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Abstract

From a computational theory of V1, we formulate an optimization problem to investigate neural properties in the primary
visual cortex (V1) from human reaction times (RTs) in visual search. The theory is the V1 saliency hypothesis that the bottom-
up saliency of any visual location is represented by the highest V1 response to it relative to the background responses. The
neural properties probed are those associated with the less known V1 neurons tuned simultaneously or conjunctively in two
feature dimensions. The visual search is to find a target bar unique in color (C), orientation (O), motion direction (M), or
redundantly in combinations of these features (e.g., CO, MO, or CM) among uniform background bars. A feature singleton
target is salient because its evoked V1 response largely escapes the iso-feature suppression on responses to the background
bars. The responses of the conjunctively tuned cells are manifested in the shortening of the RT for a redundant feature
target (e.g., a CO target) from that predicted by a race between the RTs for the two corresponding single feature targets
(e.g., C and O targets). Our investigation enables the following testable predictions. Contextual suppression on the response
of a CO-tuned or MO-tuned conjunctive cell is weaker when the contextual inputs differ from the direct inputs in both
feature dimensions, rather than just one. Additionally, CO-tuned cells and MO-tuned cells are often more active than the
single feature tuned cells in response to the redundant feature targets, and this occurs more frequently for the MO-tuned
cells such that the MO-tuned cells are no less likely than either the M-tuned or O-tuned neurons to be the most responsive
neuron to dictate saliency for an MO target.
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Introduction

Background on visual attention, saliency, and their neural
substrates

Spatial visual selection, often called spatial attentional selection,

enables vision to select a visual location for detailed processing

using limited cognitive resources [1]. It can be generated by goal-

dependent (or top-down) mechanisms, such as when we direct our

gaze to a book while reading, or by goal-independent (or bottom-

up) mechanisms such as when we are distracted from reading by

a sudden appearance of something in visual periphery. In this

paper, an input is said to be salient when it strongly attracts

attention by bottom-up mechanisms, and the degree of this

attraction is defined as saliency. Saliency of a visual location is

often measured by the speed of a visual search to find a target at

this location [2], or by its attentional (exogenous) cueing effect (i.e.,

the degree it speeds up and/or improves visual discrimination of

a probe presented immediately after the brief appearance of the

salient cue) [3,4].

It has been proposed that the primary visual cortex (V1) is

responsible for computing saliency [5,6]. Although this V1 saliency

hypothesis is a significant departure from traditional psychological

theories [2,7,8,1], in which the neural substrates are not their main

concern, it has received substantial support [9–15]. In particular,

behavioral data confirmed an unexpected prediction that an eye of

origin singleton (e.g., an item uniquely shown to the left eye among

other items shown to the right eye) that is hardly distinctive from

other visual inputs can attract attention and gaze qualitatively just

like a salient and highly distinctive orientation singleton does – in

fact observations [13,15] show that the eye of origin singleton can be

more salient than an orientation singleton. This finding provides

a hallmark of the saliency map in V1, because the eye of origin

feature is not explicitly represented in any visual cortical area except

V1. Functional magnetic resonance imaging and event related

potential measurements also confirmed that, when top-down

confounds are avoided, a salient location evokes brain activations

in V1 but not in the parietal and frontal regions [14], which are

thought to be involved in saliency by traditional views [1].

In another study, Koene and Zhaoping [10] measured RTs for

finding a target bar unique in color (C), orientation (O), motion

direction (M), or redundantly in two of these features (CO, MO, or

CM) among background bars which are identical to each other in

all features (see Fig. 1). If the RT for a redundant target (e.g., a CO

target) is the shorter one of the two RTs for the corresponding

single feature targets (e.g., the C and O targets), the RT for the

redundant target is said to be the outcome of a race model
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between the two other RTs (as if to take the RT of the winner in

a race between two racers) [16–19]. Since RTs are stochastic, the

RT from a race model is also said to be the result of a statistical

facilitation between the RTs of the individual racers. If the RT for

a redundant target is shorter than predicted from the statistical

facilitation, there is a redundancy gain [20]. According to the V1

saliency hypothesis, the presence or absence of the redundancy

gain in behavior should reflect the presence or absence, re-

spectively, of V1 neurons tuned simultaneously to the two visual

features distinguishing the redundant target. We call such cells

conjunctively tuned CO, MO, or CM cells, each denoted by the

feature dimensions in which they are tuned. Koene and Zhaoping

[10] found this redundancy gain for the CO and MO targets but

not the CM target, supporting the V1 saliency hypothesis since V1

has CO and MO cells [21,22,23], but no CM cells [24].

The finding by Koene and Zhaoping [10] also implies that the

extrastriate cortices are unnecessary for the bottom-up saliency of

their singleton targets. This is because extrastriate cortices do have

the CM conjunctive cells [25,26], which would have led to

a redundancy gain in the CM targets. The implication is consistent

with another behavioral observation involving depth cues, which are

believed to be processed in extrastriate but not V1 [27–32]. It was

found that depth cue did not speed up attentional guidance to a target

location unless this location was not salient enough to be reported by

observers within an RT of one second [33], which is about twice as

long as typical RTs to report a feature singleton in Koene and

Zhaoping’s study. Longer RT events are likely to involve top-down

and object/surface recognition processes beyond the bottom-up

saliency process (which dominates only in short RT events [34]), and

involve extensive neural connections between V1 and extrastriate

cortices [35,36,37]. In addition, the findings by Koene and Zhaoping

[10] and others [11] are consistent with the feature combination rule

to compute saliency according to the V1 saliency hypothesis.

According to this rule, saliency at a location is determined by the

highest V1 neural response to that location, without combining

responses from multiple neurons responding simultaneously to

different input features at the same location. In contrast, the feature

combination rules by the traditional saliency models (reviewed by Itti

and Koch [1]) compute the saliency value at a location by summing

responses to this location from various basic feature maps.

Apparently, V1 does not perform any summation across feature

dimensions. Hence, higher cortical areas have to be involved if

feature summation is to occur for computing a saliency map.

The goal and the plan for the current study
Whereas the previous studies used known facts about V1

physiology to test, and confirm, the V1 saliency hypothesis, the

current study aims to probe the unknown or less known V1

properties assuming that the V1 saliency hypothesis holds (Fig. 2). In

particular, Koene and Zhaoping [10] confirmed that the V1

saliency hypothesis is supported by the known facts that V1 contains

CO and MO cells but no CM cells. Meanwhile, many physiological

properties associated with these conjunctive neurons are less known,

or have not been systematically studied. In particular, one would

like to ask the following questions. How responsive these conjunctive

neurons are compared to the other neurons? How do the intra-

cortical interactions between these neurons vary with the feature

preferences of the interacting neurons? The current study uses the

V1 saliency hypothesis to investigate these less known properties

from the behavioral RT data collected by Koene and Zhaoping

[10]. To do so, we formulate a computational approach based on

the V1 saliency hypothesis to solve for aspects of the V1 neural

properties from the behavioral RT.

For this study, the theoretical basis is the V1 saliency hypothesis.

