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This paper describes the testing, comparison and application of global sensitivity techniques for the

study of the impact of the stream impurities on CO2 pipeline failure. Global sensitivity analysis through

non-intrusive generalised polynomial chaos expansion with sparse grids is compared to more common

techniques and is found to achieve superior convergence rate to crude Monte Carlo, quasi-Monte Carlo

and EFAST for functions with up to a moderate level of ‘‘roughness’’. This methodology is then applied

to the hypothetical full bore rupture of a 1 km CO2 pipeline at 150 bara and 283.15 K. The sensitivity

of the ensuing outflow to the composition of a quaternary mixture of CO2 with N2, CH4 and O2 as

representative stream impurities. The results indicate that the outflow rate is highly sensitive to the

composition during the early stages of depressurisation, where the effect of the impurities on phase

equilibria has a significant impact on the outflow.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

As part of the carbon capture and sequestration (CCS) chain,
pressurised pipelines are considered to be the most practical and
efficient means for transportation of the large amounts of CO2

captured from fossil fuel power plants for subsequent sequestra-
tion [22]. It is inevitable that such pipelines will cover distances of
several hundreds of kilometres, possibly at line pressures above
100 bar. Given that CO2 gas is an asphyxiant at concentrations
higher than 7% [25], the safety of CO2 pipelines is of paramount
importance and indeed pivotal to the public acceptability of CCS
as a viable means for tackling the impact of global warming [22].

The outflow and its variation with time following pipeline
failure dictates the resulting atmospheric dispersion of the
escaping inventory, an example of which can be observed in
Fig. 1. These data govern all the consequences associated with the
pipeline failure, including minimum safe distances to populated
areas and emergency response planning.

Naturally a great deal of uncertainty is present due to the many
possible circumstances in which a failure occurs including failure
type, i.e. puncture or full bore rupture, initial failure pressure and
temperature and variations in the captured stream composition due
to fluid stream sources based on differing capture methods (i.e. pre-
combustion, post-combustion or oxyfuel) [12] and post-capture
processing. The use of predictive models to examine the sensitivity
ll rights reserved.

).
of the consequences of pipeline failure to these variations is
standard within a quantitative risk assessment [23]. Such an
analysis is often conducted using a one-factor-at-a-time (OAT)
methodology [23,47], but as discussed by Saltelli and Annoni [35]
this technique assumes an underlying linear behaviour, which is
unlikely to be the case in such complex systems. To avoid such an
assumption about the underlying model, a global sensitivity analysis
(GSA) is required.

GSA is concerned with quantifying how the variation in the
model’s output depends on different sources of variation over the
entire parameter space, here treated as random input data, by
providing quantitative importance measures that relate the var-
iance of the output with each input variable. This form of analysis
of model sensitivity has been applied to parts of the CCS chain, to
the geological storage of CO2 by Kovscek and Wang [24] where
the effect of porosity and permeability on reservoir performance
was assessed, and widely applied in environmental engineering.
For example, Cea et al. [10] studied the effects of aleatoric and
epistemic uncertainty on a water quality model for evaluating
biological pollutant concentration.

Given the complexity of the fluid and thermodynamic behaviour
of the flow following a pipeline failure, substantial resources are
required for its computation [28], and as a result, the application of
GSA has been considered impractical. However, the success of recent
work [6,28] to decrease the computational expense of each simula-
tion enables one to calculate the total sensitivities.

In this work GSA is applied using a sensitivity measure
proposed by Sobol’ [41] to gain a better understanding of the
effect of impurities on the outflow following pipeline failure.
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Fig. 1. CO2 outflow and dispersion during pipeline decompression courtesy of Dalian University.
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The Sobol’ method is related to analysis of variance (ANOVA) and
decomposes the model variation into a number of effects that
represent the influence of each input, represented by a probability
distribution, and their interactions. Many methods have been
proposed to compute the integrals required to calculate these
effects, of these the most widely applied are Monte Carlo
sampling and the Extended Fourier Amplitude Sensitivity Test
(EFAST) [30]. These approaches usually require large sample sizes
to provide accurate estimations of the sensitivities, making them
impractical when the underlying model is computationally
expensive.

Sudret [44] proposed a procedure for the computation of the
Sobol’ sensitivity measures through the approximation of the
model’s output by a polynomial expansion, known as generalised
polynomial chaos (gPC) [19]. The gPC expansion is a linear
combination of suitable global polynomial approximations in
probability space, for which the statistical moments, expected
value and variance, are known exactly from the coefficients of the
expansion (see also [13,16]). The family of orthonormal mono-
dimensional polynomials is selected in accordance with the
general Askey scheme [50] with respect to the probability
measure of each random input variable. The gPC expansion may
be constructed intrusively by a Galerkin projection reformulation
of the underlying problem or through non-intrusive approaches
such as projection and regression (see [5,45]).

In recent years stochastic collocation [4,49] has been applied
to build sparse gPC expansions on tensor grids for high dimen-
sional random input data (see e.g. [9]), to mitigate the so-called
‘‘Curse of Dimensionality’’. This method constructs an approxi-
mative function that is a sum of Lagrangian interpolants on a set
of points, which is known as a sparse grid (see [8]) (originally
introduced by Smolyak [39] for multi-dimensional integration).
The approximative function can be converted into the form
of a gPC expansion. Formaggia et al. [18] applied GSA with gPC
expansion derived from the stochastic collocation method to a
basin-scale geochemical compaction model and advocated its
applicability to models subject to high dimensional random input
data. This sparse gPC expansion potentially requires far fewer
function evaluations than the other methods identified above,
meaning that the use of GSA for complex numerical models, such
as that required for modelling the discharge following pipeline
failure, may be tractable.

