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Abstract 

As humans age, the brain undergoes many changes. This includes loss of the 

neurotransmitter dopamine, which forms a bridging link between age and the 

ensuing changes in cognition. However many questions about the precise 

nature of this relationship with regards to brain structure and function remain 

unanswered. These questions are important given our expanding aging 

population, and the answers may help the discovery of new therapeutic 

interventions for age-related impairments as well as identify mechanisms to 

promote successful aging. Old age also provides a model for understanding the 

role of dopamine in many fundamental human behaviours.  

The aim of my research was to use a multimodal approach to explore the 

contribution of dopamine to learning and memory in healthy older age. In this 

thesis I present four studies in which I used a combination of behavioural 

testing, pharmacological manipulation, structural and functional magnetic 

resonance imaging in older adults. I show that dopamine boosts delayed 

episodic memory in a non-linear dose-dependent manner. Using functional MRI, 

I show this effect is mediated through consolidation rather than encoding by the 

hippocampus. In two further imaging studies conducted to explore the role of 

dopamine in reward-based learning, I show that the flexibility of learning 

depends on the structural integrity of the substantia nigra/ventral tegmental area 

(the origin of dopamine projections) and that pharmacological enhancement of 

dopamine levels can remediate abnormal reward processing in the ventral 

striatum. Individual differences in neural activity associated with reward 

prediction also relate to anatomical nigro-striatal connectivity, identified using 
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diffusion tensor imaging. Finally, I show that in old age, valence influences 

decision-making in relation to ones own beliefs about the future, mediated by 

volume of the anterior cingulate cortex. I conclude this thesis with a brief 

discussion of the implications of these findings, study limitations and potential 

future studies.  
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Chapter 1  

Introduction  

We live in an aging society. Consequently there has been a shift towards trying 

to understand why some adults age successfully and other do not, in a bid to 

improve the quality of life as we grow older. This in part requires understanding 

the basis of individual differences in cognition and behaviour amongst healthy 

older adults. Current research on the neuroscience of aging therefore focuses 

on some major themes. First, better characterisation of the cognitive profile in 

older adults, achieved through the use of well-designed experimental 

paradigms. Second, identifying the associated neural correlates. Here a broad 

approach that encompasses age-related differences in neurotransmitter 

systems together with changes in brain structure and function can be achieved 

through the use of different neuroimaging techniques coupled with 

pharmacological manipulations.  

In this thesis, I will present a series of studies which examine cognition in 

healthy older adults, with an emphasis on the neurotransmitter dopamine. In 

these studies I sought to define the effects of dopaminergic modulation of 

episodic memory (Chapter 4), to better characterise the interplay between 

dopamine and reward-based decision-making (Chapters 5 & 6), and to explore 

affective processing (Chapter 7). I have employed a multimodal approach, 
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combining behavioural and pharmacological manipulation with structural and 

functional MRI, to reveal new insights into learning and memory in older age. 

First, I provide a literature review pertaining to the relevant topics in this thesis 

(Chapter 2) and an overview of the methodological techniques used in the 

experimental chapters (Chapter 3). This is followed by four experimental 

chapters (Chapters 4 - 7) and finishes with a general discussion about study 

implications, limitations and ideas for future work (Chapter 8).  
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Chapter 2  

Literature Review 

2.1. Dopamine 

The catecholamine dopamine is a neurotransmitter that plays an important role 

in a wide range of cognitive processes including motivation, novelty and reward 

processing and memory. Dopamine neurons in the midbrain project to different 

brain regions, act on different types of receptors that vary in their expression 

across the brain and have different modes of firing. Dopamine acts a 

neuromodulator in the central nervous system, where a neuromodulator may be 

defined as ‘neurotransmission that is not directly excitatory or inhibitory and 

causes a change in the response state of a neuron(s)’ (Picciotto et al., 2012). 

Moreover, dopamine neurons decline as a function of normal aging. Thus the 

differential degeneration of dopaminergic pathways and receptors with 

increasing age has been implicated in the inter-individual variability in age-

associated cognitive changes. Given this link between dopamine and cognition 

in aging, I will provide a brief overview of dopamine anatomical pathways and 

the role of dopamine pertaining to the cognitive systems that I will present in this 

thesis. 
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2.1.1 Anatomy of dopamine 

2.1.1.1 Regions and pathways 

Dopamine neurons in the substantia nigra/ventral tegmental (SN/VTA) area of 

the midbrain project to different regions in the brain. Dopamine neurons consist 

of three cell groups: the retrorubral field (termed cell group A8 in rats), the SN 

pars compacta (SNc, A9) and the VTA (A10). Major projections from the SNc to 

the dorsal striatum (caudate and putamen) are termed the nigrostriatal pathway; 

neurons from the VTA projecting  to the ventral striatum, hippocampus, septum 

and amygdala  are termed the mesolimbic pathway and dopamine neurons 

projecting to the prefrontal, cingulate and perirhinal cortex  form the 

mesocortical pathway. Whilst this parcellation of the dopaminergic midbrain 

holds true for rodents, it is an oversimplification when considering primates 

where these cell groups are more contiguous (Duzel et al., 2009b). An 

alternative approach is to divide the SN/VTA complex into ventral and dorsal 

tiers, where the dorsal tier consists of the dorsal SNc and contiguous VTA 

(Figure 1). The influential work of Alexander (Alexander et al., 1986) and later  

Haber et al. (Haber et al., 2000; Haber and Knutson, 2009) describe a 

topography of spiral interconnecting loops between the midbrain, basal ganglia 

and cortex such that dopamine neurons from the ventral tier of the SN/VTA 

project to the dorsal striatum, and those from the dorsal tier of the SN/VTA 

project to the ventral striatum. In such a way, the ventral striatum can influence 

the dorsal striatum via the dopaminergic midbrain. Dopamine neurons from the 

dorsal tier also project more diffusely to the frontal cortex as well as amygdala 

and hippocampus. In addition to the massive striatal projections to the SN/VTA, 

there are also projections from the amygdala mainly to the dorsal tier of the 
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SN/VTA. The SN/VTA also receives glutamatergic afferent inputs from the 

pedunculopontine nucleus, serotonergic inputs from the dorsal raphe nucleus 

and sensory inputs from the superior colliculus. There is also a direct, albeit 

small, projection from the prefrontal cortex to the dopaminergic midbrain.  

 

 

Figure 1. Network of connections between the SN/VTA, striatum and prefrontal 

cortex.  

Adapted from Haber and Knutson (2010). 

(a) Organisation of midbrain dopaminergic cells (red = dorsal tier; blue = ventral tier) 

and their connections with the striatum.  

(b) Further illustration of the topography of spiral interconnecting loops incorporating 

SN/VTA, basal ganglia, thalamus and cortex.  
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2.1.1.2 Receptors and firing  

Five dopamine receptor subtypes often grouped into D1-like (D1 and D5) and 

D2-like (D2, D3, D4) have been described (Missale et al., 1998).  D1-like 

receptors have excitatory effects, whereas D2-like receptors are inhibitory. 

Unlike D1, D2 receptors are also located pre-synaptically and therefore can act 

as autoreceptors, thus excessive D2 stimulation can inhibit neuronal firing.  

D1 is most widespread and expressed in the striatum, olfactory tubercle, limbic 

system including the hippocampus and the SN pars reticulata. D5 is the main 

dopamine receptor type in the hippocampus, and is also expressed in the 

thalamus, cortex and striatum. D2 receptors are also expressed in the dorsal 

and ventral striatum as well as the limbic system (hippocampus and amygdala) 

and frontal regions (prefrontal and cingulate), hypothalamus and SN/VTA.  

There is a higher concentration of D2 receptors in the striatum than in the 

prefrontal cortex. D3 is more restricted to the ventral rather than dorsal striatum. 

D4 is expressed less in the striatum and more-so in the frontal and limbic 

systems.  

Changes in dopamine levels may be phasic or tonic. Phasic (i.e. synaptic) 

changes are mainly mediated by burst firing of dopamine neurons, which can be 

triggered by unpredicted rewards, reward-predicting cues and novel stimuli 

(Schultz et al., 1997). Tonic (i.e. extrasynaptic) changes also depend on 

dopamine firing but are additionally modulated by cortical and limbic 

glutamatergic inputs and change over a slower timescale than phasic levels 

(Floresco et al., 2003). Phasic and tonic levels mediate different aspects of 

behaviour, for example the former has been linked to reward processing 

(Schultz, 1998).  
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2.1.1.3 Functional dopamine circuits: action and valence 

Influential functional models of dopaminergic circuitry liken the basal ganglia to 

‘gating’ structures, filtering the  flow of information between the frontal cortex 

and motor system (Cohen and Frank, 2009). In relation to motor activity, two 

key pathways have been described: a direct ‘go’ circuit (D1-receptor dependent) 

and an indirect ‘no-go’ circuit (D2-receptor dependent). In the direct pathway 

striatal dopamine neurons inhibit the internal globus pallidum (GPi) which 

through disinhibition of the thalamus allows representations of actions in the 

frontal cortex to be enabled. In the indirect pathway, D2 receptor activation 

inhibits the external GP (GPe) which via the GPi inhibits the thalamus and thus 

blocks action representations in the frontal cortex from being realised. This 

functional system also incorporates the subthalamic nucleus (STN) which sends 

a ‘no-go’ signal via its excitatory effect on the GPi. In this model, high levels of 

dopamine facilitate the go pathway whereas low dopamine levels promote the 

no-go pathway. Recent work using optogenetic techniques has shown that 

indirect pathway stimulation in mice resulted in reduced motor activity which 

could be rescued by direct pathway stimulation (Kravitz et al., 2010). Frank et al 

further hypothesised that phasic bursts of dopamine from positive feedback 

(e.g. reward) would promote ‘go’ learning and dips in dopamine firing  from 

negative feedback (e.g. punishment) would promote ‘no-go’ learning. This was 

tested in patients with Parkinson’s disease using  a reinforcement learning task 

and indeed revealed that patients on dopaminergic medication were better at 

choosing the most rewarding stimulus (‘go’  learning from positive feedback) 
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and patients off medication were better at avoiding the least rewarding stimulus 

(‘no-go’  learning from negative feedback) (Frank et al., 2004).  

It is worth noting that the model described above does not disentangle action 

processing (go/no-go) from valence (win/lose). Further studies have explored 

this relationship using a task that orthogonalises action and valence (Guitart-

Masip et al., 2011; Guitart-Masip et al., 2012a) .   With regards to learning these 

action-valence contingencies, a striking asymmetry has been demonstrated 

whereby when participants are required to perform an action, they are better at 

learning to do this to obtain reward (‘go to win’, GW) than to avoid punishment 

(‘go to avoid loss’, GAL) (Guitart-Masip et al., 2012a). The opposite is seen 

when participants are required to inhibit an action in that they are better at 

learning to do this to avoid punishment (‘no-go to avoid loss’, NGAL) than to 

obtain a reward (‘no-go to win’, NGW). In these studies, GW and NGAL 

performance may represent Pavlovian biases in behaviour, whereas GAL and 

NGW require instrumental learning to overcome these biases (Guitart-Masip et 

al., 2012a). With regards to action anticipation, neuroimaging of this task 

revealed dissociable roles of the lateral and medial SN/VTA for representing 

action over valence and valence dependent on action respectively (Guitart-

Masip et al., 2011). Functional neuroimaging performed during the learning 

phase of this task also showed that the inferior frontal gyrus was required for 

instrumental learning (Guitart-Masip et al., 2012a).  

Dopaminergic activity has been inferred from fMRI studies showing activation in 

dopamine target regions such as the striatum using tasks that probe dopamine-

related behaviours, such as reinforcement learning. More recently studies have 

also reported midbrain activation in response to motivational and reward-
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predicting cues (Wittmann et al., 2005; Adcock et al., 2006) and novelty 

(Bunzeck and Duzel, 2006).  

 

2.1.1.4 Functional dopamine circuits: memory 

There is accumulating evidence for an influential model linking the VTA and 

hippocampus, with novelty, reward processing and long-term memory formation 

(Lisman and Grace, 2005) (Lisman et al., 2011). As illustrated in Figure 2, there 

is evidence that the CA1 region of the hippocampus detects novelty, perhaps by 

comparing predictions computed by CA3 to actual information from layer 3 of 

the entorhinal cortex.  These novelty signals are conveyed to the VTA by a 

polysynaptic pathway via the nucleus accumbens and ventral pallidum, forming 

the downward arc of this loop. Regarding the upward arc, there probably are 

direct dopamine projections from the SN and VTA to the hippocampus, whereby 

the anterior hippocampus receives projections from the VTA and the posterior 

hippocampus receives projections from both SNc (A9) and the VTA  (Scatton et 

al., 1980). Thus stimulation of this pathway by novel items may lead to 

dopamine release and long-term potentiation (LTP) in the hippocampus, 

resulting in protein synthesis and consolidation of these novel items in long-term 

memory. In this way, dopamine may act as a filter for information that enters 

long-term memory. Additional components of this circuit include a pathway from 

dorsal CA3 projecting to the VTA via the lateral septum, which has been shown 

to modulate reward-seeking behaviour (Luo et al., 2011).  
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Figure 2 Hippocampal-VTA loop links reward and novelty processing with long-term 

memory.  

Adapted from (Lisman et al., 2011) 
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2.1.2 Biochemistry of dopamine 

2.1.2.1 Dopamine synthesis  

Levodopa, derived from the substrate L-Tyrosine, is the amino acid precursor 

for the catecholamine dopamine. Dopamine itself is a precursor for two other 

catecholamines in the brain – noradrenaline and adrenaline. Dopamine is 

synthesized in nerve terminals and stored in presynaptic vesicles. The duration 

of action of dopamine depends partly on the amount released, partly on its 

removal from the synaptic cleft by dopamine transporters (DAT) and partly on 

the function of presynaptic autoreceptors which inhibit the release of dopamine 

when activated (Koller and Melamed, 2007). Dopamine metabolism is regulated 

by the enzymes monoamine oxidase (MAO) and catechol-O-methyltransferase 

(COMT).  

 

2.1.2.2 Pharmacological manipulation of dopamine 

Levodopa (L-DOPA) was introduced in the 1960s as a replacement therapy for 

Parkinson’s disease. Oral administration of L-DOPA, unlike dopamine, readily 

crosses the blood brain barrier and increases striatal dopamine levels (Koller 

and Rueda, 1998). It is administered with a peripheral aromatic-amino-acid de-

carboxylase inhibitor (AADI), carbidopa or benserazide, to reduce extracerebral 

degradation. L-DOPA has a half-life of approximately 60-90 minutes (Koller and 

Melamed, 2007) (Nutt, 2008). A common side-effect of L-DOPA is nausea and 

vomiting which is reduced by concurrent administration with AADIs and by pre-

administration of an anti-emetic such as the peripheral D2-antagnosist 

domperidone.  In my studies I used 187.5 mg of Madopar dispersible, which 
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contains 150mg of levodopa and 37.5mg of benserazide, administered 60-90 

minutes before behavioural testing.  

 

2.1.2.3 Non-linear dose-dependent effects of dopamine 

Since dopamine is implicated in a range of cognitive processes, a natural 

hypothesis to test is whether cognition can be improved by elevating dopamine 

levels. The results of such studies reveal a complex pattern, with some 

evidence that dopamine improves verbal learning (Knecht et al., 2004), motor 

memory (Floel et al., 2008), cognitive flexibility and working memory (Robbins 

and Arnsten, 2009) whereas other studies report a decline in learning and 

memory (Breitenstein et al., 2006) (Morcom et al., 2009). The reasons for this 

complexity are multifactorial and include: differences in baseline performance, 

differential changes in the underlying integrity of the dopamine system 

depending on the study cohort (e.g. Parkinson’s disease, young adults, older 

adults), different techniques used as a marker of the dopamine system (e.g. 

genetics, structural imaging, functional imaging), different modes of action of 

dopaminergic pharmacological manipulations on tonic and phasic dopamine 

levels, and non-linear dose-dependent effects of dopamine (see  (Cools and 

D'Esposito, 2011) for a review). These non-linear effects are characterised by 

an inverted ‘U-shape’ dose-dependent relationship between dopamine and 

cognition (see Figure 3 for a schematic diagram of this effect).  

Many studies have focussed on the effects of dopamine on working memory 

since there is a high concentration of dopamine receptors in the prefrontal 

cortex, a region of the brain that plays a critical role in working memory. One 
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way of exploring the non-linear effects of dopamine here is to compare  

performance on tasks tapping into different dopaminergic pathways in patients 

with Parkinson’s disease who predominantly lose dopamine projections from 

ventrolateral SN/VTA to dorsal striatum (Cools et al., 2001). Here, patients 

withdrawn from their dopamine medication were impaired on a task-set 

switching task, which depends on dorsal striatal dopamine, but performed better 

on a probabilistic learning task which required a ventral striatal circuit likely to 

be more intact in patients. Another approach has been to use baseline 

performance as a marker of starting dopamine levels. For example task 

performance in participants with a lower baseline working memory capacity can 

improve with dopamine, whereas performance deteriorates in those with higher 

baseline performance (Kimberg et al., 1997). A further approach is to use 

genotype as a marker of baseline dopamine levels. The gene catechol-O-

mehtyltransferase (COMT) breaks down dopamine, thus higher COMT activity 

is associated with lower dopamine levels. Individuals homozygous for the Val 

allele have higher COMT activity and thus lower dopamine levels, whereas the 

converse is true for individuals with the Met allele. Individuals homozygous for 

the Met allele respond differently to drugs manipulating dopamine levels in 

comparison to individuals homozygous for the Val allele  in line with non-linear 

effects of dopamine (Cools and D'Esposito, 2011).  
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Figure 3. Schematic of the inverted U-shape relationship between dopamine and 

cognitive function.  

A certain optimal (‘middle’) level of dopamine may boost cognitive function but too 

little (‘low’) or too much (‘high’) may be ineffective or detrimental respectively. 

 

Possible dose-dependent effects of dopamine were elicited in a study showing 

enhanced verbal learning following administration of the dopamine precursor 

levodopa (L-DOPA), whereby learning was higher in participants of lower body-

weight who effectively received higher relative doses of the drug (Knecht et al., 

2004). A more direct test of the non-linear dose-dependent effects of dopamine 

was examined using a range of doses of L-DOPA in combination with 

transcranial direct current stimulation (Monte-Silva et al., 2010). Here, low and 

high doses impaired motor plasticity whereas the medium dosage prolonged 

plasticity. Similar findings relating to a more focal type of plasticity have been 

found in a study using transcranial magnetic stimulation 

(Thirugnanasambandam et al., 2011).  

This non-linear ‘inverted U-shape’ relationship between dopamine and cognition 

provides an explanation as to why studies show both improvements and 
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impairments of cognitive function when dopamine levels are enhanced and why 

the effects may differ across populations (e.g. young adults versus healthy older 

adults versus patients with Parkinson’s disease). Importantly, this descriptive 

inverted U-shape account of dopamine does not shed light on the underlying 

physiological reasons as to why excessive levels of dopamine would have 

unfavourable consequences. This may differ depending on which brain regions 

are being tested, due to different regional concentrations of D1- and D2-like 

receptors which will respond differently to enhanced dopamine levels. Also, 

pharmacological agents differ with respect to their effect on tonic and phasic 

dopamine transmission which may have differential affects on behaviour. For 

example, the dopamine precursor levodopa, which increases presynaptic 

dopamine availability and thus modifies tonic and phasic dopamine 

transmission, improves learning in younger adults (Knecht et al., 2004). In 

contrast, administration of a dopamine agonist which acts on post-synaptic 

dopamine receptors and thus affects tonic dopamine transmission, impairs 

learning in younger adults (Breitenstein et al., 2006) and enhances forgetting 

effects in the medial temporal lobes in older adults (Morcom et al., 2009). 

An important outstanding question is whether non-linear effects of dopamine 

extend to cognitive domains other than working memory. Simulated data from a 

computational model suggest this to be the case (Li et al., 2005). This is based 

on an important theoretical account of impaired dopaminergic modulation, for 

example in old age, resulting in less distinct neural representations by altering 

the signal-to-noise ratio of  neural processing (Li and Sikström, 2002).  We 

provide empirical data for a non-linear dose-dependent effect of dopamine on 
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episodic memory in Chapter 4 and discuss the possible underlying 

neurobiological mechanisms.  

 

 

2.1.3 Functions of dopamine 

2.1.3.1 Reinforcement learning 

A dominant theory in neuroscience is the role of dopamine in reward-

processing. The seminal studies of Schultz et al. in monkeys describe how 

dopamine neurons in the SN/VTA show phasic activations to unexpected 

rewards and reward-predicting cues and dips in firing when rewards are omitted 

(Schultz et al., 1997). Such observations can be characterised in terms of 

computational models of reinforcement learning, where learning occurs when 

outcomes violate expectations (Rescorla and Wagner, 1972). This difference 

between expected and actual outcomes is termed the prediction error. 

Prediction errors can be calculated on a trial by trial basis using the following 

classical reinforcement learning model:  

                          

                  
 

Here      is the reward prediction error which represents the difference 

between the actual reward      and expected reward         . α denotes the 

subjects’ learning rate. A Softmax rule is typically used to determine the 

probability of choices, in which the inverse temperature parameter β indicates 

how deterministic choices are:  
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In this model, the prediction error acts as a teaching signal which updates the 

expected value on each subsequent trial; when there is no difference between 

the actual and expected outcome, that is when the prediction error is zero, 

learning has occurred. In the studies by Schultz et al., a key finding was that 

firing of dopamine neurons shifted from the time of reward presentation to the 

time of presentation of the conditioned (i.e. reward-predicting) stimulus over the 

course of learning, which has been formalised in a ‘temporal difference’ learning 

model (Sutton and Barton, 1998).  

Reinforcement learning models can be used in humans in combination with 

fMRI to examine target projection areas of dopamine neurons for prediction 

error signals. A temporal difference learning-like prediction error signal  has 

been demonstrated in humans in the ventral striatum  (O'Doherty et al., 2003) 

(O'Doherty et al., 2004). Furthermore, dissociation between prediction error 

signals reported by the ventral and dorsal striatum have been described using 

the ‘actor-critic’ model. In this model, the actor component selects actions 

based on modifying stimulus-responses relationships such that actions 

associated with rewards are strengthened, whereas the critic estimates a 

temporal difference error which is used to update expected values (Sutton and 

Barton, 1998). Accordingly, in humans undergoing fMRI, ventral striatal 

(nucleus accumbens) activity correlated with prediction errors during both an 

instrumental and Pavlovian task corresponding with the critic component of the 

model, and dorsal striatal (caudate) activity correlated with prediction errors in 
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the instrumental versus the Pavlovian task supporting its role as the actor 

(O'Doherty et al., 2004).   

This temporal difference reinforcement learning model is described as a ‘model-

free’ system that underlies habitual control, where behaviour depends on 

previous reinforcement of actions. In contrast a ‘model-based’ reinforcement 

learning system has been proposed to underlie goal-directed learning in which 

there is a representation of the overall task structure (Daw et al., 2011). 

Prefrontal cortex and ventral striatum are thought to serve the model-based and 

model-free systems respectively although there is evidence for an overlap 

between the neural substrates underlying these two systems (Daw et al., 2005; 

Daw et al., 2011). It has recently been shown that older adults underperform on 

model-free tasks and outperform on model-based tasks in comparison to 

younger adults (Worthy et al., 2011).  

 

2.1.3.2 Novelty and exploration 

Reinforcement learning models can be extended to understand the ‘explore-

exploit’ dilemma, in which an organism must make decisions that balance 

maximising rewards (‘exploit’) and learning new information that may lead to 

future rewards (‘explore’).  So-called ‘bandit’ tasks can be used to assess 

exploration and exploitation, whereby participants must choose from different 

slot machines (‘bandits’) and choose the optimal bandit to obtain reward 

(exploit). By varying the underlying probability or magnitude of reward 

associated with each bandit, optimal performance requires a combination of 

exploration and exploitation. In one study, humans performing such a task 
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showed striatal and ventromedial prefrontal cortex activation for exploitation and 

frontopolar cortex and intraparietal sulcus activity for exploration (Daw et al., 

2006). This explore-exploit trade-off may be linked to motivation and dopamine. 

Exploration allows an organism to encounter novel and potentially rewarding 

stimuli. Computationally, this role of dopamine signalling novelty to encourage 

exploration is termed the ‘exploration bonus’ (Kakade and Dayan, 2002). In 

humans, novelty has been shown to enhance exploration in a reinforcement 

learning task and such a novelty bonus was associated with ventral striatal 

activation, similar to reward prediction error signalling (Wittmann et al., 2008). 

Novelty signalling in contrast to other salient features such as negativity or 

rareness has been identified in the SN/VTA (Bunzeck and Duzel, 2006), more 

specifically in a rostral subregion of the medial SN/VTA that differed from a 

more caudal subregion of the SN/VTA associated with reward anticipation 

(Krebs et al., 2011), suggesting some functional segregation underlies these 

processes.  

Taken together, converging evidence suggest dopamine has a fundamental role 

in motivating behaviours, in the context of reward, novelty, action and arbitrating 

between exploratory and exploitative behaviour. A framework linking such 

behaviours has been proposed: NOvelty-related Motivation of Anticipation and 

exploration by Dopamine (NOMAD) (Duzel et al., 2009a). The NOMAD model 

has two important consequences for the research presented here. First, it 

provides a link between the motivational properties of dopamine and long-term 

memory formation in the hippocampus which could serve to guide future 

successful behaviour (Shohamy and Adcock, 2010).  Second, the model makes 

the prediction that age-related dopamine decline will impact upon motivational 
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behaviours which may relate to learning and memory impairments in older 

adults.  

 

2.1.3.3 Memory consolidation 

Donald Hebb proposed the theory that the synaptic connection between two cell 

groups will be strengthened if the cells are active together (Hebb, 1949), 

encapsulated in the adage that ‘cells that fire together wire together’. This 

influential theory informs studies of the cellular mechanisms of learning and 

memory. Experimental evidence for synaptic plasticity from studies on long-term 

potentiation (LTP) and long-term depression (LTD) provide support for Hebb’s 

rule. LTP has been defined as ‘an activity-dependent increase in synaptic 

strength’ (Bliss and Gardner-Medwin, 1973). In the hippocampus, it has been 

suggested that LTP is the model underlying cellular consolidation and 

stabilisation of memories. LTP can be divided into an early phase (protein 

synthesis-independent), lasting less than 3 hours, and a late phase (protein 

synthesis-dependent) occurring 4-6 hours post-encoding (Frey and Morris, 

1997). Dopamine is critical for the late-phase of LTP (O'Carroll et al., 2006) and 

for the persistence of memories over longer but not shorter periods (Bethus et 

al., 2010). The synaptic tagging and capture hypothesis provides a model for 

the role of late-LTP in the cellular consolidation of memories (Frey and Morris, 

1997) (Redondo and Morris, 2011). This is a dual-step process in which early-

LTP, induced by coactivation of AMPA and NMDA receptors by glutamate, and 

the setting of a synaptic ‘tag’ establishes the potential for a long-term memory. 

In the other step, a series of other biochemical interactions convert this synaptic 

potentiation (“tag”) into a stabilised trace at those synapses at which tags have 
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been set (Wang and Morris, 2010). These biochemical processes include 

calcium entry into the post-synaptic neuron with subsequent activation of cyclic 

adenosine monophosphate (cAMP) which activates further molecules leading to 

an increase in the number of post-synpatic AMPA receptors and so increasing 

its response to subsequent stimulation. cAMP also activates other molecules 

that leads to protein synthesis. Thus both a ‘tag’ and so-called plasticity related 

proteins are required to convert early-LTP to late-LTP. Dopamine is required for 

the late-phase of LTP to enable hippocampal protein synthesis (Smith et al., 

2005; Bethus et al., 2010). Bethus et al. demonstrated the impact of dopamine 

on memory persistence in a series of elegant experiments using a hippocampal-

dependent paradigm which used tests at different time-points to dissociate 

between encoding, storage and retrieval of episodic-like memory (Bethus et al., 

2010). In these experiments, rats were taught paired flavour-location 

associates. New information was then presented in the form of novel pairings 

together with an infusion of either a D1/D5 dopamine antagonist into the 

hippocampus or a placebo. Memory for these novel pairings was tested after a 

short (30 mins) and long (24 hours) delay. The authors found that memory 

tested after a short interval remained intact whereas memory tested after a 

longer delay was impaired, suggesting that dopamine is necessary when 

encoding new events in order for memory for those events to persist long-term 

but not necessary for encoding per se. Furthermore, the authors were able to 

exclude the possibility that the results were confounded by different state-

dependent effects during retrieval after short and long delays by comparing the 

effects of the dopamine antagonist and saline administration at encoding only 

and at both encoding and retrieval.   
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An overall framework incorporating the above ideas was recently proposed as 

an update to Hebb’s rule, providing key evidence for the critical role of 

dopamine in late-LTP and thus episodic memory consolidation (Lisman et al., 

2011) . Such a framework provides a bridge between the fields of reward, 

motivation and novelty processing, and episodic memory via dopaminergic 

neuromodulation.  

 

2.2. Aging 

The UK Office for National Statistics report that as birth and death rates have 

fallen over the past 150 years, the size of our elderly population has increased 

(http://www.statistics.gov.uk/hub/population/ageing/older-people). By 2010, 17% 

of the population was aged >65 years and this is projected to expand to 23% by 

2035. With increasing age comes a multitude of changes in cognition, brain 

structure and function which I will briefly describe here. 

 

2.2.1 Age-related changes in cognition 

2.2.1.1 Long-term memory 

The most common and well-recognised cognitive impairment in aging is a 

decline in episodic memory (Light, 1991). Episodic memories are both full of 

contextual details and are relational, that is they incorporate the ‘what’, ‘where’ 

and ‘when’ aspects of an event (Clayton and Dickinson, 1998).  Episodic 

memory can be viewed as having three key stages: encoding, storage and 

retrieval. Encoding is defined as ‘the set of processes involved in transforming 

http://www.statistics.gov.uk/hub/population/ageing/older-people
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external events and internal thoughts into both temporary and long-lasting 

neural representations’ (Craik and Rose, 2012). Storage entails structural and 

neurobiological changes which occur after acquiring new information in order to 

stabilise memories, underpinned by the process of consolidation. Consolidation, 

defined as a ‘time-dependent stabilisation process leading to the permanent 

storage of newly acquired memories’ (Nader and Hardt, 2009), comprises 

cellular and systems-level processes reflecting molecular changes over a 

shorter time frame and interplay between the hippocampus and neocortex over 

a longer time period respectively (McKenzie and Eichenbaum, 2011). A further 

extension is the concept of reconsolidation, whereby memories become labile 

following retrieval and thus require further consolidation (‘reconsolidation’) to 

become stabilised again (Nader and Hardt, 2009).  

Studies have suggested deficits in older adults at all of these stages. However, 

the majority of studies to date have focussed on encoding and retrieval deficits 

since storage has no easily testable behavioural correlate (Craik and Rose, 

2012). Studies are required in which memory performance is tested after 

various time intervals to explore consolidation deficits. Encoding deficits have 

been supported by differences in functional activation between young and older 

adults, such as reduced left prefrontal cortex and medial temporal lobe activity 

at encoding (Craik and Rose, 2012). Interestingly, older adults who perform as 

well as younger adults on memory tasks show bilateral prefrontal cortex 

activation at encoding, suggesting that the loss of lateralisation with increasing 

age may serve as a compensatory mechanism for asymmetrical age-related 

structural and functional changes (Cabeza et al., 2002) (Buckner, 2004).  
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Older adults are generally thought to have greater impairment of recollection 

abilities with a relative sparing of familiarity (Yonelinas, 2002), studied using the 

remember/know procedure (Tulving, 1985). Here, remember responses reflect 

hippocampal-dependent episodic memory. This may be because older adults 

encode information less deeply with less contextual information resulting in less 

distinctive memory representations (Craik and Rose, 2012). This links in with 

computational data suggesting the decline in neural representations is 

associated with the age-dependent loss of dopamine (Li and Sikström, 2002). 

However deficits in familiarity judgements have also been identified in older 

adults as well as higher rates of false alarms (incorrect ‘old’ judgements for new 

items) (Duarte et al., 2010). In this study, dorsomedial and inferior frontal 

activations mediated age-related familiarity deficits, in keeping with known 

frontal lobe changes with age.  

 

2.2.1.2 Reward processing  

Reinforcement learning (learning through trial and error to maximise rewards) is 

affected by the aging process. Older adults are slower at learning stimulus-

responses associations (Mell et al., 2009; Mohr et al., 2010) and exhibit valence 

asymmetries such as better learning from negative feedback (Frank and Kong, 

2008) and impaired learning from positive feedback (Mell et al., 2005). ‘Win-

stay’ behaviour (choosing the same stimulus again after it has delivered a 

rewarding outcome) reduces with increasing age, suggesting reduced trial-by-

trial learning from rewards (Frank and Kong, 2008). Age-related neural 

differences in reward based learning have also been shown whereby older 

adults have absent mesolimbic activation to reward-predicting cues, but intact 
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activation for reward feedback which may result from reduced dopamine 

causing a reduction in the ability to estimate rewards (Schott et al., 2007).  

Older adults performing a financial risk task show increased temporal variability 

in the nucleus accumbens, which was associated with increased risk-seeking 

mistakes (Samanez-Larkin et al., 2010). This measure of temporal variability 

may reflect noisier rather than reduced processing in the nucleus accumbens. 

Together, these findings suggest that although outcome representations may be 

maintained, older adults are unable to use this feedback to make optimal 

decisions. Indeed in a study in which older adults were presented with expected 

value information, decision-making improved to match that of younger adults 

(Samanez-Larkin et al., 2011).  Age-related decline of the  structural integrity of 

white matter pathways from dorso-medial thalamus to  medial prefrontal cortex, 

and medial prefrontal cortex to nucleus accumbens, indexed using DTI (mean 

fractional anisotropy values of tracts), have been linked to worse reward-

learning (Samanez-Larkin et al., 2012), suggesting that variability in anatomical 

connectivity between these regions as a function of age mediates reward 

processing. We build on this body of evidence of impaired probabilistic reward 

learning in old age in Chapter 5 by analysing the effect of enhancing dopamine 

levels on components of the prediction error signal.  

2.2.1.3 Valence processing   

In contrast to reinforcement learning studies, a different asymmetry when 

processing positive and negative stimuli independent of probabilistic learning 

has been described. Here, older adults tend to display a ‘positivity bias’, which 

is a greater sensitivity to positive rather than negative stimuli (Mather and 

Carstensen, 2005). Older adults remember faces displaying positive emotions 
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more than negative emotions (Mather and Carstensen, 2003), remember 

positive images more than negative images  (Mather and Carstensen, 2005), 

have less rich  autobiographical memory for negative events (Comblain et al., 

2005) and experience less negative arousal when anticipating monetary loss in 

comparison to younger adults (Samanez-Larkin et al., 2007). Samanez-Larkin 

et al., (2007) performed a study in which older adults underwent functional MRI 

whilst performing an incentive processing task called the monetary incentive 

delay task. In this task, subjects are shown cues which indicate whether they 

will win or avoid losing money if they respond quickly enough to a target. Neural 

activation in older adults differed from younger adults for loss anticipation 

(reduced striatal and insular activation) whereas both groups showed similar 

activation patterns for gain anticipation, identifying an age-related neural basis 

for this asymmetry in valence processing (Samanez-Larkin et al., 2007). 

Brassen et al., (2012) studied neural responses to regret in young and healthy 

older adults, and older adults with depression (Brassen et al., 2012). 

Participants performed a task in which successive boxes could be opened 

revealing monetary gain unless a ‘devil’ was encountered resulting in a loss of 

winnings. Participants were shown how much more they could have gained if 

they stopped early thus providing the opportunity to study missed chances (i.e. 

regret). Healthy older adults differed from young adults and old adults with 

depression by showing increased anterior cingulate activation (ACC) for missed 

opportunities than wins and increased ventral striatal activity for non-optimal 

gains compared to actual losses. Behaviourally, healthy older adults did not 

show subsequent risk-taking behaviour after missed chances whereas younger 

and older depressed adults did. These findings suggest that healthy older adults 
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have reduced neural responses to regret by employing cognitive control 

strategies. ACC activity has also been linked to greater emotional stability and 

processing of positive information in old age (Brassen et al., 2011).      

This apparent paradox in older age between studies of reinforcement learning 

and valence processing showing biases towards negative and positive stimuli 

respectively has been raised in a recent review (Eppinger et al., 2011). Here the 

authors suggest that in the context of reinforcement learning when the outcome 

is probabilistic and important for guiding subsequent behaviour, older adults are 

more sensitive to negative or punishing outcomes. In contrast, studies in which 

the outcome does not affect behaviour, for example in the monetary incentive 

delay task described above, or in psychosocial studies examining emotional 

processing, older adults tend to place greater emphasis on positive outcomes. 

The reasons underlying these differences in the effects of valence remain 

unknown.  

An interesting consideration is whether greater emotional regulation with 

increasing age is a positive phenomenon whereby older adults have additional 

resources to employ during emotional processing, as the socioemotional 

selectivity theory would suggest, or rather a negative ‘side-effect’ of age-related 

neurodegeneration.  The greater activation in the ACC identified in the 

aforementioned studies would support the former hypothesis. An extensive 

body of literature indicates the ACC plays a critical role at the cognitive-

emotional interface (for reviews see (Bush et al., 2000) and (Ochsner and 

Gross, 2005)) and encodes an age by valence interaction during socio-

emotional tasks (Leclerc and Kensinger, 2008). Previous studies also argue 

against the emergence of a positivity bias as a consequence of age-related 
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neural degeneration, since this bias can be minimised in older adults by 

modifying task parameters (for a review see (Samanez-Larkin and Carstensen, 

2011)). This debate assumes importance when considering the concept of 

successful aging. The term successful aging relates to the phenomenon of 

greater heterogeneity amongst older individuals which in turn influences 

behaviour (Buckner, 2004), such that a subset of older adults have less 

impairments in physical and mental health than the usual aging process entails 

(Rowe and Kahn, 1987). If greater emotional regulation is related to greater 

well-being and health in old age and the underlying mechanisms and direction 

of effect can be elucidated, this may be harnessed in order to promote 

successful aging.  

 

2.2.2 Age-related structural brain changes 

Gross changes in the elderly brain include reduced brain volume and weight, 

enlargement of the ventricles and expansion of the sulci (Raz and Rodrigue, 

2006). The trajectory of change over time varies between different brain 

regions. Regional reduction in volume is found predominantly in the prefrontal 

cortex (PFC) and medial temporal lobe structures with relatively sparing of other 

regions such as occipital cortex (Hedden and Gabrieli, 2004). Age-related 

volume reduction has also been identified in the cingulate sulci (Good et al., 

2001), amygdala and cerebellum (Raz and Rodrigue, 2006).  Striatal volume 

also decreases with age, with a greater decline in the caudate and putamen 

than the globus pallidus (Raz et al., 2003).  
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Volumetric MRI studies demonstrate a decline in hippocampal size with age in 

the region of 2-3% per decade, increasing above the age of 70 years (Hedden 

and Gabrieli, 2004). Interestingly, one study found subiculum atrophy in healthy 

older subjects versus CA1 atrophy in patients with Alzheimer’s disease, 

although the authors note their study may have been at risk of bias due to its 

cross-sectional design plus the inclusion of only a small number of very elderly 

subjects (Chételat et al., 2008). The relationship between hippocampal size and 

memory performance in healthy aging is inconsistent, in contrast to the positive 

correlation between hippocampal size and memory in patients with Alzheimer’s 

disease (Van Petten, 2004). This may partly be due to the paucity of 

longitudinal studies in normal aging although even in such studies, the results 

are conflicting (Raz and Rodrigue, 2006).  

Gross white matter volume stays relatively stable across the lifespan but 

microstructural white matter changes occur. This has been inferred from 

neuroimaging techniques such as diffusion tensor imaging (DTI), which 

provides a semi-quantitative measure of the integrity of white matter tracts. DTI 

reveals a general pattern of greater decrease of fibre integrity in the frontal 

white matter compared to temporal, parietal and occipital white matter (Raz and 

Rodrigue, 2006) (Head et al., 2004).  

2.2.3 Interpretation of functional brain activity in old age 

A key feature of aging research is recognising and understanding the increasing 

variability in performance with age, which is presumed to be partly due to the 

diversity of experiences between individuals (Carstensen, 2006) alongside 

reorganisation of brain pathways and recruitment patterns (Buckner, 2004), and 
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the interaction between these external and internal factors. More generally, this 

links to the concept of ‘successful’ and normal or ‘usual’ aging, whereby usual 

aging entails various declines in cognition but a subgroup of individuals exist 

who are less affected (Rowe and Kahn, 1987). Individuals who age successfully 

may have greater ‘cognitive reserve’, that is greater cognitive processing 

resources allowing individuals to cope with age-related impairments (Buckner, 

2004).  More recently the idea of ‘brain maintenance’ has been proposed, which 

suggests that preserved brain structure and function may underlie successful 

cognitive performance (Nyberg et al., 2012) (Düzel et al., 2011). The 

importance of this idea is that identifying mechanisms which delay or prevent 

the onset of pathology in the brain could predict successful aging.  This also has 

implications regarding training programmes in old age.  

Older adults often show decreased functional brain activity in comparison to 

younger individuals but paradoxically may also show increased activation. 

Whilst a decrease in activity may represent an age-related deficit (that is, under-

recruitment of a brain region associated with poor performance), increases in 

activity can be interpreted as either compensation or  impairment, depending on 

the associated behaviour (Reuter-Lorenz and Lustig, 2005).  Compensation is 

inferred in older adults showing high levels of performance, or similar 

performance to younger individuals. This may explain why some older adults 

with high performance levels have less neural asymmetry (Cabeza et al., 2002). 

For example, left-frontal activity in younger adults is related to verbal learning 

whereas older adults are reported to show bilateral activation (Morcom et al., 

2003). Impairment is suggested when increased activity correlates with poor 
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performance, where greater activity is thought to reflect less efficient neural 

processing and dedifferentiation.  

It is important to acknowledge that physiological changes, such as changes in 

cerebral blood flow and the cerebral metabolic rate of oxygen consumption 

(Small et al., 2011), in the aging brain may account for some of the age-related 

differences in functional MRI activity. Thus the comparison of BOLD signal 

changes between younger and older adults can be problematic (Ances et al., 

2009). An advantage of the fMRI studies in this thesis is that we used a within-

subject design to determine the effects of pharmacological manipulation, so 

taking into account inter-individual variability in neurovascular coupling. We also 

screened participants for a history of cerebrovascular disease and vascular risk 

factors, since conditions such as diabetes and hypertension could also affect 

neurovascular coupling and the BOLD signal (D'Esposito et al., 2003).  

 

2.2.4 Age-related changes in dopamine 

Autopsy data has shown there is a decline in post-synaptic dopamine (D1 and 

D2) receptors with age of approximately 10% per decade as well as loss of the 

presynaptic dopamine transporter, DAT (Bäckman et al., 2006). There is loss of 

both striatal and extrastriatal dopamine receptors with age, demonstrated both 

in post-mortem studies and with PET (Inoue et al., 2001). There is a 5-10% loss 

per decade of post-synaptic D1 and D2 receptors across the brain with 

advancing age, with a greater rate of loss of D2 receptors from the frontal 

cortex, and a comparable loss of presynaptic DAT (Kaasinen and Rinne, 

2002).There is an average loss of dopaminergic neurones in the SN of 4.7% per 
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decade (Fearnley and Lees, 1991) which correlates with a decrease in striatal 

dopamine availability (Düzel et al., 2008). Using PET, age-related loss of 

dopamine receptors has been associated with hypometabolism particularly in 

frontal and cingulate regions (Volkow et al., 2000) and D2 binding in the 

striatum predicts cognitive performance (Bäckman et al., 2000).  Increased 

segregation between dopaminergic pathways in older adults has also been 

described, as determined by PET D1 binding potentials in key regions of the 

nigrostriatal, mesolimbic and mesocortical pathways, relating to differences in 

the speed of task performance (Rieckmann et al., 2011).  

With advancing age, there is a greater loss of dopamine neurons from the 

dorsal tier than medial ventral than lateral ventral tier of the SN/VTA. This 

pattern of loss differs from Parkinson’s disease (Fearnley and Lees, 1991). DTI 

data complements this histological data by showing changes in DTI metrics 

(reduced fractional anisotropy, increased radial diffusivity) in the dorsal but not 

ventral SN/VTA in healthy older adults (Vaillancourt et al., 2012). Figure 4 

summarises these changes.   
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Figure 4. Converging evidence of dopamine loss in older age.  

(a) Functional imaging using positron emission tomography (PET) shows widespread 

loss of dopamine receptors with age. Image shows relative uptake of the D2-like 

receptor ligand [11C]FLB 457. 

(b) There is a typical pattern of loss of dopamine neurons in aging, with greater age-

related loss from the dorsal than ventral substantia nigra, evidenced by structural 

diffusion tensor imaging (DTI) and histological data.   

(c) This pattern of dopamine loss as a function of aging (c, top) also distinguishes 

healthy older adults from patients with Parkinson’s disease which is a disease 

characterised by marked dopamine loss but more so from the ventral than dorsal 

substantia nigra (c, bottom).  
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a: adapted from Kaasinen et al (2002); b: adapted from Vaillancourt et al (2012); c: 

adapted from Fearnley and Lees (1991). 

 

2.3. Outstanding questions 
The studies presented in this thesis build on this review of the literature and 

present a multi-modal approach to exploring learning and memory in older age 

and how this relates to changes in dopamine, brain structure and brain function.   