The hypothesis states that the saliency of a visual location is

represented by the highest V1 response to this location relative to

the background responses [5,6]. This is regardless of whether this

response is from a neuron tuned to orientation (O), color (C),

motion (M) direction [38,39], or other features, or conjunctively to

two feature dimensions (e.g. CO or MO) [38,39,21,22,23]. In

particular, according to this hypothesis, the most salient location in

a scene is the receptive field (RF) of the most activated V1 neuron

responding to this scene, regardless of the preferred feature(s) of

this neuron. A feature singleton, such as the search target in Koene

and Zhaoping [10] (see Fig. 1), can evoke the highest response to

the scene because of a neural property called iso-feature

suppression [40]. Iso-feature suppression means that V1 neurons

tuned to the same or similar features tend to suppress each other’s

responses via intra-cortical neural connections when their RFs are

close to each other [41,42,43]. For example, a unique vertical bar

Figure 1. A schematic example of the search stimulus by Koene
and Zhaoping [10]. Data in their behavioral study are used for the
current study. Observers searched for a bar unique in color (C),
orientation (O), or motion direction (M), or a combination of these
features. In this illustration, the target is a double feature CO target,
unique in both color and orientation. See Method or the original paper
[10] for the actual stimulus details.
doi:10.1371/journal.pone.0036223.g001

Figure 2. The schematic of our method to probe V1 properties
through behavior. Visual inputs drive V1 responses. Meanwhile, the
V1 responses determine the behavioral RTs in visual search tasks,
according to the hypothesis that the V1 responses represent saliencies
of input locations. Therefore, one may probe V1 properties through the
relationship between the RTs and V1 responses. In particular, a shorter
RT arises from a higher V1 response to the search target relative to
those to the background items. Therefore, from the RT data, one can
infer relative response levels of the V1 neurons, thereby probing the
feature tuning of the V1 neurons and interactions between the neurons.
doi:10.1371/journal.pone.0036223.g002
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is very salient in a background of horizontal bars, since different

neurons (preferring horizontal orientation) responding to different

and neighboring horizontal bars suppress each other by iso-

orientation suppression [42], while the neuron (preferring vertical

orientation) responding to the unique vertical bar escapes such

suppression. Iso-color [44] and iso-motion-direction [45] suppres-

sions are other known examples of iso-feature suppression. To

make the highest response to the feature singleton target

sufficiently higher than those to the background bars, the following

two conditions are required. First, the intra-cortical interactions

are sufficiently feature specific such that iso-feature suppression is

only substantial between two neurons whose preferred feature(s)

are sufficiently similar. (In principle, it should also work if the iso-

feature suppression is much stronger when the two neurons prefer

sufficiently similar feature(s) than otherwise.) Second, the input

feature preference of the neurons should sufficiently differentiate

the target and background features. We call these two elements

feature tuning of intra-cortical interactions and feature tuning of individual

neurons respectively. Sometimes, feature tuning of individual neurons is

also referred to as feature tuning of input preferences.

Usually the feature singleton search target in Koene and

Zhaoping [10] evokes responses from many cells tuned to different

features. Some of these cells are tuned to color (C), orientation (O),

or motion direction (M), and some are tuned to conjunctions (e.g.,

CO, MO) of them. We call a neuron a C, O, or M neuron if it is

tuned in a single corresponding feature dimension, and a CO, MO,

or CM neuron if it is tuned conjunctively in the two corresponding

feature dimensions. According to the V1 saliency hypothesis, the

highest response among the responses (to the target) from all

neurons determines the saliency of the target. This saliency in turn

determines the RT to find the target. For example, for a color

singleton, a C cell’s response is expected or assumed (see Discussion)

as most likely to dictate its saliency. Meanwhile, for a CO singleton

target in Fig. 1, the dictating response could come from a C, O, or

a CO cell, depending on the feature tunings of these cells and of the

intra-cortical interactions. We will show that some aspects of these

neural properties can be revealed from the RT data through the

solution of an optimization problem formulated from the V1

saliency hypothesis.

Previous works [5,6,40,46,47] have introduced a V1 model to

simulate and analyze the intra-cortical mechanisms in order to

understand the neural mechanisms behind the V1 saliency

hypothesis. We like to point out that the current work probes

the V1 neural properties using the V1 saliency hypothesis, the

theory, rather than this V1 model. The theory presents

a hypothesis about the functional role of the V1 responses, and

states that the intra-cortical mechanisms serve to highlight V1

responses to conspicuous locations where input statistics deviates

from translation invariance [5,6,40]. In contrast, by simulating the

mechanisms in V1 that give rise to these responses, the model tests

whether it is feasible that V1 responses might play the

hypothesized role. For simplicity, this V1 model, or model V1,

has so far included only model neurons tuned to orientation,

except in two examples in which model neurons tuned to color or

color-orientation conjunctions are also included [6,9]. However,

the theoretical hypothesis is general regarding input feature

dimensions and neural mechanisms as it refers to the real,

physiological, V1, rather than the simplistic and inaccurate model

V1. Indeed, various behavioral tests of the hypothesis have

included both the modeled and not modeled feature dimensions:

orientation, color, motion direction, and ocular origin [9–14],

since the model V1 is unnecessary when the physiological V1 in

human observers are available for these behavioral experiments.

Similarly, our formulation, method, and results in the current

study depend only on the V1 saliency hypothesis and the general

knowledge about the physiological V1, and not on the model.

Our predicted V1 properties from applying the V1 saliency

hypothesis to the behavioral data can serve two purposes. First,

they can motivate physiological experiments to test the predictions,

thus providing further test of the V1 saliency hypothesis. Second,

they enable the use of a computational theory as a tool to

investigate physiological properties from behavioral data without

physiological experiments. We will discuss the implication of our

findings in the Discussion.

Methods

Behavioral data
The RT data are collected by Koene and Zhaoping [10], which

contained all experimental details. In that study, verbal consents

from all participants were obtained, as documented by the subject

information in the data. The study and the consent procedure were

approved by the ethics committee in University College London.

Briefly, the search display contained an array of 30|22 colored,

tilted, and moving bars. Observers were instructed to find the target

bar as soon as possible, and their RTs to find it were measured.

There were only two possible iso-luminant colors (green or purple of

the same saturation), orientations (left or right tilted from vertical by

the same angle), and motion directions (moving to the left or right at

the same speed) for all stimulus bars in any search trial. All non-

target bars were identical to each other in color, orientation, and

motion direction (see Fig. 1), and the target differed from the non-

target bars in color, orientation, motion direction, or redundantly in

more than one feature dimension. In each search trial, the choices of

the target and non-target features were random, and the choice of

feature dimension(s) in which the target differed from the non-target

was also random. Hence, the possible target conditions included C,

O, M, CO, MO, and CM, each defined by the feature dimensions in

which the target feature was unique. Each bar was about 1 degree

long and 0.2 degree wide. The positions of the bars were randomly

jittered from their regular grid locations, such that the horizontal

distance between neighboring bars ranged between 1.2 to 3.3 degree

and the vertical distance between them ranged between 1.1 to 2.0

degrees. The data considered in this study are from the search trials

in which the target bar was at a random location roughly 12.8

degrees from the display center, and at least 11 degrees horizontally.

The observers were instructed to press a left or right button as soon

as possible for a target (present in each trial) in the left or right half of

the stimulus array, respectively. For a given target condition and

a given subject, the mean and standard deviation of the RTs for the

correctly performed trials were obtained, and RT outliers are

defined as those shorter than 0.2 second or longer than 3 standard

deviations from the mean. RTs included for this study exclude the

RT outliers and those in trials with an incorrect button press. When

the target was unique in color, orientation, or motion direction only,

it is called a single feature target; when a target was unique in two

features, it is called a double or redundant feature target. For each

subject, the orientation and color difference between the target and

non-targets, and the motion speed, were roughly pre-adjusted, such

that the subject had a mean RT of about 600 ms for each single

feature target type. Typically, the average RTs for the double feature

targets were around 500 ms as a consequence. Each subject did

about 320 search trials for each target type. The percentage of trials

excluded in our data analysis, due to button press errors or to the RT

being an outlier, is no more than 9.2% (about 5% in average) for

each subject in each condition. There were eight subjects, including

the authors, Koene and Zhaoping, and six naive subjects.

Probing V1 Properties from Visual Behavior
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Extracting properties of the conjunctive cells from
behavioral data

For simplicity, we will often narrate as if there is only one cell of

each cell type responding to each visual location (or bar) in a search

stimulus. This one cell should be understood as the most activated

cell of the given cell type. This is because, as far as saliency is

concerned, the less activated cells by inputs at a given visual

location are irrelevant according to the V1 saliency hypothesis. For

the same reason, we often omit an entire cell type when

considering neurons and their responses to a visual location, as

long as the omitted cells are not the most responsive. For example,

to a color singleton target among non-target bars, which have the

same orientation as the target bar, the dominating responses are

most likely from the C cells rather than the O cells, which are

suppressed by iso-orientation suppression. In such a case, the

analysis will often omit mentioning the O cells at all.

