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List of Publications

The following paper is in revision:

[72] Victoria Harris, Martin Edwards and Sofia C. Olhede Multidecadal Atlantic

Climate Variability and its Impact on Marine Pelagic Communities. TBA,

2012.

Which has the provisional abstract:

A large scale analysis of sea surface temperature and climate variability over

the North Atlantic and its interactions with plankton over the North East At-

lantic was carried out to better understand what drives both temperature and

species abundance. The spatiotemporal pattern of sea surface temperature

was found to correspond to known climate indices, namely the Atlantic Mul-

tidecadal Oscillation (AMO), the East Atlantic Pattern (EAP) and the North

Atlantic Oscillation (NAO). The spatial influence of these indices is hetero-

geneous. Although the AMO is present across all regions, it is most strongly

represented in the sea surface temperature signal in the subpolar gyre region.

The NAO instead is strongly weighted in the North Sea and the pattern of its

influence is oscillatory in space with a period of approximately 6000 kilome-

tres. It can further be shown that natural oscillations might obscure the influ-

ence of climate change effects, making it diffcult to determine how much of

the variation is attributable to anthropogenic influences. In order to separate

the influences of different climate signals the sea surface temperature signals

were decomposed in to spatial and temporal components using principal com-

ponents analysis (PCA). A similar analysis is carried out on various indicator

species of plankton: Calanus finmarchicus, phytoplankton colour index and
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total copepod abundance, as well as phytoplankton and zooplankton commu-

nities. By comparing the two outputs it is apparent that the dominant driver is

the average warming trend, which has a negative influence on C. finmarchicus

and total Copepods, but has a positive one on phytoplankton colour. However

natural oscillations also influence the abundance of plankton, in particular the

AMO is a driver of diatom abundance. Fourier principal component analysis,

an approach which is novel in terms of the ecological data, is used to analyse

the behavior of various communities averaged over space. The zooplankton

community is found to be primarily influenced by climate warming trends.

The analysis provides compelling evidence for the hypothesis that cold water

species are gradually being replaced by more temperate species in the North

Atlantic. This may have detrimental effects for the entire marine ecosystem,

by impacting on organisms such as fish larva for example. The second group,

a phytoplankton subset consisting primarily of diatom species, is primarily

influenced by the AMO rather than the average temperature trend. This result

highlights the importance of natural oscillations to certain functional groups,

in particular those subgroups which are less directly metabolically affected

by changes in temperature.
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Abstract

In this study the behaviour of multivariate plankton communities and their rela-

tionships with climate is explored. Existing statistical methodology is adapted to

analyse both the plankton communities and sea surface temperature. In the first

part of this study a large scale exploratory analysis is applied using principal com-

ponent analysis. Dominant temporal trends and spatial patterns for a number of

indicator species and the joint responses of functional groups of species are found.

The community analysis focuses on on the zooplankton and the phytoplankton, the

latter respresented by diatoms. This research is novel because the full multivariate

structure of the plankton data has not been studied across communities before. The

common trends are regressed against different climate signals to determine domi-

nant drivers and cluster analysis identifies regions based on species.

In the second part ‘regime shifts’ described by changes in ecoregions are ex-

plored. Whilst changes in spatial patterns over time have been studied over indicator

species, this study describes the shift across communities, providing an overview

of how the ‘regime shift’ is differently expressed for the two species groups. To ex-

plore changes in biogeographical patterns, the data is then divided in to a pre-1985

and post-1985 regimes. The results show a northwards movement of zooplank-

ton species and increased spatial structure across the diatom group, following the

bathymetry. In the final part the model is used to predict vulnerability of differ-

ent indicator species and the community as a whole to changes in climate drivers

across space, which is used to find climate change ‘hotspots’. Vulnerability is de-

fined as a significant change in abundance in response to a relatively small change

in the climate signal. Vulnerability is also explored at different scales. These results
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highlight the spatial inhomogeneity of species responses and are of great interest to

environmental policy makers.
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Notation

Notation Use
n The number of measurements eg. time points or spatial points.
p The number of variables eg. species.
k The number of variables with a non-zero loading.
π The proportion of variables that are true non-zeros, a sparsity parameter, kp
Y The data matrix (eg. of species abundances), an n× p matrix.
lj jth position vector, where l = (longitudej , latitudej)T

t Time point.
Yj The jth column of Y, or the jth variable (species).
Ỹj Fourier transform of Yj .
Ŷj Observed abundances.
A Matrix of principal component loadings.
Z Matrix of principal components.
ε Matrix of random noise.
Σ The data covariance matrix, given by YTY.
S A diagonal matrix of the variances associated with each principal component.
ai The ith column of A, ie. the ith loading vector.
zi The ith principal component.

Lp or ||.||p The p-norm of a vector, given by ||u||p = (
∑n

i=1 |ui|p)
1/p

λ A sparsity parameter using in conjunction with a norm based penalisation.
Card(.) The cardinality (number of non-zeros) in a vector.
ρ A sparsity parameter used in conjunction with a cardinality penalisation.
δ(.) The delta function.
µ A mean signal.
σ2
k Variance of the noise in our observed data.
σ2
γ Variance of the true noiseless signal.

K(.) A kernel function, symmetric about zero.
h The bandwidth, a smoothing parameter.
H A multidimensional bandwidth matrix.

Kh(.) A kernel function weighted by a smoothing parameter, Kh(u) = h−1K(u/h)

K The number of partitions in a dataset.

Table 1: Notation used throughout this report.
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Chapter 1

Introduction

1.1 Overview of the Aims of this Study and its Importance to Marine Ecology

Over recent decades the apparent increase in global temperatures and its impact on

the environment has become a growing concern for many different sectors and pol-

icy makers [136, 19]. Changes in the climate have begun to have an impact on many

different habitats and the ecosystems that rely on them [127, 166]. Interpreting eco-

logical data is an important part of understanding the interplay between changes

in physical variables and the impact this has on the joint behaviour of different

species. The oceans in particular are known to play an important role in the global

climate [130, 10]. In order to better understand variability in the marine ecosystem

related to climate this study will explore the relationship between climate drivers

and marine pelagic communities. The first chapter outlines the background of the

ecological problem and the dataset in question in order to provide a framework for

understanding the multidisciplinary nature of this research. Since this work cov-

ers both ecology and statistical methods it is necessary to provide this overview

before describing the analysis. In the second chapter the statistical techniques are

described in more detail and the interpretation of the output in terms of the biolog-

ical problem is described. Chapters three through to seven contain original work
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and the results of the analysis.

In marine ecology organisms living on the sea floor are said to be benthic,

whilst those occupying regions of the ocean not including the sea floor are pelagic

[163, 103]. These two systems are often interrelated [88], as changes in pelagic

communities can propagate down to other organisms. This research focuses on the

plankton, which plays an important role in the marine ecosystem [68, 15]. Plank-

ton are small, ranging from microscopic to a few millimetres in size, organisms

that form a community near the sea surface [68] and are subject to seasonal cycles

[79]. Plankton forms a rich and diverse ecosystem, comprising of a varied mixture

of single celled and multicellular organisms[68]. Species of plankton are gener-

ally grouped in to phytoplankton and zooplankton. The phytoplankton consist of

a multitude of plant-like organisms, from diatoms, which have a rigid cell wall, to

the dinoflagellates, which are characterised by their tendril-like flagella [68]. In the

open sea there is relatively little free-floating multicellular plant life, so the phy-

toplankton exist as the primary producers in the marine environment [68] and as

such are very important. Phytoplankton are also responsible for large amounts of

the earth’s oxygen production during photosynthesis [68]. As a result they perform

a crucial role in ecology. Zooplankton comprise of anything from single celled or-

ganisms, small crustaceans, small jellyfish and fish and shellfish larvae [68]. Many

marine organisms, such as fish and shellfish, will spend part of their lifecycle in

the plankton [68]. Organisms that only spend part of their lifecycle as plankton

are known as transient plankton during this part of their lifecycle [68] and during

this phase are dependent on other plankton as a food source. For those species of

fish that spend part of their lifecycle amongst plankton changes in the behaviour of

the species they predate upon whilst in their planktonic stage will have a knock on

effect for the abundance and distribution of adult fish [21, 27, 28]. This means that

there is a direct interaction between the abundance of plankton and the abundance

of larger marine organisms. The spatial distribution of the plankton can also be tied
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to the spatial distribution of other organisms [29] and so understanding the distri-

bution of plankton is important to understanding the marine ecosystem as a whole.

Furthermore the plankton are known to be sensitive to changes in climate [3] and

can therefore amplify changes observed in physical variables [96].

Various different climate indices have an influence on the abundance of plank-

ton [73, 65]. Some of these effects are believed to be anthropogenic, i.e. driven by

human behaviours, and others thought to be natural oscillations in pressure or cur-

rents [43, 150]. Understanding the role of both natural and anthropogenic effects is

important to marine and environmental policy makers, as it will allow them to better

plan for the future [53]. Natural climate oscillations are typically measured as pres-

sure differences between spatial locations and switch between high and low phases

at regular intervals [121, 139]. Previous studies [43] have shown that the detrended

sea surface temperature can be decomposed in to various climate signals, such as

the Atlantic Multidecadal Oscillation (AMO), the East Atlantic Pattern (EAP) and

the North Atlantic Oscillation (NAO), the influence of which can vary in space. The

spatial pattern of these climate indices influence on sea surface temperature might

also relate to the spatial distribution of plankton [98], with the region a particular

species is most well adapted to being referred to as its ecological niche [23]. Un-

derstanding spatial heterogeneity is an important part of ecology across all types

of system and spatial scales [63]. For example not all species of plankton respond

to climate in the same way [65, 73] across space. In addition an understanding of

the sensitivity of the plankton to climate effects and the ways in which this varies

might help influence the decisions of policy makers looking to safeguard the marine

ecosystem against potentially detrimental effects from climate change [53].
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1.2 The Continuous Plankton Recorder Survey

This study will focus on data drawn from the Continuous Plankton Recorder (CPR)

survey. The CPR survey is an ecological dataset of particular interest because of the

abundance of data and long term records available [14, 11, 160]. The CPR survey

contains monthly abundance data for 450 different species of plankton [160], of

which approximately 110 are studied in this report, across the North Atlantic [11].

The CPR survey is unique in the temporal range of data available [138], which in

some cases dates from the 1930’s, as for many datasets only a short period of data

is available or there are missing data entries due to financial constraints, the spa-

tial coverage and the number of taxa investigated [138]. This is highly problematic

because long term records are absolutely essential for understanding the effects of

climate change [16, 54, 4]. Such extensive ecological data is useful for understand-

ing species structure in both time and space but the multivariate nature of the data

presents a number of challenges to modelling. Previous studies of the CPR data

have studied the influence of climate variables [25, 31], as well as its structure in

time and space, but often for only one or a handful of species. Most studies tend to

concentrate on particular indicator species, which are said to represent something

of the structure of the entire dataset, but few have looked at the joint behaviour of

different species groups [14, 25]. Those that do look at joint behaviour, for exam-

ple Beaugrand, Ibanez and Reid [24] who study 11 species of Copepod, concentrate

on a small subset of species [25], as the computations required to analyse the data

across multiple species can be very time consuming. The limitations of focusing on

only a few indicator species is that it is impossible to identify the joint behaviour

of functional groups or differential species responses to climate for a large number

of species. This study therefore provides entirely new insights in to the complex

structure of the CPR dataset. The community analysis presented in this report is

novel in that similar studies have not been carried out before. We propose statistical
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techniques that enable one to analyse the data across space, time and species simul-

taneously, which consequently provides new insights in to the behaviour of these

marine pelagic communities.

The CPR survey is a useful tool for a wide variety of reasons. Recently the

impact of climate change on phytoplankton has been widely reported in the me-

dia, with some studies showing a decline in the global biomass [41], although other

studies show that phytoplankton biomass is increasing [54, 112]. The CPR survey

records both total biomass of phytoplankton, represented by a colour index, and

counts of individuals [54, 13, 99]. Abundances are useful for studying interactions

between species [99] but do not account for the difference in size of individuals of

different species [99]. Biomass is a measure of the total volume, meaning larger

species contribute more per individual, which is useful for investigating overall

effects [99]. Changes in the phenology (seasonal blooming patterns) can be detri-

mental to the development of fish larvae [27]. Whilst the blooming periods of cer-

tain plankton are dependent on light, the spawning patterns of most fish depend

on temperature [96]. Consequently the blooms of young fish no longer correspond

to the times when there will be an abundance of food in the plankton, since cli-

mate warming is known to bring these seasonal cycles forward, and this will have

consequences for adult fish stocks.

The Continuous Plankton Recorder device was originally envisaged by Sir Al-

ister Hardy as a tool to aid the fishing industry [69, 70, 71]. At the time fishers

used discs of gauze to collect plankton samples, which were known to be good in-

dicators of where fish would be found [68]. Alister Hardy came up with the unique

idea for a device which would collect continuous records of plankton abundances.

The CPR device was originally designed to collect samples on a continuous band

of silk, which would then be stored with a covering sheet in a well of formaldehyde

[69, 70]. Samples on each section of the band of silk will correspond to a specific

area of the sea, which is determined by the speed of the ship. Save a few improve-
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ments to the efficiency of the device the design remains largely unchanged today

[138]. Samples are still routinely returned to the laboratory in the Sir Alister Hardy

Foundation for Ocean Science (SAHFOS), where they are identified and counted

by skilled analysts. The resulting database is a vast collection of monthly samples

from the North Atlantic [11, 14]. Of course the original purpose of the CPR survey

has now become redundant with the efficiency of the fishing industry increasing to

such an extent that there are now grave concerns about over-fishing [159]. What Al-

ister Hardy could not have foreseen was that the CPR survey would come to have a

new importance when researchers and policy makers began to observe the potential

impact of climate change on the oceanic environment [96].

One of the challenges in modelling the CPR data that has been previously dis-

cussed is the irregularity of the sampling. The CPR survey is collected by so-called

‘ships of opportunity’, which refers to the voluntary towing by merchant vessels

[160, 25]. The fact that shipping routes have occasionally changed in time gives

slightly better spatial coverage than might otherwise be the case [160] but the routes

have not been designed for optimal interpolation. Figure 1.1 shows the shipping

routes across the North Sea and North East Atlantic, which shows the irregularity

of the sampling. The data is also thought to be subject to a certain amount of noise,

due to human error, the time of day the data was collected (plankton are known

to rise nearer the surface during daylight) and other environmental factors such as

wind and currents [160]. One approach to dealing with these confounding factors

is to average over large spatial regions but this sacrifices the spatial resolution that

is necessary for finding regional behaviours. The approach taken in this study is

to use smoothing methods, which can also be used to reduce the effect of noise,

and will be discussed in more detail later. Irregular sampling is often a problem in

ecological datasets [51, 120, 34]. Some surveys use ‘preferential’ sampling, where

regions known to be particularly rich in certain taxa are sampled [113, 39]. Other

studies use ‘non-preferential’ sampling, where the sampling is either done across
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Figure 1.1: Map showing the shipping routes towing the CPR device across the
North Atlantic and the North Sea.
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a regular grid, randomly or is limited by physical constraints on where it is possi-

ble to sample. This means that missing data must often be estimated from these

samples or otherwise accounted for [66, 143], for example by using interpolation

methods [167], regression based methods [95] or Bayesian methods based around

priors on the probability of observing a particular species [143]. In the case of the

CPR dataset the sampling methods are not preferential but rather constrained by

shipping routes.

Analysis is initially carried out on the pre-processed WinCPR dataset and then

we look at raw abundances over a larger spatial region over which the analysis is

repeated. The WinCPR dataset is a gridded database containing abundance of ap-

proximately one hundred species recorded in the CPR survey for the North Sea

since 1958 [137]. This data has been interpolated using inverse distance meth-

ods, which are methods for estimating the abundance of plankton at unsampled

locations by taking weighted sums of nearby locations. The WinCPR data can be

used to verify different models fitted to the data, in order to test the validity of our

methodology. In order to study a larger spatial region than available in the WinCPR,

extending to the entire North East Atlantic the raw abundances are used. This data

must also be interpolated in order to model it on a regular spaced grid.

The WinCPR data has been produced by first transforming the raw abundance

data by taking the logarithm of the data plus a constant and then interpolating the

transformed data in order to estimate values at unsampled locations [160]. The

constant is added in order to avoid taking logarithms of zero, which can not be cal-

culated. Count data is typically modelled using a Poisson distribution. A Poisson

distribution is positively skewed, in that most of the observations will with high

probability lie around the median but there will be a small number of very high ob-

servations leading to large observations at the extremes. This distribution is typical

of plankton abundance data. In this type of data it is expected that the variance will

be dependent on the expected values of the observations. The logarithmic trans-
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form removes some of this dependence and so is often used so that data will satisfy

distributional assumptions, in particular it is expected that the transformed data will

be closer to a Gaussian distribution. The logarithm also deals with the positivity

of the data, as the abundances can only take positive values but the log-abundances

can take both positive and negative values. The abundances might also be thought

of as the product of a deterministic process and a stochastic variability, where a

deterministic process is non-random and a stochastic process is governed by an un-

derlying probability distribution and can be used to model the random variability. A

logarithmic transform turns multiplicative relationships in to additive relationships,

which allows it to be used as a variance stabilising transformation. When the raw

data is analysed later the same transformation will be used in order for the results

to be comparable to those found using the WinCPR dataset.

For plankton count data the abundance of species p at time t and location l can

be said to be distributed Po(µ(p)(t, l)), where µ(p)(l, t) is the mean intensity at time t

and location l. The expected value and variance are equal in a Poisson distribution,

so the variance is also µ(p)(l, t). Various statistical methods rely on the assumption

that data are approximately Gaussian and have constant variance, for example lin-

ear regression which shall be used later relies on the assumption that the dependent

variable is normally distributed [168], or at the least that any error terms will be nor-

mally distributed. This means that the functional dependence between the expected

value and the variance might be undesirable for the statistical analysis. Once the

data has been transformed it is then interpolated using geostatistical methods [51] to

produce the WinCPR dataset. The data is gridded on a 1 degree by 0.5 degree grid

and recorded for each year and month. In the later analysis where the dataset over

the whole North East Atlantic is analysed a slightly different interpolation method

will be used. Since the monthly data is strongly dominated by seasonality yearly

averages are often taken in studies wishing to focus upon long term variability. An

alternative approach might be to model and analyse each month separately.
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The raw CPR data is recorded by longitude, latitude, year and month as counts

of each species. Counts are estimated from cross sections of samples [160]. Also

recorded is the phytoplankton colour index [13], a measure of the Chlorophyll in

the sample, which serves as an estimate of phytoplankton biomass [54]. This study

shall investigate over a hundred species across the whole of the North East Atlantic

in order to determine how different ecoregions respond to the effects of climate

change. In order to do this the data must first be interpolated and then gridded. The

raw data is irregularly sampled but the results in space from the analysis are more

interpretable when presented across a regular grid in space. Various interpolation

methods exist for the purposes of estimating missing values. Before any smoothing

is carried out, however, a stabilising transform is performed. As with the WinCPR

data a logarithm is used, after first shifting the data by one to avoid any zero en-

tries, as was done with the WinCPR data. The data is interpolated in space, treating

each time point separately. For regions where there is insufficient spatial data by

necessity some smoothing in time is also carried out. Some smoothing is also car-

ried out during the interpolation in order to reduce the noise. There is a trade-off in

the smoothing between smoothing sufficiently in order to remove the noise but not

over-smoothing in order to remove small scale effects, and this will be discussed

further later.

