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Conservation priority setting based on phylogenetic diversity has frequently been proposed but rarely implemented. Here, we
define a simple index that measures the contribution made by different species to phylogenetic diversity and show how the
index might contribute towards species-based conservation priorities. We describe procedures to control for missing species,
incomplete phylogenetic resolution and uncertainty in node ages that make it possible to apply the method in poorly known
clades. We also show that the index is independent of clade size in phylogenies of more than 100 species, indicating that
scores from unrelated taxonomic groups are likely to be comparable. Similar scores are returned under two different species
concepts, suggesting that the index is robust to taxonomic changes. The approach is applied to a near-complete species-level
phylogeny of the Mammalia to generate a global priority list incorporating both phylogenetic diversity and extinction risk. The
100 highest-ranking species represent a high proportion of total mammalian diversity and include many species not usually
recognised as conservation priorities. Many species that are both evolutionarily distinct and globally endangered (EDGE
species) do not benefit from existing conservation projects or protected areas. The results suggest that global conservation
priorities may have to be reassessed in order to prevent a disproportionately large amount of mammalian evolutionary history
becoming extinct in the near future.
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INTRODUCTION
Our planet is currently experiencing a severe anthropogenically

driven extinction event, comparable in magnitude to prehistoric

mass extinctions. Global extinction rates are now elevated up to

a thousand times higher than the background extinction rates

shown by the fossil record, and may climb another order of

magnitude in the near future [1–3]. The resources currently

available for conservation are, unfortunately, insufficient to

prevent the loss of much of the world’s threatened biodiversity

during this crisis, and conservation planners have been forced into

the unenviable situation of having to prioritise which species

should receive the most protection–this is ‘the agony of choice’ [4]

or the ‘Noah’s Ark problem’ [5].

A range of methods for setting species-based conservation

priorities have been advocated by different researchers or

organisations, focusing variously on threatened species, restrict-

ed-range endemics, ‘flagship’, ‘umbrella’, ‘keystone’, ‘landscape’ or

‘indicator’ species, or species with significant economic, ecological,

scientific or cultural value [6–8]. To date, global priority-setting

exercises have tended to focus on endemic (or restricted range)

species [6,9,10], presumably because endemism is easier to

measure than competing methods. However, recent data show

that endemism is a poor predictor of total species richness or the

number of threatened species [11].

It has also been argued that maximising Phylogenetic Diversity

(PD) should be a key component of conservation priority setting

[4,12–14]. Species represent different amounts of evolutionary

history, reflecting the tempo and mode of divergence across the

Tree of Life. The extinction of a species in an old, monotypic or

species-poor clade would therefore result in a greater loss of

biodiversity than that of a young species with many close relatives

[15,16]. However, conserving such lineages may be difficult, since

there is some evidence that they are more likely to be threatened

with extinction than expected by chance [17]. This clumping of

extinction risk in species-poor clades greatly increases the loss of

PD compared with a null model of random extinction [18] and

suggests that entire vertebrate orders may be lost within centuries

[19]. Among mammals alone, at least 14 genera and three families

have gone extinct since AD 1500 [20], and all members of a further

19 families and three orders are considered to be in imminent

danger of extinction [2]. Many academic papers have suggested

ways to maximise the conservation of PD [e.g. 12,13,21–23] and

measure species’ contributions to PD [e.g. 4,23–25], but these

have rarely been incorporated into conservation strategies.

Therefore, it is possible that evolutionary history is being rapidly

lost, yet the most distinct species are not being identified as high

priorities in existing conservation frameworks.

There are several reasons why PD has not gained wider accept-

ance in the conservation community. First, although evolutionary

history consists of two distinct components (the branching pattern

of a phylogenetic tree and the length of its branches), complete

dated species-level phylogenies for large taxonomic groups have

only recently become available [26]. Early implementations of PD-

based approaches were therefore unable to incorporate branch

length data, and focused solely on measurements of branching

pattern [4]. Second, PD removes the focus from species and so

may lack wider tangible appeal to the public; conserving PD may

be seen as less important than the protection of endemic or
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threatened species [16]. However, the current instability in species

taxonomy [27] means that decisions based on PD might be more

objective than those based on different species concepts

[13,16,27]. Combining species’ conservation status with a measure

of their contribution to PD is therefore desirable, because species

can be retained as units but weighted appropriately [5,22]. This

would generate a useful and transparent means for setting global

priorities for species-based conservation [25].