Linking V1 responses with search RT. Due to iso-feature

suppression, the most activated V1 neuron to the search stimuli is

most likely the ones responding to the target. For example, a C

neuron preferring green will respond most vigorously to a green

singleton target among purple distractors. Meanwhile, the

population responses to non-targets should be approximately

those evoked by a stimulus identical to the search stimulus except

for replacing the target by a non-target bar. The level of this

population response pattern should be independent of whether this

uniform group of bars are green or purple (of the same luminance

and saturation), left or right tilted (by the same angle from vertical),

and moving to the left or right (at the same speed). Therefore, we

make the approximation to view the level of the population

responses to the non-targets as independent of the target

conditions. Consequently, within the class of the search stimuli

in our analysis, the target’s saliency is a monotonic function of the

highest response r evoked by the target. Since a more salient target

leads to a shorter RT by definition, a higher response r maps

monotonically to a shorter RT by a mapping RT(r), which

depends on the mechanisms of saliency read-out and ocular-motor

functions. For example, let rC be the highest response from the C

cells to the color singleton target. Given an observed RT(rC) to

find the target, one can infer the unobserved neural response rC if

the mapping RT(r) is known. Stochastic nature of the neural

system gives a distribution of RT(rC) from many search trials,

arising from a corresponding distribution of rC’s.

Obtaining properties of conjunctive cells from the RTs

using a race model. Throughout the rest of the Method

section, we often use a CO target as an example to derive and

illustrate how to probe neural properties, e.g., the relative levels of

neural responses rCO, associated with conjunctively tuned cells.

The methods and arguments apply analogously to the cases of

other double feature targets and neurons.

The saliency for a CO target is not necessarily dictated by rCO, the

response from a CO cell, but by the maximum of rC, rO, and rCO, the

responses from the C, O, and CO cells, respectively. In other words,

the RT for the target is RTtarget~RT(max(rC,rO,rCO)), where

max(…)denotes the maximum of the arguments. This method to

obtain the RT for a double feature target is called a race model [16–

20], which intuitively assigns as the RT for the target the winning RT

in a race between three racers whose respective RTs are RT(rC),
RT(rO), and RT(rCO) (Fig. 3, 4). For notational convenience,

RT(rC), RT(rO), and RT(rCO) are also denoted as RTC, RTO, and

RTCO, respectively. Therefore (Fig. 3),

RTC~RT(rC) ð1Þ

RTO~RT(rO) ð2Þ

RTCO~RT(rCO) ð3Þ

RTtarget ~RT(max(rC,rO,rCO))

~min(RTC,RTO,RTCO),
ð4Þ

where min(…)denotes the minimum of the arguments.

The neural activities rC (or rO) are assumed to follow the same

probability distribution whether the target is a single feature C (or O)

target or a double feature CO target. Hence, the probability

distributions of RTC, RTO, and RTtarget are sampled by behavioral

RT data from C, O, and CO target trials respectively. Additionally,

rC, rO, and rCO are assumed to be randomly and independently

drawn from their respective distributions. Consequently, RTC RTO

and RTCO are also randomly and independently drawn from their

respective distributions. Meanwhile, RTCO, which cannot be

measured behaviorally, can be inferred from other behavioral data.

For example, if a RTtarget sample is shorter than all samples of RTC

and RTO, it is likely to represent an underlying RTCO sample

according to equation (4). More generally, even when a RTtarget is not

shorter than all samples of RTC and RTO, it is still possible to

represent a RTCO sample if its occurrence is more likely than expected

from random races between only two racers with RTC and RTO

respectively. More formally, an optimization method (see a later

section on technical details) can be used to infer the underlying

distributions of RTC RTO and RTCO from the behavioral RT

samples. Since a monotonic function relates r and RT, relative activity

levels among rC, rO, and rCO can then be inferred from the relative

values among RTC RTO and RTCO, even though the exact form of

the mapping from r to RT(r) is not known and is subject dependent.

Obtain the impacts or contributions of different cells in

visual search. The contribution of a neuron to the saliency of

a double feature target can be obtained even if the neural activities

are not absolutely known. For a CO target, for example, the

contribution of the CO cells to the target’s saliency is defined as

the probability that the CO cell gives the highest evoked response

(or, equivalently, wins the race among the three racers), i.e.,

CCO :Probability(rCOwrC,rO)

~Probability(RTCOvRTC,RTO):
ð5Þ

Similarly, the contributions from the C and O cells are,

respectively,

CC:Probability(RTCvRTO,RTCO), and ð6Þ

CO:Probability(RTOvRTC,RTCO): ð7Þ

In our data analysis, probability distributions of the RTs are

described by probabilities of the RTs in discrete time bins. Due to

the finite sizes of these time bins, there is a non-zero probability

that more than one racer jointly win a race (by being in the same

bin), giving CCzCOzCCOv1. However, this does not change

our qualitative conclusions.

One can easily imagine that if the mean RTCO is substantially

longer than those of RTC and RTO, the contribution CCO by the

Probing V1 Properties from Visual Behavior
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conjunctive CO cell will be likely close to zero. In contrast, if

contribution CCO&CC,CO, the responses by the conjunctive cells

are comparable to those by the single feature tuned neurons.

Assessing the significance of the roles of the conjunctive

cells. By definition, the CCO will never be negative. Meanwhile,

the finite numbers of behavioral samples in our data imply that our

Figure 4. Deriving contributions by various V1 neurons to a double feature target’s saliency from the RT. This is illustrated by the
example of a CO double feature target. The stochastic V1 responses rC, rO, and rCO lead to stochastic RTC~RT(rC), RTO~RT(rO), and
RTCO~RT(rCO), with probability distributions pC(RTC), pO(RTO), and pCO(RTCO) respectively. The C, O, or CO cell is the winner of the race with
probability CC , CO, and CCO respectively, giving target RTtarget~min(RTC,RTO,RTCO). Samples from the probability distributions pC(RTC), pO(RTO),
and ptarget(RTtarget) are measured as the behavioral RT data for targets C, O, and CO, respectively. From these data, the underlying probability distributions
pCO(RTC), pCO(RTO), and pCO(RTCO) can be inferred by an optimization procedure, and the three contributions CC, CO , and CCO can then be calculated.
doi:10.1371/journal.pone.0036223.g004

Figure 3. A schematic of the relationship between V1 responses and search RTs. In this example, a CO target activates three types of V1
neurons, tuned to C, O, and CO respectively. Their responses, rC , rO, and rCO , are influenced by intra-cortical mechanisms in V1. Their maximum
rmax~max(rC,rO,rCO) determines the target’s saliency. Thus the behavioral RT is a function of rmax (with distractor responses normalized to 1),
through a monotonically decreasing mapping RT(rmax) determined by the brain mechanisms for saliency read-out and ocular-motor functions.
Equivalently, the behavioral RT is min(RTC,RTO,RTCO), as the result of a race between the racers C, O, and CO, whose RTs are, respectively,
RTC~RT(rC), RTO~RT(rO), and RTCO~RT(rCO).
doi:10.1371/journal.pone.0036223.g003

Probing V1 Properties from Visual Behavior
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sampled probabilities pC(RTC), pO(RTO), and ptarget(RTtarget) are

noisy versions of the actual probabilities. Consequently, a positive

contribution CCO is likely obtained even if RTtarget were sampled

from the race between RTC and RTO only. We define Cchance as

the chance level CCO value obtained by replacing the RTtarget data

by as many trials (as the number of the CO target trials) of this

simulated race winner min(RTC,RTO) between the two racers

using Monte Carlo method [10]. We obtained 1000 evaluations of

Cchance, each from a random set of sampled RTs of the race

winner. CCO is said to be significant if it is larger than 95% of these

Cchance values, i.e., pv0:05.