The paper is organised as follows. Section 2 presents a review
of a particular decomposition of a multi-variate function (Section
2.2). It is then shown how this expansion is used to define the
Sobol’ sensitivity indices (Section 2.3) and a number of common
methods (i.e. Monte Carlo, EFAST and gPC) for calculating the
Sobol’ indices are presented. These methodologies are then tested
against two benchmark test functions, and a family of test
functions constructed to investigate the robustness of gPC
(Section 2.4). The test functions constructed exhibit near discon-
tinuous behaviour, and further difficulty is induced with additive
artificial white noise. In Section 3 the most efficient of these
techniques, in terms of convergence per number of function
evaluations, is applied to a pipeline failure scenario. An extensively
validated pipeline decompression model is presented in Section
3.1, while the uncertainty in the likely composition of a CO2 stream
is discussed in Section 3.2. Firstly, Monte Carlo simulation is used
to estimate the outcome probability distribution and perform a
crude sensitivity analysis with scatter plotting. The final analysis
serves as a framework for future work on consequence analysis for
pipeline failure under uncertainty. Finally conclusions resulting
from this work are drawn in Section 4.
2. Global sensitivity analysis

2.1. Probabilistic formulation

Let yðoÞ ¼ ðy1ðoÞ,y2ðoÞ, . . . ,ynðoÞ, . . . ,yNðoÞÞ : O-RN represent
N independent and identically distributed (i.i.d.) random vari-
ables, GnDR the image set of the random variable yn, and
G¼

QN
n ¼ 1 Gn. Hence the joint probability distribution function r :

G-R of y can be factorised as rðyÞ ¼PN
n ¼ 1rðynÞ, where rðynÞ

is the marginal probability distribution function of yn. Let
ðG,BðGÞ,rðyÞ dyÞ, where BðGÞ is the Borel s-algebra on G, and
rðyÞ dy is the probability distribution measure of y on G. L2

rðGÞ
denotes the Hilbert space consisting of square integrable func-
tions on G with respect to the measure rðyÞ dy.
2.2. Functional ANOVA representation

A function uAL2
rðGÞ can be expanded as a functional ANOVA

decomposition

uðyÞ ¼ u0þ
X
jDJ

ujðyjÞ, ð1Þ

for which yj ¼ ðyj1
,yj2

, . . . ,yj9j9
Þ is a vector including the components

of y indexed by j, where j represents a non-empty subset of the
coordinate indices J ¼ f1, . . . ,Ng with cardinality denoted by 9j9. For
example, for j¼ f2,3g and {1,3,4}, 9j9¼ 2 and 3, respectively. Let Gj

denote the 9j9-dimensional hyper-rectangle defined as the projec-
tion of the N-dimensional G onto the hyper-rectangle indexed by j.
The ANOVA representation allows one to distinguish between first
order effects, low-order interdependence, and high-order interac-
tion. The summands ujðyjÞ can be calculated recursively as follows:

u0 ¼

Z
GN

uðyÞrðyÞ dy ð2Þ

and

ujðyjÞ ¼

Z
GN�9j9

uðyÞrðyJ \jÞ dyJ \j�
X
k � j

ukðykÞ�u0: ð3Þ

The measure rðyJ \jÞ dyJ \j represents the integration over GJ \j. The
ANOVA expansion is an exact projection of u with respect to the
L2
rðGÞ-inner product onto the mutually orthogonal uj, jDJ , that is,Z
G

ujðyjÞukðykÞrðyÞ dy¼ djk, ð4Þ
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in which djka0 if j¼ k, else djk ¼ 0. Hence it holds that for all
9j940,Z
G

ujðyjÞrðyÞ dy¼ 0: ð5Þ

2.3. Sobol’ sensitivity indices

Sobol’ [41] proposed a variance based GSA method that
extends decomposition (1) to a variance based representation
where the summands can be interpreted as relative importance
measures of the subsets of the input variables. Following Eqs. (1),
(4) and (5) the Sobol’ indices are given by

Sj ¼
V½ujðyjÞ�

V½uðyÞ�
¼

R
Gu2

j ðyjÞrðyÞ dyR
Gu2ðyÞrðyÞ dy�u2

0

, ð6Þ

in which the variance of uðyÞ under the probability measure
rðyÞ dy is

V½uðyÞ� ¼
X
jDJ

V½ujðyjÞ� ¼
X
jDJ

Z
G

u2
j ðyjÞrðyÞ dy: ð7Þ

Accordingly, it holds that
P

jDJ Sj ¼ 1. It must be noted that Eq. (7)
relies on the assumption of the mutual independence of fyng. The
Sobol’ indices quantify the relative importance of their correspond-
ing effects which provide valuable insight on the mixed effects. The
total effect induced by each input variable yn has been defined by
Homma and Saltelli [21] as

ST
n ¼

X
jDJ :nA j

Sj: ð8Þ

The total effects ST
n are in practice easy to compute through their

complement in J , that is, Sj for which n=2j. When underlying
function evaluations are computationally expensive, a complete
characterisation of all sensitivity indices is, in general, not feasible
to compute.