These studies are based on the following questions: 

1. Given that both memory decline  (Section 2.2.1.1) and dopamine decline 

(Section 2.2.4) are part of the normal aging process, a key outstanding question 

is whether enhancing dopamine levels may improve episodic memory in older 

adults. As outlined in Section 2.1.3.3, empirical evidence for the role of 

dopamine in memory consolidation is largely based on animal literature, in 

which only episodic-like memory paradigms can be used. In Chapter 4 I study 

the role of dopamine in human episodic memory consolidation in a 

pharmacological study in healthy older adults performing a functional MRI 

episodic memory task.   

 

2. As discussed in Section 2.2.1.2, the precise nature of the deficit underlying 

abnormal reward processing in old age remains unclear. In Chapter 5 I use a 

reinforcement learning model-based approach with pharmacological 

manipulation to better characterise the reward-based learning deficit in old age 

and the role of dopamine. I also used DTI in this study to explore individual 

differences in the relationship between nigro-striatal structural connectivity and 
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functional reward signalling in the striatum. In Chapter 6 I use a different 

structural imaging technique (MT imaging) to relate structural changes in the 

dopaminergic midbrain to the flexibility of reward-based learning.  

 

3. Section 2.2.1.3 reviews the literature suggesting that cognitive processes in 

old age may be modulated by a ‘positivity bias’. Processes that bias cognition 

may impact upon decision-making in old age. It has also been suggested that a 

positivity bias is linked to better emotional regulation and successful aging. I 

therefore explore how age influences the bias for updating beliefs about the 

future following desirable and undesirable information, and the associated 

structural neural correlates in Chapter 7.   
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Chapter 3  

Methods  

Magnetic resonance imaging (MRI) is a powerful non-invasive tool for exploring 

the neural correlates of human behaviour. This chapter outlines the principles 

underlying structural and functional MRI which are the neuroimaging tools I 

used in the studies presented in this thesis. In addition, studying healthy aging 

requires a broad cognitive screening process. In this chapter I therefore also 

include an overview of the neuropsychological tests I administered to elderly 

participants.  

 

3.1. Principles of MRI 

3.1.1 Nuclear magnetism 

Our body tissue is composed of approximately 80% water consisting of 

hydrogen atoms. The nucleus of the hydrogen atom contains a single proton 

which possesses a fundamental property known as spin. When protons are 

placed in a magnetic field (B0) the axes of their spins aligns with the static 

magnetic field. In a static magnetic field, an MR signal cannot be detected. 

However if a strong radiofrequency signal (B1) is applied at right angles to the 

static magnetic field, this excites some of the nuclear spins into a higher energy 

spin state (spin flip) such that the axis of the proton spin now precesses about 
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the B1 field. The frequency of the precession of the proton spins is proportional 

to the strength of the magnetic field, known as Larmor frequency. When the 

radiofrequency signal is switched off there is a relaxation of spins from the 

higher energy state to the lower energy state which produces a measurable 

amount of radiofrequency signal at the Larmor frequency associated with that 

field and forms the basis of MRI (Huettel, 2004). Proton relaxation occurs 

longitudinally (T1 relaxation) and transversely (T2 relaxation), both of which 

differ depending on tissue type resulting in different MRI contrasts from grey 

and white matter.  T1 provides better contrast between tissue types and is 

commonly used for structural images. T2 and T2* decay are quicker and are 

therefore used for functional MRI. T2* is the apparent transverse relaxation 

which is a combination of T2 and inhomogeneities in the magnetic field.  

Following proton excitation, additional magnetic fields containing spatial 

gradients are applied to determine the location of proton spins and thus localise 

the MR signal in 3D. These fields are aligned orthogonally on the X axis (left-to-

right), Y axis (posterior-to-anterior) and Z axis (superior-to-inferior) and are 

known as the frequency-encoding or readout gradient, phase-encoding gradient 

and slice-select gradient respectively.   The signal emitted by relaxing protons is 

then detected by a radiofrequency receiver coil as a function of time in k-space, 

which may then be converted to signal strength as a function of frequency using 

a Fourier transformation to form an image (Huettel, 2004).  
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3.1.2 Contrasts 

Tissues vary in their proton relaxation rates (T1 and T2 values). MRI scanning 

parameters can be optimised to generate images where the contrast between 

tissues emphasises the differences in the T1 or T2 values depending on the 

type of data required. Typically the repetition time (TR), the amount of time 

between successive pulses applied to the same pulse, and the echo time (TE), 

the time interval between an excitation pulse and measurement of the signal, 

can be altered. T1-weighted images (i.e. images sensitive to the relative T1 

values of tissues) are acquired using a pulse sequence with short TE (<30ms) 

and intermediate TR (<500ms). T2-weighted and T2*-weighted images (i.e. 

images sensitive to the relative T2 and T2* values of tissues respectively) are 

generated from pulse sequences with an intermediate TE (>80ms) and longer 

TR (>2000ms) (Huettel, 2004). Gradient-echo sequences are most commonly 

used to generate T2*-weighted images. For functional MRI, T2*-weighted 

images need to be acquired more rapidly than for structural neuroimaging in 

order to reflect physiological changes in the brain and generally have a TR of 1-

3s. A technique known as echo-planar imaging is used for such purposes.  

Motion-weighted contrasts such as diffusion-weighted images can also be 

acquired which exploit the direction of movement of water molecules within 

tissues. 

 

3.2. BOLD fMRI 

Functional MRI measures the blood oxygenation level-dependent (BOLD) signal 

which reflects the changes in magnetic properties of haemoglobin. Oxygen is 
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carried by haemoglobin in the blood. When haemoglobin is oxygenated 

(oxyhaemoglobin) it is diamagnetic and does not cause local inhomogeneities in 

the magnetic field.  When haemoglobin is not oxygenated (deoxyhaemoglobin) 

it is paramagnetic due to the presence of unbound-iron containing haem-groups 

and thus causes local inhomogeneities. These inhomogeneities cause 

dephasing of protons, whereby higher levels of deoxyhaemoglobin lower the 

T2* signal whereas lower levels of deoxyhaemoglobin increase the T2* signal. 

Importantly, levels of deoxyhaemoglobin are influenced by different factors 

including the cerebral metabolic rate of oxygen, cerebral blood flow and 

cerebral blood volume (Huettel, 2004). Changes in blood oxygenation reflect 

changes in brain activity by neurons requiring oxygen (Heeger and Ress, 2002). 

The time-course of the MRI BOLD signal in response to increased neuronal 

activity is known as the haemodynamic response function (HRF) and is well 

characterised (Heeger and Ress, 2002). The HRF shows an initial dip due to 

oxygen consumption, followed by a large increase due to the oversupply of 

oxygenated blood (peak 4-6 seconds after stimulus onset) and then another dip 

below baseline whereby cerebral blood flow returns to normal before cerebral 

blood volume causing a relative increase in deoxyhaemoglobin (Figure 5). 

Hence the BOLD signal is an indirect measurement of oxygen usage by the 

brain which can be measured using gradient-echo sequences employed in fMRI 

(Ogawa et al., 1990; Ogawa et al., 1992). The increase in the HRF reflects the 

relative decrease of deoxyhaemoglobin in relation to oxyhaemoglobin as a 

result of increased blood flow. It has been suggested that the initial dip in the 

HRF may be a better marker of neuronal activity since it reflects changes in 

neuronal oxygen consumption prior to changes in  cerebral blood flow, but this 
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remains a matter of debate since the ‘dip’ has not been demonstrated 

consistently across fMRI studies (Heeger and Ress, 2002).  

Which component of neuronal activity elicits the BOLD response is unclear. 

There remains debate as to whether BOLD reflects changes in local field 

potentials, that is, synchronized dendritic currents  averaged over a large 

volume of tissue reflecting inputs to an area, or neuronal  firing reflecting 

outputs, although there is some evidence that BOLD activity is more tightly 

coupled to the former (Logothetis et al., 2001; Heeger and Ress, 2002).  
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Figure 5. The typical BOLD response.  

Y-axis represents percentage signal change. Adapted from Henson 2008  

(http://imaging.mrc-cbu.cam.ac.uk/imaging/DesignEfficiency).  

  

http://imaging.mrc-cbu.cam.ac.uk/imaging/DesignEfficiency
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3.3. fMRI preprocessing 

Preprocessing of functional images is performed before statistical analysis to 

reduce variability in the data not associated with the experimental task. The 

standard preprocessing steps used in the fMRI experiments in this thesis are 

described below (summarised in Figure 6) and have been implemented using 

SPM8 (Wellcome Trust Centre for Neuroimaging, London, 

www.fil.ion.ucl.ac.uk/spm). Note the initial six images acquired during each fMRI 

time series have been discarded in keeping with standard practice to allow 

longitudinal magnetization to reach a steady state.   

 

 

Figure 6. fMRI preprocessing.  

Outline of the stages of processing beginning with raw MRI data and ending with a 

statistical parametric map. Reproduced from (Flandin and Friston, 2008).  
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3.3.1 Realignment and unwarping  

A large source of variance in fMRI data comes from head movement and 

therefore realignment is performed to align a time-series of images acquired 

from the same subject so that the brain is in the same position in every image. 

The initial step of registration determines the six parameters of the rigid body 

transformation (three translations and three rotations) between each source 

image and a reference image, which is the first image in the acquired time-

series, followed by transformation. Inhomogeneities in the magnetic field distort 

images in a non-linear manner which interacts with subject movement within the 

scanner. Thus a further step of unwarping is performed to correct for non-rigid 

deformations. This requires a field map image to be collected which explicitly 

measures the magnetic field inhomogeneities and is used to calculate a static 

deformation field (i.e. local deflections throughout the magnetic field). 

Unwarping then uses a forward model to estimate and correct for changes in 

the deformation field due to subject movement at each time point (Andersson et 

al., 2001).  

 

3.3.2 Normalisation  

To align images between subjects to a standard space, normalisation is 

performed. This allows findings to be generalised to the population level and 

reported using a standard co-ordinate system, facilitating cross-study 

comparisons. In this thesis, the Montreal Neurological Institute (MNI) standard 

space is used. SPM uses an intensity based approach to perform normalisation. 

This is first achieved by within-subject coregistration of the mean 
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realigned/unwarped functional image to their structural T1-weighted image 

using a rigid-body transformation, estimated by maximising the mutual 

information between the two images. Next, segmentation is performed to 

classify the structural T1-weighted image into grey matter, white matter and 

cerebrospinal fluid (Ashburner and Friston, 2005) and a nonlinear deformation 

field is used to map this onto template tissue probability maps. This map is then 

applied to spatially normalise both the structural and functional images. In this 

thesis, information encoded within the ‘flowfields’ generated by the 

diffeomorphic registration algorithm (DARTEL) are used to warp images to MNI 

space (Ashburner, 2007).  

 

3.3.3 DARTEL 

Diffeomorphic Anatomical Registration using Exponentiated Lie algebra 

(DARTEL) is a method developed by John Ashburner (Ashburner, 2007) to 

achieve more accurate inter-subject registration. Prior to applying DARTEL, 

image segmentation is performed to produce grey and white matter images, 

followed by rigid transformation of these maps to produce images that are 

closely aligned to tissue probability. The first step of DARTEL involves creation 

of a cohort-specific initial template (an average of the aligned maps), followed 

by an iterative process whereby the nonlinear deformations from the template to 

the individual images are calculated and then a new template is formed from the 

images after applying the inverse transformation of the deformations. The 

deformation for each individual is stored as a ‘flow field’ which can be applied to 

both structural and functional MRI data and used to normalise images to MNI 
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space. DARTEL is highly accurate and performs particularly well for registration 

of the brainstem, striatum and hippocampus in comparison to older SPM 

methods and some other automated registration packages (Klein et al., 2009). 

DARTEL is used in the normalisation step for both functional and structural data 

in all studies in this thesis.  

 

3.3.4 Smoothing 

Smoothing is performed to both improve the signal-to-noise ratio and to perform 

analysis under the assumptions of the Gaussian Random Field Theory thus 

reducing the effective number of statistical tests (Huettel, 2004). In the 

experiments presented in Chapters 4, 5 and 6, smoothing is done by convolving 

images with a Gaussian kernel with full-width at half-maximum (FWHM) of 6mm 

and in Chapter 7 with a Gaussian kernel with FWHM of 8mm.  

 

3.4. Statistical testing 

fMRI analysis employs a mass-univariate approach whereby a statistical test is 

performed at every voxel, within the framework of the General Linear Model. An 

image of these statistical tests called a statistical parametric map (SPM) can 

then be generated. In this thesis, all statistical tests were carried out using 

SPM8. 
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3.4.1 General Linear Model 

The General Linear Model relates a matrix Y containing the data (e.g. BOLD 

signal observations) to the design matrix X which is a linear combination of all 

predictor variables (Friston et al., 2006).  β is a vector of the parameters to be 

estimated, to quantify how much each predictor variable in X influences the 

dependent variable Y.  

         

β is estimated using Restricted Maximum Likelihood (ReML).  ε is a residual 

error term which encapsulates variance in the data not explained by X, whereby 

errors are assumed under the GLM framework to be independent and 

identically distributed (IID). Since this is often not the case, corrections to 

impose sphericity must be applied. A process of ‘whitening’ can be used, which 

is an autoregressive model which effectively calculates the degree of correlation 

between the residuals and applies a correction to remove this from the GLM.  

The design matrix contains all experimentally controlled factors, potential 

confounding factors and covariates of no interest. Each factor is convolved with 

the haemodynamic response function before being entered as a regressor in 

the design matrix.  Regressors may be categorical, for example coded as 1 or 0 

to indicate when a stimulus is presented or not, or parametric whereby the 

height of the regressor is modulated by the quantity associated with the current 

trial. A parametric design thus allows the contribution of different dimensions of 

a stimulus to be quantified. Both categorical and parametric regressors are 

used in this thesis.  
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T-tests or F-tests are applied to every voxel to make statistical inferences, 

resulting in a map of T- or F- statistics across the whole brain (the SPM). T-tests 

are directional as they test whether estimates are significantly different from 

zero. F-tests test the null hypothesis that the parameter is zero and are 

therefore not directional (Friston et al., 2006).  

 

3.4.2 Group analyses 

These methods describe conducting analysis at the single subject level. In order 

to make group comparisons, a between-subjects analysis must be performed. 

This approach of generalising results from the subject level to the population 

can be implemented using a two-stage summary statistics approach (Friston et 

al., 2005). At the 1st-level (within-subject), parameters are estimated for each 

subject using a fixed-effects model which assumes that the experimental effect 

is equal across subjects. These contrast estimates are then brought to the 2nd -

level (between-subjects) where a random-effects analysis is performed which 

treats the experimental manipulation as variable across subjects.  

 

3.4.3 Multiple comparisons and Random Field Theory  

Since statistical analysis of fMRI data involves a mass-univariate approach of 

performing statistical tests over a very large number of voxels, there is a high 

risk of Type 1 errors (incorrectly rejecting the null hypothesis). One approach to 

this multiple comparison problem is to control the probability of making false 

positives by using a family-wise error (FWE) correction. Classically this is 

achieved by performing a Bonferroni correction where the significance level (i.e. 
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the acceptable level for Type 1 errors) is adjusted according to the number of 

statistical tests performed. This stringent approach assumes each statistical test 

is independent. However, in neuroimaging, each voxel in an image is not 

independent due to a variety of factors, such as the underlying physiological 

properties and smoothing during preprocessing. Since there are fewer 

independent observations than there are voxels, a Bonferroni correction may be 

too conservative. Therefore an alternative approach is to account for this 

topographical nature of the data. Random field theory considers a static image 

as a continuous random field with a multivariate Gaussian distribution and 

continuous error fields. Within this framework, an acceptable Type 1 error rate 

can be calculated by estimating smoothness in the data to derive the number of 

independent comparisons (‘resolution elements’ or resels) and by calculating 

the expected Euler Characteristic (an estimate of the number of clusters 

expected to be found by chance at a given statistical threshold) (Huettel, 2004).  

Treating the data as co-varying clusters of voxels rather than independent 

observations means that statistical inferences can be made at the peak level, 

dependent on the height of the local maxima, or at the cluster level depending 

on the number of activated voxels in a particular region. Although cluster-level 

inference has greater sensitivity, it has less spatial localising power. Since many 

of the studies in this thesis focus on relatively small regions (e.g. SN/VTA), a 

high degree of anatomical precision is preferred thus I have used peak level 

inferences.  

An alternative to the mass-univariate approach described above are region of 

interest (ROI) analyses (see Chapters 6 & 7). This targeted approach takes 

advantage of a priori knowledge about brain regions expected to be involved in 
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a task. A ROI can be defined manually for each subject (as in Chapter 6), or 

using an atlas-derived mask (as in Chapter 7) or using automated software (as 

used in Chapters 4 & 5). An advantage of this approach over whole-brain voxel-

based analyses is that each ROI is treated as a single region as opposed to 

many voxels, thus the number of statistical tests performed and the need to 

correct for multiple comparisons is reduced.  ROI analyses can minimise the 

need for preprocessing if ROI’s are defined in native subject space thus 

minimising inaccuracies that may be made to the data during steps such as 

warping. I adopted this approach in Chapter 6 to allow a more precise analysis 

of relatively small regions (the SN/VTA and STN) such that I could determine 

inter-individual variability with greater accuracy. 

 

3.4.4 Model-based fMRI 

Beyond measuring brain responses to experimental factors, a deeper analysis 

of fMRI data can be obtained through the use of computational modelling. The 

principle underlying model-based fMRI is that different models of the same 

observed data, where the model embodies how the data was generated, are 

compared (Friston and Dolan, 2010). Such models are formed on the 

assumption that the brain works to optimise processing, for example minimising 

prediction errors. Model components from the best fitting model can then be 

regressed against fMRI data (O'Doherty et al., 2007).  

In Chapter 5 I use a standard reinforcement learning model to predict subjects’ 

actual behaviour. This model resides on the hypothesis that dopamine 

quantitatively codes a prediction of expected value and how this deviates from 
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the observed reward (the prediction error), and the product of this prediction 

error and learning rate are used to update future expectations  (Behrens et al., 

2009). The model parameters are optimised to find the model which best fits the 

observed data. The trial-by-trial components of the reward prediction error 

(reward and expected value) predicted by the winning model were then used as 

parametric modulators of the BOLD response at the time of the outcome in the 

fMRI analysis. This approach allows identification of regions where the model-

predicted time series for reward-prediction errors correlates with the fMRI BOLD 

signal over time (O'Doherty et al., 2007). Model comparison is integral to this 

process. To address how good our model predictions were, we plotted the 

predicted and observed choices which showed a close match and also 

performing formal model comparison using Bayesian Information Criteria which 

included penalising for the number of model parameters.  

 

3.5. Quantitative structural neuroimaging  

Quantitative MRI mapping can be used to derive imaging parameters that 

reflect tissue micro-structural architecture and different underlying biophysical 

properties of structures (Tofts, 2003). These measures include magnetization 

transfer (MT) imaging which provides an in vivo semi-quantitative measurement 

of underlying structural integrity (Helms et al., 2008a),  R1 images which 

measure longitudinal relaxation and are sensitive to myelin content (Draganski 

et al., 2011), and R2* images which measure proton transverse relaxation rate 

and reflect iron content (Martin et al., 2008) (Martin, 2009). I used a dedicated 

MRI sequence designed at the host institute termed ‘multiparameter mapping’ 
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to acquire MT-weighted, proton density and R1-weighted (1/T1) images, and 

used in-house code to generate quantitative MT, R2* (1/T2*) and R1 maps 

(Figure 7). In Chapters 4, 5 and 6 I acquired 1mm isotropic multiparameter 

maps and in Chapter 7, I acquired 0.8mm isotropic multiparameter maps.  

 

 

Figure 7. Single subject example of multiparameter maps at 1mm isotropic 

resolution.  

From left to right – MT image, R2* image and R1 image. The substantia nigra/ventral 

tegmental area can be clearly seen on the MT image (arrows). See section 3.5.1 for 

details of how MT images are generated. R2* images are the gradient echo transverse 

relaxation rate (1/T2*). The T1 contrast generated from the exponential longitudinal 

relaxation is used to form R1 (1/T1) images.  
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3.5.1 Magnetization transfer 

MT imaging reflects the properties of protons bound to macromolecules (Wolff 

and Balaban, 1989) (Figure 8). Conventional T1w sequences measure mobile 

protons in free water which have longer T2 relaxation times (50-100ms), using 

on resonance radiofrequency pulses.  Bound protons associated with 

macromolecules have a very short T2 relaxation time (microseconds) in 

comparison to free protons and are therefore ‘invisible’ to standard MRI 

(Henkelman et al., 2001). However, the coupling between free and bound 

protons can be exploited using off resonance radiofrequency pulses. Off 

resonance pulses lead to saturation of magnetization of the bound proton pool 

and subsequent transfer of magnetization between free and bound protons to 

re-establish equilibrium. An on resonance pulse can then be applied which now 

reflects both pools of protons. A consequence of MT is suppression of signal 

from tissues, which only tissues rich in macromolecular proteins demonstrate. 

Furthermore, the difference in saturation can be quantified on a voxel-by-voxel 

basis resulting in semi-quantitative MT imaging parameters (Helms et al., 

2008a). MT imaging is sensitive to the properties of the radiofrequency pulse 

used to saturate the bound pool and therefore is vulnerable to differences 

between MRI scanners and sequence acquisition, thus limiting multi-centre 

comparisons. 

MT imaging (MTI) reflects the properties of bound protons in structures such as 

myelin (Tofts, 2003), axons (Klistorner et al., 2011), cell membrane proteins and 

phospholipids (Bruno et al., 2004). MTI has been used extensively in diseases 

such as multiple sclerosis to reveal deficits in ‘normal appearing white matter’ 

(Filippi et al., 1995) and grey matter (Hayton et al., 2009), in Alzheimer’s 
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disease to show reduced hippocampal MT values (Hanyu et al., 2000) (Ridha et 

al., 2007) and in temporal lobe epilepsy to demonstrate reduced MT values in 

the absence of temporal lobe volumetric differences between patients and 

controls (Flugel et al., 2006). MTI is particularly suited to visualising brainstem 

structures as it provides better grey/white matter contrast (Helms et al., 2009). 

In Parkinson’s disease, where there is a dramatic decline in nigro-striatal 

dopamine neurons, there is a decrease in MT signal in the SN/VTA possibly 

reflecting disruption of the neuromelanin scaffolding (Eckert et al., 2004; Düzel 

et al., 2008; Tambasco et al., 2011).  

  



71 
 

 

 

Figure 8. Magnetization transfer.  

Magnetization is transferred between bound macromolecules and free water protons. 

An off-resonance radiofrequency pulse can be applied to saturate the bound 

‘macromolecular’ pool (right, broader shape), with subsequent transfer of 

magnetization between free protons in the ‘liquid pool’ (right, narrower shape) and 

bound protons. Adapted from (Henkelman et al., 2001).  
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3.5.2 Diffusion tensor imaging 

Diffusion tensor imaging (DTI) is a structural imaging technique which provides 

a marker of tissue organization and is based on the principle that water diffuses 

more readily along the principle axis of an axon than perpendicular to it. Thus 

although both DTI and MTI reflect tissue integrity, measurements from the 

former are based on directionality. Additionally, probabilistic diffusion 

tractography can be used to generate connectivity profiles from individual 

voxels within grey matter ‘seed’ regions to different target regions (Behrens and 

Johansen-Berg, 2005).  These connectivity profiles are markers of the relative 

strength of white matter fiber connections between subregions of the seed 

structure and target regions. These maps have close correspondence to the 

results of histological tract tracing studies (Seehaus et al., 2012) (Klein et al., 

2007) (Dyrby et al., 2007) and relate to inter-individual differences in cognition 

and behaviour (Cohen et al., 2009) (Forstmann et al., 2011; Forstmann et al., 

2012).  

The random movement of molecules over time through a medium due to 

thermodynamic effects is called diffusion. In a homogenous medium, diffusion is 

the same in every direction (‘isotropic’). In contrast, in a non-homogeneous 

medium, diffusion is restricted in certain directions (‘anisotropic’). Such is the 

case in axons, whereby diffusion occurs primarily along one axis. Thus in white 

matter fiber tracts, water principally diffuses along the length of the fiber rather 

than across the width of it and hence diffusion is largely anisotropic, whereas in 

grey matter structures, diffusion is less anisotropic. 
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MRI can be used to exploit this directionality in tissue by applying magnetic 

gradients that allow the MR signal to be sensitive to the direction of diffusion in 

tissues, thus generating a diffusion-weighted MRI contrast. In anisotropic 

diffusion, the motion of molecules resembles an ellipsoid in comparison to when 

diffusion is isotropic and resembles a sphere. An ellipsoid has three principle 

directions which can be described mathematically as a three-by-three tensor by 

extending Fick’s law which describes diffusion in one direction.  The tensor is 

characterised by three orthogonal directions or ‘eigenvectors’ each of which has 

an associated length or ‘eigenvalue’. To determine the values of the six unique 

tensor elements, a minimum of six directionally-sensitized and one non-

diffusion-sensitized measurements (‘b0’ image) are required. The aim of the DTI 

pulse sequence is therefore to apply controlled gradients in many different 

directions to allow the best fit of the diffusion tensor at every voxel. The higher 

the intensity of the gradient, known as the ‘b-value’, the higher the sensitivity to 

the diffusion effect. However, this is limited by MRI hardware and lower signal-

to-noise.  

Fractional anisotropy (FA) is a commonly used DTI metric calculated from the 

eigenvalues of the tensor and may represent, amongst other things, 

directionality-based structural integrity (Johansen-Berg, 2010). FA values 

characterise the extent of water diffusion every voxel with values ranging from 

zero (full isotropy) to one (full anisotropy). Mathematically, FA values represent 

the standard deviation of the eigenvalues normalised by the tensor magnitude. 

Mean diffusivity (MD) is another DTI metric which quantifies the average 

diffusion (average of the three eigenvalues) at every voxel and therefore, in 

contrast to FA, is independent of direction. FA and MD maps can be analysed 
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by various different techniques including voxel-based quantification (Draganski 

et al., 2011).  

DTI tractography is a technique based on estimating the likelihood of a pathway 

existing between brain regions. Tractography can be performed using a 

deterministic or probabilistic model (the latter is used in Chapter 6). 

Deterministic tractography assumes there is one principle direction per voxel. 

Probabilistic tractography takes into account that there is a degree of 

uncertainty with regards to the determination of the principle eigenvectors’ 

orientation by instead estimating the probability distribution of the principle 

direction of diffusion at every voxel (Behrens et al., 2003). This probability field 

is then sampled thousands of times to build a connectivity distribution that 

reflects the probability of connection with the seed voxel. The benefit of this 

method is that tracking can be performed in regions with high uncertainty, 

allowing tracking closer to grey matter targets. This method is also quantitative, 

thus the probability (‘strength’) of connectivity between regions can be 

calculated and related to other behavioural and functional measures, providing 

a more in-depth analysis of structure-function relationships. There are some 

methodological limitations of DTI tractography. For example, tractography is 

less accurate in regions where fibres cross or ‘kiss’. DTI is less able to 

recognise smaller white matter bundles, an issue which may be addressed by 

improving spatial resolution and gradient strength.  

DTI is performed using echo-planar imaging and therefore, like fMRI, is 

susceptible to B0 inhomogeneities. DTI also employs the application of strong 

gradients which can introduce another artefact called ‘eddy current distortions’ 
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which must be corrected during preprocessing. Other preprocessing steps are 

described in Chapter 5.  

 

3.6. Analysis of structural neuroimaging  

3.6.1 Voxel-based morphometry 

Voxel-based morphometry (VBM) is a voxel-wise analysis of the local 

concentration of grey matter (Ashburner and Friston, 2000). This technique 

allows whole-brain structural changes to be related to performance. The 

preprocessing steps are as follows (some of which overlap with fMRI 

preprocessing and have already been described): segmentation of images into 

different tissue classes, inter-subject registration using DARTEL (Section 3.3.3), 

normalisation to a common template (Section 3.3.2) and smoothing (Section 

3.3.4). Voxel-wise statistical tests can then be performed using the GLM 

framework. Two preprocessing steps, segmentation and modulation are 

described here in more detail.  

 

3.6.1.1 Segmentation 

To analyse structural differences in grey matter using VBM, images must first 

be segmented. The studies in this thesis used the New Segment toolbox in 

SPM8 to achieve this. This unified segmentation routine combines tissue 

classification, bias correction for image inhomogeneities and image registration 

into a single generative model (Ashburner and Friston, 2005). A modified 

mixture of Gaussians model is used to assign voxels to one of four tissue 
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classes (grey matter, white matter, cerebrospinal fluid and everything else) 

depending on voxel intensities. This also requires tissue probability maps which 

contain prior knowledge of the tissue types at different locations in the image 

and a Bayesian approach of combining these prior probabilities with the model 

given the data.  

One limitation of segmentation algorithms such as this is that each voxel is 

assumed to contain one tissue type only. Therefore some voxels, such as those 

at the interface between white matter and ventricles, may be misclassified as 

grey matter. These so-called partial volume effects are greater with larger voxel 

sizes and following smoothing. A smoothing/weighting averaging procedure can 

be used to try to minimise partial volume effects (see VBQ section 3.6.2).  

 

3.6.1.2 Modulation 

As previously described, DARTEL is used to perform high-dimensional warps to 

achieve highly accurate inter-subject registration and normalisation to MNI 

space. However, if registration is exact then there would be no inter-subject 

volume differences left to identify. In order therefore to retain individual subject 

information about the actual amounts of gray matter within structures, 

modulation can be applied. This involves multiplying warped images by the 

Jacobian determinants of the deformation field (i.e. the relative voxel volumes). 

The result is that the signal from a region of a modulated image represents the 

tissue volume per unit of spatially normalised image. For example, as described 

in Ashburner and Friston (2001), if a subjects’ temporal lobe is half the volume 

of that in the template, the volume will be doubled during normalisation thus the 
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doubling the number of voxels labelled as grey matter resulting in loss of the 

original absolute volume information (Ashburner and Friston, 2001). Modulation 

accounts for this confound by multiplying the volume in this region by its relative 

volume before and after warping. Thus modulated VBM compares the absolute 

volume of grey and white matter.  

 

3.6.1.3 Statistical analysis 

Statistical analysis of smooth, warped, modulated grey and white matter maps 

is performed using the GLM framework, as described for fMRI analysis. Thus 

one image per subject can be entered into a multiple regression model. The 

experimental manipulation(s) of interest is entered into the design matrix, along 

with other nuisance covariates such as age and gender. To adjust for 

differences in global volume, total intracranial volume can be entered as a 

nuisance covariate or used to perform proportional scaling to adjust the original 

voxel values (the former method is used in this thesis). As already described, 

corrections for multiple comparisons across the brain can be addressed using 

Random Field Theory. For VBM, voxel-level inferences (as used in this thesis) 

rather than cluster-level statistics  should be applied since structural data is 

highly ‘non-stationary’ (Ashburner and Friston, 2000). This is in contrast to fMRI 

data where ‘stationarity’ of the smoothness is assumed across the whole image. 

However methods have been developed which correct for  non-stationarity 

which may allow  cluster-level statistics to be applied to structural data 

(Hayasaka et al., 2004).   Explicit masking can be used to ensure the same 

number of voxels per subject are included in the analysis. 



78 
 

VBM results are thought to reflect differences in grey matter volume or 

concentration, although the translation to underlying cytoarchitectonic 

differences is less clear. A multimodal approach of combining VBM with other 

measures such as different quantitative imaging parameters (MT, R2* etc), 

PET, fMRI and actual histology will help to enhance the interpretation of 

findings. It should also be noted that problems with preprocessing such as 

misregistration or misclassification, as well as differences in cortical folding and 

thickness may result in VBM differences.  

 

3.6.2 Voxel-based quantification 

Voxel-wise analysis of quantitative multiparameter maps (VBQ) proceeds along 

similar lines to the VBM preprocessing and analysis steps described above. 

One improvement is the use of MT images for segmentation since these images 

have a better grey/white matter contrast particularly for subcortical regions. 

Another is to use a weighting/smoothing procedure to optimise the assignment 

of voxels to the appropriate tissue class for each of the parameter maps and 

thus account for partial volume effects (Draganski et al., 2011).  This is 

performed by dividing smooth warped unmodulated parameter maps by the 

corresponding smooth warped modulated tissue class maps.  This process 

effectively projects the Gaussian smoothing kernel from warped space to native 

space whilst preserving the weighted average of the parameter value over a 

region the size of the smoothing kernel (Hutton et al., 2009).  
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3.7. Neuropsychological tests 

For all studies reported in this thesis involving older adults, I administrated a 

range of standardised neuropsychological tests to elderly participants to ensure 

they did not have significant cognitive impairments. Both young and old 

participants also completed questionnaires relating to mood and personality. 

Here I will briefly describe these tests. 

 

3.7.1 Mini-Mental State Examination 

The MMSE is a widely used brief screening instrument for dementia that tests a 

restricted range of cognitive functions (Folstein et al., 1975). Out of a maximum 

possible score of 30, scores above 27 are considered normal and scores less 

than 24 suggest dementia. The MMSE is most effective at discriminating 

moderate and severe dementia rather than milder cognitive changes from 

normal subjects. Therefore I used a cut-off score of <28 as an exclusion criteria, 

but participants were additionally required to perform within the normal range on 

a range of neuropsychological tests to ensure normal cognitive function.  

 

3.7.2 Beck Depression Inventory 

The BDI is a  21 item self-report rating scale measures current depressive 

symptoms (Beck et al., 1961). For each item, participants rate themselves on a 

scale from 0 to 3, where an increasing scores represents greater severity of the 

depressive symptom. Total scores less than 11 are considered within the 

normal range, scores of  11-16 indicative of mild mood disturbance and scores 
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>16 suggest clinical depression. This scale was used in Chapter 7 whereby 

participants scoring >10 were excluded.  

 

3.7.3 Geriatric Depression Scale  

The GDS is another self-report measure of current depressive symptoms for 

use in the elderly, consisting of 30 yes/no questions (Yesavage et al., 1982). A 

cut-off score of 11 is used to indicate depression.  I used the GDS in studies in 

which only older adults participated (Chapters 4, 5 and 6).  

 

3.7.4 Rey Auditory Verbal Learning Test  

This RAVLT is a test of verbal learning and memory (Lezak et al., 2004). A list 

of 15 nouns (List A) is read aloud to the participant at a rate of one per second. 

The subject is then asked to repeat back as many words as they can remember 

in any order. The words are recorded in order of recall. This procedure is 

repeated for a further four trials. A second word list consisting of 15 different 

nouns (List B) is then read aloud and participants must recall as many words 

from the new list as possible. Immediately afterwards, participants are asked to 

recall as many words as possible from the first list without hearing them again 

(Trial 6). Finally, after a delay of 15 minutes, participants are asked to recall as 

many words from List A as possible without hearing them again (Trial 7). The 

total score from Trials 1-5 was used as a measure of immediate recall, and the 

number of words on Trial 7 as a measure of delayed recall. A recognition 

component of the task was also administered but is not reported here. Trial 7 

(delayed free recall) is particularly sensitive at differentiating between 

Alzheimer’s disease and normal aging (Estévez-González et al., 2003) and thus 
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I excluded participants who scored outside of the of the age-related norm for 

this measure.  

 

3.7.5 Trail-Making Test  

This is a test of attention, speed and mental flexibility (Reitan, 1955) (Lezak et 

al., 2004).  Part A consists of 25 encircled numbers which participants are 

required to join in ascending order. Part B requires participants to alternate 

between numbers and letters thus also testing attentional shift. The time taken 

to complete each part and the number of errors made was recorded.  

 

3.7.6 Forward and Backward Digit Span  

These are both subtests from the Wechsler Adult Intelligence Scale and are 

considered to be tests of working memory (Lezak et al., 2004). Participants hear 

a sequence of digits read by the examiner at a rate of one digit per second and 

are then instructed to repeat the sequence in the same order (Forward Digit 

Span) or reverse order (Backward Digit Span). There were two items for each 

sequence and if the subject failed both the next trial was not attempted. The 

highest number of digits correctly recalled in their serial order was used to 

define digit span.  

 

3.7.7 Visual Object and Space Perception  

I used Test 7 (Number Location) (Warrington and James, 1991) to test space 

perception. Participants see a card containing two squares. The upper square 

contains randomly arranged numbers and the lower square contains one black 
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dot. Participants are required to indicate which number in the upper square 

corresponds to the position of the dot in the lower square. The number correctly 

located (out of 10) is recorded.  

 

3.7.8 Digit Symbol Substitution Test  
This test of attention is also part of the Wechsler Adult Intelligence Scale (Lezak 

et al., 2004). This pencil-and-paper task consists of the numbers 0-9, each 

paired with a nonsense symbol. A blank grid of 100 unpaired randomly ordered 

numbers is presented to the participant, where they are required to fill in the 

appropriate symbols for each number consecutively within 90 seconds. The 

score is determined by the number of correct substitutions.  

 

3.7.9 Controlled Oral Word Association Test  

This is a test of verbal fluency (Benton, 1967). To assess phonemic fluency, 

participants are asked to generate as many words as possible in 60 seconds 

beginning with the letter ‘F’. This is repeated for the letters ‘A’ and ‘S’. The total 

number of words and perseverative errors are recorded. Proper nouns and 

repetitions were excluded. To test for semantic fluency, participants are asked 

to generate the names of many animals as possible in 60 seconds.  

 

3.7.10 Tridimensional Personality Questionnaire  

The Tridimensional Personality Questionnaire (TPQ) is a 100 item 

questionnaire which measures three personality dimensions:  Novelty Seeking, 

Reward Dependence and Harm Avoidance, each of which contains four 
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subscales (Cloninger, 1987a). These personality traits are thought to be 

heritable and stable over time. Reward dependence has been linked to the 

noradrenergic system, novelty seeking to the dopaminergic system and harm 

avoidance to the serotoninergic system (Gardini et al., 2009). High novelty 

seeking personality scores reflect a trait towards ‘frequent exploratory activity in 

pursuit of potential rewards as well as active avoidance of monotony and 

potential punishment’ (Cloninger, 1987b). An inverse association between D2 

receptor binding in the ventral midbrain and novelty seeking suggesting a 

heightened dopaminergic response to novelty in those scoring higher on this 

subscale (Zald et al., 2008), and a positive relationship between fMRI activation 

in the nucleus accumbens signalling positive prediction errors in high novelty 

seeking individuals (Abler et al., 2006) have been reported.  

 

3.7.11 National Adult Reading Test  
The NART provides an estimate of intellectual ability (Nelson, 1982). The test 

consists of a list of 50 phonetically irregular words which the subject must read 

aloud. The number of correct words is recorded and converted to an estimate of 

pre-morbid IQ. Words can only be pronounced correctly is the subject is familiar 

with them and so is independent of current cognitive capacity. Since minimal 

effort is required to read the words, it is also relatively resistant to poor 

concentration or motivation.  

 

3.7.12 Bond and Lader Visual Analogue Scales 

This test of subjective affect consists of 16 100mm visual analogue scales, for 

example ranging from alert to drowsy, and withdrawn to sociable (Bond and 
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Lader, 1974). Participants indicate with a vertical mark on each scale how they 

are feeling at the moment of the test. The scales load onto three factors: how 

alert, calm and content people feel, derived from a factor analysis. These scales 

were used in Chapters 4 & 5 to measure effects of pharmacological 

manipulation on subjective mood in comparison to placebo.  
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Chapter 4  

Dopamine and episodic memory  

4.1. Introduction  

Converging evidence from animal studies suggests that dopamine critically 

contributes to the cellular consolidation of hippocampal-dependent memories by 

inducing protein-synthesis in hippocampal neurons (Frey and Morris, 1997; 

O'Carroll et al., 2006). Behavioural evidence from episodic-like memory 

paradigms in animals show that the availability of dopamine within  the 

hippocampus during encoding is necessary for long-lasting memories (four to 

six hours and longer), but does not influence memory across short delays (30 

minutes) (Bethus et al., 2010). Consequently, weakly encoded events not 

leading to dopamine release in the hippocampus can be recollected after short-

delays but are forgotten after delays of six hours and longer (O'Carroll et al., 

2006; Bethus et al., 2010). Testing for a similar role in human episodic memory 

requires manipulation of dopamine levels at encoding with subsequent testing 

of memory after both  short and long retention intervals (Wang and Morris, 

2010; Lisman et al., 2011).  

A key prerequisite for characterizing the role of dopamine in human episodic 

memory consolidation is to relate the effects of dopamine to the strength of 

hippocampal activation at encoding. This is because the hippocampal release of 
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dopamine can be enhanced by strong hippocampal activation (for a review see 

(Lisman et al., 2011)). If increasing dopamine levels in humans improves 

memory performance after long delays through similar mechanisms to that seen 

in animal studies (O'Carroll et al., 2006; Bethus et al., 2010), dopamine 

administration should improve long-term memory for events that elicit only weak 

hippocampal activity at encoding, events that normally would be associated with 

low levels of hippocampal dopamine. This predicts that increasing availability of 

dopamine would decrease the influence of hippocampal activation at encoding, 

measured using functional MRI (fMRI), on delayed memory.  

Here I tested these hypotheses amongst healthy older adults in a 

pharmacological fMRI study.  I chose an elderly population as my target group 

for two reasons. Firstly, understanding the role of dopamine in episodic memory 

is of particular relevance in old age where a decline in episodic memory is well 

recognised (Light, 1991; Hedden and Gabrieli, 2004; Randy L, 2004). Secondly, 

there is known age-dependent degeneration of substantia nigra/ventral 

tegmental area (SN/VTA) dopamine neurons (Fearnley and Lees, 1991; 

Bäckman et al., 2006).  Consequently, I recruited 32 healthy older adults who 

participated in a double-blind crossover study with the dopamine-precursor 

levodopa (L-DOPA) and placebo. Participants performed an fMRI encoding task 

in which they viewed indoor and outdoor scenes and episodic memory for these 

scenes was tested after two hours (‘early test’) or six hours (‘delayed test’) 

(Figure 9). I used an additional manipulation of reward as a way of manipulating 

endogenous mechanisms of dopamine-related memory enhancement and to 

compare its effect on memory consolidation to the exogenous manipulation 

through the administration of L-DOPA. Thus half the stimuli were 
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probabilistically associated with reward and half with no reward. In order to 

account for the possibility that the effect of L-DOPA may depend on the 

structural integrity of the SN/VTA in older participants,  I used a semi-

quantitative MR imaging technique called magnetization transfer (MT) imaging 

(Wolff and Balaban, 1989; Helms et al., 2009). It is known that the cognitive 

effects of dopamine are dose-dependent (Knecht et al., 2004), often showing a 

non-linear dose-response curve (Goldman-Rakic et al., 2000; Cools et al., 2001; 

Li and Sikström, 2002; Takahashi et al., 2008). To account for such a possibility 

also in episodic memory, I conducted planned correlations between body-

weight adjusted relative doses of L-DOPA and behavioural and encoding-

related functional outcomes measures.   
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Figure 9.Experimental timeline.  

In the fMRI scanner, participants viewed randomly presented images of scenes and 

were required to indicate whether they were indoor or outdoor scenes with a button 

press. 80% of correct responses for one category were followed by a reward (£1.00) 

and for the other category was followed by a neutral outcome (£0.00), thereby the 

images served as reward-predicting and neutral cues respectively. Following this 

outside the scanner, memory for half the scenes were tested two hours after encoding 

(‘early’) and the remaining scenes six hours after encoding (‘delayed’) using a 

remember/know paradigm.  
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4.2. Methods 

Participants: I recruited participants via our departmental website, 

advertisement in local public buildings and word of mouth. To ensure 

participants were healthy, volunteers were initially screened by telephone and 

excluded if they had any of the following: current or past history of neurological, 

psychiatric or endocrinological disorders (including diabetes mellitus and thyroid 

dysfunction), metallic implants, tinnitus, major visual impairment, history of drug 

addiction. To control for vascular risk factors, individuals known to have had a 

stroke or transient ischemic attack, myocardial infarction or require more than 

one anti-hypertensive medication were not eligible for participation. All 

participants had a Mini-Mental State Examination score 28 and a Geriatric 

Depression Scale score 7 (a score >11 would indicate depression). All 

participants performed within 1.5 SD of age-related norms on a range of 

neuropsychological tests, ensuring they were cognitively intact as follows: Rey 

Auditory and Verbal Learning Test (RAVLT) trials 1-5 (mean 50.2, SD 8.3), 

RAVLT trial 7 (mean 9.5, SD 2.3), D2 cancellation test of attention (mean 152.3, 

SD 33.5), Digit Span Forward (median 8, range 4 – 9), Digit Span Backward 

(median 5, range 3 – 8), Controlled Oral Word Association test (COWA) 

phonemic fluency (mean 58.0, SD 14.0), COWA semantic fluency (mean 26.5, 

SD 6.6) and Visual and Object Space Perception number location (median 10, 

range 8-10). All subjects had a normal neurological examination (performed by 

a neurologist R.C.) ensuring participants did not have concurrent undiagnosed 

neurological conditions. Written informed consent was obtained from all 

participants. The study received ethical approval from the North West London 

Research Ethics Committee 2.  
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Participants in the current study (n = 32) were selected from a larger sample of 

42 healthy older adults aged 65 – 75 years who had participated in a previous 

study within the preceding six months. Preselection was based on an 

assessment of magnetization transfer (MT) values of the SN/VTA. MT imaging 

is a semi-quantitative MR imaging technique that reflects structural integrity 

(Wolff and Balaban, 1989) where lower MT values suggest less structural 

integrity (Eckert et al., 2004; Düzel et al., 2008; Tambasco et al., 2011). 10 

individuals with MT values of the SN/VTA scattered around the mean MT values 

of the group were excluded to increase the variance in the sample, resulting in 

16 participants with higher MT values (‘high integrity’ group) and 16 with lower 

MT values (‘low integrity’ group). Note that the current cohort still had a normal 

distribution of midbrain integrity in both the final subset of participants for the 

behavioural analysis (n=29: Kolmogorov-Smirnov test statistic = 0.11, p = .200) 

and the fMRI analysis (n=23: Kolmogorov-Smirnov test statistic = 0.093, p = 

.200). The two MT groups were matched for age (independent t-test, p = .208) 

and closely matched for gender (low group 12 females, high group 9 females; 

Mann Whitney U test, p = .272).  

