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Abstract
The mechanical motion of the gantry in conventional cone beam CT scanners
restricts the speed of data acquisition in applications with near real time
requirements. A possible resolution of this problem is to replace the moving
source detector assembly with static parts that are electronically activated. An
example of such a system is the Rapiscan Systems RTT80 real time tomography
scanner, with a static ring of sources and axially offset static cylinder of
detectors. A consequence of such a design is asymmetrical axial truncation
of the cone beam projections resulting, in the sense of integral geometry,
in severely incomplete data. In particular we collect data only in a fraction
of the Tam–Danielsson window, hence the standard cone beam reconstruction
techniques do not apply. In this work we propose a family of multi-sheet surface
rebinning methods for reconstruction from such truncated projections. The
proposed methods combine analytical and numerical ideas utilizing linearity
of the ray transform to reconstruct data on multi-sheet surfaces, from which
the volumetric image is obtained through deconvolution. In this first paper
in the series, we discuss the rebinning to multi-sheet surfaces. In particular
we concentrate on the underlying transforms on multi-sheet surfaces and their
approximation with data collected by offset multi-source scanning geometries
like the RTT. The optimal multi-sheet surface and the corresponding rebinning
function are found as a solution of a variational problem. In the case of
the quadratic objective, the variational problem for the optimal rebinning
pair can be solved by a globally convergent iteration. Examples of optimal
rebinning pairs are computed for different trajectories. We formulate the axial
deconvolution problem for the recovery of the volumetric image from the
reconstructions on multi-sheet surfaces. Efficient and stable solution of the
deconvolution problem is the subject of the second paper in this series (Betcke
and Lionheart 2013 Inverse Problems 29 115004).
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1. Introduction

There are obvious situations in which fast acquisition of the cone beam computerized
tomography data is of utmost importance. In medical applications for instance, cardiac or lung
imaging at present require gating techniques to keep up with the rapid motion of the organ.
However, gating diminishes the quality of the reconstructed images potentially compromising
their diagnostic value. Another time critical application is baggage security screening where
the scanning speed directly relates to the equipment costs for the airports and clearance time
for air passengers. Fast data acquisition also enables study and control of processes occurring
at short time scales, such as the flow of oil–air–gas mixtures [23].

A conventional state of the art x-ray cone beam system uses one source of radiation
positioned opposite an array of detectors. The detector and source assembly is then moved
mechanically relative to the object to be imaged: typically the source and detector rotate
around the object while the object is translated resulting in a helical trajectory relative to the
object (HCB). The rate at which tomographic images can be acquired by such a system is
limited by the rate of rotation of the assembly supporting the source and detector array. One
way to speed up data acquisition is to replace the mechanically rotating gantry by a stationary
ring of sources, which can be quickly switched electronically, and multiple stationary rings of
detectors. Switching the sources on and off in a sequence gives the same effect as a rotating
source, though they can also be activated in any other order. In such design however, no ring
of detectors can be placed in the same plane as the ring of sources as it would obstruct the
beam. This means that attenuation along rays that make less than a certain limiting angle to
the plane of the sources cannot be measured. In fact, the axial offset of the detector from the
plane of sources can be substantial (of the order of the detector axial length). We call such a
geometry an offset multi-source geometry [15, 16]. The offset multi-source geometry data are
nontrivially axially truncated and hence they require new reconstruction algorithms different
from those devised for the standard cone beam CT. Potentially, the detectors could be placed
on both sides of the ring of sources, resulting in an axially symmetric geometry still missing
the rays within the limiting angle. In this work we concentrate on the more challenging case
with the detectors on only one side of the ring of sources.

The basis idea of rebinning methods [4–6, 8, 10–12, 14, 17, 24, 25] is to reduce the
original three-dimensional (3D) reconstruction problem to a series of approximated two-
dimensional (2D) reconstruction problems e.g. corresponding to data on transaxial slices from
which the volumetric image is subsequently interpolated. Both the 2D reconstruction and the
interpolation can be very efficiently implemented (e.g. in hardware). Yet another benefit of
rebinning methods is their local data dependence enabling on-fly reconstruction i.e. without
necessity to acquire the measurements of an entire object before initiating the reconstruction.
Those qualities make rebinning methods particularly attractive for applications with real time
requirements such as security screening.

In this work we introduce a new family of rebinning methods, multi-sheet surface
rebinning (MSSR) methods [1], for reconstruction of offset multi-source cone beam CT
data. MSSR methods approximate and reconstruct data on multi-sheet surfaces and use the
linearity of the ray transform to obtain the volumetric image through axial deconvolution.
They retain the efficiency and local data dependence of the rebinning methods while allowing
for high resolution reconstruction from, in the sense of integral geometry, severely limited
data. A version of MSSR methods using parametric surface is presented in [2]. The choice of
rotationally symmetric double-cone surface allows to derive a John’s equation based correction
for the rebinned data in the spirit of [9, 13]. The correction results in effectively rotationally
symmetric system. As a consequence, the corresponding deconvolution matrices have Toeplitz
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Figure 1. (a) Illustration of the offset multi-source geometry with an exaggerated z-scale. In the
RTT80 the source ring has a larger radius than the detector cylinder. The grey area marks the
detectors illuminated by the source λ. (b) Positioning of the virtual detector plane, D(λ), used for
parametrization of the rays emitted from the source λ.

like structure and vary only with the distance to origin in the transaxial field-of-view, allowing
very efficient and robust deconvolution.

The remainder of this paper is organized as follows. In the next section we develop a
formal description of an offset multi-source geometry. In section 3 we introduce the concept
of non-redundant fan beam transform, which will play an essential role in the derivation of
MSSR methods. In section 4 we briefly review single surface rebinning methods for standard
helical cone beam geometry and their generalization to offset multi-source geometry developed
in [4]. The rebinning to multi-sheet surfaces is introduced in section 5. In section 6 we discuss
an optimization problem for the choice of the multi-sheet rebinning surface and function
pair and describe an alternating iteration for its solution, which convergence is proven in the
appendix. We proceed to give some examples of two-sheet rebinning surface and function pairs
in section 7. The axial deconvolution problem for the recovery of the volumetric image from
reconstructed images on multi-sheet surfaces is derived in section 8. The detailed description
of how the deconvolution can be efficiently and stably performed is subject of the second paper
in this series [3]. We conclude with a summary of the results and a preview on the second
paper. Numerical reconstructions are deliberately postponed to the second paper.

2. Offset multi-source geometry

Figure 1(a) shows the offset multi-source geometry as deployed in the Rapiscan RTT80 scanner
[15, 16]. As opposed to the conventional cone beam geometry the RTT geometry features a
static ring of sources, and multiple static rings of detectors. The grey area on the detector
cylinder indicates the part of the detector illuminated by the active source and the axial size
and offset of the detector dictates the axial truncation of the x-ray cone. In the RTT geometry
the ring of sources and the rings of detectors are each located in a plane parallel to the xy-plane,
while the object moves through the system on a conveyor belt in the direction of z-axis.
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2.1. Effective trajectory

Formal description of the offset multi-source geometry requires introduction of notion of
effective trajectory to account for the freedom of choice of the firing order of sources in the
ring.

Let λ̂ j ∈ �̂ := {
atan2

(
s j

y, s j
x
)

: j ∈ 1, . . . , Ns
} ⊂ [−π, π )3 denote the unique angular

coordinate of the source in a ring, where triple
(
s j

x, s j
y, s j

z
)

denotes the x, y and z coordinates of
the source and the Ns the number of sources in the ring. Without loss of generality we assume
that the sources are located in the xy-plane, i.e. s j

z = 0. We assume that each of the sources in
the ring is activated exactly t times within tNs long source firing sequence, �̂A = (λ̂i), λ̂i ∈ �̂,
and thereafter �̂A repeats itself, which results in a tNs periodic scanning process. In order to
capture the translation of the system with respect to the object at each source activation, we
introduce the axial displacement function ẑ : �̂A → R.

We define the effective trajectory as a continuum generalization of the axial displacement
function ẑ(λ̂i), λ̂ ∈ �̂A. To this end we identify the sources in the firing sequence with angular
parameter over multiple turns,

λi = λ̂i + 2π #{ j : 1 � j < i, �̂A( j) = λ̂i}, (1)

where # denotes the cardinality of the set. As �̂A is periodic with the period tNs, for its
continuum equivalent it is sufficient to consider λ ∈ Iλ := [−π, (2t − 1)π ] and we can regard
t as a winding number of the trajectory. We now define the axial displacement function z acting
on an interval, z : Iλ → Iz ⊂ R, and we require that this function at the points λ̂i assumes
the values z(λ̂i) = ẑ(λ̂i). The axial displacement function z is chosen from set of bounded
variation functions that satisfy

TV(z) :=
∫

Iλ

|z′(λ)| dλ =
Nst∑
i=1

|ẑ(λ̂i+1) − ẑ(λ̂i))|,

where the derivative is defined in the distributional sense. The constraint equalizing the
total variation (TV) of the discrete and bounded variation functions eliminates unreasonable
trajectories. Obviously, there are still infinitely many functions z satisfying these conditions.
To eliminate the remaining ambiguity we assume z to be a linear interpolant of ẑ everywhere
but on the intervals containing the jump points of z, where we use the assumption of constant
scanning speed to define the interpolant. The so defined displacement function z fully captures
motion of the scanner relative to the imaged object and it generalizes the concept of the
trajectory to the system with multiple sources.