This paper describes a new method for measuring species’

relative contributions to phylogenetic diversity [the ‘originality’ of

species: ref 24]. We explore the statistical properties of the

resulting measure, which we call Evolutionary Distinctiveness

(ED), and test its robustness to changing species concepts. ED

scores are calculated for the Class Mammalia, and combined with

values for species’ extinction risk to generate a list of species that

are both evolutionarily distinct and globally endangered (‘EDGE

species’). The resultant list provides a set of priorities for

mammalian conservation based not only on the likelihood that

a species will be lost, but also on its irreplaceability.

Evolutionary Distinctiveness and its use in

priority-setting
In order to calculate ED scores for each species, we divide the total

phylogenetic diversity of a clade amongst its members. This is

achieved by applying a value to each branch equal to its length

divided by the number of species subtending the branch. The ED

of a species is simply the sum of these values for all branches from

which the species is descended, to the root of the phylogeny. For

the examples in this paper, we have measured ED in units of time,

such that each million years of evolution receives equal weighting

and the branches terminate at the same point (i.e. the phylogeny is

ultrametric). The method could be applied to non-ultrametric

phylogenies if the conservation of other units [e.g. character

diversity 28,29] was prioritised [although see ref 30].

The basic procedure for calculating ED scores is illustrated in

figure 1, which describes a clade of seven species (A–G). The ED

score of species A is given by the sum of the ED scores for each of

the four branches between A and the root. The terminal branch

contains just one species (A) and is 1 million years (MY) long, so

receives a score of 1 MY. The next two branches are both 1 MY

long and contain two and three species, so each daughter species

(A, B and C) receives 1/2 and 1/3 MY respectively. The deepest

branch that is ancestral to species A is 2 MY long and is shared

among five species (A to E), so the total ED score for species A is

given by (1/1+1/2+1/3+2/5) = 2.23 MY. Species B is the sister

taxon of A, so receives the same score. By the same arithmetic, C

has a score of (2/1+1/3+2/5) = 2.73 MY, both D and E receive

(1/1+2/2+2/5) = 2.4 MY, and both F and G receive (0.5/1+4.5/

2) = 2.75 MY. The example illustrates that ED is not solely

determined by a species’ unique PD (i.e. the length of the terminal

branch). Species F and G are the top-ranked species based on their

ED scores, even though each represents just a small amount of

unique evolutionary history (0.5 MY). This suggests that the

conservation of both F and G should be prioritised, because the

extinction of either would leave a single descendant of the oldest

and most unusual lineage in the phylogeny [c.f. 15,24]. The ED

calculation is similar to the Equal Splits measure [25], which

apportions branch length equally among daughter clades, rather

than among descendent species.

In order to represent a useful tool in priority setting, ED scores

must be applicable in real phylogenies of large taxonomic groups.

To do this, we modified the basic procedure described above to

control for missing species, incomplete phylogenetic resolution and

uncertainty in node ages (see Materials and Methods). The

approach is implemented using a dated phylogeny of the Class

Mammalia that is nearly complete (.99%) at the species level

[31]. We then combined ED and extinction risk to identify species

that are both evolutionarily distinct and globally endangered

(‘EDGE species’). We measured extinction risk using the

quantitative and objective framework provided by the World

Conservation Union (IUCN) Red List Categories [2]. We follow

previous researchers in treating the Red List categories as intervals

of extinction risk and by assuming equivalence among criteria

[32,33, but see 34]. The resulting list of conservation priorities

(‘EDGE scores’) was calculated as follows:

EDGE~ln(1zED)zGE � ln(2) ð1Þ

where GE is the Red List category weight [Least Concern = 0,

Near Threatened and Conservation Dependent = 1, Vulnera-

ble = 2, Endangered = 3, Critically Endangered = 4, ref 32], here

representing extinction risk on a log scale. EDGE scores are

therefore equivalent to a loge-transformation of the species-specific

expected loss of evolutionary history [5,25] in which each

increment of Red List category represents a doubling (eln(2)) of

extinction risk. For the purposes of these analyses, we did not

calculate EDGE scores for species listed as Extinct in the Wild

(n = 4), domesticated populations of threatened species and 34

species (mostly of dubious taxonomic status) for which an

evaluation has not been made.