Three subjects were excluded from all analyses. Of these, two were excluded 

due to poor performance in the encoding task (<60% correct indoor/outdoor 

judgement) consequent upon side-effects of L-DOPA (vomiting during the 

encoding task) or misunderstanding the task instructions. One other participant 

misunderstood the instructions for the first remember/know test and was 

excluded from all analyses. With regards to side-effects of L-DOPA, four 

subjects vomited of whom one was excluded as noted above. For the other 

three participants, this brief side-effect occurred after the encoding task had 
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been completed and their encoding performance was >98% correct, thus I did 

not exclude them from my analyses.  

 

Study procedure: I used a double-blind placebo controlled crossover design. 

Participants attended on two occasions, one week apart and performed the 

same task on both days, 90 minutes after ingestion of either levodopa (150mg 

levodopa + 37.5mg benserazide mixed in orange juice; L-DOPA) or placebo 

(orange juice alone), the order of which was counterbalanced. Benserazide 

promotes higher levels of dopamine in the brain whilst minimising peripheral 

side-effects such as nausea and vomiting. I chose a dose of 150mg as a 

previous study has shown that although 100mg can improve verbal learning in 

younger adults, those with a lower body-weight who effectively received higher 

doses showed a greater effect (Knecht et al., 2004). To achieve comparable 

drug absorption across individuals, subjects were instructed not to eat for up to 

two hours before commencing the study. Repeated physiological 

measurements were recorded on both days before and after the 

pharmacological manipulation, which showed a reduction in blood pressure 

from baseline to 90 minutes after L-DOPA (from average 148/82 to 142/80; 

paired t-tests systolic t = 3.12, p = .004; diastolic t = 2.46, p = .020) but no 

change in heart rate.  Subjective mood rating scales were also recorded.  This 

series of 16 visual analogue scales collapsed down to measure three factors: 

how alert, content and calm participants felt (Bond and Lader, 1974). When 

baseline levels were taken into account, there was no significant difference in 

these subjective mood rating scales at encoding after receiving L-DOPA 

compared to placebo. For the early and delayed memory tests, the only 
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significant difference was at early test where participants felt more content on 

the day they received L-DOPA compared to placebo (mean difference in scores 

5.06, SD 11.1, paired t-test t = 2.37, p = .027).  

 

fMRI encoding task : I presented participants with 120 grey-scale images of 

indoor (n=60) and outdoor (n=60) scenes in a randomised fashion (Figure 9). 

Different images were used on each of the two test days. Participants were 

required to indicate with a button press whether the image was of an indoor or 

outdoor scene (response required within 2s). After a brief delay (fixation cross, 

1.5s), this was followed by either a reward (indicated by £1.00) or neutral 

outcome (indicated by £0.00) (outcome, 1s) and finally a further fixation cross 

(3s). 80% of correct responses for each category of scenes predicted either a 

reward or no reward. For each participant, which category predicted reward 

(indoor or outdoor) was different on the two test days and this order was 

counterbalanced across subjects.  

Prior to pharmacological administration, participants were familiarized with the 

encoding task through ten practice trials using different images. During this 

practice task the outcome was not probabilistic. Participants were told which 

category (indoor or outdoor) would be rewarded, with this category remaining 

the same for the study task. The purpose of this was to ensure by the time 

participants performed the task in the scanner, they would anticipate a reward 

when they saw images in the rewarded category (thus serving as reward 

predicting cues) and vice versa for the unrewarded category (serving as neutral 

cues).   
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Participants were given written and verbal task instructions that included the 

following: ‘pay attention to all the images presented as we may return to some 

of them later in the day’. This same instruction was given on both days without 

being explicitly told on the second day that they would be performing memory 

recognition tasks again to minimise practice effects. After completion of the 

encoding task, participants immediately went on to have further scanning to 

acquire diffusion tensor images on one day (not reported here) or were asked to 

sit alone in a room for an equivalent amount of time and not perform any 

activities on the other day. All participants also completed a brief unrelated 

decision-making task prior to performing the encoding task on both days (not 

reported here). 

 

Behavioural recognition tasks: I tested memory for scenes shown during the 

fMRI encoding task behaviourally two hours and six hours after encoding 

(henceforth referred to as the early and delayed test respectively) using a 

remember/know paradigm. For the early test, participants were shown a 

random selection of half of the scenes they had previously viewed during the 

encoding task (30 indoor and 30 outdoor scenes) and 30 new distractor scenes 

(15 indoor and 15 outdoor). Memory for the remaining scenes intermixed with 

another set of 30 new distractor images was tested at the delayed test. For both 

tests, whilst the scene was displayed participants indicated with a button press 

whether the image was old (seen before during the encoding task) or new 

(never seen before) (maximum reaction time 6s). I also asked for a second 

decision in relation to the stimuli (maximum reaction time 6s): if they chose ‘old’ 

then participants had to commit to one of three further options: remember, know 
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or guess, where ‘remember’ indicated they could recollect something specific 

about the study episode. If the image was confidently familiar, but they had no 

recollective experience they were instructed to choose ‘know’. Guess responses 

were given when unsure that the image was old. If participants indicated the 

picture was ‘new’ then a further decision was made of whether they were sure 

or had guessed. Remember responses are thought to reflect hippocampal-

dependent episodic memory recollection, whereas know responses index 

familiarity (Yonelinas et al., 2002). 

I chose to perform the early test of memory two hours after encoding (3.5 hours 

after L-DOPA/placebo administration) to minimise the potential confounding 

factor of persisting drug effects at early but not delayed test. Thus I was able to 

test participants’ memory on two occasions after a short and long interval, 

ensuring they were not under the peak effects of L-DOPA on both occasions, 

whilst still allowing a sufficient time window between the tests to investigate my 

hypothesis that L-DOPA modulated consolidation (four to six hours post-

encoding). I acknowledge that by performing the early test of memory after a 

two hour delay, the consolidation process may have already begun, but I would 

expect the effects to be less pronounced than at delayed test.   

 

Behavioural analysis: For the encoding task I calculated the percentage of 

correct indoor and outdoor responses and reaction times for these responses. 

For the early and delayed memory tests, hit rates were calculated as a 

proportion of correctly encoded items for the condition of interest. Corrected hits 

were calculated as correct old responses minus old responses for new items 
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(false alarms).  I then separated this into corrected remember hits (remember 

responses for correct old items minus remember responses for false alarms) 

and corrected know hits (know responses for correct old items minus know 

responses for false alarms). Corrected hit rates were calculated for the following 

conditions: reward-predicting scenes at early test on placebo, neutral scenes at 

early test on placebo, reward-predicting scenes at early test on L-DOPA, neutral 

scenes at early test on L-DOPA, reward-predicting scenes at delayed test on 

placebo, neutral scenes at delayed test on placebo, reward-predicting scenes at 

delayed test on L-DOPA and neutral scenes at delayed test on L-DOPA. 

Although all analyses were performed using corrected hit rates, I also report 

uncorrected hit rates and false alarms, d’ and response bias for completeness. 

D’ and response bias were calculated using standard Excel formula (Stanislaw 

H and N., 1999). I analysed hit rates using a 2 x 2 x 2 mixed ANOVA with drug 

(L-DOPA/placebo), time of test (early/delay) and reward (reward-predicting 

scenes/neutral scenes) as the within-subjects factors, and SN/VTA integrity 

group indexed by MT values (low integrity/high integrity) as a between-subjects 

factor.   

Given evidence of an inverted U-shape relationship between dopamine and 

working memory, I hypothesised a similar relationship for episodic memory. 

Since the effective dose of L-DOPA is dependent on body-weight (Zappia et al., 

2002), I calculated the weight-adjusted dose for each participant (150/body-

weight, mg/kg). I then performed regression analyses using both linear and 

quadratic models, where corrected remember and know hit rates were the 

dependent variable and the weight-adjusted dose of L-DOPA was the 

independent variable. 
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I also grouped participants into three ‘dose groups’ (referred to as low, middle 

and high dose groups). I note that within these groupings, there were no 

significant differences in health-related variables or neuropsychological test 

performance as follows: years of education (one-way ANOVA, F = 0.364, p = 

.698), blood pressure (F = 2.120, p = .139), smoking status (F = 0.225, p = 

.800), cholesterol status (F = 1.465, p = .250), IQ (F = 0.316, p = .732), RAVLT 

trials 1-5 (F = 0.352, p = .707), RAVLT trial 7 (F = 1.302, p = .290), D2 

cancellation test of attention (F = 0.738, p = .488), Forward Digit Span (F = 

3.17, p = .066), Backward Digit Span (F = 2.096, p = .143), phonemic fluency (F 

= 0.045, p = .956), semantic fluency (F = 0.023, p = .977) and Visual and Object 

Space Perception (F = 0.379, p = .689).  

I report results significant at the threshold p<0.05. All significance tests are two-

tailed.  

 

Neuroimaging 

All imaging was acquired using a 3.0T Trio MRI scanner (Siemens) with a 32-

channel head coil.  

Anatomical MRI data acquisition: A structural multi-parameter map protocol 

employing a 3D multi-echo fast low angle shot (FLASH) sequence at 1mm 

isotropic resolution (Helms et al., 2008b) was used to acquire MT weighted 

images (echo time, TE, 2.2-14.70ms, repetition time, TR, 23.7ms, flip angle, FA, 

6 degrees), T1 weighted images (TE 2.2-14.7ms, TR 18.7ms, FA 20 degrees) 

and proton density weighted images (TE 2.2-19.7ms, TR 23.7ms, FA 6 
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degrees) (Helms et al., 2008b). B1 mapping (TE  37.06 and 55.59ms, TR 

500ms, FA 230:-10:130 degrees, 4mm3 isotropic resolution) was acquired to 

correct the T1 maps for inhomogeneities in the transmit radiofrequency field 

(Lutti et al., 2010). A double-echo FLASH sequence (TE1 10ms, TE2 12.46ms, 

3 x 3 x 2 mm resolution and 1mm gap) was used to measure local field 

inhomogeneities and correct for the image distortions in the B1 mapping data. 

Using in-house code, quantitative MT maps were extracted for each subject 

(Helms et al., 2008a). 

 

fMRI data acquisition: Functional data was acquired for each subject on both 

test days.  On each day, two fMRI time series were acquired containing 148 

volumes (matrix size = 64 x 74; 48 slices; image resolution= 3 x 3 x 3mm; 

FOV=192 x 222mm; TR=70ms; TE=30ms). The fMRI acquisition protocol was 

optimised to minimise susceptibility-induced BOLD signal losses in inferior 

frontal and temporal lobe regions (Weiskopf et al., 2006b). Six additional 

volumes at the beginning of each series were acquired to allow for steady state 

magnetization and were subsequently discarded. Individual field maps were 

recorded using a double echo FLASH sequence (matrix size = 64 x 64; 64 

slices; spatial resolution = 3 x 3 x 3 mm; gap = 1 mm; short TE=10 ms; long 

TE=12.46 ms; TR=1020 ms) for distortion correction of the acquired EPI 

images. Using the FieldMap toolbox, field maps were estimated from the phase 

difference between the images acquired at the short and long TE. 
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fMRI data preprocessing: Data were analysed using Statistical Parametric 

Mapping software (SPM8, Wellcome Trust Centre for Neuroimaging, 

www.fil.ion.ucl.ac.uk/spm). Bias correction (part of the Segmentation step in 

SPM8) was performed as fMRI data acquired with a 32-channel head coil may 

be prone to strong intensity inhomogeneities. Pre-processing then included 

realignment, unwarping using individual fieldmaps, co-registration and spatial 

normalization to the Montreal Neurology Institute (MNI) space. For 

normalisation, I used unified segmentation to classify anatomical T1w images 

into grey matter, white matter and cerebrospinal fluid (Ashburner and Friston, 

2005), followed by the diffeomorphic registration algorithm (DARTEL) to 

generate flowfields to warp EPI images to MNI space (Ashburner, 2007). 

Finally, data were smoothed with a 6mm FWHM Gaussian kernel. The fMRI 

time series data were high-pass filtered (cut-off = 128 s) and whitened using an 

AR (1)-model. For each subject a statistical model was computed by applying a 

canonical hemodynamic response function (HRF) combined with time and 

dispersion derivatives.  

 

fMRI data analysis: Statistical analysis was performed using the general linear 

model (GLM) approach. I used a subsequent memory analysis whereby neural 

activity at encoding was contrasted for items that were subsequently 

remembered or forgotten. I built two different GLMs at the first level, the first of 

which was to determine the overall subsequent memory effect for all 

‘recognised’ items and a second model, more specific to my behavioural results, 

to determine the subsequent memory effect for items later ‘remembered’, in 

particular for neutral items. I collapsed together responses at early and delayed 
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recall to increase statistical power. For the same reason I excluded participants 

who had less than 10% of trials in either the remember plus know, remember or 

forget categories to ensure analyses were statistically robust. Thus whilst GLM 

1 involved all 29 participants, GLM 2 included data from 23 participants (note 

the order of L-DOPA/placebo administration remained counterbalanced for this 

subset, where 11 participants received L-DOPA on day one and 12 participants 

on L-DOPA on day two). At the first level analysis, separate design matrices for 

L-DOPA and placebo were constructed.  

 

GLM 1: Recognised (remember plus know) versus forgotten: At the first 

level, the design matrix consisted of regressors at the onset of the image 

presentation for reward-predicting scenes and neutral scenes. These encoding-

related responses were modelled separately for items subsequently recognised 

(correct ‘old’ responses, thus collapsing both remember and know responses 

together) and forgotten (incorrect ‘new’ responses). Thus the following were the 

main regressors of interest:  

 Correct old response for neutral scenes (‘recognised’) 

 Correct old response for reward-predicting scenes (‘recognised’) 

 Incorrect new response for neutral scenes (‘forgotten’) 

 Incorrect new response for reward-predicting scenes (‘forgotten’) 

Separate regressors at the time of the outcome for a win (where participants 

saw £1.00 on the screen) and no win (where participants saw £0.00) outcomes 

were included. I included a regressor of no interest for errors when participants 

failed to press the correct button to indicate whether the image was of an indoor 
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or outdoor scene. To capture residual movement-related artefacts, six 

covariates (the three rigid-body translation and three rotations resulting from 

realignment) were also included as regressors of no interest. Finally I also 

included 18 regressors for cardiac and respiratory phases in order to correct for 

physiological noise (Glover et al., 2000; Birn et al., 2006). At the first level, I 

implemented a contrast for the main effect of memory (recognised > forgotten). 

 

GLM 2: Remember versus forgotten: My behavioural results identified a 

specific effect of L-DOPA on episodic memory indexed by remember 

responses. On this basis I performed another analysis where I divided correct 

‘old’ responses into ‘remember’ and ‘know’ responses and modelled them as 

separate regressors.   

 Thus, the following constituted the main regressors of interest:  

 Correct remember response for neutral scenes (‘remember’) 

 Correct remember response for reward-predicting scenes (‘remember’) 

 Correct know response for neutral scenes (‘know’) 

 Correct know response for reward-predicting scenes (‘know’) 

 Incorrect new response for neutral scenes (‘forgotten’) 

 Incorrect new response for reward-predicting scenes (‘forgotten’) 

All other regressors of no interest used in the previous design were also 

included in this model. I was then able to contrast remember > forgotten 

responses at the first level for both rewarded and neutral items together and for 

neutral items alone.  
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Since I was predominantly interested in the effect of L-DOPA on memory, for 

both GLM 1 and 2, contrast images were entered into a paired t-test design at 

the second level. I was then able to examine the main effect of memory and the 

interaction between memory and drug (L-DOPA > placebo, and placebo > L-

DOPA) using T-contrasts. 

Based on an a priori hypothesis that dopamine promotes hippocampal 

consolidation, I built a functional ROI that included those voxels within the 

hippocampus that were more active for remembered when compared to 

forgotten items. I extracted parameter estimates within these voxels using the 

MarsBaR toolbox (Brett, 2002) and entered them in a two (remember/forget) by 

two (L-DOPA/placebo) ANOVA. With this approach I was able to test for the 

effects of drug on the selected voxels. Note that the drug effects are orthogonal 

to the main effect of memory used to define the functional ROI.  

 

Anatomical masks: I created anatomical masks averaged across my study 

participants to use for small volume correction and to anatomically constrain 

functional ROIs from which parameter estimates were extracted. My motivation 

for this was to account for age-related structural brain changes to try to lend 

greater accuracy to my analyses. Freesurfer’s (version 4.5.0, 

http://surfer.nmr.mgh.harvard.edu/) automated recon-all pipeline was used to 

parcellate the hippocampus (Fischl et al., 2004). The high level of grey/white 

matter contrast on MT images was exploited to manually segment the SN/VTA 

for each subject, performed by a trained individual (R.C) as per Düzel et al 

(Duzel et al., 2008) using MRIcro (Rorden C, 2000). Individual subjects’ 

http://surfer.nmr.mgh.harvard.edu/
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hippocampal and SN/VTA masks were warped to MNI space using DARTEL as 

previously described. A group-averaged mask was made from these warped 

images. For the bilateral hippocampus, I used 22 subjects’ masks, where 

subjects were excluded due to preprocessing errors (n=6) or inaccurate 

segmentation after visual inspection (n=1). For the bilateral SN/VTA, all 

subjects’ masks were used.  

 

Statistics: Clusters were defined using a threshold of p<0.001 and >10 voxels. 

I report results corrected for multiple comparisons across the whole brain or 

after small volume correction (SVC) for the bilateral hippocampus and bilateral 

SN/VTA using family-wise error correction (FWE) at a threshold of p<0.05. I 

selected the hippocampus and SN/VTA a priori for small volume correction 

given evidence for a functional SN/VTA-hippocampal circuit underlying the 

dopaminergic modulation of episodic memory (Lisman and Grace, 2005; 

Lisman et al., 2011). Imaging results are overlaid on a group-average MT image 

as the high level of grey/white matter allows good visualisation of both of my 

main regions of interest (hippocampus and SN/VTA).  

 

Non-linear modulation of neural activity by dopamine: I tested if neural 

activity was also modulated in a non-linear (i.e. quadratic) manner by L-DOPA. I 

performed regression analyses using the parameter estimates from functionally 

activated clusters found in the hippocampus. In these models, parameter 

estimates were the dependent variable and the weight-adjusted dose of L-
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DOPA was the independent variable. A similar regression analysis was 

performed using MT values of the SN/VTA rather than L-DOPA dose. 
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4.3. Results  

4.3.1 Encoding performance  

Demographic data for 29 of the 32 healthy older adults who participated are 

shown in Table 1. Accuracy for button presses for indoor and outdoor images 

during encoding was high (mean correct responses 97.6%, SD 2.99). Accuracy 

was not affected by L-DOPA and reward (main effect of reward: F(1,29)=3.67, 

p=.07; main effect of drug: F(1,29) = 3.62, p=.07; reward*drug interaction: 

F(1,29) = 0.15, p=.71), nor was reaction time (main effect of reward: F(1,29) = 

2.44, p=.13; main effect of drug: F(1,29) = 0.58p=.45; reward*drug interaction: 

F(1,29) = 0.012, p=.91).  

 

Age (yrs) 70.31 (3.22) 

Gender M:F 10: 19 

Education (yrs) 16.00 (2.63) 

National Adults Reading Test IQ 121.38 (6.58) 

Body mass index 26.8(4.45) 

Non-smoker 28 (96.6%) 

Normotensive 27 (93.1%) 

Mini-Mental State Examination 30 (28-30) 

Geriatric Depression Scale 1 (0-7) 

Table 1. Demographic details.  

Results are mean (SD), number (%) or median (range). 
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4.3.2 Dose-dependent enhancement of memory by L-DOPA  

All analyses were performed using corrected hit rates (hits minus false alarms 

as a proportion of correctly encoded trials, for the condition of interest).  A 

summary of uncorrected hit rates and false alarms, d’ and response bias are 

provided in Table 2 and Table 3 respectively.  

The ability to recognize old (i.e. previously encoded) items and reject new items 

was better at early compared to delayed test as shown by a main effect of time 

(F(1,27) = 9.505, p = .005) in a two (drug: L-DOPA/placebo) by two (time of test: 

early/delay) by two (reward: reward-predicting scenes/neutral scenes) repeated 

measures ANOVA with structural integrity of the SN/VTA (low integrity/ high 

integrity) as a between-subjects factor. There was also a time by reward 

interaction (F(1,27) = 48.289 p = .000). Here post hoc tests showed that for 

reward-predicting images, corrected hit rates were higher at early compared to  

delayed test (paired t-test, t(28)=7.178, p=.000) with no difference evident for 

neutral items (t(28) = 1.201, p=.240).  There was no main effect of drug 

(p=.530) and no interactions with drug (drug*time: p=.797; drug*reward: p=.250; 

drug*time*reward: p=.254). Furthermore there were no significant interactions 

with SN/VTA structural integrity (integrity group*drug: p=.169; integrity 

group*reward p=.780; integrity group*time of test p=.664). 
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 Remember   Know    
 reward  

hits 
neutral 
hits 

reward  
false  
alarms 

neutral  
false  
alarms 

reward  
hits 

neutral  
hits 

reward  
false  
alarms 

neutral  
false  
alarms 

ALL         
Placebo         

early 0.32(0.23) 0.27(0.22) 0.12(0.15) 0.07(0.10) 0.19(0.17) 0.14(0.15) 0.13(0.11) 0.08(0.13) 
delay 0.22(0.17) 0.24(0.17) 0.06(0.08) 0.08(0.12) 0.16(0.14) 0.15(0.13) 0.12(0.13) 0.08(0.09) 

L-DOPA         
early 0.36(0.22) 0.31(0.19) 0.10(0.13) 0.11(0.11) 0.18(0.14) 0.20(0.16) 0.14(0.15) 0.11(0.12) 
delay 0.23(0.23) 0.23(0.16) 0.06(0.09) 0.07(0.11) 0.16(0.13) 0.17(0.13) 0.14(0.13) 0.11(0.11) 

LOW         
Placebo         

early 0.22(0.16) 0.25(0.24) 0.10(0.16) 0.07(0.11) 0.28(0.18) 0.19(0.21) 0.17(0.15) 0.15(0.18) 
delay 0.15(0.13) 0.19(0.12) 0.04(0.06) 0.04(0.05) 0.22(0.19) 0.20(0.17) 0.13(0.16) 0.11(0.09) 

L-DOPA         
early 0.29(0.24) 0.18(0.16) 0.09(0.09) 0.15(0.14) 0.20(0.12) 0.25(0.16) 0.19(0.18) 0.15(0.13) 
delay 0.18(0.20) 0.17(0.15) 0.03(0.03) 0.08(0.13) 0.19(0.15) 0.17(0.11) 0.13(0.09) 0.10(0.08) 

MIDDLE         
Placebo         

early 0.41(0.27) 0.30(0.22) 0.17(0.15) 0.09(0.12) 0.13(0.13) 0.12(0.13) 0.13(0.12) 0.02(0.03) 
delay 0.24(0.14) 0.24(0.16) 0.09(0.09) 0.11(0.13) 0.12(0.10) 0.06(0.06) 0.11(0.12) 0.07(0.11) 

L-DOPA         
early 0.45(0.18) 0.43(0.15) 0.16(0.15) 0.11(0.11) 0.16(0.11) 0.18(0.19) 0.14(0.15) 0.12(0.15) 
delay 0.35(0.30) 0.37(0.18) 0.10(0.13) 0.08(0.13) 0.13(0.10) 0.17(0.16) 0.11(0.10) 0.13(0.09) 

HIGH         
Placebo         

early 0.35(0.22) 0.27(0.21) 0.09(0.13) 0.05(0.08) 0.16(0.16) 0.13(0.08) 0.09(0.34) 0.07(0.09) 
delay 0.27(0.22) 0.29(0.22) 0.05(0.07) 0.09(0.15) 0.13(0.09) 0.16(0.12) 0.11(0.09) 0.05(0.06) 

L-DOPA         
early 0.34(0.23) 0.31(0.17) 0.06(0.12) 0.06(0.07) 0.18(0.18) 0.17(0.13) 0.10(0.12) 0.07(0.05) 
delay 0.17(0.16) 0.18(0.08) 0.07(0.08) 0.05(0.04) 0.16(0.15) 0.15(0.11) 0.19(0.17) 0.11(0.15) 

Table 2. Mean hit rates and false alarms for the conditions of interest.  

ALL = all participants, n = 29; LOW = low-dose L-DOPA group, n = 10; MIDDLE = middle-

dose L-DOPA group, n = 9; HIGH = high-dose L-DOPA group, n = 10.  SD in parentheses. 
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 d’ Response bias 
 reward neutral reward neutral 

ALL     
Placebo     
early  0.77 (0.62) 0.88 (0.70) 1.41 (1.48) 1.83 (2.19) 
delay 0.66 (0.63) 0.83 (0.68) 1.29 (0.45) 1.86 (2.19) 
L-DOPA     
early  0.77 (0.71) 0.81 (0.60) 1.45 (1.68) 1.39 (1.61) 
delay 0.56 (0.48) 0.62 (0.59) 1.27 (0.50) 1.49 (1.60) 

LOW    
Placebo     
early  0.73 (0.82) 0.55 (0.56) 2.08 (2.43) 1.04 (0.26) 
delay 0.79 (0.63) 0.75 (0.78) 1.17 (0.29) 1.25 (0.68) 
L-DOPA     
early  0.43 (0.66) 0.43 (0.61) 0.96 (0.24) 1.15 (0.33) 
delay 0.56 (0.41) 0.39 (0.48) 1.15 (0.30) 1.18 (0.57) 

MIDDLE    
Placebo     
early  0.69 (0.58) 1.19 (0.82) 1.05 (0.29) 3.21 (3.62) 
delay 0.68 (0.46) 0.75 (0.71) 1.37 (0.36) 2.41 (2.71) 
L-DOPA     
early  0.98 (0.64) 1.04 (0.60) 1.29 (0.84) 1.96 (2.89) 
delay 0.87 (0.35) 1.01 (0.70) 1.37 (0.76) 1.96 (2.81) 

HIGH    
Placebo     
early  0.89 (0.47) 0.92 (0.64) 1.10 (0.34) 1.38 (0.59) 
delay 0.52 (0.77) 0.99 (0.60) 1.34 (0.64) 1.97 (2.69) 
L-DOPA     
early  0.91 (0.77) 0.97 (0.44) 2.09 (2.71) 1.12 (0.27) 
delay 0.28 (0.50) 0.50 (0.43) 1.30 (0.38) 1.39 (0.58) 

Table 3. Mean d‘ and response bias.  

ALL = all participants, n = 29; LOW = low-dose L-DOPA group, n = 10; MIDDLE = middle-

dose L-DOPA group, n = 9; HIGH = high-dose L-DOPA group, n = 10.  SD in parentheses. 
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I next performed a planned assessment of the potential dose-dependent effect 

of L-DOPA using regression analyses with the weight-adjusted dose of L-DOPA 

(150 mg / body-weight, mg/kg) and corrected remember and know hit rates for 

each condition separately (Table 4). Remember hit rates for neutral images at 

early test showed a significant quadratic and linear regression, explaining 28% 

(p = .014) and 22% (p = .011) of the variance respectively. At delayed test there 

was a significant quadratic regression alone, where the weight-adjusted dose of 

L-DOPA explained 29% (p = .013) of variance in an inverted ‘U-shape’ pattern 

(Figure 10a). In contrast, L-DOPA dose did not predict remember hit rates for 

the rewarded scene category, nor did it predict know hit rates for any condition. 

This points to a modulatory effect of L-DOPA on episodic memory for neutral 

items.  

  



109 
 

 

Figure 10. Delayed test results for recollection of neutral items.  

(a) Significant quadratic correlation (indicated by the dashed inverted U-shape line) 

between the weight-adjusted dose of L-DOPA and corrected remember hits for neutral 

items at delayed test.   

(b) Corrected remember hits on L-DOPA minus placebo for participants divided into 

three groups based on the amount of L-DOPA they received. Performance was 

significantly different between all three groups and better recollection on L-DOPA than 

placebo (indicated by performance above the dashed line) was seen for participants 

receiving the middle dose (average 2mg/kg).  

Bars represent mean ± 1 SEM. * two-tailed p<0.05  
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 Quadratic Linear 

Corrected hit rate F p R2  F p R2  

Early test       

     Remember Reward 0.587 .563 .043 0.170 .683 .006 

     Remember No Reward 5.028 .014* .279 7.463 .011* .217 

     Know Reward 1.498 .242 .103 2.986 .095 .100 

     Know No Reward 0.652 .529 .048 0.950 .338 .034 

Delayed test       

     Remember Reward 0.365 .698 .027 0.620 .438 .022 

     Remember No Reward 5.205 .013* .286 0.088 .769 .003 

     Know Reward 0.330 .722 .025 0.663 .423 .024 

     Know No Reward 1.490 .244 .103 0.094 .762 .003 

Table 4. Regression analyses between remember and know responses and weight-

adjusted dose of L-DOPA.  

There was a significant quadratic relationship between dose and early and delayed 

remember responses for neutral items. A linear relationship was also seen for early 

remember responses for neutral items. *p<0.05 
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To further assess whether L-DOPA enhanced memory recollection for neutral 

scenes, I subtracted hit rates on placebo from those on L-DOPA. To visualise 

this memory performance difference between L-DOPA and placebo, and to 

quantify the dose of L-DOPA that boosted memory, I ranked subjects based on 

the weight-adjusted L-DOPA dose they received and divided my cohort into 

three groups as follows: ‘low’ dose group (n=10), who received an average of 

1.7 mg/kg L-DOPA, ‘middle’ dose group (n=9), who received an average of 

2.0mg/kg and the ‘high’ dose group (n=10) who received an average of 

2.5mg/kg. Here I saw that for delayed recall of neutral items, memory 

performance in the middle dose group was higher on L-DOPA than on placebo 

(one-sample t-test, t(8)=2.767, p=.024) (Figure 10b). Performance in the low 

and high dose groups did not differ between drug or placebo (p = .083& p = 

.147 respectively).  Performance was significantly different between all three 

groups (one-way ANOVA F(2,26) = 7.803, p = .002; low versus middle group, 

p=.007; middle versus high group p=.005). This demonstrates that within the 

‘inverted U-shape’ relationship between L-DOPA and episodic memory, L-

DOPA significantly enhanced memory performance within a relatively narrow 

dose range. I note that individual drug-minus-placebo difference scores did not 

show a significant quadratic correlation with L-DOPA weight-adjusted dose 

(F(2,26)=2.518, p=.100), presumably because the difference scores were more 

noisy than the behavioural scores under the drug.   

In contrast, at early test  performance did not differ between L-DOPA and 

placebo for the middle and high dose-groups and participants in the low dose 

group performed better on placebo than L-DOPA (one-sample t-test, two-tailed: 

low t(9) = -3.097, p = .013; middle t(8) = 1.356, p=.212; high t(9) = 0.429, 
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p=.678). There was no significant between-group differences either (one-way 

ANOVA F(2,28) = 3.027, p=.066). Overall these results demonstrate that the 

beneficial effect of L-DOPA on episodic memory was more robust at delayed 

than early testing.  

Modulation of memory performance for neutral items at delayed test by L-DOPA 

was due to an effect on hits rather than false alarms. This was demonstrated by 

a significant 3-way interaction between drug (L-DOPA/placebo), memory 

performance (remember hits/false alarms) and dose group (low/middle/high) 

(F(1,26) = 7.80, p = .002).  As shown in Figure 11, post hoc tests showed a 

selective increase in remember hits in the middle dose group compared to the 

high dose group (t = 2.36, p = .031) and a trends towards increased remember 

hits in the middle dose group compared to the low dose group (t = 1.97, p = 

.065), with no difference in false alarm rates between groups.  
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Figure 11. Difference between L-DOPA and placebo remember hits and false alarms 

for neutral items at delayed test.  

The behavioural enhancement of memory by L-DOPA compared to placebo in the 

middle dose group was due to an increase in remember hits with no change in false 

alarms. Bars represent mean ± 1 SEM. * p<0.05  
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4.3.3 Order effects 

To assess for order effects, I performed a repeated measures ANOVA across 

all responses (remember plus know corrected hit rates) with drug (L-

DOPA/placebo), time of test (early/delayed), reward (reward-predicting 

scenes/neutral scenes) as within-subjects factors, and L-DOPA dose-group 

(low/middle/high) and order (L-DOPA day 1/ L-DOPA day 2) as between-subject 

factors. This showed no significant interactions with order (drug*order p = .183, 

drug*dose-group*order p = .975, time*order p = .248, time*dose-group*order p 

= .519, reward*dose*group*order p = .962, drug*time*order p = .270, 

drug*time*dose-group*order p = .709, drug*reward*order p = .723, 

drug*reward*dose-group*order p = .438, drug*time*reward*order p = .642, 

drug*time*reward*dose-group*order p = .585). As a follow-up, to determine if an 

order effect interacted with the key observation (that L-DOPA modulated 

corrected remember hits for neutral items), I performed a post hoc ANOVA for 

these responses only. This also showed no interactions with drug order 

(drug*time of test*dose-group*order F = 1.121, p = .343), confirming order 

effects were not present.  

 

4.3.4 Subsequent memory effects on fMRI data 

To analyse subsequent memory effects of the fMRI data acquired during 

encoding, I contrasted activation for items at encoding that were subsequently 

recognized (both remember and know responses) with items that were 

subsequently forgotten (classified as new during test). I collapsed over early 

and delayed tests and excluded participants with less than 10% of trials in a 
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category of interest to ensure analyses were statistically robust (where 

participants are excluded, I report the number of subjects for that particular 

analysis).  The contrast ‘remember and know > forget’ revealed subsequent 

memory activation in the left parahippocampal gyrus [Montreal Neurological 

Institute (MNI) space coordinates (x,y,z) -30,-38,-14; peak Z = 5.02; p<0.05 

whole brain FWE] and left mid-occipital gyrus [MNI -44,-72,26; peak Z = 5.27; 

p<0.05 whole brain FWE] (Figure 12a). This contrast did not reveal activation in 

the hippocampus or SN/VTA, nor was activity seen in these regions when 

examining for an interaction between memory and pharmacological 

manipulation (results at the uncorrected threshold p<0.001 are available on 

request).                    
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Figure 12. Medial temporal lobe activation for subsequent memory.  

(a) Difference in activation for subsequently recognised (remember and know) versus 

forgotten items in the left parahippocampal gyrus (n=29).  

(b) Activation in both left and right hippocampi, extending into parahippocampal gyri 

for remembered versus forgotten items (n=23). Displayed at the level of peak 

activation in the left hippocampus (circled).  

Images displayed at the uncorrected threshold p<0.001 on a group-averaged 

magnetization transfer image.  
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The behavioural effect I demonstrated of L-DOPA on episodic memory (indexed 

by remember responses) was restricted to neutral items. This motivated a 

further analysis to identify areas of activation that showed a subsequent 

memory effect for recollection of neutral items alone (n=23 participants that 

fulfilled the 10% correct criteria described above). This revealed activation in a 

cluster extending into the left hippocampus [MNI -26,-33,-11; peak Z = 4.01, 

p<0.05 FWE SVC for bilateral hippocampus ROI] (Figure 13a; see Table 5 for 

all uncorrected results).  Here there was no main effect of drug using a 

functional ROI approach (F(1,22) = 1.952, p = .176) (Figure 13b). For this 

contrast, I found an interaction between memory (remember > forget) and drug 

(L-DOPA > placebo) in the SN/VTA [MNI 5,-18,-18; peak Z = 4.15, p<0.01 FWE 

SVC for bilateral SN/VTA ROI], whereby greater activation for forgotten 

compared to remembered neutral scenes on placebo was reversed by L-DOPA 

(see Table 6 for full uncorrected results). Another cluster with a peak in the right 

ventricle [MNI 20,-37,9; peak Z = 5.07, p<0.05 whole brain FWE; 214 voxels], of 

which only a small part extended into the right hippocampus [MNI 18,-36,7; 

peak Z = 4.01, p<0.05 FWE SVC for bilateral hippocampus ROI; 16 voxels] will 

not be considered further.  I did not find any regions of activation for the 

interaction between memory and placebo > L-DOPA.  
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Figure 13. Dose-dependent ‘U-shaped’ modulation of hippocampal activity by L-

DOPA.  

(a,b) Left hippocampal activity for neutral items that were remembered compared to 

those that were forgotten.  

(c) Parameter estimates from this left hippocampal region (n=21) for remembered 

minus forgotten items showed a non-linear (‘U-shape’) modulation by the weight-

adjusted dose of L-DOPA (dashed line), indicating some participants showed no 

difference in encoding-related activity for subsequently remembered and forgotten 

items. Thus hippocampal activity at encoding did not predict an improvement in 

recollection seen in participants receiving the middle dose of L-DOPA (d).  Bars 

represent mean ± 1 SEM. *p < 0.05 
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No. 
voxels T Z x y z L/R region 

728 7.64 5.29 -34.5 -82.5 30 L mid occipital* 
41 6.03 4.58 18 -31.5 48 R mid cingulum 
58 5.41 4.27 30 -37.5 -12 R fusiform 
32 5.31 4.22 -42 -54 -10.5 L fusiform 
68 5.31 4.22 34.5 -73.5 34.5 R mid occipital 

217 5.05 4.07 -34.5 -39 -10.5 L 
hippocampal/ 
parahippocampal 

31 4.93 4.00 -24 1.5 -19.5 L amygdala 
64 4.91 3.99 13.5 -54 21 R precuneus 
84 4.65 3.84 -48 -54 -1.5 L mid temporal 

22 4.31 3.63 0 -37.5 -21  cerebellar vermis 
50 4.23 3.58 -9 -52.5 18 L precuneus 
13 4.17 3.54 24 -60 45 R sup occipital 
17 3.98 3.42 -19.5 -60 49.5 L sup parietal 
12 3.78 3.28 30 -79.5 12 R mid occipital 

Table 5. Remembered versus forgotten neutral items.  

Uncorrected results p<0.001, >10 voxels (*whole brain FWE-p<0.05) 

 

 

  



120 
 

No. 
voxels T Z x y z L/R region 

L-DOPA > placebo 

214 7.10 5.07 19.5 -37.5 9 R 
ventricle / 
hippocampus 

107 5.84 4.49 54 -25.5 37.5 R supramarginal 
55 5.82 4.48 4.5 -18 -19.5 R SN/VTA 
135 5.76 4.45 6 -60 48 R precuneus 
143 5.44 4.29 -9 -66 54 L precuneus 
200 5.44 4.28 -4.5 -55.5 -4.5 L cerebellum 
65 5.43 4.28 21 -70.5 55.5 R superior parietal 
89 5.32 4.22 9 -7.5 9 R thalamus 

23 4.81 3.94 -31.5 42 39 L midfrontal 
112 4.65 3.84 37.5 -49.5 40.5 R inferior parietal 
26 4.63 3.83 19.5 -58.5 69 R superior parietal 
106 4.56 3.78 31.5 43.5 31.5 R midfrontal 
77 4.44 3.71 -1.5 28.5 21 L anterior cingulum 
14 4.44 3.71 0 -66 15 L calcarine 

48 4.32 3.63 3 21 49.5 L 
supplementary 
motor area 

82 4.30 3.63 -39 12 1.5 L insula 
39 4.28 3.61 -33 33 31.5 L mid frontal 
26 4.15 3.53 24 -51 -18 R cerebellum 

21 4.12 3.51 0 -70.5 28.5 L cuneus 
39 4.11 3.50 -4.5 -40.5 51 L mid cingulum 
13 4.07 3.47 -1.5 -69 -12  vermis 
31 4.02 3.45 -3 -25.5 43.5 L mid cingulum 
14 3.95 3.40 15 -79.5 40.5 R cuneus 
12 3.95 3.39 1.5 -33 40.5 R mid cingulum 

11 3.93 3.38 -7.5 -78 51 L precuneus 
17 3.93 3.38 -16.5 -48 -15 L cerebellum 
14 3.92 3.38 25.5 51 30 R mid frontal 
20 3.91 3.37 -43.5 -40.5 40.5 L inferior parietal 
15 3.82 3.31 -12 -13.5 9 L thalamus 

placebo > L-DOPA 
15 5.02 4.06 15 -31.5 49.5 R paracentral 
88 5.73 3.89 -40.5 -28.5 46.5 L postcentral 

Table 6. Interaction between memory for neutral items (remember > forgotten) and 

drug.  

Uncorrected results, p<0.001, >10 voxels (no regions whole brain FWE-p<0.05) 
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4.3.5 Dose-dependent modulation of encoding activity  

Given the dose-dependent non-linear effect of L-DOPA on episodic memory 

performance for neutral events, I extracted parameter estimates from the 

functional hippocampal cluster for subsequent memory (remember minus 

forgotten responses for neutral events) on L-DOPA and used this measure in a 

regression analysis with the weight-adjusted dose of L-DOPA as the 

independent variable (as used for the behavioural regression analyses).   

I found that L-DOPA modulated hippocampal activation for subsequent episodic 

memory for neutral items in a non-linear ‘U-shape’ pattern (regression with L-

DOPA dose for n=21; quadratic: F(2,18) = 7.68, p = .004, R2 = .46; linear 

regression: F(1,19) = 2.27, p = .152, R2 = .11) (Figure 13c). Next, I explored 

how these parameter estimates related to the previously denoted weight-

adjusted dose groups, where I previously identified behavioural enhancement of 

memory by L-DOPA in those who received the middle dose. Within this cohort 

of 21 subjects, six participants were from the ‘low’ dose group, eight from the 

‘middle’ group and seven from the ‘high’ dose group. Hippocampal parameter 

estimates significantly differed between the three groups (one-way between-

group ANOVA: F(2,20) = 8.767, p = .002; mean difference between low and 

middle dose groups = 4.32, p = .003; mean difference between low and high 

dose groups = 3.77, p = .01). Figure 13d illustrates that whilst the low dose 

group showed what could be considered a ‘standard’ pattern of activation (more 

activity for subsequently remembered than forgotten items), both the middle and 

high dose groups showed no difference in encoding-related activity. Thus, I 

show a dose-dependent reduction of the subsequent memory effect by L-
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DOPA, evident in participants whose memory improved on L-DOPA (i.e. the 

middle dose group).   

I found activation in both the left hippocampus [MNI -29,-34,-6; peak Z = 4.38, 

p<0.05 FWE SVC] and right hippocampus [MNI 29,-33,-11; peak Z = 4.27, 

p<0.05 FWE SVC] for items remembered more than forgotten when collapsing 

across both rewarded and neutral items (Figure 12b; uncorrected results 

available on request). However these parameter estimates (n = 21) were not 

robustly modulated by the weight-adjusted dose of L-DOPA (left hippocampus: 

quadratic model F=3.01, p=.074, linear model F=1.79, p=.197; right 

hippocampus: quadratic model F=0.071, p=.932, linear model F=0.071, p 

=.793), which, in keeping with the behavioural results, indicated a high degree 

of specificity of my neural findings for neutral items. 
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4.4. Discussion  

I show that in healthy older adults, dopamine enhances recollection of neutral 

scenes in a dose-dependent inverted ‘U-shape’ pattern, where a dose of 

approximately 2 mg/kg bodyweight improved recollection in contrast to higher 

and lower doses which were ineffective.  This pattern was not explained by 

encoding-related activity in the hippocampus, supporting a view that dopamine 

modulates a post-encoding consolidation process. In fact my data fit neatly with 

an influential model of molecular consolidation in the hippocampus, where 

encoding only leads to a short-lasting strengthening of synaptic connections. 

Dopamine-dependent protein synthesis is then necessary to stabilize and 

maintain these connections (Lisman et al., 2011). My behavioural data align 

with these findings in my demonstration that L-DOPA in comparison to placebo 

impacts primarily on delayed, but not early, recollection performance.  

My neuroimaging data reveal whether the benefits of L-DOPA can be attributed 

to an enhancement in the hippocampal contribution to encoding. Molecular 

consolidation invokes effects on long-term plasticity as evident in animal models 

of long-term potentiation (LTP) (Frey and Morris, 1997; Smith et al., 2005; 

Bethus et al., 2010). There is behavioural evidence in rodents that dopamine 

antagonists at encoding do not impair hippocampus-dependent memories 

tested after short delays,  but do cause an impairment after long delays 

(Bethus, Tse et al. 2010). According to the ‘synaptic-tagging and capture 

model’, the benefit of dopamine arises out of an effect on protein synthesis 

linked to consolidation (Frey and Morris 1997; Morris 2003). In fact, this post-

encoding benefit of dopamine predicts that items which engender low levels of 

hippocampal activation at encoding, that may be classed as know or forgotten, 
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should be ‘rescued’ by subsequent protein-synthesis. This ability to later 

remember also weakly encoded events should lead to a decrease of encoding-

related hippocampal subsequent memory activation under L-DOPA. My data 

shows this to be the case where there is a tight dose-response relationship 

between L-DOPA dose, behaviour and fMRI effects.  An fMRI subsequent 

memory effect in the hippocampus was modulated in a dose-dependent non-

linear ‘U-shape’ manner, whereby it was entirely abolished under an optimal 

dose of L-DOPA. Note that the combination of behavioural assessment after 

long-retention intervals and fMRI data from the time of encoding is a key 

strength of my study allowing, for the first time in humans, identification of a 

post-encoding mechanism that accounts for improved memory recollection 

following L-DOPA.  