2.3.1. Monte Carlo sampling

The Monte Carlo (MC) is a widely used sampling method to
estimate multi-dimensional integrals. MC features a slow error
convergence, the error is proportional to the work m�ð1=2ÞW , where
m is the number of trials and W the work of a single trial
evaluation. It does not exploit the possible regularity that the
quantity of interest uðyÞ might have with respect to the random
input variables. Sobol’ [41] showed that four MC computations
are sufficient to compute the first order and total sensitivities:Z
GN

uðyÞrðyÞ dy,

Z
GN

u2ðyÞrðyÞ dy, ð9Þ

Z
GN�1

uðyÞuðyJ \fngÞrðyJ \fngÞ dyJ \fng andZ
G1

uðyÞuðyfngÞrðyfngÞ dyfng:

Quasi-Monte Carlo (QMC) sampling, using the Sobol’ sequence LPt
[40], for example, can also be used [42].

2.3.2. Fourier amplitude sensitivity test methods

The FAST (Fourier amplitude sensitivity test) method [30]
reduces the following multi-dimensional integration:

E½uðyÞ� ¼
Z
GN

uðyÞrðyÞ dy ð10Þ

to a one-dimensional integration along a curve by applying
Weyl’s theorem [46]. This is achieved by associating each variable
yn with a frequency on of the system in the Fourier transform
space, forming a set O. Each variable is then transformed by

ynðsÞ ¼ GnðsinðonsÞÞ, n¼ 1, . . . ,N, ð11Þ

where Gn is an appropriate set of functions chosen such that
Eq. (11) forms a space filling curve. Various transformations have
been suggested (see e.g. [38]) for FAST. As an example,

ynðsÞ ¼
1

2
þ

1

p arcsinðsinðonsÞÞ: ð12Þ

The Fourier coefficients associated with on are then used as a
measure of the sensitivity of the output function to input variable
yn. It was shown by Saltelli and Bolado [36] that this calculation is
equivalent to that proposed by Sobol’ for the first order sensitiv-
ities. Saltelli et al. [38] proposed an extension of FAST, called
EFAST, that uses the first order effect estimates by FAST to
compute total sensitivities, this is done by computing total
sensitivities through the complement of the first order effects.
To calculate the complement a random phase shift, cn � Uð½0,2pÞÞ,
is used to re-sample the search curve:

ynðsÞ ¼
1

2
þ

1

p arcsinðsinðonsþcnÞÞ: ð13Þ

Further, on is assigned one value (high) while the remaining
variables O\on are given another (low). In this manner by
evaluating for O\on the total sensitivity is obtained.

2.3.3. Generalised polynomial chaos using sparse grids

The use of global polynomial approximations is promising
when the quantity of interest uðyÞ is smooth with respect to the
random input variables fyng.

The tensor product structure of L2
rðGÞ allows one to introduce a

polynomial subspace of L2
rðGÞ denoted by PðGÞ as well as rðyÞ dy-

orthonormal basis

CpðyÞ ¼
YN

n ¼ 1

Cpn
ðynÞ, p¼ ðp1,p2, . . . ,pn, . . . ,pNÞANN , ð14Þ

where Cpn
ðynÞ denotes rðynÞ dyn-orthonormal polynomials on Gn.

The goal is to project uðyÞ on PLðoÞðGÞ ¼ spanfCpðyÞ, pALðoÞg to
obtain a global polynomial approximation

uoðyÞ ¼
X

pALðwÞ

apCpðyÞ, ð15Þ

for a suitable fCpgpDLðoÞ, where LðoÞ,oAN are polynomial
spaces of increasing index sets with respect to o. This represen-
tation is known as a gPC expansion [19,51].

In a computational context the gPC expansion needs to be
truncated, and here the general construction of LðoÞ provides a
polynomial space hierarchy with o. The classical Tensor Product
polynomial space LðoÞ ¼ spanfpANN : maxn ¼ 1,2,...,Npnrog
suffers from the curse of dimensionality since its dimension
increases exponentially fast with the number N of random input
variables. A more attractive option is the sparse Total Degree
polynomial space LðoÞ ¼ spanfpANN :

PN
n ¼ 1 pnrog. The choice

and construction of LðoÞ are discussed in detail in [2].
When the randomness in y is described by certain probability

distributions, the Sobol’ indices can be determined exactly from
the coefficients of the gPC expansion of uðyÞ. This is true when
described by for example the uniform and normal distribution.
When computing statistical moments such as the expected value
and variance of uðyÞ the appropriate family of rðyÞ dy-orthonor-
mal polynomials should be chosen with respect to the distribu-
tion measure of the input variables (see [50]). Many common
probability distributions correspond to classical real orthogonal
polynomials given in the general Askey scheme. Even in cases
when the underlying probability distribution of yn is not repre-
sented in the general Askey scheme, yn can be parametrised by
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Fig. 2. 2-D example of a Smolyak sparse grid o¼ 4 using Gauss–Legendre points.
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a finite number of uniformly distributed variables through an
appropriately chosen non-linear transformation following the
theory of copulas (see [31]).