1.3 Modelling Spatio-Temporal Multivariate Data Sets

The first sets of results using the raw data are used to analyse responses of both indi-

cator species and species communities to climate. However the multi-dimensional

nature of the data provides many statistical challenges, even once it has been trans-

formed to a regular spatial grid. Long term trends across multiple species and lo-

cations are difficult to isolate by eye and so variable reduction methods are need

in order to make it simpler to identify the ecological patterns [25]. In theory one
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could model all species across all time in space but any resulting model would be

complex with at least nominally a large number of parameters. The method used to

find the dominant trends in both sea surface temperature and plankton abundance is

principal component analysis (PCA).

PCA is a method for finding maximal directions of variation through a dataset

by taking linear combinations of variables [85] and is often used to analyse eco-

logical data [95]. Although it is often thought of as being ‘model-free’, it could be

seen as modelling each variable as a linear response to common signals. Spatial

PCA, which takes weights as functions of space and signals as functions of time,

has been used in other studies to separate individual indicator species of plankton

in to their spatial and temporal representations [25, 31, 14]. The advantage of this

is that it reduces the number of dimensions and produces summaries of the main

modes of variability [86], which are easier to compare with climate signals [31].

Similar analysis can be carried out on the sea surface temperature data. The study

by Cannaby et al [43], for example, breaks the sea surface temperature down in to

its dominant spatial and temporal components using what they term as empirical

orthogonal function (EOF) analysis, which is functionally the same as spatial prin-

cipal component analysis (PCA)[86]. In this study they find the dominant mode of

variability to be given by the AMO, followed by the EAP and the NAO, accounting

in total for 48% of the variation across the first three principal components in the

sea surface temperature over their region of interest. In this thesis a new approach

to analysing the CPR data using existing statistical techniques is proposed for vi-

sualising the behaviour across species as well as space and time. Species principal

component analysis is used to find species groups and their joint behaviour at differ-

ent locations. It is shown that accounting for time lags [149, 102] between species is

important, in particular when comparing these group responses with climate trends.

The resulting joint behaviours can be compared with climate indices using linear

regression analysis, which assumes that each component is proportional to the cli-
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mate variable plus a constant and can be used to find the strength and nature of this

linear relationship [168]. It has been hypothesised that climate warming is driving

changes in species distribution for species of zooplankton, with cold water species

declining and temperate species increasing in abundance [12, 17, 22, 74, 127] and

so this analysis can be used to investigate this hypothesis. Meanwhile other species

groups, such as the Diatoms, are thought to be less directly driven by climate warm-

ing trends as much as they are driven by the changes in mixed layer depth caused

by fluctuations in currents [56].

One potential difficulty is that because principal component analysis assigns a

non-zero weight to every variable this can impede the interpretation of the results

[172], which is especially pertinent in the case of the CPR data where there are

a large number of species. When investigating the functional behaviour of species

assemblages small non-zero weights may be difficult to interpret, since they are typ-

ically assigned to rarer species. Since the data is counted by eye there may be noise

resulting from human error, which can affect the resulting weight vectors. Further-

more it is often difficult to identify those species that contribute most to the joint

behaviour of the ecosystem by eye. Simple thresholding, that is setting all the ob-

servations that fall below a specific value to zero, can be used on the species abun-

dances, to remove those with little variability, but choosing the correct threshold

can be highly non-intuitive [172] because it is difficult to determine which weights

are drawn from the white noise by eye. Furthermore the number of true non-zero

species can vary across space and functional groups, meaning the thresholds are

not necessarily constant. By constructing principal components from those vari-

ables with the greatest variability one can identify functional groups of species that

behave together, which may be linked to biological groupings [47, 68]. One method

for dealing with the case where the number of variables is large in comparison to

the number of observations is sparse principal component analysis [172, 50]. This

method is used for datasets where a number of variables might take small non-zero
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values but not contribute in a meaningful way to the total variation. An example of

this is gene expression data [44], where only a few genes that are expressed are re-

lated to the observed response but other genes will show some levels of expression

due to noise. It is assumed that at any given location only a few species contribute

to each common signal and that the rest is noise. Since species are optimised to

survive in certain climate and environmental conditions [75] it is unlikely that all

groups of species will be present across all locations, hence modelling some of them

as having zero weight is appropriate. Sparsity in statistics is where only a few of

the variables in a dataset are non-zero [152]. Of course in most experimental data

there is some noise and so true zero observations are rarely observed [152]. In most

cases sparsity is assumed to be represented by a few non-zero observations and the

rest as small error terms [152]. Modelling the data as sparse introduces a trade-off

between explained variance and the ease of interpretation [49]. The appropriate-

ness of a sparse model can be assessed by investigating this trade-off in a similar

way to traditional model selection methods. It is generally the case, however, that

if the model of sparsity is appropriate to the data the loss of explained variance will

be relatively small [172, 49], whilst the improvement in understanding the structure

will be significant. Some methods, such as the method proposed by Zou, Hastie and

Tibshirani [172], for incorporating sparsity in to the principal component analysis

also result in the loss of orthogonality of the principal components. Again this is

thought to be a relatively small decrease and so is more than compensated for by the

improvement in interpretation [172]. Sparse principal component analysis methods

incorporate a penalty in to the normal PCA algorithm, which forces small loadings

to be zero.

One remaining question is how to determine how many species should con-

tribute to each common trend. In most formulations of sparse PCA there is typi-

cally a parameter which controls the number of variables that have non-zero weights

[172, 50]. If it is assumed that some of the variables mostly consist of noise then one
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might seek to estimate the number of variables that have true non-zero weights and

those for which the weight is a function of noise only in order to gain a better repre-

sentation of the dataset. In this case the signal is drawn from one distribution whilst

the noise is drawn from another, naturally leading to by placing a mixture model on

the loading vector [154, 82, 83]. A mixture model is used in situations where data

is thought to have been drawn from two or more probability densities and is depen-

dent on a parameter which determines what proportion of the data is drawn from

each distribution [154]. Johnstone and Silverman [82, 83] use a similar approach

for estimating sparsity on data where there are a few true non-zero values and the

rest are decaying values. Expectation maximisation, which is an iterative procedure

for finding the maximum likelihood, or another maximum likelihood method can

then be used to find the proportion of the variables that should belong to the latter

distribution [82, 83]. The value of this parameter is proportional to the group size

for each trend across space. The number of different groups for each location is

determined by thresholding on the culmative explained variance for the principal

components [86]. Together this will give a measure of the diversity of each loca-

tion. Changes in the ecology and the vulnerability of the ecosystem can be assessed

in terms of measures of diversity. In general, diversity is thought to be a measure

of the health of an ecosystem, with more diverse ecosystems being considered to

be more successful [20, 63]. In the case of this model there are two measures of

diversity: the number of functional groups and the proportion of the species belong-

ing to each group, denoted by the sparsity parameter. An ecosystem might also be

considered in terms of its vulnerability, how likely a change in the environment is

to give rise to the collapse of the ecosystem. A system with a large number of func-

tional groups might be considered less vulnerable than one with a single group with

many members [125, 20]. Paine [125] discusses the concept of keystone species,

which are species that when removed from the ecosystem can cause the collapse

of multiple other species, which is likely to be the case if a species interacts with
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many other species (i.e. is part of a large functional group). This is because in the

latter case the collapse of a single species is more likely to have a knock-on effect

on other species in the ecosystem. If it is assumed that the common signals found

by PCA are joint responses to climate, then either the species are interacting with

one another are they are all responding to the same driver. In either case a large

group size indicates that a change in one species will be accompanied by a change

in many other species, either because it is a result of a climate shift or because of

the relationship between different species.

1.4 The Biogeography of the North East Atlantic and ‘Regime

Shifts’ in Ecoregions

In this study the application of this model to exploring non-stationarity in the ecore-

gions of the North East Atlantic is explored. There are a number of ways that the

ecoregions of the North East Atlantic might be defined. Regions can be defined

on the species assemblages [1, 7, 103] or on climate variables and current patterns.

McGinty et al [108] for example find regions likely to have similar plankton dy-

namics by clustering on chlorophyll patterns. The marine ecosystems of the world

(MEOW) [145] instead define provinces and ecoregions on coastal and shelf areas

using biogeographic classifications. Provinces are classified as large areas defined

on more general species groupings, showing similar behaviour over evolutionary

time. They might also be described by hydrographic features, such as currents and

upwellings, and geochemical influences, which include the broadest scale nutrient

dynamics such as salinity. All the coastal regions of the world are classified in to 62

provinces under this system [145]. Areas around the British Isles can be divided in

to the cold-temperate boreal province, containing the North Sea; the warm temper-

ate lusitanian province, including the Bay of Biscay, and the overlap between those

two provinces, including the seas around Ireland [161]. North of Iceland one enters
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in to the Arctic Province. The areas around the British Isles are very much a mixing

zone, which makes determining the ecoregions a complex task [161]. Ecoregions

in the MEOW [145] are the smallest units and are defined as having a relatively

homogeneous species composition determined by a small number of ecosystems.

Whilst species composition on large scales is determined by climate variables, the

main factors at an ecoregion scale are isolation, upwelling, nutrient inputs, fresh-

water influx, temperature regimes, ice regimes, exposure, sediments, currents and

bathymetric or coastal complexity [145, 103].

There are various ways of defining the ecoregions of the North Atlantic from

the CPR data. Rangel et al [129] comment on not only the statistical challenges in

modelling spatial structure but also its importance in understanding underlying bio-

logical processes. The ecoregions can be regressed against spatial variables, which

drive the biological behaviour. In the North East Atlantic, for example, sea surface

temperature and salinity are said to be major drivers in which species are found in

different areas [9], with the North Sea behaving very differently to the rest of the

North East Atlantic [108]. Not all regions are equally sensitive to climate change

and in some regions only a small change in temperature is required to cause a sig-

nificant shift in the ecosystem [22, 75], which can also be considered in terms of

ecological niches [75]. Beaugrand et al [22] explore how to address the problem of

spatial variability by focusing on chlorophyll concentration and Calanus Copepods,

as well as a number of physical variables such as sea surface temperature.

One of the areas of exploration in this thesis is how to understand species in-

teractions in particular in relation to the ‘regime shift’ [30]. Part of this has been

previously described in both the CPR data and in other ecological datasets. Some

previous work has been done in attempting to quantify the ‘regime shift’ ∗ but the

community analysis in this study adds new insights. It is believed that rising av-

∗A ‘regime shift’ in this context is a stepwise change in the behaviour of species assemblages and
can be considered either spatially (i.e. the northwards movement of species [12, 30]) or temporally
as a change in the average abundance [17].
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erage temperatures have caused taxa to be found increasingly far north over the

past decades [22, 75, 42]. Long term regime shifts around the 1980s are well docu-

mented in the CPR dataset [30, 25, 31, 33, 92] but these regime shifts are difficult to

quantify [146] because it is unclear whether they take the form of step-wise changes

or smooth trends over time. It is also possible that different species will respond

in different ways to a change in regime and that this shift will not be constant over

space [108]. The complexity of the data makes any potential ‘regime shift’ diffi-

cult to identify. Beaugrand [30] approaches the problem of quantifying the regime

shift by taking a sliding window across a number of species and comparing the Eu-

clidean distance between the data in the first half of the window with the second to

determine whether there has been a shift or at least identify where the distance is

greatest. An approach to quantifying ‘regime shifts’ is to use change point analy-

sis. This assumes that the data are stochastic but that the distribution will different

before and after a fixed point in time, in particular it may have a different mean or

variance. If the ‘regime shift’ is instead viewed to be a trend, i.e. a more gradual

change over time, a deterministic model might be more appropriate. Change point

analysis in statistics has been explored by various authors and there are many meth-

ods for identifying changes in mean or variance. With growing concern over the

effects of climate change ways of modelling change points have been explored in

many areas of ecology. Instead of using traditional change point analysis a more ap-

plied mathematical approach might consider looking at instability and bifurcations

[107], which are sudden transitions in the behaviour of a system resulting from only

a small change in the values of the parameters, in the population model. Ecological

models may be non-linear, where a non-linear model is used to account for small

changes in the independent variables potentially having a large impact on the out-

come. For example once recent study of extinction in deteriorating environments

[52] explores using bifurcation points as a predictor of impending extinction of a

particular species. The limitation of all of these approaches is they tend to lend
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themselves to investigating the time course of one species at a time.

Regime shifts can be investigated over different temporal scales. Typically the

CPR data is dominated by monthly seasonal cycles, which can make long term

trends difficult to identify. Most studies of the CPR dataset deal with this issue by

taking yearly averages. There is, however, interest in both looking at yearly data

and looking at monthly data. The yearly data can inform about long term changes

in the average biomass or in the general trend compared to climate variables. The

monthly data contains information about how the seasonal cycles have changed over

time. It is believed that seasonal cycles in the plankton have changed as a response

to climate, leading to misalignment between species [53, 96, 31], i.e. species that

previously had concurrent blooms now have their blooms at different times of the

year.

The methodology used in this thesis allows ecoregions of the North Atlantic

to be found either based upon species or upon temporal trends. The ecoregions

of the North Atlantic based on species is governed by physical features such as

climate, salinity and bathymetry. This is because different species are adapted to

survive better in different conditions [75], with some responding to temperatures

[12, 5] and others responding to currents [56] or being reliant on certain nutrients.

Marked changes in the biogeographical regions of the North Atlantic can be seen

before and after 1985, adding weight to the conclusion in this report that species

distribution in the North Atlantic is changing [108, 132, 16, 18]. K-means clustering

is used to analyse spatial structure by clustering on both the weight vector, to find

spatial regions defined on the species, and the temporal trend, to find spatial regions

defined by common functional behaviour. K-means clustering is a method which

finds groupings of variables [168]. For a pre-defined number, K, of clusters the

algorithm first randomly selects K variables as centres [81]. The rest of the variables

are then assigned to a cluster by finding the minimal Euclidean distance from the

centres. The centres are then recalculated by taking the average of each cluster
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and the process is repeated until convergence is reached. Some care must be taken

as the resulting clustering can be dependent on the initial choice of centres and so

multiple runs of the algorithm are necessary [81]. In the case of clustering on the

results of the principal component analysis for the CPR data, clusters on the weight

vectors will determine spatial structure in the species groupings, whilst clusters

on the temporal signals will describe spatial structure in the joint behaviour of the

species, which is believed to be related to climate trends. If a species has a zero

weight for all principal components then it is regarded as not being important at

that location, whilst if only one species has a large weight then a location is thought

to be dominated by a single taxa and therefore will be vulnerable to changes that

affect that taxa. For the purposes of studying ecosystem shifts clustering on the

loading vectors is likely to be most informative. PCA has fixed weight vectors over

the entire time course but changes in the ecoregions are found by carrying out the

analysis before and after 1985, which is thought to be the approximate time the

‘regime shift’ may have occurred [30]. The ecoregions are found on both halves

of the data and then compared to show that there is non-stationarity in the spatial

distribution of species, which can be explained by ongoing ecosystem shifts.

1.5 Modelling Sensitivity to Climate Across Species and Space

For policy makers the issue of vulnerability is of great importance [53]. In this

study vulnerability to climate is viewed in terms of a large change in the abundance

proportional to the previous abundance of a species or functional group of species

in response to a comparatively small change in a given climate index. This is of

interest to environmental policy makers because it can determine the tendency of

a species or group of species to either disappear from a region or to increase dra-

matically under different climate scenarios. The issue of vulnerability to climate

variation can be explored by investigating sensitivity of different regions or differ-
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ent species to climate effects. The vulnerability of different species may well vary

across space. The spatial pattern of the vulnerability of a single species can also

be compared with the vulnerability of functional groups across space. Both the

vulnerability of single species and the vulnerability of the joint behaviour across

space are informative. The first might be of interest to those looking at a partic-

ular part of the ecosystem, for example species upon which fish predate, and the

latter is of interest to those looking at wider scale changes in the habitat. As well

as looking at diversity a way of determining vulnerability is to model changes in

abundance over hypothetical changes in the climate drivers. The vulnerability of

a species or region to climate change is then viewed as its sensitivity to particular

climate variables, i.e. how drastically changes in the physical variable influence a

species or the joint behaviour of different species groups at a particular location.

The results of such analysis is therefore useful not only to ecologists but also to

environmental policy makers [53] because it allows one to investigate changes in

community structure across the region, which will in turn have consequences for

the entire ecosystem. A particular region can be said to be sensitive to a particular

climate variable if the model shows the magnitude of the weight relating to the ap-

propriate covariate is large at that location. In terms of policy making this will allow

sensitivity ‘hotspots’ to be identified, since vulnerability of the plankton to climate

change may well induce instability in the rest of the marine ecosystem which are

dependent on the plankton. Drastic changes in the local behaviour of the plankton

can lead to instability in the ecosystem as a whole, which can be damaging to many

different organisms [21, 27]. A particular species can be said to be vulnerable to a

particular climate index at a specific location if the correlation between a compo-

nent and the climate is strong and the weight on that species is large at that location,

allowing the identification of which species will benefit under changes in climate

and for which it will have a detrimental effect.

Sensitivity to climate effects might also be investigated at different scales by
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taking a ‘macro-scale downscaling’ approach. In this study ‘macro-scale down-

scaling’ refers to finding dominant drivers of average responses over large regions

and then finding drivers of the residuals once the average has been removed at

smaller scales. The first part finds large scale influences, whilst the second part

investigates more localised effects. It is expected that long term climate trends

will dominate over larger scales because they impact the environment over a large

region, whilst at smaller scales more regional effects will be important. The abun-

dances of all species can be averaged over a large spatial region and the analysis

performed across the whole region. The larger region can then be divided in to

smaller regions and the average abundances across the large region removed before

the analysis is carried out again on the smaller spatial region. This process can be

repeated multiple times, dependent on the spatial resolution of the data. On large

scales it is expected that the trends will be most strongly influenced by climate

trends, whilst at a smaller scale more local phenomena, such as currents, nutrients

or short term oscillations, will be important. Bringing together all the different parts

of this research allows one to gain a better understanding of the complex systems

and changes that impact the marine environment.

1.6 Climate Indices and their Influence on Marine Ecology

When studying the effects of climate on the marine system what is difficult to de-

termine is how much of the changes observed can be attributed to natural climate

variability, and how much is due to anthropogenic influences. Since the increase

in carbon dioxide is a result of increased industrialisation, emissions and the use

of aerosols [38], the average warming trend is believed to be anthropogenic [142].

The issue of climate change can also be controversial [136]. Therefore the question

of whether apparent changes in climate are due to anthropogenic effects or natural

fluctuations is of vital importance. Natural phenomena that might influence climate
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include a number of oscillations in pressure and currents. What are believed to be

natural oscillations can often be seen in the temperature signal, where a temporary

increase might be seen during a high period and a decrease during the low period.

Since these different indices represent different fluctuations in the physical condi-

tions, eg. changes in currents, pressure centres or temperature, then it is of interest

to compare them separately with the plankton trends. Each of the climate indices

discussed here varies across time and, with the exception of Northern Hemisphere

Temperature, since that is averaged over space, also have spatial patterns in their

influence across space.