The verification of consistency and validity of our
method

To verify the consistency of our method, we checked after

optimization whether RTrace3:min(RTC,RTO,RTCO), the race

winner among the three racers C, O, and CO, has the same

distribution as that of our behavioral RTtarget for the CO target. A

large difference between these two distributions indicates a poor

performance of our optimization method, and consequently,

unreliable results and conclusions from the method. This

consistency can be quantified by D (defined as D:D=H, where

D is the K-L divergence between ptarget(RTtarget) and

prace3(RTrace3), H is the entropy of ptarget(RTtarget), and both

RT distributions are discretized by the same time bins for the

calculation), such that a D%1 indicates a good agreement between

the two distributions. Fig. 5 shows the best and worst consistency

cases. For all subjects and double feature target conditions,

Dv0:01, and typically the curves of ptarget(RTtarget) and

prace3(RTrace3) are not visually distinguishable. An analogous D
value can also be calculated for the probability distributions for

any given single feature target, when ptarget(RTtarget) and

prace3(RTrace3), respectively, are replaced by the measured and

inferred (by the optimization) probability distributions of a given

singleton target. For all subjects and all single feature targets, such

D values are all smaller than 0:005. Hence, our optimization

method is highly reliable and gives consistent results.

Meanwhile, our calculated contributions C by the various

feature tuned cells depend on the number and the placement of

the time bins to discretize the RT data. Smaller bins give fewer RT

samples in each bin, making the sampled distributions noisier and

Cchance larger. Larger bins give coarser distributions, making it

more difficult to distinguish the race winner, since joint winners in

a race are more likely. Given the number N of the bins, we place

the bins such that each of the first N{1 bins contains roughly the

same total number of RT samples from all target types, while the

last bin is the reserve for possible long RTs (from the double

feature cells) which never wins the race. Given our RT data, when

N is between 7–13, such that the probability that the race is won

by joint winners is on average between 10–20%, our results do not

qualitatively depend on the number N of the bins. This paper

shows the results for when N~8.

Technical details in the methods
Optimization method to calculate RT distributions

generated by the responses of various types of

neurons. For each subject and each target type, the RTs in the

N time bins are described by a vector n~(n1,n2, . . . ,nN ), with

ni = the number of RT samples in the ith time bin with

ti{1ƒRTvti. Let nC, nM, nO, nCM{target, nCO{target, and

nMO{target denote these vectors for targets C, M, O, CM-target,

CO-target, and MO-target respectively for a given subject. Let the

probability distributions pC, pM, pO, pCM, pCO, and pMO denote the

probability of RTC, RTM, RTO, RTCM, RTCO and RTMO

respectively in these same time bins. Their likelihood given nC,

nM, nO, nCM{target, nCO{target, and nMO{target

is

L(pC,pM,pO,pCM,pCO,pMO)!P
N

a
p

nCa
Ca

:P
N

b
pMb

nMb :P
N

c
pOc

nOc

:P
N

d
pCM{race3d

nCM{target
d

:P
N

e
pCO{race3e

nCO{targete

:P
N

f
pMO{race3f

nMO{target
f

ð8Þ

Figure 5. Visualization of the consistency of our method. Shown are the best and the worst consistencies in using our optimization method to
probe the double feature tuned cells, among all subjects and all double feature target conditions. A better consistency means a better match
between the two curves ptarget(RTtarget) and prace3(RTrace3). Here, ptarget(RTtarget) is the distribution of the behavioral RT data for a double feature
target. Meanwhile, prace3(RTrace3) is the corresponding distribution of the winning RT from a race between the three RT racers (e.g., see Fig. 4) whose
probability distributions are inferred from the behavioral RT data by our optimization method. In most cases (not shown here), the two curves are not
visually distinguishable, similar to that in the plot for the best case.
doi:10.1371/journal.pone.0036223.g005
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In the above equation, nXi
and pXi

denote the ith element in the

vector nX and pX respectively, for X = C, M, O, CM-target, CO-

target, MO-target, CM-race3, CO-race3, or MO-race3. Mean-

while, pCM{race3 is the probability distribution of the RTs as the

result of a race between three racers whose RTs follow probability

distributions pC, pM, and pCM respectively, i.e.,

pCM{race3i
~pCi

(
XN

j~iz1

pMj
)(
XN

k~iz1

pCMk
)

zpMi
(
XN

j~iz1

pCj
)(
XN

k~iz1

pCMk
)

zpCMi
(
XN

j~iz1

pCj
)(
XN

k~iz1

pMk
)zpCi

pMi
(
XN

j~iz1

pCMj
)

zpCi
pCMi

(
XN

j~iz1

pMj
)zpMi

pCMi
(
XN

j~iz1

pCj
)

zpCi
pMi

pCMi

ð9Þ

Similarly, the components of pCO{race3 and pMO{race3 are

pCO{race3i
~pCi

(
XN

j~iz1

pO j
)(
XN

k~iz1

pCO
k

)

zpOi
(
XN

j~iz1

pCj
)(
XN

k~iz1

pCO
k

)

zpCOi
(
XN

j~iz1

pCj
)(
XN

k~iz1

pOk
)zpCi

pOi
(
XN

j~iz1

pCOj
)

zpCi
pCOi

(
XN

j~iz1

pOj
)zpOi

pCOi
(
XN

j~iz1

pC j
)zpCi

pOi
pCOi

;

ð10Þ

pMO{race3i
~pMi

(
XN

j~iz1

pOj
)(
XN

k~iz1

pMOk
)

zpOi
(
XN

j~iz1

pMj
)(
XN

k~iz1

pMO
k

)zpMOi
(
XN

j~iz1

pMj
)(
XN

k~iz1

pOk
)

zpMi
pOi

(
XN

j~iz1

pMOj
)zpMi
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(
XN

j~iz1

pOj
)

zpOi
pMOi

(
XN

j~iz1

pMj
)zpMi

pOi
pMOi

ð11Þ

We obtain the most likely pC, pM, pO, pCM, pCO, and pMO

by minimizing the negative log likelihood {ln L(pC,pM,pO

,pCM,pCO,pMO). For this optimization, we use the ‘‘fmincon’’

function in MATLAB, imposing the constraint that each of pC, pM,

pO, pCM, pCO, and pMO has non-negative components and is

normalized, e.g.,
PN

i~1 pCi
~1.

Quantifying the consistency of our optimization

method. To quantify the consistency of our optimization

method, we first obtain an unbiased estimation of pCO{target of

the RTCO{target as

pCO{targeti
~

nCO{target
i

PN

j~1

nCO{targetj

: ð12Þ

The difference between pCO{race3 (as in equation (10) above) and

pCO{target can be measured by Kullback-Leibler divergence

D~
XN

i~1

pCO{target
i

ln
pCO{targeti

pCO{race3i

: ð13Þ

The quality of the consistency of our optimization is quantified by

D~D=H, where H is the entropy of pCO{target

H~{
XN

i~1

pCO{targeti
ln pCO{target

i
: ð14Þ

Calculating the contributions by various cell types to the

saliency of double feature targets. For example, for the CO

target, the contributions CC, CO, and CCO are respectively

CC~
XN

i~1

pCi
(
XN

j~iz1

pOj
)(
XN

k~iz1

pCO
k

), ð15Þ

CO~
XN

i~1

pO i
(
XN

j~iz1

pCj
)(
XN

k~iz1

pCO
k

), ð16Þ

CCO~
XN

i~1

pCO i
(
XN

j~iz1

pCj
)(
XN

k~iz1

pO
k

): ð17Þ

The contributions in the case of other double feature targets are

obtained analogously.