Figure 1. Hypothetical phylogeny of seven species (A–G) with
Evolutionary Distinctiveness (ED) scores. Numbers above each branch
indicate the length; numbers below show the number of descendent
species. MYBP, millions of years before present.
doi:10.1371/journal.pone.0000296.g001
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RESULTS

Statistical properties of ED
We measured ED in clades of different sizes to test whether ED

scores from different taxonomic groups are likely to be

comparable. We found that most ED is derived from a few

branches near the tips (i.e. those shared with few other species) and

that virtually no ED is gained in clades above ,180 species

(figure 2). Median ED in clades of 60 species is 88% of the total

accumulated using the whole tree (n = 10, figure 2). Moreover, the

rank order of ED scores is unaffected by the size of the clade under

consideration, except in very small clades and among species with

low overall ED (i.e. few of the lines in figure 2 cross one another).

These findings suggest that ED scores of different taxonomic

groups measured on separate phylogenies (i.e. with no nodes in

common) will be comparable, so long as each phylogeny is larger

than a threshold size. Based on the scaling observed in figure 2, we

suggest a minimum species richness of 100 as a useful rule of

thumb to ensure comparability among taxa.

Although most species (90% in figure 2) derive at least two-

thirds of their total ED from the terminal branch (which is not

shared with others), this branch length is a poor predictor of total

ED (r2 = 0.03 on a log-log scale). For species on short branches,

there is an order of magnitude difference between the length of the

terminal branch and ED. For example, the pale-throated and

brown-throated three-toed sloths (Bradypus tridactylus and B.

variegatus) share a common ancestor thought to be just over

a million years old, but the total ED of both species is 20.4 MY

(Table S1) since they have few close living relatives.

ED scores are also robust to taxonomic changes. For example,

ED scores in primates under the biological species concept [35]

are tightly correlated with ED scores under the phylogenetic

species concept [36] (r2 = 0.65 on a log-log scale), in spite of the

fact that there are substantial differences between the two: the

number of primate species differs by 50%. Furthermore, the

highest-ranking species do not change their identity: 45 of 58

biological species in the upper quartile of ED scores are also in the

upper quartile as phylogenetic species. However, species that have

been split into three or more species do tend to lose a large portion

of their ED. For example, the fork-marked lemur (Phaner furcifer) is

the second most distinct biological species of primate, with an ED

score of 38.33. It was split into four phylogenetic species [36] with

an ED score of 10.45 (Table S2), which is just inside the upper

quartile.

ED and EDGE scores in mammals
Mammal ED scores range from 0.0582 MY (19 murid rodents) to

97.6 MY (duck-billed platypus, Ornithorhynchus anatinus). Scores are

approximately log-normally distributed, with a median of 7.86

MY and geometric mean of 6.28 MY.

Evolutionary Distinctiveness is not evenly distributed among the

Red List categories. Least Concern species have significantly lower

ED than the other categories (F1,4180 = 26.3, p,0.0001, using loge

transformed scores); there are no significant differences among the

remaining categories. This suggests that species with low ED

scores tend to suffer from low levels of extinction risk, although the

explanatory power of this model is extremely low (r2 = 0.006).

