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elastic plate in an air-blast
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Abstract. The momentum transfer by a planar wave impinging upon a rigid, free-standing
plate in water, a largely incompressible medium, is well understood [1]. Kambouchev et al.
[2] extended the results of Taylor [1] to include the nonlinear e↵ects of compressibility whilst
Hutchinson [3] has recently addressed the issues of energy and momentum transfer to a rigid,
free-standing plate. In this paper, key conclusions from the aforementioned studies are critically
re-examined in the context of a ‘fully-clamped’ elastic plate. The dynamic response of an elastic
plate is represented by an equivalent single-degree-of-freedom (SDOF) system. A numerical
method based on a Lagrangian formulation of the Euler equations of compressible flow and
conventional shock-capturing techn iques, similar to that employed in [2, 3], were employed
to solve numerically the interaction between the air blast wave and elastic plate. Particular
emphasis is placed on elucidating the energy and momentum transfer to a ‘fully-clamped’
elastic plate compared to its rigid, free-standing counterpart, and on whether enhancement
in the beneficial e↵ects of FSI as a result of fluid compressibility remains and to what extent.

1. Introduction

Over the past decade, there have been renewed interests in understanding how fluid structure
interaction (FSI) in a compressible medium may be exploited to design lightweight sandwich
panels with better blast amelioration capabilities. To this end, Kambouchev et al. [2] and
Hutchinson [3] have carried out detailed numerical studies to quantify the e↵ects of nonlinear
compressibility upon the energy and momentum transfer to plates subjected to air blast loading.
However, their findings apply only to rigid, free-standing plates. Recent studies in [4–6] used a
single-degree-of-freedom (SDOF) representation to study the e↵ects of mass, time ratio (period
of the pressure pulse to the natural period of vibration of the structure) and velocity ratio
(shock front velocity to the maximum velocity acquired by the structure) upon the maximum
deflection of a flexible structure. However, none have addressed the important issue of energy
and momentum transfer, and/or the e↵ects of boundary conditions.

In this paper, the numerical method in [2, 3] is employed to study the fluid structure interaction
between an air blast wave and a ‘fully clamped’ elastic plate. The emphasis is on comparing
the energy and momentum transfer to a ‘fully-clamped’ elastic plate with its rigid, free-standing
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Figure 1. Schematic of model set-up and fluid-structure coupling strategy.

counterpart. Also investigated in this paper is whether enhancement in the beneficial e↵ects
of FSI, as a result of fluid compressibility, also applies to a non-free-standing, i.e. supported,
structure and to what extent. The results reported here is part of an on-going study to model
the influence of boundary conditions upon the momentum and energy transfer to deformable
(elasto-plastic) plates through FSI to be published elsewhere.

2. Shock wave generation and its interaction with an elastic plate

Consider a one-dimensional (1D) ‘air-column’ of two parts, viz. ‘compressed container’ of
isentropic air and quiescent ambient air, and a flexible elastic plate which is represented by
an equivalent SDOF system as shown in Fig. 1a. At time t = 0 the ‘compressed container’ of
air in the interval 0  x  x

0
ca

is prescribed with an initial velocity distribution of

v(x) = v0e
�(x/x0

ca)
2
, (1)

where x is the Lagrangian coordinate. It follows immediately that the compressed air has a
density distribution ⇢(x) and a finite initial energy per unit area �E0 given by [3]
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where �(= 1.4) is the ratio of specific heats, p
a

(= 104761 Pa) is pressure, ⇢
a

(= 1.225 kg/m3)
is air density, c

a

(= 346 m/s) is speed of sound in air and the subscript ‘a’ denotes ambient
conditions. At time t = 0, the compressed air is suddenly released into the quiescent ambient
air which generates a pressure pulse reminiscent of those in an explosive detonation; this same
technique is also employed in [3].

