and 9% following 48 and 72 hours of 10% oxygen, respectively. No 

weight loss was observed in the animals exposed to 21% oxygen; in fact they gained 1% 

of their initial body weight.  

 

 

Figure 4.3.1.0: Effect of hypoxia on body weight 

A graph showing the percentage loss in body weight in the experimental groups. Values are means. N = 6 

per group. 
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4.3.2.0 Pimonidazole labelling is increased in animals exposed to 10% 

oxygen 

Reducing the inspired oxygen to 10% revealed regions of clear pimonidazole labelling, 

and thus regions seemingly vulnerable to hypoxia in the rat spinal cord. The white 

matter of the spinal cord was found to be particularly vulnerable to decreases in inspired 

oxygen, with the base of the dorsal column, the ‘wing’ tips, the areas just below the 

dorsal horns, and a ‘halo’ of white matter surrounding the grey matter (Figure: 4.3.2.0 

A) labelling most strongly for pimonidazole.  Such labelling was frequently, if not 

always, present in all animals exposed to 10% oxygen for 6 hours (Figure: 4.3.2.0 B). 

At the base of the dorsal column, these areas of pimonidazole labelling were 

approximately 225-900 µm in length longitudinally, whereas, in the ‘wing’ tips, the 

areas of intense labelling were approximately 225-300 µm in length longitudinally. 

Areas of intense pimonidazole labelling were not observed in the white matter of 

animals kept at 21% oxygen (Figure: 4.3.2.0 B). 

 To determine the spatial distribution of labelling for pimonidazole in relation to 

the location of vessels, double labelled IHC was carried out on serial spinal cord 

sections from animals exposed to 10% oxygen for 6 hours.  3D reconstruction of a 1 

mm length of dorsal column spinal cord tissue, labelled for pimonidazole, RECA1 and 

DiI, the latter administered transcardially during perfusion, revealed that these pockets 

of pimonidazole labelling actually occur in between vessels (Figure: 4.3.2.0 C), and 

particularly in areas where the vessel density is low, such as the ‘wing-tip’ areas and the 

base of the dorsal columns.  
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Figure 4.3.2.0: Pimonidazole labelling following 6h 10% oxygen 

(A) Schematic showing areas of the spinal cord that frequently label with pimonidazole following 

exposure to 10% oxygen delineated in brown (WT: ‘wing-tip’ regions of the dorsal column; B: base of 

the dorsal column; AP: white matter directly below the superficial dorsal horns; H: a ‘halo’ of white 

matter surrounding the grey matter. (B) Spinal cord sections from animals exposed to 10% or 21% 

oxygen, labelled with pimonidazole, showing positive labelling for pimonidazole in the animal exposed to 

10% oxygen, and negative labelling in the animal exposed to 21% oxygen. Scale bar 500µm. (Ci) 

Sections of spinal cord from an animal exposed to 10% oxygen, and labelled with pimonidazole (brown) 

and RECA-1 (black), showing that areas of intense pimonidazole labelling at the base if the dorsal 

column, occur between vessels. Bar 200 µm. Inset shows of an area of pimonidazole labelling (yellow 

outline), superimposed on an image with DiI labelled vessels (red fluorescence), showing that areas of 

pimonidazole labelling appear to occur in-between vessels (blue circles/ red fluorescence).  Image taken 

from the base of the dorsal column. (D) 3D reconstruction of the dorsal column from an animal exposed 

to 10% oxygen, showing the location of areas of intense pimonidazole labelling (yellow), and thus the 

increased vulnerability of the base of the dorsal column to hypoxia. The illustration on the left shows the 

dorsal column as viewed from the head to the tail, while the illustration on the right shows the dorsal 

column as viewed from the side. Micrographs are representative. 
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4.3.3.0 Acute hypoxia and the spinal cord 

 

4.3.3.1 Pimonidazole labelling occurs in a spatio-temporal manner in animals 

exposed to 10% oxygen 

 

To identify areas of vulnerability to hypoxia in animals exposed to 24, 48 and 72 hours 

of 10% oxygen, pimonidazole IHC was carried out on spinal cord sections at different 

vertebral levels. As described in section 4.3.2.0, both grey and white matter labelling for 

pimonidazole was observed (Figure: 4.3.3.1 A). Specifically, two patterns of white 

matter labelling emerged, namely cell-specific labelling (see section 4.3.3.2) and foci of 

pimonidazole labelling (see section 4.3.3.3) (Figure: 4.3.3.1 A). No such labelling was 

observed in animals exposed to 21% oxygen (Figure: 4.3.3.1 A). The mean differences 

in the intensity of the pimonidazole labelling of the total cord (grey matter and white 

matter combined), and the white matter alone, in animals exposed to 10% or 21% 

oxygen were statistically significant (p = 0.04, p = 0.01, respectively). However, there 

was not a statistically significant difference in the intensity of pimonidazole labelling of 

the grey matter (p= 0.088), between the two groups. The length of exposure to 10% or 

21% oxygen did not affect the extent of pimonidazole labelling (total: p = 0.998; white 

matter: p = 0.891; grey matter: p = 0.915). In all animals exposed to 10% oxygen, there 

appeared to be a rostro-caudal gradient of pimonidazole labelling, regardless of the 

duration of exposure (Figure: 4.3.3.1 B-D). When taking into account the labelling of 

the white matter and grey matter combined, the intensity of pimonidazole labelling 

increased in the thoracic and cervical spinal cord (Figure: 4.3.3.1 B). A similar pattern 

was found when just measuring the intensity of the white matter, however, the increased 

labelling within these two areas of the spinal cord was more prominent (Figure: 4.3.3.1 

C). The labelling for pimonidazole in the grey matter, however, showed a noticeable 
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decrease in the thoracic spinal cord (Figure: 4.3.3.1 D). Interestingly, the different 

spinal cord levels examined showed a different response to 10% oxygen. The lumbar 

spinal cord was most affected by 72 hours of 10% oxygen, whereas the upper thoracic 

spinal cord was most affected by 24 hours of 10% oxygen (Figure: 4.3.3.1 B-D).  
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Figure 4.3.3.1: Pimonidazole labelling following exposure to 10% oxygen 

(A) Micrographs of sections of spinal cord from the upper lumbar and mid-thoracic levels from animals 

exposed to either lifetime 21%, 24h 10%, 48h 10% or 72h 10%, oxygen, labelled with pimonidazole. 

Pimonidazole labelling is increased following exposure to 10% oxygen, in both the white and grey matter. 

Scale bar 500 µm. (B-C) The intensity of pimonidazole labelling varies rostro-caudally in animals 

exposed to 10% oxygen. The intensity of pimonidazole labelling in the grey matter is increased in the 

upper lumbar, lower thoracic and mid-cervical cord, but is considerably decreased in the mid-thoracic 

region, compared with 21% control. (B). There is also a shift from increased labelling in the caudal 

portions of the cord in animals exposed to 10% oxygen for longer periods, to increased labelling in the 

rostral portions of cord in animals exposed to 10% oxygen for shorter periods. (C) Labelling in the white 

matter, is increased in the upper lumbar, mid-thoracic and mid-cervical cord, but decreases in the lower 

cervical cord. Values are means ± S.D. N=6 per group. 
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4.3.3.2 Cell-specific labelling with pimonidazole, following acute hypoxia 

 

Besides the grey matter labelling for pimonidazole, a number of cells within the spinal 

white matter also labelled for pimonidazole (Figure: 4.3.3.2 A), following exposure to 

acute hypoxia. The positive cells, morphologically, had the appearance of glia, and 

endothelial cells, therefore double label immunofluorescence was performed to 

determine their identity.  

 Arrays of cells labelled positive for pimonidazole in longitudinal sections 

following exposure to 10%, oxygen at all time points, but co-localisation with GFAP 

was not observed suggesting that the labelled cells were not astrocytes (Figure: 4.3.3.2 

B). Similarly, microglia did not co-localise with pimonidazole at any time point 

following exposure to 10% oxygen (Figure: 4.3.3.2 C). However, the microglia were 

found to be closely associated with the pimonidazole-positive cells, often adjacent to, or 

in between, the array of positively labelled cells (Figure: 4.3.3.2 C). Further double 

label immunofluorescence with an antibody directed against oligodendrocytes 

confirmed that these pimonidazole-positive cells were oligodendrocytes (Figure: 4.3.3.2 

D). Beautiful arrays of pimonidazole and CA2 positive cells were observed, at all time 

points following exposure to 10% oxygen. Most, if not all, oligodendrocytes were found 

to co-label for pimonidazole. Some endothelial cells also co-labelled with pimonidazole 

in animals exposed to 10% oxygen, at all time points examined (Figure: 4.3.3.2 E).     