2.2. Ray parametrization

Although naturally the detectors are arranged on the cylinder for the sake of notational
convenience we are going to parametrize measured rays by their intersection with a virtual
detector plane D(λ), containing the z-axis, perpendicular to the xy-plane and facing the active
source λ at the right angle, figure 1(b). A pixel on the virtual detector is described by the
Cartesian coordinates (u, v), where the orthonormal basis vectors 1u and 1v given by

1u = (− sin λ, cos λ, 0),

1v = (0, 0, 1),

with the origin (u, v) = (0, 0) the orthogonal projection of the active source λ on D(λ). This
parametrization is no restriction as the cylindrical detector can be easily mapped to the flat
detector and vice versa.
3 Here we define atan2(y, x) := arg(x + iy) ∈ [−π, π ).
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Figure 2. Image of the active cylindrical detector on the virtual flat detector D(λ): (a) the axially
symmetric cylindrical detector (as in HCB geometry), (b) the axially offset cylindrical detector
(as in the RTT geometry). As usual u and v denote the coordinates on the virtual detector D(λ),
with the origin being the orthogonal projection of the active source on the virtual detector plane.
The functions v1, v2 are the lower and upper bounds, of the active area of the virtual flat detector,
respectively.

2.3. Plane parametrization

We use two sets of coordinates in a plane for the points in the transaxial field-of-view

�2D = {(x, y) ∈ R
2|x2 + y2 � R2

FOV}.
The Cartesian coordinates (x, y) and the ray based coordinates (λ, u, l), where the source
λ ∈ [−π, π ) along with the horizontal coordinate in the virtual detector plane, |u| � umax,
uniquely identify a ray in a plane, while the parameter l fixes a point along the ray (λ, u),
see figure 3. The transformation from (λ, u, l) to the Cartesian coordinates is described by the
following formulae

X (λ, u, l) = R cos λ + l(−R cos λ − u sin λ),

Y (λ, u, l) = R sin λ + l(−R sin λ + u cos λ) (2)

and the inverse transformation by

L(λ, x, y) = R − x cos λ − y sin λ

R
,

U (λ, x, y) = R(−x sin λ + y cos λ)

R − x cos λ − y sin λ
, (3)

where R is the radius of the ring of sources.

2.4. Asymmetrically axially truncated cone beam projections

In x-ray CT one seeks to reconstruct linear attenuation coefficient at every point in the object
from a set of line measurements. The linear attenuation coefficient can be thought of as
a function f (x, y, z) which vanishes outside of a bounded cylindrical field-of-view of the
scanner

� = {(x, y, z) ∈ R
3 | x2 + y2 � R2

FOV, z ∈ Z = [zbot, ztop]}. (4)

Figure 2 shows the projections of the cylindrical detector on the virtual detector plane
for HCB (a) and the RTT (b) geometries. In both cases, the area between the projections of
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Figure 3. The ray based planar coordinates (λ, u, l), where λ is the source angle, u denotes the
horizontal coordinate on the virtual detector plane D(λ) and l is a parameter along the ray, which
fixes a particular point along the ray (λ, u).

the bottom, v1, and top, v2, row corresponds to the active detector area. While the bounds
for the conventional scanner are symmetric i.e. v1 = −v2, for the offset detector geometry
v2(λ, u) > v1(λ, u) > 0 for all λ ∈ Iλ, u ∈ [−umax, umax]. The symmetry of HCB detector
implies that the detector is practically unconstrained. Simply by adjusting scanner parameters
such as slowing down the belt speed or equivalently symmetrically axially extending the
detector, the entire Tam–Danielsson window [7, 21] can be fitted in the active detector region.
In contrast for the offset multi-source geometry, the lower bound v1 is not altered in this
way presenting a genuine constraint. While the upper bound v2 could be eliminated in a way
described above, we chose nonetheless to impose it to remain within the existing scanner
parameters. The resulting detector constraints are

0 < v1(λ, u) � v(λ, u) � v2(λ, u), (5)

for λ ∈ Iλ, u ∈ [−umax, umax]. The horizontal extend of the detector is assumed to be large

enough to accommodate the entire field-of-view, with umax = RRFOV/

√
R2 − R2

FOV.
As a result of the detector constraints (5) the offset multi-source geometry over a period

of effective trajectory z measures a set of line integrals

g(λ, u, v) =
√

R2 + u2 + v2

∫ l0(u)+�l(u)

l0(u)−�l(u)

dl f (X (λ, u, l),Y (λ, u, l), z(λ) + lv) (6)

with

λ ∈ Iλ, u ∈ [−umax, umax], v ∈ [v1(λ, u), v2(λ, u)].

The integration limits in (6) correspond to the intersection points of the ray (λ, u) with
the field-of-view �2D, where

l0(u) = R2/(R2 + u2),

�l(u) =
√(

u2
max − u2

)(
R2 − R2

FOV

)
/(R2 + u2) (7)

and l0(u) corresponds to the point of the closest approach of the ray (λ, u) and �l(u)

corresponds to the in plane distance along the ray (λ, u) from the point of the closest approach
to the boundary of the field-of-view.
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Figure 4. Complementary rays in a plane (λ, u) and (λc, uc), give rise to two different sets of
ray coordinates for each point in planar field-of-view P = (λ, u, l) = (λc, uc, lc). [λ1, λ2) is the
minimal scan range for reconstruction of P.

Note that the axial detector coordinate v only appears in the scaling factor and in the last
argument (the axial coordinate) of the spacial density function in (6), which is a consequence
of using the cone beam data rather than the fan beam data. This separation of the axial and
transaxial directions enables the rebinning methods discussed in section 5.

3. Fan beam transform with non-redundant measurements

3.1. Complementary rays

In what follows we will need the concept of complementary rays. Any directional ray in a plane
is uniquely described by its coordinates (λ, u), where λ ∈ [−π, π ) is the angular parameter
of the vertex and u ∈ [−umax, umax] is the coordinate on the virtual detector line. We call a ray
(λc, uc) complementary to the ray (λ, u) if

λc = λ + π − 2 atan2(u, R),

uc = −u. (8)

The complementary rays are simply the reversed rays, i.e. with the source and detectors roles
swapped, see figure 4. The relation is symmetric thus (λ, u) is also complementary to (λc, uc).
Observing that 2l0 is proportional to the length of the ray from the source to the complementary
source, a simple geometrical argument yields

lc = 2l0 − l, (9)

which completes the complementary set of variables describing the point in a plane

P(x, y) = (λ,U (λ, x, y), L(λ, x, y)) = (λc,Uc(λ, x, y), Lc(λ, x, y)).

In the context of 3D cone beam geometry, we say that all rays shot within one period
of the effective trajectory, for which orthogonal projection on the xy-plane is either (λ, u) or
(λc, uc), are complementary. For the full 2tπ range scan, λ ∈ [−π, (2t − 1)π ), there are
exactly 2t such rays.

7
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3.2. Non-redundant fan beam transform

There are two conventionally used fan beam formulae corresponding to full scan (sources
in the angular range [−π, π )) and short scan data (sources in the angular range [−π, 2δ),
δ = arcsin(RFOV/R)). Both those formulae produce redundant data, as the integral along each
line is taken twice in case of the full scan and at least once in case of the short scan fan beam
transform. In [18] it was shown that for reconstruction of only a part of the field-of-view even
fewer data are needed. Precisely, the part of the object which lies in the convex hull of the scan
can be reconstructed from non-truncated fan beam projections.

In the spirit of [18], to reconstruct a single point P in the region of interest we need
a set of non-truncated projections, each of which contains exactly one line passing through
P, such that we have a (non-directional) line through P from every direction. As it can be
seen in figure 4, there are infinitely many choices of a scan ranges which fulfil this condition
e.g. [λ1, λ2) or [λ, λc), however there is a unique minimal range. Namely, the one which
corresponds to the end points of the line segment with the centre P, P being the point of the
closest approach of the line to origin, [λ1, λ2). Moreover, the maximal range corresponds to
the complement of the minimal range, [λ2, λ1 + 2π). The length of the range for a point
(r, θ ) depends only on its distance to the origin, r, while the range interval rotates with the
polar angle θ , [λ1, λ2) = [

θ − arccos r
R , θ + arccos r

R

)
. We observe that the origin, r = 0,

requires the largest minimal scan range of π to be reconstructed. On the other hand, the origin
is the point with the smallest maximal range of π . We construct a non-redundant fan beam
transform in which integral along each line is taken exactly once in the following way. For
every point in the field-of-view we select only those rays from the full scan, which originate
from the minimal angular scan range for this particular point. Though for each individual
point sources only within the angular range of at most half scan (i.e. π ) are used, for the
entire field-of-view the non-redundant fan beam transform requires sources from the angular
range of 2π . Analogously, the transform obtained through selecting those rays originating
from the maximal angular scan range for each point is a non-redundant fan beam transform,
and moreover it is complementary to the minimal transform in the sense that the union of both
transforms results in the full scan fan beam transform of angular range 2π . Obviously, none of
the non-redundant transforms can be measured for every point in the region of interest by a fan
beam scanner independently only their union. Assuming that we found a way to disentangle
the non-redundant transforms, we ask what would be the appropriate backprojection weights
for such a non-redundant fan beam transform.