Evidence from molecular imaging studies using PET link dopamine receptor 

density to cognitive performance, whereby dopamine binding in the striatum and 

hippocampus correlate with standard neuropsychological measures of 

immediate recall (Takahashi et al., 2007; Cervenka et al., 2008). Importantly, 

dopamine loss with age of both D2 receptors and dopamine transporter mediate 

age-related episodic memory deficits (Bäckman et al., 2000; Erixon-Lindroth et 

al., 2005).  Such studies have used immediate recall as a measure of episodic 

memory, which suggests that dopamine can modulate encoding processes. My 

study expands on this empirical molecular imaging evidence by using a 

functional measure of encoding in relation to subsequent memory tested after 

long retention intervals to infer dopaminergic modulation of post-encoding 

consolidation processes. 
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An inverted U-shape effect of dopamine on working memory performance, 

which is dependent on dopamine effects within the prefrontal cortex, is well 

recognised (Williams and Goldman-Rakic, 1995; Goldman-Rakic et al., 2000; 

Cools et al., 2001). In this model, an optimal dose of dopamine enhances 

function but higher doses are detrimental. My results show the same effect of 

dopamine on episodic memory performance, as well as a dose-dependent 

modulation of hippocampal activity. I suggest that the memory improvement 

from the optimal dose of L-DOPA results from increased hippocampal protein 

synthesis. Whilst higher doses of dopamine may increase protein synthesis in 

the hippocampus, other mechanisms are likely to account for a lack of 

improvement in recollection. At a molecular level, excess dopamine can induce 

a long-term depression through inhibition of NMDA receptors, thereby inhibiting 

memory consolidation (Thirugnanasambandam et al., 2011). At a systems level, 

a model that explains the physiology underlying the inverted U-shape 

phenomenon in working memory invokes moderate amounts of dopamine 

enhancing excitatory inputs to pyramidal cells, with  higher levels associated 

with greater interneuron activity leading to inhibition of pyramidal cells and thus 

impaired cognitive performance (Goldman-Rakic et al., 2000).  It should be 

noted that my fMRI data rule out an enhanced excitatory input to pyramidal cells 

as the mode of action through which dopamine boosted late memory under 

optimal doses. Such a mechanism would have been associated with increased 

hippocampal activation for subsequently recollected events under the optimal 

dose of L-DOPA. Finally, although I report the subsequent memory effects of L-

DOPA in the SN/VTA for completeness, I did not entertain any specific 

hypothesis regarding the direction of effect of L-DOPA for this contrast due to 
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the potential complexity of the effect dopamine exerts in this region (for 

example, the effect of D2 autoreceptors on the firing rate of neurons as a 

consequence of manipulating the availability of dopamine). To determine if 

there is an optimal dose of L-DOPA for boosting the long-term persistence of 

episodic memories, future studies could combine my paradigm with a wide 

range of different dosages coupled with a measure of underlying dopamine 

reserve using molecular imaging methods (e.g. PET). 

The dose-dependent effects of L-DOPA on both recollection and hippocampal 

activity were restricted to neutral items. SN/VTA activation in response to 

novelty has been previously demonstrated (Bunzeck and Duzel, 2006), 

suggesting that dopamine neurons are responsive to novelty even in the 

absence of apparent reward (Duzel et al., 2009a; Krebs et al., 2009; Krebs et 

al., 2011) . I anticipated L-DOPA would improve memory recollection for neutral 

items since a novelty induced dopamine release in response to these items 

would be expected. This is indeed what I found.  

It is a well established observation that dopamine release is increased by 

reward-prediction (Schultz et al., 1997). This effect of reward has been 

associated with improved long-term memory in younger adults, where 

recollection was better for reward-predicting compared to neutral items when 

tested after a delay of three weeks (Wittmann et al., 2005). I included a reward 

component in my task as a way of manipulating endogenous dopamine release, 

so as to compare its effect to the exogenous manipulation through 

administration of L-DOPA. My hypothesis was that reward would shift the dose-

response relationship between memory performance at the delayed test and L-

DOPA to the left. However, I found no effect of reward on recollection at 
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delayed test or any interaction with L-DOPA. One possible reason for this is that 

reward-prediction in my task failed to elicit increased phasic dopamine release. 

Impaired reward processing, particularly in tasks with probabilistic reward, has 

been reported with increasing age (Marschner et al., 2005; Schott et al., 2007; 

Mell et al., 2009; Eppinger et al., 2011) and therefore the effects of reward-

predicting cues in my task, both alone and in combination with L-DOPA, may 

have been more variable. I speculate that an interesting implication of my data 

is that L-DOPA administration in older adults does not restitute the known 

effects of reward-anticipation, i.e. even under L-DOPA there is no benefit of 

reward on memory suggesting that a lack of dopamine cannot account for the 

lack of a reward-related memory enhancement of memory in old age.   

I took advantage of the inter-individual variation in body-weight to determine 

relative dose-dependent effects of L-DOPA, since the effective dose of L-DOPA 

is dependent  on body-weight (Zappia et al., 2002). The enhancement of 

memory in the middle dose group at delayed test on L-DOPA compared to 

placebo suggests that memory performance differences were due to the drug 

rather than body-weight or other variables associated with body-weight. 

Furthermore, health-related measures and general cognitive performance did 

not differ between the three body-weight dose groups and therefore were 

unlikely to account for differences in memory performance. However I 

acknowledge a limitation of this study is that other unmeasured variables 

associated with body-weight may have influenced memory performance across 

participants (Volkow et al., 2012).  

Since dopamine loss varies across older individuals, I cannot be certain that all 

participants responded to L-DOPA in a similar manner. Although I did not have 
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a true measure of intrinsic dopamine signalling, I obtained MT values of the 

SN/VTA. This demonstrated inter-individual variability in the structural integrity 

of dopaminergic midbrain but importantly, did not relate to differences in 

memory performance or body-weight. Thus MT is one measure that illustrates 

that although there was variable integrity of the dopaminergic midbrain amongst 

my cohort of older adults, this did not modulate memory performance or interact 

with L-DOPA.  Hence, I do not have a strong reason to believe that participants 

showed markedly different physiological responses to L-DOPA. Molecular 

imaging methods such as PET would be required to characterize body-weight 

related responsivity to L-DOPA more fully. 

The possibility of selectively influencing consolidation in humans, whilst not 

affecting encoding, has remained largely theoretical (with the exception of 

sleep-related studies) and to my knowledge my study is the first demonstration 

of this in conjunction with a measure of encoding activity. By combining 

behavioural and fMRI data with a pharmacological manipulation, I have 

identified a specific effect of dopamine on consolidation rather than encoding 

and could characterize its narrow dose-range. The research I report has wider 

implications given that an episodic memory decline with increasing age is both 

common and distressing.  Thus far, research into post-encoding consolidation 

processes in old age has been largely neglected. My findings indicate that this 

may be an important area for research because by enhancing post-encoding 

consolidation, memory for weakly encoded events can be rescued. Hence an 

exogenous modification of consolidation can potentially compensate for 

hippocampal deficits in encoding, thereby providing a new therapeutic 

perspective to memory dysfunction.  
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One intriguing finding from this study was that reward anticipation in older adults 

did not improve memory, as has been demonstrated in younger adults 

(Wittmann et al., 2005) (Bialleck et al., 2011). As discussed, this may be related 

to reward processing deficits in old age. In the next two chapters, I explore this 

further by examining reward-based decision-making in older age and the effects 

of dopamine on reward prediction.  
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Chapter 5  

Dopamine and reward prediction  

5.1. Introduction  

Aging is associated with a range of changes in cognition and behaviour in 

humans. For example, older adults are particularly poor at making decisions 

when faced with probabilistic rewards, possibly due to impaired learning of 

stimulus-outcome contingencies (Eppinger et al., 2011) (Mell et al., 2005). Such 

findings raise two fundamental questions, namely what are the substrates for 

learning in these circumstances and what accounts for this aberrant decision-

making.  

One function critical for such decisions is learning to predict rewards. There is 

ample evidence in animal experiments that the neuromodulator dopamine 

encodes the difference between actual and expected rewards (so-called ‘reward 

prediction errors’) (Schultz et al., 1997; Salamone et al., 2005). In humans there 

is now compelling evidence that functional activation patterns in the nucleus 

accumbens, a major target region of dopamine neurons (Haber et al., 2000),  

report  rewarding outcomes and associated prediction errors (O'Doherty et al., 

2003; O'Doherty et al., 2004; Daw et al., 2006; Knutson and Gibbs, 2007). A 

more direct link to dopamine is seen using pharmacological challenge with 

dopaminergic agents (Pessiglione et al., 2006; Rutledge et al., 2009).  
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In terms of what might go wrong an important clue is an age-related loss of 

dopamine neurons within  the substantia nigra/ventral tegmental area (SN/VTA) 

(Bäckman et al., 2006) (Duzel et al., 2010), evident both in histology and when 

using diffusion tensor imaging (DTI) as a marker of structural degeneration 

(Fearnley and Lees, 1991) (Vaillancourt et al., 2012). However, the 

consequences of this decline in dopamine for decision-making are unclear 

because of functional interactions among the triplet of representations of the 

reward, representations of prediction errors associated with that reward, and the 

learning of predictions that underpins the expression of those prediction errors. 

In older age, abnormal activity in the nucleus accumbens has been associated 

with suboptimal decision-making and reduced reward anticipation but normal 

responses to rewarding outcomes (Samanez-Larkin et al., 2010) (Schott et al., 

2007) (Cox et al., 2008). This has led to the suggestion that although older 

adults may maintain adequate representations of reward, they are unable to 

learn correctly from these representations. Interestingly, financial decision-

making in older adults can be improved to match that of younger adults when 

additional value information is provided (Samanez-Larkin et al., 2011). 

I studied  the effect of probabilistic rewarding outcomes on the separate reward 

and prediction components of a prediction error signal (Behrens et al., 2008) in 

healthy older adults. To that end, I employed a simple probabilistic instrumental 

conditioning problem - the two armed bandit choice task (Figure 14A). Older 

adults underwent DTI and fMRI in combination with a pharmacological 

manipulation using the dopamine precursor levodopa (L-DOPA) in a within-

subject double-blind placebo-controlled study. For behavioural comparison, I 
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tested younger adults using the same two armed bandit choice task without 

pharmacological manipulation. By using a reinforcement learning model I could 

determine which component of the prediction error (the actual and/or expected 

reward representation) was impaired in old age. DTI enabled us to examine 

nigro-striatal structural connectivity strength, based on a hypothesis that 

individual differences in this structural measure would predict inter-individual 

differences in baseline functional reward prediction error signalling. Crucial here 

is the fact that pharmacological enhancement of dopamine levels has been 

associated with greater prediction errors in younger adults (Pessiglione et al., 

2006) and higher learning rates in patients with Parkinson’s disease (Rutledge 

et al., 2009). I therefore predicted that boosting dopamine would increase the 

learning rate evident in behaviour as well as boost the representation of a 

reward prediction error in the nucleus accumbens of healthy older adults, 

specifically by increasing the component associated with the expected value. 
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Figure 14. Task design and performance in young and older adults .  

(a) On each trial, participants selected one of two fractal images which was then 

highlighted in a red frame. This was followed by an outcome where a green upward 

arrow indicated a win of 10 pence and a yellow horizontal bar indicated the absence of 

a win. The probability of obtaining a reward associated with each image varied on a 

trial-by-trial basis according to a Gaussian random walk. Two different sets of 

probability distributions (Set A and Set B) were used on the two testing days, 

counterbalanced across the order of L-DOPA/placebo administration.  

(b) Older adults (n = 32) in the placebo condition won less money than younger adults 

(n = 22). When the same older adults (n = 32) received L-DOPA, performance was 

similar to younger adults.  
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(c) Older adults were divided into groups depending on whether they performed 

better on L-DOPA than placebo (‘win more’, n = 15) or performed worse on L-DOPA 

than placebo (‘win less’, n = 17). Baseline (i.e. placebo) performance was not equal in 

the two groups, resembling an ‘inverted U-shape’.  

*p<0.05. Error bars indicate ±1SEM. 
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5.2. Methods 

Older subjects 

 32 healthy older adults aged 65 – 75 years (see Table 7 for demographics) 

were recruited via advertisement in local public buildings, our departmental 

website and from a database of healthy volunteers held at King’s College 

Hospital, London. Individuals were initially screened by telephone and excluded 

if they had any of the following: current or past history of neurological, 

psychiatric or endocrinological disorders (including diabetes mellitus and thyroid 

dysfunction), metallic implants, tinnitus, major visual impairment, history of drug 

addiction. To control for vascular risk factors, individuals known to have had a 

stroke or transient ischemic attack, myocardial infarction or require more than 

one anti-hypertensive medication were not eligible for participation. All 

participants had a Mini-Mental State Examination score 28, Geriatric 

Depression Scale score 7 (a score >11 would indicate depression) and a 

normal performance (within 1.5 SD of age-related norm) on a range of 

neuropsychological tests as follows: Rey Auditory and Verbal Learning Test 

(RAVLT) trials 1-5 (mean 50.2, SD 8.3), RAVLT trial 7 (mean 9.5, SD 2.3), D2 

cancellation test of attention (mean 152.3, SD 33.5), Digit Span Forward 

(median 8, range 4 – 9), Digit Span Backward (median 5, range 3 – 8), 

Controlled Oral Word Association test (COWA) phonemic fluency (mean 58.0, 

SD 14.0), COWA semantic fluency (mean 26.5, SD 6.6) and Visual and Object 

Space Perception number location (median 10, range 8-10). All subjects had a 

normal neurological examination (performed by a neurologist R.C.) ensuring 

participants did not have concurrent undiagnosed neurological conditions.  
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Age (yrs) 70.00 (3.24) 

Gender M:F 11:21 

Education (yrs) 16.28 (2.88) 

National Adults Reading Test IQ 121.72 (6.36) 

Body mass index 26.6 (4.40) 

Non-smoker 31 (97%) 

Normotensive 30 (94%) 

Mini-Mental State Examination 30 (28-30) 

Geriatric Depression Scale 1 (0-7) 

Table 7. Demographic details of 32 older adults.   

Results are mean (SD), number (%) or median (range) for 32 participants. 

 

 

Written informed consent was obtained from all participants. The study received 

ethical approval from the North West London Research Ethics Committee 2.  

Participants in the current study were selected from a larger sample of 42 

healthy older adults aged 65 – 75 years who had participated in a previous 

study within the preceding six months. Preselection was based on an 

assessment of magnetization transfer (MT) values of the SN/VTA in relation to 

another study performed by the same participants. MT values of the SN/VTA 

were normally distributed across the sample of 32 participants in the current 

study and MT did not correlate with any measures used in this study 

(behavioural, model parameters, functional parameter estimates or DTI 

metrics).  
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Four participants experienced side-effects (emesis) from L-DOPA 

administration. These participants remained in all analyses as they vomited 

more than 2.5 hours after L-DOPA ingestion, well after completion of the task 

and they did not feel unwell when performing the task in the scanner.  

 

Younger subjects 

 In a control behavioural experiment, 22 healthy young adults (mean age 25.18 

yrs, SD 3.85; 12 females) were recruited via the University College London 

subject pool and word of mouth. Participants were screened to ensure they 

were healthy with no history of neurological, psychiatric or other major health 

disorders, no medications, no recent illicit drug use and no recent participation 

in other research studies involving medication. These participants performed 

the same behavioural task on a laptop with no pharmacological manipulation 

and no MRI scanning.  

 

Study procedure 

This was a double-blind within-subject placebo controlled study. Older 

participants attended on two occasions, one week apart and performed the 

same task on both days, 60 minutes after ingestion of either levodopa (150mg 

levodopa + 37.5mg benserazide mixed in orange juice; L-DOPA) or placebo 

(orange juice alone), the order of which was counterbalanced. Benserazide 

promotes higher levels of dopamine in the brain whilst minimising peripheral 

side-effects such as nausea and vomiting. To achieve comparable drug 

absorption across individuals, subjects were instructed not to eat for up to two 

hours before commencing the study.  
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Repeated physiological measurements (blood pressure and heart rate) and 

subjective mood rating scales (Bond and Lader, 1974) were recorded on both 

days on arrival and just prior to task performance. For all measurements, I 

calculated the change from baseline to prior to performing the task, and 

compared these difference measures drug and placebo (paired t-tests, two-

tailed). Heart rate was significantly lower following placebo compared to 

following L-DOPA (64 bpm and 68 bpm respectively, t = -3.65, p = .001).  

Systolic blood pressure was significantly lower following L-DOPA compared to 

placebo (141 and 152 respectively, t (30) = 2.61, p = .014) whereas diastolic 

blood pressure was unchanged (81 and 83 respectively, t (30) = 1.632, p = 

.113). There was no significant difference in how alert (t = -0.68, p = .502), 

content (t = 1.24, p = .224) or calm (t = -0.11, p = .911) participants rated 

themselves as feeling after receiving L-DOPA compared to placebo. After 

completing the task, on both days participants performed an unrelated episodic 

memory task and on one day had DTI scanning.  

 

Task design 

Figure 14A depicts the task. Participants were given both written and verbal 

instructions and undertook five practice trials before pharmacological 

manipulation. On each trial of this two armed bandit choice task, participants 

chose one of two stimuli (abstract fractal images; later I designate them as 

actions 0 and 1) within a 2 seconds time-window. The chosen image was then 

highlighted in a red frame (total duration image displayed = 3 seconds) and 

followed by an outcome of either a green upward-pointing arrow (indicating a 

win of 10 pence) or a yellow horizontal bar (indicating the absence of a win), 
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displayed for 1 second, followed by a jittered fixation cross (1 ± 0.5 seconds).  If 

they did not choose a stimulus, the written message “you did not choose a 

picture” was displayed. The same pair of images was used throughout the task, 

although their position on the screen (left or right) varied. The task consisted of 

220 trials separated into two sessions with a short break in between. 

Participants’ earnings were displayed at the end of the task and given to them 

at the end of the test day. 

The probabilities of obtaining a reward for each stimulus were independent of 

each other and varied on a trial-to-trial basis according to a Gaussian random 

walk. Random walks were generated using an identical procedure to Daw et al., 

(2006) (Daw et al., 2006) briefly described here as follows. On choosing the ith 

image on trial t, the probability of receiving a reward varied between 0 and 1 

and was drawn from a truncated Gaussian distribution (standard deviation σo = 

0.04) around a mean μi,t. At each timestep these means diffused in a decaying 

Gaussian random walk. The decay parameter was 0.9836, the decay centre θ 

was 0.50 and the diffusion noise v was zero-mean Gaussian (standard 

deviation σd = 0.028). Two sets of random walk distributions (Set A and Set B; 

see Figure 14A) were generated for the two days of testing, the order of which 

was counterbalanced across the group with regards to the order of 

pharmacological manipulation. Different pairs of fractal images were used on 

the two days of testing and randomly assigned amongst participants.   
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Reinforcement learning models 

I fitted choice behaviour to a standard reinforcement learning model on a trial-

by-trial basis. This involves      -values for each action         on trial t, 

which are updated if the subject chooses action      as: 

                          

                  
 

Here,           is the expected value of the chosen option, which was set to zero 

at the beginning of the experiment.      is the reward prediction error which 

represents the difference between the actual outcome      and the expected 

outcome         , where     R was one (win) or zero (no win). The free 

parameter   defined subjects’ learning rate, with higher values reflecting  

greater weight being given to more recent outcomes and leading to a more 

rapid updating of  expected value.  

 As standard, I used a softmax rule to determine the probability of choosing 

between the two stimuli on trial t. If       are the propensities for doing action   

on trial t, this uses 

          
            

                        
 

 in which the inverse temperature parameter   indexes  how deterministic 

choices were. Larger   reflects less stochastic choices. 

I consider two cases for        The simplest makes            . However, it 

is often found that subjects have a tendency either to repeat or avoid doing the 

same action twice (Lau and Glimcher, 2005) (Schonberg et al., 2007). To 

account for this, I also consider a model in which                        

allowing an extra boost or suppression   associated with the action performed 
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on the previous trial. I fit all sessions (L-DOPA and placebo) for each participant 

using expectation-maximization in a hierarchical random effects model. 

It has previously been noted that it can be hard to infer both         

independently of each other (Schonberg et al., 2007) (Rutledge et al., 2009), 

since it is their product that dominates behaviour in certain regimes of learning. I 

therefore adopted the strategy of first fitting a full random effects model as if 

they are independent, and then clamping   to the mean of its posterior 

distribution and re-inferring   using the random effects model. Amongst other 

things, this implies that I do not make strong claims about having inferred 

differences in true learning rates. 

In a second step, I used the mean posterior    parameter at the group level 

obtained on the preceding step (single fixed        for older adults; single 

fixed        for younger adults; note that data for young and older adults 

were analysed separately) as a fixed parameter in two, nested, RL models 

reflecting the two possibilities for        The first has one parameter, the 

learning rate, . The second has the learning rate   and the 

perseveration/alternation parameter  . 

For older adults only, I then repeated the two steps described above but instead 

estimated two separate   terms for the L-DOPA and placebo conditions. I then 

fixed each   at their respective posterior group means (               for 

the L-DOPA and placebo respectively) and proceeded as before to test the two 

models outlined above.  
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Model fitting procedure and comparison 

For older adults I compared the two RL models described above with a single 

fixed beta and the same two RL models with two fixed betas (four models in 

total; Table 8). For younger adults I compared the two RL models with a single 

fixed beta since younger adults did not undergo pharmacological manipulation. 

Procedures for fitting the models were identical to those used by Huys et al. 

(Huys et al., 2011) and by Guitart-Masip et al. (Guitart-Masip et al., 2012a) and 

are fully described there. For each subject and model I found the maximum a 

posteriori estimate of each parameter. I used the expectation-maximization 

algorithm to infer the maximum likelihood values of the parameters of the upper 

level prior over the parameters in the random effects model. This prior 

distribution on the parameters regularizes the inference and prevents 

parameters that are not well constrained from taking on extreme values. Before 

inference, all parameters were suitably transformed to enforce constraints (log 

and inverse sigmoid transforms). All model-fitting procedures were verified on 

surrogate data generated from a known decision process.  

For Bayesian model comparison, I computed the model evidence, which was 

approximated in two steps. First, the integral over the hyperparameters was 

approximated via the Bayesian Information Criterion (BIC) at the group level 

(Kass and Raftery, 1995) using the integral over the individual parameters. This 

latter integral was approximated by sampling from the fitted priors. The BIC 

(which penalizes for model complexity) and pseudo-r2 statistic (Camerer and 

Hua Ho, 1999) are reported in Table 8. A pseudo-r2 statistic was defined as (r – 

l)/r where l and r are the log likelihoods of the data under the model and under 

purely random choices respectively (P = .50 for all trials).  
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 single fixed beta two fixed betas 

 alpha alpha and 

perseveration 

alpha alpha and 

perseveration 

pseudo-r2 0.3707 0.3752 0.3662   0.3705 

BIC 12498 12464 12592 12560 

Table 8. Quality of behavioural fits in older adults for four models.  

Data were fit with a learning model with beta fixed either across all data (‘single fixed 

beta’) or fixed separately for placebo and L-DOPA (‘two fixed betas’), and the free 

parameters alpha (learning rate) and choice perseveration. The winning model as 

determined by the lowest Bayesian information criterion (BIC) consisted of a single 

fixed beta, a learning rate and a choice perseveration parameter.  
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Behavioural analysis  

I analysed task performance (amount of money won) using two-tailed paired t-

tests (L-DOPA vs placebo in older adults) and independent t-tests (young vs 

old). Reinforcement learning model parameters (learning rate and 

perseveration) were not normally distributed (Shapiro-Wilk and Kolmogorov-

Smirnov p<0.05). Therefore I used two-tailed Wilcoxon Signed Ranks Tests to 

compare these parameters between the L-DOPA and placebo conditions. Two-

tailed Pearson’s and Spearman’s correlations were used to analyse normally 

distributed and non-normally distributed data respectively. 

 

Image acquisition 

All MRI images were acquired using a 3.0T Trio MRI scanner (Siemens) using a 

32-channel head coil.  

 

Anatomical MRI acquisition 

A structural multi-parameter map protocol employing a 3D multi-echo fast low 

angle shot (FLASH) sequence at 1mm isotropic resolution was used to acquire 

magnetization transfer (MT) weighted (echo time, TE, 2.2-14.70ms, repetition 

time, TR, 23.7ms, flip angle, FA, 6 degrees), proton density weighted (TE 2.2-

19.7ms, TR 23.7ms, FA 6 degrees) and T1 weighted (TE 2.2-14.7ms, TR 

18.7ms, FA 20 degrees) images (Helms et al., 2008b). B1 mapping (TE  37.06 

and 55.59ms, TR 500ms, FA 230:-10:130 degrees, 4mm3 isotropic resolution) 

was acquired to correct the T1 maps for inhomogeneities in the transmit 

radiofrequency field (Lutti et al., 2010). A double-echo FLASH sequence (TE1 

10ms, TE2 12.46ms, 3 x 3 x 2 mm resolution and 1mm gap) was used to 
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measure local field inhomogeneities and correct for the image distortions in the 

B1 mapping data. Using in-house code, a set of MT quantitative maps were 

extracted for each subject from the anatomical scans described above (Helms 

et al., 2008a). 

 

fMRI data acquisition 

Functional data using echo-planar imaging was acquired on two days.  On each 

day, scanning consisted of two runs each containing 194 volumes (matrix 64 x 

74; 48 slices per volume; image resolution= 3 x 3 x 3mm; TR 70ms, TE 30ms). 

The fMRI acquisition protocol was optimized to reduce susceptibility-induced 

BOLD (blood oxygen level dependent) response sensitivity losses in inferior 

frontal and temporal lobe regions (Weiskopf et al., 2006a). Six additional 

volumes at the beginning of each series were acquired to allow for steady state 

magnetization and were subsequently discarded. Individual field maps were 

recorded using a double echo FLASH sequence (matrix size = 64 x 64; 64 

slices; spatial resolution = 3 x 3 x 2 mm; gap = 1 mm; short TE = 10 ms; long 

TE = 12.46 ms; TR = 1020 ms) for distortion correction of the acquired EPI 

images. Using the FieldMap toolbox, field maps were estimated from the phase 

difference between the images acquired at the short and long TE. 

 

fMRI data preprocessing 

Data were analysed using SPM8 (Wellcome Trust Centre for Neuroimaging, 

UCL, London). Pre-processing included bias correction, realignment, unwarping 

using individual fieldmaps, co-registration and spatial normalization to the 

Montreal Neurology Institute (MNI) space with spatial resolution after 
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normalization of 2 x 2 x 2mm. For the normalisation process, unified 

segmentation was used to classify anatomical T1w images into grey matter, 

white matter and cerebrospinal fluid. Using diffeomorphic registration algorithm 

(DARTEL),  the flowfields required to warp T1w white and gray matter maps to 

MNI space  were generated (Ashburner, 2007). These flowfields were then 

applied to the EPI images to normalise them to MNI space.  Finally, data were 

smoothed with a 6mm FWHM Gaussian kernel. The fMRI time series data were 

high-pass filtered (cutoff = 128 s) and whitened using an AR(1)-model. For each 

subject a statistical model was computed by applying a canonical hemodynamic 

response function (HRF) combined with time and dispersion derivatives.  

 

fMRI data analysis 

My main aim was to determine the effects of L-DOPA on the components of the 

reward prediction error signal (              ) in the nucleus accumbens. For 

this purpose, I fit a model using the group posterior mean   distribution from the 

winning model to determine the value of          on every trial. The general 

linear model for each subject at the 1st level consisted of regressors at the time 

of stimulus display separately for when a choice was made, when no choice 

was made and at the time of stimulus outcome.      and          were used as 

parametric modulators of outcome, as the prediction error at this time 

represents the difference between the received reward and the expected 

reward given the choice on that trial. Separate design matrices were calculated 

for the L-DOPA and placebo conditions. To capture residual movement-related 

artefacts, six covariates were included (the three rigid-body translation and 

three rotations resulting from realignment) as regressors of no interest. Finally I 
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also included 18 regressors for cardiac and respiratory phases in order to 

correct for physiological noise. 

At the first level, I implemented a contrast for the prediction error i.e.      

         .  At the second level, I examined the contrast                 

collapsed across L-DOPA and placebo conditions. I used an uncorrected 

threshold of p<0.001 to produce a whole-brain statistical parametric map of 

regions encoding prediction errors from which I identified a region in the right 

nucleus accumbens that responded to reward prediction errors. I used an 

anatomical mask (described below) to constrain this functional ROI. I used the 

Marsbar toolbox (Brett, 2002) to extract the parameter estimates from this 

region to enter into a two (       ) by two (L-DOPA/placebo) repeated 

measures ANOVA to determine the effects of L-DOPA. I conducted post hoc 

tests to characterise the impairment in expected value representation (one-

tailed one-sample t-tests for each condition to test the null hypothesis that they 

are not different from zero, and two-tailed paired t-tests to compare the effect of 

L-DOPA to placebo).  

 

Nucleus accumbens mask: To define the nucleus accumbens in older 

subjects, I used a subject-derived mask for this region. I used Freesurfer’s 

(version 4.5.0, http://surfer.nmr.mgh.harvard.edu/) automated recon-all pipeline 

to parcellate cortical and subcortical regions (Fischl et al., 2004). Each subjects’ 

nucleus accumbens mask was visually inspected to ensure accurate 

segmentation. These nucleus accumbens masks were warped to MNI space 

using DARTEL flowfields as previously described and then group-averaged and 

http://surfer.nmr.mgh.harvard.edu/
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thresholded at 0.3. This mask (290 voxels) was then used to anatomically 

constrain the functional ROI.  

 

Time course extraction 

The main aim of this analysis was to visualise the effect of reward and expected 

value on the BOLD signal, at the time of the choice and at the time of the 

outcome, from the nucleus accumbens functional ROI over the course of a trial. 

In the fMRI SPM analysis it was not possible to simultaneously test for the 

effects of value expectation on the choice and the outcome phases. This is 

because the time of the choice and the time of the outcome were very close 

together in time (3s apart) and including the same parametric modulator on both 

time points would have resulted in highly correlated regressors. Thus, although 

the SPM model included regressors at the time of the choice and time of the 

outcome, I only included parametric modulators at the time of the outcome, so 

focussing on outcome prediction errors only.  

Time courses were extracted from preprocessed data in MNI space. I 

upsampled the extracted BOLD signal to 100 ms. The signal was divided into 

trials and resampled to a duration of 15 s with the onset (presentation of the 

stimuli) occurring at 0s, the time of the choice occurring between 0-2s and the 

time of the outcome at 3s. I then estimated a general linear model across trials 

at every time point in each subject independently, where reward and expected 

value were the regressors of interest. These regressors were not 

orthogonalised and therefore competed for variance which is a particularly 

stringent test (Behrens et al., 2008). I calculated group mean effect sizes at 
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each time point and their standard errors, plotted separately for the placebo and 

L-DOPA conditions.  

 

Diffusion tensor imaging acquisition  

I acquired diffusion weighted images using a spin-echo echoplanar imaging 

(EPI) sequence, with twice refocused diffusion-encoding to reduce eddy-

current-induced distortions (Reese et al., 2003). Amplitudes of diffusion-

encoding gradients were calibrated for unbiased measurement of diffusion 

directions and improved fiber tracking (Nagy et al., 2007). I acquired 75 axial 

slices (whole brain to mid-pons) in an interleaved order [1.7 mm isotropic 

resolution; image matrix = 96 × 96, field of view = 220 × 220 mm2, slice 

thickness = 1.7 mm with no gap between slices, repetition time (TR) = 170 ms, 

echo time (TE) = 103 ms, asymmetric echo shifted forward by 24 phase-

encoding (PE) lines, readout bandwidth (BW) = 2003 Hz/pixel] for 61 images 

with unique diffusion encoding directions. The first seven reference images 

were acquired with a b-value of 100 s/mm2, the remaining 61 images with a b-

value of 1000 s/mm2 (Nagy et al., 2007). Two DTI sets were acquired with 

identical parameters except that the second was acquired with a reversed k-

space readout direction to allow removal of susceptibility artefacts post-

processing (Andersson et al., 2003). Since the SN/VTA was a major region of 

interest, I optimised the quality of my images by using pulse-gating to minimize 

pulsation artefact within the brainstem. The total data acquisition protocol lasted 

approximately 40 minutes depending on each individuals’ heart rate. One 

participant was unable to tolerate scanning therefore DTI data was collected 

from 31 individuals. 
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DTI tractography 

All tractography was performed in each individuals’ native space. Tractography 

analysis was carried out from all voxels in each subject’s anatomically-defined 

right SN/VTA ROI. I restricted my analysis to the right since this is where I 

determined my functional nucleus accumbens ROI. The medial and lateral 

boundaries of the SN/VTA were defined on each subjects’ MT-weighted image 

where it is easily distinguishable from the surrounding tissues due to its bright 

grey colour in contrast to the adjacent cerebral peduncle. This region was 

manually defined by R.C. on every visible slice (between seven to ten slices) as 

per Düzel et al (Düzel et al., 2008) using MRIcro (Rorden C, 2000). Ten 

randomly selected SN/VTA ROIs were segmented by a second trained 

individual and showed high inter-rater reliability (Intraclass correlation = 0.87, 

p<0.0005). The single target mask of the right striatum was defined using the 

caudate and putamen masks from the AAL toolbox (Brett, 2002) (see Figure 17 

for seed and target masks). This MNI-space mask was normalised to each 

individuals’ native space using the inverse of the normalisation parameters. To 

avoid erroneous tractography results, I created individual subject exclusion 

masks using ITK-SNAP (Yushkevich et al., 2006). The ventricles and CSF 

spaces were automatically defined using the “snake” function, and particular 

attention was paid to manually refine the region surrounding the cerebral 

peduncle and medial wall of the temporal lobe.  

FSL version 4.1.4 was used for DTI pre-processing. First, images were eddy 

current corrected. Correction for susceptibility artefacts was performed as 

previously described (Andersson et al., 2003). The low b images were averaged 

and used to generate a brain mask for skull stripping. Skull stripping was 
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performed manually for each subject using SPM8. Initial estimation of tensors 

was performed using dtifit allowing fractional anisotropy (FA) to be calculated, 

and all the results were visually checked prior to full estimation of the diffusion 

parameters. BEDPOSTX was used to estimate the probability distributions of 

two fiber populations at each voxel (Behrens et al., 2007). Finally, FSLs non-

linear registration algorithm FNIRT was used to generate two warp fields to 

allow sampling between diffusion and structural space, and the results of these 

were manually checked for all individuals to ensure optimal alignment.  

Tractography was run using FSL’s probtrackX software (Behrens et al., 2007). 

Each voxel was sampled 5000 times with a burn in of 1000, curvature threshold 

of 0.2, modelling two fibers per voxel, utilising the previously calculated warp 

fields. I generated ‘relative connectivity strength’ maps as per Forstmann et al. 

(Forstmann et al., 2011) using the following steps. Here the probabilistic index 

of connectivity (PICo) between a seed and any other voxel in the brain is given 

by the number of traces arriving at the target site and is equivalent to the term 

"samples" used by other authors. Step 1: Generate individual seed voxel 

PICo maps for every seed voxel. In each map, the voxel values represents 

the number of samples (from 0 - 5000) originating from the seed passing 

through a voxel, using probtrackX. Step 2: Generate individual ROI 

probability maps. First I calculated the maximum PICo value that occurred 

within the ROI of interest across all seed PICo maps. I then thresholded the 

individual seed PICo maps at 0.02% of the maximum ROI PICo value, as per 

Aron et al. (Aron et al., 2007). The individual seed maps were combined so that 

the value at each ROI voxel then becomes the maximum PICo for that voxel 

across every seed map. Step 3: Generate "Relative Connectivity Strength" 
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maps. The ROI probability maps were divided by the sum of all PICo values 

within that specific map. 

 

DTI analysis  

The aim of my tractography analysis was to determine if inter-individual 

differences in nigro-striatal connectivity influenced the observed baseline 

variability in functional prediction error signalling. Figure 17 is a single-subject 

example demonstrating that the tractography target mask incorporated the 

functional ROI defined in the nucleus accumbens and that tracts from the 

SN/VTA targeted this region. I used Spearman’s correlations to relate 

connectivity strength to prediction error signalling (     and          parameter 

estimates from the functional nucleus accumbens ROI) (Schwarzkopf et al., 

2012). To identify outliers I converted connectivity strength to z-scores 

(conventionally defined as z <-3 or z >3). Although none of the participants were 

outside this range, one participant had a z-score of 2.83 (equivalent to 

connectivity strength = 0.006) and was therefore excluded from the reported 

results. Even so, including this potential outlier in the analysis did not change 

the results. To take into account other potential contributing variables, I 

performed partial Spearman’s correlations with the following covariates: age, 

gender, total intracranial volume and size of the manually defined seed (right 

SN/VTA) region. Note that the size of the target region was not included since 

this was the same for all participants.  To determine if local structural 

organisation, determined by FA values of the SN/VTA seed and nucleus 

accumbens functional ROI also impacted expected value signalling I performed 
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additional Pearson’s correlations (since FA values were normally distributed) 

between FA and          on placebo.   
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5.3. Results  

5.3.1 Behavioural performance in young and older adults 

32 older adults (mean age 70.00 years, SD 3.24; Table 7) on placebo and L-

DOPA and 22 younger adults (mean age 25.18 years, SD 3.85) performed a 

two armed bandit choice task (Figure 14A). The amount of money won by older 

adults performing the task did not differ under L-DOPA (mean £12.94 SD 0.81) 

compared to placebo (mean £12.64 SD 0.89) (paired t test: t(31) = 1.53, 

p=.137). However, older adults on placebo won significantly less money than 

younger adults (independent samples t test: t(52) = 2.05, p = .045) whereas 

there was no difference in the amount won between older adults on L-DOPA 

and younger adults (t(52) = 0.971, p = .336) (Figure 14B).  

Older adults completed a similar number of trials under both conditions 

(placebo: mean 218.16, SD 1.94; L-DOPA: mean 218.47, SD 1.74) as younger 

adults (mean 218.50, SD 2.44) (all p >0.4). Older adults had similar choice 

reaction times on placebo (mean 796.81 ms, SD 152.89) and L-DOPA (mean 

781.49 ms, SD 140.17) (paired t-test, t (31) = 1.01, p = .321), but overall were 

slower under both conditions compared to younger adults (mean 629.69 ms, SD 

156.41) (independent t-tests, young vs. old-placebo: t (52) = 3.91; young vs old-

L-DOPA: t (52) = 3.73; both p <0.0005).  

 

5.3.2 Reinforcement learning behaviour 

I analysed trial-by-trial choice behaviour using a standard reinforcement 

learning model with a fixed   parameter (Figure 15A). A model with a single 

fixed    = 1.27 across drug and placebo conditions, one single learning rate and 

one choice perseveration parameter provided the best model fit of participants’ 
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choices among the models that I compared, indexed by the lowest BIC values 

(Table 8). When calculating the BIC, the log evidence was penalized using the 

number of data points associated with each parameter.  

In order to examine the effect of increasing dopamine levels on older 

participants’ behaviour in the task, I used the Wilcoxon Signed Ranks Tests test 

to determine whether the learning rates (fitted using a single prior distribution 

including the drug and the placebo) differed between L-DOPA and placebo. I 

found that participants had a significantly higher learning rate under L-DOPA 

compared to placebo (Z = -3.03, p = .002; Figure 15B). In contrast, choice 

perseveration was unaffected by L-DOPA (Z = -0.58, p = .562). In younger 

adults, a model with a fixed   = 1.13 and single learning rate provided a better 

fit to participants’ choices than when a choice perseveration parameter was 

added to the model (BIC 4348.15 and 4361.01 respectively).  The learning rate 

in younger adults (median   = 0.62, range 0.01 – 0.94) was intermediate 

between, and not significantly different from older adults either under the 

condition of placebo (Z = -1.32, p = .187) or L-DOPA (Z = -1.25, p = .211).   
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Figure 15. Reinforcement learning model and behaviour.  

(a) Predicted choices from the learning model (red) closely matched subjects’ observed 

choices (blue). The red lines show the same time-varying probabilities, but evaluated 

on choices sampled from the model. Plots are shown for older (n = 32) and young (n = 

22) adults for the two different sets of probability distributions.  

(b) Older adults (n = 32) had a higher learning rate under L-DOPA compared with 

placebo and did not differ from young adults (n = 22).  

(c) Older adults who won more on L-DOPA than placebo (‘win more’, n = 15) had a 

significantly higher learning rate under L-DOPA than placebo, whereas learning rates 

did not differ between placebo and L-DOPA for older adults who won less on L-DOPA 

than placebo (‘win less’, n = 17). *p<0.05. Error bars are ±1 SEM. 
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5.3.3 L-DOPA and striatal prediction errors in older adults 
I focussed my imaging analysis on reward predictions errors in the nucleus 

accumbens. Using a functional ROI approach I first defined reward sensitive 

voxels in the nucleus accumbens, namely voxels where there was an enhanced 

response at the time of outcome to actual rewards that was greater than that to  

expected rewards (              ). Note that this is a liberal definition of 

reward prediction errors as voxels showing a significant effect with this contrast 

may not satisfy all the criteria to be considered for a canonical reward prediction 

error, namely both a positive effect of reward and a negative effect of expected 

value (Li and Daw, 2011) (Behrens et al., 2008). Using this approach I identified 

a cluster in the right nucleus accumbens [MNI x,y,z = 15, 11, -8; peak Z = 4.45, 

p<0.001 uncorrected; 34 voxels] (Figure 16A).  

Using this anatomically-constrained functional ROI I extracted the parameters 

estimates for      and          separately within these activated voxels. My two 

(placebo/L-DOPA) by two (              ) repeated measures ANOVA revealed 

a main effect of L-DOPA (F(1,31) = 5.712, p = .023), suggesting that 

administration of L-DOPA had an impact on the representations associated with 

the two components of the reward prediction error (Figure 16A). Importantly, 

this signal was only compatible with a full prediction error signal (positive 

correlation between BOLD and      along with a negative correlation between 

BOLD and         ) when participants were under L-DOPA (one- tailed one-

sample t-test:      placebo t = 3.72, p<0.001;          placebo t = -0.11, p = 

.455; R(t) L-DOPA t = 1.92, p = .033;          L-DOPA: t = -1.73, p = .047). This 

was due to a more negative representation of expected value on L-DOPA 

compared to placebo (paired t-test, t(31) = 2.37, p = .024) whereas there was 
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no difference in actual reward representation between L-DOPA and placebo 

(t(31) = 1.38, p = .179). These results show that the neural signature of reward 

predication errors were more strongly represented post administration of L-

DOPA, and indeed only after L-DOPA was a full reward prediction error signal 

observed. I found no correlation between the total amount of money won during 

the task and the magnitude of the expected value on either placebo 

(Spearman’s rho = -0.16, p = .379) or L-DOPA (rho = -0.25, p = .166).  

To visualise the effects of L-DOPA on reward prediction over the course of a 

trial, I extracted the BOLD time course from the nucleus accumbens functional 

ROI and performed a regression of this fMRI signal against      and         . 

Typically, I would expect to see a pattern of a reward ‘prediction’ (i.e. 

anticipation) at the time of the choice indicated by a positive effect of          

and a reward ‘prediction error’ at the time of the outcome, indicated by both a 

positive effect of      and negative effect of         , as indeed  has been 

shown in younger adults (Behrens et al., 2008). As shown in Figure 16C, my 

time course analysis revealed exactly this expected pattern but only in the L-

DOPA condition. Hence the abnormal response to the expected value observed 

on placebo (lack of reward anticipation at the time of the choice and absent 

negative expectation at the time of the outcome) was ‘restored’ when dopamine 

levels were enhanced. This analysis complements the aforementioned fMRI 

SPM analysis which showed that a full reward prediction error was only present 

on L-DOPA, by revealing abnormal expected value representations throughout 

the course of a trial.    
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Figure 16. Reward prediction in the nucleus accumbens in 32 older adults  

(a) A region in the right nucleus accumbens [peak voxel MNI co-ordinates: 15, 11, -8] 

showed greater BOLD activity for reward than for expected value (     >         ) at 

the time of outcome. However, the lack of a negative effect of          under placebo 

meant that the prediction error signal was incomplete at baseline. L-DOPA increased 

the negative effect of          resulting in a full prediction error signal (i.e. both a 

positive effect of       and negative effect of         ). *one-tailed one sample t-test 

p<0.05; +two-tailed paired t-test. Bars ±1 SEM. 

(b) L-DOPA only acted on parameter estimates for expected value (        ) in 

participants who won more on L-DOPA than placebo (‘win more’, n = 15) whereby 

these participants only demonstrated a negative effect of          under L-DOPA 

compared to placebo. Parameter estimates did not differ between L-DOPA and 
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placebo for participants who won less on L-DOPA (‘win less’, n = 17). +two-tailed paired 

t-test. Bars ±1 SEM. 