1.6.1 The Atlantic Multidecadal Oscillation

The Atlantic Multidecadal Oscillation (AMO) has a period of approximately 60-

80 years [90, 141, 62] and was first identified in linearly detrended sea surface

temperature data [141], which means it is measured in degrees Celsius. This long

term oscillation, which is currently in its warm phase, has also been identified in ice

core records and tree ring data [90, 46]. The presence of a 60-100 year oscillation,

likened to the AMO, in these records suggest it is probably a natural oscillation and

thus not related to climate warming, although evidence for the presence of the AMO

during the pre-industrial era is inconclusive [90] and the period is variable over time

[46]. What causes the AMO is currently unknown [90]. It is not thought to be

driven by solar cycles and there is some speculation that it is the result of currents,

with a decrease in the overturning circulation in the North Atlantic being associated

with a cool phase in the AMO [141]. The AMO has the strongest influence on sea

surface temperature in the subpolar gyre †, a region in the central North Atlantic

where there is a large system of rotating currents [141]. Convection forces drive

the movement of the warmer waters outside the gyre, influencing the motion of

†The subpolar gyre is a meeting of currents in the central North Atlantic Ocean [118]. Sea
surface height is variable in this region and local climate is governed by the overturning circulation.
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the currents [118]. Further speculation suggests that the subpolar gyre might move

across longitude during the different phases of the AMO [118]. The length of the

time series, however, makes this difficult to verify. The AMO is associated with

changes in rainfall and temperature over the northern hemisphere and can been seen

in the Northern hemisphere temperature (NHT) time series [55]. The AMO is also

thought to influence the occurrence of droughts in North America and the European

summer climate. It is believed it may also have an impact on the occurrence of

hurricanes in the Atlantic [89] and on rainfall and river flows in the continental

United States [55]. Since the AMO influences climate events, it is important to

remove its influence when studying the effects of the warming trend, as it might

either obscure or exaggerate the observed trends [141]. Likewise in order to retrieve

the AMO from sea surface temperature data the global warming trend much first be

removed, which is typically done by fitting a linear model and removing the trend

[90]. Cannaby et al [43] identify the AMO to be the most dominant trend in the

detrended sea surface temperature over a region extending from approximately 50◦

W to 1◦ E and 20 to 70◦ N.

1.6.2 The Northern Hemisphere Temperature

The Northern Hemisphere temperature (NHT) is a measure of atmospheric temper-

ature in degrees Celsius over the northern half of the globe leading to a single time

series. On average the Northern Hemisphere has been warming over the past few

decades, a change which has been attributed to an increase in atmospheric carbon

dioxide [96]. This change can be seen in the time series. The signal is also subject

to an oscillatory effect, which has a similar period to the AMO. As previously dis-

cussed the AMO and the general warming trend might obscure the effects of one

another, making each separate effect difficult to isolate. Cannaby et al [43] remove

the general warming trend from the sea surface temperature signal by modelling it

as a function of atmospheric carbon dioxide. The trend might also be removed by
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linear detrending, which involves fitting a straight line or a higher order polynomial

depending on whether the effect of climate warming is believed to be linear and

subtracting this from the data. The warming trend is not, however, homogeneous

across the entire North Atlantic. Whilst the North Sea, particularly the southern

region, seems to be warming faster, the subpolar gyre seems to actually be under-

going a cooling effect [67]. This might be a result of bathymetry or circulation, as

the North Sea waters are significantly shallower than the rest of the North Atlantic

[123]. The average temperature increase is also believed to affect the behaviour

of currents, such as the Gulf Stream, the current that helps maintain the western

Europe’s relatively temperate climate [114]. Changes in these currents might lead

to more complex changes in local climate in different regions of the North Atlantic

and this heterogeneity means that the local climate variability can often be difficult

to predict [144].

1.6.3 The North Atlantic Oscillation

The North Atlantic Oscillation (NAO) is a measurement of fluctuations in the dif-

ference of atmospheric pressure at sea level between the Icelandic low, a permanent

low pressure centre, and the Azores high, a permanent high pressure centre located

near the Azores in the Atlantic ocean [87, 164, 135]. The difference in pressure be-

tween the Icelandic low and the Azores high controls the strength and direction of

the westerly winds in to Europe [87, 164]. The NAO also has a strong influence on

the climate of the North Atlantic and is a dominant mode of atmospheric pressure

variability [94, 77]. This oscillation is believed to have a period of about 8-10 years

[76, 87]. This oscillation has been identified in both the sea surface temperature

signal and in ice core records [76]. Spatially the pattern of the NAO is dipolar, in

that it has two centres where it positively influences sea surface temperature and a

centre around which it has a negative influence, having the strongest influence in the

North Sea [76]. In the subpolar gyre this oscillation has an inverse effect, with the
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temperature signal in this region slightly increasing during the negative phase of the

NAO and slightly decreasing during the positive phase. The influence of the NAO

in the North Sea may well also be linked to bathymetry [123]. The high phase of the

NAO is associated with cool summers and mild and wet winters in Central Europe

and slightly warmer winters in eastern North America, in contrast to cold winters in

both Europe and eastern North America and Mediterranean storms during the low

phase [76]. The extreme phase of the NAO may be influential in the in unusually

dry conditions over southern Europe and wetter than average conditions in the north

[76]. In the North Atlantic region the NAO is strongly influential in wind speeds

and directions, temperature, moisture distribution and the frequency and intensity of

storms. The NAO also influences the position of the Azores high, which can effect

where storms occur. This oscillation might also effect the abundance of plankton,

in particular Fromentin and Planque [59] claim a link between the NAO and the two

copepod species Calanus finmarchicus and Calanus helgolandicus. Whilst a high

phase is detrimental to C. finmarchicus, C. helgolandicus seems to benefit from

it. Furthermore the NAO is thought to influence the length of the blooming sea-

son of phytoplankton and the behaviour of terrestrial species, including birds and

amphibians [122]. During the positive phase there is an increase in numbers of

Arcto-Norwegian cod, with temperature being influential at every stage of devel-

opment from larval growth and mortality, food availability timings to adult growth

and survival [122]. The influence of the NAO on wind anomalies also effects ocean

circulation [77], meaning it has an impact on ocean currents. In Cannaby et al’s

study [43] the NAO was found to be the third most dominant mode in sea surface

temperature.

1.6.4 The East Atlantic Pattern

Although Cannaby et al [43] find it to be the second most important mode of vari-

ability in sea surface temperature and it is thought to be the second most domi-
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nant mode of atmospheric variability after the NAO [119], the East Atlantic Pattern

(EAP) is perhaps less well understood than the NAO. The EAP behaves similarly to

the NAO and consists of a north-south dipole in space of anomaly centres spanning

the North Atlantic from east to west, as well as showing a strong multidecadal vari-

ability [165]. The positive phase is characterized by above average temperatures

in northern Europe and heavy precipitation over northern Europe and Scandinavia

[165] and impacts sea level pressure [126]. Barnston and Livezey define it as hav-

ing a centre near 55◦ N and 20 to 35◦ W with a strong northwest-southeast gradient

over western Europe [8]. Owing to the lack of available atmospheric model reanal-

ysis data in the central North Atlantic it is not possible to extend the EAP index

back beyond 1948 based on this definition [43]. This lack of available data makes

it more difficult to compare with sea surface temperature records.

1.6.5 Physical Factors

There are a number of physical features which might influence the spatial inho-

mogeneity of these climate indices and plankton communities. There is an ocean

shelf, which extends around most of the British Isles [145]. There is also a west to

east gradient in the salinity, with the North Sea having fresher waters than the open

ocean [105]. Circulation, currents and mixed layer depth are all factors that influ-

ence a region’s sensitivity to climate events. Mixed layer depth is a measure of the

depth of the water column within which surface water mixes with waters from be-

low and this can influence the plankton [106]. This study will explore the influence

of these different drivers on the spatio-temporal variability of plankton in order to

better understand which are the most important factors in driving abundance.
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Chapter 2

Methods

In this chapter the statistical methods used to analyse the CPR data in this thesis are

discussed in further detail. Some of these concepts were introduced in chapter one

but in this chapter the technical details of the statistical methods will be discussed

in more depth. Recall from chapter one that the CPR data is irregularly sampled

in space as the sampling is dependent on shipping routes. This means that inter-

polation methods are required to transfer the data to a regularly spaced grid, which

is useful for interpretation. Approaches to interpolating and smoothing the data in

order to accommodate for the irregularity of the sampling and the variability due to

the sampling process are expanded upon in this chapter. The main analysis in this

thesis makes use of principal component analysis and sparse principal component

analysis in order to summarise the complex structure of the data. Previous studies,

such as those by Beaugrand et al [25], have also made use of principal component

analysis as a technique for visualising the CPR dataset. In this chapter different

ways of using principal component analysis with the CPR dataset are focused on.

Finally different approaches to using the output of principal component analysis to

answer questions of biological importance, such as how plankton respond to cli-

mate variables and how the biogeographical regions of the North East Atlantic have

changed, are described. This involves adapting k-means clustering and regression
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to the PCA output. k-means clustering is a technique for finding groupings of vari-

ables within a dataset and so can be used on the output of the principal component

analysis of the CPR data to define regions. This chapter will describe how these

regions might be interpreted differently depending on whether the clustering is car-

ried out on the common components or the loading vectors. Linear regression can

be used to model a relationship between an outcome and one or more predictors. In

the case of the CPR data this will primarily be used to investigate the relationship

between summaries of the biological data and different climate variables. In this

chapter we will discuss how to interpret the output from linear regression. Linear

regression models might also sometimes be used for prediction, although this relies

on certain assumptions. Another measure of the relationship between variables that

is discussed in this chapter is the Pearson’s correlation coefficient.

2.1 Smoothing Methods

In the introduction the irregularity of the sampling of the CPR data and the need for

interpolation to estimate missing values was discussed. Figure 2.1 shows the abun-

dance of a single species across time at a single location before any smoothing, from

which it can be seen that there is clearly missing data at some time points, which

forms the motivation for smoothing the data. Results are also more interpretable

when presented on a regularly spaced grid.

There are various approaches to interpolating irregularly sampled data. For

some of these methods the data can be interpolated and smoothed at the same time,

where the aim of interpolation is to estimate missing values and the aim of smooth-

ing is to reduce the presence of noise (see Daubechies and Unser [158] and Stein

[147]). One of these is the inverse distance method as used on the WinCPR data

[51] and another is kernel smoothing [167]. These methods both involve estimating

missing values using nearby data points, which makes use of the spatial structure
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of the dataset. In geostatistical methods missing values are estimated by taking

a weighted sum of the values at nearby locations [160]. In the case of the CPR

dataset the spatial structure is used in geostatistical methods to estimate missing

values by assuming that locations closer together will be ecologically similar, e.g.

Locations close together will have similar habitats and thus will have similar abun-

dances of particular taxa. Inverse distance smoothing, which is used on the WinCPR

dataset, takes the weights to be one divided by the distance between the location at

which the abundance is being estimated and the location at which a sample exists.

Some smoothing can be carried out using inverse distance interpolation but since the

weights are undefined at locations at which observations exist, the smoothing can

only be carried out in between observations. Typically the estimate is a weighted

sum of all the values at all the locations within a certain distance divided by the

sum of the weights. This means that more weight is given to locations closer to

where the abundance is being estimated, based on the assumption that the closer

the location the more similar it will be. In kernel smoothing instead a function sym-

metric about zero is used [167], which is dependent on a parameter that controls

the amount the data is smoothed. It is based on similar assumptions to the inverse

distance method, since closer locations are given more weight. Kernel smoothing

also allows for some smoothing to be done at the same time as interpolation.

In the case of the CPR dataset an equation for the interpolated data can be writ-

ten. Supposing li are locations at which observations are made, l is the location at

which the abundance must be estimated, t is time and Y (p)(l, t) denotes the abun-

dance of species p at location l given time t, then a general equation for the estimates

can be written,

Y (p)(t, l) =
∑
i

(
wi(t, l)Ŷ

(p)(ti, li)∑
j (wj(t, l))

)
, (2.1)

where wi are some weights dependent on li and ti. The CPR data is regularly
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Figure 2.1: Plot of the raw abundances of Calanus finmarchicus across months for
a single one degree by one degree region.

sampled in time so interpolation will be typically carried out only across the spatial

dimension, except where there are too few samples in space in which case some

interpolation will be carried out in time as well. It may also be necessary to smooth

across space and time for the purpose of noise reduction. In the inverse distance

method used on the WinCPR dataset wi(l) = 1
|l−li| , unless l = li in which case

the observation must be taken directly and can not be smoothed. It is assumed that

locations closer together will be similar in terms of the abundance of different taxa.

This follows directly from the assumption ecoregions close together are likely to be

subject to similar climate effects and thus will be able to support similar species,

which is a reasonable assumption based on plankton physiology and morphology

[68]. So the abundance of species p at time t and location l, where p and t are both

taken to be fixed, is given by the weighted sum of abundances at nearby locations

where observations exist and the weights are the inverse of distance between the

locations. Thus locations closer to the location be estimated are weighted more

heavily. This can be written as
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For l 6= li (2.2)

Y (p)(t, l) =
∑

i

(
1
|l−li|

Y (p)(t,li)∑
j

(
1

|l−lj |

)
)
.

Here li are the discrete locations where observations are made and l is the lo-

cation at which the abundance is being estimated. Where there are insufficient

observations in space at a particular time point and near the location that is be-

ing estimated some interpolation is instead done in time. For the case l = li the

function is undefined, meaning it can not be used directly to smooth the data at lo-

cations where observations exist but rather to estimate missing values and to smooth

the data only at locations where no observations exist.

An alternative to using the inverse distance directly is to take the weights to be

kernel functions of the distance [167], which are symmetric functions dependent

on a bandwidth parameter. As with the inverse distance method locations closer to

the one being estimated are given more weight than those far away, which is done

by choosing an appropriate kernel function that will take higher values near zero.

This means that the same assumptions about spatial smoothness of the abundances

must be made. The main distinction from inverse distance method is that the kernel

interpolation method allows one to specify a bandwidth, a parameter which gives

more control over how much one smoothes [167]. In contrast to the inverse dis-

tance method, which smoothes differently everywhere, kernel methods have a fixed

bandwidth across space. A larger bandwidth will smooth the data more by giving

more weight to locations over a larger range of distances, whilst a smaller one will

smooth less by only highly weighting locations that are very close to the location at

which the value is being estimated [167]. This means that the data can be smoothed

to reduce the amount of noise simultaneously with the interpolation process and the

degree of smoothing can be controlled. Whilst with the inverse distance method
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where an observation exists the data can not be smoothed, i.e. that observation is

retained because the inverse distance is not defined, in kernel smoothing one can

smooth at locations where observations exist. Some care must be taken in specify-

ing the bandwidth parameter [167] as if too large a bandwidth is used the smoothed

data will loose some potentially important detail resulting in bias of the smoothed

value. Where the bandwidth is large the mean squared error between the observed

data and the smoothed data will be relatively large, which means that small scale

features of the data will be smoothed out. Conversely if the bandwidth is instead

too small the data will be insufficiently smoothed and the resulting data may appear

noisy because the variance has not been reduced through the smoothing. There-

fore the bandwidth should be chosen in order to minimise the trade-off between the

smoothness of the results and the increase in mean squared error. The equation for

the kernel smoothed data can be specified if the kernel function is denoted as K(.).

If Y (p)
j is the abundance of species p at location lj and time tj and H is some band-

width matrix then the estimated abundance at location l and time t can be written

as

Y (p)(t, l) =

∑
jK


l − lj
t− tj

T

H

l − lj
t− tj


 Ŷj

∑
iK


l − li
t− ti

T

H

l − li
t− ti




. (2.3)

The bandwidth matrixH determines how much the data is smoothed. The larger

the entries of H , the more weight is put on distant locations. One potential choice

of kernel is a Gaussian function, which satisfies the property of the function taking

highest values around zero and smaller values at larger inputs. If H is a bandwidth
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matrix then the multivariate Gaussian kernel can be written as

K(u;H) =
1√

2π|H|
exp (−uTHu). (2.4)

H in this case is a 3 × 3 matrix. The diagonal entries determine how much

one smoothes across each dimension and the non-diagonal entries determine the

smoothing between different dimensions, which are non-zero if it is thought that

the dimensions are related. In the above model some smoothing is done in both

space and time but time might instead be fixed to smooth only in space by fixing

t and taking H instead to be a 2 × 2 matrix. Under the assumption that there is

no covariance between the different dimensions and that the bandwidth is kept the

same across both spatial dimensions, i.e. the data is isotropic in space, then H is

specified to be a diagonal matrix with entries (h1, h1, h2). This will smooth the

same amount across longitude and latitude but will allow the smoothing across the

temporal dimension to be different. Although other methods will not be discussed

in detail, various alternatives to inverse distance interpolation and kernel methods

also exist [168], such as: splines, which are smoothing functions based on piecewise

polynomials or interpolation methods based on Fourier transforms, which are useful

for periodic data.

2.2 Principal Component Analysis

In the introduction it was discussed how PCA might be used as a method of vari-

able reduction on the CPR dataset [86]. Recall that PCA finds directions or maximal

variability within a dataset by taking weighted linear combinations of the variables

(see section 1.3) and the resulting common components can be used to summarise

the structure within the dataset. Although in theory there are as many components

as the number of variables, it is possible that most of the variance will be explained

in the first few [86], which means the data can be described using a smaller subset
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of components rather than using the full set of variables. PCA can be thought of as

a data analysis technique which finds an orthogonal representation of the structure

in a dataset where the number of variables is large. This is achieved by taking the

principal components to be weighted sums of the variables in the dataset. The first

component extracted is the sum of variables that explain the largest proportion of

the variance within the dataset. The second is the combination that explains the

greatest proportion of the variation once the first component has been removed and

is restricted to be uncorrelated with the first component. Subsequent components

are found in the same way. In other words PCA finds the linear combinator of vari-

ables that explain the most variation and removes them and then finds the linear

combination of variables that explain most of the remaining variation at each stage

[85]. This means that PCA gives an orthogonal representation of the data in which

the majority of the variability may be explained by the first few components [85],

which is an equivalent to an uncorrelated representation where the error terms are

minimised at each stage. This can be useful for interpreting structure in a dataset

where the number of variables is large, as when most of the variation is described

by the first few components it can be used as a variable reduction technique. The re-

striction that the common components are uncorrelated means that each component

will describe a different mode of variability through the dataset.

If Y is an n× p data matrix, where n is the number of observations and p is the

number of variables then the loading matrix A can be found by doing a Singular

Value Decomposition on the covariance matrix Σ of Y , to give

Σ = ATSA (2.5)

.

The diagonal values of the matrix S, which are the eigenvalues of Σ, give the

explained variances associated with each principal component. In theory there are

as many components as there are variables, however it is hoped that most of the
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variance will be explained by a number of components that are much fewer than

the value of p. Therefore the number of components to retain should be chosen so

as to explain the variability in the dataset sufficiently well whilst ensuring that the

results are interpretable. There are various methods for determining how to choose

the number of principal components to retain, which in the CPR survey has the

physical interpretation of corresponding to the number of different groups. One of

the most frequently used is to threshold on the total explained variance [86].