Let f2D(x, y), (x, y) ∈ �2D denote a 2D image. The full scan fan beam backprojection
reads

f̃2D(x, y) = 1

2

∫ π

−π

dλ
1

L2(λ, x, y)
g2D(λ,U (λ, x, y)), (10)

where g2D is the corresponding 2D fan beam data.
We now decompose the full scan backprojection integral into the parts corresponding to

the two non-redundant fan beam transforms

f̃2D(x, y) = 1

2

∫ λ2

λ1

dλ
1

L2(λ, x, y)
g2D(λ,U (λ, x, y))

+1

2

∫ λ1+2π

λ2

dλ
1

L2(λ, x, y)
g2D(λ,U (λ, x, y)), (11)

where �min := [λ1, λ2) and �max := [λ2, λ1+2π) are the point P = (x, y) dependent minimal
and maximal ranges, respectively. By the definition, for each ray from λ ∈ �max through P,
there is a complementary ray going in the opposite direction from λc ∈ �min through P. Thus

8
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we can reparametrize the second integral using the complementary set of variables (8)∫ λ1+2π

λ2

dλ
1

L2(λ, x, y)
g2D(λ,U (λ, x, y))

=
∫ λ2

λ1

dλ
λ′

c(λ, x, y)

L2(λc(λ, x, y), x, y)
g2D(λc(λ, x, y),U (λc(λ, x, y), x, y)), (12)

where we used shorthand notation λ′
c(λ, x, y) := ∂

∂λ
λc(λ, x, y),

λ′
c(λ, x, y) = 1 − 2R

R2 + U (λ, x, y)2

∂U (λ, x, y)

∂λ
(13)

= R2 − x2 − y2

R2 + x2 + y2 − 2xR cos λ − 2yR sin λ

= 2L0(U (λ, x, y)) − L(λ, x, y)

L(λ, x, y)
(14)

= L(λc(λ, x, y), x, y)

L(λ, x, y)
> 0. (15)

Here (14) is easily verified and the last equality (15) follows from (9).
As g2D(λ,U (λ, x, y)) = g2D(λc(λ, x, y),U (λc(λ, x, y), x, y)), we conclude that the

weights for the backprojection of the non-redundant fan beam transform with the minimal
range are

f̃2D(x, y) = 1

2

∫ λ2

λ1

dλ

(
1

L2(λ, x, y)
+ 1

L(λc(λ, x, y), x, y)L(λ, x, y)

)
g2D(λ,U (λ, x, y)).

(16)

Obviously, due to the reciprocity of the relation of being the complementary ray, f̃2D(x, y) can
be obtained backprojecting the maximal range non-redundant fan beam transform, using the
same formula as in (16) but where the integration is performed over λ ∈ [λ2, λ1 + 2π ].

The non-redundant backprojection formula lends itself to an easy interpretation. The
weight for each ray integral is a sum of the fan beam backprojection weights corresponding
to the ray itself and to its complementary ray. The additional weight compensates for the fact
that each ray is backprojected only once.

4. Single-sheet surface rebinning methods

The basic idea behind rebinning methods is to rearrange (rebin) the set of cone beam data into
possibly overlapping subsets, each approximating a complete set of data corresponding to some
2D problem. In this way the difficult 3D problem is reduced to a series of easier 2D problems,
each one of which can be independently reconstructed using 2D filtered backprojection. As
we start from the cone beam data, it is natural to approximate either the short scan or the full
2π scan fan beam data. In the last stage, the volumetric image is axially interpolated from the
reconstructed 2D problems.

Rebinning methods seek an approximation which minimizes some measure of axial
deviation of the rebinned cone beam rays from the desired fan beam rays, while maintaining
the exact transaxial resolution. At the heart of this procedure lies the question how to choose
the 2D problems, to be approximated. The natural way to approach this problem is to find a
plausible surface, for which a complete data set can be found with a minimal approximation
error. The first simplest idea was to rebin the cone beam data to transaxial slices, so-called single

9
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slice rebinning (SSR) [5, 17]. An improvement was achieved using tilted planes tailored to
the helical trajectory [11, 12, 14, 24] and further an iteratively constructed nonplanar surface
[6, 10] and nonplanar parametric surface [25]. In [8] Defrise, Noo and Kudo presented a
unified derivation of surface rebinning methods, posing the problem in variational framework,
as minimization of square axial deviation functional with respect to the rebinning surface and
function. They identified the previously introduced rebinning methods as special cases of this
variational problem, using different parametrizations of the rebinning surface.

In [4] we generalized the approach in [8] to the offset multi-source geometry, by
formulating a constrained variational problem, with constraints (5) on the rebinning function
V . The interpolation was performed by specially tailored axial deviation informed scattered
data interpolation algorithm. A major drawback of the constrained optimal surface rebinning
is the nonzero curvature of the optimal surface ζ , which results in relative large axial deviation
of the rebinned rays from the surface.

4.1. Rebinning equation for a (single-sheet) surface

For a given rebinning surface ζλ0 , let

fζλ0
(x, y) = f (x, y, ζλ0 (x, y)), (x, y) ∈ �2D.

be a 2D image selected from a density function f defined on a 3D volume �, as its values
at the intersection of the volume and the surface z = ζλ0 (x, y). In the simplest case, when
ζλ0 is a transaxial plane, the 2D image corresponds to transaxial slice through the volumetric
function f .

Taking fan beam transform of the 2D image fλ0 is then equivalent to the following fan
beam transform on the surface ζλ0

pλ0 (λ, u) =
√

R2 + u2

∫ l0(u)+�l(u)

l0(u)−�l(u)

dl f (X (λ, u, l),Y (λ, u, l), ζ0(X (λ, u, l),Y (λ, u, l))),

|u| � umax, λ ∈ [λ0 − �λ, λ0 + �λ], (17)

where �λ = π for the full 2π scan range and �λ = π/2 + δ, for the short scan range, with
δ = arcsin(RFOV/R) the fan beam half aperture. Following [8] we call λ0 a rebinning centre
of ζλ0 as for helical trajectory, λ0, is the centre of the helical segment, h[λ0 − �λ, λ0 + �λ],
used for rebinning to the surface ζλ0 , where 2πh is the pitch of the helix. Since λ0 is unique to
the surface ζλ0 , it can serve as a surface index.

Accordingly, the 2D image fζλ0
can be reconstructed from pλ0 using fan beam filtered

backprojection. However, the surface data (17) cannot be measured. Instead, rebinning (18)
is used to approximate the data pλ0 on the surface ζ0 with the measured cone beam rays. To
avoid loss of transaxial resolution, rebinning methods use data along rays which have the same
orthogonal projection on the xy-plane i.e. pλ0 (λ, u) is approximated by√

R2 + u2

R2 + u2 + Vλ0 (λ, u)2
g(λ, u,Vλ0 (λ, u)). (18)

The square root factor rescales the 3D cone beam data to consistent 2D fan beam data and
ensures that rebinning for objects with density independent of z, f (x, y, z) = f (x, y, 0), is exact.
To each generalized ray on the surface ζλ0 , the rebinning function Vλ0 assigns an approximating
cone beam ray, i.e. Vλ0 (λ, u) is the vertical coordinate on the virtual detector plane D(λ) of
the cone beam ray (λ, u,Vλ0 (λ, u)) rebinned to the generalized ray (λ, u) on the surface ζλ0 .

10
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5. Multi-sheet surface rebinning

The methods described in this paper improve the quality of the axial approximation on the
constrained optimal surface rebinning methods [4] using a multi-sheet surface instead of a
single-sheet surface.

5.1. Multi-sheet surface

We define a multi-sheet surface ζ as an ordered set of surfaces (sheets) that are graphs of
functions ζ s, s ∈ 1, . . . , S, where S is the number of sheets. Obviously, a simple surface in
the light of this definition is a single-sheet surface, a special case of a multi-sheet surface.
As in the single-sheet surface case we associate the multi-sheet rebinning surface ζλ0 with its
rebinning centre λ0, which is a centre of the axial range of the trajectory segment used for
rebinning to ζλ0 . For the helix it was the centre of the angular interval, but this is no longer the
case for general trajectories.

For single-sheet surface and a short scan, choosing rebinning centres at equispaced angles
guarantees uniform usage of cone beam projections from all angles. However, when a full scan
angular range or its multiple (2tπ ) is used, uniform projection usage follows automatically
and other selection criteria become important, such as uniform sampling of the volume by
the associated rebinning surfaces. To this end, we are going to select a subsequence �0 ⊂ Iλ
of Nc rebinning centres per firing sequence period, such that z(λm), λm ∈ �0 are uniformly
distributed along the z-axis. Evidently, �0 can be periodically extended with the period Nc.
Equation (19) then suggests uniform distribution of the surfaces in the volume. Clearly the less
rotationally symmetric the surfaces are, the less uniform the effective sampling of the volume
(e.g. constrained optimal single-sheet surfaces). We come back to this problem in section 7.
Under the assumption of constant scanning speed such a choice of �0 amounts to selecting
sources fired in equal time intervals.

In contrast to the single-sheet surface rebinning, where short scan can be used, the
two-sheet surface rebinning requires cone beam projections from sources within the angular
range of 2π , i.e. projections from all physical sources. In general the multi-sheet rebinning
with S = 2t, t ∈ N sheets, will require data from angular range 2tπ . For rebinning to ζλ0 we
consider projections acquired from sources in angular range (λ0 −2tπ, λ0 +2tπ) active within
the shortest possible axial distance from z(λ0). For constant scanning speed this corresponds
to using data from within one period of the firing sequence and to axial translation of the
scanner [z(λ0) − zt/2, z(λ0) + zt/2), where zt = z((2t − 1)π ) − z(−π) is the translation
within one effective trajectory period. Henceforth, we refer to the set of sources rebinned to
ζλ0 as

�λ0 =
{
λ̃ ∈ (λ0 − 2tπ, λ0 + 2tπ) : z(λ̃) ∈

[
z(λ0) − zt

2
, z(λ0) + zt

2

)}
.