(c) Time course plots of the nucleus accumbens BOLD response to reward and 

expected value. Taking the typical BOLD haemodynamic response into account, the 

time window at 4-6 seconds approximately corresponds with the BOLD responses 

elicited at the time participants’ made a choice (green box). The time window at 7-10 

seconds approximately corresponds with the BOLD responses elicited when the 

outcomes were revealed (grey box). At baseline (i.e. under placebo) the only reliable 

signal observed was a response to reward (binary response to the outcomes: 

win/neutral). After boosting dopamine levels with L-DOPA, a full reward prediction 

error was observed, involving a positive expectation of value at the time of the choice 

together with a positive reward response and a negative expectation of value at the 

time of the outcome. Reward anticipation (positive effect of          at the time of the 

choice, red curve) was only observed on L-DOPA. Solid lines (blue = reward, red = 

expected value) are group means of the effect sizes, shaded areas represent ±1 SEM. 
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5.3.4 Relationship between anatomical connectivity and 

prediction errors in older adults 

My analysis identified substantial inter-individual variability in reward prediction 

error signals in the nucleus accumbens at baseline (i.e. under placebo). I 

hypothesised that this might be associated with the known variability in the age-

related decline of dopamine neurons from the SN/VTA, and in principle indexed 

through anatomical nigro-striatal connectivity.  Using DTI and probabilistic 

tractography, I defined a measure of connection strength between the right 

SN/VTA and right striatum (Figure 17A). Nigro-striatal tract connectivity strength 

measured with DTI correlated with the fMRI parameter estimate under placebo 

associated with the expected value          (Spearman’s rho = -.46, p = .010) 

but not with that associated with the reward      (Spearman’s rho = .12, p = 

.54) (Figure 17B & C). These correlations were significantly different from each 

other suggesting that individual functional activation differences of the 

representation of expected value but not reward were linked to anatomical 

connectivity strength between the SN/VTA and striatum (Fishers r-to-z 

transformation, z = -2.32, p = .002 two-tailed).  This relationship between 

greater tract connectivity strength and more negative expected value parameter 

estimates remained significant after controlling for age, gender, total intracranial 

volume and size of the seed region from which tractography was performed 

(partial Spearman’s rho = -0.40, p = .041). Neither the fractional anisotropy (FA) 

of SN/VTA nor nucleus accumbens functional ROI correlated with expected 

value (Pearson’s r = .26 and r = .17, p = .16 and p = .38 respectively), 

suggesting that this correlation was related to circuit strength rather than local 

structural integrity as determined by FA.  
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If connectivity strength is a marker of structural integrity of the nigro-striatal 

dopamine circuit, then one prediction is that enhancement of dopamine levels 

could overcome the relationship between reduced anatomical connectivity and 

less robust representations of expected value. As predicted, I found that that 

connectivity strength and expected value parameter estimates under L-DOPA 

were no longer correlated (Spearman’s rho = 0.04, p = .85; Fishers r-to-z 

transformation comparing the correlation of connectivity strength with          

on placebo and the correlation of connectivity strength with          on L-DOPA: 

z = -2.02, p = .043 two-tailed).  
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Figure 17. Anatomical connectivity and baseline functional prediction errors  

(a) Single subject example of probabilistic tractography (gold = tract) from a seed in the 

right substantia nigra/ventral tegmental area (red) to the striatum target (green) which 

overlapped with the functional nucleus accumbens ROI (circled).  

(b,c) Under placebo, older individuals with higher white matter nigro-striatal tract 

connectivity strength had a more negative effect of expected value       whereas 

there was no correlation with reward     . The solid line is the regression slope, 

dashed lines represent 95% confidence intervals.  Both plots n = 30. 

(d) A similar pattern was observed in both older participants who won less on L-DOPA 

(‘win less’, n = 16) and older participants who won more on L-DOPA (‘win more’). 

Connectivity strength values are measured in arbitrary units.  
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5.3.5 Baseline individual differences 

I assessed how baseline (i.e. placebo) performance across all 32 older 

individuals related to the computational model parameters and fMRI 

parameters. I found that individual differences in task performance (total won) 

correlated positively with the learning rate ( ) (Spearman’s Rho = 0.39, p = 

.027) but did not correlate with choice perseveration (Spearman’s Rho = -0.07, 

p = .704). With regards to BOLD parameter estimates, task performance 

correlated negatively with expected value (        ) (Pearson’s r = -0.42, p = 

.016) but did not correlate with reward (    ) (Pearson’s r = -0.07, p = .707). 

Thus higher baseline performance was associated with a higher learning rate 

and more negative expected value representations in the nucleus accumbens. 

Task performance across all 32 older adults on L-DOPA did not correlate with  , 

     or          (Table 9).   
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 Total won (n = 32)  

 placebo  L-DOPA  

Model parameter   

alpha placebo  Rho = 0.39,p = .027*  - 

alpha L-DOPA  - Rho = 0.06, p = .727  

stickiness placebo Rho = -0.07, p = .704  

stickiness L-DOPA - Rho = -0.33, p = .062 

fMRI parameter estimates   

    placebo  R = -0.07, p = .707  - 

          placebo  R = -0.42, p = .016*  - 

     L-DOPA  - R = -0.21, p = .241  

         L-DOPA - R = -0.25, p = .171  

Table 9. Individual differences on task performance and computation model and 

functional neuroimaging parameters.  

Alpha = learning rate; Stickiness = choice perseveration. Rho = two-tailed Spearman 

correlations; R = two-tailed Pearson correlations; *p < 0.05 
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5.3.6 Post-hoc tests: performance in older adult subgroups 

20 out of 32 individual older participants improved on L-DOPA compared to 

placebo (increase in the total amount won ranged from £0.10 to £3.00). 10 older 

participants performed worse on L-DOPA compared to placebo (decrease in the 

total amount won ranged from £0.50 to £1.50) and two participants won the 

same amount under both conditions. Overall, this suggests that L-DOPA 

improved performance in some older adults to the level of younger adults.  

To explore this further, I defined two subgroups of older adults according to their 

difference in performance (total won on L-DOPA minus total won on placebo) 

and performed a median split, forming a ‘win less’ group (total won L-DOPA < 

placebo) and a ‘win more’ group (total won L-DOPA > placebo). Since the 

middle two participants had the same difference in performance and this 

amount was small (+ £0.30) I included them in the ‘win less’ rather than ‘win 

more’ group, such that the ‘win more’ group was a more robust representation 

of improved performance on L-DOPA.   Therefore the ‘win less’ group consisted 

of 17 participants (performance L-DOPA vs placebo: t(16) = -3.35, p = .004) and 

the ‘win more’ group  consisted of 15 participants (performance L-DOPA vs 

placebo: t(14) = 6.68, p < 0.0005) (Figure 14C).  

First I examined the pattern of performance in these two subgroups which 

resembled an ‘inverted U-shape’ where rather than equivalent baseline levels of 

performance, participants with high baseline levels of performance on placebo 

performed worse on L-DOPA and participants with low baseline levels of 

performance improved on L-DOPA (repeated measures ANOVA with total won 

(L-DOPA/placebo) as the within-subject factor and group (win less/win more) as 

the between-subject factor; performance* group interaction: F(1,30) = 53.53, p < 
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0.0005; independent t test comparing performance in the placebo condition 

between the ‘win less’ and ‘win more’ group: t(30) = 3.91, p = <0.0005; 

comparing performance in the L-DOPA condition between the ‘win less’ and 

‘win more’ group: t(30) = -2.66, p = .012) (Figure 14C). 

In line with previously described non-linear effects of dopamine on cognition (for 

a recent review see (Cools and D'Esposito, 2011)), this pattern of performance 

may relate to the baseline integrity of an individuals ‘dopaminergic status’. Thus 

participants with lower baseline dopamine levels (‘win more’ placebo) 

underperform at baseline and improve when dopamine levels are increased to a 

more optimal level for the task (‘win more’ L-DOPA). In contrast, participants 

with optimal underlying dopamine levels for the task exhibit high baseline 

performance (‘win less’ placebo) and perform when dopamine levels are further 

increased due to an ‘overdose’ effect (‘win less’ L-DOPA). Also of note is that 

young adults won £13.17 (SD 1.00) on this task, which was similar to winnings 

by older ‘win less’ adults on placebo and older ‘win more’ adults on L-DOPA. 

Overall, this interpretation is in keeping with a variable dopamine decline 

amongst older adults. I also confirm this was not an artefact of practice effects 

since the total won under L-DOPA and placebo did not interact with the order of 

drug administration (L-DOPA day 1/ L-DOPA day 2) (non-significant 

performance*order interaction: F(1,30) = 0.20, p = .657).  

Second I assessed nigro-striatal DTI connectivity in these subgroups. Although I 

had no direct measurement of participants’ baseline dopaminergic status, my 

DTI measure of nigro-striatal connectivity strength, a possible indirect marker of 

nigro-striatal structural integrity,  was higher in participants with higher baseline 

performance (‘win less’ placebo vs. ‘win more’ placebo independent t-test: t(29) 
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= 2.40, p = .023). Reviewing the correlation between DTI connectivity strength 

and expected value representations under placebo, I found this correlation was 

significant for individuals in the ‘win more’ group (Rho = -0.59, p = .035; n = 13) 

but not in the ‘win less’ group (Rho = -0.44, p = .076; n = 17), although I note 

these correlations were performed with smaller sample sizes and both groups 

show a similar pattern of a negative association between expected value 

parameter estimates and connectivity strength (Figure 17D).  

Third, I examined learning rate differences. Here I found that higher learning 

rates under L-DOPA compared to placebo were evident in the ‘win more’ group 

(Wilcoxon z = -2.90, p = .004) but not in the ‘win less’ group (z = -0.97, p = .332) 

(Figure 15C). 

Finally, I examined the BOLD response within these subgroups. Critically, here I 

found that the only significant change of parameter estimates on placebo 

compared to L-DOPA was for expected value () in the ‘win more’ group (Figure 

16B) (         placebo vs. L-DOPA ‘win more’ group: t = 2.26, p = .040) (placebo 

vs. L-DOPA for      ‘win less’,      ‘win more’ and           ‘win less’, all p 

>.14). Thus for the participants who performed significantly better on L-DOPA 

than placebo, expected value representations in the nucleus accumbens were 

significantly more negative under L-DOPA than placebo.  
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I note that participants in this group also had a negative effect of           under 

L-DOPA even though their performance was worse on L-DOPA. One possible 

explanation is that for these participants, L-DOPA may have had adverse 

effects on prediction error signalling in other extra-striatal brain regions linked to 

worse task performance. Alternatively, L-DOPA may have had other adverse 

effects on unmeasured variables unrelated to prediction error signalling.    

In summary, these post hoc tests link performance to neural correlates and 

provide a mechanism through which L-DOPA may improve performance, 

namely via an effect on higher learning rates and a more negative expected 

value representation in the nucleus accumbens.   
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5.4. Discussion 

I used a probabilistic reinforcement learning task in combination with a 

pharmacological manipulation of dopamine, as well as structural and functional 

imaging, to probe reward-based decision-making in old age. Older adults 

performed less well than younger adults on this decision-making task, but 

performance improved to equivalent levels following enhancement of dopamine 

levels with L-DOPA in older adults. As a group, older adults had an incomplete 

prediction error signal in the nucleus accumbens at baseline (i.e. on placebo) 

consequent upon a lack of an expected neuronal response to expected reward 

value. Inter-individual variability of the expression of expected value was also 

evident and these baseline inter-individual differences in functional signalling 

were tightly coupled to nigro-striatal structural connectivity strength, determined 

using DTI. In older adults, L-DOPA increased the task-based learning rate and 

modified the BOLD correlates of both reward anticipation and the reward 

prediction error signal in the nucleus accumbens.  Critically, increasing 

dopamine levels led to a more complete prediction error signal by restoring the 

representation of expected value in the nucleus accumbens.  

Previous studies have shown that older adults perform worse on probabilistic 

learning tasks than their younger counterparts (Mell et al., 2005) (Eppinger et 

al., 2008) (Samanez-Larkin et al., 2011). Since it is widely held that dopamine 

neurons encode a reward prediction error signal, it is conceivable that 

dopamine decline that occurs as part of the normal aging process could account 

for these behavioural deficits. Indeed this was a prime motivation for the use of 

pharmacological manipulation with L-DOPA in this study. Whilst there was no 

significant difference in task performance in older adults on placebo versus L-
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DOPA, a difference between older and younger adults on placebo was 

abolished when the older adults were subject to treatment with L-DOPA. Using 

a reinforcement-learning model, I also found that older adults had a higher 

learning rate on L-DOPA compared to placebo, consistent with findings in 

patients with Parkinson’s Disease (a dopamine deficit disorder) whose learning 

rates when on dopaminergic medication were higher than when off their 

medication, albeit in that instance no difference was noted in overall 

performance (Rutledge et al., 2009). As in that study (Rutledge et al., 2009), it is 

impossible to make a definitive distinction between learning rate, magnitude of 

the prediction error that arises from learning, and the stochastic way that 

learning leads to choice.  

There are two important points in each trial at which a temporal difference (TD) 

error type signal can be anticipated namely at the time of choice, when the TD 

error is the expected value of the chosen option,  and at the time of outcome 

when the TD error is the difference between the reward actually provided and 

the expected value. Decomposing the outcome signal into these separate 

positive and negative components is important because the response to reward 

is highly correlated with the full prediction error, potentially readily confusing  the 

two (Behrens et al., 2008) (Li and Daw, 2011) (Guitart-Masip et al., 2012a). In 

my experiment, under placebo, although the representation of the actual reward 

appeared normal, neither of the components of the expected value signal at 

choice or outcome was present in nucleus accumbens BOLD signal. This 

absence is consistent with the few behavioural (Samanez-Larkin et al., 2011) 

and neuroimaging studies (Schott et al., 2007; Samanez-Larkin et al., 2010) 

that have suggested that older adults have abnormal expected value 
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representations, although it is important to note that I did not find a substantial 

behavioural impairment. Most critically, I show that under L-DOPA, both 

components of the expected value signal were restored. 

There are at least two possible explanations for the absence of the expected 

value signal. One is that a putative model-free decision-making system, most 

closely associated with neuromodulatory effects (Schultz et al., 1997)  

(Dickinson, 2002) is impaired. This would render behaviour subject to the 

operation of a model-based system, which is thought to be less dependent on 

dopaminergic transmission (Dickinson et al., 2000). This possibility is supported 

by evidence that older adults perform better than younger adults in tasks 

requiring a model of the environment (e.g. where future outcomes are 

dependent on previous choices) (Worthy et al., 2011). Reconciling it with the 

observations that suppressing (de Wit et al., 2012) or boosting (Wunderlich et 

al., 2012) dopamine in healthy young volunteers respectively suppresses or 

boosts model-based over model-free control is more of a challenge.  

The other possibility for the absence of the model-free expected value signal is 

that it is still calculated normally, but that when dopamine levels are low, it is not 

apparent in nucleus accumbens BOLD signal.  One can certainly expect that 

dopamine levels will have an impact on the state of striatal neurons (Nicola et 

al., 2000), but the impact on the BOLD signal of cortical and dopaminergic input 

to, and local activity within the striatum, remain unclear. In future studies, it 

would be interesting to use paradigms based on recent reports (e.g. (Daw et al., 

2011; Simon and Daw, 2011)) in older participants with and without L-DOPA to 

investigate the balance of model-free and model-based control. 



173 
 

Enriching the above picture are recent studies in healthy young participants 

showing that at least some aspects of the representation in striatal BOLD of the 

expected value component of the TD error are conditional on a requirement for 

action (Guitart-Masip et al., 2012b). In Guitart-Masip et al (2012a) the 

representation of expected value was not modulated by L-DOPA; however, it is 

not clear whether this is an effect of the more extensive training provided there 

(which can render behaviours insensitive to dopamine manipulations (Choi et 

al., 2005)), or the fact that  the expected value did not fluctuate in a way that 

was relevant for choice. My current study raises an interesting possibility that 

dopamine might only modulate the neural representation of expected value 

when it is behaviourally relevant for the task at hand. 

 My DTI connectivity analysis provides support for the notion that neuronal 

representations of expected value, and hence appropriate reward prediction 

error signalling, rely on the integrity of the dopaminergic system. The 

connectivity strength of tracts is one DTI metric reported to predict age-related 

performance differences (Coxon et al., 2012; Forstmann et al., 2012). I found 

that individuals with stronger connectivity between SN/VTA and striatum had 

more robust value representations in the nucleus accumbens. Although my 

findings can be interpreted within the context of the well-defined decline of 

nigro-striatal dopamine neurons with increasing age, I acknowledge that DTI 

measures of connectivity are not a direct mapping of dopamine neurons, but 

rather reflect white matter tract strength between the SN/VTA and striatum. 

Also, the direction of information flow cannot be inferred from DTI-based 

tractography (Le Bihan and Johansen-Berg, 2012). Interestingly, I did not 

observe a relationship between fractional anisotropy (FA) of either the SN/VTA 
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or striatum with functional activity in the accumbens. FA values characterise the 

extent of water diffusion, so providing an indirect measure of myelin, axons and 

the structural organisation of both grey and white matter (Vaillancourt et al., 

2012) (Draganski et al., 2011). My results are therefore an indication that inter-

individual anatomical differences at the level of nigro-striatal circuit-strength 

rather than local grey-matter integrity within SN/VTA or striatum determine the 

success of prediction error signalling in healthy older adults.  

In summary, my results pinpoint structural and functional mechanisms that 

underpin the variable expression of reward-based decision-making in older 

adults. By establishing a link between dopaminergic signalling in the nucleus 

accumbens and the representations of expected value in the brain my results 

provide a potential therapeutic route towards tackling age-related impairments 

in decision-making.  

In the next chapter I present a study which further explores individual structural 

anatomical differences, this time focussing on integrity of the SN/VTA, in 

relation to the flexibility of reward-based learning.    
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Chapter 6  

Midbrain structural integrity and 

flexible learning  

6.1. Introduction 

To efficiently harvest reward and avoid punishment, humans need to learn 

appropriate instrumental responses (Dickinson, 2002) (O'Doherty et al., 2004). 

Recent data suggest that this basic form of behavioural adaption is surprisingly 

inflexible in humans (Guitart-Masip et al., 2012a). While healthy young human 

adults readily learn to act (‘go’) in order to obtain a reward or not to act (‘no-go’) 

in order to avoid a punishment, they have difficulties learning to act in order to 

avoid a punishment and not to act to obtain a reward (Guitart-Masip et al., 

2012a). This inflexibility in learning suggests that signals that predict rewards 

are prepotently associated with behavioural activation promoting approach 

behaviour whereas signals associated with punishments are intrinsically 

coupled to behavioural inhibition promoting avoidance. These behavioural 

tendencies can be described as Pavlovian biases that corrupt the flexibility of 

instrumental learning (Gray, 2000; Dayan et al., 2006). Computational modelling 

in younger adults has shown that the observed pattern of behaviour is captured 

by a model incorporating a Pavlovian bias, where the strength of this bias is 
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related to failure to learn the conflicting conditions: no-go to obtain reward and 

go to avoid punishment (Guitart-Masip et al., 2012a). 

Dopamine neurons, which project from the substantia nigra/ventral tegmental 

area (SN/VTA) of the midbrain, are important for instrumental learning (Schultz 

et al., 1997; Salamone et al., 2005) including signalling reward predictions 

errors (Schultz et al., 1997), energizing actions (Niv et al., 2007) and driving 

novelty-related exploratory behaviour (Duzel et al., 2010; Lisman et al., 2011). 

In humans, dopaminergic medication after learning influences the brain 

responses to action and reward anticipation (Guitart-Masip et al., 2012b). 

Importantly, the SN/VTA undergoes degeneration with aging (Fearnley and 

Lees, 1991; Bäckman et al., 2006; Vaillancourt et al., 2012). Age-differences in 

instrumental learning have been linked to functional activity in dopaminergic 

target regions including the striatum and prefrontal cortex (Samanez-Larkin et 

al., 2010) (Mell et al., 2009) (Fera et al., 2005) (Aizenstein et al., 2006). 

Structural degeneration of the SN/VTA and associated circuits may be indexed 

in vivo by magnetization transfer (MT) imaging, where lower MT values reflect 

decreased structural integrity (Eckert et al., 2004; Düzel et al., 2008; Tambasco 

et al., 2011).  

The primary goal of this study was to relate individual differences of SN/VTA 

integrity in old age to flexible instrumental learning for competing responses (“to 

act” or “not to act”) to rewards and punishments. I hypothesized that older 

adults with higher SN/VTA integrity would show greater learning flexibility. Thus 

instrumentally learning to act in order to avoid a punishment and not to act to 

obtain a reward would be equivalent to learning to act in order to obtain a 

reward or not to act in order to avoid a punishment, the latter two behaviours 
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being Pavlovian response biases that tend to dominate learning. I obtained trait 

measures of novelty seeking to test the relationship with instrumental learning 

and structural integrity. Separate data was obtained from younger adults to 

explore age-group comparisons of learning and structural integrity of SN/VTA.   
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6.2. Methods 

Older subjects: 42 healthy older adults aged 64-75 years (mean 69.12 yrs SD 

3.44; 29 females; 40 right-handed) were recruited via the departmental website, 

advertisement in local public buildings and by word of mouth. Individuals were 

initially screened by telephone and excluded if they had any of the following: 

current or past history of neurological, psychiatric conditions or endocrinological 

disorders, metallic implants, tinnitus, major visual impairment, history of drug 

addiction. To control for vascular risk factors, individuals known to have had a 

stroke or transient ischemic attack, myocardial infarction or other significant 

cardiovascular history, diabetes mellitus or hypertension requiring more than 

one anti-hypertensive medication were not eligible for participation. All 

participants undertook a neuropsychological test battery to ensure normal 

global cognitive performance (Table 10). On the basis of this no subjects were 

excluded from the analysis (all participants scored within 1.5 SDs of the age-

related norm for each test). All subjects had a normal neurological examination 

(performed by myself) ensuring participants did not have concurrent 

undiagnosed neurological conditions. MRI scans were visually inspected to 

ensure no participants had severe white matter changes or other major lesions. 

Clinical examination, neuropsychological testing, the go/no-go task and 

structural MRI scanning were all performed in a single four hour session. 

Written informed consent was obtained from all participants. The study received 

ethical approval from the North West London Research Ethics Committee 2. 
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Test Cognitive domain Score  

MMSE Global cognitive screen 30 (28-30) 

GDS Subjective depression rating scale 1 (0-7) 

NART IQ Predicted IQ 120.31 (7.21) 

RAVLT total score trials 1-
5 

Declarative memory, immediate free 
recall 

49.71 (8.55) 

RAVLT trial 7* Declarative memory, delayed free 
recall 

9.54 (2.66) 

D2 cancellation score Visuo-motor speed & attention 150.38 (35.11) 

Digit span forward Working memory 7 (4-9) 

Digit span backward Working memory 5 (3-8) 

COWA FAS total score Phonemic fluency 57.24 (13.23) 

COWA category total 
score 

Semantic fluency 25.40 (6.61) 

VOSP number location Visuo-spatial perception 10 (8-10) 

TPQ Novelty seeking score Novelty seeking personality 15.29 (5.23) 

TPQ Harm avoidance 
score 

Harm avoidance personality 9.57 (6.45) 

TPQ Reward dependence 
score 

Reward dependence personality 18.52 (3.88) 

Table 10. Neuropsychological test scores in older adults.  

Scores are either mean (SD) or median (range). * n=41, one subject missing data; 

MMSE: Mini-Mental State Examination; GDS: Geriatric Depression Scale; NART IQ: 

National Adult Reading Test Intelligence Quotient; RAVLT: Rey Auditory and Verbal 

Learning Test; WAIS: Wechsler Adult Intelligence Scale; COWA: Controlled Oral Word 

Association test; VOSP: Visual and Object Space Perception; TPQ: Tridimensional 

Personality Questionnaire  
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Young subjects: Data from two previously published experiments performed at 

the host institution were obtained to enable separate age-comparisons of 

behavioural data and MRI data. In one, behavioural data from 47 healthy young 

adults (28 female; mean age 23.1 years, SD 4.1) performing the same go/no-go 

task was obtained allowing comparisons of behavioural performance between 

young and older adults (Guitart-Masip et al., 2012a).   Structural neuroimaging 

including MT imaging was available for 30 of these young adults, which I used 

to examine the correlation between SN/VTA integrity and task performance. 

These scans were obtained on a different MRI scanner (3-T Siemens Allegra) 

using a different acquisition protocol that did not include B1 correction (see 

(Guitart-Masip et al., 2012a) for details), thus direct age-comparisons of MT 

values could not be made with this dataset and mine. 

Therefore in the second study, neuroimaging data from 12 healthy young adults 

(6 females; mean age 33.8, SD 12.84) using the same MRI scanner and 

imaging sequence was obtained to allow comparison of MT values of SN/VTA 

between young and older adults (Lambert et al., 2012).  

 

2.2 Go/no-go task  

Participants performed a probabilistic monetary go/no-go task as described in 

Guitart-Masip et al., (2012) (Guitart-Masip et al., 2012a) (Figure 18). The correct 

response (to execute or withhold an action) to four cues (abstract fractal 

images) had to be learnt through trial and error, in order to win or avoid losing 

money. Participants were told that at the start of the task they would not know 

the correct responses (to press or not press a button) for each image but that 
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these would become clear through trial and error. After seeing an image 

(1000ms), there was a variable interval (250-2000 ms) after which participants 

were presented with a circle (target detection, 1500ms), at which point they had 

to either press a button (go) with their dominant hand to indicate the target side 

within 1000ms or not press a button (no-go) . Following this, the outcome was 

depicted for 1000ms by a green up-pointing arrow (indicating a win of £1), a red 

down-pointing arrow (indicating a loss of £1) or a yellow horizontal bar (neither 

win nor lose). The outcome was probabilistic, whereby in the win conditions 

80% of correct choices and 20% of incorrect choices were rewarded (the 

remaining 20% of correct and 80% of incorrect choices leading to a neutral 

outcome). In the lose conditions, 80% of correct choices and 20% of incorrect 

choices avoided punishment. The probabilistic nature of the task was made 

clear to participants in the written and verbal instructions prior to the task. Thus, 

the task consisted of four trial types depending on the nature of the fractal cue 

presented at the beginning of the trials: 

 Press the correct button in the target detection task to gain a reward (go 

to win, GW) 

 Press the correct button in the target detection task to avoid punishment 

(go to avoid losing, GAL) 

 Do not press a button in the target detection task to gain a reward (no-go 

to win, NGW) 

 Do not press a button in the target detection task to avoid punishment 

(no-go to avoid losing, NGAL) 

The task consisted of 240 trials (60 trials for each of the four conditions, 

presented in a randomised fashion) and lasted approximately 35 minutes. At the 
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beginning of the task, participants were told they could win between £5 to £15 

and were given their earnings on task completion. Prior to the actual task, 

participants undertook a brief training session of ten practice trials in which only 

the target detection circles were presented. Subjects were instructed to press 

the corresponding button for every target (left arrow key on the keyboard if the 

target appeared on the left of the screen and visa versa for right). This allowed 

participants to familiarise themselves with the appropriate buttons on the 

computer keyboard and obtain an overall feel for the speed of the task without 

exposure to any of the cues used in the main task.  

 

 

Figure 18. Probabilistic monetary go/no-go task 
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Tridimensional Personality Questionnaire 

Each participant completed the Tridimensional Personality Questionnaire (TPQ) 

(Cloninger, 1987a).  This self-report questionnaire consists of 100 true-false 

items measuring three personality traits: novelty-seeking, harm-avoidance and 

reward-dependence.  

 

MRI scanning 

A high-resolution structural MRI dataset for each participant was obtained on a 

3.0T MRI scanner (Magnetom TIM Trio, Siemens Healthcare, Erlangen, 

Germany) using a 32-channel head coil. A structural multi-parameter map 

protocol employing a 3D multi-echo fast low angle shot (FLASH) sequence at 

1mm isotropic resolution was used to acquire MT weighted (echo time, TE, 2.2-

14.70ms, repetition time, TR, 23.7ms, flip angle, FA, 6 degrees), proton density 

weighted (TE 2.2-19.7ms, TR 23.7ms, FA 6 degrees) and T1 weighted (TE 2.2-

14.7ms, TR 18.7ms, FA 20 degrees) images (Helms et al., 2008b). B1 mapping 

(TE  37.06 and 55.59ms, TR 500ms, FA 230:-10:130 degrees, 4mm3 isotropic 

resolution) was acquired to correct the T1 maps for inhomogeneities in the 

transmit radiofrequency field (Lutti et al., 2010). A double-echo FLASH 

sequence (TE1 10ms, TE2 12.46ms, 3 x 3 x 2 mm resolution and 1mm gap) 

was used to measure local field inhomogeneities and correct for the image 

distortions in the B1 mapping data. Using in-house code, the MT, T1 and R2* 

(1/T2*) quantitative maps were extracted for each subject from the anatomical 

scans described above. Proton density scans were not used for  any analyses 

but were acquired as they are crucial for estimating MT and T1 parameters (for 
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full details regarding the generation of quantitative maps see (Helms et al., 

2008b)). MT, T1 and R2* values reflect structural integrity (Wolff and Balaban, 

1989; Eckert et al., 2004; Düzel et al., 2008; Tambasco et al., 2011), myelin and 

iron content respectively (Martin et al., 2008; Martin, 2009; Draganski et al., 

2011). 

 

Imaging analysis 

Data processing and analysis was performed using Statistical Parametric 

Mapping software (SPM8; Wellcome Trust Centre for Neuroimaging, London, 

UK) and MATLAB 7.8 (Mathworks, Sherborn, MA, USA). Two independent 

analyses were conducted with the structural MRI data from older adults. The 

first was a region-of-interest analysis (ROI) of the SN/VTA. The second was a 

whole-brain voxel-based analysis.  

 

Definition of regions of interest  

Substantia nigra/ventral tegmental area (SN/VTA): The medial and lateral 

boundaries of the SN/VTA were defined on each subjects’ MT-weighted image 

where it is easily distinguishable from the surrounding tissues due to its bright 

grey colour in contrast to the adjacent cerebral peduncle. For each subject, this 

region was manually defined on every visible slice, usually between seven to 

ten slices as per Düzel et al (Düzel et al., 2008) using MRIcro (Rorden C, 2000). 

Figure 19 is an example of all slices from a single subject. For each subject, 

their ROI was projected as an overlay on their MT, T1 and R2* maps to obtain a 
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mean value for the region. Bilateral SN/VTA values in older adults, calculated 

by averaging right and left SN/VTA values, were as follows (values are in 

arbitrary units):  MT mean 0.93 (SD 0.070), T1 mean 1129.31 (SD 51.23), R2* 

mean 0.028 (SD 0.0048). 

 

Subthalamic nucleus (STN): The STN was manually segmented for each 

subject using the software package ITK-SNAP (Yushkevich et al., 2006) as 

described in Lambert et al (2012) (Lambert et al., 2012). Briefly, using R2* 

maps, it appears as a hyperintense region. The borders of the STN were 

defined as the zona incerta superiorly and immediately medially; preleminiscal 

radiations, posterior-lateral hypothalamus and red nucleus further medially and 

cerebral peduncle laterally. The inferior tip lies on the superior aspect of the 

substantia nigra at the level of the optic tract. See Figure 19 for a single subject 

example.  
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Figure 19. Manually-defined regions of interest. Single-subject example of right 

substantia nigra/ventral tegmental area (red) and subthalamic nucleus (green).  
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Ten randomly selected SN/VTA and STN ROIs were segmented by a second 

trained individual, showing high inter-rater reliability (SN/VTA: Intraclass 

correlation = 0.87, p=.000; STN: Intraclass correlation = .98, p=.000).  

 

Magnetization transfer (MT) subgroups 

I obtained MT data for 12 young adults (mean age 33.8 years SD 12.84, 6 

females) from a separate published experiment (Lambert et al., 2012). For 

comparison I formed two subgroups each consisting of 12 elderly adults 

matched for age and gender (10 females per group), that differed significantly in 

MT values of the right SN/VTA (independent samples t-test, 2-tailed: t(22) = -

9.93, p < 0.0001). For these subgroups, 12 elderly adults with the highest and 

lowest MT values of the right SN/VTA were selected to form a ‘high MT’ group 

(MT (mean, SD): 0.98, 0.038; age (mean, SD): 69.33 years, 2.74) and ‘low MT’ 

group respectively (MT (mean, SD): 0.84, 0.023; age (mean, SD): 70.08 years, 

3.34).  I used right SN/VTA for post hoc tests of the MT subgroups based on the 

major VBQ finding of a correlation between right SN/VTA integrity and NGW 

performance. I used these subgroups for three analyses: first, to further explore 

the relationship between MT and behaviour within older adults only; second, to 

compare MT values of the SN/VTA between young and older adults; and third 

to compare novelty seeking scores within older adults only.  

 

  



188 
 

Voxel based quantification 

To explore the regional specificity of the correlation between SN/VTA integrity 

and task performance, a method recently termed Voxel Based Quantification 

(VBQ) was used (Draganski et al., 2011). This allows whole brain statistical 

analysis of quantitative MRI parameters such as MT. The methodology was 

adapted from Draganski et al., (2011) with a few adjustments specific to the 

current cohort summarised as follows. In brief, unified segmentation was used 

to classify MT maps into grey matter, white matter and cerebrospinal fluid 

(Ashburner and Friston, 2005). Whilst better segmentation of subcortical 

regions can be attained using MT rather than T1 maps (Helms et al., 2009), 

visual inspection revealed that the SN/VTA region was often incomplete and 

misclassified as white matter. Therefore, in subject space the manually defined 

SN/VTA ROI was added to each un-modulated grey matter mask and 

subtracted from the white matter. These maps were adjusted to ensure that all 

voxels remained in the range from zero to one. Using a diffeomorphic 

registration algorithm (DARTEL) the MT white and gray matter maps were 

warped to a common template  (Ashburner, 2007). Modulation was achieved by 

multiplying these warped images with their Jacobian determinants.  Finally, 

weighted average MT maps were created as previously described (Draganski et 

al., 2011) and smoothed with an isotropic Gaussian kernel of 6mm full width at 

half maximum.  
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Statistical analysis 

Performance in each of the four task conditions was calculated as the 

percentage of correct responses and analysed using a repeated measures 

ANOVA with action (go/no-go) and valence (win/avoid loss) as the within-

subjects factors. To compare performance between elderly MT subgroups, MT-

group (low/high) was added as a between-subjects factor.  To compare 

performance between all young and all older adults, age-group (young/old) was 

added as a between-subjects factor. To further explore behavioural response 

biases in go/no-go task performance in old age, I calculated the following 

measures using the total number of correct trials per condition: main effect of 

action (GW+GAL-NGW-NGAL), main effect of valence (GW+NGW-GAL-NGAL) 

and an interaction between action and valence (GW+NGAL-NGW-GAL). Partial 

Pearson’s correlations (controlling for age and SN/VTA volume) were used to 

correlate response biases with SN/VTA MT values (significance level set at p < 

0.017 after Bonferonni correction for three tests) and to assess the relationship 

between the behavioural interaction and personality measures of novelty 

seeking, reward dependence and harm avoidance (significance level set at p < 

0.017 after Bonferonni correction for three tests). All reported significance 

values are two-tailed. 

For structural imaging parameters of SN/VTA, linear multiple regression 

analyses were performed using Statistical Package for the Social Sciences 

(SPSS, Version 17.0). I used a backwards model to conduct a separate 

analysis for each of the four task conditions (GW, GAL, NGW, NGAL) where 

performance (percentage of total correct responses) in these conditions was 

used as the dependent variable. The five independent variables in each model 
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were the three imaging parameter values of bilateral SN/VTA (MT, T1 and R2* 

values), volume of the SN/VTA and age. The significance level for each model 

was set at p < 0.0125 (Bonferroni correction for four models). All reported 

significance values are two-tailed.  

To address co-variance between MT and T1 values (Table 11) I also show the 

same results are obtained from separate correlations between neuroimaging 

parameters and task performance (Table 12).   
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 MT T1 R2* 

MT - r = -0.36, p = .020 r = -0.11, p = .473 

T1 r = -0.36, p = .020 - r = 0.01, p = .949 

R2* r = -0.11, p = .473 r = 0.01, p = .949 - 

Table 11. Co-variance between neuroimaging parameters 

r = Pearson’s correlation coefficient (two-tailed); MT = magnetization transfer 

 

 

 

 No-go to win  

 r p 

MT 0.48 .002 

T1 -0.18 .251 

R2* 0.02 .890 

Table 12. Separate correlations between neuroimaging parameters and no-go to win 

Separate correlations for each of the imaging parameter values showed the same 

results as the region-of-interest regression models, namely that MT but not T1 or R2* 

values of the SN/VTA correlated with no-go to win performance. r = partial Pearsons’s 

correlations with age as a covariate (two-tailed).  
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The VBQ analysis was only performed for the significant task condition (no-go 

to win) and image type (MT) from the behavioural regression analyses to 

minimise the number of voxel-based analyses.  The calculated weighted 

average MT maps were analysed in a multiple regression model in SPM8. A 

single analysis was performed using a design matrix containing performance in 

all four task conditions (GW, GAL, NGW, NGAL) as separate covariates and 

age, gender and total intracranial volume (sum of grey matter, white matter and 

CSF) as regressors of no interest. I included performance in all four task 

conditions in a single model as a more stringent test to identify the unique 

variance associated with NGW performance over and above performance in the 

other conditions (Table 13) shows no sigfificant covariance between these 

measures). An explicit mask created from the grey matter probability maps 

thresholded at 0.2 was applied. Uncorrected whole brain p-values <0.001 for 

clusters greater than 10 voxels are reported. I created SN/VTA and STN masks 

for small volume correction using individual subjects’ manually defined ROI’s, 

normalised to MNI space using DARTEL and group-averaged. A statistical 

threshold of p < 0.05 after family-wise error correction was used for the 

hypothesis-based small volume correction analyses.  

  



193 
 

 

 GW GAL NGW NGAL 

GW - r = 0.24, p = .124 r = -0.28, p = 
.071 

r = -0.01, p = 
.975 

GAL r = 0.24, p = .124 - r = 0.08, p = .613 r = 0.13, p = .418 

NGW r = -0.28, p = 
.071 

r = 0.08, p = .613 - r = 0.20, p = .198 

NGAL r = -0.01, p = 
.975 

r = 0.13, p = .418 r = 0.20, p = .198 - 

Table 13. Co-variance between performance in different task conditions. 

Non-significant cross-correlations between performance in the four conditions of the 

task. r = Pearson’s correlation coefficient (two-tailed); GW = go to win; GAL = go to 

avoid losing; NGW = no-go to win; NGAL = no-go to avoid losing 
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6.3. Results 

6.3.1 Go/no-go task performance in older adults 

Older participants were, on average, more accurate at go choices when the 

outcome was a reward (GW) and at no-go choices when the outcome was 

avoidance of losses (NGAL) (two (go/no-go) by two (win/avoid loss) repeated 

measures ANOVA:  action by valence interaction: F(1,41) = 12.55, p=.001; GW 

versus GAL: t(41) = 2.26, p=.029; NGW versus NGAL: t(41) = -3.20, p=.003; 

Figure 20A). I also found a main effect of action indicating participants were 

better at learning go compared to no-go choices (F(1,41) = 7.29, p=.01). There 

was no main effect of valence (F(1,41) = 1.87, p=.18). These results 

demonstrate that older adults had a marked asymmetry in their learning 

behaviour (Figure 20A). 

Older adults showed a preponderant initial bias towards go responses (Figure 

20A) (one sample t-test for performance in the first 10 trials: GW t(41) = 6.578, 

p = .000; GAL t(41) = 2.249, p = .030). In contrast, performance in the first ten 

trials was at chance for the NGAL condition (t(41) = 0.638, p = .527) and 

significantly below chance for NGW (t(41) = -4.365, p = .000). This suggests a 

persisting action bias in the reward condition, whereas with loss a bias towards 

no-go responses emerged during learning.  
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Figure 20. Go/no-go task performance in older and younger adults 

(A, left): Older participants (n = 42) had an asymmetry in action-valence learning, such 

that they were better at learning to act for a reward (‘go to win’) than to avoid 

punishment (‘go to avoid losing’), whereas they were better at learning to not act to 

avoid punishment (‘no-go to avoid losing’) than for reward (‘no-go to win’).  

 (A, right): Older adults began the task with a bias towards choosing an action (‘go’). 

Learning occurred in all conditions over the course of the task.  

(B, left & right) A similar overall pattern of behaviour was evident in 47 younger adults.  

(C): A subgroup of 12 older individuals with higher SN/VTA integrity (‘high MT’) could 

overcome response biases to acquire competing responses for reward, compared to a 

subgroup of 12 older adults with lower SN/VTA integrity (‘low MT’).  
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(D): This ‘low MT’ subgroup of older adults had significantly lower MT values of SN/VTA 

than 12 young adults whereas the ‘high MT’ subgroup of older adults had similar MT 

values to younger adults. Note the young group here is a different set of participants 

from those whose behaviour is shown in B. Magnetization transfer values are in 

arbitrary units.  

Error bars represent  ±1 SEM. * 0.01<p<0.05, ** p<0.01, *** p<0.0005. 

 

  



197 
 

6.3.2 Structural neuroimaging in older adults  
Region-of-interest analysis: For each experimental condition amongst older 

adults, I constructed a multiple regression model with task performance as the 

dependent variable and SN/VTA imaging parameter values (MT, T1, R2*), age 

and SN/VTA volume as independent variables. These models only explained 

variance in NGW performance where the best model contained MT as the only 

explanatory variable (standardised Beta MT = 0.46, p = .002, R square = 0.21). 

The additional variables did not add explanatory power Table 14. Thus, higher 

SN/VTA integrity predicted an ability to learn to inhibit an action to obtain 

reward. Figure 21A plots this correlation, which remained significant after 

controlling for both total intracranial volume and size of the SN/VTA (partial 

Pearson’s r = 0.39, p = .014).  Regression models for the remaining task 

conditions were not significant suggesting that neither structural integrity, iron or 

myelin content of SN/VTA were associated with learning the GW, GAL or NGAL 

conditions (Table 15). 
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 predictor variable(s) β p 

Model 1    
 T1 -0.07 0.66 
 R2* 0.08 0.59 
 age 0.20 0.18 
 vol 0.26 0.10 
 MT 0.38 0.02 
Model 2    
 R2* 0.08 0.57 
 age 0.20 0.19 
 vol 0.24 0.10 
 MT 0.41 0.07 
Model 3    
 age 0.22 0.12 
 vol 0.24 0.10 
 MT 0.40 0.007 
Model 4    
 vol 0.21 0.17 
 MT 0.40 0.01 
Model 5    
 MT 0.46 0.002 

Table 14. Multiple regression results for each predictor variable for no-go to win 

performance.   

The magnetization transfer (MT) value of the SN/VTA was the only significant 

contributing variable to no-go to win performance in each model. Vol = SN/VTA 

volume. 
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 predictor variable(s) F p 

Go to win    

Model 1 MT, vol, age, T1, R2* 1.25 0.31 
Model 2 MT, vol, age, T1 1.56 0.21 
Model 3 MT, vol, age 2.05 0.12 
Model 4 MT, vol 2.80 0.073 
Model 5 MT 4.01 0.052 
Go to avoid 
losing 

   

Model 1 vol, MT, T1, age, R2* 0.97 0.45 
Model 2 vol, MT, T1, age 1.25 0.31 
Model 3 vol, MT, T1 1.68 0.19 
Model 4 vol, MT 1.57 0.22 
Model 5 vol 1.73 0.20 

No-go to win    

Model 1 MT, vol, age, R2*, T1 3.14 0.02 
Model 2 MT, vol, age, R2* 3.97 0.01 
Model 3 MT, vol, age 5.28 0.004 
Model 4 MT, vol 6.40 0.004 
Model 5 MT 10.55 0.002 
No-go to avoid 
losing 

   

Model 1 Age, T1, vol, MT, R2* 0.62 0.68 
Model 2 Age, T1, vol, MT 0.79 0.54 
Model 3 Age, T1, vol 1.05 0.38 
Model 4 Age, T1 1.28 0.29 
Model 5 Age 1.64 0.21 

Table 15. Multiple regression models relating imaging parameter values to go/no-go 

performance in each of the four task conditions 

Multiple regression models using a ‘backwards method’ shows magnetization transfer 

(MT) values of SN/VTA was the strongest predictor for no-go to win performance. Vol = 

SN/VTA volume. 
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Figure 21. Higher no-go to win performance is associated with higher structural 

integrity of SN/VTA and STN  

(A): Region-of-interest analysis of the SN/VTA (single subject single slice illustration of 

the bilateral SN/VTA ROI, blue). Plot shows older individuals with higher SN/VTA 

integrity, indexed by higher magnetization transfer (MT) values, performed better in 

the no-go to win condition of the task. Magnetization transfer values on y-axis of plot 

are measured in arbitrary units.  

(B): An independent whole-brain voxel-based analysis of MT maps confirmed the 

association between higher MT values and no-go to win learning, localising to a region 

overlapping with the right SN/VTA and right STN. Displayed on group-averaged MT 

image, uncorrected threshold p <0.001.  
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I next analysed how SN/VTA integrity related to the ability to overcome 

response biases. The action bias (go > no-go performance for both wins and 

losses) was negatively correlated with SN/VTA integrity (r = -0.45, p = 0.003, 

Figure 22A) suggesting that only those individuals with high SN/VTA integrity 

were able to overcome this action bias. Moreover, the negative correlation 

between the interaction in task performance (go to win and no-go to avoid 

losing > no-go to win and go to avoid losing performance) and SN/VTA integrity 

suggests the action-valence learning asymmetry could also be overcome with 

higher SN/VTA integrity (r = -0.42, p = 0.006; Figure 22B). There was no 

correlation between SN/TA integrity and the main effect of valence (r = -0.22, p 

= .155).  
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Figure 22. Relationship between SN/VTA structural integrity and flexibility of 

instrumental learning 

Scatter plots, where each dot represents an individual, showing that higher SN/VTA 

integrity in older adults correlated with both a reduced  action bias (A) and reduced 

interaction between action and valence learning (B). Magnetization tranfer values on 

y-axis of both plots are measured in arbitrary units.  
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These results were also reflected in the elderly MT subgroup analyses, whereby 

I formed two gender-matched groups of older adults with the highest and lowest 

MT values of SN/VTA. I performed a repeated measures ANOVA as before with 

action (go/ no-go) and valence (win/ avoid loss) as within-subjects factors but 

additionally included MT group (low/ high) as a between-subjects factor. Figure 

20C shows the striking behavioural asymmetry between action and valence 

learning was present in the low MT group but not in the high MT group (3-way 

action by valence by MT-group interaction: F(1,22) = 5.25, p = .032).  