The policy of placing the time bins. Let RTmin and RTmax

be, respectively, the minimum and maximum RTs of a subject

regardless of target types. Let ti{1vti be the boundaries of the ith

time bin containing RTs satisfying ti{1ƒRTvti. Given the

number N of time bins, the boundaries t0vt1v:::vtN are chosen

such that t0 = RTmin20.0001 second, tN-1 = RTmax+0.0001 se-

cond, t
N

= ‘, and, if ivN, nC
i
znM

i
znO

i
znCM{target

i
z

nCO{target
i
znMO{target

i
&constant which does not depend on

i.The last time bin bounded by tN{1vtN~? serves as a reservoir

for the possibility of the long RTCM, RTCO, and RTMO which

never win the races and thus could not be manifested in (or

determined by) the behavioral RT data.

Results

For the CO target, Fig. 6A shows the probabilities of RTC, RTO,

RTtarget from the behavioral data and that of the inferred RTCO by

the optimization for a typical subject. As expected for the RTs of the

(9)

(11)
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race winner, the RTtarget is generally smaller than all the other RTs

(of the individual racers). Fig. 6B shows that, for this subject, the

saliency of the CO target is determined most likely by the V1 neuron

tuned to the O feature, with CO~0:42, and least likely by the

neuron tuned to the CO feature, with CCO~0:13. However, CCO is

significantly larger than Cchance which is typically around 0.05 for all

subjects and double feature target conditions. Hence, for this subject,

the CO neuron is so responsive to the CO target that it has

a substantial probability of CCO~0:13 to respond more vigorously

than the single feature tuned C and O cells to the CO target.

In Fig. 6A, the distribution of the inferred RTCO is multi-modal,

unlike typical RT distributions. This does not mean that our

optimization is faulty, as it is caused by the following. First, the

race model is better at determining the shorter RTCOs which are

more likely to win the race to be manifested as RTtarget. The

longer RTCOs are under-determined and are largely determined

by the probability normalization constraint. Meanwhile, these

longer RTCOs matter little to CCO since they do not win the race.

In fact, Fig. 6A omitted the last time bin, which contains no

behavioral RT samples for any target types but absorbs the longer

RTCOs which never even jointly win the race. Second, our RT

data do not allow us to determine how likely it is that the CO cell is

the most activated neuron by the C or O target to dictate RTC or

RTO, respectively. We have thus for simplicity assumed that the

CO cells never dictate RTC or RTO for the C or O targets

respectively. If, however, CO cells do dictate RTC and RTO

occasionally, the RTs by the C and O neural racers should be

longer than those shown in Fig. 6A, and, consequently, some more

trials of RTtarget should be attributed to RTCO to make

pCO(RTCO) resemble typical RT distributions. The analysis above

implies that our inferred CCO is in fact the additional contribution

by the CO neurons beyond their hidden contribution which has

been attributed to the C and O cells for simplicity (see Discussion

for more details). Third, the probabilities inferred from finite

numbers of RT samples are noisy, contributing to the irregularity

in the inferred RTCO distribution.

Fig. 7 shows the contributions by various feature tuned neurons

to the saliencies of different double feature targets for all subjects.

Fig. 7A shows that, among 8 subjects, 5, 7, and 2 subjects have

their conjunctive cells contributing significantly to the correspond-

ing double feature targets CO, MO, and CM respectively. A t-test

is used to see whether the subject-averaged contribution by any

double feature neuron is significantly larger than the subject

averaged chance level Cchance. The answer is affirmative except for

the CM cells, confirming the conclusion by Koene and Zhaoping

[10] that the behavioral RTs for a double feature CO target or

MO target, but not the CM target, is significantly shorter than

predicted from a race between the RTs for the two corresponding

single feature targets. In addition, the current results reveal

quantitatively the impacts of the double feature tuned neurons to

the saliencies of the double feature targets, and compare them with

the impacts of the single feature tuned neurons. Averaged across

subjects, CMO is not significantly different from CM and CO, but

CCO is significantly lower than CO and marginally lower than CC.

Hence, the MO cells have a larger impact than the CO cells on the

saliency of their corresponding double feature target. In particular,

the chance CMO for the MO cell to be the highest responding

neuron to dictate the saliency of a MO double feature target is no

less than that (CM or CO) for either of the single feature tuned M

and O cells. Meanwhile, the chance CCO for the CO cell to be the

highest responding neuron to dictate the saliency of a CO double

feature target is substantial, but is only about half of that (CC or

CO) for either of the single feature tuned C and O cells. These

results will be used to infer the less known properties of the double

feature cells in Discussion.

Figure 6. The results for the CO target from a typical subject. A: probability densities for RTC , RTO , RTCO, and RTtarget . Each density function
is plotted as piece-wise lines linking discrete points, with the ith point at RT~(tizti{1)=2 horizontally and pi=(ti{ti{1) vertically, where pi is the
probability that the corresponding RT is in the ith time bin (ti{1ƒRTvti). All curves start at p0~0 at t0 . For RTC, RTO, and RTtarget, the probability
pi~ni=(

P
j nj), where ni is the number of RT samples in the ith time bin for the corresponding target. For RTCO, pi is from the outcome of the

optimization. The error bars are generated as follows. For each target type, let RT1vRT2v:::RTav:::vRTM be all the behavioral RT samples
included, and let the cumulative RT distribution cdf (RT) for this target be approximated by a function which has piece-wise interpolations between
discrete functional values cdf (RT~RTa)~(a{0:5)=M and has cdf (RTvRT1)~0 and cdf (RTwRTM )~1. Randomly generate M simulated RT
samples using this cdf (RT). Using these simulated RT samples (as if they were the original RT data) for all target types, we obtain another
measurement of the probability densities for all target types and, via our optimization method, all neuron types. Repeat such measurements 500
times. Each error bar has its lower and higher values at the 16th and 84th percentiles, respectively, of the corresponding density measurements. B:
Contributions CC, CO, and CCO of the C, O, and CO neurons, respectively, to the saliency of the CO double feature target for this subject. Each
contribution is the probability that the corresponding neuron dictates the saliency of the CO target (by giving the highest response among responses
from all three types of neurons to the CO target). In obtaining their values, probabilities of RTC and RTO from optimization outcomes, rather than
behavioral data, were used. The ‘*’ on top of CCO indicates that CCO is significantly different from Cchance whose mean value is marked by the
magenta line.
doi:10.1371/journal.pone.0036223.g006
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Note that the relative contributions CC, CM, and CO in our

results cannot be generally interpreted as relative significance of

the roles played by the corresponding single feature tuned cells.

For example, if a much smaller orientation contrast between

a target and non-targets were employed in our stimuli for O, CO,

and MO targets (note that the same orientation contrast was used

in these targets by our experimental design), then the saliency of

the CO target would be due more to its unique color rather than

its unique orientation, and, similarly, the saliency of the MO

target would be due more to its unique motion direction rather

than its unique orientation. Consequently, the ratio CO=CC for

the CO target and the ratio CO=CM for the MO target will be

reduced. Nevertheless, our conclusions regarding the contribu-

tions by the conjunctive cells relative to those by the single feature

tuned cells should not be as sensitive to the exact feature contrasts

in the stimuli, since the conjunctive cells have to be more active

than both of the corresponding single feature cells to make an

impact.

Discussion

Summary of the results and their predictions on V1
physiology

Using RTs in visual search for feature singletons to assess the

saliencies of the search targets, and using the V1 saliency

hypothesis, this study probes the properties of the less-known V1

cells tuned conjunctively to more than one feature dimension. We

are particularly interested in the activities of the conjunctively tund

neurons relative to those of the single feature tuned neurons.

These relative activities, when they are sufficiently high, make

their impacts on the saliencies of the visual inputs, such that they

can shorten the RT to find a double or redundant feature target

beyond that predicted by a statistical facilitation between the two

corresponding single feature targets. In other words, the relatively

higher activities of the conjunctive neurons can be manifested as

redundancy gains in the RTs of the double feature targets [20].

The relative activities of the conjunctive neurons can be quantified

from the redundancy gains by applying the V1 saliency hypothesis.