In the case of the CPR data the number of species or locations is large, which

means structure can be difficult to interpret intuitively [31, 25]. It may be easier in

this case to reduce the number of dimensions by either looking at joint behaviour

over space or ‘species communities’. This can save on computational effort, as

further analysis can be performed on a smaller number of variables, and can be

far more intuitively interpretable than trying to decipher dominant patterns by eye

from all the variables. PCA is often described as being ‘model-free’, in that it is

an analysis technique that does not rely on underlying distributional assumptions,

but it is possible to view it as an unobserved components model [45, 61], where

in the case of the CPR data the unobserved components are responses to different

climate indices. In a general model both the loadings and the common signals will

be allowed to depend on both space and species and the components are allowed

to depend on space, time and species. Hence a model can be written so that each

variable is a sum of common signals,

Y (p)(t, l) =
P∑
j=1

a
(p)
j (l)z

(p)
j (t, l) + ε(p)(t, l). (2.6)

Here zj(t) represents the jth principal component as a function of locational

time, aj(l) are the weights, Y (p)(t, l) is the pth variable, i.e. the pth species, in

locational time and ε(p)(t, l) is some random noise, which is assumed to be normally

distributed with mean equal to 0. Here the weights are assumed to be dependent on
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location and species only but an alternative model could allow the weights to be

dependent on time. Each of the signals is calculated, as described by the equation,

to be weighted aggregations of the individual variables. There is a trade-off between

ease of interpretation and explained variance as a larger number of components

will describe more of the variation within the dataset but will be less interpretable.

Equation 2.6 can also be written in matrix form.

Y = ZA+ ε (2.7)

The matrix Y contains each variable as a single column and rows contain dif-

ferent observations. Where n is the number of observations and p is the number of

variables the dimensions of Y are n× p. So in the case of spatial PCA the columns

of Y are different locations and the rows are different time points, i.e. the i, j entry

of Y is the abundance of a fixed species at time ti and location lj . The rows of A

are the loadings for each component and the columns of Z are the principal com-

ponents, with the rows of Z relating to different observations. In spatial PCA the

rowsA are spatial locations (see equation 2.8), whilst the columns relate to different

components, and the rows of Z are different time points, with each column being a

different PC. ε is the matrix of random noise.

Typically a more restricted model will be used for the CPR data, where the

loadings and common components depend only on particular dimensions of the

data. For example the weights might be restricted to depend on space only and the

common components will depend on time only, with species being fixed. There

are various ways of analysing the CPR dataset using PCA, for example Beaugrand

et al [25] use a method called spatial PCA on the CPR dataset to find dominant

spatio-temporal patterns of abundance for fixed indicator species. Here the species

p is fixed and the weights depend only on the location, whilst the signals depend

only on time. In matrix form the data matrix Y is n × m, where n is the number

of time points and m is the number of locations. Columns of Y represent locations
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and the rows represent observations across time. The signals will then inform us

of the common behaviour of a single species over all space. In spatial PCA the

dimensions of the covariance matrix would be the same as the number of locations.

Spatial PCA can also be written in the same for as equation 2.6. In spatial PCA the

abundance of species p at time t and location l might be written as

Y (p)(t, l) =
P∑
j=1

a
(p)
j (l)z

(p)
j (t) + ε(p)(t, l). (2.8)

Whilst Beaugrand et al [25] use PCA to analyse the spatio-temporal behaviour

of indicator species, PCA can be used in different settings. There are several ways

of viewing PCA in relation to the CPR data, either calculating weights as functions

of species, space or time. Whether the weights and signals depend on space, time

or species results from how the matrix they are calculated from is written. PCA

often is calculated from the CPR data by fixing one of the dimensions and taking

the weights to be functions of one dimension and signals to be functions of another.

In Spatial PCA, for example, the species is fixed and the weights are taken as func-

tions of space, with signals depending on time. An alternative formulation would

be temporal PCA, which would have weights as functions of time and signals as

functions of space for a fixed species. Finally species PCA fixes the spatial loca-

tion and takes the weights to be dependent on species with the signals dependent

on time. In general the rows of Y determine what the signals depend on and the

columns of Y determine what the weights depend on.

2.2.1 Decompositions of the CPR Dataset

The different formulations of PCA on the CPR data could be viewed in terms of

tensor decompositions. Tensors in the field of mathematics and statistics are multi-

dimensional arrays [91], such that a first order tensor is a vector and a second order

tensor is a matrix. Tensors of order three or higher are referred to as higher order
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Figure 2.2: The CPR dataset can be thought of as a 3-dimensional space with abun-
dance dependent on time, space and species. The different forms of PCA fix one of
these dimensions. The dimensions of the resulting 2-dimensional matrix determine
what the weights and signals found using PCA depend on. (a) Representation of
the CPR dataset. (b) Spatial PCA. Species has been fixed and so PCA is performed
on a time by location matrix. (c) Temporal PCA. Species has been fixed but now
PCA is performed on a location by time matrix to give weights dependent on time.
(d) Species PCA, where space has been fixed resulting in a time by species matrix.
The weights found by PCA depend on species.
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tensors. The CPR dataset could be viewed as a third order tensor, if one considered

space, time and species as different orders. It could be considered forth order if

the two spatial dimensions were considered separately but here we treat them to-

gether. Some work on tensor decompositions was done in the 1960’s by Tucker

[156, 157], who referred to it as three-mode factor analysis. Few previous studies

of the CPR dataset have made use of the full multivariate spatio-temporal structure,

possibly due to the complexity of such analysis. Some effort was made by Beau-

grand, Ibanez and Reid [24] in to developing approaches to analysing the three

dimensions simultaneously. They explore the spatio-temporal structure of the CPR

dataset across 11 species of Copepod using a method called three mode PCA. In

this method PCA is carried out across a species by space-time matrix, which means

the columns are functions of species and the rows are functions of both space and

time; a time by species-space matrix, and a space by species-time matrix. This re-

turns eigenvectors, which are equivalent to the loadings found using PCA, which

are functions of species, time and space respectively. These are then used to find a

matrix of the interdependence between these three modes. They refer to this method

as three mode PCA. In this thesis the multivariate structure of the CPR dataset is

instead studied by first fixing the spatial location and then producing summaries of

the structure across the locations.

Figure 2.2 shows the CPR data as a three-dimensional space with the dimen-

sions as time, space and species, along with the tensor decompositions of this space

where one dimension has been fixed. The different decompositions can be thought

as of different ways of analysing the CPR dataset using PCA. Here (a) shows the

CPR dataset as represented by a three-mode tensor and (b), (c) and (d) show three

possible tensor decompositions of the CPR dataset, where one of the three dimen-

sions have been fixed. Spatial PCA is the form where the species has been fixed

and the weights are functions of space. This means that the principal components

represent the dominant modes of variability for a single species across time over
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space. This is shown in (b). Figure 2.2 (c) depicts species PCA, where instead of

fixing the species the spatial location has been fixed. The weights are functions of

species and the common components represent dominant modes of variability in

time across species assemblages for a fixed location. Figure 2.2 (d) depicts tempo-

ral PCA, where the species has been fixed and the weights are functions of time.

The common components then represent dominant modes of variability for a fixed

species across space. Principal component analysis can be thought of as a lower or-

der tensor decomposition [91]. The different forms of PCA on the CPR dataset are

tensor decompositions carried out when one dimension of the data has been fixed.

If the dataset is viewed as a three dimensional space, with the dimensions defined

by space, time and species respectively, each different type of PCA is analogous

to finding a pathway through a slice of this three dimensional space that describes

most of the variability constrained to that slice. Hence when one dimension is fixed

then weights can be taken as functions of one of the remaining dimensions and

common components as a function of the other.

2.2.2 Spatial PCA

Many previous studies of the CPR data have looked at Spatial PCA [14, 11, 31] (see

figure 2.2 (b) and equation 2.8)), which is PCA with weights as functions of space

for a fixed species. The abundances of species are modelled using an unobserved

components model and in this case the interpretation of the signals are the dominant

trends in the species behaviour across time and the weights are interpreted as the

spatial patterns of these trends. One might think of the trends as responses to climate

signals and the weights as showing how these climate signals influence the species

abundance across space, in particular if the common components correlate strongly

with a particular climate index. If an individual species is fixed then the underlying

unobserved signal in time can be modelled as a weighted sum of the signal at each

location. In equation 2.6 p has been fixed and the weights are dependent on l only,
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whilst zj , the signals, are dependent on t only. Previous studies have looked at

how the temporal signals zi(t) can be related to various climate signals, such as

the Northern Hemisphere Temperature and the North Atlantic Oscillation index

[31, 25], as described in section 1.6. Large weights can be interpreted as regions

where the signal is dominant, i.e. the most important locations to that species. If

there is a strong correlation between the PCs and a particular climate index they

may also represent the pattern of influence of that climate index on the species.

The signals are indicative of long term changes in the species behaviour in time, so

are subject to climate variability in either long term trends or natural oscillations in

climate.

Spatial PCA is typically used for studying the variability of indicator species.

Reid and Beaugrand [31] study the relationship between plankton and fish and so

use Spatial PCA to find the spatial and temporal patterns of those species which

provide a food source for fish [31]. Spatial PCA has also been used to study the

CPR data at a seasonal scale [26] with the time signals representing seasonal pat-

terns and the weights representing those locations at which certain seasonal patterns

occur. Cannaby et al [43] in contrast use Spatial PCA on the sea surface temper-

ature signal instead, as this enables one to find the spatial pattern of the influence

of different climate indices on local temperature. The principal components in the

study by Cannaby et al are matched to different climate indices using linear re-

gression. A similar sort of analysis is carried out on the SST signal in a paper by

Beaugrand et al [30], where they study the effects of ‘regime shifts’ on Calanus

Copepod species. They identify the temporal signals from the PCA on the SST

data restricted to the North East Atlantic with known climate indices, including the

NHT warming trend and the NAO. They compare the weights, which they identify

as the spatial patterns of these climate indices, with changes in the distribution of

the plankton species. This shows how the spatial influence on climate leads to long

term changes in plankton assemblages. In this thesis spatial PCA will be used to ex-
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plore the behaviour of several indicator species, including two species of copepod;

total copepod abundance, which has not been analysed in this way before, and phy-

toplankton colour. This will then be extended to exploring the behaviour of species

communities using species PCA, which have not been studied in depth before. In

a similar way to Cannaby et al the variability of the sea surface temperature will

also be explored using spatial PCA. Sea surface temperature can be decomposed

into spatial weights and temporal signals. Here the signals will represent dominant

temporal trends in the sea surface temperature and the weights will represent the

pattern of the influence of these trends on sea surface temperature across space.

The temporal signals can also be compared with climate indices in order to try and

better understand what drives sea surface temperature.

2.2.3 Species PCA

Instead of fixing the species when carrying out PCA on the CPR dataset we can

fix the spatial location within some regularly sampled grid (see figure 2.2 (c)). The

data matrix Y is now n × p, where in n is the number of time points and p the

number of species at a fixed location. In this case the weights are allowed to vary

across species. This has the advantage that it allows one to study multiple species

at a time and to find groupings in the species based around the weights. The signals

now represent joint temporal behaviour of subgroups of species. Since species that

interact with one another or share similar physiology are likely to respond to climate

in similar ways, it is reasonable to assume the presence of functional groups of

species within the dataset. Referring back to equation 2.6, the weights a are now

functions of species, p, and space ,l, only, where l has been fixed. The components

z are dependent on t and l but l is treated as fixed and so the components are

dependent on t given l. The noise is dependent on p and t given a fixed value of l;
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Y (p)(t; l) =

P (l)∑
i=1

a
(p)
i (l)zi(t; l) + ε(p)(t; l). (2.9)

P (l) is the number of principal components that are retained at location l, which

is determined by the culmative explained variance. The number of components is

allowed to vary across locations and can be interpreted as the number of distinct

assemblages across space. This being the case the abundance is written as Y (p)(t; l),

which is the abundance of species p at time t given location l. Here the signals

inform us about the common behaviour of all species at a fixed location. zi(t) is

informative as to how the ecosystem as a whole is changing, compared to spatial

PCA where the signals represent dominant modes of variability for a single species

or climate index. In species PCA for each PC species that have large weights will

have similar functional behaviour to one another and this allows functional groups

of species that behave together can be found directly from the data without any

prior assumptions about the ecology. The pattern of the weight vector in space

can be informative as to how the functional groupings change across locations, i.e.

the groups of species that have large weights in certain habitats will be different to

those that have large weights in other habitats, which in turn can be used to define

ecoregions, for example by clustering on the weight vectors. In the CPR dataset

some taxa will be more dominant at certain locations than others, due to the fact

that species are adapted to particular ecological niches [75]. Moreover rarer species

might be inconsistently sampled and might bias the sample, thus meaning it might

be of interest to focus only on the most dominant species at each location. This

leads to considering the weight vector as sparse.

2.3 Sparse Principal Component Analysis

Where a dataset contains a few true non-zeros and decaying values a sparse model

can be used [171, 44, 6]. Sparsity is a term for when only a few parameters take
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true non-zero values. Since in most experimental data true zeros are rarely observed

due to the effect of measurement error, sparsity is usually considered in terms of a

small number of non-zero values with the rest of the parameters taking small or de-

caying values. In section 1.3 it was discussed how sparse models might be used for

gene expression data, where a small number of genes might be important but that

many genes show some level of expression [44]. This concept is being extended

to the CPR dataset in this thesis. The spatial heterogeneity of the climate means

that not all species will be equally important at every spatial location. Whilst some

will prefer warmer climates others will prefer colder waters [12] and the spatial

distribution of some species will be driven by wind intensities [56]. As with the

gene expression data certain variables at each location will be more important for

describing the joint variation. Subgroups of species should be highly correlated,

due to the fact they will share similar responses to climate and will all be subjected

to the same climate trends. Therefore if it is assumed that at each fixed location

only a few species are truly significant (see Helaout and Beaugrand [75]) and that

the rest are observed as the effects of noise or represent very rare species that are

only occasionally observed then this leads naturally to modelling the loading vector

under species PCA as sparse. There are various approaches to incorporating spar-

sity in to the PCA algorithm [172, 50]. These methods are generally based around

some approximation to penalising the cardinality, i.e. the number of non-zeros, in

the loading vector. Since it is assumed that only a few variables (e.g. species at a

particular or genes in patients with a condition) are truly important the number of

non-zeros in the weight vector should be restricted. Penalising on the cardinality

directly is computationally intensive and so some approximation to the cardinality

penalty is generally required [172, 50]. An alternative might be to do an iterative

search. If the number of non-zeros is fixed then the variable that explains the largest

proportion of the variability can be added at each stage until the required number

of variables has been selected. Such an approach is known as a Greedy algorithm
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[116].

Supposing it is assumed that the true data set is generated from some common

components with sparse weights plus noise, then the observed principal compo-

nents will have non-sparse loadings. If it is assumed that those loadings based on

noise will be relatively small then one approach might be to simply threshold on

the result [172]. The disadvantage of this is that an appropriate threshold can be

difficult to select by eye and thresholding can give misleading results [172]. An-

other approach is to incorporate a penalty directly in to the PCA algorithm. Zou,

Hastie and Tibshirani [172] develop a method incorporating a penalty based on the

LASSO and D’Aspremont et al [50, 49] use a direct formulation via a semi-definite

programming method. Both of these methods use an approximation to the cardinal-

ity penalty. Alternatives to these proposed methods include greedy methods [116].

Zou, Hastie and Tibshirani’s method [172] is based around the LASSO penal-

isation, which is a penalty that shrinks small values and therefore tends to favour

sparse solutions. By incorporating an additional penalty in to the PCA algorithm

they return sparse versions of the loading vectors. The PCA algorithm can be re-

formulated as a least squares problem, namely minimising
∑
||Z− ajYj||2 with Z

being the matrix of the principal components, Yj the variables and aj the loadings.

In order to force the loading vectors to be sparse a penalty must be incorporated

in order to shrink small loadings towards zero. Zou, Hastie and Tibshirani [172]

incorporate a penalty called the elastic net, which is a linear combination of the

Tikhonov penalty and the LASSO. Ideally one would incorporate an L0 or cardi-

nality penalty, which is equivalent to penalising on the number of non-zeros in the

solution. This is very computationally slow and so in this approach the LASSO ap-

proximates L0 norm. The LASSO penalty has the advantage that it tends to prefer

solutions with few non-zero entries and that penalising on the L1 norm is roughly

equivalent to penalising on L0 [151].

The ridge or Tikhonov penalty is typically used in ill-posed problems, where
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there is no unique solution, in order to regularise the problem. The Tikhonov

penalty is based on a Euclidean norm or L2, which is given by ||y|| = (
∑

i y
2
i )

1/2.

In general an Lp norm takes the form ||y||p = (
∑

i y
p
i )

1/p. By adding the additional

constraint of the Tikhonov penalty to a given optimisation problem it is forced to

have a unique solution. So where one wishes to optimise ||Ax− b||2, which has no

unique solution, instead the problem becomes ||Ax− b||2 + ||Γx||2. The regularisa-

tion matrix Γ determines the type of solution that is computed. The least absolute

shrinkage and selection operator (LASSO) is based around an L1 norm, which has

the form ||y||1 = (
∑

i |yi|). The LASSO approximates the L0 penalty but the num-

ber of selected non-zero variables is constrained by the number of observations,

which is suboptimal in a situation where there are far more variables than observa-

tions (p >> n). This limitation is overcome by incorporating the Tikhonov penalty

[172].

The elastic net is dependent on two parameters, λ and λ1, which control the

number of variables that are selected. The two parameters which are included in

the optimisation problem control the level of sparsity, i.e. how many variables have

non-zero weight. The sparsity level is allowed to vary across different components.

The code for computing the SPCA in this way is written in an R package called

‘elasticnet’ and according to Zou et al [172] is computationally efficient. However

the elastic net formulisation has the disadvantage that it sacrifices some of the or-

thogonality of the resulting principal components. According to Zou et al [172] this

trade-off is relatively small. A Bayesian version of the LASSO can be formulated

by a Laplace prior on the weights and this can be extended to produce a Bayesian

version of the elastic net [101], in which case both parameters are selected at once

avoiding a double shrinkage issues.

Another disadvantage of the elastic net formulation is that it results in a non-

convex optimisation problem [50]. A function g is convex if g(αx + (1 − αy)) ≤

αg(x) + (1 − α)g(y) [168, 169]. Non-convex optimisation problems are compu-
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tationally slow to solve because often a global optimum is inefficient to compute

[50] and local optima are generally insufficient because they are difficult to anal-

yse [168, 169]. In order to solve this problem D’Aspremont et al [50] incorpo-

rate a sparsity criterion in to the PCA problem and then form a convex relaxation,

whereby they replace the non-convex constraint with a weaker convex constraint,

which takes the form of a semi-definite program. This method is similar to that

of Zou et al because the penalty used approximates a cardinality penalty and thus

forces some of the loadings to be zero. Like Zou et al, D’Aspremont et al sacrifice

some of the orthogonality of the principal components. Although D’Aspremont

[50, 49] et al suggest this trade off is relatively small, it is disadvantageous because

it will mean that the PCs do not explain all the variance separately and so might

make interpretation more difficult.