By way of an example, consider a fluid domain of length d = 10 m and a ‘compressed container’
of length x

0
ca

= 0.5 m. The 1D domain is discretised using a uniform grid of 2000 nodes and
the classical Euler equations of compressible flow are solved explicitly by finite di↵erence, see
[2]. Artificial viscosity was introduced to smooth the shock discontinuities but in a manner
that still preserves energy conservation [3]. The time step was chosen to ensure it satisfies the
stability requirement of the iterations. Figure 2a shows the displacement of 100 nodes and
the ‘shock locus’ generated by the travelling wave. Note the dash lines represent the motion
of the ‘compressed container’. The incident and reflected pressure-time history following wave
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Figure 2. (a) Shock wave generated by ‘compressed container’ method and (b,c) incident and
reflected pressure-time histories upon interaction with a massive rigid wall at di↵erent stando↵.

interaction with a massive rigid wall of infinite mass at di↵erent stando↵ are compared in Figs.
2b and 2c for di↵erent blast intensities. The intensity of the blast wave is controlled by the
non-dimensional parameter v0/ca. Some key observations can be made as follows: (1) nonlinear
compressibility causes the peak of the evolving pulse to decrease, with a corresponding increase
in pulse duration, with distance travelled; (2) the ratio of the peak reflected to incident pressure
is between 2 to 8 as predicted by the well-known Rankine-Hugoniot relationships; and (3) the
incident and reflected impulse is identical at di↵erent stando↵ since the artificial viscosity was
set to preserve energy conservation, i.e. the wave generated is essentially isentropic. In order to
ensure that the plate remains elastic, i.e. deforming in Mode I [7], a relatively ‘weak’ shock of
v0/ca = 0.85 is used in subsequent simulations.

The equation of motion of the elastic plate, represented by an equivalent SDOF system with
sti↵ness k

e

and damping coe�cient c
e

, both per unit area, is given by

m

e

ẍ
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e

ẋ
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e

x

p

= F

e
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where ˙( ) ⌘ d( )/dt, x
p

is displacement, m
e

is equivalent mass per unit area and F

e

(= p

r

K

L

)
is equivalent load per unit area. The damping coe�cient c

e

is given by c

e

= ↵(⇢
a

c

a

), where
↵ is chosen to reflect the severity of structural damping. The equivalent values were derived
following the procedure outlined by Biggs [8]. Table 1 list the properties of two aluminium plates,
of identical mass per unit area, but di↵erent flexural rigidity per unit length. Implementation of
fluid structure coupling is achieved by solving for the interface pressure (reflected pressure p

j

r

)
and plate displacement xj

p

which are updated at every time step as shown schematically in Fig.
1b.
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Table 1. Properties of square aluminium plates and equivalent parameters of SDOF model.

Parameters Symbol Plate-1 Plate-2

Density (kg/m3) ⇢

p

2760 2760
Young’s modulus (GPa) E 69 69
Poisson’s ratio ⌫ 0.33 0.33
Dimensions (m) a⇥ b⇥ h 4⇥ 4⇥ 0.0275 2⇥ 2⇥ 0.0275
Second moment of area (m4) [8] I

a

= ah

3
/12 6.93⇥10�6 3.47⇥10�6

Flexural rigidity/length (kNm) [8] D = EI

a

/b 119.58 119.58
Mass factor [8] K

M

0.21 0.21
Load factor [8] K

L

0.33 0.33
Equivalent sti↵ness/area (kN/m3) [8] k

e

= K

L

810D
a

4 124.86 1997.8
Equivalent mass/area (kg/m2) [8] m

e

= K

M

⇢

p

h 15.94 15.94
Natural period (ms) T 71.0 17.7

3. Results and Discussions

To check that the SDOF model is correctly implemented and gives sensible predictions, the
reflected over-pressure for the ‘weak’ shock case, shown in Fig. 2c, is prescribed as a stand-alone
pressure loading to the fully-validated FE model in [7] and to the SDOF model, both in an
uncoupled manner from the fluid domain. Note that damping is initially ignored. Figure 3a
shows excellent agreement between the predicted maximum displacement x

p

by the uncoupled
SDOF model and the maximum central deflection of its equivalent square plate in the uncoupled
FE model.

Parametric studies carried out in [4, 6] have established that FSI has the beneficial e↵ects of
reducing the maximum displacement of flexible structure. In Fig. 3a, the predictions by both
the coupled and uncoupled SDOF model show that increasing stando↵ reduces the maximum
displacement although this e↵ect is more apparent with FSI. This is because the plate experiences
a shorter overall loading duration as a result of the coupling which is evident in Fig. 3b. On the
other hand, increasing the equivalent plate sti↵ness per unit area at a given stando↵ distance
does not appear to o↵er any significant advantage in terms of the maximum plate deflection.