The results show that (1) the chance CMO for the MO cell to be the

Figure 7. Contributions by various feature-tuned neurons to the three types of double feature targets. Results are shown for individual
subjects in A and averaged across subjects in B. The two subjects marked by white and green colored bars are Koene and Zhaoping, experimenters
for the behavioral data and the only non-naive subjects. The plots are in the same format as that in Fig. 6B. In B, Cchance is averaged across subjects,
and a subject-averaged contribution by the conjunctive cells is marked as significant if it is significantly different (pv0:05) from this Cchance by a t-test.
The error bars mark the standard errors of the means. An ‘*’ above a bar for the double feature tuned cell (in A or B) indicates that the contribution by
this cell (to the saliency of the double feature target) is significantly above the chance level. In B, an ‘*’ or ‘n.s.’ linking the contribution of a conjunctive
cell and that of a single feature tuned cell marks, respectively, a significant or insignificant difference between them (by a matched sample t-test).
Qualitatively the same results are obtained in B when data from non-naive subjects, Koene and Zhaoping, are excluded.
doi:10.1371/journal.pone.0036223.g007
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most active neuron in response to a MO double feature target is no

less than that (CM or CO) for either of the single feature tuned M

and O cells; and (2) the chance CCO for the CO cell to be the most

active neuron in response to a CO double feature target is

substantial but about half of that (CC or CO) for either of the single

feature tuned C and O cells. Additionally, our results show that

there is no significant chance for the CM cells to be the most active

neuron in response to a CM double feature target, suggesting an

absence of such neurons in V1, consistent with the previous

finding [10] and physiological observations [24].

The impact of the conjunctive cells on the double feature targets

predicts that these cells tend to respond to their preferred stimulus

more vigorously and experience weaker contextual suppressions

when the contextual inputs differ from their preferred stimulus in

both, rather than one, feature dimensions. This should be caused

by both of the following. One is a sufficient feature tuning of the

conjunctive cells in both feature dimensions, and the other is

a sufficient feature tuning of the intra-cortical interactions between

these cells (or between these cells and the single feature tuned

cells). The roles of these two types of feature tunings in saliency are

further elaborated next.

Two types of V1 feature tuning properties
V1 saliency hypothesis implies that the highest responses to the

feature singletons are higher than those to the uniformly featured

non-targets. Mechanistically, this requires the following two

components. First, neurons responding to the non-targets should

suppress each other by iso-feature suppression, the V1 property

that nearby neurons preferring the same or similar feature(s)

suppress each other [41,42,43]. Second, the neuron preferring and

responding to the target should largely escape the iso-feature

suppression from neurons responding to the non-targets. These

two components require two types of feature tunings to be

sufficiently strong. One is the feature tuning in the input feature

preference of the V1 cells. Cells preferring the target feature

should prefer the non-target features much less or not at all. The

other is the feature tuning of the intra-cortical interactions [5]. It

specifies how quickly the intra-cortical suppression decays with the

difference between the preferred features of the two interacting

neurons. By sufficient feature tuning of the interactions, neurons

preferring the non-targets should direct their iso-feature suppres-

sion much more to each other than to neurons preferring the

target. Sufficient feature tunings in both the input preference of

the neurons and interactions between neurons ensures that the

neurons most activated by the target should largely escape the iso-

feature suppression from the neurons responding to the non-

targets.

Following the analysis above, sufficient feature tuning associated

with the conjunctive cells, both in input preference and in intra-

cortical interactions, are required to have redundancy gains for the

double feature targets. This can be understood as follows. For

example, the C or O neurons, being single feature tuned, do not

differentiate their responses to the target based on whether the

target is a single feature target or a double feature target. Hence,

the redundancy gain for the CO target requires that the CO cells

respond more strongly to a double feature rather than a single

feature target. To realize this, the suppression on the CO cells

preferring and responding to the target from the neurons

preferring and responding to the non-targets should be weaker

when the target differs from the non-targets in two rather than one

feature dimensions. This decreasing suppression by an increasing

number of feature dimensions to distinguish the target can arise

from three mechanisms, see Fig. 8. First, suppression between two

CO cells is weaker when they prefer different features in both

dimensions, rather than just one. Accordingly, suppression from

a CO cell preferring and responding to non-targets on the CO cell

preferring and responding to the target is weaker when the target

is a double rather than a single feature target (compare Fig. 8B

with Fig. 8DF). Second, suppression between a CO cell and a C

cell is weaker when they prefer different colors. Accordingly,

suppression from a C cell preferring and responding to a

non-target to a CO cell preferring and responding to the target

is weaker when the target and non-targets differ in color (compare

Fig. 8BD with Fig. 8F). Third, suppression between a CO cell and

an O cell is weaker when they prefer different orientations.

Accordingly, suppression from a O cell preferring and responding

to a non-target to a CO cell preferring and responding to the

target is weaker when the target and non-targets differ in

orientation (compare Fig. 8BF with Fig. 8D). The first mechanism

alone should be sufficient, but either the second or third

mechanism alone would not be. Future experiments, especially

physiological and anatomical investigations, are needed to find out

which sources are actually involved. Analogous conclusions apply

to the MO cells and their associated feature tunings.

The roles of single feature and conjunctive feature tuned
cells in single feature target

Our behavioral data could not reveal whether the conjunctive

cells are more active than the single feature tuned cells in response

to the single feature targets to dictate their saliency at least

occasionally. For example, the RTC for the C target does not

reveal whether a C cell or a CO cell is responsible. After all, the

value of saliency is feature blind, signaled by the firing rate of the

most activated V1 neuron regardless of its preferred feature(s) [6].

Our analysis has for simplicity regarded the single feature tuned

cells alone as the dictating neurons for the saliencies of the single

feature targets, even though the dictating responses could be from

double feature tuned cells. Since these dictating responses to the

single feature targets are used as the basis to calculate the

contributions by the single feature tuned cells to the saliency of

a double feature target, these contributions (e.g., CC and CO) may

be over-estimating the actual contributions by the single feature

tuned neurons. Consequently, contributions by the double feature

cells to the saliencies of the double feature targets may be under-

estimated. In other words, our reported contributions CCO and

CMO (and even CCM) by the double feature tuned cells to the

saliencies of double feature targets are in fact additional

contributions by these cells beyond their hidden contributions

not revealed by our RT data. These hidden contributions

correspond to the contributions of the double feature tuned cells

in the single feature targets. For example if the CO cells dictated

the saliency of a C target in 25% of the trials and the saliency in an

O target in 10% of the trials, the hidden contribution by the CO

cells to the CO target could be about 0:25CCz0:1CO (although

the actual quantity depends on more specific details), making the

total contribution CCOz0:25CCz0:1CO by the CO cells to the

CO target. Analogous arguments apply to the contribution by the

MO cells to the MO targets. Accordingly, considering that

CMO*CO,CM, we can conclude that the dictating neuron is no

less likely, and perhaps more likely, to be an MO cell than an M or

an O cell.