As in the case of single-sheet surface, using other rays from outside of this shortest interval
can result in improved signal to noise ratio [5, 20], but we do not follow this line of thought
here.

5.2. Symmetries of the rebinning surface and function

In general for the reconstruction of a function supported on a bounded cylindrical volume
� we need all the pairs (ζm,Vm) := (ζλm ,Vλm ), for which intersection with � is non-empty,
ζm ∩ � �= ∅. Due to periodicity of the effective trajectory it is sufficient to consider the pairs
(ζm,Vm) within one period, m ∈ �0. Then the remaining pairs, (ζkm,Vkm) can then be obtained

11
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by the periodic extension

ζkm(x, y) = z(λkm) − z(λm) + ζm(x, y), λm ∈ �0

Vkm(λ, u) = Vm(λ, u).

As first observed by Heuscher [10] the invariance of helical trajectory under a combined
rotation by θ and axial translation by hθ , where 2πh is the pitch of the helix, gives rise
to symmetries which carry over to the rebinning pair, reducing the problem to finding a
single rebinning surface and rebinning function (ζ0,V0). This symmetry was used in [8] for
simplifying the problem of finding an optimal surface and rebinning function for a standard
helical cone beam geometry.

In fact the same invariance holds for an n-threaded helix, making it an appealing
choice of firing sequence for an offset multi-source geometry. Heuscher’s observation can be
generalized to offset multi-source geometry arguing analogously to [8]. Let �θ be a geometric
transformation combining a rotation around z-axis by angle θ with an axial translation by
zθ := ztθ/(2tπ). The effects of applying �θ in image and data space are, respectively

�θ f (x, y, z) = f (x cos θ + y sin θ,−x sin θ + y cos θ, z − zθ ),

�θg(λ, u, v) = g(λ − θ, u, v), v ∈ [v1(λ − θ, u), v2(λ − θ, u)].

This correspondence carries over to the optimal rebinning pair, whenever the scanning
geometry satisfies the required invariance. Thus for every effective trajectory z(λ) invariant
under �θ, θ ∈ [−π, (2t − 1)π ), and for any detector constraints v1(λ, u), v2(λ, u) invariant
under rotation by θ (such as the RTT geometry with n-threaded helix effective trajectory) for
each sheet ζ s

m of an optimal rebinning surface ζm and the rebinning function Vm it holds

ζ s
m(x, y) = z(λm) − z(λ0) + ζ s

0 (x cos(λm − λ0) + y sin(λm − λ0),

−x sin(λm − λ0) + y cos(λm − λ0)), λm ∈ �0, (19)

Vm(λ, u) = V0(λ − λ0, u),

reducing the problem to finding a single rebinning pair (ζ0,V0) := (ζλ0 ,Vλ0 ). We remark that
the RTT geometry with two detector cylinders placed symmetrically with respect to the source
plane also satisfies the required invariance. Exploiting the symmetry allows more memory
efficient implementation, which is important if memory is scarce or accessing large data sets
cannot be efficiently done as for example in graphic processing units. Henceforth, we are going
to assume the �θ symmetry but the extension to the general case is immediately obvious.

In contrast to the standard HCB geometry, in the offset multi-source geometry due to
the presence of positive constrains v1, v2 > 0, we cannot expect the antisymmetry in y,
ζ s

0 (x, y) = −ζ s
0 (x,−y), λ0 = 0, to hold for a sheet of the rebinning surface (neither single-

sheet nor multi-sheet) and consequently in general ζ0(R, 0) �= 0. However, for a particular
effective trajectory, the shape of the rebinning pair is preserved under axial and transaxial
dilations.

5.3. Rebinning equation for the two-sheet surface

The simplest realization of the multi-sheet rebinning is rebinning to a surface ζ0 with S = 2
sheets, ζ s

0 , s ∈ {1, 2}. In the following we frequently use labels: b (bottom) for s = 1, and t
(top) for s = 2 to improve readability. In the two-sheet case we assume the winding number
of the trajectory t = 1, i.e. every source in �̂ is fired within one trajectory period exactly
once before the pattern repeats itself. Consequently, λ ∈ [−π, π ), |u| � umax throughout the
section.
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Figure 5. Illustration of the two-sheet surface rebinning idea. Two-sheet surface with highlighted
(a) fan beam transform on the two-sheet surface p0(λ, u) = pb

0(λ, u) + pt
0(λ, u), pb

0(λ, u)

(continuous grey), pt
0(λ, u) (dashed black), (b) mixed fan beam transforms g̃0(λ, u) (dashed black)

and g̃0(λc, uc) (continuous grey), (c) rebinned cone beam rays (λ, u,V0(λ, u)), g0(λ, u) (dashed
black) and (λc, uc,V0(λc, uc)), g0(λc, uc) (continuous grey).

On each sheet of the surface ζ s
0 we define the 2D fan beam transform, exactly as in the

case of single-sheet surface (17)

ps
0(λ, u) =

√
R2 + u2

∫ l0(u)+�l(u)

l0(u)−�l(u)

dl fζ s
0
(X (λ, u, l),Y (λ, u, l)). (20)

Furthermore, we define a 2D fan beam transform on the entire multi-sheet surface ζ0 (including
all its sheets) as a superposition of the fan beam transforms on all the individual sheets

p0(λ, u) =
S∑

s=1

ps
0(λ, u). (21)

Figure 5(a) shows pb
0(λ, u) and pt

0(λ, u) for a single generalized ray.
The difficulties of rebinning of the offset multi-source geometry rays to a single-sheet

surface are illustrated in figure 5(c). Due to the positive angle that such rays make with the
transaxial plane, we are only able to simultaneously fit a half of each the ray (λ, u,V (λ, u))

and its complementary ray (λc, uc,V (λc, uc)) to a single-sheet surface (e.g. the bottom sheet)
while the other half diverges, unavoidably resulting in a large axial deviation for the single-
sheet surface rebinning of offset multi-source geometry data. We propose to circumvent this
problem by way of rebinning to a multi-sheet surface.
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Figure 6. Illustration of the mapping μ(i, r) of the rebinned rays to the sheets of the multi-sheet
surface. The value of μ(i, r) is noted above each of the rebinned rays in each of the intervals
�i. The light and dark stars mark the primary and complementary sources, respectively. (a) Two-
sheet surface μ(i) := μ(i, 1) : μ(1) = b, μ(2) = t. (b) Four-sheet surface μ(i, r) : μ(1, 1) =
1, μ(2, 1) = 1, μ(3, 1) = 2, μ(4, 1) = 3, μ(1, 2) = 2, μ(2, 2) = 3, μ(3, 2) = 4, μ(4, 2) = 4.

In the following we make use of the mixed 2D fan beam transform on the multi-sheet
surface ζ0 defined as

g̃0(λ, u) =
√

R2 + u2

(∫ l0(u)

l0(u)−�l(u)

dl fζ b
0
(X (λ, u, l),Y (λ, u, l))

+
∫ l0(u)+�l(u)

l0(u)

dl fζ t
0
(X (λ, u, l),Y (λ, u, l))

)
. (22)

Note, that the first integral is taken over ζ b
0 and the second over ζ t

0 (see also figure 5(b))
thus each generalized ray breaks between the sheets. Which sheets the integrals are
taken over is determined by the mapping of ray segments �1 = [l0(u) − �l(u), l0(u)],
�2 = [l0(u), l0(u) + �l(u)] to sheets, μ : {1, 2} → {b, t} illustrated in figure 6(a). Here
we chose to map the first half of the ray �1 to the bottom sheet, ζ b

0 (μ(1) = b), and the second
half �2 to the top sheet ζ t

0 (μ(2) = t). For two-sheet surface, there are only two possible
choices of such mapping, both resulting in the same multi-sheet surface, but with the labels of
the sheets permuted.

Though in general this mixed fan beam transform cannot be measured exactly using line
measurements, as visualized in figures 5(b) and (c) it matches the data measured by an offset
multi-source geometry far better than any 2D transform on a single-sheet surface. The mixed
fan beam transform g̃0(λ, u) can hence be approximated by g0(λ, u), the rescaled axially
truncated cone beam data (scaling factor as in (18)) rebinned to the multi-sheet surface ζ0

using the rebinning function V0

g0(λ, u) =
√

R2 + u2

∫ l0(u)+�l(u)

l0(u)−�l(u)

dl f (X (λ, u, l),Y (λ, u, l), z(λ) + lV0(λ, u)). (23)

In the next section we describe how to choose the multi-sheet surface ζ0 and the rebinning
function V0 such that this approximation is optimal with respect to a chosen quality measure
Q(ζ0,V0).