As the random variables in this study are uniformly distributed
the normalised Legendre polynomials are used. The first and
second statistical moments of uoðyÞ are then directly obtained
from the gPC coefficients fapg:

E½uoðyÞ� ¼ a0 and V½uoðyÞ� ¼
X

pALðoÞ
a2

p�a
2
0: ð16Þ

There is a one-to-one correspondence between the analytical
Sobol’ indices and distinct subsets of gPC coefficients [44]: the
gPC expansion of uðyÞ may be recast as

lim
o-1

uoðyÞ ¼ a0þ
X
jDJ

X
p ANN :

in 4 03n A j

apCpðyÞ, ð17Þ

and then given (1) and (17) the one-to-one correspondence is
explicit, that is,

ujðyjÞ ¼
X
p ANN :

pn 4 03n A j

apCpðyjÞ: ð18Þ

Insert Eq. (18) into the Sobol’ index definition, (6), and exploit
orthonormality of Cp to conclude

Sj ¼

P
p ANN :

pn 4 03n A j

a2
pP

pANNa2
p�a2

0

: ð19Þ

The gPC coefficients fapg can in some cases be computed using
Galerkin projection that involves a reformulation of the model
equations [26], but this is impractical for deterministic models of
complex structure, such as those involving non-linear governing
equations. To circumvent this, the non-intrusive stochastic sparse
grid collocation method [1] devised by Smolyak [39] can be
applied. Other non-intrusive approaches are described elsewhere
[26], for example those based on projection, that determine the
coefficients by integration, and regression-based approaches, that
rely on least squares.

Stochastic sparse grid collocation methods build upon a set of
collocation points fykAGg with corresponding function responses
fuðykÞg, a global polynomial approximation uo : C0

ðGÞ-PmðiÞ�1ðGÞ:

uSG,oðyÞ ¼
X

iAI ðoÞ
cðiÞ �

N

n ¼ 1
UmðinÞ

n ½u�ðyÞ,

cðiÞ ¼
X

j ¼ f0,1gN :
iþ j A IðoÞð�1Þ9j9

, ð20Þ

where UmðiÞ
n : C0

ðGnÞ-PmðiÞ�1ðGnÞ denotes a mono-dimensional
Lagrangian polynomial interpolant operator, �N

n ¼ 1 the Cartesian
tensor product operator of the sets of collocation points in each
direction n, iANN

þ multi-indices, I ðoÞ a sequence of increasing
index sets and m(i) the number of collocation points used to build
the mono-dimensional interpolant at level i. The polynomial
approximation (20) is known as sparse grid approximation and
its construction is described elsewhere [4].

The set of indices I ðoÞ can be chosen so that the approxima-
tion belongs to a given polynomial space LðoÞ [2]. This study will
use the isotropic Smolyak sparse grid which is defined by

ISmolyakðoÞ ¼ iANN
þ :

XN

n ¼ 1

ðin�1Þro
( )

ð21Þ

and

mðiÞ ¼
2i�1
þ1, i41,

1, i¼ 1:

(
ð22Þ

When using the Smolyak sparse grid many of the coefficients cðiÞ
in (20) may be zero, hence the name sparse grid. In this study the
mono-dimensional Lagrangian interpolants use the non-nested
Gauss–Legendre rule so that the gPC expansion is built upon
tensor products of Legendre polynomials. The collocation points
used in a Smolyak sparse grid with the Gauss–Legendre rule are
shown in Fig. 2. Keep in mind that generally the sparse grid
approximation (20) is not interpolatory [3], unless it is con-
structed using a nested rule for the collocation points, e.g.
Clenshaw–Curtis points.

Using direct sparse grid quadrature requires the evaluation
of high-dimensional integrals to obtain the gPC coefficients,
to circumvent this the key is to convert the sparse grid approx-
imation into a Legendre gPC expansion without the need to
evaluate any high-dimensional integrals (see [45]).

2.4. Numerical tests

In this section we first evaluate the methodologies for global
sensitivity introduced earlier (i.e. Monte Carlo, EFAST and gPC).
The method performing most accurately with fewest number of
function evaluations is then applied to the analysis of the
variation of CO2 outflow rate with composition.

The methodologies are applied to two test functions for which
the analytical Sobol’ indices are known exactly. Formulas to
calculate the analytical Sobol’ indices for these functions can be
found in [13]. A further test function is constructed to investigate
the performance of the methods under varying levels of difficulty,
where the steep changes involved can be made nearly
discontinuous.

2.4.1. Ishigami function

The Ishigami test function is given in Saltelli et al. [37]:

uðyÞ ¼ sinðy1Þþ7 sin2
ðy2Þþ0:1y4

3 sinðy1Þ, ð23Þ

where yn � Uð½�p,p�Þ, that is, uniformly distributed in ½�p,p�.
A fourth dummy input which is not used in the function evalua-
tion is also used in the analysis.

Fig. 3a–d shows a comparison of the convergence performance
for each of the methods for S1, S2, ST

1 and ST
2. As may be observed in

the cases of S1, ST
1 and ST

2, the behaviour obtained using the MC
and QMC is not markedly different, while EFAST shows no sign of
further convergence. In contrast, the gPC converges to machine
precision within ca. 10,000 function evaluations. The gPC shows a
similar rate of convergence for S2 (Fig. 3b), while in this case
EFAST shows a markedly better convergence, performing signifi-
cantly better than both the MC and QMC.
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The excellent performance of the gPC for the Ishigami function
is unsurprising given that while the function is non-linear, it is
smooth and so an approximation by polynomials to arbitrary
degree is possible.