One may ask whether the hidden contributions by the

conjunctive neurons could be so much that conjunctive neurons

alone dictate the saliencies of both the single and double feature

targets, as if the single feature tuned neurons are invisible or absent

for saliency. To answer this question, let us denote the (effective

synaptic connection mediating) intra-cortical suppression between

two conjunctive cells by Wij , which depends on the two binary
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subscripts i and j for the two feature dimensions in which the

neurons are tuned. Each subscript takes value 0 or 1 if the two

neurons prefer the same or different features, respectively, in the

corresponding feature dimension. The strongest suppression

between the two conjunctive neurons is W00, when the preferred

features are the same in both feature dimensions. For example, two

CO neurons suppress each other most when they prefer the same

color and the same orientation. The second strongest level of

suppression includes W01 and W10, when the preferred features are

different in only one feature dimension, e.g., when two CO neurons

prefer different colors but the same orientation (or the same color

but different orientations). For better intuition, we may refer to W00

as iso-double-feature suppression and W01 and W10 as iso-single-

feature suppression (see Fig. 8). The weakest suppression is W11,

between two conjunctive neurons preferring different features in

both dimensions, e.g., when the two CO neurons prefer different

colors and different orientations. Feature tuning in intra-cortical

suppression means that

W00wW11, and, W00§W01,W10§W11: ð18Þ

Suppression W10 or W01 is between conjunctive neurons preferring

a single feature target and those preferring the non-targets

(Fig. 8DF); suppression W11 is between conjunctive neurons

preferring a double feature target and those preferring the non-

targets (Fig. 8B); whereas suppression W00 is between conjunctive

neurons preferring the non-targets (not shown in Fig. 8 to avoid

clutter). We have concluded above that

W10,W01wW11 sufficiently ð19Þ

helps to realize redundancy gains. Now, if conjunctive neurons

alone have to dictate the saliencies of the single feature targets, then

W00wW10,W01 sufficiently ð20Þ

is necessary to make suppression stronger on the responses to the

non-targets than the target. To make all feature singletons salient

and to have redundancy gains in double feature targets CO and

MO but not in CM targets, no C, M, O, and CM neurons are

necessary in principle, provided that equations (19) and (20) hold for

Figure 8. A schematic for suppression on neurons responding to the target in feature singleton search. Cases for a CO target (A and B),
a C target (C and D), and a O target (E and F) are shown separately. Red and green bars are visual inputs. Circles on a bar mark neurons activated by
the bar. Each neuron is marked by its preferred feature as red (R), green (G), horizontal (H), vertical (V), or a conjunction of them. Lines and curves with
arrows mark (effective) suppression between two neurons, thicker for stronger suppression when the two neurons prefer the same feature. For
clarity, suppression on the single feature tuned cells are shown separately (in A, C, and E) from that (in B, D, and F) on the double feature tuned cells,
and interactions between the neurons responding to non-targets are not shown. Among single feature tuned neurons activated by the target, the C
neuron (‘R’) is more suppressed when the target is an O target, whereas the O neuron (‘V’) is more suppressed when the target is a C target. Without
the conjunctive neurons, the strongest response evoked by the CO target will be the same as the larger one of the strongest responses evoked by the
C and the O targets. The CO neuron (‘RV’) responding to the target is least suppressed for the CO target (to have the redundancy gain), if suppression
between conjunctive neurons is weaker when their preferred features are different in both rather than one feature dimensions (i.e., W11vW10 and
W11vW01, see equation (19)), or if the suppression from a single feature tuned neuron (C or O neuron) on a conjunctive neuron is weaker when they
prefer different features in their shared feature dimension.
doi:10.1371/journal.pone.0036223.g008
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both the CO and MO cells. Physiologically, there are likely a whole

spectrum of single and double feature selectivities in V1 [48].

Relationship with other studies
V1 physiology. The current results confirmed the previous

finding by Koene and Zhaoping [10] that a statistical facilitation

between the RTs for the single feature targets is sufficient to

account for the shorter RTs for the CM target, but not for the CO

and MO targets. Findings by both studies are consistent with

physiological observations that some V1 cells are tuned conjunc-

tively to both color and orientation [21,22,23], others to both

orientation and motion direction [38,39], and that few cells are

tuned to both color and motion direction [24]. However, the

current study differs from Koene and Zhaoping [10] in research

questions asked, methodology, and outcomes. Koene and Zhaop-

ing [10] used the behavioral RT data and the known V1 facts (the

presence and absence of certain conjunctive cells) to test whether

the V1 saliency hypothesis is correct, whereas the current study

applies the V1 saliency hypothesis (assumed to be correct) to the

behavioral data to investigate the less known V1 neural properties

– the response levels and feature selectivities associated with the

conjunctively cells. Koene and Zhaoping [10] found out qualita-

tively whether the RT redundancy gains are present in certain

feature dimensions in order to determine whether the neural

substrate for saliency is most likely V1 rather than the extrastriate

cortices. In contrast, the current study formulates an optimization

approach to predict quantitatively the probability that the

conjunctive neurons should dominate the V1 responses. In

addition, the current study predicts the feature tuning properties

of the intra-cortical interactions associated with the conjunctive

neurons. These predicted properties, in particular that the MO

cells are no less likely than either of the single feature tuned

neurons to dominate the responses to a MO singleton, can be

experimentally tested.

Iso-feature suppression is only one of the intra-cortical in-

teraction between V1 neurons, albeit a dominant one. Another

notable interaction is colinear facilitation [49], the excitation

between two V1 neurons whose preferred input bars have similar

orientations and are aligned as if belonging to a single smooth

curve. When a central bar (such as our visual search target) is

surrounded by uniformly oriented background bars in a statistically

isotropic manner, the net interaction between the (neurons

responding to the) central bar and the surrounding bars is still

iso-orientation suppression, stronger when the orientations of the

central and surrounding bars are more similar, as observed

physiologically [42]. Since the density of our non-targets is quite

high, each non-target can be approximately viewed as surrounded

by other non-targets isotropically and experiencing a net iso-

orientation suppression as well. Hence, for our current study when

it is only necessary to evaluate the net suppression on each neuron,

it is not necessary to consider colinear facilitation separately.

The role of the extrastriate cortices for attentional

guidance. There are many neurons tuned to CM conjunctions

in V2 [25,26], but few in V1 [24]. Hence, our finding of no

contribution by the CM neurons provides a strong support that V1

rather than extrastriate mechanisms play the dominant role in

saliency for these feature singletons. This however does not rule

out the possibility that the extrastriate cortex plays a role guiding

attention for other visual stimuli. Recently, depth cue was found

[33] to speed up the task to locate a texture border only if this

border is not salient enough for observers to report its location

within one second. Since extrastriate cortices rather than V1 are

thought as responsible for depth perception [27–32], this finding

suggests that, when the target saliency is too weak, V1 signals may

be insufficient to guide attention in a dominant manner. The brain

areas such as the superior colliculus may coordinate and combine

contributions from various cortical areas to guide attention.

Superior colliculus is particularly suitable for such a role since it

receives inputs from multiple brain areas including V1, extrastriate

cortex, and parietal cortices, and directly controls the gaze shifts

through the brain stem [50,51]. Since longer latencies are typically

required for contributions from higher brain areas, it is conceiv-

able that the speeded or hurried decisions for attentional shifts are

reached using only contributions from lower cortical areas such as

V1. Meanwhile, since human gaze shifts about three times per

second, and since previous works suggest that top-down factors

play an increasingly dominant role to guide attention when longer

latencies are allowed [4,52], it is unclear whether the attentional

guidance 800 ms after the stimulus onset could be viewed as

strictly by (bottom-up) saliency alone.

Implications on conjunction search. The visual search task

considered in this study is a feature search task [2], since the target

can be distinguished by a unique feature, even when it is a double

feature target. In contrast, when a target shares one (or more)

features with some or all distractors and can only be distinguished

by a particular conjunction of features, the search is much more

difficult and is called a conjunction search [2]. For example, to

find a red-vertical target bar among red-horizontal bars and green-

vertical bars, the target conjunction is of red color feature and the

vertical orientation feature, while both red and vertical features are

present among the non-targets. The difficulty in conjunction

searches can be easily understood if there is no conjunctive

neurons. For the example above, the neurons preferring red

respond to both the target and many non-targets and suppress

each other by iso-color suppression; similarly, the neurons

preferring vertical respond to both the target and many non-

targets and suppress each other by iso-orientation suppression (see

the left half of Fig. 9). Consequently, the single feature tuned

neurons cannot distinguish a target by their response levels since

their responses to the target are no higher statistically than their

responses to the non-targets. However, one may wonder whether

the conjunctive neurons preferring the unique target conjunction

could distinguish the target by a relatively higher response. After

all, the conjunctive neurons could respond as vigorously as the

single feature tuned neurons to double feature singletons, and the

conjunctive cell preferring and responding to the target may

largely escape the suppression from neurons preferring and

responding to the non-target conjunctions.