Older individuals with low SN/VTA integrity were inflexible in learning the reward 

conditions: they readily learned the GW condition but were less able to 

concurrently learn the NGW condition. In contrast, older individuals with high 

SN/TA integrity were instrumentally more flexible, i.e. acquired both go and no-

go responses concurrently to obtain rewards. However, higher flexibility in the 

high MT group came at a cost for GW performance (trend towards a negative 

correlation between GW and NGW performance (r = -0.28, p =0.071) but not 

between GAL and NGAL (r =0.13, p = 0.42). This suggests a trade-off between 

the ability to learn competing responses in the reward conditions. Similar to the 

assessment of behaviour across all 42 older adults, this analysis of the MT-

subgroups also demonstrated a trend towards a main effect of action (F(1,22) = 

3.16, p = .089), a significant action by valence interaction (F(1,22) = 8.28, p = 

.009) and  no main effect of valence (F(1,22) = 1.47, p = .24). Overall, these 

results suggest that amongst older individuals, those with higher integrity of the 

SN/VTA were able to overcome their initial response biases leading to more 

flexible instrumental learning, evidenced by a more even performance across 

the different action-valence contingencies. Since the behavioural interaction 
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was mostly driven by GW and NGW learning, these correlations also show that 

higher SN/VTA integrity confers flexibility by an improvement in NGW learning 

but with a concurrent slight decline in GW learning. 

 

6.3.3 Voxel-based quantification  
To address potential bias from a ROI-analysis, and assess the anatomical 

specificity in the relationship between NGW performance and SN/VTA, I used a 

whole brain voxel-based quantification (VBQ) analysis. This showed that 

positive correlations between NGW performance and MT values were restricted 

to a region that included the right SN/VTA and STN (Figure 21B), with smaller 

clusters in the left cerebellum and left putamen only (Table 16). For the SN/VTA 

and STN cluster, I quantified the percentage of overlap with probability maps of 

each anatomical region and found that 17.4% of the cluster overlapped with the 

STN, compared to 47.6% overlap with the SN/VTA. Using these probability 

maps, the multiple regression VBQ analysis of NGW performance and MT 

values of the right SN/VTA survived a hypothesis-based small volume 

correction (p <0.05, FWE-corrected, Zmax = 3.39, x = 9, y = -17, z = -8). The 

same was true for the right STN (p <0.05, FWE-corrected, Zmax = 3.33, x = 11, y 

= -17, z = -8). 
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Region No. voxels MNI co-ordinates T Z 

  X (mm) Y (mm) Z (mm)   

right SN/VTA & STN 
 
33 9 -17 -8 3.73 3.39 

left cerebellum  
 
16 -38 -65 -39 3.57 3.27 

left putamen 
 
13 -27 3 -5 3.51 3.22 

Table 16. Voxel-based quantification results for no-go to win positive correlation 

with grey matter MT images.  

Peak level results are shown for all clusters greater than 10 voxels, p-value <0.001 

uncorrected at the whole brain level. SN/VTA = substantia nigra/ventral tegmental 

area; STN = subthalamic nucleus 
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6.3.4 Age-comparison of task performance  
To contextualise behavioural performance of older adults, I obtained data from 

a separate experiment in which the same behavioural task was performed by 47 

younger adults, of which 30 underwent MT imaging (a detailed description of 

behaviour amongst these younger adults can be found in (Guitart-Masip et al., 

2012a)). A two by two repeated measures ANOVA with action (go/no-go) and 

valence (win/avoid loss) as within subjects factors, and age group (young/old) 

as between subjects factor showed a main effect of action (F (1,87) = 21.75, p = 

.000), main effect of valence (F(1.87)=4.17, p = .044) and significant action by 

valence interaction (F(1,87) = 47.23, p = .000) but no significant interaction of 

any factors with age group. Thus the overall pattern of performance showing a 

marked behavioural asymmetry was present in both young and older adults 

(Figure 20B). Performance averaged over all task conditions was worse in older 

adults (main effect of age F(1,88) = 15.15, p <0.0005).  

Performance heterogeneity in these young adults has previously been 

described, where some individuals performed well in all conditions of the task 

(so-called ‘learners’, 19/30 participants) and others in whom instrumental 

learning was unsuccessful (so-called ‘non-learners’, 11/30 participants), where 

these differences were related to stronger Pavlovian biases in non-learners. 

(see (Guitart-Masip et al., 2012a)). I found that performance in older adults in 

the low MT subgroup resembled that of young non-learners whereby Pavlovian 

response biases dominated performance (Figure 23). In contrast, performance 

in older adults in the high MT subgroup more closely remembered that of young 

adult learners. However, whilst overall performance levels were higher in young 

learners compared to non-learners (89% vs 66% respectively, independent 
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samples t-test t(28) = 10.79, p <0.0005), older adults in the high MT subgroup  

demonstrated a trade-off between Pavlovian biases (in this case, GW) and 

instrumental learning (in this case, NGW) such that overall performance levels 

did not differ between the older groups (66% vs 68% respectively, independent 

samples t-test t(22) = 0.41, p = .685). 
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Figure 23. Illustration of performance in older subgroups (low/high MT) and younger 

subgroups (leaners/non-learners) 

The same action-valence assymtery (indicating unsuccesful instrumental learning) was 

present in older adults with low MT values of SN/VTA (n = 12) and young adult non-

learners (n = 11). Elimination of an action-valence assymetry (indicating successful 

insturmental learning) was present in older adults with high MT values of SN/VTA (n = 

12) and young adult learners (n = 19). However, in contrast to young adult learners vs 

non-learners, higher NGW learning was accompanied by lower GW learning in older 

adults with high MT compared to older adults with low MT, meaning that more flexible 

instrumental learning in older age did not equate to higher performance levels overall.  
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6.3.5 Age differences of SN/VTA structural integrity and 

relationship with performance 

In contrast to the strong relationship between higher NGW performance and 

higher SN/VTA structural integrity in older adults, no such correlation existed in 

young adults (n = 30), nor indeed with any of the task conditions (partial 

Pearson’s correlations with age and SN/VTA volume as covariates: GW, r = -

0.12, p = .543; GAL, r = 0.01, p =.970; NGW r = -0.04, p = .859; NGAL, r = 0.07, 

p = .743). Thus SN/VTA integrity predicted individual differences in flexible 

learning amongst older but not younger adults (Fisher’s r-to-z transformation 

comparing partial correlation strengths of NGW with MT SN/VTA between 

young and older adults, with age and SN/VTA volume as covariates: z = -1.93, 

p = .05 two-tailed).  

To examine age-group differences in SN/VTA integrity, I obtained comparable 

MT imaging (obtained on the same MRI scanner and using the same acquisition 

and reconstruction protocols) from a separate cohort of 12 younger adults. Here 

I found significantly higher MT values of SN/VTA in young adults than in older 

adults, suggesting that older adults had age-related structural decline of the 

SN/VTA (independent t-test, t(52) = 4.13, p < 0.0005). Further analysis of the 

older MT subgroups with younger adults using a one-way ANOVA with MT 

values of the right SN/VTA as the dependent variable and age-group as the 

between subjects factor confirmed a significant between group difference 

(F(2,33) = 60.23, p < 0.0001). Post hoc tests between the three groups with 

Bonferroni correction for multiple comparisons showed that there was a 

significant difference between MT values in the young group and low MT group 

in older adults (p < 0.0005) but not between the young group and high MT 
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group in older adults (p = .081) (Figure 20D).  This suggests inter-individual 

variability of MT values of the right SN/VTA across this older cohort.  

 

6.3.6 Instrumental learning and novelty seeking in older adults 

Finally, using a Tridimensional Personality Questionnaire I assessed the impact 

of a novelty seeking personality trait on the success of instrumental learning in 

old age, specifically the ability to overcome the behavioural action-valence 

interaction. I observed an almost significant trend towards a negative correlation 

between the behavioural interaction (GW and NGAL > GAL and NGW) and 

novelty seeking (partial Pearson’s correlations controlling for age: r = -0.37, p = 

.019) whereas no correlation was observed with the other measured personality 

traits of harm avoidance (r = 0.008, p = .959) or reward dependence (r = 0.09, p 

= .560) (Figure 24). This suggests that older adults with a more novelty seeking 

personality had greater flexible instrumental learning. Interestingly, older 

participants in the high MT subgroup, that is participants who showed greater 

flexibility of instrumental learning, also had higher novelty seeking scores than 

older participants in the low MT group (independent samples t-test: t(22) = -

2.74, p = .012) (Figure 24).   
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Figure 24. Correlation between novelty seeking and the interaction in go/no-go task 

performance.  

Higher novelty seeking, but not harm avoidance or reward dependence, personality 

trait scores correlated with a reduced behavioural interaction in task performance 

(action x valence interaction represents GW + NGAL > NGW + GAL). A subgroup of 

older adults with high magnetization transfer values (MT) values of the SN/VTA had 

higher novelty seeking scores than older adults with low MT values (n=12 per MT 

group). *p<0.05  
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6.4. Discussion 
My results reveal that some healthy older adults are unable to flexibly learn two 

responses (go and no-go) for reward within a single task. Through the use of 

high resolution quantitative MT imaging I show that this ability to flexibly learn 

competing choices for reward is predicted by structural integrity of the SN/VTA 

and STN. Although I hypothesized that integrity in the SN/VTA would correlate 

with instrumental learning as demonstrated by my ROI analysis, the additional 

level of specificity in the whole-brain analysis is remarkable and suggests that 

the dopaminergic system may arbitrate between go and no-go choices for 

reward.  

This striking relationship between higher NGW performance and higher SN/VTA 

integrity was surprising given previous reports that dopamine promotes ‘go’ and 

impairs ‘no-go’ learning, for example in patients with Parkinson’s disease (Frank 

et al., 2004). However such studies have tended to explore behavior in two 

conditions, GW and NGAL. Here, using a task which orthogonalises action (go 

and no-go) and valence (reward and punishment), I can demonstrate a more 

precise contribution of the dopaminergic system to this behavioural inflexibility 

in healthy older individuals. Previous research in patients with Parkinson’s 

disease suggested that loss of dopaminergic neurotransmission should 

primarily impair the ability to learn go responses towards rewards (Frank et al., 

2004).  My data are not necessarily in opposition with these findings. First of all, 

in my task rewards may be harvested by go and no-go choices generating a 

competition between both responses, whereas in most previous experiments 

rewards are harvested through go choices and punishment avoided through no-

go choices (e.g. (Frank et al., 2004; Cools et al., 2009)). Second, older adults 
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were healthy and did not have any neurological impairment suggestive of 

clinically apparent basal ganglia dysfunction. Hence, the low integrity of SN/VTA 

indexed by MT imaging can be viewed as being mild. Thus, in the early stages 

of SN/VTA degeneration, dopaminergic neurotransmission may be sufficiently 

intact to enable go learning for rewards. Instead, the earliest behavioural sign of 

SN/VTA degeneration may be an impairment to learn competing instrumental 

responses for rewarding outcomes. Individuals with early SN/VTA degeneration 

still exhibit a prepotent bias for behavioural activation towards rewards during 

instrumental learning (go to win) but are impaired in concurrently learning 

competing no-go responses for the same outcome. Those with high SN/VTA 

integrity are able to flexibly learn both, the prepotent (biased) ‘go’ response and 

the competing ‘no-go’ response.  However, this flexibility to learn both 

responses appears to come at a cost for overall performance, with the result 

that performance in the go for rewards condition suffers from the inability to 

concurrently also learn no-go responses to rewards.   

It has been suggested that age-related dopamine decline has an impact on the 

relationship between novelty processing and motivational behavior (Duzel et al., 

2010). I found that older participants with less of an asymmetry in action-

valence learning had higher novelty seeking personality scores and older adults 

with higher SN/VTA integrity were more novelty seeking than those with low 

integrity. These findings may be in keeping with the so-called ‘exploration 

bonus’ hypothesis that dopamine neurons originating in the SN/VTA can 

modulate motivational behaviour by signalling novel and reward-predicting 

events (Kakade and Dayan, 2002). It has been reported that novelty seeking 

individuals show heightened prediction error signalling in the nucleus 
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accumbens (Abler et al., 2006), as well as increased dopaminergic responses 

to novelty in the ventral striatum (Zald et al., 2008). Thus whilst one possible 

explanation for my findings is that variations in SN/VTA integrity may confer 

different sensitivities to reward and punishments, the link I identify with novelty 

seeking could suggest that SN/VTA integrity modulates motivational behaviour 

in this task. Inflexible behaviour can arise if participants stick to go choices after 

receiving a reward for a go choice early in the task. In contrast, higher novelty 

seeking individuals may be more likely to explore alternative responses (i.e. 

sample no-go responses) allowing them to successfully instrumentally learn. 

However, I acknowledge that a novelty seeking personality trait is not a direct 

measurement of exploratory behaviour. Alternatively, novelty seeking may be a 

marker of greater dopaminergic integrity rather than a mechanism related to 

instrumental learning in the task per se. 

Differences in reward sensitivity alone could not fully explain my finding of an 

interaction between action and valence. If SN/VTA degeneration mainly affected 

reward sensitivity, then both reward conditions in the task (GW and NGW) 

would be equally affected, rather than the pattern I observe of better 

performance in one condition (NGW) at the expense of the other (GW) in 

individuals with greater SN/VTA integrity. I consider this ability to acquire 

competing responses for rewards as a marker of flexible learning, although I 

acknowledge this does not translate to overall higher performance levels but 

rather a more even performance across the different contingencies of the task. 

Future studies relating midbrain structural integrity to other behavioural indices 

of flexibility, such as reversal learning, could help to further address the nature 

of this relationship.   
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In addition to the SN/VTA, the other structure implicated in modulating NGW 

performance in older adults was the STN. The STN is a biconvex structure that 

lies superior to the SN/VTA (Dormont et al., 2004). Along with other basal 

ganglia structures, it too is innervated by dopaminergic fibres from the SN/VTA 

(Hamani et al., 2004). The STN plays a critical role in action inhibition by 

relaying a stopping signal (Aron and Poldrack, 2006) (Frank et al., 2007) 

(Fleming et al., 2010) .  This inhibitory network depends on interactions 

between the STN, inferior frontal gyrus and supplementary motor area (Coxon 

et al., 2012) (Duann et al., 2009) (Aron and Poldrack, 2006; Aron et al., 2007) 

(Jahfari et al., 2011; Swann et al., 2012). Previous work by from the host 

institution using the same go/no-go task has shown that inferior frontal gyrus 

activity is associated with no-go learning and successful instrumental control 

(Guitart-Masip et al., 2012a). The current structural SN/VTA and STN findings 

are therefore compatible with a literature relating functional activity in the post-

synaptic targets of midbrain nuclei and their related circuits to both response 

inhibition and instrumental learning. It is also notable that my VBQ analysis 

localised NGW learning to structural integrity of the right SN/VTA and STN 

since inhibitory processing has been reported to evoke a right-lateralised 

network (Garavan et al., 1999; Aron et al., 2003; Zheng et al., 2008; Coxon et 

al., 2012).   

 

Although overall patterns of performance were similar in young and older adults 

(as shown in Figure 20), some differences emerged which I speculate are linked 

to age-related neural differences. At a group level, older adults with the lowest 

MT values of SN/VTA displayed a behavioural inflexibility particularly for 
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rewards. These same adults had significantly lower MT values of SN/VTA than 

younger adults, which might mean they had age-related degeneration of the 

SN/VTA. Although significantly lower overall performance was observed in the 

older group, performance in these older individuals was markedly similar to 

young adults who were unable to learn this task in terms of the observed action 

by valence interaction during learning. In contrast, performance in older adults 

with similar midbrain integrity to younger adults resembled performance seen in 

young adult ‘learners’. However it was notable that these older adults who 

learned to overcome pre-potent response biases did so at the cost of overall 

task performance. This trade-off between instrumental and Pavlovian systems 

was not evident in young adults who successfully instrumentally learned. One 

possible explanation for this is the involvement of other brain regions in young 

adults performing this task. For example, it has been shown that young adults 

who are able to instrumentally learn in this task show heightened activity in the 

inferior frontal gyrus (Guitart-Masip et al., 2012a). Future studies designed to 

directly test age-differences in this structure-function relationship could 

elucidate this further.  

 

An advantage of my study was the use of high quality MT images to accurately 

identify the SN/VTA and R2* images to define the STN. The MT contrast is 

particularly suited to visualising brainstem structures as it provides better 

grey/white matter contrast than the standard T1w MRI contrast (Helms et al., 

2009). MT measures macromolecule concentration and thus reflect the 

properties of bound protons in structures such as myelin (Tofts, 2003), axons 

(Klistorner et al., 2011), cell membrane proteins and phospholipids (Bruno et al., 
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2004) (Wolff and Balaban, 1989). Moreover, reduced MT in the SN/VTA has 

been described in Parkinson’s disease and is proposed to reflect the loss of 

dopamine neurons (Eckert et al., 2004) (Tambasco et al., 2011). I found that 

some but not all older adults had lower structural integrity of the SN/VTA than 

younger adults. This suggests inter-individual variability of SN/VTA structural 

integrity amongst older adults and possibly relates to variable dopamine decline 

as a function of age, although I acknowledge that the exact pathology 

underlying alterations in the MT signal in normal aging remains unknown. 

Future studies combining MT imaging with other imaging modalities (e.g. 

Positron Emission Tomography) and histological evidence will help to provide 

greater insight into the interpretation of MT values of dopaminergic brainstem 

structures.  

In summary, the new perspective highlighted here is that individual differences 

of SN/VTA integrity contribute to learning flexibility by allowing older individuals 

to overcome response biases. In contrast, structural integrity of SN/VTA did not 

predict instrumental learning in younger adults, suggesting that instrumental 

learning in older age is sensitive to structural changes of the dopaminergic 

midbrain.   

In this study I have shown that action and valence bias the flexibility of learning. 

Other forms of decision-making, such as affective processing, are also 

influenced by the aging process and may also be susceptible to asymmetrical 

valence processing. In the next chapter, I study the effect of age on valence 

relating to positive and negative information about the future, within a different 

context: optimism.  
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Chapter 7  

Optimism in older age 

7.1. Introduction  

Increasing age heralds an array of negative life events including bereavement, 

reduced social networks, a decline in physical health and cognitive function, 

together with the inevitable foreshortening of ones time horizon (Rowe and 

Kahn, 1987) (Hedden and Gabrieli, 2004). Viewed from the perspective of 

young adulthood, one might reasonably infer that this should portend an 

increasing pessimism. Yet surprisingly, older adults have higher levels of 

emotional well-being than their younger counterparts, including a decline in their 

experience of negative emotions (Blanchflower and Oswald, 2008; Stone et al., 

2010; Carstensen et al., 2011).  

Optimism has been associated with greater well-being and therefore provides 

one explanatory account for enhanced well-being in older age (Scheier and 

Carver, 1993).  However, few studies have addressed the effect of age on 

optimism and the results are inconsistent. One such study showed older adults 

had a more optimistic style when explaining life events (Isaacowitz, 2005)  

whereas another study found  that younger rather than older adults had a more 

optimistic outlook about the future (Lachman et al., 2008).  Many studies have 

focussed on the related concept of an age-related ‘positivity effect’ on cognitive 
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processing (for reviews see (Mather and Carstensen, 2005) and (Isaacowitz 

and Blanchard-Fields, 2012)). For example, in comparison to their younger 

counterparts older adults remember faces displaying positive emotions more 

than negative emotions (Mather and Carstensen, 2003), have less rich 

autobiographical memory for negative events (Comblain et al., 2005) and 

experience less negative arousal when anticipating monetary loss (Samanez-

Larkin et al., 2007). Such findings have been interpreted within the framework of 

socioemotional selectivity theory, whereby changing time horizons may lead to 

modification and prioritization of emotionally relevant goals (Carstensen et al., 

1999) (Charles and Carstensen, 2010).   

Optimism, defined by the tendency to underestimate the likelihood of future 

negative events, has been related to an asymmetry in updating beliefs when 

faced with desirable and undesirable information (Fischer and Chalmers, 2008) 

(Sharot et al., 2011) (Sharot et al., 2012a) (Sharot et al., 2012b). Optimism in 

younger adults seems to be, at least in part, mediated via functional activity of 

inferior frontal gyrus (Sharot et al., 2011) and anterior cingulate cortex (ACC) 

(Sharot et al., 2007). Importantly, a large body of literature links age-related 

functional magnetic resonance imaging (MRI) differences in ACC to a positivity 

effect on cognitive processing and greater emotion regulation with age 

(Kensinger and Schacter, 2008; Leclerc and Kensinger, 2008; Brassen et al., 

2011; Samanez-Larkin and Carstensen, 2011; Brassen et al., 2012).  Structural 

abnormalities of the ACC, in particular dorsal ACC, have been identified in 

clinical depression, where pessimism is a core feature (Vasic et al., 2008) 

(Pizzagalli, 2011). Higher volume of this dorsal as opposed to ventral subregion 
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has been found in healthy individuals who show greater cognitive reappraisal, a 

mechanism through which emotions may be regulated (Giuliani et al., 2011).  

To determine whether or not optimism is enhanced in old age, and the 

underlying mechanisms, I tested young and older healthy adults using a 

modified version of a previously described belief updating paradigm (Sharot et 

al., 2011) (Figure 25). I also obtained a measure of trait optimism. To determine 

if the volume of the ACC was related to age-related differences in the update 

bias, I used structural neuroimaging and a region-of-interest analysis of the 

dorsal and ventral subregions together with an independent whole brain 

analysis to identify the neural correlates of updating beliefs.  
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Figure 25. Optimism task design.  

(a) On each trial, participants were presented with one of 45 adverse life events and 

asked to estimate how likely this event was to occur to them in the next 5 years. They 

were then presented with the average probability of that event occurring to a person 

similar to themselves in the same socio-cultural environment. For each event an 

estimation error was calculated as the difference between the participants’ estimation 

and the actual probability provided. The second session was the same as the first 

session.  

(b) For each event, an update was calculated as the difference between the 

participants’ first and second estimations. If the participants’ first estimate was higher 

than the actual probability provided, that trial was classified as ‘desirable’ since the 
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information presented was better than expected, calling for an adjustment in an 

optimistic direction.  

(c) If the participants’ first estimate was lower than the actual probability provided, 

that trial was classified as ‘undesirable’ since the information presented was worse 

than expected, calling for an adjustment in a pessimistic direction.   
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7.2. Methods 

Participants  

18 younger adults (mean age = 22 years, range = 20 - 29) and 18 older adults 

(mean age = 66 years, range = 57 - 76), all of whom were healthy and not 

depressed, participated in this study (see Table 17 for demographics).  

Participants were recruited through an advertisement placed in a local 

newspaper and word of mouth. Written informed consent was obtained from all 

participants. The study received ethical approval from the UCL research ethics 

committee. To ensure participants were healthy, they were initially screened by 

telephone and excluded if they had any of the following: current or past history 

of neurological, psychiatric or endocrinological disorders (including diabetes 

mellitus and thyroid dysfunction), major visual or hearing impairment, history of 

drug addiction and current illicit drug use. To control for vascular risk factors, 

individuals known to have had a stroke or transient ischemic attack, myocardial 

infarction or require more than one anti-hypertensive medication were not 

eligible for participation. Participants with any contraindications to MRI scanning 

were not eligible for participation. 

  



224 
 

 Young  Old  t / Z p 

Age (yrs) 22. 22 (2.29) 66.00 (5.62) 30.63 <0.0005 

Gender (M:F) 8:10 7:11 0.33 .791 

Yrs education 17.11 (1.18) 16.83 (2.01) 0.51 .616 

IQ 110.72 (7.88) 123.83 (6.19) 5.55 <0.0005 

MMSE  30 (29 – 30) 30 (29 – 30) 0.81 .613 

BDI 3.06 (2.10) 4.00 (2.30) 1.26 .216 

Table 17. Demographic details. 

Mean (SD) or median (range). Independent t-tests for parametric variables, Mann-

Whitney U test for non-parametric variables. IQ estimated using the National Adult 

Reading Test; MMSE: Mini-Mental State Examination; BDI: Beck Depression Inventory. 

n = 18 per group. 
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Cognitive screening: All participants had a Mini-Mental State Examination 

(MMSE) score 28. Since the MMSE alone is not a sensitive marker of 

pathology, in older adults I administered additional standardised 

neuropsychological tests to screen for deficits in declarative memory (Rey 

Auditory Verbal Learning Test, RAVLT immediate and delayed recall), visuo-

motor speed (Digit Symbol Substitution Test, DSST), attention and set-shifting 

(Trail-making A & B). I excluded participants who scored >1SD outside the age-

related norms for the cognitive tests to ensure I had a cognitively intact sample 

of older adults. This resulted in the exclusion of two participants based on their 

RAVLT delayed free recall score, where low scores may be an early indicator of 

pathology (Estévez-González et al., 2003). For the remaining elderly 

participants, mean (SD) cognitive scores were as follows: RAVLT immediate 

recall 55.50 (6.33), RAVLT delayed recall 11.33 (2.23), DSST score 56.67 

(8.22), Trail-Making A time 29.55 sec (6.19), Trail-Making B time 58.51 sec 

(20.04).  

 

Mood screening: I measured depressive symptoms in all participants using the 

Beck Depression Inventory (Beck et al., 1961). BDI scores > 10 indicate 

depression, therefore I excluded one young and three old participants (note one 

of these older adults was also excluded on the basis of their low RAVLT score 

as described above).  
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Optimism task 

As shown in Figure 25, I used a modified version of the task by Sharot et al. 

(2011) (Sharot et al., 2011).  The task structure remained the same and was as 

follows: participants viewed 45 negative events, such as robbery (4.5s) (see 

Table 18 for a list of all stimuli) and were asked to type on a keyboard their 

estimate of how likely the event was to occur to them in the next five years 

(20s). After a brief fixation cross (1-2s) they were presented with the average 

probability of this event happening to someone in the general population (4.5s), 

followed by a further fixation cross (1-2s). Immediately after this first session, 

participants performed the same task again. The order of the presentation of 

events was randomised between the first and second sessions and across 

participants. I adapted the task to make it applicable to both young and older 

adults as follows. First, all participants were given longer to input their 

responses than on previously run versions of this task. I note reaction times did 

not differ between young and older adults (Table 19). Second, I only included 

events that had an equal likelihood for both groups thus no health-related 

questions were included. Third, participants were asked to rate how likely 

events were to occur to them in the next 5 years to account for differences 

between time perspectives in the two groups. At the end of the study I asked 

participants to estimate their lifespan; all participants thought they would live 

longer than 5 years, ensuring that they could imagine the events occurring in 

their lifetime. 

As previously described by Sharot et al (2011), the average probability of each 

event occurring to a person living in the same socio-cultural environment was 

determined using online resources and additionally in this study, using a small 
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number of events from a previously validated set of events likely to occur to the 

general population (Strunk et al., 2006). Very rare and very common events 

were not included thus all event probabilities lay between 10% and 70%. 

Participants were told the range of probabilities was between 3% and 77% to 

ensure the ranges of possible overestimation and underestimation were equal. 

Trials in which the estimation error was zero or participants did not respond 

were discarded. On average, both young and old adults completed most trials 

(mean 44.8, SD 0.73 and mean 44.1, SD 1.48 respectively). 
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fraud when buying something on the 
internet 

victim of violence at home 

theft from vehicle having fleas/lice 

card fraud severe injury due to accident (traffic or 
house) 

victim of violence with need to go to A&E victim of mugging 

sport related accident holiday cancelled due to natural disaster 

household accident  public transport delay causing you to be 
late 

mouse/rat in house  identity fraud 

victim of violence by acquaintance insect infestation (e.g. ants) in your home 

being cheated by husband/wife/partner roof leak 

more than £30000 debts spill difficult-to-remove substance (e.g. 
red wine) on carpet 

miss a flight short-changed in a shop 

witness a traumatising accident passenger in a car accident 

domestic burglary  lose your house keys 

victim of violence by stranger heating system in your house breaks 
down 

car/bicycle stolen stung by a bee 

being convicted of crime accidentally break something at a guests 
house 

house vandalised car vandalised 

computer crash with loss of important 
data 

burn something you are cooking 

skin burn  serious disagreement with a good friend 

theft from person receive unwanted call from telemarketer 

shouted at by a stranger have a serious family argument 

more than 15 minutes late for an 
important meeting 

get a parking or speeding ticket 

bounce a cheque/payment  

Table 18. List of 45 stimuli presented to participants. 

 

  



229 
 

 Young Old Group average 

First session    

Desirable trials 3.60 (0.83) 4.17 (1.19) 3.89 (1.05) 

Undesirable trials 3.94 (0.78) 4.28 (1.62) 4.11 (1.27) 

Second session    

Desirable trials 3.94 (0.57) 3.50 (0.78) 3.49 (0.67) 

Undesirable trials 3.37 (0.62) 3.55 (0.88) 3.46 (0.75) 

Table 19.  Optimism task reaction times.  

Mean reaction times in seconds, SD in parentheses.  
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Main behavioural analysis  

Optimism task: By comparing participants’ own initial estimates to the average 

probabilities presented (‘first estimation error’), I could determine whether older 

adults had a greater tendency to underestimate negative events relative to 

young adults. The more negative the first estimation error relative to the 

average probability, the more participants underestimated the likelihood of the 

events occurring to them, suggesting they were more optimistic at the outset of 

the task. An independent t-test was used to compare the first estimation error 

between young and older adults.  

The key test in this study was to determine differences between young and 

older adults pertaining to changing their beliefs after being presented with 

information that was better or worse than expected. For each subject, each trial 

was classified as ‘desirable’ or ‘undesirable’ depending on whether their initial 

estimate was higher or lower than the average statistic respectively. Thus, 

whilst all trials involved negative events, participants could receive desirable 

(better than expected) or undesirable (worse than expected) information for 

each event. I then calculated their change in beliefs (‘update’) as the difference 

between their first and second estimation (first estimation – second estimation 

for desirable trials; second estimation – first estimation for undesirable trials). I 

could then examine whether the update differed between desirable and 

undesirable trials, indicating an ‘update bias’, and whether age affected this 

bias. For this analysis of update, I used a repeated-measures ANOVA with 

valence (desirable/undesirable) as the within-subjects measure and age group 

(young/old) as the between-subjects measure. To account for potential 

confounding variables, differences on subjective rating scales, memory errors 
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and demographic variables were included as covariates in this analysis (see 

below).  

 

Memory test and subjective rating scales: After the task, participants 

completed a self-paced memory test in which they were asked to recall the 

average probabilities that were previously presented for all events. Memory 

errors were calculated as the absolute difference between the average 

probability previously presented and the participants’ recollection of that 

statistical number. Participants also rated all 45 events on the following 

subjective measures using a Likert scale from 1 (not at all) to 6 (very): 

vividness, familiarity, personal experience, emotional arousal and negativity. 

Subjective ratings for each measure and memory errors were analysed using a 

repeated measures ANOVA with valence (desirable/undesirable) as the within-

subjects factor and age group (young/old) as the between-subjects factor. I also 

calculated a difference measure between subjective rating scores for desirable 

and undesirable trials to include as covariates in the main behavioural analysis. 

 

Trait optimism: Participants completed the Life Orientation Test-Revised (LOT-

R) which provides a measure of trait optimism (Scheier et al., 1994). Scores 

range from 0 (pessimistic) to 24 (optimistic). Between age-group differences in 

trait optimism were compared using an independent t-test.   

 

Behavioural Statistical Analysis 
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All analyses were conducted using SPSS Version 17.0. The significance level 

for ANOVAs was set at p < 0.05, two-tailed. I did not perform corrections for 

multiple comparisons when testing for post hoc for differences in memory 

performance and subjective ratings since the aim of these analyses was to 

identify potential confounding factors that could be added as covariates to my 

main behavioural analysis, thus by not using Bonferroni corrections here my 

analyses were more stringent.  

 

Neuroimaging acquisition  

A high resolution structural MRI data set was acquired on a 3.0T Trio MRI 

scanner (Siemens) using a 32-channel head coil. Two sets of a multiparameter 

map protocol at 0.8mm isotropic resolution were acquired for each subject and 

averaged into a single data set to improve the signal-to-noise ratio. This 3D 

multi-echo fast low angle shot (FLASH) sequence was used to acquire T1-

weighted images (TE 2.2-9.85ms, TR 23.7ms, FA 28 degrees) (Helms et al., 

2008b). B1 mapping (TE  39.38 and 19.69ms, TR 500ms, FA 270:10-180 

degrees, 4mm3 isotropic resolution) was acquired to correct the T1 maps for 

inhomogeneities in the transmit radiofrequency field (Lutti et al., 2010). A 

double-echo FLASH sequence (TE1 10ms, TE2 12.46ms, 3 x 3 x 2 mm 

resolution and 1mm gap) was used to measure local field inhomogeneities and 

correct for the image distortions in the B1 mapping data.  

T1w images were segmented into grey matter, white matter and cerebrospinal 

fluid (Ashburner and Friston, 2005) using the New Segment toolbox in SPM8. 

Using a diffeomorphic registration algorithm (DARTEL) the grey matter maps 
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were warped to a common template  (Ashburner, 2007). Grey matter maps 

were modulated, warped to MNI space and smoothed with an isotropic 

Gaussian kernel of 8mm full width at half maximum using the DARTEL toolbox 

‘Normalise to MNI’ procedure. These smoothed, warped, modulated T1w 

images were used in independent region-of-interest and whole-brain voxel-

based morphometry (VBM) analyses.  

 

Neuroimaging analysis 

Region-of-interest analysis: To directly compare the relationship between 

ACC grey matter volume and belief updating between young and old adults, I 

used a region-of-interest approach. I used a bilateral ACC atlas mask, obtained 

from the AAL toolbox (Tzourio-Mazoyer et al., 2002). Manual segmentation of 

this ACC atlas mask into dorsal and ventral subregions was achieved using 

ITK-SNAP (Yushkevich et al., 2006) using established guidelines where the 

ventral portion was defined by drawing a line in the coronal plane at the tip of 

corpus callosum (Killiany et al., 2000) (Giuliani et al., 2011). I performed 

correlations between grey matter volume of dorsal and ventral ACC and task 

measures in both age groups (two-tailed Pearson’s correlations and partial 

Pearson’s correlations with age, gender and total intracranial volume as 

covariates). I focussed on the update bias (desirable update minus undesirable 

update) since this summary measure best captured the behavioural difference 

between age-groups and minimised the number of statistical tests. The 

significance level for these correlations was p < 0.0125 (Bonferoni correction for 

four tests). Follow-up post hoc tests for dorsal ACC were performed using the 
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components of the update bias (i.e. desirable update and undesirable update). 

For significant correlations in older age, I tested if these were significantly 

stronger in older than younger adults using Fisher’s r-to-z transformation (one-

tailed).  

Based on a previous study of the functional correlates of optimism (Sharot et 

al., 2011), I used a right inferior frontal gyrus atlas mask, also obtained from the 

AAL toolbox (Tzourio-Mazoyer et al., 2002), to test a specific correlation 

between grey matter volume of this region and undesirable update.  

 

Voxel-based morphometry, VBM: I performed three exploratory VBM 

analyses. For all these analyses, no regions survived a statistical threshold of p 

< 0.05 after whole brain peak-level family-wise error correction but for 

completeness I report the uncorrected results in Table 23, Table 24, Table 25 

and Table 26 at the end of the results section.  Since no previous studies have 

reported the structural correlates of optimism, for the first analysis I performed 

whole-brain VBM analyses across all participants. Regressors in this multiple 

regression model included update for desirable information, update for 

undesirable information, and age, gender and total intracranial volume (TIV, 

sum of grey matter, white matter and CSF) as coviariates of no interest. In a 

second analysis I used update bias (desirable update minus undesirable 

update) and age, gender and IV as covariates of no interest in a full factorial 

design to identify age-interactions of the update bias (contrasts: update bias 

young > old and update bias old > young). In the third analysis I performed a 

conjunction analysis to idenitfy regions that atrophied with age (contrast: young 



235 
 

> old) and correlated positively with undesirable update in young adults 

(contrast: young undesirable update > older undesirable update) to address the 

specific hypotheses that an enhanced update bias may emerge in older age 

due to age-related volume reduction of a region implicated in updating 

undesirable information (hence gender and TIV but not age were used as 

covariates of no interest in this model).  

 

SN/VTA structural integrity and optimism: I performed an exploratory 

analysis to determine if structural integrity of the SN/VTA, indexed by MT 

values, was related to optimism. The left and right SN/VTA was manually 

defined on every visible slice as per Düzel et al (Düzel et al., 2008) using ITK-

SNAP (Yushkevich et al., 2006). For each subject, this ROI was projected as an 

overlay on their MT maps to obtain a mean value for the region. These values 

were then compared between high and low optimists within each age group 

using an independent t-test. I defined high and low optimists using a median 

split of LOT-R values within each age group, resulting in 9 participants per 

group. Mean (SD) LOT-R values per group were as follows: young low optimists 

14.1 (2.2), young high optimists 19 (2.1), old low optimists 17.8 (1.9), old high 

optimists 22.6 (1.1).  
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7.3. Results  

7.3.1 Age-comparison of optimistic behaviour  

18 young and 18 older healthy adults completed the optimism task (Figure 25). 

My results showed both an asymmetry between updating beliefs for desirable 

and undesirable information and a marked age-related difference in this update 

bias.  Older adults had a greater asymmetry in belief updating than younger 

adults (update valence*age group F(1,34) = 17.75, p<0.0005). Strikingly, older 

adults updated their beliefs for undesirable information even less than younger 

adults (t(34) = 3.01, p = .005), whereas both groups updated their beliefs for 

desirable information to a similar extent (t(34) = 1.65,  p = .109), resulting in a 

greater update bias amongst older adults (Figure 26a). Both young and older 

subjects displayed an update bias. In other words participants of all ages 

updated their beliefs more for desirable information than undesirable 

information (main effect of update valence F(1,34) = 58.29, p<0.0005). This 

pattern was evident in 72% of younger adults and 94% of older adults. Older 

adults also had a greater tendency to underestimate the likelihood of negative 

events, indicated by a more negative first estimation error (t(34) = 3.60, p = 

.001;Figure 26 b). 
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Figure 26. Older adults are even more optimistic than younger adults  

(a) Both young and older adults updated their beliefs (difference between 1st and 2nd 

estimate) more when faced with desirable than undesirable information, but this 

update bias was larger in older adults due to reduced updating of undesirable 

information.  

 (b) Older adults had a larger first estimation error (1st estimation minus the actual 

probability of the event) indicating a greater tendency to underestimate the likelihood 

of negative events. 

 (c)Trait optimism scores, measured by the LOT-R, were higher in older adults 

compared to younger adults.  

Bars ±1 SEM. *p < 0.05, ** p < 0.01, ***p < 0.0005 
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To determine if other variables contributed to this age-related difference in 

update bias, I obtained measures of reaction time (Table 19), memory 

performance and subjective ratings of the task events (Table 20). Reaction 

times did not differ between age-groups (session*valence*age interaction: 

F(1,34) = 2.73, p = .108). All participants had slower reaction times when 

entering their first estimate compared to the second (main effect of session: 

F(1,34) = 16.14, p<0.0005). For the first session alone all participants were 

slower on undesirable compared to desirable trials (session*valence interaction: 

F(1,34) = 4.70, p = .037). This was due to faster responses for desirable trials 

compared to undesirable trials on the 1st session (t(35) = -2.13, p = .040), 

whereas there was no difference between desirable and undesirable trials on 

the 2nd session t(35) = 0.51, p = .617).  
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 Vivid Familiar Experience Arousal Negative Memory 
errors 

All 
(n = 36) 

      

Desirable 4.38 
(0.81) 

4.08 
(0.81) 

2.64    
(0.55) 

3.62 
(0.81) 

3.72 
(0.88) 

9.79 
(4.19) 

Undesirable 3.52 
(0.83) 

3.48 
(0.93) 

1.82    
(0.29) 

3.95 
(0.79) 

4.09 
(0.77) 

10.67 
(3.38) 

Young 
(n =18) 

      

Desirable 4.03 
(0.52) 

3.84 
(0.78) 

2.50    
(0.51) 

3.30 
(0.71) 

3.71 
(0.49) 

8.08 
(2.98) 

Undesirable 3.32 
(0.66) 

3.49 
(0.86) 

1.79    
(0.30) 

3.46 
(0.78) 

4.15 
(0.59) 

9.49 
(3.18) 

Old 
(n = 18) 

      

Desirable 4.73 
(0.91) 

4.32 
(0.78) 

2.79    
(0.56) 

3.95 
(0.79) 

3.74 
(0.12) 

11.51 
(4.59) 

Undesirable 3.52 
(0.83) 

3.46 
(0.10) 

1.84    
(2.87) 

4.34 
(0.58) 

4.03 
(0.93) 

11.86 
(3.24) 

Table 20. Subjective ratings and memory performance.  

Subjective ratings are scores measured using a Likert scale ranging from 1 (not at all) to 

6 (very) for all 45 task events. Memory errors are the absolute difference between the 

actual probability presented for each adverse event and the participants’ recollection 

of those actual probabilities. Scores are mean, SD in parentheses. 
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All participants rated trials where they received desirable information as more 

vivid, more familiar and indicated greater past experience of these events 

compared to trials where they received undesirable information (main effect of 

valence: Vivid F(1,34) = 86.98; Familiar F(1,34) = 44.74; Experience (F(1,34) = 

87.84; all p<0.0005). All participants rated trials where they received 

undesirable information as more arousing and more negative than trials where 

they received desirable information (main effect of valence: Arousal F(1,34) = 

16.55; Negative F(1,34) = 20.12; all p<0.0005).  An age-related difference was 

only present for ratings of arousal (main effect of age: F(1,34) = 13.89, p = .001; 

all other main effects of age p > 0.1) and familiarity (valence*age interaction: 

F(1,34) = 7.49, p = .010; all other valence*age interactions p > 0.1). In fact, 

older adults rated all events as more emotionally arousing than younger adults. 

This would suggest that the greater update bias in older adults was not due to 

participants being less engaged in the task or finding the stimuli less relevant 

than younger adults did. Familiarity ratings indicated how familiar participants 

were with each event regardless of their personal experience. Here I found that 

although there was a trend towards older adults rating desirable events as more 

familiar than younger adults (t(34) = 1.82, p = .078), there was no age-group 

difference for familiarity with undesirable trials (t(34) = 0.08, p = .939).  

Overall, these subjective ratings analyses suggest the task events were just as 

salient for old as for young adults and the relative lack of interactions with age-

group make it highly unlikely these variables accounted the age-related 

difference in the update bias. Nonetheless, to fully account for this possibility I 

added the following measures as covariates to the analysis of the update bias: 

IQ, first estimation error, difference measures of all subjective ratings, difference 
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measures of reaction times and average memory errors. Importantly, the 

significantly greater update bias in older adults persisted (ANCOVA update 

valence*age interaction F(1,34) = 6.15, p = .021) and no covariates interacted 

with the update bias (covariates*update valence interactions all p > 0.2).  

Two further measures confirmed greater optimism in my sample of healthy older 

adults. Firstly, older adults also had a greater tendency than young adults to 

underestimate the likelihood of negative events, indicated by a more negative 

first estimation error (t(34) = 3.60, p = .001; Figure 26b). Secondly I used the 

LOT-R self-rating personality scale as an independent measure of optimism and 

found that older adults had higher trait optimism scores than young adults (t(34) 

= 3.53, p = .001) (Figure 26c).  

In summary, I show that older adults are more optimistic than younger adults as 

indicated by both a greater tendency to underestimate the likelihood of negative 

events and higher trait optimism scores. Furthermore, I show an enhanced 

update bias in older age with a selective reduction in update when older adults 

were faced with undesirable information.  

 

7.3.2 Structural neuroimaging: ACC and biased updating 
I performed a structural neuroimaging analysis in relation to my a priori region of 

interest, associated in previous studies with a positivity effect in old age, namely 

the ACC. I parcellated an anatomically defined bilateral mask of this region to 

obtain grey matter volume of dorsal and ventral ACC subregions and examined 

the correlation with updating beliefs and age-group differences. I found that 

volume of both the dorsal and ventral ACC correlated positively with the update 
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bias in older adults whereas neither region correlated with update bias in 

younger adults (Table 21). The dorsal ACC correlation in older adults was 

significantly greater than in young adults (Fishers r-to-z, z = -1.78, p = .036), in 

contrast to the non-significant age-group difference for the ventral ACC (z = -

1.42, p = .078) (Figure 27). Greater dorsal ACC volume also correlated with 

higher desirable update in older adults, although this association was less 

robust than with update bias after controlling for age, gender and TIV (Table 

22). Thus amongst older but not younger adults, the correlation between dorsal 

ACC structure and update bias suggests this region arbitrated between 

desirable and undesirable update (Figure 28; Fishers r-to-z comparing the 

correlation with volume and desirable update to the correlation with volume and 

undesirable update, z = -2.13, p = 0.017). 

 

  

  



243 
 

 Older  Young  

 r p r p 

Dorsal ACC .649,  .526 .004*, .044 .122, .057 .631, .841 

Ventral ACC .626, .504 .005*, .056 .213, .262 .395, .345 

Table 21. Correlation between ACC subregions and update bias. 