EDGE scores range from 0.0565 (10 murid rodents) to 6.48

(Yangtze River dolphin or baiji, Lipotes vexillifer) and are

approximately normally distributed around a mean of 2.63

(60.017; figure 3). The 100 highest priority (EDGE) species

includes several large-bodied and charismatic mammals, including

the giant and lesser pandas, the orang-utan, African and Asian

Figure 2. Scaling of ED scores with clade size for ten Critically Endangered mammal species. ED scores were calculated at each node between the tips
and root for ten species in different orders. Species chosen are: the baiji (Lipotes vexillifer), sumatran rhino (Dicerorhinus sumatrensis), northern hairy-
nosed wombat (Lasiorhinus krefftii), persian mole (Talpa streeti), Omiltemi rabbit (Sylvilagus insonus), Przewalski’s gazelle (Procapra przewalskii), black-
faced lion tamarin (Leontopithecus caissara), Livingstone’s flying fox (Pteropus livingstonii), red wolf (Canis rufus) and northern Luzon shrew rat
(Crunomys fallax). See Materials and Methods for further details.
doi:10.1371/journal.pone.0000296.g002
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elephants, four rhinoceroses, two tapirs, two baleen whales,

a dugong and a manatee. However, many smaller and less

appreciated species also receive high priority, including sixteen

rodents, thirteen eulipotyphlans, twelve bats, four lagomorphs and

an elephant shrew (Table S1). The top 100 also includes at least 37

species that would not qualify for most area-based definitions of

endemism, since they are listed as threatened under Red List

criterion A (reduction in population size) without qualifying for

criteria B–D, which are based on population size or geographical

range. Whilst the highest-ranked species, by definition, are all

highly threatened (44 of the top 100 species are Critically

Endangered, a further 47 are Endangered), threat status alone

does not guarantee a high priority. For example, 10 Critically

Endangered species (in the genera Gerbillus, Peromyscus and

Crocidura), as well as 32 Endangered species, fail to make the top

1000, whilst 130 Near Threatened species do.

DISCUSSION
It is important that conservation priority-setting approaches are

able to satisfy two conditions: they capture biodiversity and are

robust to uncertainty. The method described herein satisfies the

first condition because EDGE scores incorporate species value (in

terms of originality, or irreplaceability) weighted by urgency of

action (i.e. risk of extinction). Our approach satisfies the second

condition because the scores are also robust to clade size, missing

species and poor phylogenetic resolution. EDGE scores are also

easy to calculate, as all that is required is a set of Red List

assessments and a near-complete phylogeny containing at least

100 species.

In particular, EDGE priorities are much less sensitive to

taxonomic uncertainty than alternate methods. The current trend

towards the adoption of the phylogenetic species concept among

biologists [27] is likely to produce a large number of ‘new’

threatened and endemic species [37], potentially altering the

distribution of hotspots [38] and distorting other biodiversity

patterns [27]. The EDGE approach is robust to such distortion

because any increase in extinction risk due to splitting is balanced

by a decrease in ED. A good example is that of the ruffed lemurs

(Varecia spp.), which consist of one Endangered biological species

(ED = 19.8; EDGE = 5.11) or two phylogenetic species (Endan-

gered and Critically Endangered; ED = 10.3; EDGE = 4.50 and

5.20). Using the same approach, we estimate that the long-beaked

echidna (Zaglossus bruijni) would fall from the second-ranked

priority to the 20th after the addition of two new congeners

[suggested by 39]. Thus, EDGE scores for existing species are

robust to the ongoing discovery of new species.

EDGE priorities are also robust to several other forms of

uncertainty. Like all phylogenetic methods, the precise EDGE

scores are dependent on the topology and branch lengths of the

phylogeny. However, errors in the phylogeny are unlikely to alter

the identity of high-ranking species, particularly for clades of

several hundred species. Topological uncertainty is usually

expressed in supertrees as polytomies, which are accounted for

using simple correction factors. Likewise, branch length un-

certainty has been incorporated into the scoring system to down-

weight the priority of species descended from nodes with

imprecisely estimated ages (see Materials and Methods). These

developments make it possible to estimate robustly the contribu-

tion to phylogenetic diversity of species in poorly known clades.

The other major source of uncertainty is in estimating extinction

risk: most recent changes in Red List category have come about

through improvements in knowledge, rather than genuine changes

in status [32]. EDGE scores will inevitably be affected by future

changes in extinction risk, although no more so than other

approaches using the Red List categories.