Initially D’Aspremont et al incorporate a cardinality penalty but as previously

described this approach is very inefficient to solve. In order to find a solution they

make use of the fact that PCA can also be viewed as an eigenvector problem. If

Σ is the covariance matrix of the data matrix Y , which is the matrix of the joint

variability between variables given by Y TY , then the loading vectors are the eigen-

vectors of Σ. If the variables are orthogonal then the covariance matrix will take

zero values everywhere but the diagonal, in which case the PCs are equivalent to

the variables, however if the variables are not orthogonal then the covariance ma-

trix will have some non-zero entries other than on the diagonal. D’Aspremont et

al write the PCA algorithm in matrix form and introduce a cardinality constraint to

the optimisation problem. The loading vectors in PCA can be calculated by finding

the eigenvectors a of the data covariance matrix Σ. If V = aaT then the eigenvalue

problem can be shown to be equivalent to minimising Tr(ΣV ), where the Tr(.) is

the trace of a matrix given by the vector of the elements along the diagonal. The

cardinality of the loading vectors is constrained to be less than or equal to k by

adding the constraint Card(V ) ≤ k2 to the optimisation problem. D’Aspremont et
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al then replace this constraint with a weaker but convex constraint. For any vec-

tor u if the cardinality of u is equal to q then ||u||1 <
√
q||u||2, which means that

the cardinality constraint can be replaced by 1TV1 ≤ k, where 1 is the identity

matrix. In this formulation sparse principal component analysis can be written as

the optimisation problem: minimise Tr(ΣV) − ρ1TV1. A parameter ρ controls

the number of non-zeros k and sparse PCA is defined as an optimisation problem,

which is coded in MatLab.

An alternative to both the above methods is to use a greedy algorithm. A greedy

algorithm finds the optimal solution at each stage of a problem [162, 80]. In the case

of a k sparse solution, which is a solution with k non-zero entries, for example, a

greedy algorithm would begin by selecting the optimal 1-dimensional solution and

then taking then next best value at each stage until one has a k-sparse solution. In

the case of sparse PCA where one desires a loading vector with k non-zeros one

might begin by calculating non-sparse loading vectors and selecting the variables

with the k largest weights. PCA is then recomputed on just the k selected variables.

To compute subsequent PCs one must first remove the variance explained by the

previous PC by subtracting the PC times the loading vector from the original data

matrix. Subsequent PCs can then by computed by repeating the same process on

the residuals. In this study the greedy method is used to find sparse loading vectors.

In this case the sparsity k is used directly. The proportion of non-zeros is π = k/p

and this is termed the sparsity parameter.

Sparse PCA can also be thought of in terms of sparsistency, which is the prob-

ability of true zero values being ascribed a zero weight in the computations [93].

Ideally this probability should tend to one. The possible limitations of the Greedy

sparse PCA algorithm are that it is not guaranteed to satisfy sparsistency and that

it can be computationally intensive. The advantage is that it preserves the orthogo-

nality of the principal components, unlike the other methods described.



2.3 Sparse Principal Component Analysis 70

2.3.1 Using Mixture Models to Determine the Sparsity Parameter

One remaining issue is how to select an appropriate sparsity parameter so that the

right amount of signal rather than noise generated structure is kept. Often it is eas-

ier to consider k, the number of non-zero loadings, than to consider λ or ρ directly

as they are less clearly interpretable. If it is assumed that the non-sparse loadings

consist of noise drawn from one distribution and signal drawn from another then

they can be modelled by a so-called mixture distribution [153]. A mixture model

is used when a dataset is assumed to have been drawn from two or more different

probability distributions [153, 109, 58]. The mixture model is dependent on the pa-

rameters of each distribution and a parameter which determines the proportion that

belongs to each distribution, which for the purposes of estimating the sparsity level

will be the parameter of interest. That is, some of the observations are governed

by one process and the rest are governed by another, which may be suitable to con-

sider for sparse datasets that have a mixture of true non-zeros and decaying values

[82, 83]. Mixture models are also used in clustered data, where different groups of

observations are centred around different points [40, 110]. Supposing the non-zero

weights follow a given probability distribution and the noise is drawn from a sepa-

rate distribution, then the loading vectors computed from the observed data will fit

the assumptions of a mixture model. In particular that the data is drawn from two

or more different probability distributions. Here a probability distribution refers to

a function which gives the probability of an observation taking a particular value.

A normal probability distribution takes higher values closer to the mean and lower

values further away from the mean for example.

In the case of the CPR data it might be considered that each species abundance

can be modelled as a linear combination of climate signals with zero weights in

certain locations, where that species is not well adapted. Random noise is then

generated from a variety of different sources, including measurement error in the

counting process, such as misidentification of species, or from random fluctuations
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in conditions. Johnstone and Silverman [82, 83] model sparse vectors as a mixture

of two Gaussian distributions, often termed a ‘spike and slab’ model. In the ‘spike

and slab’ model one of the distributions takes very high values close to the mean

of zero and significantly smaller values elsewhere, which means it can be used to

model the near zero parameters. In the ‘slab’ distribution the probability density

is spread across a wider range of values, which means it can be used to model the

true non-zeros. In the case of the loading vector for the CPR data a mixture of two

Laplace distributions appears to capture the structure of the data well, although any

appropriate distribution can be fitted to the model.

Supposing the noise is drawn from a distribution with a probability density func-

tion f1(.) with parameters θ1 and the signal is drawn from a distribution f2(.) with

parameters θ2 then a likelihood function can be defined. The parameter of interest in

this case is π, the proportion of values drawn from the signal distribution and π× p

is the number of variables that should have a non zero weight, and θ1 and θ2 are nui-

sance parameters, which is to say unknown parameters which are not the parameter

of interest. The likelihood is given by the product of the probability distribution for

the mixture model evaluated at each observation. Maximising the likelihood func-

tion is effectively finding the parameters for which the data has highest probability

[2]. The probability distribution function of the mixture is given by

(1− π)f1(.; θ1) + πf2(.; θ2) (2.10)

.

Evaluating this function at each loading will give the probability of that loading

being observed under the assumption that the underlying function is this mixture.

Assuming f1 and f2 are chosen appropriately, π can be found using maximum like-

lihood or expectation maximisation as follows. The likelihood is
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f(a, θ) =
P∏
p=1

{(1− π)f1(ap; θ1) + πf2(ap; θ2)}. (2.11)

Here ap is the loading for species p, a is a vector containing the loadings for all

species, P is the number of species, π is the proportion of the loadings belonging to

the signal distribution, f1(.) and f2(.) are appropriate distributions and θ1 and θ2 are

some parameters. Some care must be taken in choosing the probability distributions

f1 and f2 in order to properly capture the structure of the data. If these distributions

are not appropriately chosen the resulting estimates of the parameters may not be

as representative of the data. In the case where fi is a Laplace distribution the

probability densities can be written as

fi(ap) =
1

2bi
exp

(
−|ap − µi|

b

)
, i = 1, 2. (2.12)

Here µi is the mean of the distribution and the variance is given by 2b2
i . The

Laplace distribution is spiked about the mean, which is representative of the distri-

bution of the CPR data because there are a large number of rare species included

that have very small weights. Alternative distributions might be used, such as a

Gaussian distribution. In the case of the CPR data a Gaussian distribution does not

sufficiently capture the probability density of the noise and tends to underestimate

the variance of the noise. A mixture of more than two Gaussian distributions could

also be used but this would add to the computation complexity because this would

mean calculating additional parameters for each distribution.

2.3.2 Temporal Misalignment in Biological Data and Fourier PCA

Another potential problem with fitting sparse PCA to the time courses of differ-

ent species. In particular whether the assumption of a linear relationship might be

violated by the presence of small time lags between species. One problem that oc-

curs often in biological datasets is that of misalignment between time courses. For
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example the growth curves of children [140], which is a classical example exhibit-

ing such problems. Although children have similar shaped growth curves, growth

spurts occur at different times for different individuals leading to misalignment.

When there is misalignment in the data this may cause problems with clustering.

Even though the time courses might have similar shapes they are misidentified as

belonging to separate clusters depending on the time lag between the different time

courses. Another problem with misalignment, relevant to this study, is that PCA

does not account for small lags between variables. PCA finds time courses which

are linear combinations of variables and so will not naturally group species that

behave in a similar way but with a small time lag. One example of this may be

predators and prey, which both respond to the same climate signal but the response

is seen later in the predator because it is reacting to changes in the abundance of its

food source. The predators might respond later to changes in climate because the

impact only begins to have an effect after changes have happened to the species they

prey upon. One of the assumptions of PCA is that variables will have a linear rela-

tionship, which does not hold when there are small time lags between variables. For

the purposes of interpretation it is desirable to combine variables that have similar

responses together even if there is a time lag between them, due to the assump-

tion that they will be responding to the same climate variable, so it is necessary to

accommodate for time lags before carrying out PCA.

One method for accommodating for small time delays in the PCA algorithm

is to study vectors in the Fourier domain. Fourier transforms translate data in to

a frequency domain, which is often used to find the periods of oscillations in a

dataset where these patterns may not be easily spotted in the time domain. A Fourier

transform will also transform phase shifts in to multiplicative factors, which the

PCA algorithm has no problem with. So long as the data satisfies certain conditions

small time lags can be approximated as phase shifts.

If the misalignment is in time, so that Y (p)(t) = Y (q)(t − τ) for example, then
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the misalignment can be approximated as a phase shift so long as the oscillations

are concentrated to a small set of frequencies. Supposing the time course of a

species can be modelled as an oscillation with amplitude a(t) and frequency φ(t),

then it can be written Y (p)(t) = a(t) cos (φ(t)). If another species is an oscillation

with the form Y (q)(t) = a(t) cos (φ(t) + φ), then the phase is shifted between the

two species and in the Fourier domain they will both be transformed to the same

representation. The approximation holds if it can be assumed that in the Fourier

domain Ỹ (p)(f) is only non-zero for a small set of f = f0, which is equivalent

to saying the signal can be represented by a small set of oscillations. If Ỹ (f) is

mainly supported near f = f0 then Ỹτ (f) ≈ e−itf0τ Ỹ (f) and the time shift can

over the relevant frequencies be approximated by the phase shift. Supposing a time

signal of the form Y (t − τ), where τ is a time lag, then the Fourier transform can

be calculated:

Ỹτ (f) =

∫
e−2iπftY (t− τ)dt (2.13)

= e−2iπfτ

∫
e−2iπft′Y (t′)dt′

= e−2iπfτ Ỹ (f).

Since principal components are found by taking linear combinations of vari-

ables, PCA is performed on the positive frequencies only. Initially non-sparse PCA

is calculated on the transformed data. Since this returns complex loading vectors the

sparsity parameter is found by modelling the absolute values of the loading vector

as a mixture and the proportion of the variables retained in the sparse components

is found in exactly the same way as before. For a k-sparse solution those variables

with the k largest absolute values are retained. Fourier PCA is then recomputed

on those variables with the k largest absolute values on the loading vector. The

principal components must be transformed back in to the time domain in order to
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be interpretable. In order to return the principal components in the time domain

the inverse Fourier transformation of the PCs in the frequency domain is taken.

This gives (1/2) Signal + (i/2) Hilbert transform and so the principal component

is taken to be twice the real part of the inverse Fourier transform.

In order to find the time delays for each species the values of f̂ for which Ỹ (f)

is maximised must be computed. τ can be found by taking the angle of the loading

associated with the species in question and dividing by −2πf̂ (see equation 2.14).

These values will reveal whether the species is responding before or after the aver-

age signal. For each species one can take the time delay in space and then cluster

across the different species.

Alternative methods for dealing with misalignment also exist, for example there

are several proposed methods for clustering data when misalignment is present.

Sangalli et al [140] have developed a K-means clustering based method which ac-

commodates for misalignment. Tang and Muller [149] approach this problem via

cluster specific warping functions. Liu and Yang [102] take a Bayesian approach

to the model by using a B-spline basis incorporating parameters which take in to

account the warping and solving using expectation maximisation. Tang and Muller

[149] study the same problem in relation to gene expression data and use a time

synchronized method in order to cluster the data.

2.4 Cluster Analysis

In order to determine regionalisation of the North Atlantic clustering methods can

be used on the output of the PCA. Clustering is a method of finding a number of

natural groupings in a data set [168, 81, 60]. One popular method is K-means clus-

tering. HereK is used to denote the number of clusters, in order to distinguish from

the k that was used to denote the number of non-zeros in a sparse solution previ-

ously. Given a pre-set number of clusters K this method uses Euclidean distance to
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partition a set of vectors[81] (see section 1.4), where the Euclidean distance is the

L2 norm of the difference between the two vectors. In the first stage a random set of

K centres are chosen from the dataset and then each variable is assigned to a cluster

based on minimising the Euclidean distance from the centre. The centres are then

recomputed by taking the average of each cluster and the process is repeated until

the results converge. Since the partition can be dependent on the initial choice of

centres the best partition over multiple runs can be chosen by minimising the mean

squared error. In general K is defined by the user, although there are methods for

choosing the most suitable number of clusters [148].

Other clustering methods include hierarchical clustering, which starts with one

variable and selects its nearest neighbour, usually by minimising the Euclidean dis-

tance [81]. At each level of the hierarchy the next nearest variable is added, which

can be selected by taking the variable nearest the centre of the cluster, the variable

with the smallest minimum distance to the cluster or the variable with the small-

est maximum distance from the cluster. The choice of distance metric may have

a large influence on the results [81] because, for example, the variable with the

smallest minimum distance to the cluster may not be the same as the one with the

smallest maximum distance or the smallest distance from the centre. This suggests

that different distance metrics may lead to different partitions. Alternative methods

would include fuzzy clustering, which assigns each variable a degree of member-

ship to each cluster rather than having each variable belonging to a single cluster

[81].

Clusters on the output of the principal component analysis can be defined on

either the loadings or the principal components. These will have different interpre-

tations in terms of the original biological problem. Clusters on the loadings will

identify regions with similar species groupings, whilst clusters on the PCs will de-

termine similarities in long term climate behaviour. Another possible pitfall with

clustering on the output of PCA is the issue of mode-mixing [86]. The ordering of
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PCs is not necessarily fixed and usually chosen according to their explained vari-

ance. Therefore the first PC at one location may have a similar functional behaviour

and correlate with the same climate trend as the second PC at another. This is prob-

lematic if the explained variance between the first and second PC is similar and

does not show a rapid decline. If mode-mixing does occur then this might impact

the output of the cluster analysis because the ordering of the components might not

be comparable between locations, meaning clustering the output across locations

may not give meaningful results. In order to check whether this is an issue the ex-

plained variance of the components can be checked to determine whether it does

indeed show a steep decline.

K-means clustering might also be used to explore changes in the regions de-

fined by the plankton species over time. This might be done by dividing the dataset

in to different sections across time and comparing the output of PCA over the dif-

ferent sections of the data. Under the hypothesis that temperate species have grad-

ually been moving northwards as the waters of the North Atlantic have warmed

one would expect to see southern clusters spreading northwards, whilst northern

clusters dominated by cold water species would be gradually receding in to polar

regions. This can be tested by dividing the data in to two halves: the pre-1985 data

and post-1985 data. The analysis can then be carried out on both halves. Regional-

isation in both halves of the data is found using k-means clustering on the loading

vectors as described earlier.

In order to find the optimal number of clusters it is important to determine the

point at which adding more clusters will not significantly improve the explanation

of the data. This can be done intuitively by plotting the explained variance or mean

squared error against the number of clusters. In general the variance will begin to

level off at some point. The point at which the variance levels is chosen as the

optimal number of clusters. This is referred to as the elbow method [148]. Other

methods for selecting the number of clusters is modelling the data as a mixture of
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different distributions and using Bayesian methods to determine the number of dis-

tributions, although this may work best for low dimensional vectors [148] because

of the computational complexity.

A simulation study is used to test the significance of the results. To test whether

the regionalisation found is significant the same methodology can be run on simu-

lated data multiple times. For instance a method similar to bootstrapping may be

used to simulate randomised data by selecting time courses and weights at random,

sampling from the output of the sparse PCA, to generate data under the same model

that has been assumed for the real data and adding random noise. Bootstrapping

is a method for determining p-values by sampling with replacement from the true

data to get multiple randomised data sets [168]. It is particularly useful when the

underlying probability distribution is unknown or difficult to model.

2.5 Regression Analysis

It is important to understand which climate variables are ‘driving’ the plankton

abundance. A climate variable is said to be a driver of abundance if changes in

its temporal behaviour have a strong influence on abundance. It is assumed that a

climate variable that has a strong relationship with the abundance of plankton then

it has a direct influence on the plankton. Evidence for this assumption is found by

looking at what is known of the physiology of different species and relating this to

the influence of climate variables. For this a simple linear regression model might

be used, where the plankton response is thought to be proportional to the climate

signals plus a constant [168]. This model can be fitted using least squares estima-

tion. If the plankton abundance is assumed to be equal to a constant plus a number

of climate signals multiplied by some unknown coefficients then the coefficients

can be estimated by finding the values that minimise the square of the sum of the

error terms. The error terms in this case are the true value of the biological variable



Chapter 2. Methods 79

minus the abundance estimated from the linear regression model at each time point.

The coefficients give a measure of the relationship between the climate variable

and the biological variable and a hypothesis can be use to determine whether they

are significantly different from zero. This model is used because the abundance

of the plankton is thought to be driven by climate [56, 166, 127] due to the way

in which environmental conditions interact with their physiology. The response is

modelled as linear, as it is reasonable to assume at small perturbations this will

hold true, although some care must be taken because in more extreme conditions

the relationship may be non-linear. In order to determine whether there is truly a

relationship between climate variable and the biological response a hypothesis test

can be used [168]. If the correlation at a particular location is significant then the

group response of the species at that location is said to be sensitive to that particular

driver. A strong correlation will generally be assumed to be indicative of a causal

relationship, although this will be justified by looking at whether the causality can

be explained by the biology of the assemblage [56, 166, 127]. Typically a causal

relationship would also imply a time lag between responses but depending on the

measurement scale this is not always possible to observe, e.g. if the lag in response

is less than a year for annual data. The relationship between plankton and climate

is important to environmental policy makers because it will help them understand

what is forcing the ecological behaviour and whether changes are attributable to

climate warming trends or to natural oscillations in climate. For signals in time we

assume that the temporal principal component at each location can be modelled as

a linear combination of covariates:

zi(t) = βi,0 + β1,ic1(t) + β2,ic2(t) + ...+ βN,icN(t) + εi(t), (2.14)

where zi(t) is the ith PC and cj(t) is the jth physical variable under consider-
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ation. Estimates, β̂i,j , for the coefficients can be found using least squares. The

error terms εi(t) are assumed to be normally distributed with mean zero. In order

to establish whether βj,i = 0 a hypothesis test with H0 as βj,i = 0 and the informal

alternative Ha as βj,i 6= 0 is used. It was previously mentioned that it was assumed

that if a variable has a strong relationship with the plankton then it is a ‘driver’

of abundance. Since climate variables are not necessarily orthogonal, excluding

certain physical variables from the model might lead to a stronger correlation with

other variables. If a variable is influential on another variable and is influential

on plankton abundance, then excluding it from the model could lead to the second

variable being incorrectly identified as a ‘driver’. This is known as a confounding

variable, where a correlation between two variables exists because they both depend

on a third. This means that some care must be taken to include all possible ‘drivers’

in the model and to correctly identify which are important to the plankton. Under

the null hypothesis, H0, there is no relationship between the ith plankton response

and the climate driver j in the presence of other drivers, therefore a significant re-

sult is indicates that the covariate is an important driver. The test statistic can then

be calculated.

t =
β̂j,i

se(β̂j,i)
, (2.15)

where se is given by se(β̂j,i)
2 =

∑
k(zi(tk)−ẑi(tk))2

N−2∑
k(cj(tk)−c̄j(tk))2

, N is the number of time

points and ẑi(.) being the values estimated from the linear regression model, i.e.