Figure 4 compares the momentum and energy transfer to free-standing (of infinite flexural
rigidity) and fully-clamped plates (of two di↵erent flexural rigidity given in Table 1). The ratio
of transmitted impulse I

p

to incident impulse I0(=
R
td

0 pdt) is plotted in Fig. 4a. As expected, the
rigid free-standing plate acquires a higher momentum (or transmitted impulse) compared to its
fully-clamped counterpart. What is surprising, however, is that the plate with a higher flexural
rigidity appears to acquire a slightly lower impulse. The total energy E

T

transferred to the plate
is dissipated as kinetic energy E

K

by the free-standing plate and as kinetic E

K

plus strain E

S

energies by its fully-clamped counterpart shown in Fig. 4b. Since the rigid free-standing plate
is free to displace, a greater amount of energy E

T

=
R
xp

0 p

r

dx
p

is transmitted compared to its
fully-clamped, flexible counterpart as shown in Fig. 4b. Previous studies on the e↵ects of FSI
for free-standing plate have shown that a smaller plate mass displaces further, thus relieving the
incident pressure acting on the plate [2, 3, 9]. Figure 4c plots the non-dimensional transmitted
impulse vs. FSI index (�

s

= ⇢

s

U

s

t0/me

where ⇢

s

is density of gas behind shock front, U
s

is
shock speed, t0 is the duration of an equivalent uniform shock and m

e

is equivalent mass per
unit area). �

s

was introduced in [2, 9] to take into account nonlinear compressibility e↵ects.
The results in Fig. 4c agrees with those in previous studies where the transmitted impulse is
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Figure 4. Comparison of momentum and energy transfer to a free-standing and its
corresponding fully-clamped plate.

observed to increase with �

s

. By contrast, the restrain o↵ered by a clamped boundary leads to
a significant reduction in the impulse transmitted to the plate for a given �

s

. Therefore, the
introduction of a clamped boundary appears to further enhance the beneficial e↵ects of FSI.
The implication is that a structure with a higher equivalent sti↵ness and/or a smaller equivalent
mass, both per unit area, acquires less impulse and energy in an air blast.

Lastly, the e↵ects of structural damping is shown in Fig. 5. The results show that greater
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Figure 5. The e↵ects of damping upon the momentum and energy transfer for Plate-2.

damping, i.e. a higher ↵, leads to greater beneficial e↵ects of FSI in terms of the momentum
and energy transferred to the structure. This is because the damping force always opposes the
direction of motion and this further contributes to the beneficial e↵ects of FSI.

4. Conclusion

Fluid structure interaction between an air blast wave and a fully-clamped elastic plate is studied.
Three important conclusions can be drawn:

• The resistance to transverse displacement, o↵ered by a lateral restrain in the form of a
support, further enhances the beneficial e↵ects of FSI.

• Higher structural damping also improves the beneficial e↵ects of FSI.

• Sti↵ and light structures minimise the impulse and energy transmitted in an air blast.

References

[1] Taylor G I 1963 The Scientific Papers of Sir Geo↵rey Ingram Taylor 3 287–303
[2] Kambouchev N, Noels L and Radovitzky R 2006 J App Phys 100 063519
[3] Hutchinson J W 2009 J App Mech 76 051307
[4] Subramaniam V K, Nian W and Andreopoulos Y 2009 Int J Impact Eng 36 965–974
[5] Rigby S, Tyas A and Bennett T 2012 Eng Structures 45 396 – 404
[6] Teich M and Gebbeken N 2011 Eng Structures

[7] Yuan Y and Tan P J 2013 Int J Impact Eng 59 46 – 59
[8] Biggs J 1964 Introduction to structural dynamics (New York: McGraw-hill)
[9] Kambouchev N, Noels L and Radovitzky R 2007 Computers & Structures 85 923–931

D2FAM 2013 IOP Publishing
Journal of Physics: Conference Series 451 (2013) 012017 doi:10.1088/1742-6596/451/1/012017

6