We now derive the relation between the fan beam transform on a two-sheet surface and
the mixed fan beam transform. To this end we split the formula in equation (22) into integrals
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along halves of the generalized ray. Then (22) becomes g̃0(λ, u) = g̃b
0(λ, u)+ g̃t

0(λ, u), where

g̃s
0(λ, u) =

√
R2 + u2

∫
�i

dl fζ s
0
(X (λ, u, l),Y (λ, u, l)), s = μ(i)

and recall �1 = [l0(u)−�l(u), l0(u)], �2 = [l0(u), l0(u)+�l(u)]. With this notation it holds
for the fan beam transform on each sheet

ps
0(λ, u) = g̃s

0(λ, u) + g̃s
0(λc, uc), (24)

where (λc, uc) denotes the complementary ray to (λ, u). While ps
0 is exactly what we would

like to approximate (we can deal with a transform on a single-sheet surface), the right hand side
involves integration along half rays. Therefore it cannot be approximated with the measured
data and so (24) seems of no immediate use. However, substituting (24) into the definition of
the fan beam transform on the multi-sheet surface (21) yields

p0(λ, u) = pb
0(λ, u) + pt

0(λ, u)

= g̃b
0(λ, u) + g̃b

0(λc, uc) + g̃t
0(λ, u) + g̃t

0(λc, uc),

which after regrouping terms we see is identical to

p0(λ, u) = g̃0(λ, u) + g̃0(λc, uc). (25)

Equation (25) lies at the heart of the MSSR. It relates the fan beam transform on the two-sheet
surface to the mixed fan beam transforms corresponding to the primary and complementary
rays. In turn, each of the mixed fan beam transforms on the right hand side can be approximated
by the offset multi-source geometry data g0(λ, u) and g0(λc, uc) providing an approximation
to the unknown fan beam transform on a two-sheet surface p0(λ, u)

g0(λ, u) + g0(λc, uc). (26)

This approximation is graphically depicted in figure 5.
Notice, that in contrast to the single-sheet surface rebinning, equations (25) and (26) give

an implicit approximate relation between the fan beam transform on the sheets ps
0 and the

rebinned data g0.

5.4. Rebinning equation for the multi-sheet surface

The principle can be generalized to a surface with any even number of sheets S, ζ s
0 , s = 1, . . . , S

with the objective to extend the method to trajectories with winding numbers t > 1. An example
of such a trajectory is t-threaded helix, where the threads are not equi-angularly distributed
(note that such trajectory is still invariant under the simultaneous rotation and translation �θ ).
In particular for a trajectory with winding number t, the multi-sheet surface constructed will
have S = 2t sheets.

Let �1, �2, . . . , �S be a partition of the planar ray (λ, u, l), l ∈ � = [l0(u)−�l(u), l0(u)+
�l(u)] along its l coordinate into closed subintervals �i, i = 1, . . . , S : ∪i�i = �, ∩i�̊i = ∅.
Furthermore, we are going to restrict the partition to be symmetric with respect to the centre of
the ray l0(u) i.e. it holds �S−i+1 = 2l0(u)−�i, i = 1, . . . , S/2, where the negative sign denotes
the reflection of the interval around 0. This ensures that the primary and complementary rays
are treated in the same way, retaining the symmetry of the underlying planar problem. For
S = 2 (two-sheet surface) such partitioning corresponds to splitting the ray in halves.

To each generalized ray (λ, u), λ ∈ [−π, π ) on the multi-sheet surface ζ0 we rebin a
sequence of t = S/2 cone beam rays (λ̃, u, v), λ̃ ∈ �λ0 . Without loss of generality for each
effective trajectory we can choose a rebinning centre λ0 such that �λ0 = [−π, (2t − 1)π ).
Then for the t cone beam rays (λ̃, u, v) rebinned to the generalized ray (λ, u) it holds

λ̃ = λ + (r − 1)2π, r = 1, . . . , t. (27)
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Equation (27) implicitly defines r(λ̃) ∈ {1, . . . , t}, the number of the cone beam ray (λ̃, u, v)

rebinned to the generalized ray (λ, u).
To accommodate rebinning of multiple cone beam rays per generalized ray we extend the

mapping μ as follows

μ : {1, . . . , S} × {1, . . . , t} → {1, . . . , S}, (28)

where μi(r) := μ(i, r) = s such that in each interval �i ⊂ �, the ith ray segment
(λ̃, u, v, l), l ∈ �i(u) of the r(λ̃)th cone beam ray (λ̃, u, v) is assigned to the sheet ζ s

0 .
The choice of μ determines which �i patches will be grouped together into one sheet. The
optimal rebinning surface and function pair also nontrivially depends on the partition of the
interval �.

Rebinning t cone beam rays to one generalized ray necessitates t mixed 2D fan beam
transforms on the surface ζ0 (one for each cone beam ray)

g̃(r)
0 (λ, u) =

√
R2 + u2

(
S∑

i=1

∫
�i

dl f
ζ

μi (r)
0

(X (λ, u, l),Y (λ, u, l))

)
, r = 1, . . . , t. (29)

Note, that the sheet on which f is integrated along the ray segment �i is given by the mapping
μi(r). The rth mixed fan beam transform g̃(r)

0 (λ, u) has been constructed so that it can be
approximated via optimal rebinning with the offset multi-source geometry data

g0(λ̃, u) =
√

R2 + u2

∫ l0(u)+�l(u)

l0(u)−�l(u)

dl f (X (λ̃, u, l),Y (λ̃, u, l), z(λ̃) + lV0(λ̃, u)). (30)

V0(λ̃, u) is a single valued function on [−π, (2t − 1)π ) × [−umax, umax], but whenever
convenient we consider it as a multi-valued function V r(λ̃)

0 (λ, u) on [−π, π ) × [−umax, umax].
Analogously to the two-sheet case, we obtain the relation between the fan beam transform

on the multi-sheet surface p0, and the t mixed fan beam transforms (29)

p0(λ, u) =
t∑

r=1

(
g̃(r)

0 (λ, u) + g̃(r)
0 (λc, uc)

)
. (31)

6. Optimal multi-sheet surface and rebinning function

In [4] we considered a constrained optimization problem for a single-sheet surface and
rebinning function for the offset multi-source geometry. The constraints on the detector vertical
extent, result in the constraint on the rebinning function and they have been accommodated
using Lagrange multipliers ν1, ν2. Here we adapt the same approach for finding the optimal
multi-sheet surface and rebinning function.

The objective is to find a pair (ζ0,V0) which minimizes the following axial deviation
functional

Qq(ζ0,V0) =
∫ (2t−1)π

−π

dλ̃

∫ umax

−umax

du
S∑

i=1

∫
�i

dlw(λ̃, u, l)|δzi(λ̃, u, l)|q, (32)

where

δzi(λ̃, u, l) = z(λ̃) + lV0(λ̃, u) − ζ
μi(r(λ̃)))

0 (X (λ̃, u, l),Y (λ̃, u, l)) i = 1, . . . , S (33)

subject to

v1(λ̃, u) � V0(λ̃, u) � v2(λ̃, u), λ̃ ∈ [−π, (2t − 1)π ), (34)
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where the bounds v1, v2 have been periodically extended from [−π, π ) to [−π, (2t − 1)π ).
For q > 1 the problem is strictly convex, the box constrains are qualified, thus (32)–(34) has
a unique solution.

Using Lagrange multipliers we arrive at the following unconstrained cost functional

Qq(ζ0,V0) =
∫ (2t−1)π

−π

dλ̃

∫ umax

−umax

du
S∑

i=1

∫
�i

dlw(λ̃, u, l)|δzi(λ̃, u, l)|q

+ ν1(v1 − V0) + ν2(V0 − v2). (35)

In principle any positive bounded weights w will lead to a problem with unique solution.
However, we are going to choose the weights so that they are consistent with the underlying
backprojection formula. To discuss the choice of weights w we reparametrize the integral (35)
((u, l) → (x, y))

Qq(ζ0,V0) =
∫ (2t−1)π

−π

dλ̃

∫ ∫
(x,y)∈�2D

dx dy
1

RL(λ̃, x, y)

×W (λ̃, x, y)|δzi(λ̃,U (λ̃, x, y), L(λ̃, x, y))|q + ν1(v1 − V0) + ν2(V0 − v2),

(36)

where i is defined by L(λ̃, x, y) ∈ �i and we made use of the Jacobian of the change of
coordinates between (u, l) and (x, y),

∂(U (λ̃, x, y), L(λ̃, x, y))

∂(x, y)
= 1

RL(λ̃, x, y)
. (37)

By construction in the volume integral (35) each ray on each sheet is integrated along exactly
once (without redundancy). Therefore the weights W (λ̃, x, y)/L(λ̃, x, y) are chosen as in non-
redundant fan backprojection formula (16) derived in section 3.2 and hence

W (λ̃, x, y) = 1

L(λ̃, x, y)
+ 1

2L0(U (λ̃, x, y)) − L(λ̃, x, y)
. (38)

Going back to the coordinates (u, l), we have

w(λ̃, u, l) = w(u, l) = 1

l
+ 1

2l0(u) − l
. (39)

For a system which is not �θ -symmetric we can formulate the same optimization problem
independently for each of the surfaces and the corresponding rebinning function (ζk,Vk),
associated with the rebinning centres λk, k = 1, . . . , Nc within one period of the effective
trajectory.

Equation (36) considered for a single sheet at the minimum of the cost functional gives
rise to a point by point way to evaluate the fit between the rays and the sheet ζ s

0

Qs
q(x, y) =

∫ ′(2t−1)π

−π

dλ̃

(
1

L2
+ 1

L(2L0 − L)

)
|δiz(λ̃,U (λ̃, x, y), L(λ̃, x, y))|q, (40)

where we use a shorthand notation∫ ′ (2t−1)π

−π

dλ̃ :=
∫

λ̃ ∈ [−π, (2t − 1)π ),

μi(r(λ̃)) = s, L(λ̃, x, y) ∈ �i

dλ̃, (41)

i.e. the integration is only carried over ray segments rebinned to the sheet ζ s
0 . An appropriate

normalization for the axial deviation map Qs
q is the volume

C(x, y) =
∫ ′ (2t−1)π

−π

dλ̃

(
1

L2
+ 1

L(2L0 − L)

)
=

∫ π

−π

dλ
1

L2
. (42)
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The last step follows using the reparametrization of the integral with complementary variables
as in section 3.2. Note, that this is exactly the same set of weights and normalization, which is
applied to ζ0 in (45). At each point (x, y), Qs

q(x, y) gives the Lq axial deviation of the rebinned
rays from the sth sheet, ζ s

0 , of the multi-sheet surface. In the second paper in this series we are
going to show how we can actively exploit the information of the ray to surface fit to derive
models of the axial blur for the deconvolution step discussed in section 8.