 

 

 



 
 

183 

 

 

 

 

 

 

 

 

 PIMONIDAZOLE GFAP MERGE 

4
8
h

 1
0
%

 O
x
y
g
en

 
7
2
h

 1
0

%
 O

x
y

g
en

 
2
4
h

 1
0
%

 O
x
y
g
en

 
A 

B 



 
 

184 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2
4

h
 1

0
%

 O
x

y
g
en

 
4
8

h
 1

0
%

 O
x

y
g
en

 
7
2
h

 1
0
%

 O
x
y
g
en

 

PIMONIDAZOLE IBA MERGE C 



 
 

185 

 

7
2
h

 1
0
%

 O
x
y
g
en

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2
4

h
 1

0
%

 O
x

y
g
en

 
4
8
h

 1
0

%
 O

x
y

g
en

 

PIMONIDAZOLE 
CA2 MERGE D D 

PIMONIDAZOLE 



 
 

186 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3.3.2: Cell types that label with pimonidazole in the white matter  
(A) Transverse spinal cord section from an animal exposed to 10% oxygen, labelled with pimonidazole. 

The micrograph shows intense cellular labelling in the dorsal column white matter at high magnification. 

Scale bar 25μm. (B-E) Confocal laser images of spinal cord sections double-labelled to determine the 

cellular identity of the cells that label for pimonidazole in the dorsal columns. (B) Double label 

immunofluorescence with anti-pimonidazole (green) and anti-GFAP (red) revealed that astrocytes do not 

tend to label for pimonidazole following exposure to 10% oxygen, at any of the time points examined. (C) 

Similarly, microglia (red) also do not label with pimonidazole (green). Rather, the microglia are found in 

very close proximity to pimonidazole positive cells (arrows). (D) Double label immunofluorescence with 

anti-pimonidazole (green) and anti-CA2 (red), revealed that most, if not all, oligodendrocytes label 

intensely for pimonidazole, following exposure to 10% oxygen, at all time points examined. (E) Some 

endothelial cells (green) were also found to label with pimonidazole (red). Scale bar 100μm. All 

micrographs are representative. 
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4.3.3.3 What cells label in intense pimonidazole white matter foci? 

In addition to the cell-specific labelling with pimonidazole (section 4.3.3.2), foci of 

pimonidazole labelling were also evident within the white matter, as described in 

section 4.3.2.0, following exposure to 10% oxygen. Microscopically, these foci 

comprised of a number of intensely labelled cells, surrounded by a ‘halo’ of intensely 

labelled tissue (Figure: 4.3.3.3 A). Morphologically, the positively labelled cells, within 

the foci of pimonidazole labelling, had the appearance of oligodendrocytes and 

microglia. Thus, double label immunofluorescence was performed, to identify these 

cells.  

 Some minimal overlap of labelling was observed with GFAP, primarily with 

astrocytic processes (Figure: 4.3.3.3 B-top), however, no clear co-localisation was 

observed with either microglia or oligodendrocytes (Figure: 4.3.3.3 B-middle, bottom). 

Rather, a decrease in cellular labelling for oligodendrocytes was observed in these foci.  

Further double label fluorescence studies performed with NG2, an antibody directed 

against oligodendrocyte precursor cells (OPCs), revealed that the cells that label so 

intensely for pimonidazole in the white matter foci were generally NG2 positive cells 

(Figure: 4.3.3.3 C). Morphologically, these cells resemble resting microglia, with long, 

slender processes. Despite the punctuate cellular co-localisation in the centre of the 

white matter foci, a loss of NG2 immunoreactivity, immediately adjacent to, and 

surrounding, the NG2/pimonidazole positive cells, was often frequently observed 

(Figure: 4.3.3.3 D). 
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Figure 4.3.3.3: Cell types that label in intense pimonidazole white matter foci 
(A) Transverse spinal cord section from an animal exposed to 10% oxygen. The micrograph shows an 

area of intense pimonidazole labelling in the dorsal column white matter, at high magnification. Scale bar 

25 μm. (B) Double label immunofluorescence with markers for astrocytes (GFAP; red), microglia (IBA; 

red) and oligodendrocytes (CA2; red), revealed that none of these cell types co-labelled with 

pimonidazole in these intense foci. (C) Co-labelling with an anti-NG2 antibody (red), revealed that 

oligdendrocyte precursor cells label for pimonidazole in intense pimonidazole white matter foci. 

Moreover, there is a loss of NG2 immunoreactivity in the vicinity immediately surrounding the NG2-

pimonidazole co-labelled cell (white dashed line), at all time points examined. Scale bar 100μm. All 

micrographs are representative. 
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4.3.4.0 The effects of acute hypoxia on neurons 

In 21% control animals, neurons did not label with pimonidazole, however, following 

exposure to 10% oxygen, intense neuronal labelling with pimonidazole was observed 

(Figure: 4.3.4.0). The intensity of labelling was not dependent on the duration of 

exposure to 10% oxygen, but rather on the decrease in oxygen availability alone. The 

labelling was mainly localised to the cytoplasm of neurons, but labelling of the 

surrounding extracellular matrix was also observed.  
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Figure 4.3.4.0: Pimonidazole labelling of neurons following acute hypoxia. 
Transverse spinal cord sections from animals exposed to 21% oxygen, and 24h, 48h and 72h 10% 

oxygen, labelled with pimonidazole. The micrographs show the ventral horn grey matter at high 

magnification. There is no apparent neuronal labelling in the grey matter of the 21% oxygen control, 

however there is a considerable amount of labelling within the neurons and the surrounding parenchyma 

of animals exposed to 10% oxygen. Scale bar 25 μm. All micrographs are representative. 
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4.3.5.0 Microglial changes in response to acute hypoxia 

 

4.3.5.1 Exposure to acute hypoxia causes an increase in microglial number 

The microglial cell density, as indicated by IBA immunoreactivity, was elevated 

following exposure to 10% oxygen (Figure: 4.3.5.1). This initial increase was evident 

within the first 24h of exposure to 10% oxygen (p< 0.001). Subsequently, following 

exposure to 48h (p = 0.012) and 72h (p<0.001) 10% oxygen, the number of microglial 

cells did not increase further, but remained somewhat stable. A range of different 

morphological phenotypes was observed following exposure to 10% oxygen, ranging 

from ramified cells to amoeboid cells.  
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Figure 4.3.5.1: IBA labelling in animals exposed to acute hypoxia 
Graph showing the average IBA cell densities in animals exposed to either room air or 10% oxygen, for 

different durations. Acute hypoxia increases the density of IBA-positive cells, compared with 21% 

control animals. Values are mean ± S.E.M. Statistical significance was determined by a Mann-Whitney U 

test, * p<0.05, *** p<0.001. N=6 per group 
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4.3.5.2 Exposure to 10% oxygen causes an increase in the number of MHC-II 

expressing cells 

To identify whether modulating the oxygen concentration of inspired gas to 10% can 

initiate an inflammatory response, we looked for evidence of microglial activation. 

Immunohistochemistry with an anti-MHC class II antibody (OX-6) revealed that these 

molecules are constitutively expressed in the spinal cord of all animals, i.e. those 

exposed to 10%, or 21% oxygen (Figure: 4.3.5.2 A-C). However exposure to 10% 

oxygen significantly increased the number of cells expressing MHC class II (Figure: 

4.3.5.2 A-C). In all the different spinal levels examined, there was a significant increase 

in the number of cells that labelled positively for MHC class II in animals exposed to 

24h of 10% oxygen (upper-lumbar: p = 0.014; mid-thoracic: p = 0.014; lower-cervical: 

p = 0.011; mid-cervical: p = 0.011), 48h of 10% oxygen (upper-lumbar:  p = 0.033; 

mid-thoracic p = 0.011; lower-cervical: p = 0.014; mid-cervical: p = 0.011), and 72h of 

10% oxygen (upper-lumbar: p = 0.019; mid-thoracic: p = 0.011; lower-cervical: p = 

0.027; mid-cervical: p = 0.014) compared with 21% oxygen control animals (Figure:. 

4.3.5.2 C). These MHC class II expressing cells were primarily located in white matter, 

predominantly that of the dorsal and ventral columns, with a fewer number of cells in 

the lateral columns (Figure: 4.3.5.2 A). However a few MHC class II-expressing cells 

were also found in the grey matter, with some adjacent to motor neurons in the ventral 

horns (Figure: 4.3.5.2 Aii). Although the number of MHC class II-expressing cells was 

found to decrease with the duration of exposure to 10% oxygen, their morphology 

appeared to change with longer exposures. Following 24 hours of 10% oxygen 

exposure, ramified MHC class II expressing cells with long, slender processes were 

observed, in addition to very faint labelling of what appeared to be cellular processes 

(Figure:. 4.3.5.2 Di; Type I). As the duration of exposure to 10% oxygen was increased, 
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there was also a progressive increase in the proportion of MHC class II positive cells 

displaying a more ‘activated’ phenotype: a ramified morphology with no apparent cell 

body labelling (Figure: 4.3.5.2 Dii; Type II), a ramified morphology with labelling of 

the cell body (Figure: 4.3.5.2 Diii; Type III), rod-like cells with elongated cell bodies 

and bushy processes (Figure: 4.3.5.2 Div; Type IV), or rounder, amoeboid-like cell 

bodies with thick retracted processes (Figure: 4.3.5.2 Dv; Type V, Figure: 4.3.5.2 E). 