A minority of mammal species could not be assigned EDGE

scores. Around 300 species are classified as Data Deficient and

could not be meaningfully included, although in reality they may

have a high risk of extinction [17]. By far the most likely candidate

for high EDGE status following future Red List re-assessment is

the franciscana or La Plata River dolphin Pontoporia blainvillei

(ED = 36.3 MY). In addition, fifty extant species are missing from

the phylogeny. The highest ranked of these are probably a pair of

Critically Endangered shrews (Sorex cansulus and S. kizlovi); median

and maximum ED scores for the genus are 4.55 and 14.6 MY,

giving potential respective EDGE scores of 4.49 and 5.52 for these

species (cf. figure 3). A further 260 species have been described

since the chosen taxonomy was published [40]. Of these, the

recently described Annamite striped rabbit Nesolagus timminsi [41] is

the sister species to the tenth-ranked Sumatran rabbit N. netscheri,

so would be a high priority if similarly threatened.

It has been suggested that species with few close relatives (i.e.

high ED) are ‘relicts’ or ‘living fossils’ that have limited ability to

generate novel diversity. This view implies that conservation

efforts should instead be focused on recent radiations containing

species with low ED scores (e.g. murid rodents), which represent

‘cradles’ rather than ‘museums’ of diversity [e.g. 16,42]. However,

the assumption that we are able to predict future evolutionary

potential is dubious and no general relationships between

phylogeny and diversity over geological time have yet been

established [43,44]. Furthermore, phylogenetic diversity is clearly

related to character diversity [30], and so ED may be a useful

predictor of divergent properties and hence potential utilitarian

value [14]. Moreover, because species with low ED scores tend to

suffer from low levels of extinction risk, phylogenetic cradles of

mammalian diversity are likely to survive the current extinction

crisis even without specific interventions. Focusing on lower risk

species, at the expense of EDGE priorities, would therefore result

in a severe pruning of major branches of the Tree of Life

comparable to that seen in previous mass extinction events

[45,46].

Figure 3. Histogram of EDGE scores for 4182 mammal species, by threat
category. Colours indicate the Red List category: Least Concern (green),
Near Threatened and Conservation Dependent (brown), Vulnerable
(yellow), Endangered (orange) and Critically Endangered (red).
doi:10.1371/journal.pone.0000296.g003
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The top 100 EDGE species span all the major mammalian

clades [being distributed among 18 orders and 52 families

recognised by ref 35] and display a comparable range of

morphological and ecological disparity, including the largest and

smallest mammals, most of the world’s freshwater cetaceans, an

oviparous mammal and the only species capable of injecting

venom using their teeth. However, around three-quarters of

species-based mammal conservation projects are specifically aimed

at charismatic megafauna [47], so conventional priority-setting

tools may not be sufficient to protect high priority EDGE species.

This concern is supported by two additional lines of evidence.

First, we found that species not found in protected areas [‘gap

species’ defined by ref 48] tended to have higher EDGE scores

than those found inside protected areas (logistic regression:

x2
1,3994 = 69.46, p,0.0001). Second, an assessment of published

conservation strategies and recommendations (including IUCN

Specialist Group Conservation Action Plans, captive breeding

protocols and the wider scientific literature listed in the 1978–2005

Zoological Record database) reveals that no species-specific

conservation actions have even been suggested for 42 of the top

100 EDGE species. Most of these species are from poorly known

regions or taxonomic groups and until now have rarely been

highlighted as conservation priorities. Little conservation action is

actually being implemented for many other top EDGE species,

despite frequent recommendations in the conservation literature.

Indeed, the top-scoring EDGE species, the Yangtze River dolphin

(Lipotes vexillifer), is now possibly the world’s most threatened

mammal despite two decades of debate over a potential ex situ

breeding programme, and may number fewer than 13 surviving

individuals [49]. The lack of conservation attention for priority

EDGE species is a serious problem for mammalian biodiversity

and suggests that large amounts of evolutionary history are likely

to be lost in the near future. This phenomenon of diversity slipping

quietly towards extinction is likely to be much more severe in less

charismatic groups than mammals.