In the following we consider q = 2 because in this case the unique minimizer can be
found by means of a globally convergent iteration. However, other choices of q are plausible
e.g. the choice q = 1 would result in a penalty directly proportional to the ray divergence.
In principle, once the solution of the least squares problem can be obtained, any q � 1 norm
solution can be determined with for example iteratively reweighted least squares method [19].

In the particular case of q = 2 the objective functional is a weighted square axial deviation
of the rays from the surface

Q(ζ0,V0) =
∫ (2t−1)π

−π

dλ̃

∫ umax

−umax

du
S∑

i=1

∫
�i

dl

(
1

l
+ 1

2l0 − l

)
δzi(λ̃, u, l)2

+ ν1(v1 − V0) + ν2(V0 − v2). (43)

Setting the gradient ∂Q
∂(ζ0,V0 )

= 0 and solving for ζ0 and V0 we obtain

Ṽ0(λ̃, u) = 1

4l2
0 ln

(
l0+�l
l0−�l

)
− 4l0�l

×
S∑

i=1

∫
�i

dl
2l0

2l0 − l

(
ζ

μi(r(λ̃))

0 (X (λ̃, u, l),Y (λ̃, u, l)) − z(λ̃)
)

V0(λ̃, u) =
⎧⎨
⎩

Ṽ0(λ̃, u) v1(λ̃, u) � Ṽ0(λ̃, u) � v2(λ̃, u)

v1(λ̃, u) Ṽ0(λ̃, u) < v1(λ̃, u)

v2(λ̃, u) Ṽ0(λ̃, u) > v2(λ̃, u)

(44)

ζ s
0 (x, y) = 1∫ ′ (2t−1)π

−π
dλ̃(1/L2 + 1/(L(2L0 − L)))

×
∫ ′ (2t−1)π

−π

dλ̃

(
1

L2
+ 1

L(2L0 − L)

)
(z(λ̃) + LV0(λ̃,U )), (45)

and
∫ ′ was defined in (41).

Theorem 1. Iteration alternately applying conditions (44), (45) converges globally to the
unique solution of the minimization problem (43) in the L2

W (S×�2D)×L2([−π, (2t −1)π )×
[−umax, umax]) space (see proof in the appendix for definition).

Proof. See the appendix. �

7. Examples of multi-sheet rebinning surfaces and functions

In this section we give examples of multi-sheet surfaces and rebinning functions for different
trajectories. We restrict ourselves to the trajectories with period 2π , t = 1, and two-sheet
surfaces. In our experiments we used an offset multi-source geometry with a static ring
containing 1152 sources and 10 rings each of 1400 detectors. The offset of the first detector
ring from the plane of sources was 10 mm and the spacing of the detector rings 2 mm. The
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Figure 7. Optimal rebinning pair for a helical trajectory, the two-sheet surface ζ0 (left, note
exaggerated z-scale) and the rebinning function binned to the detector row, V0 (right).

radii of the source and detector rings are 600 and 450 mm, respectively and the radius of the
field-of-view, RFOV, is 400 mm. We assumed a constant axial translation of the scanner of
16 mm per period of the effective trajectory, 2π .

7.1. Optimal two-sheet pair

7.1.1. Helical trajectory. We first compute the optimal pair for a helical trajectory. Figure
7 shows the optimal two-sheet surface ζ0 and the corresponding rebinning function V0. Along
with the surface, we plot the effective source trajectory subsampled by factor 4 for visualization
purposes. V0 has been binned to the corresponding detector rows on the cylindrical detector.
For each source within the 2π range of projections rebinned to ζ0, for each of the active
detectors, the image V0 colour codes the corresponding row on the cylindrical detector.

In figure 8 we plotted the normalized weighted Lq axial deviation map (40) per pixel,
(Qs

q(x, y)/C(x, y))1/q. The first row corresponds to the L1-norm, Q1, and the second to the
L2-norm, Q2. The shape of the axial deviation maps is quite asymmetric, which is due to the
heavy asymmetry of the helical trajectory. While Q1 is a more robust and more quantitative
measure of the axial deviation, Q2 shows the finer details of the rays to surface fit.

7.1.2. 4-threaded helix trajectory. In the second experiment we used a 4-threaded helix as
a trajectory. The optimal rebinning surface and function are shown in figure 9. The rebinning
surface is more regular than the surface corresponding to a single helix. However, for the axial
deviation maps in figure 10, the asymmetry is still pronounced. In particular, we observe that
the axial deviation seems to become larger around the jumps of the effective trajectory, and
the region of relatively low axial deviation is cross shaped following the 4-threads of the helix.

7.1.3. 32-threaded helix trajectory. In the final example, the number of helices is close
to

√
Ns [22], resulting in the setup with the most radial symmetry. Figure 11 shows the

optimal rebinning pair. The rebinning surface looks very similar to the double-cone surface, a
parametrized version of the MSSR method developed in [2]. The corresponding axial deviation
maps Q1, Q2 in figure 12 are almost radially symmetric.
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Figure 8. Normalized axial deviation per pixel for a helical trajectory. The images display the
normalized axial deviation map in L1 and L2 norms for each of the sheets, Qb

1(x, y)/C(x, y),
Qt

1(x, y)/C(x, y), (Qb
2(x, y)/C(x, y))1/2, (Qt

2(x, y)/C(x, y))1/2, respectively.
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Figure 9. Optimal rebinning pair for the 4-threaded helix trajectory, the two-sheet surface ζ0 (left,
note exaggerated z-scale) and the rebinning function binned to the detector row, V0 (right).
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Figure 10. Normalized axial deviation per pixel for the 4-threaded helix trajectory. The images
display the normalized axial deviation map in L1 and L2 norms for each of the sheets,
Qb

1(x, y)/C(x, y), Qt
1(x, y)/C(x, y), (Qb

2(x, y)/C(x, y))1/2, (Qt
2(x, y)/C(x, y))1/2, respectively.
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Figure 11. Optimal rebinning pair for the 32-threaded helix trajectory, the two-sheet surface ζ0
(left, note exaggerated z-scale) and the rebinning function binned to the detector row, V0 (right).
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Figure 12. Normalized axial deviation per pixel for the 32-threaded helix trajectory. The
images display the normalized axial deviation map in L1 and L2 norms for each of the sheets,
Qb

1(x, y)/C(x, y), Qt
1(x, y)/C(x, y), (Qb

2(x, y)/C(x, y))1/2, (Qt
2(x, y)/C(x, y))1/2, respectively.

Table 1. Normalized total axial deviation (36) in 1 and 2-norms for different trajectories with
C = 2

∫ ∫
x2+y2�R2 C(x, y)d(x, y).

Trajectory
√

Q2/C Q1/C

1-helix 2.0005 1.5219
4-helix 2.3135 1.7768
32-helix 2.3561 1.8144

7.2. Source firing sequence

The problem of finding an optimal source firing sequence (a sampled effective trajectory), in
the sense of minimizing square axial deviation is a combinatorial problem. Hence, we restrict
ourselves to comparing the axial deviation values of the here tested trajectories: single helix,
4-threaded helix and 32-threaded helix. Table 1 shows the values of Q1, Q2 corresponding to
the L2 optimal rebinning pairs for those trajectories (recall that the rebinning pairs for each
trajectory were optimized w.r.t. Q2). While the single helix has the smallest axial deviation (in
both L1 and L2 norms, Q1, Q2), and the axial deviation seems to increase with the number of
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threads, this increase is not significant, and is outweighed by the benefits of the close to radial
symmetry of the rebinning surface at the deconvolution stage [2].

8. Axial deconvolution

In section 5.3 we obtained an implicit relation between the fan beam transforms on the
sheets of the surface, ps

0, and the data rebinned to multi-sheet surface g0, (25), (26). To
apply standard rebinning method one would first attempt to separate the transforms on each
of the sheets ps

0, reconstruct each of them individually and finally interpolate the resulting
volumetric image from the images on the individual sheets (these are simple surfaces) that
intersect the bounded cylindrical region � containing the support of f . Unfortunately (21) is
severely underdetermined and hence it is not possible to solve it without additional information.
Furthermore, as the data on any two different multi-sheet surfaces is not correlated in a simple
way, there is no plausible way to set up a meaningful deconvolution problem in the data space.

However, the linearity of the Radon transform and hence of its inverse (filtered
backprojection, B) enables us to shift the deconvolution of the information on the individual
sheets of the multi-sheet surface from the data to the image domain, where there is an evident
correlation. For a multi-sheet surface ζm we have

fζm (x, y) = B(pζm ) =
S∑

s=1

B(pζ s
m
) =

S∑
s=1

fζ s
m
(x, y), (x, y) ∈ �2D, m ∈ MZ, (46)

where MZ := {λm : ζλm ∩� �= ∅} is the set of rebinning centres of all the multi-sheet surfaces
intersecting the bounded cylindrical volume �.

As the multi-sheet surfaces filling the volume � intersect, the equations (46) are
not independent but constitute a system of coupled linear equations defining the axial
deconvolution problem for unmixing the information from multi-sheet surfaces. The system
(46) can be uniquely solved provided the multi-sheet surfaces sample the volume � densely
enough. An important feature of the system (46) is that it decouples into independent blocks for
each fixed value of (x, y), exactly as in the case of axial interpolation employed in single-sheet
surface rebinning methods. This and other properties of the deconvolution problem (46) allow
us to devise efficient numerical procedures for its solution discussed in the second paper in
this series [3].