This question can be answered by dissecting the intra-cortical

interactions associated with the conjunctive neurons only, see the

right half of Fig. 9. We again use the example of the conjunctive

search for red-vertical, and take for simplicity the (most difficult)

situation when half of the non-targets are green-vertical and the

other half are red-horizontal. Each conjunctive neuron preferring

and responding to a non-target item (e.g., green-vertical) is subject

to strong iso-double-feature suppression W00 from other conjunc-

tive neurons preferring the same color and the same orientation

and responding to half of the non-targets in its vicinity. It should

largely escape iso-feature suppression, or experience a much

weaker suppression W11, from the conjunctive neurons preferring

and responding to the other half of the non-targets (e.g., red-

horizontal) in the vicinity, since they prefer different color and

different orientation. Meanwhile, a neuron preferring red-vertical

and responding to the target is subject to two sources of iso-single-

feature suppression: iso-color suppression W01 from red-horizontal

preferring neurons responding to half of the non-targets in the

vicinity, and iso-orientation suppression W10 from green-vertical

preferring neurons responding to the other half of the non-targets
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in the vicinity. Hence, the response to the target is subject to

suppression W01 or W10 from neurons responding to all

neighboring items, whereas the response to a non-target is subject

to suppression W00 from neurons responding to only (about) half

of the neighbors. Therefore, the response to the target is not

distinguished unless W01zW10 is sufficiently weaker than W00 (or

W00zW11 when including suppression from the conjunctive

neurons preferring different features in both dimensions). For

example, if two conjunctive cells do not substantially suppress each

other unless they prefer the same feature in both feature

dimensions, i.e., W00&W10&0, W00&W01&0, then the response

to the unique target conjunction can be relatively free of

suppression to make the target salient. This situation has been

demonstrated in a V1 model, see Fig. 5 of Li [6].

It should be noted that the arguments above have for simplicity

omitted the interactions between the single feature tuned cells and

the double feature tuned cells. It is also possible that the

conjunctive cell responding to the target is suppressed by the

single feature tuned cells responding to the neighboring non-

targets, since each non-target shares one feature in common with

the target. The same conclusion in the last paragraph could still be

reached if the iso-single-feature suppression (W10 and W01)

between two conjunctive cells is replaced by the iso-feature

suppression between a conjunctive neuron and a single feature

tuned neuron preferring the same feature in their shared feature

dimension. As far as a conjunctive neuron is concerned, the pre-

synaptic source for the iso-single-feature suppression may be either

the double or single feature tuned neurons, or may include both.

Similarly, iso-feature suppression on single feature tuned cells

could arise from both the single feature tuned and conjunctively

tuned cells.

Since color-orientation conjunction search is known to be

difficult [2], it suggests that iso-feature contextual suppression on

a CO cell (responding to its preferred input) is substantial even

when the contextual inputs is different from the preferred input in

one, but not both, of the two feature dimensions. This conclusion,

also reached previously [10,11], can be physiologically tested.

Meanwhile, McLeod, Driver, and Crisp [53] showed that the

Figure 9. A schematic for neurons and their interactions in a conjunction search for a red-vertical target. Bars and neurons are similarly
visualized as in Fig. 8. For clarity, interactions between single feature tuned neurons are shown separately (on the left) from those between
conjunctive neurons. To avoid clutter, only interactions associated with neurons responding to the target bar and two of the non-target bars are
shown, the baseline suppression on the single feature tuned cells and suppression between single feature tuned and conjunctive neurons are not
shown. Each single feature tuned neuron, regardless of its preferred feature and regardless of whether it is responding to the target, experiences iso-
feature suppression from neurons responding to about half of the neighboring bars. Hence, single feature tuned neurons cannot distinguish the
target by their response levels. The conjunctive neuron (‘RV’) responding to the target experiences iso-single-feature suppression (W01 or W10) from
other conjunctive neurons responding to all neighboring bars, whereas each conjunctive neuron responding to a non-target experiences iso-double-
feature suppression (W00) from conjunctive neurons responding to only half of the neighboring bars. The target cannot be distinguished by a higher
response (from the ‘RV’ neuron) if W01zW10 *> W00zW11, or if this neuron’s response is weaker than the responses from the single feature tuned
neurons.
doi:10.1371/journal.pone.0036223.g009
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conjunction search for a moving ‘‘X’’ among static ‘‘X’’s and

moving ‘‘O’’s are relatively easy. If one treats the difference

between an ‘‘X’’ and an ‘‘O’’ as a difference in orientation, this

suggests that the a MO conjunction search is not too difficult, and

if so, one could infer that MO neurons are not sufficiently

suppressed by contextual inputs unless the contextual inputs and

the preferred inputs share the same feature in both the O and M

dimensions. However, a more authentic MO conjunction search is

required for more confident inferences.

It is now clear that a conjunctive search should definitely be

difficult if there is no V1 neurons preferring this particular

conjunction. For example, there is no V1 neuron which

simultaneously prefers two different orientations (or two colors)

without also preferring the average orientation (or color) of the two

preferred ones. Indeed, it has long been known that a unique

conjunction of two different features within a single feature

dimension, e.g., a conjunction of two orientations, is very difficult

to find [54]. Similarly, redundancy gains involving two features in

the same dimension should be absent, consistent with behavioral

data [11].
Redundancy gains for saliency versus feature integration

for object recognition. It takes longer to identify both features,

color and orientation, of an object than it is to identify just one

feature [55]. This is in contrast to the shorter reaction times to find

a feature singleton unique in two, rather than one, feature

dimensions in visual search. These two situations involve two

different tasks, one is object recognition or identification and the

other is feature detection or localization. These two tasks are often

called the ‘‘what’’ and ‘‘where’’ tasks, respectively, and are

believed to involve separate brain regions [56]. By the psycholog-

ical Feature Integration Theory [2], additional processing is

needed to bind two features of a single object to identify the object

after the location of the object is selected by spatial attention.

Meanwhile, the feature singleton detection in our task mainly

involves bottom-up saliency to select the most salient location

without identifying the features or objects. Indeed, observers for

the task typically did not pay attention to which features

distinguish the target when they pressed the button to report its

location [10]. A separation between the ‘‘where’’ and ‘‘what’’ task

is one of the foundations of the theoretical framework that V1

mechanisms serve the functional role of visual segmentation

without classification [40], which means to segment an image

region (by highlighting its boundaries with higher V1 responses)

without recognizing the region. This theoretical framework has in

turn inspired the V1 saliency hypothesis, which uses V1 activities

to represent saliencies before decoding the visual input feature

values from the very same activities [6]. Accordingly, the V1

neural activities are universal currencies for saliency regardless of

their feature preferences [57].

Concluding remarks
The V1 saliency hypothesis enables us to probe the properties of

V1 neurons and intra-cortical interactions from behavioral data on

visual search tasks, rather than by physiological experiments.

Inferring coarse scale brain substrates from behavior is quite

common in psychological studies. For example, damage to

hippocampus could be inferred if somebody has difficulty forming

new memories, applying the knowledge that hippocampus is

a substrate for memory consolidation [58]. However, inferring

neuronal level details from behavior is much less common. Many

of the previous works linking physiology and behavior are to

explain behavior from physiology. For example, sensory discrim-

ination thresholds can be derived from feature tuning of the

neurons and the densities of neurons involved [59–62]. Works to

infer physiology from behavior are mainly those to infer the

underlying neural channels of signal representation via sensory

adaptation [63]. Behind these works are theories of optimal

sensory decoding or assumptions linking neural sensitivities to

behavioral sensitivities. The current work adds the V1 saliency

hypothesis to the theoretical bases that can be used to link

physiology to behavior, thereby extending the realms of neural

mechanisms that can be probed from behavior.
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