The approach described in this paper can be used for

conservation in a number of ways. First, conservation managers

with limited resources at their disposal typically need to conserve

populations of several threatened species. If all other factors were

equal, the management of the most evolutionarily distinct species

should be prioritized. Second, a list of high-priority species

requiring urgent conservation action can be generated easily. In

this paper, we have selected the 100 highest-ranking species, but

one might equally choose all threatened (Vulnerable and above)

species with above average ED. This would result in a list of 521

(using median) or 630 (using geometric mean) ‘EDGE species’ that

are both evolutionarily distinct and globally endangered. Third,

EDGE scores could also be used to weight species’ importance in

selecting reserve networks, building on previous studies that have

used phylogenetic diversity [50–52] or threatened species [11] to

identify priority areas for conservation. The statistical properties of

EDGE scores (they are both normally-distributed and bounded at

zero) make them especially suitable for these kinds of analysis. In

this way, the EDGE approach is not an alternative to existing

conservation frameworks [e.g. 6] but complements them.

The EDGE approach identifies the species representing most

evolutionary history from among those in imminent danger of

extinction. Our methods extend the application of PD-based

conservation to a wider range of taxa and situations than previous

approaches [4,5,13,22,24,25]. Future work might incorporate

socioeconomic considerations [5,14] and the fact that a species’

value depends also on the extinction risk of its close relatives [53].

However, our results suggest that large numbers of evolutionarily

distinct species are inadequately served by existing conservation

measures, and that more work is carried out to prevent the

imminent loss of large quantities of our evolutionary heritage. It is

hoped that this approach will serve to highlight their importance

to biodiversity and emphasize the need for urgent conservation

action.

MATERIALS AND METHODS

Implementing ED scores for mammals
We used a composite ‘supertree’ phylogeny [31] to calculate ED

scores for mammals. The supertree presents several challenges to

the estimation of ED when compared with the (unknown) true

phylogeny: poor resolution, missing species and uncertainty in

node ages. Accordingly, we modified the basic procedure to

control for these problems.

Phylogenetic information is poor in many mammalian clades

(especially bats and rodents, which together make up .60% of

species) and the whole supertree contains only 47% of all possible

nodes, many of which are polytomies (nodes with more than two

daughter branches). Across the whole phylogeny, ,40% of species

are immediately descended from bifurcations, ,20% from small

polytomies (3–5 daughters), ,15% from medium-sized polytomies

(6–10 daughters) and the remainder from large polytomies with

.10 daughters. Polytomies in supertrees result from poor or

conflicting data rather than a true representation of the speciation

process, so the distinctiveness of branches subtending them is

overestimated [54], thus leading to biased ED scores. For example,

the common ancestor of species X, Y and Z is believed to be 1 MY

old, but the branching pattern within the clade is unknown. The

polytomy appears to show that each species represents 1 MY of

unique evolutionary history. In reality, the phylogeny is bi-

furcating, with one species aged 1 MY and the others sharing

a more recent common ancestor. The bias induced by polytomies

can be corrected by estimating the expected ED of descendant

species under an appropriate null model of diversification. We

achieved this by applying a scaling factor based on the empirical

distribution of ED scores in a randomly generated phylogeny of

5000 species grown under constant rates of speciation (0.1) and

extinction (0.08). The mean ED score of species in 819 clades of

three species was 0.81 of the clade age; ED scores for nodes of 2–

20 species scale according to (branch length) * (1.081–0.267 *

ln{d}), where d is the number of descendent branches (n = 2873

clades, r2 = 0.69). Quantitatively similar values were obtained in

bifurcating clades of primates [1.117–0.246 * ln{d}, n = 78, ref 55]

and carnivores [1.139–0.269 * ln{d}, n = 101, ref 56].

The mammal supertree contains 4510 of the 4548 (.99%)

extant species listed in Wilson & Reeder [35]. Although few in

number, the missing species need to be taken into account because

their absence will tend to inflate the ED scores of close relatives.