This array of microglial phenotypes was observed primarily in the white matter. Double 

label immunofluorescence confirmed that the MHC class II-expressing cells were 

microglia (Figure: 4.3.5.2 F). Occasionally, MHC class II positive cells were evident in 

regions that labelled for hypoxia (Figure: 4.3.5.2 G), although this was fairly rare. 
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Figure 4.3.5.2: MHC class II expression following exposure to acute hypoxia 
(Ai) Micrographs of spinal cord sections from animals exposed to either 21% oxygen, 24h 10% oxygen, 

48h 10% oxygen or 72h 10% oxygen, labelled with OX-6, a marker of MHC class II molecules, and 

counterstained with haematoxylin. Increased expression of MHC class II molecules can be seen in all 

animals exposed to 10% oxygen, in the dorsal (scale bar 200 µm), ventral ( scale bar 200 µm) and lateral 

( scale bar 100 µm) columns, compared to 21% controls. (Aii) MHC class II positive cells can also be 

found adjacent to motor neurons in the grey matter of animals exposed to 10% oxygen (scale bar 25 µm). 

(B) Graphical representation comparing the MHC class II cell density between animals exposed to 10% 

oxygen for 24h, 48h,and 72h, and animals exposed to 21% oxygen. Values are means ± SD (n=6 per 

           OX-6 IBA MERGE 

G 

F 

ii 

i 



 
 

199 

 

group). Statistical differences were determined by a repeated measures ANOVA, *** p<0.001. (C) The 

rostro-caudal distribution of MHC class II positive cells, showing that the largest numbers of MHC class 

II positive cells are present in the mid-thoracic and lower cervical cord. Values are means ± SEM. (D) 

Morphological classification of MHC class II positive cells. (Type I; i) Faint OX-6 labelling of cellular 

processes, (Type II; ii) ramified cells with long, slender processes, but no apparent cell body labelling, 

(Type III; iii) rounded cell bodies that label with OX-6, cells have long, slender processes, (Type IV; iv) 

rod-like cells, with elongated cell bodies, and long processes, and (Type V; v) amoeboid-like cell bodies 

with retracted, thick, or no processes. Scale bar 25µm. (E) Graphical representation of MHC class II cells 

based on their morphological phenotype. Values are mean percentage. (F) Confocal microscopy of double 

label immunofluorescence showing co-localisation of OX-6 (green) IBA (red), confirming that the MHC 

class II positive cells are microglia/macrophages, most probably microglia. Scale bar 200µm. (G) 

Micrographs of spinal cord sections from animals exposed to 10% oxygen, showing MHC class II 

positive cells (black) in areas that label intensely for pimonidazole (i: arrows) and areas that do not label 

for pimonidazole (ii). Scale bar 25 µm. All Micrographs are representative.  
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4.3.5.3 Microglia in animals exposed to 10% oxygen do not express the 

phagocytic marker ED1 or iNOS 

As microglia in animals exposed to 10% oxygen appeared to express MHC-II at 

increased levels compared with control animals exposed to 21% oxygen, we sought 

identify their activation status further. Immunohistochemistry with an antibody against 

ED1, a marker of phagocytic cells, revealed that microglia in the spinal cord of animals 

exposed to 10% oxygen for 24, 48 and 72 hours do not express the ED1 antigen, thus 

there was no difference between animals exposed to 10% oxygen and animals exposed 

to 21% oxygen with respect to ED1 expression (Figure: 4.3.5.3 A). Similarly, labelling 

for iNOS, another marker of microglial activation, revealed that exposure to acute 

hypoxia did not induce the expression of iNOS (Figure: 4.3.5.3 B). 
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Figure 4.3.5.3: ED1 and iNOS labelling following exposure to 10% hypoxia 
(A) Transverse spinal cord sections from animals exposed to 21% or 10% oxygen, labelled with an anti-

ED1 antibody, and counterstained with hematoxylin. Micrographs show the dorsal column region of the 

cord, revealing that exposure to 10% oxygen does not induce ED1 expression. Scale bar 200μm. (B) 

Labelling with an anti-iNOS antibody also revealed that iNOS expression is not induced following 

exposure to acute hypoxia. Scale bar 500μm. All micrographs are representative.  
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4.3.5.4 Acute hypoxia results in an increase in white matter TLR4 expression 

Exposure to acute hypoxia resulted in a statistically significant increase in TLR4 

expression in the white matter (48 hours 10% oxygen p = 0.050; 72 hours 10% oxygen 

p<0.001). Expression was particularly evident microscopically, with the intensity of 

TLR4 immunoreactivity progressively increasing with the duration of exposure to 10% 

oxygen (Figure: 4.3.5.4 A). Moreover, the density of TLR4-positive cells increased in a 

linear manner following exposure to 10% oxygen (Figure: 4.3.5.4 B). TLR-4 positive 

cells morphologically resembled ramified microglia, with round cell bodies and long 

slender, arborous processes. 
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Figure 4.3.5.4: The effects of acute hypoxia on TLR4 expression 
(A) Micrographs of spinal cord sections from animals exposed to 21% oxygen, or 24h, 48h or 72h 10% 

oxygen, labelled with an anti-TLR4 antibody. In 21% oxygen controls, there is some faint labelling of 

TLR4 positive cells, however, following exposure to 10% oxygen, there is increased expression of TLR4, 

indicated by the intensity of the labelling. Scale bar 25 μm. (B) Graph showing the TLR4 cell density is 

most increased following exposure to 72h 10% oxygen. Values are mean ± S.E.M, n=6 per group. 

Statistical significance was determined by a Mann-Whitney U test, * p<0.05, *** p<0.001. N=6 per 

group. All micrographs are representative. 
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4.3.6.0 Effects of acute hypoxia on oligodendrocyte cell lineage 

 

4.3.6.1 NG2-expressing cells and hypoxia 

OPCs were found to label particularly intensely for pimonidazole, therefore their 

response to acute hypoxia was investigated. In control animals breathing room air 

(21%), NG2-positive cells were plentiful in number, scattered throughout the spinal 

parenchyma. Morphologically, they resembled resting microglia, with small cell bodies 

and ramified, arborous processes (Figure: 4.3.6.1 A). Although exposure to 10% oxygen 

did not result in a dramatic change in NG2 cell density, except for at 72 hours 10% 

oxygen (p = 0.016) (Figure: 4.3.6.1 A, B), some NG2 positive cells became 

progressively hypertrophied as the duration of exposure to 10% increased (p< 0.001) 

(Figure: 4.3.6.1 A, C). The hypertrophied state was characterised by an enlarged, 

swollen cell body, with thick retracted processes. Thus, by 72h of exposure to 10% 

oxygen, the average size of the NG2 cells was more than double that in 21% control 

animals (Figure: 4.3.6.1 C). 
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Figure 4.3.6.1: The effects of acute hypoxia on oligodendrocyte precursor cells  
(A) Transverse spinal cord sections from animals exposed to 21% oxygen, or 24h, 48h, or 72h 10% 

oxygen, labelled for NG2. Micrographs show the dorsal column white matter at high magnification. NG2 

cell density does not seem to change in response to acute hypoxia; however, the cells seem to become 

more hypertrophied and amoeboid. Scale bar 25µm. (B) Graph showing there is no substantial change in 

NG2 cell density following exposure to 10% oxygen at any of the time points examined. Values are 

means ± S.E.M. (C) Graph of the average NG2 cell size showing a proportional increase in cell size with 

duration of hypoxia. Values means ± S.E.M. Statistical significance was determined by a Mann-Whitney 

U test, * p<0.05, *** p<0.001. N=6 per group. All micrographs are representative. 
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4.3.6.2 The expression profile of NG2 following acute hypoxia 

Besides OPCs, NG2 has also been described to be expressed by microglia and pericytes 

(Dore-Duffy et al., 2006; Moransard et al., 2011), therefore, double label 

immunofluorescence was performed to determine whether acute hypoxia had an effect 

on the expression profile of NG2. In animals breathing room air, NG2 was not found to 

co-localise with astrocytes (Figure: 4.3.6.2 A), microglia (Figure: 4.3.6.2 B) or 

endothelial cells (Figure: 4.3.6.2 C). In these animals, some overlap of NG2 and GFAP 

immunofluorescence was observed (Figure: 4.3.6.2 A), however, this appeared to be a 

close association of two distinct cell types, rather than co-localisation per se. Such an 

association was also observed in animals exposed to 10% oxygen, in which the 

hypertrophied NG2-positive cells were often found surrounding astrocytes (Figure: 