2.4.2. Sobol’ test function

In order to evaluate the performance for anisotropic non-smooth
functions and higher dimensional input data, the following example
is utilised [5]:

uðyÞ ¼
Y8

n ¼ 1

94yn�29þan

1þan
, ð24Þ

where a1 ¼ 0, a2 ¼ 2, a3 ¼ 5, a4 ¼ 10, a5 ¼ 20 , a6 ¼ 50, a7 ¼ 100 and
a8 ¼ 500 and yn � Uð½0,1�Þ, n¼ 1, . . .8.

Fig. 4a–d shows a comparison of the convergence performance
for each of the methods for S1, S2, ST

1 and ST
2. As may be observed in

each case, the performance of the gPC is again better than for the
other methods tested, though this is not as marked as in the case
of the Ishigami function. Additionally, the values obtained for S1,
ST

1, and ST
2 using EFAST appear not to converge to their analytical

solutions. Thus the results indicate that even for a function for
which the gPC is not ideally suited, it still achieves an accuracy
equivalent or better than that obtained using the other standard
methodologies.

2.4.3. Rapid Change test function

To further explore the level of rapid change up-to-which the
gPC is still advantageous we construct a family of multi-variate
test functions (that used by [43] extended to multi-dimensions)
with two regions of rapid change:

uðyÞ ¼ 1�
1

1þexpð�b1ð
PN

n ¼ 1ðcnyn�w1ÞÞ
þ
4

5ð1þexpð�b2ð
PN

n ¼ 1ðcnyn�w2ÞÞÞ
, ð25Þ

where yn � Uð½�1,1�Þ. Here c¼ ðc1,c2, . . . ,cNÞ are parameters satis-
fying SN

n ¼ 1cn ¼ 1, whereas wA ½�1,1�2 can be interpreted as the
positioning of two regions of rapid (exponential) changes. The
difficulty of the function is in turn controlled by the magnitude
of bAð0,þ1Þ2, see Fig. 5a. Fig. 5b shows the same case in
the presence of additive white noise, intended to represent the
numerical error which is present in complex simulations, i.e.
uðyÞþeðyÞ, eðyÞ �N ð0,s2Þ.

Fig. 6a–d shows the comparison of behaviour for values of b of
(10,30), (10,75), (10,150) and (75,150), respectively. As may be
observed in Fig. 6a, representing the least difficult function, the
rate of convergence of the gPC is superior to that of both the MC
and QMC, reaching reasonable accuracy in under 1000 function
evaluations. As the magnitude of b increases (Fig. 6b–d) it is clear
that the performance of the gPC becomes progressively worse. For
the most difficult problem, that is where b is (75,150) (Fig. 6d),
the results do not show any sign of convergence.

Fig. 7a–d again shows the convergence behaviour of the three
methodologies using s values of 0, i.e. without noise, 0.005, 0.01
and 0.05, respectively. As expected, as the degree of noise applied
grows the performance of the gPC is observed to deteriorate, and
for the larger s values (Fig. 7c and d) the results fail to converge.
Same behaviour has been observed for the other first order
effects. The reduction in size of the first order Sobol’ indices is
because the non-linear gPC coefficients grow, and the linear gPC
coefficients remain the same, as the noise level increases. In these
cases it is clear that the gPC is not applicable.

It is important to note that the highest level of noise (s¼ 0:05)
is much larger than that expected to occur in a numerical model.
In particular, for the application that is considered in this work we
do not expect the extremely rapid changes or high level of noise



-1 -0.5 0 0.5 1 -1
-0.5

0
0.5

1
0

0.5
1

1.5
2

y1 y2 y1
y2

-1 -0.5 0 0.5 1 -1
-0.5

0
0.5

1
0

0.5
1

1.5
2

Fig. 5. Rapid Change function (25) with and w/o additive noise, where c¼ ð0:3,0:7Þ, w¼ ð0:4,0:8Þ, and b¼ ð75,30Þ: (a) Rapid Change function and (b) Rapid Change function

with additive white noise �N ð0,s2Þ,s¼ 0:05.

1e-05

0.0001

0.001

0.01

0.1

1

1 100 10000 1e+06 1e+08
Number of function evaluations

MC
QMC

EFAST
gPC

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1 100 10000 1e+06 1e+08
Number of function evaluations

MC
QMC

EFAST
gPC

0.0001

0.001

0.01

0.1

1

1 100 10000 1e+06 1e+08
Number of function evaluations

MC
QMC

EFAST
gPC

0.0001

0.001

0.01

0.1

1

1 100 10000 1e+06 1e+08
Number of function evaluations

MC
QMC

EFAST
gPC

| S
1-

S
1ex

ac
t  |

| S
2-

S
2ex

ac
t  |

| S
1T -

S
1T ,

ex
ac

t  |

| S
2T -

S
2T ,

ex
ac

t  |

Fig. 4. Convergence of sensitivity indices of the Sobol’ test function: (a) S1, (b) S2, (c) ST
1, (d) ST

2.

S. Brown et al. / Reliability Engineering and System Safety 115 (2013) 43–5448
that caused the failure of the gPC. This was also verified by taking
random walks in the input space as described in Section 3.2.2.
2.4.4. Discussion

From the above test cases it has been shown that even in cases
where the underlying function contains steep gradients and low
levels of noise the gPC technique outperforms the other methods
tested. In particular, accurate results are obtainable with gPC
within a very limited budget of function evaluations, whereas
MC and QMC are, due to slow convergence, impractical for
computationally expensive functions. Hence, unless there are
known function characteristics that suggest its inadequacy, such
as a high level of numerical noise, this technique should be
attempted before resorting to the other methods presented.
3. Application: pressurised CO2 pipeline failure

In the previous section it was found that gPC using sparse grids
provided an efficient means to calculate the Sobol’ indices for
GSA. In what follows this technique is applied to the study of the
impact of impurities stream on the outflow following the failure
of a pressurised CO2 pipeline.