Correlation coefficients (Pearson’s correlations) for the correlation between dorsal & 

ventral subregions of anterior cingulate cortex (ACC) grey matter volume and update 

bias (desirable update minus undesirable update). Partial correlations controlling for 

age, gender and TIV are given in the same cell of the table. *p< 0.0125 (significance 

level after Bonferroni correction for four tests). 
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Figure 27. Region of interest analysis of the anterior cingulate cortex (ACC).  

Scatter plots showing higher volume of dorsal anterior cingulate cortex (green mask) 

and ventral anterior cingulate cortex (red mask) in older adults correlated with higher 

update bias (desirable update minus undesirable update) in older adults. No significant 

correlations were observed in young adults. N=18 per age group. * Fisher’s r-to-z 

transformation comparing correlation strengths p < 0.05. ACC volume measurements 

on x-axis of both plots measured in arbitrary units.  
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Figure 28. Dorsal ACC volume and update. 

Scatter plots showing associations between dorsal anterior cingulate cortex (ACC) 

volume and desirable and undesirable update in young and older adults. * Fisher’s r-

to-z transformation comparing correlation strengths p < 0.05. ACC volume 

measurements on x-axis of both plots measured in arbitrary units. 
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 young  old  

 r p r p 

Desirable .175, .229 .488, .412 .567, .415 .014, .124 

Undesirable .053, .258 .836, .354 -.134, -.178 .596, .527 

Table 22. Correlation between dorsal ACC volume and update. 

Correlation coefficients (Pearson’s correlations) for the correlation between dorsal 

anterior cingulate cortex grey matter volume and desirable update and undesirable 

update. Partial correlations controlling for age, gender and TIV are given in the same 

cell of the table. 
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The volume of both dorsal ACC (young mean 0.45 SD 0.032; older mean 0.42 

SD 0.036) and ventral ACC (young mean 0.54 SD 0.037; older mean 0.49 SD 

0.036) were reduced overall in older age (dorsal: t(34) = -2.55 p = .015; ventral 

t(34) = -4.08 p < 0.0005). To further assess whether the association between 

volumes of ACC subregions and update bias differed between age-groups 

because of the range of volume values, I formed age-groups matched for 

volume. I excluded young adults with dorsal ACC volumes higher than volumes 

in older adults (n = 3) and excluded older adults with lower dorsal ACC volumes 

than young adults (n = 4). This did not change the pattern of results, whereby a 

strong correlation remained in older adults (r = 0.72, p = .004) and there 

remained no correlation amongst young adults (r = 0.34, p = .209).  Using the 

same approach for the ventral ACC, I excluded young adults with higher ventral 

ACC volumes than older adults (n = 3) and older adults with lower ventral ACC 

volumes than young adults (n = 7). Here, despite the small sample size, the 

significant correlation persisted in older adults (r = 0.72, p = .013). Additionally, 

an almost significant correlation emerged in young adults (r = 0.51, p = .051). 

These results indicate that whilst the ventral ACC may play a general role in 

mediating the update bias, individual differences of dorsal ACC volume 

contributed more to the update bias in older adults compared to young adults 

despite age-related volume differences. 

An additional potential explanation for the enhanced update bias in older age is 

that the greater failure to update undesirable information occurs as a 

consequence of age-related atrophy. In younger adults, functional activity of the 

right inferior frontal gyrus has been associated with tracking undesirable 

information. However in this cohort, volume of this region was similar in young 
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and older adults (independent t-test, t(34) = -1.08, p = .287 two-tailed) and did 

not correlate with undesirable update in either age group (both p > 0.3). A 

further exploratory whole-brain VBM conjunction analysis identified clusters in 

the superior and middle temporal lobe, superior frontal gyrus and cerebellum, 

indicating regions that were both reduced in volume in older adults and 

correlated with undesirable update more in younger than older adults, yet none 

of these regions survived whole brain correction for multiple comparisons (Table 

27). 

 

7.3.3 SN/VTA integrity and trait optimism 

Amongst older adults, high optimists (n = 9) had greater SN/VTA structural 

integrity than low optimists (n = 9) (t(16) = 2.54, p = .022). Amongst younger 

adults there was no difference between low optimists (n = 9) and high optimists 

(n = 9) (t(16) = 1.42, p = .17).  
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No. 
voxels T Z x y z  L/R region  

3219 4.99 4.23 -16 -43 -47 L cerebellum 
1294 4.88 4.16 36 -35 62 R postcentral 

1706 4.48 3.89 49 -14 -30 R 
inferior 
temporal 

293 4.27 3.74 -38 -30 -22 L fusiform 
1146 4.24 3.72 -62 -18 26 L postcentral 

398 4.06 3.60 -49 -13 -28 L 
inferior  
temporal 

261 4.04 3.58 41 -63 12 R mid temporal 

449 3.97 3.53 10 50 12 R 
anterior 
cingulate  

487 3.92 3.49 -50 8 32 L 
inferior frontal 
gyrus 

1071 3.90 3.48 22 7 53 R superior frontal 
587 3.87 3.46 -30 -3 -22 L hippocampus 
320 3.81 3.41 -34 2 2 L insula 
83 3.75 3.37 23 46 28 R mid frontal 

150 3.74 3.36 -6 1 70 L 
supplementary 
motor area 

89 3.69 3.32 42 -25 47 R postcentral 

37 3.61 3.27 -20 -82 26 L 
superior 
occipital 

100 3.60 3.25 2 -13 31 R mid cingulum 

28 3.57 3.23 29 -78 22 R 
superior 
occipital 

39 3.54 3.21 29 -51 -53 R cerebellum 
29 3.53 3.21 28 17 42 R mid frontal 

18 3.53 3.20 56 -33 -21 R 
inferior 
temporal 

10 3.50 3.18 56 -54 19 R mid temporal 
14 3.48 3.16 46 -50 18 R mid temporal 

12 3.45 3.14 44 22 9 R 
interior frontal 
gyrus 

17 3.43 3.13 -6 16 62 L 
supplementary 
motor area 

Table 23. Positive correlation with desirable update across all participants.   

No regions correlated negatively with desirable update.  Uncorrected threshold p < 

0.001, > 10 voxels. 
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No. 
voxels T Z x y z  L/R  region 

 
Undesirable negative 

     368 4.00 3.55 58 -12 30 R postcentral 

      Undesirable positive 
     

118 3.96 3.52 -16 -80 22 L 
superior 
occipital 

175 3.74 3.36 -7 -83 -23 L cerebellum 

Table 24. Correlations with undesirable update across all participants.  

Uncorrected threshold p < 0.001, > 10 voxels. 
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No. 
voxels T Z x y z  L/R  region 

339 4.34 3.79 -17 -80 23 L 
superior 
occipital 

899 4.27 3.75 59 -13 29 R supramarginal 
871 3.97 3.53 37 -29 60 R postcentral 

57 3.85 3.44 -38 -29 -22 L 
inferior 
temporal 

52 3.77 3.39 34 -58 -53 R cerebellum 
88 3.72 3.35 -14 -58 -53 L cerebellum 
74 3.71 3.34 -29 -1 -18 L amygdala 

223 3.67 3.31 -13 -4 69 L 
supplementary 
motor area 

59 3.60 3.26 -18 -42 -46 L cerebellum 
96 3.58 3.24 23 8 54 R superior frontal 

24 3.53 3.20 45 23 11 R 
inferior frontal 
gyrus 

71 3.53 3.20 -61 -18 26 L postcentral 
13 3.44 3.13 46 -62 18 R mid temporal 

Table 25. Correlations with update bias across all participants. 

Desirable update > undesirable update.  Uncorrected threshold p < 0.001, > 10 voxels. 
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No. voxels T Z x y z  L/R  region 

old > young 
       357 4.17 3.66 20 -58 50 R superior parietal 

649 4.12 3.63 26 -1 -8 R putamen 
764 3.86 3.44 -25 -7 -8 L putamen 

13 3.74 3.35 14 -16 59 R 
supplementary 
motor area 

20 3.49 3.16 38 -54 35 R angular gyrus 
                
young > old               
1087 4.44 3.85 22 -64 -9 R lingual 
562 3.95 3.51 -4 -22 39 L mid cingulum 

217 3.86 3.44 -54 15 26 L 
inferior frontal 
gyrus  

113 3.86 3.44 -23 -67 -14 L fusiform 
205 3.83 3.42 9 -98 21 R superior occipital 
102 3.72 3.33 4 -80 -26   cerebellum 
53 3.69 3.31 -8 -99 21 L superior occipital 

28 3.63 3.27 -27 25 -34 L 
superior temporal 
pole 

62 3.60 3.24 -2 -68 20 L calcarine 
113 3.50 3.17 42 -46 -17 R fusiform 

Table 26. Age-comparison of update bias (desirable update > undesirable update).  

Uncorrected threshold p < 0.001, > 10 voxels. 
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No. 

voxels T Z x y z L/R region  

514 4.21 3.70 62 -38 22 R 

superior 

temporal 

356 3.96 3.52 -7 38 45 L superior frontal 

76 3.64 3.29 54 -59 21 R mid temporal 

16 3.63 3.28 19 -43 -21 R cerebellum 

Table 27. Conjunction analysis. 

Conjunction analysis of young > old and update undesirable young > update 

undesirable old. Uncorrected threshold p < 0.001, > 10 voxels. 
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7.4. Discussion  
I provide evidence showing healthy older adults display greater optimism 

compared to younger adults, manifest as an enhanced tendency to 

underestimate the likelihood of negative events and higher trait optimism 

scores. Moreover I show that older adults are less likely than younger adults to 

change their beliefs when faced with undesirable information about their future. 

This greater asymmetry in belief updating was present despite older adults 

experiencing greater subjective feelings of emotional arousal for all the task 

events. This enhanced update bias was not related to poorer memory amongst 

older adults and was independent of non-age related valence differences in 

subjective ratings of the task stimuli including the sense of personal experience, 

vividness, familiarity, and negativity.  

My study provides the first demonstration that greater asymmetry in belief 

updating in older adults is tightly coupled to volume of the dorsal ACC. Previous 

studies report a critical role of the  ACC as a cognitive-emotional interface (for 

reviews see (Bush et al., 2000) and (Ochsner and Gross, 2005)) and greater 

functional ACC activity has been associated with more emotional regulation in 

old age (Brassen et al., 2011; Brassen et al., 2012) (Samanez-Larkin and 

Carstensen, 2011).  My study showed that the dorsal subregion of ACC played 

a stronger role in mediating the update bias in older than younger age. 

Moreover, even after accounting for age-related atrophy by matching the 

volume of ACC subregions across age-groups, no correlation emerged in 

younger adults between update bias and volume of the dorsal subregion 

suggesting this localised relationship was exclusive to older adults. Volume of 

the dorsal as opposed to ventral ACC, often dubbed ‘cognitive’ and affective’ 
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regions respectively (Devinsky et al., 1995) (Bush et al., 2000) has been linked 

to greater cognitive reappraisal strategies in healthy adults (Giuliani et al., 2011) 

and volume of this subregion is reduced in patients with depression where 

emotional dysregulation and pessimism are highly characteristic (Vasic et al., 

2008). Thus I speculate that my findings linking dorsal ACC to an enhanced 

update bias in older adults suggests that the enhanced optimism bias and the 

well-documented positivity bias in older age may share a similar ‘cognitive 

control’ mechanism. In contrast I found some evidence that the ventral ACC 

may be associated with updating beliefs irrespective of age when I matched 

age-groups for volume of this subregion. Indeed a previous study in younger 

adults showed functional activation in a similar region was associated with an 

optimistic bias when imagining future events (Sharot et al., 2007). 

Importantly I found a positive correlation, such that older adults with greater 

dorsal ACC volume had an enhanced update bias. This seems to indicate that 

older adults have additional resources which they are able to deploy when 

processing negative events, whereas younger adults do not rely on this region 

during task performance. This interpretation is in keeping with the 

socioemotional selectivity theory, whereby enhanced optimism in old age may 

be viewed as a positive phenomenon rather than a ‘side-effect’ of age-related 

structural decline. To investigate the latter alternative explanation, I also 

performed a whole brain VBM analysis to determine whether age-related 

decline of any other brain regions was associated with a failure of undesirable 

update in older age, yet I did not find any strong evidence for this. However I 

acknowledge this may have been due to sample size and I do not exclude this 
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as an additional mechanism contributing to the enhanced update bias in older 

age.  

Functional activation of the inferior frontal gyrus has previously been linked to 

an optimism bias in younger adults (Sharot et al., 2011). Although I identified 

the left inferior frontal gyrus in my whole-brain VBM analysis as showing an 

age-interaction (young > old) for the update bias, no grey matter regions in this 

analysis survived whole brain correction for multiple comparisons. Therefore I 

remain cautious about interpreting this as an age-specific effect. Additionally, I 

also found no age-related decline or any structural association between right 

inferior frontal gyrus volume and undesirable update.  

I speculate that my findings may be in line with a recent study showing that 

pharmacological enhancement of dopamine levels in younger adults also 

increased the optimism bias due to a reduction of updating undesirable 

information (Sharot et al., 2012a).  Dopamine neurons, including mesocortical 

projections from the SN/VTA, and dopamine receptors in the ACC variably 

decline as a consequence of aging (Fearnley and Lees, 1991; Volkow et al., 

2000; Bäckman et al., 2010). I found greater structural integrity of the SN/VTA, 

indexed by MT imaging, was associated with higher trait optimism in older 

adults. Although a preliminary analysis based on small group numbers, this 

suggestion of a link between structural integrity of the dopaminergic midbrain 

and optimism in old age warrants further study, since dopaminergic 

manipulation, either exogenously by pharmacological means, or endogenously 

for example through reward and novelty processing, may influence optimism in 

old age.  
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I acknowledge other socio-cultural factors specific to this cohort could account 

for the differences I find in optimism between young and older participants. 

These are necessarily  harder to determine with a cross-sectional design, but 

large-scale longitudinal studies have demonstrated less negative emotions in 

old age across multiple generations (Charles et al., 2001) (Carstensen et al., 

2011).  

In summary, I show healthy older adults are even more optimistic and display 

an enhanced update bias compared to younger adults, an effect that correlates 

with the grey matter volume of the ACC. My findings relate to healthy individuals 

and a logical extension of my study would be to examine whether age-

associated diseases (e.g. cardiovascular, orthopaedic, neurodegenerative and 

metabolic disorders) impact upon this update bias. In our aging society, I 

provide a timely demonstration of an age-related enhancement of the update 

bias that has important implications for healthy aging. This enhanced bias, and 

an exaggerated failure to adjust beliefs in the face of undesirable information, 

may influence other economic, personal and health-related decisions. For 

example, older adults may make inappropriate insurance purchases based on a 

false optimism in relation to their future. My findings point towards a need for in-

depth examination of ‘real-world’ decision-making processes in healthy aging.  
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Chapter 8  

Discussion 

The work presented in this thesis uses a multi-modal approach to study the role 

of dopamine in learning and memory in healthy older age. Specifically I 

combined pharmacological manipulation with behavioural testing and fMRI to 

determine whether pharmacological manipulation to enhance dopamine levels 

improved long-term episodic memory (Chapter 4) and reinforcement learning 

(Chapter 5). I used quantitative structural MRI and DTI to study how anatomical 

differences of dopaminergic regions of the brain and their projection areas 

relate to reward-based learning (functional reward prediction error signalling in 

Chapter 5 and flexible learning in Chapter 6) and belief updating (Chapter 7).  

In this final chapter, I will discuss the implications of these studies, limitations 

and ideas for future study.  

 

8.1. Memory 

In Chapter 4 I showed that delayed episodic memory in older adults improved 

with L-DOPA administration in a dose-dependent non-linear manner. The 

pattern of BOLD activity in the hippocampus suggested this effect was mediated 

though consolidation rather than encoding.  
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This is the first study to provide empirical evidence for two effects – the first is 

the non-linear ‘inverted U-shape’ effect of dopamine on episodic memory which 

has previously been reported in the context of working memory (Cools and 

D'Esposito, 2011) and a similar effect on episodic memory has been suggested 

by computational simulations (Li and Sikström, 2002). The second is human 

evidence for the role of dopamine in memory consolidation which has previously 

been elegantly described in animal studies of episodic-like memory (Bethus et 

al., 2010). These findings are relevant to healthy aging since a decline in 

episodic memory is well-recognised with age and can be a source of 

considerable distress.  Manipulations of dopamine may therefore provide a 

mechanism to overcome encoding-related deficits. Future studies could 

determine whether the memory benefit I found persists beyond 6 hours (testing 

memory at 6 hours was a limitation of my study which was due to the 

practicalities of testing older individuals and balancing the use of a within-

subject design with an acceptable number of test days for older volunteers). It 

would also be interesting to determine the effects of repeated drug doses on 

long-term memory since such a schedule has been associated with better 

verbal learning in younger adults (Knecht et al., 2004). It is worth being mindful 

that potential side-effects from long-term use of drugs such as L-DOPA are 

unknown in healthy individuals. My study may feed into the debate over the use 

of pharmacological interventions, so-called ‘cognitive enhancers’, in healthy 

populations (Sahakian and Morein-Zamir, 2007). Interestingly, one study found 

that community physicians would be more comfortable prescribing a 

hypothetical cognitive enhancer to older rather than younger adults (Banjo et 

al., 2010). Presumable this partly relates to what is defined as ‘healthy’ as 
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physicians in that particular study felt that younger adults were less needful of 

cognitive enhancement and ran a greater risk of misuse, whereas they saw 

more benefits in older adults in terms of well-being and overall health.  

My findings also raise the intriguing possibility that manipulating dopamine by 

non-pharmacological means may enhance memory. For example, a study could 

be conducted in which drug administration is replaced by exposure to novelty to 

determine whether this had similar effects. This could have major real-life 

consequences by providing a simple means of memory enhancement in older 

age. However, my study raised one problem with this non-pharmacological 

approach since I found that reward anticipation did not enhance long-term 

memory. This may have been due to age-differences underlying reward 

processing, which I demonstrate in other chapters in this thesis (Chapters 5 & 

6). A limitation of my study in Chapter 4 is that the design was not optimised to 

analyse the effects of reward but rather focussed on episodic memory. 

Therefore a future study combining implicit encoding and a subsequent memory 

test embedded within a probabilistic reinforcement learning task could help to 

tease this apart further. Such a study could include varying magnitudes of 

reward to assess whether reward also has a ‘dose-dependent’ effect. It is also 

possible that I may have observed reward-effects on memory if memory was 

tested after a longer delay. Ultimately, some way of quantifying dopamine levels 

associated with reward anticipation would provide a more complete analysis, 

particularly since my data already highlight that a complex dose-response 

relationship exists. Without such a measure, it could be even harder to interpret 

the effects of non-pharmacological dopaminergic manipulations on the 

background of variable age-related dopamine decline. Thus human studies with 
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PET and animal studies with voltammetry may be fruitful ways of exploring this 

further.  

In general, the results of this study speak to a growing body of research seeking 

to understand the interaction between motivation and memory (Shohamy and 

Adcock, 2010) (Duzel et al., 2010). This may not only be relevant to healthy 

aging but also disease states in which episodic memory is impaired, such as 

Mild Cognitive Impairment (MCI) and Alzheimer’s disease. In these conditions, 

dopamine manipulation has not traditionally been considered given the 

prominent role of another neurotransmitter - acetylcholine. Nonetheless, milder 

dopaminergic deficits may co-exist and thus my results may provide an 

alternative means for investigating memory deficits in these illnesses. Indeed 

there is a close interaction between acetylcholine release and the firing of 

dopaminergic neurons in the SN/VTA (Picciotto et al., 2012). Even though 

underlying pathologies between normal aging and MCI may differ, there has 

been limited success from the use of acetylcholine-based medications in MCI 

(Salloway et al., 2004; Petersen et al., 2005). Therefore it may be worth 

investigating whether dopaminergic modulation may provide some symptomatic 

benefit with regards to delayed episodic memory deficits. 

   

8.2. Reinforcement learning 

In Chapter 6 I show that a marked asymmetry between learning different action-

valence contingencies in some older adults. Individual differences in this 

behavioural inflexibility were linked to the structural integrity of SN/VTA indexed 

by MT imaging in older but not younger adults. It has been suggested that 
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valence may influence learning in old age through different sensitivities to 

reward and punishment (for a review see (Eppinger et al., 2011)). My study 

uses a well-designed task that allows us to tease apart the contribution of action 

and valence to learning, and better understand the interaction between 

motivational tendencies and the ability to learn to execute ‘incongruent’ 

responses. My results suggest that it is not necessarily learning-related valence 

biases that change with age but rather changes in the flexibility of instrumental 

learning, mediated by midbrain integrity that may account for these effects. The 

wider implication of this study, as already alluded to, is how these motivational 

biases relate to other aspects of cognition and how this can be exploited to 

improve age-related cognitive decline.  

One limitation of the study in Chapter 6 was that I performed indirect 

comparisons with two separate younger control groups – one group for whom I 

had task performance and MT imaging that was not directly comparable with 

MT imaging performed in older adults (Guitart-Masip et al., 2012a), and a 

second smaller group of young individuals who had comparable MT imaging but 

no behavioural data (Lambert et al., 2012). The reason for this was that the 

primary aim of the study was to examine individual differences in the structure-

function relationship amongst healthy older adults. Also, the interpretation of MT 

values in younger adults, as opposed to old age and various disease states, is 

less clear given the myelination changes that occur in the maturing brain (Düzel 

et al., 2008). Nonetheless, comparison with these other data sets provided 

some interesting albeit indirect observations about the age-specific nature of my 

findings. A future study could assess both young and older adults and combine 

MT imaging with fMRI. This would be particularly interesting to examine 
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dopamine target regions, such as potential age differences in prefrontal cortex 

activation within the context of flexible learning, since instrumental learning in 

younger adults is associated with inferior frontal gyrus activity (Guitart-Masip et 

al., 2012a).  

One strength of my study was the use of quantitative imaging as a proxy marker 

for dopaminergic integrity. Traditionally, the standard T1 MRI contrast has been 

used to measure grey matter volume, but historically due to inaccurate 

segmentation algorithms, the SN/VTA may be misclassified as white matter and 

therefore not assessed in a standard VBM study. However with the advent of 

multiparameter mapping, an array of MRI sequences can be employed to better 

visualise subcortical structures and exploit different tissue properties, providing 

insight into other underlying biological properties such as macromolecular 

structural integrity (MT), iron content (R2*), myelin (T1), water content (MD) and 

fibre organisation (FA). This has allowed me to make rich inferences from 

structural imaging data throughout this thesis. However, a notable  limitation is 

that the histological correlates of many of these imaging parameters are not yet 

known. Thus, whilst I suggest the study in Chapter 6 provides evidence that 

dopamine mediates learning flexibility, the imaging markers do not provide 

direct evidence for this. In the first instance, animal studies would be useful to 

provide these much needed histological correlates for neuroimaging markers. 

Chapter 5 details the results of a pharmacological reinforcement learning fMRI 

study in which I show that some healthy older adults have absent reward 

prediction errors in the nucleus accumbens. L-DOPA restored the appropriate 

functional activation pattern via a more positive effect of expected value when 

participants made a choice (‘reward prediction’) and a more negative effect of 
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expected value at the time of the outcome (‘reward prediction error’). Abnormal 

striatal activity during reward anticipation with normal representations of 

rewarding outcomes have previously been identified in old age (Samanez-

Larkin et al., 2010) (Schott et al., 2007). The novel contribution of my study is 

first, to characterise the expected value component of this deficit and secondly, 

to show that it can be modified by enhancing dopamine levels. I also show that 

individual differences in baseline functional signalling of reward prediction errors 

correlated with anatomical nigro-striatal connectivity strength, perhaps 

explaining some of the observed inter-individual functional variability. This study 

identifies a neural structural and functional basis for abnormal reward prediction 

error signalling in healthy old age. This is important given the well documented 

difficulties that older adults have on probabilistic learning tasks (Eppinger et al., 

2011) although I acknowledge that in my study, L-DOPA resulted in only a slight 

increase in performance in comparison to placebo. The mild improvement in 

behaviour and emergence of a normal pattern of reward prediction error 

signalling in the nucleus accumbens again highlights the potential role of 

dopamine as a therapeutic means for tackling age-related instrumental learning 

dysfunction.  

Some older adults did improve following L-DOPA to win similar amounts of 

money on the task as young people did. One possible explanation for this is that 

behaviour in this task relies on the reward component more than expected 

value. If that were true, then a future study may observe a direct link between 

prediction errors and task performance if the numbers of bandits were 

increased such that accurate value representations would be required to guide 

behaviour. In such a task (e.g. a four-arm bandit task) the effect of L-DOPA on 
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additional measures such as the exploration-exploitation trade-off could also be 

measured (Daw et al., 2006). It may also be interesting for future studies to try a 

bandit task which incorporates different magnitudes of reward since it is 

unknown how this may affect the reward prediction error signal in old age.  

As discussed in Section 5.4, my data may suggest that older adults have an 

impaired system and thus adopt a more model-based approach when 

performing reinforcement learning tasks. There is some evidence that older 

adults are more ‘model-based’, where learning occurs by building a structure of 

the reward environment, compared to their younger counterparts who adopt a 

‘model-free’ approach where the value of each choice is learned without 

constructing an explicit cognitive map (Glaescher J et al., 2010) (Worthy DA et 

al., 2011). Although older adults often perform worse than younger adults on 

probabilistic learning tasks, there is also evidence that learning does not 

universally decline with increasing age, but rather learning strategies change – 

hence the adage ‘older and wiser’ (Grossmann et al., 2010) (Worthy et al., 

2011), coupled with variability in performance levels. The results I report in 

Chapter 6 are also in keeping with this, whereby older adults may have been 

able to overcome Pavlovian response biases because of a more model-based 

approach. This could explain why older and younger adults with similar MT 

values of SN/VTA displayed different patterns of learning. Yet this model-based 

system may fail in older age when dopaminergic integrity is compromised, in 

keeping with evidence that enhancing dopamine levels promotes the model-

based over model-free learning (Wunderlich K et al., 2012). Also, there is 

differential development of the various dopaminergic pathways with age, where 

late development of the mesocortical system in adolescent rats has been linked 
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to maturation of goal-directed behaviour (Naneix et al., 2012). Hence one 

interpretation of the results in Chapter 6 is that older adults with impaired 

dopamine integrity (low MT values of SN/VTA) could not utilise a model-based 

approach and were therefore unsuccessful at instrumentally learning to 

overcome their response biases, in effect 'reverting' to showing a similar pattern 

of learning as younger adults. Taken together, the results in Chapters 5 and 6 

hint at a possible mechanism underlying the change in learning strategies with 

increasing age (a switch from model-free to model-based learning) and reasons 

this may fail (consequent upon dopamine decline). To test this would require 

direct testing of changes in the Pavlovian bias across age-groups, and the use 

of a model-free and model-based paradigm such as that used by Wunderlich et 

al. (Wunderlich et al., 2012), ideally using a longitudinal study design.  

Combining the two-arm bandit task in Chapter 5 with DTI provided new insight 

into the structure-function relationship underlying reward processing. A further 

extension of this would be to test the relationship between anatomical and 

functional connectivity (e.g. using a psychophysiological interaction). An 

important focus would be on effective connectivity of striatal-prefrontal circuits 

since these regions are subject to age-related structural decline (Raz et al., 

2003; Raz and Rodrigue, 2006) and implicated in reinforcement learning, as 

well as being a feasible pathway to characterise using probabilistic tractography 

(Samanez-Larkin et al., 2012).  
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8.3. Optimism 

In Chapter 7 I show that a group of healthy older adults were more optimistic 

than younger adults, indexed by three measures. The first was a greater 

tendency to underestimate the likelihood of negative events occurring in the 

future. The second was an enhanced update bias, whereby older adults 

changed their beliefs for undesirable information even less than younger adults 

did, whilst changing their beliefs for desirable information to a similar extent. 

The third was using the LOT-R trait personality scale on which older adults 

scored higher than younger adults. The enhanced update bias was associated 

with greater grey matter volume of the dorsal ACC in older but not younger 

adults. This suggests that at least one mechanism underlying greater optimism 

in older age was not secondary to age-related neurodegeneration. .  

There are many reasons to study optimism and affective processing in old age. 

Optimism is associated with health benefits and general well-being (Scheier and 

Carver, 1993) raising the possibility of sharing mechanisms with successful 

aging. In our continually aging society where late-life depression is common, 

associated with high morbidity (Alexopoulos, 2005), and characterised in part by 

pessimism, a clearer understanding of optimistic behaviour may offer new 

therapeutic contributions. The optimism bias could also have disadvantageous 

effects in old age since a valence asymmetry in belief updating could bias 

everyday decisions such as choosing an appropriate insurance policy.  It would 

therefore be useful for future studies to combine this optimism task with other 

decision-making tasks, for example a financial risk-taking task, to determine the 

impact of the update bias on other decision-making processes. 
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One limitation of my study is that the results may be confounded by cohort 

effects, such as exposure to different socio-environmental factors for adults 

growing up in 1950s compared to those growing up in the 1990s. This is a long-

standing concern of cross-sectional studies of aging.  To address this issue, a 

longitudinal study could be performed to ascertain whether the same individuals 

become more optimistic as they age. Measures of physical health and well-

being could also be collected to see whether optimism had a causal effect on an 

individuals’ physical and mental health.  

One original hypothesis for this study was based on the observation that 

pharmacological enhancement of dopamine levels enhances the optimism bias 

by selectively reducing belief updating from undesirable information (Sharot et 

al., 2012a). Therefore I hypothesised that old age may be associated with less 

optimism due to declining dopamine levels. Resolving this question was one 

motivation for undertaking this study, since at face value this neurobiological 

account is at odds with socio-emotional studies which suggest greater well-

being and fewer negative emotions with increasing age. My study found that 

older adults were more optimistic than younger adults, although a further 

exploratory analysis revealed this does not necessarily conflict with an age-

related dopamine decline. I explored the link with dopamine by obtaining 

quantitative MT imaging of the SN/VTA. Using trait optimistic personality ratings 

to divide my cohort into high and low optimists, this exploratory analysis 

revealed that older ‘high optimists’ had higher MT values of the SN/VTA than 

older ‘low optimists’ whereas there was no difference amongst younger adults. 

These pilot results may link dopamine and optimism in old age, since both 

mesocortical dopamine projections from the SN/VTA and dopamine receptors in 
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the ACC variably decline as a consequence of aging (Fearnley and Lees, 1991; 

Volkow et al., 2000; Bäckman et al., 2010).  This raises the possibility that 

variable dopamine decline with age could be linked to the expression of 

optimism. A larger study with additional measures of dopamine could explore 

this further.  

To better understand the role of the ACC in optimism in old age, fMRI could be 

used to identify networks associated with the ACC and whether these networks 

differ for updating desirable and undesirable information. The functional circuits 

associated with ‘cognitive’ and ‘affective’ subregions of the ACC could be 

inspected for dissociation with regards to the update bias. The ACC also plays a 

role in avoidance learning, error detection and conflict monitoring to guide 

decision-making (Botvinick, 2007). This could relate to my findings if 

undesirable information is perceived as more conflicting than desirable 

information so driving cognitive control, akin to the association of greater ACC 

activation with feelings of regret in older adults (Brassen et al., 2012).   

 

8.4. Other considerations 

8.4.1 Aging as a model of dopamine decline  

Health older age provides the opportunity to study features associated with 

dopamine decline. For this purpose, aging is perhaps a better model than 

Parkinson’s disease since the latter is accompanied by more widespread 

pathological changes in the brain, occurring before involvement of the 

substantia nigra (Braak et al., 2004). However other neurotransmitters including 

serotonin, acetylcholine and noradenaline, also decline with age (see (Eppinger 
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et al., 2011) for a review). Aging is therefore not a ‘pure’ model of dopamine 

decline and the actions of other neurotransmitters may well play a role in the 

results presented in this thesis. 

 

8.4.2 Generalisability  

 One critical feature highlighted by the studies in this thesis is the heterogeneity 

of the aging process. This, together with recruitment bias (‘healthy volunteers’) 

and environmental cohort effects, limit the generalisability of my results to the 

elderly population as a whole. The participants in the studies I have presented 

were all screened to ensure they were healthy and free of other risk factors for 

cognitive dysfunction (e.g. vascular risk factors). It would be interesting for 

future studies to utilise the paradigms in this thesis in larger samples, where a 

more representative cohort of the general population could be examined, whilst 

also taking the effects of potential confounding factors which would occur as a 

consequence of having less stringent exclusion criteria, into account.  

 

8.4.3 Final remarks 

The research I have conducted provides a novel perspective on the critical 

contribution of dopamine to individual differences in learning and memory 

performance in older age. Bringing together these previous somewhat disparate 

strands of neuroscience research converge on the idea that motivation interacts 

with learning and memory (Duzel et al., 2009a) (Shohamy and Adcock, 2010) 

and motivational changes with age are both a key component of age-related 
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changes in these behaviors as well as potential targets for improving behavioral 

deficits (Carstensen et al., 1999; Carstensen, 2006).  

Many unasked and unanswered questions remain in the exciting field of the 

neuroscience of aging. The studies I have presented in this thesis are 

somewhat analogous to the ‘rule of thirds’, showing that as we age: some things 

get worse (Chapters 4 & 5), some things stay the same (Chapter 6) and some 

things get better (Chapter 7).  My hope is that the work presented here sheds 

some new light on how the brain mediates these diverse rises and falls that 

accompany us with the passing of time.  

 

  



272 
 

References 

Abler B, Walter H, Erk S, Kammerer H, Spitzer M (2006) Prediction error as a 

linear function of reward probability is coded in human nucleus 

accumbens. Neuroimage 31:790-795. 

Adcock RA, Thangavel A, Whitfield-Gabrieli S, Knutson B, Gabrieli JDE (2006) 

Reward-Motivated Learning: Mesolimbic Activation Precedes Memory 

Formation. Neuron 50:507-517. 

Aizenstein HJ, Butters MA, Clark KA, Figurski JL, Andrew Stenger V, Nebes 

RD, Reynolds Iii CF, Carter CS (2006) Prefrontal and striatal activation in 

elderly subjects during concurrent implicit and explicit sequence learning. 

Neurobiology of Aging 27:741-751. 

Alexander GE, DeLong MR, Strick PL (1986) Parallel Organization of 

Functionally Segregated Circuits Linking Basal Ganglia and Cortex. 

Annual Review of Neuroscience 9:357-381. 

Alexopoulos GS (2005) Depression in the elderly. The Lancet 365:1961-1970. 

Ances BM, Liang CL, Leontiev O, Perthen JE, Fleisher AS, Lansing AE, Buxton 

RB (2009) Effects of aging on cerebral blood flow, oxygen metabolism, 

and blood oxygenation level dependent responses to visual stimulation. 

Human Brain Mapping 30:1120-1132. 

Andersson JLR, Skare S, Ashburner J (2003) How to correct susceptibility 

distortions in spin-echo echo-planar images: application to diffusion 

tensor imaging. Neuroimage 20:870-888. 



273 
 

Andersson JLR, Hutton C, Ashburner J, Turner R, Friston K (2001) Modeling 

Geometric Deformations in EPI Time Series. Neuroimage 13:903-919. 

Aron AR, Poldrack RA (2006) Cortical and Subcortical Contributions to Stop 

Signal Response Inhibition: Role of the Subthalamic Nucleus. The 

Journal of Neuroscience 26:2424-2433. 

Aron AR, Fletcher PC, Bullmore ET, Sahakian BJ, Robbins TW (2003) Stop-

signal inhibition disrupted by damage to right inferior frontal gyrus in 

humans. Nat Neurosci 6:115-116. 

Aron AR, Behrens TE, Smith S, Frank MJ, Poldrack RA (2007) Triangulating a 

Cognitive Control Network Using Diffusion-Weighted Magnetic 

Resonance Imaging (MRI) and Functional MRI. The Journal of 

Neuroscience 27:3743-3752. 

Ashburner J (2007) A fast diffeomorphic image registration algorithm. 

Neuroimage 38:95-113. 

Ashburner J, Friston KJ (2000) Voxel-Based Morphometry--The Methods. 

Neuroimage 11:805-821. 

Ashburner J, Friston KJ (2001) Why Voxel-Based Morphometry Should Be 

Used. Neuroimage 14:1238-1243. 

Ashburner J, Friston KJ (2005) Unified segmentation. Neuroimage 26:839-851. 

Bäckman L, Lindenberger U, Li S-C, Nyberg L (2010) Linking cognitive aging to 

alterations in dopamine neurotransmitter functioning: Recent data and 

future avenues. Neuroscience & Biobehavioral Reviews 34:670-677. 

Bäckman L, Nyberg L, Lindenberger U, Li S-C, Farde L (2006) The correlative 

triad among aging, dopamine, and cognition: Current status and future 

prospects. Neuroscience & Biobehavioral Reviews 30:791-807. 



274 
 

Bäckman L, Ginovart N, Dixon RA, Wahlin T-BR, Wahlin Å, Halldin C, Farde L 

(2000) Age-Related Cognitive Deficits Mediated by Changes in the 

Striatal Dopamine System. Am J Psychiatry 157:635-637. 

Banjo OC, Nadler R, Reiner PB (2010) Physician Attitudes towards 

Pharmacological Cognitive Enhancement: Safety Concerns Are 

Paramount. PLoS ONE 5:e14322. 

Beck AT, Ward CH, Mendelson M, Mock J, Erbaugh J (1961) An Inventory for 

Measuring Depression. Arch Gen Psychiatry 4:561-571. 

Behrens TEJ, Johansen-Berg H (2005) Relating connectional architecture to 

grey matter function using diffusion imaging. Philosophical Transactions 

of the Royal Society B: Biological Sciences 360:903-911. 

Behrens TEJ, Hunt LT, Rushworth MFS (2009) The Computation of Social 

Behavior. Science 324:1160-1164. 

Behrens TEJ, Hunt LT, Woolrich MW, Rushworth MFS (2008) Associative 

learning of social value. Nature 456:245-249. 

Behrens TEJ, Berg HJ, Jbabdi S, Rushworth MFS, Woolrich MW (2007) 

Probabilistic diffusion tractography with multiple fibre orientations: What 

can we gain? Neuroimage 34:144-155. 

Behrens TEJ, Johansen-Berg H, Woolrich MW, Smith SM, Wheeler-Kingshott 

CAM, Boulby PA, Barker GJ, Sillery EL, Sheehan K, Ciccarelli O, 

Thompson AJ, Brady JM, Matthews PM (2003) Non-invasive mapping of 

connections between human thalamus and cortex using diffusion 

imaging. Nat Neurosci 6:750-757. 

Benton AL (1967) Problems of test construction in the field of aphasia. Cortex 

3:32-58. 



275 
 

Bethus I, Tse D, Morris RGM (2010) Dopamine and Memory: Modulation of the 

Persistence of Memory for Novel Hippocampal NMDA Receptor-

Dependent Paired Associates. J Neurosci 30:1610-1618. 

Bialleck KA, Schaal H-P, Kranz TA, Fell J, Elger CE, Axmacher N (2011) 

Ventromedial Prefrontal Cortex Activation Is Associated with Memory 

Formation for Predictable Rewards. PLoS ONE 6:e16695. 

Birn RM, Diamond JB, Smith MA, Bandettini PA (2006) Separating respiratory-

variation-related fluctuations from neuronal-activity-related fluctuations in 

fMRI. Neuroimage 31:1536-1548. 

Blanchflower DG, Oswald AJ (2008) Is well-being U-shaped over the life cycle? 

Social Science &amp; Medicine 66:1733-1749. 

Bliss TVP, Gardner-Medwin AR (1973) Long-lasting potentiation of synaptic 

transmission in the dentate area of the unanaesthetized rabbit following 

stimulation of the perforant path. The Journal of Physiology 232:357-374. 

Bond A, Lader M (1974) The use of analogue scales in rating subjective 

feelings. British Journal of Medical Psychology 47:211-218. 

Botvinick MM (2007) Conflict monitoring and decision making: Reconciling two 

perspectives on anterior cingulate function. Cognitive, Affective, & 

Behavioral Neuroscience 7:356-366. 

Braak H, Ghebremedhin E, Rüb U, Bratzke H, Del Tredici K (2004) Stages in 

the development of Parkinson’s disease-related pathology. Cell and 

Tissue Research 318:121-134. 

Brassen S, Gamer M, Buchel C (2011) Anterior Cingulate Activation Is Related 

to a Positivity Bias and Emotional Stability in Successful Aging. Biological 

Psychiatry 70:131-137. 



276 
 

Brassen S, Gamer M, Peters J, Gluth S, Buchel C (2012) Don't Look Back in 

Anger! Responsiveness to Missed Chances in Successful and 

Nonsuccessful Aging. Science 336:612-614. 

Breitenstein C, Korsukewitz C, Floel A, Kretzschmar T, Diederich K, Knecht S 

(2006) Tonic Dopaminergic Stimulation Impairs Associative Learning in 

Healthy Subjects. Neuropsychopharmacology 31:2552-2564. 

Brett M, Anton, J.-L., Valabregue, R., and Poline, J.-B. (2002) Region of interest 

analysis using an SPM toolbox. 8th International Conference on 

Functional Mapping of the Human Brain (Sendai, Japan). 

Bruno SD, Barker GJ, Cercignani M, Symms M, Ron MA (2004) A study of 

bipolar disorder using magnetization transfer imaging and voxel-based 

morphometry. Brain 127:2433-2440. 

Buckner RL (2004) Memory and Executive Function in Aging and AD: Multiple 

Factors that Cause Decline and Reserve Factors that Compensate. 

Neuron 44:195-208. 

Bunzeck N, Duzel E (2006) Absolute coding of stimulus novelty in the human 

substantia nigra/VTA. Neuron 51:369-379. 

Bush G, Luu P, Posner MI (2000) Cognitive and emotional influences in anterior 

cingulate cortex. Trends in Cognitive Sciences 4:215-222. 

Cabeza R, Anderson ND, Locantore JK, McIntosh AR (2002) Aging Gracefully: 

Compensatory Brain Activity in High-Performing Older Adults. 

Neuroimage 17:1394-1402. 

Camerer C, Hua Ho T (1999) Experience-weighted Attraction Learning in 

Normal Form Games. Econometrica 67:827-874. 



277 
 

Carstensen LL (2006) The Influence of a Sense of Time on Human 

Development. Science 312:1913-1915. 

Carstensen LL, Isaacowitz D, Charles ST (1999) Taking time seriously. A theory 

of socioemotional selectivity. American Psychologist 54:165-181. 

Carstensen LL, Turan B, Scheibe S, Ram N, Ersner-Hershfield H, Samanez-

Larkin GR, Brooks KP, Nesselroade JR (2011) Emotional experience 

improves with age: evidence based on over 10 years of experience 

sampling. Psychol Aging 26:21-33. 

Cervenka S, Bäckman L, Cselenyi Z, Halldin C, Farde L (2008) Associations 

between dopamine D2-receptor binding and cognitive performance 

indicate functional compartmentalization of the human striatum. 

Neuroimage 40:1287-1295. 

Charles ST, Carstensen LL (2010) Social and Emotional Aging. Annual Review 

of Psychology 61:383-409. 

Charles ST, Reynolds CA, Gatz M (2001) Age-related differences and change 

in positive and negative affect over 23 years. Journal of Personality and 

Social Psychology 80:136-151. 

Chételat G, Fouquet M, Kalpouzos G, Denghien I, De la Sayette V, Viader F, 

Mézenge F, Landeau B, Baron JC, Eustache F, Desgranges B (2008) 

Three-dimensional surface mapping of hippocampal atrophy progression 

from MCI to AD and over normal aging as assessed using voxel-based 

morphometry. Neuropsychologia 46:1721-1731. 

Choi WY, Balsam PD, Horvitz JC (2005) Extended Habit Training Reduces 

Dopamine Mediation of Appetitive Response Expression. The Journal of 

Neuroscience 25:6729-6733. 



278 
 

Chowdhury R, Guitart-Masip M, Bunzeck N, Dolan RJ, Duzel E (2012) 

Dopamine Modulates Episodic Memory Persistence in Old Age. The 

Journal of Neuroscience 32:14193-14204. 

Clayton NS, Dickinson A (1998) Episodic-like memory during cache recovery by 

scrub jays. Nature 395:272-274. 

Cloninger CR (1987a) The tridimensional personality questionnaire. Version IV. 

St Louis, MO: Department of Psychiatry, Washington University School 

of Medicine. 

Cloninger CR (1987b) A Systematic Method for Clinical Description and 

Classification of Personality Variants: A Proposal. Arch Gen Psychiatry 

44:573-588. 

Cohen MX, Frank MJ (2009) Neurocomputational models of basal ganglia 

function in learning, memory and choice. Behavioural Brain Research 

199:141-156. 

Cohen MX, Schoene-Bake J-C, Elger CE, Weber B (2009) Connectivity-based 

segregation of the human striatum predicts personality characteristics. 

Nat Neurosci 12:32-34. 

Comblain C, D'Argembeau A, Van der Linden M (2005) Phenomenal 

characteristics of autobiographical memories for emotional and neutral 

events in older and younger adult. Experimental Aging Research 31:173-

189. 

Cools R, D'Esposito M (2011) Inverted-U Shaped Dopamine Actions on Human 

Working Memory and Cognitive Control. Biological Psychiatry 69:e113-

e125. 



279 
 

Cools R, Barker RA, Sahakian BJ, Robbins TW (2001) Enhanced or Impaired 

Cognitive Function in Parkinson's Disease as a Function of 

Dopaminergic Medication and Task Demands. Cereb Cortex 11:1136-

1143. 