4.3.6.2 A). As with the 21% control animals, NG2 was not found to co-localise with any 

of the cell types in animals exposed to 10% oxygen (Figure: 4.6.6.2). However, double 

label studies with NG2 and RECA-1 (endothelial cells) revealed some interesting 

findings. In 21% control animals, NG2 positive cells were generally located throughout 

the parenchyma, with no close association with the vasculature. However, as the 

duration of exposure to 10% oxygen increased, hypertrophied NG2 cells were found to 

progressively move closer to the vessels (Figure: 4.3.6.2 C). By 72h of exposure to 10% 

oxygen, a number of hypertrophied NG2 cells appeared to completely surround and 

enclose the vessels in the spinal white matter.  
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Figure 4.3.6.2: NG2 expression profile following exposure to 10% oxygen 
(A-C) Confocal laser images from animals exposed to 21% oxygen, or 24h, 48h or 78h 10% double 

labelled for NG2 (red), and astrocytes (A; green), MHC-II (B; green) and endothelial cells (C; green). (A) 

Following exposure to 10% oxygen, NG2 does not co-localise with GFAP, however, NG2 positive cells 

are sometimes closely associated with astrocytes. (B) Similarly, NG2 does not co-localise with MHC-II, 

following exposure to 10% oxygen. (C) In 21% oxygen controls, NG2 positive cells are found scattered, 

without any close association with endothelial cells. Following exposure to 24h and 48h 10% oxygen, 

hypertrophied NG2 positive cells are found in close proximity to endothelial cells. Following 72h 10% 

oxygen, the number of hypertrophied NG2 positive cells increases, and they are found enclosing the 

endothelial cells in the vicinity. Scale bar 100μm. All micrographs are representative. 
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4.3.7.0 The effects of acute hypoxia on endothelial cells 

 

4.3.7.1 Vascular density is not increased in response to acute hypoxia 

As expected, acute exposure to 10% oxygen did not affect the vascular density (total: p 

= 0.307; grey matter: p = 0.427; white matter: p = 0.517; Table 4.3.7.1). However, there 

was a considerable amount of inter-animal variation (Figure: 4.3.7.1 B) in normal 

tissue.  For example, in the lumbar spinal cord grey matter in animals exposed to 21% 

oxygen, the vascular density of the grey matter ranged from 774 to 1095 cells/mm
2
.  

Correlation between the intensity of pimonidazole labelling and the vascular 

density in the grey and white matter combined (total) was assessed using Pearson’s 

correlation coefficient test. No correlation was found to exist between the intensity of 

total pimonidazole labelling and the total vascular density (r = -0.198, p = 0.093), or 

between the grey matter pimonidazole labelling and the grey matter vascular density (r 

= -0.209, p = 0.076). However, a mild negative correlation, which was statistically 

significant, was found between the intensity of pimonidazole labelling and the vascular 

density in the white matter (r = -0.294, p = 0.012), suggesting that in the white matter 

the intensity of pimonidazole labelling increases as the vascular density decreases.  
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 Table 4.3.7.1: Spinal cord vascular density  

 

 

 

 

 

 

 

 

 

 

 Spinal Cord RECA1 Density  (cells/mm
2
) 

 Total Grey Matter White Matter 

24h 10% Oxygen 365.28 ± 39.35 795.38 ± 64.20 186.83 ± 29.96 

48h 10% Oxygen 370.93 ± 49.73 838.25 ± 81.95 186.63 ± 27.40 

72h 10% Oxygen 378.93 ± 66.24 817.24 ± 56.38 196.80 ± 52.83 

21% Oxygen 407.22 ± 53.73 868.22 ± 99.22 221.22 ± 35.93 
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Figure 4.3.7.1: Vascular Density 
(A) Spinal cord sections from the upper lumbar region of animals exposed to 21% oxygen, or 24h, 48h or 

72h 10% oxygen, labelled with RECA-1.Scale bar 500 µm. Micrographs are representative. (Table 3.1.4) 

Table showing the cumulative vascular density in the grey and white matter (total), grey matter and white 

matter. Values are means ± S.D. N=6 per group. (B) A scatter plot of the vascular density in the grey 

matter of animals exposed to 21% oxygen, showing the inter-animal variation, at different levels of the 

spinal cords. 
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4.3.7.2 Exposure to acute moderate hypoxia does not induce IgG leakage 

Severe, or prolonged, acute hypoxia is believed to induce vascular leakage in the brain 

(Schoch et al., 2002), therefore immunohistochemistry with an antibody against IgG 

was performed. No evidence of IgG immunoreactivity was found in the spinal cords of 

animals exposed to either 21% (controls) or 10% oxygen, at any of the time points 

investigated (Figure: 4.3.7.2).  Thus, blood-spinal cord barrier integrity appeared to be 

maintained. 
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Figure 4.3.7.2: BBB and acute hypoxia 
Micrographs of spinal cord sections from animals exposed to 21% oxygen, or 24h, 48h or 72h 10% 

oxygen labelled for IgG leakage. Exposure to 10% oxygen does not lead to BBB breakdown and IgG 

leakage. Scale bar 500μm. All micrographs are representative. 
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4.3.7.3 Exposure to acute hypoxia results in an increase in P-selectin on 

endothelial cells 

P-selectin was expressed at low levels on endothelial cells in the spinal cords of control 

animals (Figure: 4.3.7.3 A). Following exposure to 10% oxygen, the P-selectin 

immunoreactivity on endothelial cells increased (Figure: 4.3.7.3 A). The increase was 

evident within the first 24h of hypoxia, from which point it remained elevated. In some 

instances, by 72h of exposure to 10% oxygen, intense, prominent P-selectin labelling 

was also observed on endothelial cells (Figure: 4.3.7.3 B). 
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Figure 4.3.7.3: The effects of acute hypoxia on endothelial P-selectin expression  
(A-B) Spinal cord sections from animals exposed to 21% oxygen, or 24h, 48h or 72h 10% oxygen, 

labelled with an anti-P-selectin antibody. (A) Some endothelial P-selectin expression is seen in 21% 

control animals, however, the expression of endothelial P-selectin is increased in animals exposed to 10% 

oxygen. (B) Some vessels in animals exposed to 72h 10% oxygen showed substantial P-selectin 

expression. Scale bar 25 μm. All micrographs are representative. 
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4.4.0.0 DISCUSSION 

 

The present study provides evidence that reducing the concentration of inspired oxygen 

can expose regions of increased vulnerability to hypoxia in normal rat spinal cord. 

Accordingly, both a spatial vulnerability, and a heterogeneous cellular vulnerability, to 

hypoxia have been revealed. Notably, the results show that acute hypoxia induces 

microglial activation, suggesting that hypoxia can initiate an inflammatory response. 

The potential relevance of this finding to understanding MS is discussed. 

 

4.4.1.0 Hypoxia-induced weight loss 

The brain and spinal cord rely on a continuous supply of oxygen to meet the metabolic 

needs of the tissue. It has been suggested that the oxygen supply to the CNS occurs on a 

‘just sufficient’ basis (LaManna et al., 2004), in which the CNS exists in a 

physiological, but predominantly low-oxygen state (LaManna et al., 2003). The 

physiological state of relative hypoxia is maintained by structural and functional 

adaptations, which also respond to changes in supplied oxygen tension (raised or 

lowered) to compensate for the change and prevent pathology and cell death. Systemic 

adaptations to prolonged hypoxia are fairly well understood, and include increased 

ventilation and hematocrit, decreased core temperature, bicarbonate ion excretion and a 

loss of body mass. The current study shows that exposure of rats to 10% oxygen 

(balance nitrogen) for 24, 48 and 72 hours results in a linear decrease in body mass 

(LaManna et al., 1992). Indeed, appetite suppression and decreased food intake are 

frequently observed due to hypoxia at high altitude (Westerterp et al., 1994; Westerterp 
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et al., 1999; Shukla et al., 2005). Moreover, some studies have found that hypoxia 

induces an increase in the levels of circulating leptin, a hormone with a central role in 

fat metabolism (Chaiban et al., 2008; Ling et al., 2008). Others have also found a direct 

effect of hypoxia on protein synthesis, with a decrease in whole-body insulin sensitivity 

and muscle-specific glucose utilisation (Iiyori et al., 2007), and intestinal dysfunction 

(Boyer and Blume, 1984; Quintero et al., 2010). Nevertheless, the mechanisms of 

weight loss under hypoxic conditions remain unclear. 

 

4.4.2.0 Spatial and regional vulnerability to hypoxia 

Labelling for hypoxia in the current study has revealed ‘hypoxia-vulnerable’ areas in the 

spinal white matter of animals exposed to 10% oxygen. Moreover, these pockets of 

pimonidazole labelling appear to occur between vessels, even though the drug is 

administered via the vasculature. It is easy to understand this finding, namely that 

regions of white matter that are more remote from vessels may be inherently vulnerable 

to hypoxia. Indeed, the local capillary tissue oxygen tension decreases from the arterial 

to the venular end of the vessel (Cater et al., 1961; Nair et al., 1975; Smith et al., 1977) 

and so it seems reasonable to propose that the pockets of pimonidazole labelling 

described in the current study may occur between the distal portions of white matter 

capillaries, although this remains to be investigated. In particular, the regions of hypoxia 

are likely to occur near veins, as venular blood is the most deoxygenated.   