In practice the composition will be dependent on the capture
method (i.e. pre-combustion, post-combustion or oxyfuel) and
the post-capture processing. As part of a complex CCS network,
the mixing of CO2 streams, each containing various levels of
impurities, naturally introduces a great amount of uncertainty as
to the overall composition of the fluid being transported. The
composition of the CO2 stream will, however, have to comply
with the prevailing legislative limits [17].

Preliminary analyses of the impact of impurities on the CO2

decompression behaviour resulting from pipeline failure have
been made [7,11]. Likewise in the case of fracture, testing of the
effect of impurities on crack propagation has been limited to
representative mixtures for each of the capture methods [29].
Both cases suggest that the composition of the CO2 mixture has a
dramatic impact on the consequences of pipeline failure.

Hence, a quantification of the sensitivity of the consequences
of pipeline failure to the CO2 stream composition is a matter of
great current concern. Importantly, due to the complex thermo-
dynamic behaviour of multi-component CO2 mixtures, it is
unlikely that the effects will be linear and so not amenable to
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Table 1
CO2 quality recommendations from the Dynamis project and the Ecofys study.

Species Dynamis Ecofys

CO2 495:5% 495%

N2, O2, H2, Ar, CH4 4 vol% max (no individual 42%) 4 vol% max

(cumulative)

H2O 500 ppm o500 ppm

SOx 100 ppm –

NOx 100 ppm –

H2S 200 ppm –

CO 2000 ppm No data

Table 2
Pipeline characteristics and prevailing conditions.

Pipeline characteristics
Pipeline length (km) 1

External diameter (mm) 609.4

Wall thickness (mm) 9.45

Pipe wall roughness (mm) 0.05

Initial conditions
Feed temperature (K) 288.15

Ambient temperature (K) 288.15

Feed pressure (bara) 150

Ambient pressure (bara) 1.01
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OAT analysis. As such, the application of efficient methods GSA
offer important insights.

3.1. Pipeline decompression model

The full background theory of the fluid flow model employed
in this study to predict the decompression behaviour, implemen-
ted in the CFD code PipeTech including its validation against real
pipeline rupture data is given elsewhere [27,28,32]. For comple-
teness, a brief account of its main features is given here. Based
on the homogeneous flow assumption, in the case of unsteady,
mono-dimensional flow the mass, momentum and energy con-
servation equations, respectively, are given by

Dr
Dt
þr @u

@x
¼ 0, ð26Þ

rDu

Dt
þru

@u

@x
þ
@P

@x
�a¼ 0, ð27Þ

rDh

Dt
�

DP

Dt
�ðq�ubÞ ¼ 0, ð28Þ

where D=Dt is the material derivative and r, u, P and h are the
density, velocity, pressure and specific enthalpy of the homo-
geneous fluid as a function of time, t, and space, x. q is the heat
transferred through the pipe wall to the fluid and b is the friction
force term

b¼�2
f w

d
ru9u9, ð29Þ

where fw is the Fanning friction factor and d the pipeline
diameter. Also,

a¼ b�rg sin y, ð30Þ

where y is the angle of inclination of the pipeline to the
horizontal.

Eqs. (26)–(28) are quasi-linear and must be solved numeri-
cally. As described elsewhere, the method of characteristics
(MOC) [52] is used as the numerical solution method. At the
boundary representing the release plane the choked flow condi-
tion [15] is applied using the methodology described in Wong and
Mahgerefteh [48]. The Peng Robinson equation of state [34] is
employed to generate the relevant vapour/liquid equilibrium data
required for the outflow model.

3.2. Impact of impurities on CO2 pipeline decompression

A number of studies have sought to define maximum allow-
able concentrations of impurities in CO2 streams for pipeline
transportation [14,17,33]. Table 1 summarises the compositions
suggested by Dynamis [14] and Ecofys [20].

For the sake of this analysis a simplified composition is
assumed in which the only non-CO2 components present are N2,
CH4 and O2. Further it is assumed, in accordance with Table 1,
each component’s mole percentage is a uniformly distributed
random variable, yn � Uð½0,2�Þ. Furthermore, zero correlation
between the random variables is assumed. It is envisaged that
as planning for CCS networks progresses a better definition of the
uncertainty in the composition will be available for analysis.

As described previously, the release behaviour and its varia-
tion with time following pipeline failure dictates the resulting
atmospheric dispersion of the escaping inventory. A large number
of variables are required to define the fluid release including the
thermodynamic properties (e.g. pressure, temperature), phase
distribution and outflow rate. In order to simplify the study, the
effect of the forward propagation of uncertainty in the composi-
tion is assessed by the probability distribution of the outflow rate,
as is commonly the case in the literature [23]. The following
represents the results of the application of the methodology
described above to an hypothetical example involving the full
bore rupture at the end of a highly pressurised pipeline carrying a
CO2 mixture with small amounts of impurities. Table 2 shows the
pipeline characteristics and prevailing conditions. In order to
reduce the computational expense of each outflow simulation
the length of the pipeline is restricted to 1 km. An equidistant grid
system comprising 100 nodal points is employed for the spatial
discretisation.