9. Conclusions

We introduced the idea of rebinning to multi-sheet surfaces, which is a basis for a new family
of rebinning methods for reconstruction from axially asymmetrically truncated projections.
As such projections do not constitute complete data in the sense of integral geometry, the
standard cone beam reconstruction algorithms do not apply. In the first paper of this series we
have discussed the underlying fan beam transforms and their approximation with the truncated
projection data obtained from offset multi-source geometries. We set up a variational problem
for optimal rebinning surface and function pair and gave a globally convergent iteration for
its solution in the case of a quadratic fidelity term. We gave examples of different optimal
rebinning pairs for different trajectory choices with period 2π . Due to rebinning to multi-sheet
surfaces, the reconstructed 2D problems define the volumetric image implicitly. We concluded
formulating an axial deconvolution problem for its recovery. In the second paper in this
series we discuss details of the 2D reconstruction on multi-sheet surfaces including strategies
for dealing with approximated data. We introduce improved deconvolution models using
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distribution of the axial distance of the rays to the surface and explain how the deconvolution
step can be efficiently and robustly implemented. Finally, we demonstrate the performance
of the methods on both the simulated data and the real data collected with Rapiscan RTT80
scanner.
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Appendix. Proof of theorem 1 (convergence of the alternating iteration)

We show that the alternating iteration (44), (45) converges to the unique minimum of the
Lagrange function (43). The proof is motivated by the proof in [4] for the constrained surface
problem, which itself is based on the proof for the unconstrained surface problem in [8]. In
the sequel we need the definitions of the following function spaces:

• A space of admissible images on a multi-sheet surface: a weighted Lebesgue space
L2

W (S × �2D) with the induced norm

‖ f ‖2
W =

S∑
s=1

‖ f s‖2
W ,

where

‖ f s‖2
W = ( f s, f s)W :=

∫ ∫
(x,y)∈�2D

dx dyW (x, y)| f s(x, y)|2, (A.1)

is the L2
W (�2D)-norm we use on an individual sheet f s and the weight

W (x, y) =
∫ ′′

λ∈[−π,π )

dλ
1

RL

(
1

L
+ 1

2L0(U ) − L

)
=

∫ π

−π

dλ
1

RL2
, (A.2)

where
∫ ′′ is the integral taken over λ : L(λ, x, y) � L0. (A.2) is a non-redundant fan beam

backprojection of the unit data and it is positive everywhere in the interior of �2D. We
used a shorthand notation L = L(λ, x, y) and U = U (λ, x, y).

• A space of 2tπ fan beam transforms: a standard Lebesgue space L2(Z2D,t ) where
Z2D,t := [−π, (2t − 1)π ) × [−umax, umax] with the induced norm

‖g‖2 = (g, g) :=
∫ (2t−1)π

−π

∫ umax

−umax

du dλ̃ |g(λ̃, u)|2. (A.3)

We define a linear operator

P : L2
W (S × �2D) → L2(Z2D,t ) (A.4)

acting on f = ( f s)S
s=1 by

(P f )(λ̃, u) = 1√
w

S∑
i=1

∫
�i

dl
2l0

2l0 − l
f μi(r(λ̃))(X (λ̃, u, l),Y (λ̃, u, l)), (A.5)
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where

w(u) =
∫ l0+�l

l0−�l
dl

2l0l

2l0 − l
= 4l0(u)2 ln

(
l0(u) + �l(u)

l0(u) − �l(u)

)
− 4l0(u)�l(u).

Up to a multiplicative factor, P is a weighted Radon transform of a multi-sheet function
f . Hence, P is composition of a bounded operator (weighting with bounded weights
0 < 2l0/(l0 + �l) � 2l0/(2l0 − l) � 2l0/(l0 − �l) < ∞) and a compact operator (Radon
transform) and as such it is a compact operator. Hence for a bounded domain, P has a discrete
spectrum. Using the formal definition (g,P f ) = (P∗g, f )W , we obtain the adjoint operator
P∗

P∗ : L2(Z2D,t ) → L2
W (S × �2D)

g(λ̃, u) → (P∗g)(x, y)

(P∗g)s(x, y) = 1

W (x, y)

∫ ′(2t−1)π

−π

dλ̃
1√
w

1

RL

2L0(U )

2L0(U ) − L
g(λ̃,U ).

Recall that (41)∫ ′(2t−1)π

−π

dλ̃ :=
∫

λ̃∈[−π,(2t−1)π ),

μi (r(λ̃))=s,L∈�i

dλ̃.

With those definitions and the following scaling of the rebinning function Ṽ0(λ̃, u) :=√
w(u)V0(λ̃, u) and the bounds ṽi(λ̃, u) := √

w(u)vi(λ̃, u), i = 1, 2 the alternating iteration
(45),(44) can be compactly written as

ζ0 = P∗V̌0 + a (A.6)

Ṽ0 = Pζ0 + b,

V̌0 =
⎧⎨
⎩

Ṽ0 ṽ1(λ̃, u) � Ṽ0(λ̃, u) � ṽ2(λ̃, u)

ṽ1 Ṽ0(λ̃, u) < ṽ1(λ̃, u)

ṽ2 Ṽ0(λ̃, u) > ṽ2(λ̃, u)

(A.7)

with

as(x, y) = 1

W (x, y)

∫ ′(2t−1)π

−π

dλ
1

RL

(
1

L
+ 1

2L0 − L

)
z(λ̃),

b(λ̃, u) = z(λ̃)
1√

w(u)
2l0(u) ln

(
l0(u) − �l(u)

l0(u) + �l(u)

)
.

In the unconstrained case, as considered in [8], (A.7) reduces to V̌0 := Ṽ0 = Pζ0 + b.
Substitution of V̌0 into equation (A.6) results in the following fixed point equation for the
rebinning surface ζ0

ζ0 = P∗Pζ0 + a + P∗b. (A.8)

By properties of Fredholm equation (A.8) has a unique solution if ‖P∗P‖W < 1. To
demonstrate that we look at the change of the norm of a function f �= 0 under application of
the compact operator P

(P f ,P f ) =
∫ (2t−1)π

−π

dλ̃

∫ umax

−umax

1

w

∣∣∣∣∣
S∑

i=1

∫
�i

dl
2l0

2l0 − l
f μi(r(λ̃))

∣∣∣∣∣
2

. (A.9)

25



Inverse Problems 29 (2013) 115003 M M Betcke and W R B Lionheart

Using Schwarz inequality we obtain an upper bound∣∣∣∣∣
S∑

i=1

∫
�i

dl
2l0

2l0 − l
f μi(r(λ̃))

∣∣∣∣∣
2

=
∣∣∣∣∣∣

S∑
i=1

∫
�i

dl l

√(
1

l
+ 1

2l0 − l

)2

f μi(r(λ̃))

∣∣∣∣∣∣
2

�
(

S∑
i=1

∫
�i

dl l2

(
1

l
+ 1

2l0 − l

))(
S∑

i=1

∫
�i

dl

(
1

l
+ 1

2l0 − l

) ∣∣∣ f μi(r(λ̃))
∣∣∣2

)

=
∫ l0+�l

l0−�l
dl

2l0l

2l0 − l

(
S∑

i=1

∫
�i

dl

(
1

l
+ 1

2l0 − l

) ∣∣∣ f μi(r(λ̃))
∣∣∣2

)

= w

S∑
i=1

∫
�i

dl

(
1

l
+ 1

2l0 − l

) ∣∣∣ f μi(r(λ̃))
∣∣∣2

. (A.10)

We observe that the equality in Schwarz inequality only holds if the vectors are parallel i.e.√(
1

l
+ 1

2l0 − l

)
f μi(r(λ̃)) ‖ l

√(
1

l
+ 1

2l0 − l

)

f μi(r(λ̃)) = lα(λ̃, u), l ∈ �i.

In lemma 1 we show that this is only possible if α(λ̃, u) = 0, which in turn implies that
f s(X (λ, u, l),Y (λ, u, l)) = 0 for all the sheets s = 1, . . . , S, and hence the inequality is sharp.

Substituting the bound (A.10) into (A.9), changing variables and the order of integration
we obtain

( f ,P∗P f ) <

∫ (2t−1)π

−π

dλ̃

∫ umax

−umax

du
1

w
w

S∑
i=1

∫
�i

(
1

l
+ 1

2l0 − l

) ∣∣ f μi(r(λ̃))
∣∣2

=
∫ ∫

(x,y)∈�2D

dx dy
∫ (2t−1)π

−π

dλ̃
∣∣ f μi(r(λ̃))

∣∣2 1

RL

(
1

L
+ 1

2L0 − L

)

=
S∑

s=1

∫ ∫
(x,y)∈�2D

dx dy
∣∣ f s

∣∣2
∫ ′′

[−π,π )

dλ
1

RL

(
1

L
+ 1

2L0 − L

)
= ( f , f )W ,

which in turn for a compact operator P implies that the largest eigenvalue of P∗P , σ 2
1 < 1

and hence ‖P∗P‖W < 1.
In the constrained case the conditional fixed point equation resulting from substitution of

V̌0 into (A.6) reads

ζ0 =
⎧⎨
⎩
P∗Pζ0 + a + P∗b ṽ1(λ, u) � Ṽ0(λ, u) � ṽ2(λ, u)

P∗ṽ1 + a Ṽ0(λ, u) < ṽ1(λ, u)

P∗ṽ2 + a Ṽ0(λ, u) > ṽ2(λ, u).