Interestingly, the white matter just below the dorsal horns, the ‘wing-tip’ regions 

of the dorsal columns, and the base of the dorsal columns, were shown to have 

increased susceptibility to hypoxia. The base of the dorsal columns is occupied by the 

dorsal corticospinal tract that is comprised primarily of small diameter axons. Small 
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diameter axons, by virtue of their surface to cytoplasmic volume ratio, may both have a 

relatively high oxygen demand, contributing to hypoxia, and also be predisposed to 

hypoxic damage. Indeed, axon size is an important determinant of susceptibility to 

degeneration in MS (Evangelou et al., 2001), with energy deficiency implicated as a key 

pathogenic mechanism (Stys, 2005; Dutta et al., 2006). Given that hypoxia can deplete 

metabolic energy vital for maintaining physiological processes, it seems reasonable to 

suggest that hypoxia may contribute to the selective vulnerability of small diameter 

axons to degeneration in MS (Evangelou et al., 2001). 

Regional differences in the labelling for hypoxia were also found, with the 

thoracic segment of the spinal cord particularly vulnerable. Indeed, the vascular 

organisation is such that it creates intrinsic watershed zones at particular levels of the 

spinal cord (Tveten, 1976), and one of these zones has been reported to be the thoracic 

spinal cord. Despite this, due to the difference in size of the respective segments, blood 

flow values at the thoracic level are comparable to those at lumbar and cervical levels 

(Hayashi et al., 1983). In addition, no significant difference in local tissue oxygen 

metabolism exists between the various levels (Hayashi et al., 1983). Thus, factors other 

than differences in vascular density must influence the vulnerability of the thoracic 

segment to hypoxia, and watershed concepts provide a plausible explanation. 

 

4.4.3.0 Selective cellular vulnerability to hypoxia 

4.4.3.1 Oligodendrocyte vulnerability to hypoxia 

Oxygen, among other substrates, is a vital requirement of cells, necessary for 

physiological function and survival. Thus, tight coupling between supply and demand 
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exists, to ensure effective energy metabolism. Moreover, cells within the CNS have 

different metabolic profiles, and preferentially utilise different pathways of energy 

metabolism, enabling them to meet the metabolic demands for specialised physiological 

function. This diversity, however, renders particular cell types more vulnerable to 

hypoxic insults. Accordingly, the current study provides evidence that neurons, and 

cells of oligodendrocyte lineage, in the rat spinal cord, are particularly vulnerable to 

becoming hypoxic and potentially hypoxia-induced damage. This finding is in 

agreement with previous studies, in vitro (Husain and Juurlink, 1995), and in vivo (Back 

et al., 2002). Indeed, due to their higher energy requirements, neurons rely heavily on a 

high rate of oxidative metabolism. Despite this, neurons ironically have a limited 

capacity to defend against oxidative stress (Shih et al., 2003; Belanger et al., 2011). 

Rather, neurons appear to depend on the high antioxidant potential of astrocytes for 

their own defence against oxidative stress (Dringen, 2000; Belanger et al., 2011). The 

metabolic profile of oligodendrocytes, is also specialised, and favours the synthesis of 

lipids, presumably to make myelin (Sánchez-Abarca et al., 2001). As with neurons, 

oligodendrocytes also have a limited capacity to defend against oxidative stress. Given 

that hypoxia can induce ROS production (Chandel et al., 1998; Guzy et al., 2006), it is 

not surprising that neurons and oligodendrocytes are selectively vulnerable to hypoxia-

induced damage. Moreover, oligodendrocytes have a high iron and lipid content, which 

increases the potential for ROS generation, further increasing the vulnerability of this 

cell type. However, a recent study (Fünfschilling et al., 2012) contradicts this traditional 

view of oligodendrocyte vulnerability. Fünfschilling and colleagues appear to show that 

mature, post-myelinating oligodendrocytes can survive without functional 

mitochondrial complex IV. The authors propose that mature oligodendrocytes survive 



 
 

222 

 

by simply increasing their glycolytic capacity, releasing lactate as an end product, which 

is rapidly utilised by myelinated axons (Fünfschilling et al., 2012).  

In contrast, astrocytes and microglia were found to be relatively resistant to 

becoming hypoxic, in the current study, as indicated by the lack of pimonidazole 

labelling. Astrocytes, in particular, exhibit greater metabolic plasticity than neurons 

(Almeida et al., 2001; Vega et al., 2006), i.e., they are able to adapt their energy 

metabolism in response to environmental challenges (Belanger et al., 2011), owing to 

their resistance to hypoxic stresses. For example, following NO-induced mitochondrial 

inhibition, astrocytes increase glucose metabolism via glycolytic pathways, thereby 

preventing ATP depletion (Almeida et al., 2001). Similarly, the resistance of microglial 

cells to hypoxia has been attributed to their ability to easily adapt, and overcome non-

physiological conditions (Yun et al., 1997).  

  

 4.4.3.2 OPCs display a reactive phenotype following exposure to acute hypoxia 

Besides oligodendrocyte vulnerability, NG2
+
 OPCs in the spinal cord were also affected 

by exposure to acute hypoxia in the current study. NG2
+
 OPCs represent a 

subpopulation of glial cells that are antigenically distinct from other glial cells (Levine 

et al., 1993; Nishiyama et al., 1997; Reynolds and Hardy, 1997; Keirstead et al., 1998; 

McTigue et al., 1998; Butt et al., 1999; Ong and Levine, 1999; Dawson et al., 2003), 

and are found not only during development but are also abundant in the adult rodent 

brain (Levine et al., 1993; Nishiyama et al., 1996; Reynolds and Hardy, 1997), 

distributed quite uniformly throughout the white and grey matter. These intriguing cells 

are inherently plastic, and once activated are able to rapidly proliferate and mature into 

oligodendrocytes. They display heterogeneity with regard to the different cell types into 
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which they can develop (Belachew et al., 2003; Alonso, 2005; Cassiani-Ingoni et al., 

2006), and function (Bergles et al., 2000; Jabs et al., 2005; Karadottir et al., 2005; 

Kukley et al., 2007; Ziskin et al., 2007). In the current study, clusters of ‘hypoxic’ 

NG2+ cells within foci of intense labelling for hypoxia within the white matter, were 

often surrounded by a paucity of cells labelling for NG2. Whether this loss represents 

maturation of NG2+ OPCs, cell death, or migration, remains to be investigated. Indeed, 

hypoxia has been found to induce premature differentiation of OPCs in vitro, and it is 

thought to contribute to hypomyelination in the developing hypoxic brain (Akundi and 

Rivkees, 2009). Furthermore, OPCs are particularly vulnerable to hypoxia in vitro 

(Husain and Juurlink, 1995).  

The current study also demonstrates that hypoxia induces OPC hypertrophy and 

clustering around vessels, in a time-dependent manner. It seems reasonable to propose 

that a morphological change such as hypertrophy may represent a reaction of the NG2
+
 

cells to potentially damaging stimulus. Indeed, this is supported by their perivascular 

location following 72h of prolonged hypoxia in the present study. Lesions that disrupt 

the BBB have been shown to induce NG2
+
 OPC hypertrophy (Rhodes et al., 2006). 

Although, such a response is not evident following lesions where the BBB remains 

intact (Rhodes et al., 2006), the present findings suggest that NG2
+
 cells display 

surveillance-like functions, allowing them to detect changes within the tissue 

microenvironment, as has been previously proposed (Dawson et al., 2003; Rhodes et al., 

2006). 

  

4.4.4.0 Hypoxia-induced microglial activation 

Hypoxia is an important event that regulates a wide range of physiological responses. 

Microglia represent the first line of immune defence within the CNS, and increasing 
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evidence suggests that hypoxia-induced microglial activation contributes to neuronal 

damage in stroke, in addition to the neurodegeneration that results from the direct loss 

of oxygen and glucose (Gonzalez-Scarano and Baltuch, 1999; Suk, 2005). The present 

data demonstrate that exposure to acute hypoxia induces mild microglial proliferation 

and activation, as assessed by the respective density of IBA+ cells and the number of 

cells expressing MHC class II. Indeed, proliferation and MHC class II expression are a 

common response of microglia to pathological stimuli. Consistent with the current 

findings, microglial proliferation (Mander et al., 2005) and activation have previously 

been described in the brain (Wang and Kaur, 2000) and retina (Kaur et al., 2006b) 

following hypoxia. An increase in microglial density and number of cells expressing 

MHC class II may represent a precursor for pathology in an otherwise normal-appearing 

CNS, or a type of priming or sensitization in the event of a subsequent insult. However, 

a western blot would confirm whether MHC class II expression is increased in response 

to hypoxia. Interestingly, activated microglia have been observed in cortical grey matter 

and normal appearing white matter, remote to areas of active demyelination in MS post-

mortem tissue (Allen et al., 2001; De Groot et al., 2001). These preactive lesions are 

characterised by clusters or nodules of microglial cells expressing the MHC class II 

antigen. The absence of BBB leakage, leukocyte infiltration and demyelination, in these 

lesions has led to the suggestion that MS may result from the intrinsic activation of the 

innate immune system. However, the ‘trigger’ of this activation remains unknown. The 

ability of hypoxia to induce similar changes to those seen in preactive lesions is 

particularly interesting, and will be discussed in further detail later. 