Cools R, Frank MJ, Gibbs SE, Miyakawa A, Jagust W, D'Esposito M (2009) 

Striatal Dopamine Predicts Outcome-Specific Reversal Learning and Its 

Sensitivity to Dopaminergic Drug Administration. The Journal of 

Neuroscience 29:1538-1543. 

Cox KM, Aizenstein HJ, Fiez JA (2008) Striatal outcome processing in healthy 

aging. Cogn Affect Behav Neurosci 8:304-317. 

Coxon JP, Van Impe A, Wenderoth N, Swinnen SP (2012) Aging and Inhibitory 

Control of Action: Cortico-Subthalamic Connection Strength Predicts 

Stopping Performance. The Journal of Neuroscience 32:8401-8412. 

Craik FIM, Rose NS (2012) Memory encoding and aging: A neurocognitive 

perspective. Neuroscience &amp; Biobehavioral Reviews 36:1729-1739. 

D'Esposito M, Deouell LY, Gazzaley A (2003) Alterations in the BOLD fMRI 

signal with ageing and disease: a challenge for neuroimaging. Nat Rev 

Neurosci 4:863-872. 

Daw ND, Niv Y, Dayan P (2005) Uncertainty-based competition between 

prefrontal and dorsolateral striatal systems for behavioral control. Nat 

Neurosci 8:1704-1711. 

Daw ND, O'Doherty JP, Dayan P, Seymour B, Dolan RJ (2006) Cortical 

substrates for exploratory decisions in humans. Nature 441:876-879. 



280 
 

Daw Nathaniel D, Gershman Samuel J, Seymour B, Dayan P, Dolan 

Raymond J (2011) Model-Based Influences on Humans' Choices and 

Striatal Prediction Errors. Neuron 69:1204-1215. 

Dayan P, Niv Y, Seymour B, D. Daw N (2006) The misbehavior of value and the 

discipline of the will. Neural Networks 19:1153-1160. 

de Wit S, Standing H, Devito E, Robinson O, Ridderinkhof K, Robbins T, 

Sahakian B (2012) Reliance on habits at the expense of goal-directed 

control following dopamine precursor depletion. Psychopharmacology 

(Berl) 219:621-631. 

Devinsky O, Morrell MJ, Vogt BA (1995) REVIEW ARTICLE: Contributions of 

anterior cingulate cortex to behaviour. Brain 118:279-306. 

Dickinson A, Smith J, Mirenowicz J (2000) Dissociation of Pavlovian and 

instrumental incentive learning under dopamine antagonists. Behav 

Neurosci 114:468-483. 

Dickinson A, & Balleine, B (2002) The role of learning in the operation of 

motivational systems, Third Edition. New York: John Wiley & Sons. 

Dormont D, Ricciardi KG, Tande D, Parain K, Menuel C, Galanaud D, Navarro 

S, Cornu P, Agid Y, Yelnik J (2004) Is the Subthalamic Nucleus 

Hypointense on T2-Weighted Images? A Correlation Study Using MR 

Imaging and Stereotactic Atlas Data. AJNR Am J Neuroradiol 25:1516-

1523. 

Draganski B, Ashburner J, Hutton C, Kherif F, Frackowiak RSJ, Helms G, 

Weiskopf N (2011) Regional specificity of MRI contrast parameter 

changes in normal ageing revealed by voxel-based quantification (VBQ). 

Neuroimage 55:1423-1434. 



281 
 

Duann J-R, Ide JS, Luo X, Li C-sR (2009) Functional Connectivity Delineates 

Distinct Roles of the Inferior Frontal Cortex and Presupplementary Motor 

Area in Stop Signal Inhibition. The Journal of Neuroscience 29:10171-

10179. 

Duarte A, Graham KS, Henson RN (2010) Age-related changes in neural 

activity associated with familiarity, recollection and false recognition. 

Neurobiology of Aging 31:1814-1830. 

Düzel E, Schütze H, Yonelinas AP, Heinze H-J (2011) Functional phenotyping 

of successful aging in long-term memory: Preserved performance in the 

absence of neural compensation. Hippocampus 21:803-814. 

Düzel S, Schutze H, Stallforth S, Kaufmann J, Bodammer N, Bunzeck N, Munte 

TF, Lindenberger U, Heinze HJ, Duzel E (2008) A close relationship 

between verbal memory and SN/VTA integrity in young and older adults. 

Neuropsychologia 46:3042-3052. 

Duzel E, Bunzeck N, Guitart-Masip M, Duzel S (2009a) NOvelty-related 

Motivation of Anticipation and exploration by Dopamine (NOMAD): 

Implications for healthy aging. Neurosci Biobehav Rev. 

Duzel E, Bunzeck N, Guitart-Masip M, Duzel S (2010) NOvelty-related 

Motivation of Anticipation and exploration by Dopamine (NOMAD): 

Implications for healthy aging. Neuroscience & Biobehavioral Reviews 

34:660-669. 

Duzel E, Bunzeck N, Guitart-Masip M, Wittmann B, Schott BH, Tobler PN 

(2009b) Functional imaging of the human dopaminergic midbrain. Trends 

Neurosci 32:321-328. 



282 
 

Duzel S, Schutze H, Stallforth S, Kaufmann J, Bodammer N, Bunzeck N, Munte 

TF, Lindenberger U, Heinze HJ, Duzel E (2008) A close relationship 

between verbal memory and SN/VTA integrity in young and older adults. 

Neuropsychologia 46:3042-3052. 

Dyrby TB, Sogaard LV, Parker GJ, Alexander DC, Lind NM, BaarÃ© WFC, Hay-

Schmidt A, Eriksen N, Pakkenberg B, Paulson OB, Jelsing J (2007) 

Validation of in vitro probabilistic tractography. Neuroimage 37:1267-

1277. 

Eckert T, Sailer M, Kaufmann J, Schrader C, Peschel T, Bodammer N, Heinze 

H-J, Schoenfeld MA (2004) Differentiation of idiopathic Parkinson's 

disease, multiple system atrophy, progressive supranuclear palsy, and 

healthy controls using magnetization transfer imaging. Neuroimage 

21:229-235. 

Eppinger B, Hämmerer D, Li S-C (2011) Neuromodulation of reward-based 

learning and decision making in human aging. Annals of the New York 

Academy of Sciences 1235:1-17. 

Eppinger B, Kray J, Mock B, Mecklinger A (2008) Better or worse than 

expected? Aging, learning, and the ERN. Neuropsychologia 46:521-539. 

Erixon-Lindroth N, Farde L, Robins Wahlin T-B, Sovago J, Halldin C, BÃ¤ckman 

L (2005) The role of the striatal dopamine transporter in cognitive aging. 

Psychiatry Research: Neuroimaging 138:1-12. 

Estévez-González A, Kulisevsky J, Boltes A, Otermín P, García-Sánchez C 

(2003) Rey verbal learning test is a useful tool for differential diagnosis in 

the preclinical phase of Alzheimer's disease: comparison with mild 



283 
 

cognitive impairment and normal aging. International Journal of Geriatric 

Psychiatry 18:1021-1028. 

Fearnley JM, Lees AJ (1991) Ageing and Parkinson's Disease: substantia nigra 

regional selectivity. Brain 114:2283-2301. 

Fera F, Weickert TW, Goldberg TE, Tessitore A, Hariri A, Das S, Lee S, Zoltick 

B, Meeter M, Myers CE, Gluck MA, Weinberger DR, Mattay VS (2005) 

Neural Mechanisms Underlying Probabilistic Category Learning in 

Normal Aging. The Journal of Neuroscience 25:11340-11348. 

Filippi M, Campi A, Dousset V, Baratti C, Martinelli V, Canal N, Scotti G, Comi 

G (1995) A Magnetization Transfer Imaging Study of Normal-Appearing 

White Matter in Multiple Sclerosis. Neurology 45:478-482. 

Fischer R, Chalmers A (2008) Is optimism universal? A meta-analytical 

investigation of optimism levels across 22 nations. Personality and 

Individual Differences 45:378-382. 

Fischl B, van der Kouwe A, Destrieux C, Halgren E, SÃ©gonne F, Salat DH, 

Busa E, Seidman LJ, Goldstein J, Kennedy D, Caviness V, Makris N, 

Rosen B, Dale AM (2004) Automatically Parcellating the Human Cerebral 

Cortex. Cerebral Cortex 14:11-22. 

Flandin G, Friston K (2008) Statistical Parametric Mapping. 

Fleming SM, Thomas CL, Dolan RJ (2010) Overcoming status quo bias in the 

human brain. Proceedings of the National Academy of Sciences 

107:6005-6009. 

Floel A, Vomhof P, Lorenzen A, Roesser N, Breitenstein C, Knecht S (2008) 

Levodopa improves skilled hand functions in the elderly. European 

Journal of Neuroscience 27:1301-1307. 



284 
 

Floresco SB, West AR, Ash B, Moore H, Grace AA (2003) Afferent modulation 

of dopamine neuron firing differentially regulates tonic and phasic 

dopamine transmission. Nat Neurosci 6:968-973. 

Flugel D, Cercignani M, Symms MR, Koepp MJ, Foong J (2006) A 

Magnetization Transfer Imaging Study in Patients with Temporal Lobe 

Epilepsy and Interictal Psychosis. Biological Psychiatry 59:560-567. 

Folstein MF, Folstein SE, McHugh PR (1975) "Mini-mental state" : A practical 

method for grading the cognitive state of patients for the clinician. Journal 

of Psychiatric Research 12:189-198. 

Forstmann BU, Tittgemeyer M, Wagenmakers E-J, Derrfuss J, Imperati D, 

Brown S (2011) The Speed-Accuracy Tradeoff in the Elderly Brain: A 

Structural Model-Based Approach. The Journal of Neuroscience 

31:17242-17249. 

Forstmann BU, Keuken MC, Jahfari S, Bazin P-L, Neumann J, SchÃ¤fer A, 

Anwander A, Turner R (2012) Cortico-subthalamic white matter tract 

strength predicts interindividual efficacy in stopping a motor response. 

Neuroimage 60:370-375. 

Frank MJ, Kong L (2008) Learning to avoid in older age. Psychology and Aging 

23:392-398. 

Frank MJ, Seeberger LC, O'Reilly RC (2004) By Carrot or by Stick: Cognitive 

Reinforcement Learning in Parkinsonism. Science 306:1940-1943. 

Frank MJ, Samanta J, Moustafa AA, Sherman SJ (2007) Hold Your Horses: 

Impulsivity, Deep Brain Stimulation, and Medication in Parkinsonism. 

Science 318:1309-1312. 



285 
 

Frey U, Morris RGM (1997) Synaptic tagging and long-term potentiation. Nature 

385:533-536. 

Friston K, Ashburner J, Kiebel S, Nicols T, Penny WD (2006) Statistical 

Parametric Mapping: The Analysis of Functional Brain Images 1st 

Edition: Academic Press Inc. 

Friston KJ, Dolan RJ (2010) Computational and dynamic models in 

neuroimaging. Neuroimage 52:752-765. 

Friston KJ, Stephan KE, Lund TE, Morcom A, Kiebel S (2005) Mixed-effects 

and fMRI studies. Neuroimage 24:244-252. 

Garavan H, Ross TJ, Stein EA (1999) Right hemispheric dominance of 

inhibitory control: An event-related functional MRI study. Proceedings of 

the National Academy of Sciences 96:8301-8306. 

Gardini S, Cloninger CR, Venneri A (2009) Individual differences in personality 

traits reflect structural variance in specific brain regions. Brain Research 

Bulletin 79:265-270. 

Giuliani NR, Drabant EM, Gross JJ (2011) Anterior cingulate cortex volume and 

emotion regulation: Is bigger better? Biological Psychology 86:379-382. 

Glover GH, Li TQ, Ress D (2000) Image-based method for retrospective 

correction of physiological motion effects in fMRI: RETROICOR. Magn 

Reson Med 44:162-167. 

Goldman-Rakic PS, Muly IEC, Williams GV (2000) D1 receptors in prefrontal 

cells and circuits. Brain Research Reviews 31:295-301. 

Good CD, Johnsrude IS, Ashburner J, Henson RNA, Friston KJ, Frackowiak 

RSJ (2001) A Voxel-Based Morphometric Study of Ageing in 465 Normal 

Adult Human Brains. Neuroimage 14:21-36. 



286 
 

Gray JA, and McNaughton, M. (2000) The neuropsychology of anxiety: an 

inquiry into the function of the septohippocampal system, 2nd Edition: 

Oxford University Press. 

Grossmann I, Na J, Varnum MEW, Park DC, Kitayama S, Nisbett RE (2010) 

Reasoning about social conflicts improves into old age. Proceedings of 

the National Academy of Sciences 107:7246-7250. 

Guitart-Masip M, Huys QJM, Fuentemilla L, Dayan P, Duzel E, Dolan RJ 

(2012a) Go and no-go learning in reward and punishment: Interactions 

between affect and effect. Neuroimage 62:154-166. 

Guitart-Masip M, Chowdhury R, Sharot T, Dayan P, Duzel E, Dolan RJ (2012b) 

Action controls dopaminergic enhancement of reward representations. 

Proceedings of the National Academy of Sciences 109:7511-7516. 

Guitart-Masip M, Fuentemilla L, Bach DR, Huys QJM, Dayan P, Dolan RJ, 

Duzel E (2011) Action Dominates Valence in Anticipatory 

Representations in the Human Striatum and Dopaminergic Midbrain. The 

Journal of Neuroscience 31:7867-7875. 

Haber SN, Knutson B (2009) The Reward Circuit: Linking Primate Anatomy and 

Human Imaging. Neuropsychopharmacology 35:4-26. 

Haber SN, Fudge JL, McFarland NR (2000) Striatonigrostriatal Pathways in 

Primates Form an Ascending Spiral from the Shell to the Dorsolateral 

Striatum. J Neurosci 20:2369-2382. 

Hamani C, Saint-Cyr JA, Fraser J, Kaplitt M, Lozano AM (2004) The 

subthalamic nucleus in the context of movement disorders. Brain 127:4-

20. 



287 
 

Hanyu H, Asano T, Iwamoto T, Takasaki M, Shindo H, Abe K (2000) 

Magnetization Transfer Measurements of the Hippocampus in Patients 

with Alzheimer's Disease, Vascular Dementia, and Other Types of 

Dementia. AJNR Am J Neuroradiol 21:1235-1242. 

Hayasaka S, Phan KL, Liberzon I, Worsley KJ, Nichols TE (2004) Nonstationary 

cluster-size inference with random field and permutation methods. 

Neuroimage 22:676-687. 

Hayton T, Furby J, Smith K, Altmann D, Brenner R, Chataway J, Hughes R, 

Hunter K, Tozer D, Miller D, Kapoor R (2009) Grey matter magnetization 

transfer ratio independently correlates with neurological deficit in 

secondary progressive multiple sclerosis. Journal of Neurology 256:427-

435. 

Head D, Buckner RL, Shimony JS, Williams LE, Akbudak E, Conturo TE, 

McAvoy M, Morris JC, Snyder AZ (2004) Differential Vulnerability of 

Anterior White Matter in Nondemented Aging with Minimal Acceleration 

in Dementia of the Alzheimer Type: Evidence from Diffusion Tensor 

Imaging. Cerebral Cortex 14:410-423. 

Hebb DO (1949) The Organisation of Behaviour: A Neuropsychological Theory: 

John Wiley and Sons. 

Hedden T, Gabrieli JDE (2004) Insights into the ageing mind: a view from 

cognitive neuroscience. Nat Rev Neurosci 5:87-96. 

Heeger DJ, Ress D (2002) What does fMRI tell us about neuronal activity? Nat 

Rev Neurosci 3:142-151. 



288 
 

Helms G, Dathe H, Dechent P (2008a) Quantitative FLASH MRI at 3T using a 

rational approximation of the Ernst equation. Magnetic Resonance in 

Medicine 59:667-672. 

Helms G, Dathe H, Kallenberg K, Dechent P (2008b) High-resolution maps of 

magnetization transfer with inherent correction for RF inhomogeneity and 

T1 relaxation obtained from 3D FLASH MRI. Magnetic Resonance in 

Medicine 60:1396-1407. 

Helms G, Draganski B, Frackowiak R, Ashburner J, Weiskopf N (2009) 

Improved segmentation of deep brain grey matter structures using 

magnetization transfer (MT) parameter maps. Neuroimage 47:194-198. 

Henkelman RM, Stanisz GJ, Graham SJ (2001) Magnetization transfer in MRI: 

a review. NMR in Biomedicine 14:57-64. 

Huettel S (2004) Functional Magnetic Resonance Imaging, 2nd Edition: Sinauer 

Associates. 

Hutton C, Draganski B, Ashburner J, Weiskopf N (2009) A comparison between 

voxel-based cortical thickness and voxel-based morphometry in normal 

aging. Neuroimage 48:371-380. 

Huys QJM, Cools R, GÃ¶lzer M, Friedel E, Heinz A, Dolan RJ, Dayan P (2011) 

Disentangling the Roles of Approach, Activation and Valence in 

Instrumental and Pavlovian Responding. PLoS Comput Biol 7:e1002028. 

Inoue M, Suhara T, Sudo Y, Okubo Y, Yasuno F, Kishimoto T, Yoshikawa K, 

Tanada S (2001) Age-related reduction of extrastriatal dopamine D2 

receptor measured by PET. Life Sciences 69:1079-1084. 

Isaacowitz D (2005) Correlates of well-being in adulthood and old age: A tale of 

two optimisms Journal of Research in Personality 39:224-244. 



289 
 

Isaacowitz DM, Blanchard-Fields F (2012) Linking Process and Outcome in the 

Study of Emotion and Aging. Perspectives on Psychological Science 7:3-

17. 

Jahfari S, Waldorp L, van den Wildenberg WPM, Scholte HS, Ridderinkhof KR, 

Forstmann BU (2011) Effective Connectivity Reveals Important Roles for 

Both the Hyperdirect (Fronto-Subthalamic) and the Indirect (Fronto-

Striatal-Pallidal) Fronto-Basal Ganglia Pathways during Response 

Inhibition. The Journal of Neuroscience 31:6891-6899. 

Johansen-Berg H (2010) Behavioural relevance of variation in white matter 

microstructure. Current Opinion in Neurology 23:351-358. 

Kaasinen V, Rinne JO (2002) Functional imaging studies of dopamine system 

and cognition in normal aging and Parkinson's disease. Neuroscience 

&amp; Biobehavioral Reviews 26:785-793. 

Kakade S, Dayan P (2002) Dopamine: generalization and bonuses. Neural 

Networks 15:549-559. 

Kass R, Raftery A (1995) Bayes factors. Journal of the American Statistical 

Association 90. 

Kensinger EA, Schacter DL (2008) Neural Processes Supporting Young and 

Older Adults' Emotional Memories. Journal of Cognitive Neuroscience 

20:1161-1173. 

Killiany R, Gomez-Isla T, Moss M, Kikinis R, Sandor T, Jolesz F, Tanzi R, Jones 

K, Hyman B, Albert M (2000) Use of structural magnetic resonance 

imaging to predict who will get Alzheimer's disease. Ann Neurol 47:430-

439. 



290 
 

Kimberg D, D'Esposito M, Farah M (1997) Effects of bromocriptine on human 

subjects depend on working memory capacity. Neuroreport 8:3581-3585. 

Klein A, Andersson J, Ardekani BA, Ashburner J, Avants B, Chiang M-C, 

Christensen GE, Collins DL, Gee J, Hellier P, Song JH, Jenkinson M, 

Lepage C, Rueckert D, Thompson P, Vercauteren T, Woods RP, Mann 

JJ, Parsey RV (2009) Evaluation of 14 nonlinear deformation algorithms 

applied to human brain MRI registration. Neuroimage 46:786-802. 

Klein JC, Behrens TEJ, Robson MD, Mackay CE, Higham DJ, Johansen-Berg H 

(2007) Connectivity-based parcellation of human cortex using diffusion 

MRI: Establishing reproducibility, validity and observer independence in 

BA 44/45 and SMA/pre-SMA. Neuroimage 34:204-211. 

Klistorner A, Chaganti J, Garrick R, Moffat K, Yiannikas C (2011) Magnetisation 

transfer ratio in optic neuritis is associated with axonal loss, but not with 

demyelination. Neuroimage 56:21-26. 

Knecht S, Breitenstein C, Bushuven S, Wailke S, Kamping S, Flöel A, 

Zwitserlood P, Ringelstein EB (2004) Levodopa: Faster and better word 

learning in normal humans. Annals of Neurology 56:20-26. 

Knutson B, Gibbs S (2007) Linking nucleus accumbens dopamine and blood 

oxygenation. Psychopharmacology 191:813-822. 

Koller W, Melamed E (2007) Parkinson's disease and related disorders: 

Elsevier. 

Koller WC, Rueda MG (1998) Mechanism of action of dopaminergic agents in 

Parkinson's disease. Neurology 50:S11-S14. 



291 
 

Kravitz AV, Freeze BS, Parker PRL, Kay K, Thwin MT, Deisseroth K, Kreitzer 

AC (2010) Regulation of parkinsonian motor behaviours by optogenetic 

control of basal ganglia circuitry. Nature 466:622-626. 

Krebs RM, Schott BH, Duzel E (2009) Personality traits are differentially 

associated with patterns of reward and novelty processing in the human 

substantia nigra/ventral tegmental area. Biol Psychiatry 65:103-110. 

Krebs RM, Heipertz D, Schuetze H, Duzel E (2011) Novelty increases the 

mesolimbic functional connectivity of the substantia nigra/ventral 

tegmental area (SN/VTA) during reward anticipation: Evidence from high-

resolution fMRI. Neuroimage 58:647-655. 

Lachman ME, Rocke C, Rosnick C, Ryff CD (2008) Realism and Illusion in 

Americans' Temporal Views of Their Life Satisfaction. Psychological 

Science 19:889-897. 

Lambert C, Zrinzo L, Nagy Z, Lutti A, Hariz M, Foltynie T, Draganski B, 

Ashburner J, Frackowiak R (2012) Confirmation of functional zones 

within the human subthalamic nucleus: Patterns of connectivity and sub-

parcellation using diffusion weighted imaging. Neuroimage 60:83-94. 

Lau B, Glimcher PW (2005) Dynamic response-by-response models of 

matching behavior in rhesus monkeys. J Exp Anal Behav 84:555-579. 

Le Bihan D, Johansen-Berg H (2012) Diffusion MRI at 25: Exploring brain tissue 

structure and function. Neuroimage 61:324-341. 

Leclerc CM, Kensinger EA (2008) Age-related differences in medial prefrontal 

activation in response to emotional images. Cogn Affect Behav Neurosci 

8:153-164. 



292 
 

Lewis S (2012) Learning and memory: Dopamine boosts ageing memories. Nat 

Rev Neurosci 13:812-813. 

Lezak MD, Howieson DB, Loring DW, Hannay HJ, Fischer JS (2004) 

Neuropsychological Assessment, 4th Edition. Oxford: Oxford University 

Press. 

Li J, Daw ND (2011) Signals in Human Striatum Are Appropriate for Policy 

Update Rather than Value Prediction. The Journal of Neuroscience 

31:5504-5511. 

Li S-C, Sikström S (2002) Integrative neurocomputational perspectives on 

cognitive aging, neuromodulation, and representation. Neuroscience & 

Biobehavioral Reviews 26:795-808. 

Li S-C, Naveh-Benjamin M, Lindenberger U (2005) Aging Neuromodulation 

Impairs Associative Binding. Psychological Science 16:445-450. 

Light LL (1991) Memory and Aging: Four Hypotheses in Search of Data. Annual 

Review of Psychology 42:333-376. 

Lisman J, Grace AA, Duzel E (2011) A neoHebbian framework for episodic 

memory; role of dopamine-dependent late LTP. Trends in Neurosciences 

34:536-547. 

Lisman JE, Grace AA (2005) The Hippocampal-VTA Loop: Controlling the Entry 

of Information into Long-Term Memory. Neuron 46:703-713. 

Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) 

Neurophysiological investigation of the basis of the fMRI signal. Nature 

412:150-157. 



293 
 

Luo AH, Tahsili-Fahadan P, Wise RA, Lupica CR, Aston-Jones G (2011) 

Linking Context with Reward: A Functional Circuit from Hippocampal 

CA3 to Ventral Tegmental Area. Science 333:353-357. 

Lutti A, Hutton C, Finsterbusch J, Helms G, Weiskopf N (2010) Optimization 

and validation of methods for mapping of the radiofrequency transmit 

field at 3T. Magnetic Resonance in Medicine 64:229-238. 

Marschner A, Mell T, Wartenburger I, Villringer A, Reischies FM, Heekeren HR 

(2005) Reward-based decision-making and aging. Brain Research 

Bulletin 67:382-390. 

Martin WRW (2009) Quantitative estimation of regional brain iron with magnetic 

resonance imaging. Parkinsonism & Related Disorders 15:S215-S218. 

Martin WRW, Wieler M, Gee M (2008) Midbrain iron content in early Parkinson 

disease. Neurology 70:1411-1417. 

Mather M, Carstensen LL (2003) Aging and Attentional Biases for Emotional 

Faces. Psychological Science 14:409-415. 

Mather M, Carstensen LL (2005) Aging and motivated cognition: the positivity 

effect in attention and memory. Trends in Cognitive Sciences 9:496-502. 

McKenzie S, Eichenbaum H (2011) Consolidation and Reconsolidation: Two 

Lives of Memories? Neuron 71:224-233. 

Mell T, Heekeren HR, Marschner A, Wartenburger I, Villringer A, Reischies FM 

(2005) Effect of aging on stimulus-reward association learning. 

Neuropsychologia 43:554-563. 

Mell T, Wartenburger I, Marschner A, Villringer A, Reischies FM, Heekeren HR 

(2009) Altered function of ventral striatum during reward-based decision 

making in old age. Frontiers in Human Neuroscience 3. 



294 
 

Missale C, Nash SR, Robinson SW, Jaber M, Caron MG (1998) Dopamine 

Receptors: From Structure to Function. Physiol Rev 78:189-225. 

Mohr PNC, Li S-C, Heekeren HR (2010) Neuroeconomics and aging: 

Neuromodulation of economic decision making in old age. Neuroscience 

& Biobehavioral Reviews 34:678-688. 

Monte-Silva K, Liebetanz D, Grundey J, Paulus W, Nitsche MA (2010) Dosage-

dependent non-linear effect of l-dopa on human motor cortex plasticity. 

The Journal of Physiology 588:3415-3424. 

Morcom AM, Good CD, Frackowiak RSJ, Rugg MD (2003) Age effects on the 

neural correlates of successful memory encoding. Brain 126:213-229. 

Morcom AM, Bullmore ET, Huppert FA, Lennox B, Praseedom A, Linnington H, 

Fletcher PC (2009) Memory Encoding and Dopamine in the Aging Brain: 

A Psychopharmacological Neuroimaging Study. Cereb Cortex:bhp139. 

Nader K, Hardt O (2009) A single standard for memory: the case for 

reconsolidation. Nat Rev Neurosci 10:224-234. 

Nagy Z, Weiskopf N, Alexander DC, Deichmann R (2007) A method for 

improving the performance of gradient systems for diffusion-weighted 

MRI. Magnetic Resonance in Medicine 58:763-768. 

Naneix F, Marchand AR, Di Scala G, Pape J-Rm, Coutureau E (2012) Parallel 

Maturation of Goal-Directed Behavior and Dopaminergic Systems during 

Adolescence. The Journal of Neuroscience 32:16223-16232. 

Nelson HE (1982) National Adult eading Test: Test Manual: Windsor. 

Nicola SM, Surmeier DJ, Malenka RC (2000) Dopaminergic Modulation of 

Neuronal Excitability in the Striatum and Nucleus Accumbens. Annual 

Review of Neuroscience 23:185-215. 



295 
 

Niv Y, Daw N, Joel D, Dayan P (2007) Tonic dopamine: opportunity costs and 

the control of response vigor. Psychopharmacology 191:507-520. 

Nutt JG (2008) Pharmacokinetics and pharmacodynamics of levodopa. 

Movement Disorders 23:S580-S584. 

Nyberg L, Lovden M, Riklund K, Lindenberger U, Backman L (2012) Memory 

aging and brain maintenance. Trends in Cognitive Sciences 16:292-305. 

O'Carroll CM, Martin SJ, Sandin J, Frenguelli B, Morris RGM (2006) 

Dopaminergic modulation of the persistence of one-trial hippocampus-

dependent memory. Learning & Memory 13:760-769. 

O'Doherty J, Dayan P, Schultz J, Deichmann R, Friston K, Dolan RJ (2004) 

Dissociable Roles of Ventral and Dorsal Striatum in Instrumental 

Conditioning. Science 304:452-454. 

O'Doherty JP, Hampton A, Kim H (2007) Model-Based fMRI and Its Application 

to Reward Learning and Decision Making. Annals of the New York 

Academy of Sciences 1104:35-53. 

O'Doherty JP, Dayan P, Friston K, Critchley H, Dolan RJ (2003) Temporal 

Difference Models and Reward-Related Learning in the Human Brain. 

Neuron 38:329-337. 

Ochsner KN, Gross JJ (2005) The cognitive control of emotion. Trends in 

Cognitive Sciences 9:242-249. 

Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance 

imaging with contrast dependent on blood oxygenation. Proceedings of 

the National Academy of Sciences 87:9868-9872. 

Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG, Merkle H, Ugurbil K 

(1992) Intrinsic signal changes accompanying sensory stimulation: 



296 
 

functional brain mapping with magnetic resonance imaging. Proceedings 

of the National Academy of Sciences 89:5951-5955. 

Pessiglione M, Seymour B, Flandin G, Dolan RJ, Frith CD (2006) Dopamine-

dependent prediction errors underpin reward-seeking behaviour in 

humans. Nature 442:1042-1045. 

Petersen RC, Thomas RG, Grundman M, Bennett D, Doody R, Ferris S, 

Galasko D, Jin S, Kaye J, Levey A, Pfeiffer E, Sano M, van Dyck CH, 

Thal LJ (2005) Vitamin E and Donepezil for the Treatment of Mild 

Cognitive Impairment. New England Journal of Medicine 352:2379-2388. 

Picciotto Marina R, Higley Michael J, Mineur Yann S (2012) Acetylcholine as a 

Neuromodulator: Cholinergic Signaling Shapes Nervous System 

Function and Behavior. Neuron 76:116-129. 

Pizzagalli DA (2011) Frontocingulate Dysfunction in Depression: Toward 

Biomarkers of Treatment Response. Neuropsychopharmacology 36:183-

206. 

Randy L B (2004) Memory and Executive Function in Aging and AD: Multiple 

Factors that Cause Decline and Reserve Factors that Compensate. 

Neuron 44:195-208. 

Raz N, Rodrigue KM (2006) Differential aging of the brain: Patterns, cognitive 

correlates and modifiers. Neuroscience & Biobehavioral Reviews 30:730-

748. 

Raz N, Rodrigue KM, Kennedy KM, Head D, Gunning-Dixon F, Acker JD (2003) 

Differential Aging of the Human Striatum: Longitudinal Evidence. 

American Journal of Neuroradiology 24:1849-1856. 



297 
 

Redondo RL, Morris RGM (2011) Making memories last: the synaptic tagging 

and capture hypothesis. Nat Rev Neurosci 12:17-30. 

Reese TG, Heid O, Weisskoff RM, Wedeen VJ (2003) Reduction of eddy-

current-induced distortion in diffusion MRI using a twice-refocused spin 

echo. Magnetic Resonance in Medicine 49:177-182. 

Reitan RM (1955) The relation of the trail making test to organic brain damage. 

J Consult Psychol 19:393-394. 

Rescorla RA, Wagner AD (1972) A theory of Pavlovian conditioning: variations 

in the effectiveness of reinforcement and nonreinforcement: Appleton-

Century-Crofts. 

Reuter-Lorenz PA, Lustig C (2005) Brain aging: reorganizing discoveries about 

the aging mind. Current Opinion in Neurobiology 15:245-251. 

Ridha BH, Tozer DJ, Symms MR, Stockton KC, Lewis EB, Siddique MM, 

MacManus DG, Rossor MN, Fox NC, Tofts PS (2007) Quantitative 

Magnetization Transfer Imaging in Alzheimer Disease1. Radiology 

244:832-837. 

Rieckmann A, Karlsson S, Karlsson P, Brehmer Y, Fischer Hk, Farde L, Nyberg 

L, BÃ¤ckman L (2011) Dopamine D1 Receptor Associations within and 

between Dopaminergic Pathways in Younger and Elderly Adults: Links to 

Cognitive Performance. Cerebral Cortex. 

Robbins TW, Arnsten AFT (2009) The Neuropsychopharmacology of Fronto-

Executive Function: Monoaminergic Modulation. Annual Review of 

Neuroscience 32:267-287. 

Rorden C BM (2000) Stereotaxic display of brain lesions. Behavioral Neurology 

12:191-200. 



298 
 

Rowe JW, Kahn RL (1987) Human aging: usual and successful. Science 

237:143-149. 

Rutledge RB, Lazzaro SC, Lau B, Myers CE, Gluck MA, Glimcher PW (2009) 

Dopaminergic Drugs Modulate Learning Rates and Perseveration in 

Parkinson's Patients in a Dynamic Foraging Task. The Journal of 

Neuroscience 29:15104-15114. 

Sahakian B, Morein-Zamir S (2007) Professor's little helper. Nature 450:1157-

1159. 

Salamone JD, Correa M, Mingote SM, Weber SM (2005) Beyond the reward 

hypothesis: alternative functions of nucleus accumbens dopamine. 

Current Opinion in Pharmacology 5:34-41. 

Salloway S, Ferris S, Kluger A, Goldman R, Griesing T, Kumar D, Richardson 

S, Group ftDâœâS (2004) Efficacy of donepezil in mild cognitive 

impairment. Neurology 63:651-657. 

Samanez-Larkin GR, Carstensen LL (2011) Socioemotional functioning and the 

aging brain. New York: Oxford University Press. 

Samanez-Larkin GR, Wagner AD, Knutson B (2011) Expected value 

information improves financial risk taking across the adult life span. 

Social Cognitive and Affective Neuroscience 6:207-217. 

Samanez-Larkin GR, Kuhnen CM, Yoo DJ, Knutson B (2010) Variability in 

Nucleus Accumbens Activity Mediates Age-Related Suboptimal Financial 

Risk Taking. J Neurosci 30:1426-1434. 

Samanez-Larkin GR, Levens SM, Perry LM, Dougherty RF, Knutson B (2012) 

Frontostriatal White Matter Integrity Mediates Adult Age Differences in 



299 
 

Probabilistic Reward Learning. The Journal of Neuroscience 32:5333-

5337. 

Samanez-Larkin GR, Gibbs SE, Khanna K, Nielsen L, Carstensen LL, Knutson 

B (2007) Anticipation of monetary gain but not loss in healthy older 

adults. Nat Neurosci 10:787-791. 

Scatton B, Simon H, Le Moal M, Bischoff S (1980) Origin of dopaminergic 

innervation of the rat hippocampal formation. Neuroscience Letters 

18:125-131. 

Scheier MF, Carver CS (1993) On the Power of Positive Thinking: The Benefits 

of Being Optimistic. Current Directions in Psychological Science 2:26-30. 

Scheier MF, Carver CS, Bridges MW (1994) Distinguishing optimism from 

neuroticism (and trait anxiety, self-mastery, and self-esteem): A 

reevaluation of the Life Orientation Test. Journal of Personality and 

Social Psychology 67:1063-1078. 

Schonberg T, Daw ND, Joel D, O'Doherty JP (2007) Reinforcement Learning 

Signals in the Human Striatum Distinguish Learners from Nonlearners 

during Reward-Based Decision Making. The Journal of Neuroscience 

27:12860-12867. 

Schott BH, Niehaus L, Wittmann BC, Schutze H, Seidenbecher CI, Heinze HJ, 

Duzel E (2007) Ageing and early-stage Parkinson's disease affect 

separable neural mechanisms of mesolimbic reward processing. Brain 

130:2412-2424. 

Schultz W (1998) Predictive Reward Signal of Dopamine Neurons. Journal of 

Neurophysiology 80:1-27. 



300 
 

Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and 

reward. Science 275:1593-1599. 

Schwarzkopf DS, de Haas B, Rees G (2012) Better ways to improve standards 

in brain-behavior correlation analysis. Frontiers in Human Neuroscience 

6. 

Seehaus AK, Roebroeck A, Chiry O, Kim D-S, Ronen I, Bratzke Hr, Goebel R, 

Galuske RAW (2012) Histological Validation of DW-MRI Tractography in 

Human Postmortem Tissue. Cerebral Cortex. 

Sharot T, Korn CW, Dolan RJ (2011) How unrealistic optimism is maintained in 

the face of reality. Nat Neurosci 14:1475-1479. 

Sharot T, Riccardi AM, Raio CM, Phelps EA (2007) Neural mechanisms 

mediating optimism bias. Nature 450:102-105. 

Sharot T, Guitart-Masip M, Korn Christoph W, Chowdhury R, Dolan Raymond J 

(2012a) How Dopamine Enhances an Optimism Bias in Humans. Current 

Biology 22:1477-1481. 

Sharot T, Kanai R, Marston D, Korn CW, Rees G, Dolan RJ (2012b) Selectively 

altering belief formation in the human brain. Proceedings of the National 

Academy of Sciences 109:17058-17062. 

Shohamy D, Adcock RA (2010) Dopamine and adaptive memory. Trends in 

Cognitive Sciences 14:464-472. 

Simon DA, Daw ND (2011) Neural Correlates of Forward Planning in a Spatial 

Decision Task in Humans. The Journal of Neuroscience 31:5526-5539. 

Small SA, Schobel SA, Buxton RB, Witter MP, Barnes CA (2011) A 

pathophysiological framework of hippocampal dysfunction in ageing and 

disease. Nat Rev Neurosci 12:585-601. 



301 
 

Smith WB, Starck SR, Roberts RW, Schuman EM (2005) Dopaminergic 

Stimulation of Local Protein Synthesis Enhances Surface Expression of 

GluR1 and Synaptic Transmission in Hippocampal Neurons. Neuron 

45:765-779. 

Stanislaw H, N. T (1999) Calculation of signal detection theory measures. 

Behav Res Methods Instrum Comput 31:137-149. 

Stone AA, Schwartz JE, Broderick JE, Deaton A (2010) A snapshot of the age 

distribution of psychological well-being in the United States. Proceedings 

of the National Academy of Sciences 107:9985-9990. 

Strunk DR, Lopez H, DeRubeis RJ (2006) Depressive symptoms are associated 

with unrealistic negative predictions of future life events. Behaviour 

Research and Therapy 44:861-882. 

Sutton RS, Barton AG (1998) Reinforcement Learning: An Introduction. 

Cambridge, MA: MIT Press. 

Swann NC, Cai W, Conner CR, Pieters TA, Claffey MP, George JS, Aron AR, 

Tandon N (2012) Roles for the pre-supplementary motor area and the 

right inferior frontal gyrus in stopping action: Electrophysiological 

responses and functional and structural connectivity. Neuroimage 

59:2860-2870. 

Takahashi H, Kato M, Hayashi M, Okubo Y, Takano A, Ito H, Suhara T (2007) 

Memory and frontal lobe functions; possible relations with dopamine D2 

receptors in the hippocampus. Neuroimage 34:1643-1649. 

Takahashi H, Kato M, Takano H, Arakawa R, Okumura M, Otsuka T, Kodaka F, 

Hayashi M, Okubo Y, Ito H, Suhara T (2008) Differential Contributions of 



302 
 

Prefrontal and Hippocampal Dopamine D1 and D2 Receptors in Human 

Cognitive Functions. The Journal of Neuroscience 28:12032-12038. 

Tambasco N, Belcastro V, Sarchielli P, Floridi P, Pierguidi L, Menichetti C, 

Castrioto A, Chiarini P, Parnetti L, Eusebi P, Calabresi P, Rossi A (2011) 

A magnetization transfer study of mild and advanced Parkinson’s 

disease. European Journal of Neurology 18:471-477. 

Thirugnanasambandam N, Grundey J, Paulus W, Nitsche MA (2011) Dose-

Dependent Nonlinear Effect of l-DOPA on Paired Associative 

Stimulation-Induced Neuroplasticity in Humans. The Journal of 

Neuroscience 31:5294-5299. 

Tofts P (2003) Quantitative MRI of the Brain: Measuring Changes Caused by 

Disease  Wiley. 

Tulving E (1985) Memory and consciousness. Canadian Psychology 26:1-12. 

Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, 

Delcroix N, Mazoyer B, Joliot M (2002) Automated Anatomical Labeling 

of Activations in SPM Using a Macroscopic Anatomical Parcellation of 

the MNI MRI Single-Subject Brain. Neuroimage 15:273-289. 

Vaillancourt DE, Spraker MB, Prodoehl J, Zhou XJ, Little DM (2012) Effects of 

aging on the ventral and dorsal substantia nigra using diffusion tensor 

imaging. Neurobiology of Aging 33:35-42. 

Van Petten C (2004) Relationship between hippocampal volume and memory 

ability in healthy individuals across the lifespan: review and meta-

analysis. Neuropsychologia 42:1394-1413. 

Vasic N, Walter H, Hose A, Wolf RC (2008) Gray matter reduction associated 

with psychopathology and cognitive dysfunction in unipolar depression: A 



303 
 

voxel-based morphometry study. Journal of Affective Disorders 109:107-

116. 

Volkow ND, Wang GJ, Fowler JS, Tomasi D, Baler R (2012) Food and Drug 

Reward: Overlapping Circuits in Human Obesity and Addiction. Current 

Topics in Behavioral Neurosciences 11:1-24. 

Volkow ND, Logan J, Fowler JS, Wang G-J, Gur RC, Wong C, Felder C, Gatley 

SJ, Ding Y-S, Hitzemann R, Pappas N (2000) Association Between Age-

Related Decline in Brain Dopamine Activity and Impairment in Frontal 

and Cingulate Metabolism. Am J Psychiatry 157:75-80. 

Wang S-H, Morris RGM (2010) Hippocampal-Neocortical Interactions in 

Memory Formation, Consolidation, and Reconsolidation. Annual Review 

of Psychology 61:49-79. 

Warrington E, James M (1991) The Visual Object and Space Perception 

Battery. Suffolk, England: Thames Valley Test Company. 

Weiskopf N, Hutton C, Josephs O, Deichmann R (2006a) Optimal EPI 

parameters for reduction of susceptibility-induced BOLD sensitivity 

losses: a whole-brain analysis at 3 T and 1.5 T. Neuroimage 33:493-504. 

Weiskopf N, Hutton C, Josephs O, Deichmann R (2006b) Optimal EPI 

parameters for reduction of susceptibility-induced BOLD sensitivity 

losses: A whole-brain analysis at 3 T and 1.5 T. Neuroimage 33:493-504. 

Williams GV, Goldman-Rakic PS (1995) Modulation of memory fields by 

dopamine Dl receptors in prefrontal cortex. Nature 376:572-575. 

Wittmann BC, Daw ND, Seymour B, Dolan RJ (2008) Striatal Activity Underlies 

Novelty-Based Choice in Humans. Neuron 58:967-973. 



304 
 

Wittmann BC, Schott BH, Guderian S, Frey JU, Heinze HJ, Duzel E (2005) 

Reward-related FMRI activation of dopaminergic midbrain is associated 

with enhanced hippocampus-dependent long-term memory formation. 

Neuron 45:459-467. 

Wolff SD, Balaban RS (1989) Magnetization transfer contrast (MTC) and tissue 

water proton relaxation in vivo. Magnetic Resonance in Medicine 10:135-

144. 

Worthy DA, Gorlick MA, Pacheco JL, Schnyer DM, Maddox WT (2011) With 

Age Comes Wisdom. Psychological Science 22:1375-1380. 

Wunderlich K, Smittenaar P, Dolan Raymond J (2012) Dopamine Enhances 

Model-Based over Model-Free Choice Behavior. Neuron 75:418-424. 

Yesavage J, Brink T, Rose T, Lum O, Huang V, Adey M, Leirer V (1982) 

Development and validation of a geriatric depression screening scale: a 

preliminary report. J Psychiatr Res 17:37-49. 

Yonelinas AP (2002) The Nature of Recollection and Familiarity: A Review of 30 

Years of Research. Journal of Memory and Language 46:441-517. 

Yonelinas AP, Kroll NEA, Quamme JR, Lazzara MM, Sauve M-J, Widaman KF, 

Knight RT (2002) Effects of extensive temporal lobe damage or mild 

hypoxia on recollection and familiarity. Nat Neurosci 5:1236-1241. 

Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G (2006) 

User-guided 3D active contour segmentation of anatomical structures: 

Significantly improved efficiency and reliability. Neuroimage 31:1116-

1128. 

Zald DH, Cowan RL, Riccardi P, Baldwin RM, Ansari MS, Li R, Shelby ES, 

Smith CE, McHugo M, Kessler RM (2008) Midbrain Dopamine Receptor 



305 
 

Availability Is Inversely Associated with Novelty-Seeking Traits in 

Humans. The Journal of Neuroscience 28:14372-14378. 

Zappia M, Crescibene L, Arabia G, Nicoletti G, Bagala A, Bastone L, Caracciolo 

M, Bonavita S, Di Costanzo A, Scornaienchi M, Gambardella A, 

Quattrone A (2002) Body Weight Influences Pharmacokinetics of 

Levodopa in Parkinson's Disease. Clinical Neuropharmacology 

March/April 25:79-82. 

Zheng D, Oka T, Bokura H, Yamaguchi S (2008) The Key Locus of Common 

Response Inhibition Network for No-go and Stop Signals. Journal of 

Cognitive Neuroscience 20:1434-1442. 

 
 