(A.11)

In order to show that the iteration defined through (A.11) converges we derive a bound on the
norm of the difference between two consecutive approximations of ζ0. We have

‖ζ n+1
0 − ζ n

0 ‖W = ‖P∗(V̌ n
0 − V̌ n−1

0

)‖W � ‖P‖‖V̌ n
0 − V̌ n−1

0 ‖ (A.12)

and as ‖P‖ < 1, we need to show that ‖V̌ n
0 − V̌ n−1

0 ‖ � ‖ζ n
0 − ζ n−1

0 ‖W . There are four possible
cases:

(i) ṽ1 � V̌ n−1
0 := Ṽ n−1

0 , V̌ n
0 := Ṽ n

0 � ṽ2 (inactive constraints)

‖V̌ n
0 − V̌ n−1

0 ‖ = ‖P(
ζ n

0 − ζ n−1
0

)‖ � ‖P‖‖ζ n
0 − ζ n−1

0 ‖W .
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(ii) ṽ1 � V̌ n
0 := Ṽ n

0 � ṽ2, Ṽ n−1
0 �∈ [ṽ1, ṽ2] ⇒ V̌ n−1

0 = ṽi, i = 1, 2 (constraint active in one
step)

Ṽ n
0 − Ṽ n−1

0 = Pζ n
0 + b − (

Pζ n−1
0 + b

) = P
(
ζ n

0 − ζ n−1
0

)
(A.13)

and

V̌ n
0 − V̌ n−1

0 = Pζ n
0 + b − ṽi, i = 1, 2.

Since ṽ1 � V̌ n
0 = Ṽ n

0 = Pζ n
0 + b � ṽ2 and Ṽ n−1

0 �∈ [ṽ1, ṽ2] with (A.13) we have

‖V̌ n
0 − V̌ n−1

0 ‖ = ‖Pζ n
0 + b − ṽi‖

< ‖Pζ n
0 + b − (

Pζ n−1
0 + b

)‖ = ∥∥P(
ζ n

0 − ζ n−1
0

)∥∥
� ‖P‖‖ζ n

0 − ζ n−1
0 ‖W .

(iii) ṽ1 � V̌ n−1
0 := Ṽ n−1

0 � ṽ2, Ṽ n
0 �∈ [ṽ1, ṽ2] ⇒ V̌ n

0 = ṽi, i = 1, 2 (constraint active in one
step).
Follows analogously, as in (ii).

(iv) Ṽ n−1
0 , Ṽ n

0 �∈ [ṽ1, ṽ2] ⇒ V̌ n−1
0 = ṽi, V̌ n

0 = ṽ j, i, j = 1, 2 (constraint active in both steps)∥∥V̌ n
0 − V̌ n−1

0

∥∥ = ‖ṽ j − ṽi‖.
If i = j and the error bound is 0, otherwise by the same argument as in (ii) it holds

‖ṽ j − ṽi‖ <
∥∥Pζ n

0 + b − (
Pζ n−1

0 + b
)∥∥ = ∥∥P(

ζ n
0 − ζ n−1

0

)∥∥ � ‖P‖∥∥ζ n
0 − ζ n−1

0

∥∥
W .

This concludes the argument∥∥ζ n+1
0 − ζ n

0

∥∥
W � ‖P‖∥∥V̌ n

0 − V̌ n−1
0

∥∥ < ‖P‖2
∥∥ζ n

0 − ζ n−1
0

∥∥
W <

∥∥ζ n
0 − ζ n−1

0

∥∥
W ,

also ∥∥V̌ n
0 − V̌ n−1

0

∥∥ � ‖P‖∥∥ζ n
0 − ζ n−1

0

∥∥
W → 0

showing that the alternating iteration is a contraction. Hence the constrained minimization
problem has a unique solution, the contraction converges to the unique minimizer.

Lemma 1. For any multi-sheet surface f , and a function α : [−π, (2t − 1)π ) ×
[−umax, umax] → R,

f μi(r(λ̃)) = lα(λ̃, u), l ∈ �i (A.14)

holds if and only if α(λ̃, u) = 0.

Proof. As in the mixed fan beam transform, each ray is represented exactly once, we cannot
use dual parametrization of the same line (the primary and complementary rays), which would
easily provide the argument. Instead, we are going to rely on the fact that each point P has
infinitely many representations in the ray coordinates, i.e. for each angle λ̃ there exist the
different corresponding values of u and l.

Let O, P, P′ be points which belong to the same sheet f s

O : (λ̃a, ua, la), (λ̃b, ub, lb)

P : (λ̃a, ua, la,P), (λ̃P, uP, lP)

P′ : (λ̃b, ub, lb,P′
), (λ̃P, uP, lP′

)

with la, lb, lP, lP′
, la,P, lb,P′ ∈ �i and r(λ̃a) = r(λ̃b) = r(λ̃P), see also figure A1.

Let f s(�(λ̃a, ua, la),R(λ̃a, ua, la)) = c, where �(λ̃a, ua, la),R(λ̃a, ua, la)) are the polar
coordinates of O and c is some real constant.

27



Inverse Problems 29 (2013) 115003 M M Betcke and W R B Lionheart

Figure A1. Illustration of position of points O, P, P′.

Under the assumption (A.14) this implies f s(�(λ̃a, ua, la),R(λ̃a, ua, la)) = c =
α(λ̃a, ua)la. Since the ray (λ̃a, ua) goes through P,

f s(P) = f s(�(λ̃a, ua, la,P),R(λ̃a, ua, la,P)) = α(λ̃a, ua)la,P = c

la
la,P.

On the other hand, the ray (λ̃P, uP) also goes through P, resulting in a relation for α(λ̃P, uP)

f s(P) = f s(�(λ̃P, uP, lP),R(λ̃P, uP, lP)) = α(λ̃P, uP)lP = c

la
la,P.

Now, we choose the point P′ and the ray (λ̃b, ub) through O, such that P′ lies on the rays
(λ̃b, ub) and (λ̃P, uP) and ub �= ±uP, lb �= (lalP)/la,P. Notice, that there is a whole family
of feasible pairs, which satisfy lb, lP′

, lb,P′ ∈ �i, r(λ̃b) = r(λ̃P) = r(λ̃a). Using the same
argument for P′ as for P beforehand, we obtain another condition for α(λ̃P, uP)

f s(P′) = f s(�(λ̃b, ub, lb,P′
),R(λ̃b, ub, lb,P′

)) = α(λ̃b, ub)lb,P′ = c

lb
lb,P′

= f s(�(λ̃P, uP, lP′
),R(λ̃P, uP, lP′

)) = α(λ̃P, uP)lP′
.

Both equations can be only true if either α(λ̃P, uP) = 0 or the following condition holds for
all feasible lP′ ∈ �i

la,P

lalP
= lb,P′

lblP′ . (A.15)

As the polar coordinates of P′ based on different ray coordinates have to be equal, we also
have

R(λ̃b, ub, lb,P′
) = R(λ̃P, uP, lP′

)

(lb,P′ − 1)2R2 + (lb,P′
)2(ub)2 = (lP′ − 1)2R2 + (lP′

)2(uP)2. (A.16)

Substituting lb,P′
from (A.15) into (A.16) results in a quadratic equation for lP′

, which always
has two solutions, one of which is 0 and one not (because of the conditions on ub, lb). Thus
imposing the condition (A.15) fixes the value of lP′

, while it was supposed to hold for all
feasible lP′ ∈ �i and hence we infer that α(λ̃P, uP) = 0. The argument can be repeated
for any point P on each of the sheets, implying that α(λ̃, u) = 0, λ̃ = [−π, (2t − 1)π ),

|u| � umax. �
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29

http://dx.doi.org/10.1088/0266-5611/29/11/115004
http://dx.doi.org/10.1109/42.887836
http://dx.doi.org/10.1118/1.1610291
http://dx.doi.org/10.1088/0031-9155/46/11/311
http://dx.doi.org/10.1088/0266-5611/19/6/053
http://dx.doi.org/10.1118/1.1373675
http://dx.doi.org/10.1118/1.598938
http://dx.doi.org/10.1109/TMI.2008.922689
http://dx.doi.org/10.1109/23.775548
http://dx.doi.org/10.1088/0031-9155/44/2/019
http://dx.doi.org/10.1088/0031-9155/47/14/311
http://dx.doi.org/10.1109/42.887834
http://dx.doi.org/10.1088/0031-9155/43/4/028

	1. Introduction
	2. Offset multi-source geometry
	2.1. Effective trajectory
	2.2. Ray parametrization
	2.3. Plane parametrization
	2.4. Asymmetrically axially truncated cone beam projections

	3. Fan beam transform with non-redundant measurements
	3.1. Complementary rays
	3.2. Non-redundant fan beam transform

	4. Single-sheet surface rebinning methods
	4.1. Rebinning equation for a (single-sheet)
surface

	5. Multi-sheet surface rebinning
	5.1. Multi-sheet surface
	5.2. Symmetries of the rebinning surface and function
	5.3. Rebinning equation for the two-sheet surface
	5.4. Rebinning equation for the multi-sheet surface

	6. Optimal multi-sheet surface and rebinning function
	7. Examples of multi-sheet rebinning surfaces and functions
	7.1. Optimal two-sheet pair
	7.2. Source firing sequence

	8. Axial deconvolution
	9. Conclusions
	Acknowledgments
	Appendix. Proof of theorem 1 (convergence of the alternating iteration)
	References