Microglia are characterised by their high responsiveness to atypical events, 

responding robustly to minor pathological challenges to the CNS (Kreutzberg, 1996). 

They are able to respond in a graded manner to changes in their local environment, 
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giving rise to an array of phenotypes (Graeber, 2010). Many studies have reported 

constitutive MHC class II expression in microglia (Lowe et al., 1989; Zhang et al., 

2002), however it is thought that this expression is kept to a minimum through contact-

dependent inhibition by neurons. Therefore, if neurons reduce this inhibition as a 

consequence of degeneration or ‘distraction’ due to hypoxia, the loss of such inhibitory 

control may represent a potential mechanism through which hypoxia-induced microglial 

MHC class II could be amplified to cause a wider nidus of inflammation.  

A potential avenue of microglial activation is via breakdown of the BBB, and 

subsequent vascular leakage, and indeed hypoxia is reported to induce such a leakage in 

vivo (Schoch et al., 2002).  The consequent exposure of microglia to serum proteins 

such as fibrinogen would engage CD11b/CD18 integrin heterodimers (Adams et al., 

2007), leading to microglial activation.  However, arguing against this possibility, no 

evidence of serum protein leakage was found in the present study.  

The current study shows that the morphological phenotype of MHC class II 

positive microglia varies following hypoxia, such that the percentage of microglia 

displaying a more activated phenotype increases with the duration of the hypoxia. 

Microglial activation is a dynamic process, thought to occur in a graded manner 

(Kreutzberg, 1996). The dynamics of microglial activation have been elegantly shown 

by time-lapse confocal microscopy in vitro (Stence et al., 2001) and in vivo 

(Nimmerjahn et al., 2005). The latter study has drawn attention to the on-going 

surveillance of brain tissue by the constant ‘probing’ of their environment with fine 

processes (Nimmerjahn et al., 2005).   

Activated, amoeboid microglia often display phagocytic properties, normally 

representing one extreme of their capability. The antibody ED1, which recognises an 
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antigen in lysosomal membranes, is a useful marker of phagocytosis, since the 

expression of the antigen in macrophages increases with phagocytic activity 

(Damoiseaux et al., 1994). To determine the activation state of the microglia within the 

spinal cord following exposure to 10% oxygen, immunohistochemistry with an ED1 

antibody was performed, however no evidence of ED1 immunoreactivity was found. It 

seems that hypoxia causes an activation of microglia (i.e. their density and expression of 

MHC class II increases) but that activation stops short of the expression of ED1.   

Microglia are crucial effector cells of the innate immune system, and following 

activation they can initiate signalling pathways that can be either protective or 

destructive. Although the exact mechanisms remain unclear, the cytokine profile and 

expression of certain proteins in microglia can give an indication of whether the 

activation is destined to be protective or destructive. The expression of the enzyme 

iNOS in microglia is usually a good indicator of the activation of a pro-inflammatory 

signalling pathway. Moreover, the gene responsible for iNOS production has a HRE in 

its promoter region, and can therefore be induced by hypoxia via HIF-1α (Melillo et al., 

1995; Palmer et al., 1998). Although iNOS expression was not evident following 

exposure to 10% oxygen in the current study, previous research has shown that hypoxia 

can induce iNOS expression in microglia, in vitro (You and Kaur, 2000). This 

discrepancy may reflect differences in the severity of the hypoxia, and/or the differences 

between in vivo and in vitro conditions.  

TLRs play a pivotal role in the innate immune response against invading 

pathogens. To date, more than 10 mammalian TLRs have been identified (Kawai and 

Akira, 2006), however, microglial TLR4 plays an especially important role in the 

immune and inflammatory response in the CNS (Jung et al., 2005). The current study 

demonstrates that TLR4 expression within the spinal cord increases with the duration of 
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hypoxia, in vivo. This is consistent with previous in vitro findings in both microglia 

(Ock et al., 2006) and macrophages (Kim et al., 2010). TLR4 expression is dynamically 

modulated, and its levels at an infected site are critical for an appropriate inflammatory 

response:  for example, TLR4 deficient mice exhibit a decreased inflammatory response 

and thereby smaller lesions following brain ischaemia (Caso et al., 2007). Thus, TLR4 

is instrumental to inflammatory and pathological responses, and has also been shown to 

mediate inflammatory neurodegeneration (Lehnardt et al., 2003). The present findings 

imply that hypoxia may exacerbate inflammatory responses to infections by up-

regulating TLR4 expression on microglia, and may therefore have implications for the 

pathogenesis of neurodegenerative diseases such as MS, a point that I will return to later 

in the thesis.  

 

 4.4.5.0 Regional and inter-animal vascular differences 

Adaptive responses are a well-recognised feature during hypoxic insults, and essentially 

act to minimise the effect of the decreased oxygen availability. One such response is 

angiogenesis, beginning around day four of mild hypoxic exposure (Xu and LaManna, 

2006) and complete by 3 weeks (Pichiule and LaManna, 2002). Consistent with these 

previous findings, the relatively short duration of exposure to 10% oxygen in the current 

study did not result in an increase in the vascular density of the spinal cord.  

The activated microglia and hypoxia-positive NG2 cells were almost exclusively 

present in the white matter.  It seems likely that this pattern correlates with the much 

lower vascular density of the white matter (compared with that of the grey matter), 

which is presumably associated with the decreased metabolic activity of this 

compartment (Rawe and Perot, 1977; Hayashi et al., 1983b).  In addition, the blood 
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flow in the white matter is significantly lower than the grey matter (Hayashi et al., 

1983b).  Aside from these considerations, the white matter is primarily served by blood 

that has initially passed through the grey matter and this anatomical organisation 

renders the white matter especially vulnerable to hypoxia due to prior oxygen extraction 

and ‘vascular steal’ by more proximal spinal tissue.   

Besides such a regional and compartmental variation in vascular density, a 

considerable amount of inter-animal variation in the vascular density was also observed 

in the current study. This finding suggests that individual animals may have different 

vulnerabilities to hypoxia as dictated by their vascular anatomy. Indeed, there are 

regional differences in the vascular density in the hippocampus; the CA1 region, which 

is particularly vulnerable to degeneration due to mild ischaemia (reviewed in Schmidt-

Kastner and Freund, 1991), has a significantly lower vascular density than the CA3 

region (Cavaglia et al., 2001), which is more resistant to ischaemic damage than CA1 

(reviewed in Schmidt-Kastner and Freund, 1991). Thus, inter-individual variations in 

vascular density may perhaps explain the predilection for MS lesions to form in specific 

regions of the CNS. I will return to this point later in the thesis.   

 

4.4.6.0 Hypoxia induces changes in endothelial cells  

By virtue of their location, endothelial cells have to cope with alterations in the 

composition of the blood. One such alteration is hypoxia, and it is thought to have 

profound effects on endothelial cell function. Hypoxia alone can induce endothelial 

activation (Dore-Duffy et al., 1999), thereby initiating a cascade of events culminating 

in neutrophil adherence and recruitment (Milhoan et al., 1992; Arnould et al., 1993; 

Ginis et al., 1993; Baudry et al., 1998). The current study shows that endothelial cells 
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become hypoxic following exposure to 10% oxygen, resulting in an increase in the 

expression of endothelial P-selectin. P-selectin is a cell adhesion molecule expressed on 

activated endothelial cells and platelets. In unactivated endothelial cells, P-selectin is 

stored in Weibel-Palade bodies (WPBs) (Bonfanti et al., 1989; Harrison-Lavoie et al., 

2006), so that it can be rapidly transported to the endothelium upon activation. Hypoxia 

has been shown to induce a calcium dependent exocytosis of WPBs (Pinsky et al., 

1996), resulting in the overexpression of P-selectin, which then initiates neutrophil 

binding. Accordingly, hypoxia-induced neutrophil adherence can be blocked using 

antibodies against P-selectin (Arnould et al., 1993; Rainger et al., 1995). Thus the 

present findings suggest that hypoxia can facilitate the inflammatory response by 

modulating the expression of cell adhesion molecules on endothelial cells. This point 

will be discussed in more detail later in this thesis. 