For GSA we are investigating the impact of impurities for the
first 80 s following a pipeline failure. In contrast for UQ, to afford a
larger number of simulation runs using MC, the simulated time is
reduced to 1 s, and hence serves as an analysis of the impact of
impurities at this early stage of depressurisation.
3.2.1. Uncertainty analysis

An MC computation using a sample size of 10,000 was per-
formed taking samples from the independent joint distributions of
yn representing the space of possible compositions. Fig. 8 shows the
binning of the resulting samples that approximates the shape of the
probability distribution at 1 s after the pipeline failure. As may
be observed, the distributions range of ca. 1200 kg/s shows that
relatively small variations in the composition have an important
impact on the outflow rate. Such differences have been observed to
have significant implications for the dispersion behaviour of the
resulting cloud [47].

Table 3 contains a summary of the statistical data, including
the calculated mean and standard deviation. As may be observed
from the table, the wide dispersion of the data in Fig. 8 is borne
out by the standard deviation of 186.2 kg/s.

Fig. 9a–c show scatter plots of the variation of discharge rate
at 1 s following pipeline failure with percentage mole fraction of
CH4, N2 and O2, respectively. It is immediately clear from Fig. 9a
that there is a negligible correlation between concentration
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of CH4 and the outflow rate. In contrast, the same plot for N2

(Fig. 9b) indicates an almost linear relationship with the equiva-
lent data for O2 (Fig. 9c) showing a similar, albeit weaker,
behaviour.
Fig. 9. Variation of flowrate with impur

Fig. 8. Probability distribution of outflow rate.

Table 3
Data summary.

Quantity

Mean 7174.6

Standard deviation 186.2

Median 7175.3

Highest percentile 7493.4
3.2.2. Sensitivity analysis

Given the good performance of the gPC in the calculation
of the Sobol’ indices described in Section 2.3 this method was
applied to the CO2 outflow rate problem outlined previously.
Table 4 shows the first and total effects obtained from this
analysis. As may be observed the calculated first order effects
for variable N2 do not appear to show convergent behaviour with
the increasing number of samples used. Similar behaviour is also
seen for the other variables.

In order to understand the behaviour of the system a linear
path with randomly selected end points in the input space was
generated and sampled along. Fig. 10a shows the outflow rate at
1, 5 and 30 s along the path, while Fig. 10b shows the same results
for 1 and 5 s at a different scale. As may be observed in Fig. 10a,
the results appear to be relatively smooth for each of the
presented times. In contrast in Fig. 10b it is clear that, particularly
at 1 s, there are small oscillations, which are expected due to the
extreme dependence on the composition at this early stage of
the depressurisation. Importantly, these errors do not affect the
qualitative behaviour of the model.
ity fraction: (a) CH4, (b) N2, (c) O2.

Table 4
First order and total effects of the CO2 outflow rate after 30 s using gPC.

Evaluations First order effects Total effects

N2 CH4 O2 N2 CH4 O2

7 0.583104 0.146179 0.270718 0.583104 0.146179 0.270718

31 0.590446 0.158301 0.249544 0.591767 0.158918 0.251024

111 0.623149 0.146523 0.220663 0.629544 0.152329 0.228095

351 0.556694 0.182115 0.247479 0.566068 0.191203 0.258142

1023 0.608691 0.133408 0.232031 0.627223 0.152822 0.250330

2807 0.557299 0.156367 0.259222 0.578916 0.178203 0.280186



Table 5
Magnitude of the linear gPC coefficient against the total sum of gPC coefficients,

for each variable, after 30 s.

Evaluations Linear gPC Total gPC

N2 CH4 O2 N2 CH4 O2

7 112.1 56.31 76.62 124.5 58.13 79.74

31 116.0 59.92 75.42 126.2 68.74 77.51

111 117.1 56.78 69.56 151.0 73.06 75.18

351 113.0 64.58 75.18 157.8 96.92 109.1

1023 116.9 54.44 72.26 193.8 129.0 130.4

2807 112.23 59.10 76.38 240.5 163.7 194.2

1000

2000

3000

4000

5000

6000

7000

0 0.2 0.4 0.6 0.8 1

O
ut

flo
w

 ra
te

 (k
g/

s)

λ

1 s
5 s

30 s

5000

5200

5400

5600

5800

6000

0 0.2 0.4 0.6 0.8 1

O
ut

flo
w

 ra
te

 (k
g/

s)

λ

1 s
5 s

Fig. 10. Visualisation of outflow rate response along the linear path y¼ y1þlðy2�y1Þ, lA ½0,1� between two distant points y1 and y2 in the input domain of the random

variables, G: (a) path walk at 1 s, 5 s, and 30 s; (b) path walk magnified for 1 s and 5 s to visualise non-smooth behaviour at 1 s.

1e-06

0.0001

0.01

1

100

10000

1e+06

10 20 30 40 50 60 70 80

O
ut

flo
w

 ra
te

 (k
g/

s)

Time (s)

Expected value
Variance

Fig. 11. Variation of E½uðyÞ� and V½uðyÞ� with time.

0

0.5

1

1.5

2

10 20 30 40 50 60 70 80

S
ob

ol
’ i

nd
ic

es
 fo

r O
ut

flo
w

 ra
te

Time (s)

S1

S2

S3

S1
T

S2
T

S3
T

Fig. 12. Variation of Sobol’ indices with time, using a sample size of 2807.