For example, omitting species A from the phylogeny in figure 1

would elevate B from the joint lowest ranking species (with A) to

the joint highest-ranking (with C), with an ED score of (2/1+1/

2+2/4) = 3.5 MY. The problem is acute in real datasets since

missing species tend not to be a random sample: 22 of the 38

missing mammals are from the genus Sorex. We account for this

problem using a simple correction factor that allocates the missing

species among their presumed closest relatives. For example, we

correct for the omission of the bare-bellied hedgehog (Hemiechinus

nudiventris) by treating the other five Hemiechinus spp. as 6/5 = 1.2

species, and we correct for the omission of both Cryptochloris species

by spreading the two missing species evenly between other

Chrysochloridae.

Variation among morphological and molecular estimates of

divergence times (node ages) can lead to considerable uncertainty

Mammals on the EDGE

PLoS ONE | www.plosone.org 5 March 2007 | Issue 3 | e296



in ED scores. To reduce the effects of this uncertainty, we

estimated ED using three sets of branch lengths. One set was based

on the best (i.e. mean) estimates of node age; the others were

derived from the upper and lower 95% confidence intervals

around these dates. Species values of ED were calculated as the

geometric mean of scores under the three sets of branch lengths.

The geometric mean was preferred since it down-weights species

whose scores are based on nodes with symmetrical but wide

confidence intervals in estimate age, and is therefore more

conservative than the arithmetic mean.

Tests of robustness
To test whether ED scores are comparable among taxonomic

groups, we examined how species’ ED accumulates as pro-

gressively larger clades are considered. If ED scores are truly

comparable, their rank order will be independent of the size of the

clade considered. We randomly selected one Critically Endan-

gered species from each of ten mammal orders and measured the

cumulative ED score at each node between the species and the

root of the mammal supertree, thus redefining and enlarging the

clade (and so increasing the number of species it contained) at each

step.

Taxonomic changes have the potential to dramatically alter the

ED scores of individual species. Splitting a species in two reduces

the distinctiveness of all branches ancestral to the split, particularly

those near the tips. If ED scores are highly sensitive to taxonomic

changes then it may be meaningless to apply them in setting

conservation priorities. The effects of taxonomic changes on ED

scores were therefore investigated in the primates, which have

recently experienced considerable taxonomic inflation [27]. We

compared primate ED scores under a biological species concept

[35: 233 species] and a phylogenetic species concept [36: 358

species]. We employed a single phylogeny [31], but changed the

number of species represented by each tip. We calculated the

expected ED for multi-species tips by treating them as if they were

descended from a polytomy of {n+r+1} descendent branches,

where n is the actual number of descendent branches and r is the

number of species represented by the tip.

SUPPORTING INFORMATION

Table S1 Evolutionary Distinctiveness and EDGE scores for

mammals. This table shows Evolutionary Distinctiveness (ED) and

EDGE scores for all species included in the mammal supertree

[31] ranked by their EDGE score. Species that could not be

assigned EDGE scores are appended to the bottom of the list,

sorted by status and ED score. Species taxonomy follows Wilson &

Reeder [35]. Red List categories follow the 2006 IUCN Red List

[2]: CR = Critically Endangered, EN = Endangered, VU = Vul-

nerable, NT = Near Threatened, LC = Least Concern, CD = Con-

servation Dependent, DD = Data Deficient, NE = Not Evaluated.

The NE category includes species in Wilson & Reeder [35] that

could not be matched with any species or subspecies names in the

Red List.

Found at: doi:10.1371/journal.pone.0000296.s001 (0.42 MB

PDF)

Table S2 Evolutionary Distinctiveness for primates under two

species concepts. This table lists ED scores for primates under the

biological species concept i[.e. the taxonomy of ref 35], the

number of phylogenetic species into which the biological species

was split [36] and the estimated ED score of each phylogenetic

species. See Materials and Methods for further information. ED

scores are lower for phylogenetic species than biological species,

even for taxa whose taxonomic status is the same under both

concepts (i.e. the number of phylogenetic species is one). This

occurs because the total number of species in the phylogeny is

greater, so each receives a smaller share of the distinctiveness of

ancestral branches. ED scores were calculated using just one set of

branch lengths (the ‘best’ set), so differ from those in table S1.

Found at: doi:10.1371/journal.pone.0000296.s002 (0.05 MB

PDF)
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