ẑi(t) = β̂i,0 + β̂1,ic1(t) + β̂2,ic2(t) + .... c̄j(tk) is the mean of cj(tk). If N is the

number of variables then under the null hypothesis t follows a t-distribution with

N −2 degrees of freedom. Therefore this test statistic can be used to find a p-value.

If the p-value ≤ 0.05, say, the null hypothesis is rejected.

In general the correlation will be found across multiple locations by repeat-

ing the linear regression on the components at each spatial point. This will result
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in a spatial pattern of where each climate driver is important and will help identify

‘hotspots’ where climate change is having the greatest impact on the ecology. How-

ever this means that the problem of multiple testing arises. In the case of multiple

testing one must take care to control the false discovery rate [35]. Benjamini and

Hochberg [35] attempt to control the false discovery rate by altering the level at

which they reject based on the number of tests. P-values are ordered in increasing

size and then compared with a function,

P(i) <
i

N
α. (2.16)

In this equation P(i) is the ith smallest p-value, N is the number of tests and

α is the significance level. This gives a stricter cut-off point under multiple test-

ing, which controls the probability of making a type-1 error. Rejecting a true null

hypothesis is referred to as a type-1 error, type-2 being not rejecting a false null.

A confidence level of 90% says that if the null hypothesis is true there is less than

a 10% chance of the test statistic being statistically significant. Under 90% confi-

dence level the expected number of significant results if the null is true is 10% of

the number of tests carried out. A false discovery rate is the rate at which results are

found to be significant even though the null hypothesis is true [168], i.e. the rate of

making a type-1 error. In the case of a single hypothesis test type-1 errors are only

as frequent as the p-value. However when multiple tests are carried out the prob-

ability of making a type-1 error rises. In this case it is important to have a stricter

rejection rate in order to control for type-1 errors. The Benjamini and Hochberg

correction is valid when the tests are independent but also under many cases where

there is dependency [36].

The linear regression model can be used for spatial variables, such as the number

of components or the sparsity parameter. However since these variables are not

continuous a link function must be used to transform them so they can be used

as dependent variables in the regression model. Suppose the parameter p(l) is the
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number of components at each location. The proportion of the total number of

components that are retained at each location is p(l)/P , where P is the number of

variables (i.e. species), and if it is assumed that p(l)/P is linearly dependent on

physical drivers across space them an equation can be written in the form:

logit(p(l)/P ) = (α0 + α1d1(l) + ...+ αMdM(l) + µ(l)), (2.17)

Where logit(x) = log(x/(1 − x)). The logit link can be used to transform

variables that take values between zero and one to scale variables that can take any

value from minus infinity to infinity, which means the logit of the proportion can

be used as an outcome in linear regression. In this equation di(l) are spatial vari-

ables. Again this model can be fitted using least squares estimation but maximum

likelihood estimation is more commonly used.

Linear regression combined with principal components analysis can be likened

to canonical correlation analysis. Canonical correlation analysis is used in a mul-

tivariate setting where both the number of responses and the number of covariates

can be large [128, 134]. Where the number of dependent variables is large relation-

ships with the independent variables can be difficult to interpret and so this leads to

seeking methods that reduce the number of variables. In canonical correlation anal-

ysis an orthogonal transform is carried out on the matrix of responses to reduce the

number of variables and thus decrease the computational intensity of the regression

analysis, since the regression will have to be carried out for a smaller number of

variables than the full dataset. In this study the PCA acts in a similar way to this

orthogonal transform. Rather than carrying out a linear regression on each species

individually, it is carried out on joint responses which are represented by the princi-

pal components. Since the number of components is thresholded by the culmative

explained variance this means carrying out far fewer computations than would be

required for the same analysis on each species.

The relationship between the physical variables and the biological variables
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might also be described using correlation coefficients between two variables and

the amount of variance explained in one variable by the other. One such measure

of linear dependence is Pearson’s correlation coefficient, which is calculated from

the covariance of the two variables divided by the standard deviations of both vari-

ables multiplied together. It takes values between -1 and +1, with a negative value

indicating a negative linear relationship, so that one variable increases as the other

decreases, and a positive value indicating a positive relationship, with both variables

increasing together. The Pearson’s correlation coefficient can be seen as a measure

of how much two variables vary together. The proportion of the variance explained

can also be calculated from the squared value of the Pearson’s correlation coeffi-

cient, meaning that when the absolute value is of the correlation coefficient is close

to 1 a large proportion of the variation is explained by the model. Using these mea-

sures it is possible to determine the strength and nature of the relationship between

the physical and biological variables, which will allow us to interpret the effects of

these climate indices on the ecosystem.

2.6 Modelling Vulnerability to Climate and Regime Changes

One of the goals of this study is to investigate the vulnerability of plankton to cli-

mate across space and species. It is known that the response of plankton to temporal

variables is not uniform in space [22]. The linear regression model can be used to

make predictions about the behaviour of the biological variables based on changes

in the climate variables. This can be done directly with the principal components

to estimate changes in joint species behaviour over space or using the principal

components to estimate changes in individual species. In the unobserved compo-

nents model each species abundance was given as a weighted sum of the principal

components. The principal components are modelled as linear combinations of the

climate trends and so this can be substituted to give estimates of the relationship
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between the climate indices and individual species.

The linear regression equation for the principal components modelled as re-

sponses to climate and the model for the number of components can be substituted

back in to the equation for the smoothed species abundances to give an estimate of

how the species abundance is related to spatial and temporal climate signals. The

advantage of regressing against the principal components rather than the species

time courses directly is one of computational efficiency. Since a few principal

components will explain the variation at each location this means that one a few

regression coefficients need to be calculated at each location, rather than repeat-

ing for every species. If µi(t; l) is some mean signal an equation for the species

abundances in terms of the physical variables can be written.

Y (p)(t; l) =
∑p̂(l)

i=1 a
(p)
i (l)(βi,0 + βi,1c1(t; l) (2.18)

+...+ βi,ncn(t; l) + µi(t; l)) + εp(t; l)

The values of βi,n can be estimated using least squares and p̂(l) is an estimate of

p(l) given by equation 2.17. The above model can be used to estimate the behaviour

of species p as the physical variables change. A species is regarded to be vulnerable

to climate change if a large change in the physical variables results in a significant

change in the behaviour of the species, i.e. the magnitudes of βi,n are large for

principal components where a(p)
i is non-zero. The vulnerability of different regions

to different climate variables also can be assessed by the magnitude of βi,n. If the

absolute value of the normalised βi,n is large then this indicates that a large change

in the related physical variable will result in a large change in the joint behaviour of

all species at that location, which is interpreted as the sensitivity of the assemblage

associated with that component to the climate variable.
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2.7 Modelling Trends and Oscillations

Principal component analysis is often seen to be model-free but this is not strictly

speaking true. The principal components can be seen as either deterministic or

stochastic processes. A deterministic process is one with an underlying function,

whilst a stochastic process is a random signal generated by some probability distri-

bution function. In the case of the CPR data the principal components are believed

to be dependent on climate variables. The regime shift is well documented in the

data but is unclear whether this is a gradual change in time or an abrupt stepwise

change in the mean of the signal [17] and this can influence how the change is

modelled.

Climate change might be modelled as a linear increase over time or as a poly-

nomial [43] and different climate signals can be viewed as combinations of linear

trends and oscillations. Using linear regression models can be fitted to the data to

capture these oscillations [168] and to estimate their period. For long term trends

a linear regression model can be fitted in the same way as previously described,

using a hypothesis test to determine which terms should have non-zero coefficients.

Frequencies of oscillations might also be estimated by fitting a sinusoidal model,

as per the method of Rice et al [133], allowing one to estimate the period of each

oscillation.

z(t) = A sin(ωt) +B cos(ωt) + εt (2.19)

where the noise terms ε are assumed to follow a Gaussian distribution with

mean zero [133]. In this case simple linear regression can not be used to estimate

the coefficients because the frequency, ω, must also be estimated from the data. A,

B and the period ω can be found using least squares, i.e. by taking the product of

|z(t)− A sin(ωt) + B cos(ωt)|2 over all time, with minimising this function being

equivalent to minimising the errors. The product is transformed to a summation by
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taking the logarithm of the likelihood, since minimising the logarithm of a function

is equivalent to minimising the function itself. Rice et al [133] show that the period

ω can be found by minimising a function given by Sn(A,B, ω).

Sn(A,B, ω) =
∑
t

(z(t)− A sin(ωt)−B cos(ωt))2 (2.20)

This model can be used to estimate the period of natural oscillations [133].

One reason that one may wish to model the climate trends and oscillations is for

the purpose of making predications. The fitted values of the climate trends at future

time points might be used in combination with the linear regression for the plankton

signals as a response to climate trends to estimate how the plankton abundance

might continue to change.
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Chapter 3

Multidecadal Oscillations

3.1 Overview

Cannaby et al [43] explore the influence of natural oscillations on the sea surface

temperature (SST) in the North Atlantic. Since these oscillations vary in their im-

portance across space they use spatial principal components to break the sea surface

temperature signal down into spatial and temporal representations. Cannaby et al

begin by removing the climate warming trend from the SST data at each spatial lo-

cation, which is assumed to be functionally dependent on atmospheric carbon diox-

ide. Weights are then computed as a function of space and signals as a function of

time. The first three signals correspond to the AMO, the EAP and the NAO respec-

tively. In the region of the North Atlantic studied by Cannaby et al [43] these three

signals account for 23, 16 and 9% of the variance in the detrended data respectively.

In this study one of the main aims is to explore the relationship between climate and

the spatio-temporal structure of plankton abundance. Before studing the plankton

dataset it is therefore useful to apply an exploratory analysis in order to understand

the influence of different climate variables on sea surface temperature. In this chap-

ter the spatial patterns of climate indices are studied in a similar way to Cannaby

et al on both detrended and non-detrended data, with the region of interest being
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extended east to include the North Sea and the Meditteranean. The inclusion of the

North Sea is particularly important as this is where the plankton data is best sam-

pled [160] and hence will be useful when we come to draw comparisons. However

the result of this is some change in the principal components and their importance

compared to Cannaby et al’s results. The goal of this analysis is that understanding

the spatial variability of climate will enable a better understanding of the spatial

variability of the plankton.

Since the linear trend can obscure any oscillations [141], it is important to in-

vestigate the effects of detrending or not detrending the data on the resulting spatio-

temporal decomposition. In the first instance the sample median is subtracted from

the time course at each location and then the time courses are re-standardised by di-

viding by the sample variance. The median is used rather than the mean in case the

climate data is skewed (ie. there are a small number of extreme values recorded).

This is done so that the first principal component will not just be a representation of

the average [85]. The weights in space and time signals are then found. It is predi-

cated that the first component will be dominated by climate warming trend, as this

is the greatest source of variability in the sea surface temperature trend [130], with

locations with a positive weight being those were the sea surface is warming and

those with a negative effect being undergoing a cooling effect, as the local effects

of climate change might vary across space. Although the sea surface is on average

warming, it can behave different locally and understanding these local differences

better is an important part of understanding the impact of climate change, due to

the fact that climate is a dynamic system and so local responses can be highly non-

linear [144]. A small change in the average temperature might for example have a

much more significant effect at a local scale and so local changes in climate are not

always easy to predict. Subsequent trends are expected to represent oscillations,

although as the linear trend is so dominant the spatial patterns of these oscillations

may be more difficult to identify. The analysis is then repeated on the detrended
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data in order to isolate the effects of these natural oscillations without them being

obscured by the climate warming trend [141]. The trend is removed by fitting a line

to the data at each location using least squares to estimate the coefficients of the

linear trend and then subtracting the fitted trend from the time course at each loca-

tion. This linear trend is thought to approximate the recent warming trend that has

been observed in the sea surface temperature over the past few decades and so after

subtracting it what is thought will remain are shorter term oscillations. The same

normalisation is also carried out on the detrended data. For the purposes of compar-

ing with the plankton data the sea surface temperature is also analysed over a region

restricted to the same spatial area and temporal period over which the plankton data

will be analysed.

In order to show the inhomogeneity of the warming trend the average tempera-

ture change is calculated for each location. Figure 3.1 shows the difference between

the average temperature up till 1960 and the temperature in 2009. For the most part

the sea surface temperature has increased by between 1 and 1.5 degrees Celsius. An

exception is around the subpolar gyre, a combination of four currents near to the

coast of Greenland, where a cooling effect was observed over the past few decades.

The reason for this cooling might relate to changes in currents, as the overturning

circulation of water in the gyre has an important effect on local temperature [118].

Contrastingly the southern North Sea has been warming faster, perhaps due to the

waters there being particularly shallow [161]. Similar patterns have been observed

in previous studies. Beaugrand et al [18] show that the sea surface temperature

from the 1960s to the 2000s increased more in the southern North Sea than in the

rest of the North East Atlantic, whilst little change was observed in the subpolar

gyre region. The Convention for the Protection of the marine Environment of the

North East Atlantic (the OSPAR Convention’) in their 2010 status report [115] also

show that the southern North Sea is the region in the North East Atlantic where the

most warming has occured over the past few decades.
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Figure 3.1: Plot of the change in sea surface temperature measured as the sea sur-
face temperature in 2009 minus the average for 1890 till 1960 at each grid point.

3.2 Methods Used in this Chapter

In this chapter the main method used is spatial PCA, which is used to find the

dominant spatial and temporal patterns in the sea surface temperature. Recall from

section 2.2 that PCA is used to find dominant trends that represent the structure

in a dataset by taking linear combinations of the variables and that spatial PCA,

where weights are taken as functions of space and signals as functions of time,

has been previously used to analyse both SST and plankton datasets. Equation 2.8

shows how the implicit assumptions are that the variables are linear combinations

of common temporal trends weighted across spatial locations. In this chapter it

is assumed that the sea surface temperature signal in time at a given location is

given by a linear combination of underlying climate trends, which have a different

influence on the local temperature at different locations. The Pearson’s correlation

coefficient, as described in section 2.5, is used as a measure of the relationship

between the common component of the sea surface temperature and the different

climate indices, as described in section 1.6. The correlation coefficient is then used
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to identify the common components with known climate indices.

3.3 Climate Trends Across the Ocean Basin Scale

3.3.1 Sea Surface Temperature with Median only Removed

In the first instance the sea surface temperature is analysed including the effect of

the warming trend. This will allow the spatial pattern of the warming trend to be

explored. When the sea surface temperature, having only the median removed,

is broken down in to its component trends, the most dominant component is the

warming trend. The first component also contains some oscillatory behavior with

a period similar to the AMO. In fact the AMO accounts for just over 30% of the

variation in this trend. A consequence of this residual oscillation being present in

the first component is that the AMO is not represented by a subsequent component

due to the orthogonality constraint of PCA. The first component behaves very sim-

ilarly to the NHT signal [150], which is a combination of a linear warming trend

and an oscillation in time. On the first principal component the spatial pattern of the

loadings is positive in most regions but is higher in the southern North Sea, in the

south east of the North Atlantic and around the coast of America. The first compo-

nent has much smaller loadings in the Subpolar Gyre, where the cooling effect was

observed.

The weights on the second component represent the spatial pattern of the NAO,

with a dipole in space [76]. They are positive in the North Sea and the south west

and negative around the Subpolar Gyre. The time signal is a short term oscilla-

tion, ie. having a period of approximately ten years, appearing similar to the NAO.

Subsequent trends are more difficult to identify with climate signals. The third

component has positive weights around the gyre and near zero weights elsewhere.

The time signal associated with this trend is oscillatory with a period of only a few

years. The AMO is not identified as a separate trend when investigating the sea
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surface temperature data with the median only removed because the NHT and the

AMO are not orthogonal [150, 141] and PCA identifies orthogonal trends [85]. This

means that the spatial pattern of the AMO can not be found without first detrending

the data. The average warming trend is removed in this case by fitting a linear trend

at each spatial location and subtracting this from the time course. This is referred

to as linear detrending.

3.3.2 Detrended Sea Surface Temperature

The linear trend is probably one of the strongest sources of variability across the

North Atlantic, as it is present across all regions. By removing this trend one

expects there will be a change in the importance of subsequent components and

their ordering. Geographical patterns of various climate signals also become more

clearly defined when not obscured by the warming trend [141]. Figure 3.2 shows the

breakdown of the sea surface temperature once the linear trend has been removed

and table 3.1 shows the Pearson’s correlation coefficients between the principal

components and certain climate indices. The first component accounts for 34.63%

of the variance, with the second and third accounting for 13.68% and 10.54% re-

spectively.

Component AMO NAO EAP
1 0.7 / /
2 / 0.336 /
3 / 0.5 /

Table 3.1: Table summarising the Pearson’s correlation coefficients between the
linearly detrended sea surface temperature data over the ocean basin scale and dif-
ferent climate indices.

The AMO is present across all regions but its influence is centred upon the subpolar

gyre, which it is hypothesised is because it is a result of current circulation in the
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(a) Loadings in space for the first
principal component.

(b) The first principal component (blue)
and the AMO (red).

(c) Loadings in space for the second
principal component.

(d) The second principal component
(blue) and the EAP (red).

(e) Loadings in space for the third
principal component.

(f) The third component (blue) and the
NAO (red).

Figure 3.2: Loading vectors plotted in space and principal components for the lin-
early detrended sea surface temperature.
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North Atlantic [141]. Spatially the first component is strongly positively weighted

around the subpolar gyre. The weights are positive but much smaller about the rest

of the North Atlantic, meaning the first component represents the average behavior

of the detrended sea surface temperature.. The first component shows a strong

oscillatory behavior, with a period of close to 60 years. This means that both in its

spatial distribution and its temporal structure it resembles the AMO [141, 90, 43].

The correlation between the first PC and the AMO is also very strong, with the

AMO accounting for over half the variation and a Pearson’s correlation coefficient

of over 0.7. Since the first component also accounts for a large proportion of the

variation in the detrended sea surface temperature, it can be deduced that the AMO

is an important driver of sea surface temperature. Thus it can be concluded that

once the average warming trend has been removed the AMO becomes the most

important pattern in sea surface temperature for the purpose of understanding the

variability.

The second largest source of variability is not correlated with any known cli-

mate indices, meaning it may be some as yet unknown climate oscillation or it

may an aggregation of different oscillations. Unlike the first component the sec-

ond principal component is negatively weighted across some regions of space and

positively weighted across others. This indicates that some regions are responding

in an opposite way to others to this trend. It shows a sinusoidal behavior in space,

with negative weights around the subpolar gyre and extending across in to part of

the region off the coast of North America and positive weights elsewhere. The pe-

riod of this spatial oscillation can be approximated as twice the distance from the

maximum point to the minimum, which in this case is about 40 degrees in latitude,

which is approximately 4450 kilometres. Although the time signal has only a weak

correlation with the EAP, the weights do resemble its spatial pattern [165, 43, 8].