 

 

4.4.7.0 Conclusion 

The present study provides evidence that the rat spinal cord has selective vulnerabilities 

to hypoxia expressed at the regional (thoracic segment), compartmental (white matter) 

and cellular (oligodendrocytes and OPCs) levels. These selective vulnerabilities may be 

in part dictated by the vascular architecture of the spinal cord, and the intrinsic 

properties of these levels.  Moreover, hypoxia appears to sensitize the spinal cord, 

firstly by promoting adherence of leukocytes to the endothelium through the 

upregulation of the CAM P-selectin, and secondly by increasing the responsiveness of 

microglia, by increasing the number of cells expressing MHC class II and TLR4 

molecules. Given that hypoxia is a common feature of inflammation, it seems 

reasonable to propose that it may perpetuate damage by propagating the immune 
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response, rather than representing an innocent bystander of the inflammatory milieu. 

Additionally, the ability of hypoxia to sensitize or prime the resident microglia, may 

decrease the threshold required for activation of an innate immune response. These 

findings may have implications for the pathogenesis of number of neurodegenerative 

diseases, including MS, and the ideas will be brought together later in the thesis to form 

a hypothesis relevant to this disease.   
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CHAPTER FIVE 
 

 

GENERAL DISCUSSION 
 

 

This thesis demonstrates that true tissue hypoxia, a common, yet underestimated feature 

of inflammatory lesions, appears to be involved in two of the three of the cardinal 

features of MS. First, hypoxia is involved in the loss of neurological function observed 

in MOG-induced EAE, second, and in the development of demyelination in the 

experimental Pattern III lesion. Finally, this thesis provides evidence that selective 

regional and cellular vulnerabilities to hypoxia exist in the normal rat spinal cord, and 

that hypoxia can sensitise resident microglia, thereby decreasing the threshold required 

to initiate an immune response, or propagating micorglial activation during periods of 

inflammation . Curiously, despite increasing evidence supporting the notion that the 

oxygen concentration within active MS and EAE lesions may be low (Simmons et al., 

1982; Juhler, 1987; Aboul-Enein et al., 2003; Graumann et al., 2003), the possibility 

that hypoxia may be a key factor in MS has not been explored until now.  

 

Increasing evidence suggests that an energy failure may represent an important 

mechanism involved in the pathogenesis of the cardinal features of MS (Aboul-Enein et 

al., 2003; Mahad et al., 2008; Trapp and Stys, 2009), however, hypoxia, per se, is often 

regarded as an unlikely cause of such a failure because under normal circumstances 

hypoxia has to be quite profound before it impairs mitochondrial respiration. This is due 
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to the fact that mitochondrial complex IV has a very low Km for oxygen (<1µM), and 

so mitochondria are capable of making use of even very low oxygen concentrations for 

oxidative phosphorylation. However, this advantage fails in inflamed tissue because of 

the presence of NO. Even very low concentrations of nitric oxide can dramatically raise 

the mitochondrial Km for oxygen (Brown and Cooper, 1994), meaning that even greater 

oxygen concentrations than normal may be required to sustain mitochondrial function. 

Accordingly, even a small change in local oxygen tension may have a large effect on 

cellular function, when coupled with inflammation involving NO production. 

Furthermore, elevated levels of ROS, such as superoxide, are also associated with the 

inflammatory milieu, thereby further increasing the potential for toxicity. Therefore the 

pathophysiological significance of hypoxia is magnified in neuroinflammatory lesions, 

such as in MS. 

 

 

5.1.0.0 Hypoxia and loss of neurological function 

This thesis provides chemical, physical and therapeutic evidence that hypoxia, on a 

background of inflammation, can reversibly induce neurological dysfunction in an 

animal model of MS, in the absence of demyelination. Traditionally, neurological 

dysfunction in MS has been attributed to abnormalities in axonal conduction, such as 

those arising from demyelination (McDonald, 1986).  However, more recently, studies 

have emphasised the potential role of inflammation (Youl et al., 1991; Moreau et al., 

1996, and Bitsch et al., 1999), but the exact mechanisms responsible have remained 

unclear.  A role for NO has been invoked (Redford et al., 1997; Shrager et al., 1998), 

due to the prominence of NO production in some MS lesions (Bo et al., 1994; Bagasra 

et al., 1995; Johnson et al., 1995), and findings that NO can block axonal conduction in 
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normal and demyelinated axons.  We believe that NO may well be involved, but that its 

potency may require the concurrent presence of hypoxia.   

There are several mechanism(s) by which hypoxia may compromise 

neurological function.  For example, neurons of different brain regions have been 

shown to exhibit depolarizing and/or hyperpolarising responses following short periods 

of hypoxia (Fujiwara et al., 1987; Leblond and Kmjevic, 1989). These typical responses 

are a consequence of a marked decline in intracellular ATP levels (Fujiwara et al., 1987; 

Nieber et al. 1995), and thereby an energy insufficiency that is mediated by hypoxia.  

The depolarisation has been attributed to the failure of the Na+/K+ ATPase pump 

(Fujiwara et al. 1987; Nieber et al. 1995), whereas the hyperpolarisation is thought to be 

mediated by the opening of ATP-dependent K+ channels (KATP) (Zhang and Krnjevic, 

1993; Fujimura et al. 1997; Finta et al., 1993; Nieber et al. 1995). Changes in membrane 

potential such as these essentially result in a reversible loss of function, as seen in 

rMOG EAE.  Furthermore, hypoxia has been found to inhibit myelin phosphorylation in 

oligodendrocytes (Qi and Dawson, 1993), thus disturbing myelination, which could also 

result in abnormal conduction, although this seems less likely as a leading mechanism 

of loss of function in view of the prompt restoration of function by breathing oxygen.   

Although most neurological deficits in MS are probably due to demyelination 

and degeneration, this research shows that hypoxia can also cause loss of function, and 

so it provides a possible explanation for brief relapses that cannot easily be explained by 

demyelination and degeneration. This realisation opens the door to understand that 

some more persisting deficits are not necessarily caused only by the demyelination and 

degeneration to which they are currently attributed.  So the current findings introduce 

hypoxia as a new additonal mechanism for loss of function in MS. At present, the extent 

to which hypoxia plays a role in causing loss of function in MS remains unclear.  
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Hypoxia may be a key mechanism responsible for loss of function early in a relapse, 

before the same symptoms become consolidated by demyelination and degeneration.   

 

5.2.0.0 ‘Hypoxia-like’ demyelination 

Neuropathological studies on the human Pattern III MS lesion have led to the 

suggestion that ‘hypoxia-like’ demyelination is a consequence of an energy 

insufficiency, attributed to mitochondrial dysfunction mediated by NO (Aboul-Enein et 

al., 2005). However, this thesis demonstrates that tissue hypoxia, in association with NO 

and superoxide, not only precedes demyelination in experimental ‘hypoxia-like’ Pattern 

III lesions, but may actually be causally involved in inducing the formation of such 

lesions. Thus the spatio-temporal nature of the hypoxia, NO and superoxide, appears to 

determine the exact location of the demyelinated lesion that formed approximately a 

week later.  Notably, the lesion forms at the base of the dorsal column, a region that our 

results show is particularly vulnerable to hypoxia. This finding is particularly interesting 

given that the demyelination in both the human Pattern III and experimental lesion has 

been described to occur via a mechanism that is ‘hypoxia-like’ (Aboul-Enein et al., 

2003). Presumably, the increased vulnerability of the base of the dorsal column to 

hypoxia reduces the threshold of toxicity required to induce damage. Accordingly, 

vulnerable cell types, such as oligodendrocytes, shown in this thesis to be particularly 

hypoxic, succumb to a profound energy deficit due to the combined effects of hypoxia, 

NO and superoxide, leading to ‘hypoxia-like’ demyelination. This observation may 

perhaps help to explain lesion topography in MS. Indeed, some regions of the CNS are 

vulnerable to to disturbances in vascular perfusion, and hypoxia-mediated damage. 

These so-called watershed regions are located between two major arterial supplies, and 

one such area is the periventricular region of the brain where MS lesions are commonly 
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found. These regions will presumably have a reduced threshold for toxicity and so may 

not withstand the barrage of toxic mediators during periods of acute and chronic 

inflammation, resulting in preferential structural damage. 