S. Brown et al. / Reliability Engineering and System Safety 115 (2013) 43–5452
Notwithstanding the above, it is clear from Table 4 that both
the ranking of the impact of the variables and the magnitude of
the effects remain the same for all the sample sizes tested. Given
this behaviour, the approximation of the Sobol’ indices obtained
with just 7 points appears to give a reasonable estimate of the
indices and their ordering. For the purposes of comparison, MC
and QMC simulations of similar sizes to those described in Table 4
were also performed, however, these failed to produce mean-
ingful results.

Further, for the results obtained (for all sample sizes), N2 has
the largest first effect followed by O2 and CH4. The results
presented in Table 5 agree with the linear behaviour found by
the relevant scatter plot (Fig. 9b), and also show that the non-
linear behaviour captured by the gPC coefficients grows as the
level of the sparse grid approximation used by the gPC increases.
Additionally, as the first effect is almost equal to the total effect
for all components, the impact of the interaction between the
impurities is extremely limited.

Given the highly transient nature of pipeline decompression it
is expected that the impact and importance of the impurities will
be a function of time. Fig. 11 shows the variation of E½uðyÞ� and
V½uðyÞ� with respect to time. As may be observed, E½uðyÞ� shows
a slow decline for approximately 64 s, when the drop becomes
more rapid before reaching a constant value of almost 0 kg/s
indicating that the release has reached ambient pressure. The
V½uðyÞ� shows similar behaviour except between ca. 10 and 20 s
where there appear to be oscillations in the variance. This region
of the physical problem is characterised by rapid phase changes,
and so it is anticipated that these fluctuations are due to the
differing phase equilibria of the CO2 mixtures. For the period after
ca. 64 s, as the flow rate is negligible the changes in composition
produce a very small variance.

Fig. 12 shows the variation of the Sobol’ indices with time
calculated using a sparse grid of 2807 points. In Fig. 12, three
distinct regimes of behaviour can clearly be observed:
1.
 The initial 20 s after rupture. During this stage the flow is
dominated by rapid decompression inducing phase transitions
that are complicated by the variation in the composition. This
behaviour is expressed by the Sobol’ indices through the
fluctuations in their ordering and magnitude.
2.
 20–64 s. In this range the outflow rate shows a steady decline,
as a consequence the Sobol’ indices approach both a constant
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magnitude and ordering. Here the interaction between the
components has little effect.
3.
 After 64 s. Here the pipeline rapidly decompresses resulting in
the outflow dropping effectively to 0 kg/s and the composition
has virtually no effect. Due to the very small variance in the
system, the Sobol’ indices calculated become less meaningful.
4. Conclusions

In the CCS chain, pressurised pipelines employed for the
transportation of the captured CO2 for subsequent sequestration
will inevitably contain a range of stream impurities. The above
presents a significant challenge given the established marked
impact of the type and composition of the stream impurities on
the safe and economical pipeline transportation of CO2.

Predictive models utilised for design and risk assessment of
such a system have been exploited for studying the sensitivity to
such inherent variations. However, in the context of CO2 pipeline
transportation, given the very large number of potential variables,
and the complexity of the models required, mean that the
computational cost for a full global sensitivity analysis will be
prohibitive.

In this paper commonly applied methods of GSA, i.e. MC, QMC
and EFAST were first reviewed. Additionally, a gPC technique
based on sparse grids was described. This formulation allows the
simple evaluation of the Sobol’ indices, while the sparse grid
sampling greatly reduces the number of sample evaluations
required.

These methodologies were then applied to two benchmark test
problems found in the literature and a further problem con-
structed to replicate discontinuous behaviour. In the former the
results indicated that the sparse grid based gPC method was able
to achieve machine precision accuracy. For the latter problem it
was observed that as the function became ‘‘rougher’’ the conver-
gence rate decreased, and in the extreme case presented conver-
gence was not observed. The addition of increasing levels of noise
to this problem, used to replicate numerical error in computa-
tional simulations, showed that the gPC performed moderately
well with low levels of noise, but again fails to converge as this
was increased. In comparison the other methods tested require
substantially larger sample sizes to achieve equivalent accuracy.
On the other hand, as expected, the performance of MC/QMC was
almost unaffected by the applied numerical noise. In summary,
the gPC outperformed the other methods tested in all cases in
terms of convergence per number of function evaluations, except
in a single case where a very high level of noise was present.

The gPC technique was then applied to an analysis of an
hypothetical pipeline failure under uncertainty in CO2 mixture
composition. An initial uncertainty analysis showed a variation in
the outflow rate (after 1 s) of 410%. Clearly, given that the
outflow rate largely dictates the resulting dispersion, this level of
variation has significant implications for the emergency response
planning. Furthermore, scatter plotting showed that of the three
impurities considered (N2, CH4 and O2) only N2 had a linear
impact on the outflow rate.

The results of the gPC for the full decompression showed three
distinct regimes of behaviour in which it was found that generally
N2 had the greatest impact on the outflow rate. In particular
the second regime, in which the Sobol’ indices show a relatively
stable behaviour, appears to be the most for assessing the overall
importance of each component.

In conclusion, it should be noted that the CO2 impurities
sensitivity analysis performed in this study primarily focused on
pipeline transportation issues. Although in a wider context, the
proposed sensitivity analysis could serve as part of a techno-
economic analysis of the impact of impurities for the entire
CCS chain.
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