The time course is more noisy but also contains a shorter oscillatory trend. In the

frequency domain the second PC has an oscillation with a period of about 18 years.
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One possible cause of this approximately 18 year oscillation might be the lunar

cycle, which was reported by Yndestad [170] to have an influence on the NAO,

although it is difficult to verify whether this is what is driving the second compo-

nent. The second component has a weak positive correlation with the NAO signal,

with a Pearson’s correlation coefficient of 0.336. There are different possibilities

for what the second component may represent. It may be an aggregation of differ-

ent trends, perhaps including the EAP, or might also consist in whole or part of the

lunar cycle or it may be some as yet undefined signal. Since this trend contributes

a large amount of variation to the sea surface temperature signal this is an area that

warrants further investigation.

The North Atlantic Oscillation appears to also be an important influence on the

sea surface temperature, although this is positive in some regions and negative in

others. The third principal component has a dipole in space, with negative weights

in the subpolar gyre. There is a region with positive weights in the southwest and

the signal is very strongly positively weighted in the North Sea. This corresponds

to the spatial pattern of the NAO [76]. The period of the oscillation in space is

about 90 degrees in longitude at a height of about 52 degrees latitude, which is

about 6170 kilometers accounting for the curvature of the Earth. The signal ex-

hibits a short term oscillation and when regressed against the NAO signal has a

positive correlation. The Pearson’s correlation coefficient is close to 0.5, which is

reasonably strong. The correlation with the NAO is stronger post-1965 than it is

prior, with an explained variance of 22.12% and a Pearson’s correlation coefficient

of 0.4670 beforehand and an explained variance of 32.69% and a Pearson’s corre-

lation coefficient of 0.5705 afterwards. This can be seen from the plot (figure 3.2

(f)), as the two signals ‘behave together’ more frequently in the latter part. This

could indicate that the third component is actually an aggregate of climate trends,

with the NAO being the most important over later years. Spatial PCA produces

weights that are fixed in time but in the case of this trend it might be appropriate to
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have time varying weights, as the influence of the NAO on the SST signal appears

to change over time. In the frequency domain the third PC has oscillations with

a period of 8-10 years like the NAO [87, 76, 65] but also has a smaller amplitude

oscillation of period 14 years, which is not present in the NAO signal. It is not

clear what this oscillation represents and so this is another area that might warrant

further investigation. The NAO signal has a residual oscillation with period similar

to the AMO but because of the orthogonality of the principal components [85] this

is not present in the third component, which means the correlation is not perfect.

Summarising how much of the variation in sea surface temperature can be under-

stood across different regions using these known climate indices it is possible to

see that the AMO is an important effect in certain regions, whilst the understanding

of other regions is greatly improved by account for the effect of the NAO. There

are some coastal regions with complex local climate that are poorly explained by

these indices alone. Figure 3.3 shows how much of the variation at each location

can not be explained by the principal components as responses to climate signals.

The first component of detrended sea surface temperature is modelled as a linear

function of the AMO. The Euclidean distance between estimate of PC 1 given by

the AMO in the model times the weight on PC 1 at a given location and the ob-

served detrended time course at that location is calculated for each spatial location.

This is normalised by the Euclidean norm of the observed values at that location.

The Euclidean distance between two signals is the L2 norm of one signal minus the

other. The Euclidean norm of a time course is given by the square root of the sum

of the value at each point squared, which is the L2 norm of the signal. The esti-

mate of the first component from the AMO is given by a linear regression equation,

where the component is assumed to be proportional to the AMO plus a constant

[168] (see equation 2.14). This equation can be estimated and the AMO substituted

in to given the approximation of the principal component. This gives an estimate

of the amount of variation explained by the AMO index across space. A dark red



Chapter 3. Multidecadal Oscillations 97

pixel shows that a large proportion of the variance is not explained by the AMO,

whilst a blue pixel shows that a smaller proportion is unexplained. This shows that

the AMO explains the least amount of variance in coastal regions [141], near the

Labrador sea and the North Sea. In these regions there must be additional factors

which influence the sea surface temperature. The third component appears to be a

response to the NAO. This means that the variance explained jointly by the AMO

and the NAO can be modelled. The biggest difference is that the North Sea is now

much better explained [76], given how important the NAO is to this region. Re-

gions which are well explained become larger. One region where the observed sea

surface temperature remains poorly explained by these two climate signals is the

region near the coast of North America. Since this is an area where there are a large

number of small eddies and the ocean circulation here is complex [104], then the

behavior of the sea surface temperature signal is harder to predict. Coastal regions

also seem less well explained, in particular around the coast of Greenland, suggest-

ing that local effects accounted for by higher components might influence the SST

in this region.

3.4 Multidecadal Oscillations across the North East Atlantic

Component NHT AMO NAO
1 0.5477 / /
2 / 0.6054 /
3 / / 0.5265

Table 3.2: Table summarising the Pearson’s correlation coefficients between the
principal components of the sea surface temperature with the median only removed
over the CPR region and the climate indices.

When comparing with the biological data the sea surface temperature must be

restricted to the same spatial and temporal region, however this will result in a

different set of components because of the spatial variation in the importance of
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(a) Plot of the amount of variation unexplained at each location based on the first
detrended principal component modelled as a response to the AMO.

(b) Plot of the amount of variation unexplained at each location based on the first
three detrended principal components modelled as a response to the AMO and the

NAO.

Figure 3.3: Plots of the amount of variation in sea surface temperature left un-
explained by the principal components modelled as responses to climate indices
culminatively.
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different signals. Due to the irregular spatial sampling the best spatial coverage is

achieved by restricting to the North East Atlantic [160] and temporally the most

reliable data dates from about 1958. There are some changes in the components

when the data is restricted to this region only, see figure 3.4. Pearson’s correlation

coefficients between the components and different climate indices are shown in

table 3.2. Without detrending the first component resembles the general warming

trend and is most strongly weighted in the southern North sea. The weights may be

larger in the southern North Sea because of the fact that there are shallower waters

in this region [123], which has meant temperature has changed more dramatically

in this region compared with the rest of the North Atlantic (see figure 3.1). With

a lag of 9 years, where 9 years is the lag at which the correlation coefficient is

highest, the first component of the sea surface temperature over the CPR space-time

region correlates with the NHT with a Pearson’s correlation coefficient of 0.5477

and the lagged NHT explains 32.07% of the variation. This once more shows that

the average warming trend is the most important driver of climate across a large

scale [19].

The second resembles the AMO, having strong weights in the north of the re-

gion. With a time lag of 9 years, which is again the lag where the correlation

coefficient is maximised, the Pearson’s correlation coefficient between PC 2 of the

sea surface temperature and the AMO signal is 0.6054 and the lagged AMO ex-

plains 36.71% of the variation. The NAO signal contains an oscillation of similar

period to the AMO with a time lag, suggesting the AMO has some interaction with

the NAO. The second component might also represent this component of the NAO.

Since the lags are the same for both the NHT against the first component over this

region and the AMO and the second component, it appears that the data in the north

east of the North Atlantic responds later than the average signal over the northern

hemisphere. Across the ocean basin scale the AMO was obscured by the average

warming trend [141] but across the North East Atlantic this is not the case. This
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(a) Plot of the first principal component on the sea surface temperature with only
the median removed (blue) and the NHT signal lagged by 9 years (red).

(b) Plot of the second principal component on the sea surface temperature with
only the median removed (blue) and the AMO signal lagged by 9 years (red).

(c) Plot of the third principal component on the sea surface temperature with only
the median removed (blue) and the NAO signal with no time lag (red).

Figure 3.4: Plots of the first three principal components on the sea surface temper-
ature over the CPR region.
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may be because the AMO is less of a dominant influence on the SST in this region

(see figure 3.2) and so does not influence the first component to the same extent.

Alternatively this may be a feature of restricting the data to a shorter time period.

Since the AMO appears as the second component it is clear that although it is less

influencial than in other regions it still plays a role on climate over this region.

The third is again positively weighted in the North Sea, particularly the south,

and the temporal signal is similar to the NAO. The NAO without any time lag ac-

counts for 28.03% of the variation in the third PC and the Pearson’s correlation

coefficient is 0.5265. The North Sea is the region in which the NAO signal has the

strongest influence, which can be seen clearly from the analysis of the entire North

Atlantic (see figure 3.2). Previous studies have also found the NAO to be influencial

in the North Sea [65].

3.5 Discussion

In this section it has been demonstrated that both natural oscillations in pressure

centres and the overall trend of climate warming are associated with the sea sur-

face temperature. The Atlantic Multidecadal Oscillation and the North Atlantic

Oscillation were identified as significant sources of variability in the sea surface

temperature. Most importantly it is apparent that these trends vary in their influ-

ence spatially. Whilst the AMO is positively weighted across all regions, albeit

some more strongly than others, the NAO has positive weights in some regions and

negative in others, meaning it is an oscillation in both time and space. This implies

that local variation must be taken in to consideration in any study of the impact of

climate on the ecosystem and that regional climate patterns can vary in ways that

are non-intuitive compared to average trends. This is seen in the average warming

trend, for example, where an increase in sea surface temperature is seen on aver-

age but certain regions are undergoing a cooling effect. In the following chapters,
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where the focus shifts to the ecology, it remains necessary to consider this spatial

heterogeneity, as this will increase the understanding of how the plankton distribu-

tion changes over space. The effect of the average warming trend is particularly

strongly represented in the North Sea, especially the southern part, which is the

region where much of the plankton data is collected. It can also be seen that de-

trending or not detrending influences the ordering of principal components and that

the principal components on the sea surface temperature can change depending on

the spatial region that is under consideration.



103

Chapter 4

The Interpolated Data Modelled

using Sparse PCA

4.1 Overview

In this section the sparse Species PCA model is used on the pre-processed WinCPR

dataset, which contains data for the North Sea across 110 different species. This

will demonstrate how well the analysis performs at identifying spatio-temporal

structure. A number of previous studies have used Spatial PCA on the WinCPR

dataset with various indicator species, including those by Beaugrand et al [25, 160].

Species PCA adds new insights to previous work because the diversity across space,

ecoregions defined by species and joint functional responses can all be studied to-

gether. In this chapter both zooplankton and phytoplankton are studied together.

Those variables which are measured differently, such as Phytoplankton Colour In-

dex, are not included. The WinCPR dataset also contains a number of aggregations

of species, such as total copepod abundance, which are also omitted as this may

produce misleading results. The data covers the time period from 1958 till 2001

and the North Sea is gridded in to 183 locations. Both yearly averages and monthly

data are explored in this section. The yearly trends are then compared with possible
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climate ‘drivers’ across space in order to show that there is spatial heterogeneity

in responses to climate. The monthly time courses are analysed in the frequency

domain, as this can be used to show that seasonal patterns dominate the data at this

scale.

4.2 Methods used in this Chapter

In this section the pre-processed WinCPR data is used in order to assess the applica-

bility of the methodology to understanding the spatial temporal behaviour of plank-

ton communities across assemblages. Recall that this dataset is a gridded database

of log-abundances of over 100 species of plankton that has been interpolated using

the inverse distance method as described in section 2.1. The CPR data is irregularly

sampled in space and so the inverse distance interpolation method is used to transfer

the data to a regularly spaced grid. The WinCPR dataset is described in more detail

in section 1.2.

In order to find the joint behaviour of species assemblages sparse species princi-

pal component analysis is used on both monthly and annual data (see section 2.2.3

and section 2.3 for a full description of these methods). This method finds dominant

joint behaviours of assemblages for keystone species across space by estimating a

sparse weight vector. The output of this analysis can be interpreted as finding the

dominant species across space and their joint responses over time. It was proposed

that in order to estimate the number of species that should have non-zero weights on

each component a mixture model might be used (see section 2.3.1) and the WinCPR

dataset can be used to investigate this model. K-means clustering is then used to

define ecoregions, which can be based on either the weight vectors, representing

regions defined by species assemblages, or on the principal components, represent-

ing regions defined by functional behaviours (section 2.4). Finally linear regression

and the Pearson’s correlation coefficient (section 2.5) are used to analyse the re-
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lationship between the principal components and different climate indices, which

will be informative as to which climate indices might be responsible for driving the

joint behaviour of species assemblages. Through investigating the relationship with

the climate indices it is also shown that taking in to account time lags is important

(section 2.3.2). In chapter 2 it was discussed how small time lags that might be

present in the CPR dataset could be accounted for using Fourier transforms. In this

chapter it is shown that taking in to account these time lags is important with regard

to investigating the response to climate indices, suggesting that not all species re-

spond to climate forcing at the same rate. Furthermore Fourier transforms can also

be used to estimate the frequency of oscillations, which can be seen in particular in

the monthly data as it is dominated by seasonal cycles.

4.3 Sparse Principal Component Analysis on the WinCPR Data

4.3.1 Verifying the Mixture Model using the WinCPR Data

A model is placed on the absolute values of the loading vectors, comprising of

a mixture of two Laplace distributions [109, 168]. Figure 4.1 shows the Kernel

density estimates of the absolute values along with the density estimated by the

mixture model (see equations 2.11 and 2.12) for two locations. The plots show

that the Laplace density is needed to capture the distribution of the noise near zero.

These results suggest that the mixture model is appropriate, thus will give good

estimates of the sparsity parameter. It also aids in selecting the right choice of

distribution.

4.3.2 Measures of Diversity

Figure 4.2 shows the sparsity parameter, i.e. the number of species with non-zero

weight divided by the total number of species, for the first component in space as
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a) Location 2.

b) Location 82.

Figure 4.1: Plot of the density of the absolute values of the loadings along with the
densities estimate from the mixture model. The kernel density estimates of the true
signal are shown in blue, the estimated probability density for the noise in green
and the estimated probability density for the signal in red.
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estimated by the mixture model and the number of principal components. For the

first principal component the solution is less sparse in the north North Sea than

in the south, indication a larger group size. One possible explanation for this is

the influence of oceanic species from the rest of the North Atlantic, which have a

tendency to show more variability and thus must be retained in order to describe

most of the variance. Hence more species must be included in this mixing section

of the North Sea. Previous studies have noted the importance of mixing regions as

influences on plankton diversity [84]. For instance the Celtic shelf, which is the

region of the ocean shelf south of Ireland, is more diverse because of the increased

mixing of nutrients with the surface waters due to the currents in this region. Part

of the ocean shelf also runs north of Scotland [123], suggesting this region too may

be defined as a mixing region. For higher principal components the pattern begins

to change, although there is something of a North-South division. In the second

component there are slightly more species retained in the north of the region. In the

third principal component the highest sparsity parameter is found at the southern

most tip of Scandinavia. Possibly the third component is representative of species

that are found more frequently in this region. In the fourth component there is

slightly more of an east-west division in the sparsity pattern. Around the coast

of Norway a large number of the sparsity parameters are set to zero because only

three components are required to explain most of the variation in this region. Near

the coast of the United Kingdom the sparsity parameter is very slightly higher. This

may mean this component is largely represented by coastal species, although higher

components may also be comprised of a lot of noise.

The number of principal components, which can been seen as a descriptor of

the number of different functional groups, is higher in both the south and the north

west, whilst it is markedly lower in the north east. This could be due in part to the

higher diversity in the south, as more species may be able to survive in the shallower

and more temperate environment, and again the influence of oceanic species in the
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north east. What is certainly clear is that there is a definite spatial structure in both

the group size and the number of groupings. Spatial heterogeneity in the number

of components and the sparsity parameter suggest spatial variability in the diversity

of the plankton ecosystem. Since diversity can be seen as a measure of the sta-

bility of an ecosystem [20] this implies that some regions will be more vulnerable

than other to changes in the physical variables. As was shown when investigat-

ing the spatio-temporal structure of the SST the influence of the warming trend is

heterogeneous across space [67] (see figure 3.1) and as many species of plankton

are influenced by the climate [9] this appears to lead to spatial heterogeneity in the

diversity of plankton species. The diversity is influenced by physical features, such

as the bathymetry, as well as climate variables, with the ocean shelf region being

important as a mixing region.

4.3.3 Ecoregions Defined by the Loading Vectors

In figure 4.3 K-means clustering has been carried out on the first two loading vec-

tors. The cluster analysis was also carried out on the third and fourth loading vector

but these are not shown. There is clear regionalisation in space, with the northern,

central and southern North Sea being clearly defined. From a biological perspective

clustering on the loading vectors is akin to finding regionalisation based on species

groupings. On the first loading vector cluster one represents the coastal regions

around Scotland and the northern part of the continent. Dominant species there

include a number of diatoms: Paralia sulcata, a species found both in the water

column and in the sediment [64]; Chaetoceros [phaeoceros] spp. and Thalassiosira

nitzschiodes. Diatoms are the most abundant of the phytoplankton [68, 111] and so

it is to be expected that they would have large weights. The dinoflagellates Ceratium

fusus and Ceratium macroceras are also present in this region. Hardy [68] suggests

in coastal regions there is a greater mixing of bottom-dwelling diatoms with the

plankton, which may explain the prevalence of P. sulcata in this region. P. sulcata
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a) Sparsity parameter for principal component 1.

b) Number of principal components.

Figure 4.2: Plot of the sparsity parameter for the first four Fourier transformed
principal components across space. Here a red pixel depicts a large value of π (so
a very non-sparse solution) and a blue pixel depicts a small value. The limits are
set between 0 and 0.5. The number of principal components across space is also
shown, with red indicating a higher number and blue a lower value.
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tends to have weights with positive real parts across coastal regions on the first load-

ing vector and zero weights elsewhere, suggesting it shows most variability in these

regions, which agrees with pre-existing knowledge that this species may respond to

water column mixing. Thalassiosira nitzschiodes has positive weights over most of

the southern and central North Sea but these are especially high around the coast

of Scotland. This suggests that it is better adapted to warmer and shallower waters.

Ceratium fusus has positive weights over the entire North Sea, which suggests it

shows strong variability across all regions. For this species the physical features

are less of an influence on its spatial distribution and this is shown by the fact that

it has significant weights across all three clusters. The cluster analysis shows more

diatom species occurring in coastal regions. McQuatters-Gollop et al [111] study

spatial patterns of Diatom and Dinoflagellate abundance across the North East At-

lantic. Spring blooms of Diatoms occur earlier in the year than for dinoflagellates

and begin in shallower waters, due to the increased penetration of light in these re-

gions, before spreading out to the rest of the region. In this analysis yearly averages

have been taken, which means that the earlier occurrence of Diatom blooms in shal-

lower waters might explain why there are more Diatom species strongly weighted

on average in these coastal clusters. McQuatters-Gollop et al [111] note that the

Shetland and Orkney Island regions of Scotland and German Bight, which are re-

gions covered by cluster one, are particularly productive areas for phytoplankton.

Diatom abundance is particularly high in the German Bight in August. Whilst most

species of Diatom live pelagically, some are known to exist as surface films in ben-

thic communities. Diatoms are thought to be able to survive in most climates and

so are not vulnerable to changes in temperature [56]. By contrast they are affected

by currents and wind speeds, which may give some explanation as to why they are

slightly more common in the coastal clusters. In particular the mixing of nutri-

ents with the water column in these regions in thought to positive influence Diatom

abundance [68, 64], as well as increased mixing of sediments with the water column
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causing benthic species of Diatom to be found amongst the plankton [68].