 

5.3.0.0 Hypoxia and degeneration 

Axonal damage can be a major cause of irreversible neurological deficit in patients with 

MS (Trapp et al., 1998; Bjartmar and Trapp, 2003; Dutta and Trapp, 2007). Although 

axonal injury is evident in acute MS lesions (Ferguson et al., 1997; Trapp et al., 1998), 

at this stage the damage may remain clinically silent. However, there is a concomitant 

on-going, chronic ‘slow-burning’ of axons that can persist for years (Lassmann, 2007; 

Trapp and Nave, 2008; Dutta and Trapp, 2011), and is thought to be responsible for the 

transition to progressive disease. Due to several lines of evidence suggesting a state of 

impaired mitochondrial energy production (Smith and Lassmann, 2002; Bechtold and 

Smith, 2005; Dutta et al., 2006; Mahad et al., 2008), in addition to increased energy 

demand consequent to the greater expression of leaky sodium channels along the 

denuded axolemma (Craner et al., 2004), demyelinated axons have been suggested to be 

subjected to a chronic state of ‘virtual hypoxia’ (Stys, 2004). It is easy to appreciate that 

this prolonged state of energy insufficiency can promote chronic necrosis and 

degeneration of axons in the MS brain. Perhaps more important is the fact that a chronic 

energy insufficiency will render the axons more vulnerable to the wide range of insults 

that will occur over the years, but it may also directly cause degeneration. For example, 

the lack of energy substrates disrupts the ionic gradient across the axolemma, resulting 

in the intracellular accumulation of sodium and calcium, and the loss of potassium (Stys 

and LoPachin, 1996), resulting in the initiation of calcium-mediated cell death 

signalling pathways. Indeed, such a mechanism is well established in hypoxic/ischemic 
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models, hence the term ‘virtual hypoxia’. However, in the light of the current findings, 

it seems reasonable to hypothesise that demyelinated axons may be in fact rendered to a 

state of actual tissue hypoxia, rather than ‘virtual hypoxia’. Given that none of the 

current therapies reduce the ‘slow-burning’ destruction of axons, the current finding that 

actual tissue hypoxia may be involved in the pathogenesis of MS may provide a better 

understanding of why chronically demyelinated axons degenerate, and possibly 

introduce the opportunity to develop  novel therapeutic strategies. Nevertheless, the role 

of hypoxia in axonal degeneration is yet to be elucidated. 

 

5.4.0.0 Hypoxia and the normal spinal cord-implications for MS?  

Despite the considerable progress in MS research over the years, the aetiology of the 

disease remains elusive, although evidence suggests that a complex interplay of genetic 

and environmental factors is involved (Noseworthy, 1999). It has been traditionally 

assumed that a dysregulation of the adaptive immune repertoire against one or more 

CNS antigens may represent the primary trigger of MS (McFarland and Martin, 2007), 

and this view has long been upheld by the EAE model of MS that mimics the disease. 

However, increasing evidence suggests that the disease may in fact result from the 

activation of the innate immune system (Allen and McKeown, 1979; De Groot et al., 

2001; Barnett and Prineas, 2004; Marik et al., 2007; van Horssen et al., 2012). Despite 

these findings, it is not clear how the innate immune system would become activated, in 

the absence of BBB breakdown, leukocyte infiltration and demyelination (De Groot et 

al., 2001). In this regard it is interesting to consider the current findings that the spinal 

cord exhibits regional and cellular vulnerabilities to hypoxia. Furthermore, hypoxia can 

activate cells of the innate immune system, namely microglia, but also induce the 

expression of P-selectin on endothelial cells, thereby facilitating leukocyte 
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transmigration into the CNS. Needless to say, such a microglial response may reflect a 

protective strategy rather than a phenotypic change that is deleterious. Indeed the lack of 

induction of iNOS and ED1 expression are suggestive of a response that is not 

damaging. However, the nature of microglial activation following hypoxia, either 

protective or deleterious, requires further investigation. 

It seems clear that hypoxia can make the innate immune system more receptive 

to the induction of inflammation, e.g. by responding to an ongoing viral or bacterial 

infection, but it is less clear whether hypoxia can itself induce inflammation of a 

sufficient magnitude to result in the formation of an MS lesion. The former mechanism 

is particularly interesting given that the human herpes Epstein-Barr virus (EBV) is 

hypothesised to play a role in the aetiology of MS (Ascherio et al., 2001; Thorley-

Lawson, 2001; Haahr and Höllsberg, 2006; Pohl et al., 2006; Thacker et al., 2006; 

Ascherio and Munger, 2007a). Acute infection with EBV is followed by a life-long 

presence of the latent virus (Golden et al., 1973), which can be reactivated to lytic 

replication. EBV infection has been described in MS post mortem brain tissue, with the 

majority of the cells harbouring the latent virus (Serafini et al., 2007; Tzartos et al., 

2012). In addition to EBV infection, smoking is also considered a risk factor for MS 

(Ascherio and Munger, 2007b). Conflicting studies investigating the combined effects 

of high anti-EBVNA (EBV nuclear antigen) titres and smoking on MS risk, with some 

studies describing a strong association (Simon et al., 2010) and others describing no 

association (Sundqvist et al., 2012). Considering that smoking can lead to acute periods 

of tissue hypoxia (Sagone et al., 1973; Jensen et al., 1991) and hypoxia can reactivate 

latent EBV in vitro (Jiang et al., 2006), it seems reasonable that hypoxia-mediated 

reactivation of latent EBV in smokers may represent a pathogenetic mechanism of MS, 

particularly given that EBV infection can elicit an inflammatory response (Tzartos et al., 



 
 

238 

 

2012). Alternatively, the sensitisation of microglia by hypoxia may make the CNS more 

‘receptive’ to invading pathogens that may otherwise not elicit an immune response. It 

seems reasonable that the magnitude of the hypoxia would be increased in individuals 

who smoke, thereby reducing the threshold required for the activation of the innate 

immune system. However, this remains to be investigated.   

The current observation that there is considerable inter-individual variation in 

vascular density may also have implications for MS. It seems reasonable to assume that 

an individual with a decreased vascular density would be more vulnerable to becoming 

hypoxic than, say, an individual with a greater vascular density. Such a variation in 

vascular density may explain why MS is such a heterogeneous disease. Interestingly, a 

decreased vascular density of the hippocampal CA1 region has been associated with its 

increased vulnerability to hypoxia/ischaemia, in comparison with other hippocampal 

regions (Cavaglia et al., 2001), supporting such a theory.  

 

5.5.0.0 Future directions 

This thesis demonstrates that acute neuroinflammatory lesions are hypoxic, and that the 

severity of the hypoxia is sufficient to cause functional and structural consequences, in 

diseases such as MS. Furthermore, this thesis provides evidence that hypoxia may 

represent a potential cause of the disease itself. However, these findings give rise to a 

number of questions that should form the basis of future projects. 

1) Despite the observation that hypoxia is a feature of acute neuroinflammation, the 

exact cause of the hypoxia itself remains unclear. Hypoxia ensues when the demand of 

oxygen outweighs its supply, so it is important to determine the contribution of 

individual factors involved in this balance to deduce the cause of the hypoxia during 
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neuroinflammation. There are a number of likely causes for an impaired oxygen supply 

including, but not restricted to a) obstruction of venous drainage due to perivascular 

cuffing by inflammatory cells; b) thrombotic occlusion of the microvasculature; c) 

reduction in CBV; and d) alterations in CBF. The most likely causes of increased 

oxygen demand include a) increased cellular load due to the massive infiltration of 

inflammatory cells; b) increased oxygen consumption for the formation of NO and 

superoxide, including during respiratory burst activity via NADPH oxidase; and perhaps 

c) increased metabolic demand to fuel ATP production. All these issues can be 

addressed experimentally in vivo, and would lead to a deeper understanding of the 

mechanisms involved. 

 

2) The therapeutic benefit of normobaric oxygen was touched on in the current thesis, 

however, the optimal treatment regime still needs refining. The length, duration, and 

frequency of exposure are all important factors to consider. Alternative treatments 

aimed at increasing oxygenation may also prove beneficial, and may warrant 

investigating. One example is the use of perfluorocarbons (PFC) (reviewed in Spahn, 

1999). PFCs are chemically inert synthetic molecules that have the ability to dissolve 

significant amounts of oxygen. PFCs, by virtue of their small size (<0.2 µm in 

diameter), are able to perfuse even the smallest of capillaries (4-5 µm in diameter), 

where blood may not flow under certain conditions. All the oxygen carried by PFCs is 

in the dissolved state, therefore increasing the partial pressure of oxygen in the 

microcirculation and augmenting the oxygen diffusion into the tissue. Such an 

application would presumably have a considerable affect in EAE, given that the 

maximal tissue oxygenation possible with normobaric oxygen alone is somewhat 
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limited. Additionally, the safety of prolonged normobaric oxygen exposure requires 

particular attention as there is a danger of promoting oxidative damage. 

3) Finally, the hypothesis that hypoxia may play a role in inducing MS requires further 

research. Currently, the data are very preliminary. Examining the long-term effects of 

acute hypoxia is expected to reveal interesting findings. Additionally, identifying 

whether acute hypoxia can sensitise the CNS to subsequent systemic infections, using 

agents such as LPS, will be of particular interest.  

 

5.6.0.0 Concluding remarks 

This thesis provides novel observations that hypoxia may be a hitherto-unrecognised, 

yet potentially important factor in two of the three cardinal features of MS, namely 

inflammation-mediated neurological dysfunction and demyelination. The data are 

consistent with the notion that neurological dysfunction and structural damage occur 

due to an energy insufficiency in vulnerable cell types, and suggest that this energy 

deficit is at least partly mediated by hypoxia. Furthermore, this thesis provides evidence 

that selective regional and cellular vulnerabilities to hypoxia exist in the normal spinal 

cord, which may help explain why some cell types are preferentially affected in MS. 

The findings have implications for our understanding of MS, leading to a deeper 

understanding of the mechanisms involved and novel potential strategies for therapy.  
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