The second cluster occupies the northern North sea and is characterised by di-

noflagellates: Ceratium fusus, Ceratium furca and Ceratium tripos. This suggests

a higher degree of variability of dinoflagellates in this region. A study by Leterme

et al [99] suggested that there was an increasing contribution from dinoflagellate

species to the phytoplankton colour index in the northern North Sea, although they

stress that there is some discrepancy between cell counts and colour index mean-

ing that it may not directly reflect the abundance. They do, however, suggest that

dinoflagellate abundance is increasing in the northern North Sea along with phy-

toplankton colour index. Whilst in their study Diatom abundance did not show a

significant global trend in the northern North Sea, its contribution to the phytoplank-

ton colour index has decreased. These results suggest that whilst Diatom abundance

is relatively stable in this region, dinoflagellate abundance is changing. From this it

can be concluded that dinoflagellate species are on average strongly weighted in the

northern North Sea because of the increased variability in their abundance in this

region, making it an important region for change. This can be seen from the average

temporal signal in the northern North Sea (see Figure 4.4), which is increasing.

The third cluster, which is represents the central region is also dominated by

dinoflagellates, in particular: Ceratium macroceras, Ceratium fusus and Ceratium

furca. The study by Leterme et al [99] claims an increase in phytoplankton colour

index in the central North Sea but no significant change in either the Diatoms or

the dinoflagellates. They suggest that the ecosystem is relatively stable in this re-

gion. This implies that the first principal component is predominantly made up

of phytoplankton species across all spatial regions. An explanation for why the

phytoplankton dominates most of the variability could be the difference between

count and biomass [68]. The CPR survey contains raw abundance data, which is

not converted in to biomass, except for the phytoplankton colour index [160]. Phy-

toplankton are smaller in size than the zooplankton but occur in larger numbers
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[68].

The clusters on the second loading vector are less clearly defined, however they

are roughly separated in to the northern, central and southern coastal regions. The

first cluster mostly covers the central region. The most dominant species for the sec-

ond loading vector in this cluster are the dinoflagellates Ceratium furca, Ceratium

fusus and Ceratium tripos. Leterme et al [99] do not find there to be significant

changes in the Diatom or Dinoflagellate communities in the central North Sea, al-

though there is an increase in phytoplankton colour index. The average time course

for the second component is oscillatory in time and so this may represent decadal

trends rather than long term changes. Cluster two, which covers the southern coastal

region, is dominated by the dinoflagellate Ceratium furca and two species of cope-

pod: Para-Pseudocalanus and Temora longicornis. The latter species is known

to be prevalent in the southern North Sea and dominates the copepods in this re-

gion [68], so its importance in this cluster corresponds with pre-existing ecological

knowledge. This supports the hypothesis that the weight vectors are representa-

tive of important species across space. Dinoflagellates are less important than the

Diatoms in the southern North Sea [99] but Ceratium furca does have a strong

weight on the second loading vector suggesting that it is an important phytoplank-

ton species, albeit less so than the Diatom species, in this region. Pseudocalanus

is a small species of Copepod which shows a high degree of variability of different

years [68]. McGinty et al [108] determine that Para-Pseudocalanus is adversely

affected by increasing temperatures and so the strong weight on this species in this

region might be associated with a decline. The third cluster, which mostly covers

the very north of the region, the region where the most mixing with oceanic waters

occurs, is dominated by the dinoflagellate Ceratium macroceras and the diatom

Chaetoceros [Hyalochaete]. Hardy [68] claims that where two waters mix, such as

where coastal waters meet oceanic waters, there is an increase in the reproductive

rates of species due to the interaction of the two systems replenishing constituents
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that are deficient in either system due to slightly different plankton compositions.

In the northern North Sea the shallow waters of the North Sea mix with waters from

the rest of the North Atlantic and so it might be defined as a mixing region.

The third loading vector is dominated by two clusters, with cluster three being

very small. The first and the third cluster occupy the southern North Sea. In terms

of dominant species the diatom species Thalassiosira nitzshiodes and Odontella

sinensis both are strongly weighted in cluster one. In cluster two, which occupies

the northern part a number of diatoms and dinoflagellates are strongly weighted in-

cluding: Ceratium furca, Ceratium fusus, Chaetoceros [Hyalochaete] and Psuedo-

nitzshia seriata. In the third cluster dinoflagellates Ceratium furca, Ceratium fusus

and Ceratium horridum are the most strongly weighted species.

The clusters on the fourth loading vector have a similar spatial structure to those

on the third, although the southern region is decreasing in size which suggests more

spatial homogeneity in species distribution at this level. The first cluster occupies

most of the region, whilst the second and third occupy the continental coastal area

in the south of the north sea. Cluster one is dominated by a number of diatom

species and the dinoflagellate Ceratium macroceros. Clusters two and three are

mainly dominate by dinoflagellates in the Ceratium genus but a couple of copepod

species, namely Acartia spp. and Para-Pseudocalanus do also have a presence in

cluster two. The second and third loading vector show less spatial structure than

the first two. There is a rapid decline in the amount of variation explained by the

principal components, with the first two components explaining more than 50% of

the variation at most locations. This may imply that most of the structure has been

subtracted by the third component, meaning that higher components are in general

less structured or are selecting only single species.
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a) Clusters on the first loading vector, where cluster one is blue.

a) Clusters on the second loading vector.

Figure 4.3: Plot of the clusters on the absolute value of the Fourier transformed
loading vector. On the spatial plots of the clusters: cluster 1 is shown in light blue,
cluster 2 in orange and cluster 3 in dark red.
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4.3.4 Regions Defined by Functional Behaviour

Figure 4.4 shows the result of a similar cluster analysis performed on the first prin-

cipal component, which is equivalent to defining the regionalisation on the joint

behaviour of species. These show spatial structure but are not completely identical

to the clusters on the weights. The clusters on the first principal component show a

clear division of the North Sea in to north, central and southern regions. The aver-

age trends over the first and third clusters, which represent the southern and central

regions show a decline over time. The north by contrast is showing a slight increase.

This may be due to an increase in warm water species, which with the increase in

sea surface temperature have become more able to survive further north. This clus-

ter might represent a northwards migration of certain species [12, 5]. Recalling

from the analysis of the loading vectors the first component is defined primarily by

phytoplankton species. One problem that may arise is that phytoplankton and zoo-

plankton have been aggregated together, even though they are measured in different

ways. This could be problematic for those species that are very variable in time, as

a small weight could still relate to a large contribution to the component [172]. The

first component seems to represent the general warming trend but not all species of

phytoplankton are primarily driven by changes in temperature [56], which suggests

the weights may in fact be misleading. Since different types of species are measured

in different ways and have different biomasses [99] which leads to the observations

being recorded on different scales, this implies that it might be advisable to consider

different subgroups separately. This issue will be addressed when investigating the

raw data.

It is important to be aware of the sign of the principal components, as species

can have positive or negative weights. If a trend is increasing but most variables

have a negative weight then the trend in fact represents a decline. For the most part

the most strongly weighted species on the first principal component have a positive

real part or a weight which is zero because of the sparsity constraint. This means
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that there is a general decline of most species, except in the north, where there is a

general increase. The cold water copepod Calanus finmarchicus is one of the few

species to have negative weights on average. The real part of its weight is zero in

most regions, except for the north North Sea, where it tends to be negative. This

suggests that this species is declining especially in the northern North Sea. C. fin-

marchicus is known to be sensitive to changes in temperature [117]. In general

it seems that the most important source of variability in joint plankton abundance

across the North Sea is the climate warming trend. Another species that has neg-

ative weights in the north is Euphausiacea, which are commonly known as Krill.

These are important species because they provide a food source to both fish and

whales [68]. Letessier et al [100] find a negative relationship between Euphausiid

abundance and SST, which implies that the negative weights in this region are also

a response to climate warming.

Figure 4.5 shows the regionalisation based on the second time component. The

clusters on the second component are less well defined, although there is some indi-

cation of an east-west distinction. Cluster one occupies the British coastline, cluster

two the south east and cluster three the north east. For the most part the second com-

ponent seems to be an oscillation, perhaps a response to the AMO. This oscillation

is most clearly seen in cluster one, the coastal cluster, perhaps indicating a relation-

ship between the AMO and the plankton being stronger along the coast line. The

AMO is known to influence wind intensities [141], which in turn influence mixed

layer depth, which is a driver of the abundance of certain phytoplankton species

[56, 64]. The time courses for clusters two and three appear like time-lagged ver-

sions of the oscillation in cluster one, with the minimum occurring earlier in cluster

two and later in cluster three. The AMO is a secondary driver of plankton abun-

dance, being particularly important for Diatom species [56], and from the ordering

of the principal components it can be concluded that it is the second most important

driver of plankton abundance across all species in the North Sea. On the third and
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fourth principal components the spatial structure is even less clearly defined, so two

clusters are sufficient. Since components one and two explain most of the variation

across most locations in the data it may be that there is little spatial structure in the

higher order components.

4.3.5 Time Delays Across Space

Fourier PCA accounts for small time delays between the individual species and the

average signal (see equation 2.14). Figure 4.6 shows the time delay in years for two

different species across time for the first PC. A positive time delay indicates that a

given variable is ahead of the average signal at a particular location and a negative

delay indicates that it lags behind. Ceratium fusus, a diatom species, is in general

lagged behind the average signal. There is an east west divide in the time lag, with

it responding earlier than the average signal in the west at certain locations. The

regions that it responds ahead tend to be shallower coastal locations, where mixing

occurs [68]. Para-Pseudocalanus is a small species of copepod and can be seen to

be responding ahead of the average signal in the north of the region. Further south it

responds behind the average signal. It is thought to be adversely affected by rising

temperatures [108] and so may be moving to higher latitudes, causing the change

in abundance in the north North Sea to occur more rapidly than the average signal.

The time delays can also be taken as a function of space for each species and

clustered as in figures 4.7. The first cluster contains copepod species Calanus fin-

marchicus and total abundance of Calanus copepods. These species seem to be re-

sponding ahead of the average signal in the north region, where mixing with oceanic

waters occurs. C. finmarchicus is a cold water copepod species [117], which is

thought to be moving northwards as sea surface temperature changes [74]. It is par-

ticular sensitive to temperature changes in the North Sea [75], which may explain

why it responds ahead of the average signal. Cluster two contains species which

have a faster than average response in the north and respond behind the average
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a) Clusters on the first time course, where cluster one is blue, cluster two is orange
and cluster three is red.

b) Centres for the first time course.

Figure 4.4: Plot of the clusters on the first principal component for the Fourier
transformed data. In the plots of the averages the centre of cluster one is shown in
blue, cluster two in green and cluster three in red.
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a) Clusters on the second time course, where cluster one is blue, cluster two is
orange and cluster three is red.

b) Centres for the second time course.

Figure 4.5: Plot of the clusters on the second principal component for the Fourier
transformed data. In the plots of the averages the centre of cluster one is shown in
blue, cluster two in green and cluster three in red.
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signal in the south, particularly in the German Bight. This group contains a mix-

ture of dinoflagellates and a few diatom species. Dinoflagellates are thought to be

increasing in the northern North Sea and slightly decreasing in the south [99]. The

time delays show that the increase is occurring faster than the average signal, whilst

the decline is occurring more slowly, suggesting that changes in the behaviour are

not uniform in space. Where the dinoflagellates are responding behind the average

signal it may be possible to use the average signal to predict their future behaviour.

Cluster three is largely uninteresting as the species have close to no time delay,

which means it may consist of those with mostly zero weight under the sparsity

constraint.

4.3.6 Relationship Between the Plankton and Climate

Figures 4.8, 4.9 and 4.10 show Pearson’s correlation coefficient between the prin-

cipal component and the Atlantic Multidecadal Oscillation, North Atlantic Oscilla-

tion index and Northern Hemisphere Temperature across space respectively. Even

when the false discovery rate is controlled the correlation is significant at a large

number of locations for all three climate measures. The correlation with the AMO

is statistically significant for the first component at 131 of the 183 locations and on

the second component at 136 of the 183 locations. This indicates a strong influence

of this trend on behaviour particularly for the second component. The Pearson’s

correlation coefficient is positive for the first component across most regions, ex-

cept for the very north. The coefficient lies in the range -0.6827 to 0.8036. On

the second component the correlation with the AMO is positive across most re-

gions, being particularly strong in the south coast and negative across the coast of

the British Isles. The difference in influence between coastal and non-coastal wa-

ters might be explained by the relationship between the AMO and currents [141],

as it is the influence on the circulation that is important to the plankton [56]. The

correlation for the second component is even higher, lying in the range -0.8555 to
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a) Time delay for Ceratium fuscus.

b) Time delay for Para-Pseudocalanus spp.

Figure 4.6: Time delays in for the first principal component for two frequently non-
zero species
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a) First cluster.

b) Second cluster.

Figure 4.7: Centres of the clusters for time delays as a function in space clustered
on species and the mean squared error for the distance from the centre of the cluster
plotted with species on the x-axis for principal component1.
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0.8814, which indicates a very strong relationship in some locations. The correla-

tion can be negative or positive due to the fact that there are a mixture of types of

species, some of which will have a positive response and others having a negative

response to climate effects. The sign of the loadings is chosen so as ensure the

mean is positive, so that where the correlation is negative this indicates that there

is more weight given to those species that are responding negatively to the climate

index. In these regions, where the correlation is negative, species that respond pos-

itively will have a negative weight. As previously discussed the AMO is thought

to be influential on the abundance of certain phytoplankton species [56], perhaps in

some cases even more so than temperature, and the first and second component are

mainly comprised of phytoplankton species.

The first principal component has a positive correlation with sea surface temper-

ature in the north. Since the SST is a spatio-temporal signal the Pearson’s correla-

tion coefficient can be calculated for local sea surface temperature at each location.

This relationship changes for higher principal components, with the second princi-

pal component showing a more positive relationship in the south east. This correla-

tion is significant for a large number of locations and is positive in the east. Since

the first principal component accounts for the largest proportion of the variance this

could be an indicator of how different functional groups with different joint be-

haviours dominate in different regions and how consequently these groupings have

different responses to climate change. for the first component the correlation with

the NAO is highest in the north North Sea, whilst for the second principal compo-

nent it is highest in the central North Sea. The NHT has the strongest correlation

with the first principal component in the northern North Sea and the second princi-

pal component has a positive correlation with the NHT in the central and southern

North Sea. The correlation with the NHT is positive where the average signal is in-

creasing over time and negative where it is decreasing, as the NHT signal shows an

increase across time. This correlation is significant at 88 of the 183 locations and the
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Pearson’s correlation coefficient lies between -0.5903 and 0.5582. For the second

principal component the correlation is less significant. From this it can be deduced

that the first component is comprised of a mixture of responses to the AMO and

the NHT and the second component is primarily a response to the AMO. Temper-

ature is known to be a major driver of the abundance of many zooplankton species

[12, 117, 21] and may influence certain phytoplankton too [155, 99] and so this

explains why the NHT signal is influential in driving the first component. The NAO

has a far weaker correlation with the first two components, suggesting it is a driver

of lesser importance. There is still some spatial structure in its relationship with

the first component, with the Pearson’s correlation coefficient taking more positive

values in the north North Sea. This is a strong indication that the joint behaviour of

the species is influenced by long term changes in climate over time. The plots show

that there is spatial variation in how the signal responds to climate, which supports

the hypothesis that there is spatial heterogeneity in plankton responses to climate

[108].

In order to show why taking in to account small time delays is important, it

is useful to look at the correlation with physical variables. Initially the analysis

was performed without taking in to account time delays. The spatial pattern of the

sparsity parameter and the principal components was repeated across higher com-

ponents, suggesting that without taking in to account misalignment the method was

far less effective at separating out different functional groupings. Furthermore when

regressing against physical variables the correlation was shown to be significant at

only a small proportion of the locations. Figure 4.11 shows the number of loca-

tions where the regression between the Northern Hemisphere Temperature and the

first principal component is significant when controlling the false discovery rate for

both the Fourier and non-Fourier analysis. The red line shows the p-value with lo-

cations ordered by increasing p-value across the x-axis. Those with a p-value below

the blue line are statistically significant. It is clear to see that the Fourier principal
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components correlate far more strongly with the physical variables. This may be

because they are more effective at separating out different groupings. It is therefore

necessary to take in to account time delays between species, which indicates that

not all species respond to climate variables at the same time.

4.4 Modelling Seasonal Data using the WinCPR

Whilst studying yearly averages can give an indication of how the behaviour of the

plankton has changed in the long term, studies of the monthly data can be used to

determine how seasonal cycles have changed in time. Figure 4.12 shows the spar-

sity parameter as estimated from the monthly data. There is less spatial variability

in the sparsity parameter for the first principal component than there was for the

yearly data, although there is a clear north-south divide in the plot showing the

number of principal components in space. The dominant model of variability for

the monthly data is the seasonal cycles. The seasonality of the plankton is discussed

in a number of other studies [14, 25, 79]. From the sparsity parameter on the first

component and the number of components, there is a clear north-south divide. This

indicates more variability in the southern region, due to the larger number of func-

tional groups, indicating a higher diversity in the seasonal behaviour. The warmer

and shallower waters in the southern North Sea [123] may have an impact on sea-

sonality, as seasonal blooms can be driven both by light penetration [111] and by

temperature [79]. This north-south divide is seen in subsequent components, al-

though the sparsity pattern has less structure in space. The monthly data tends to

have a higher sparsity parameter on the first component than the yearly data. This

may be because the seasonal patterns obscure long term trends [25] and so differen-

tial responses to long term climate trends are not apparent compared to shorter term

responses to seasonal cycles, which may show less differentiation between species.

Figure 4.13 shows the first principal component and the first loading vector clus-
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a) Pearson’s correlation coefficient for the first principal component.

b) Pearson’s correlation coefficient for the second principal component.

Figure 4.8: Plot of the correlation coefficients between the principal components
for the Fourier transformed data and the Atlantic Multidecadal Oscillation.
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a) Pearson’s correlation coefficient for the first principal component.

b) Pearson’s correlation coefficient for the second principal component.

Figure 4.9: Plot of the correlation coefficients between the principal components
for the Fourier transformed data and the NAO.
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a) Pearson’s correlation coefficient for the first principal component.

b) Pearson’s correlation coefficient for the second principal component.

Figure 4.10: Plot of the correlation coefficients between the principal components
for the Fourier transformed data and the Northern Hemisphere Temperature.



Chapter 4. The Interpolated Data Modelled using Sparse PCA 129

a) The first non-Fourier principal component and the NHT.

b) The first Fourier principal component and the NHT.

Figure 4.11: Plot showing the number of locations where the correlation between
the first principal component and the physical variables is significant when control-
ling the false discovery rate for both the Fourier and non-Fourier PCA. The x-axis
is the locations ordered by increasing p-value and the p-values are plotted on the
y-axis.
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tered across space. There is a clear regionalisation here, although this is differently

defined depending on whether one considers the signal or the loading vector. On

the time courses the third cluster dominates the central region, whilst the second

dominates the north and the south. Cluster one is defined on the north east corner.

The time courses are almost entirely dominated by seasonality and are difficult to

distinguish, although it appears that the maxima of the oscillation occur slightly

later for the time course on the third cluster, the one defined on the central North

Sea. The least intuitive result is that the southern North Sea and the north west have

been clustered together. The clusters on the loading vectors define a clear regional-

isation in to southern, central and northern North Sea. This suggests that the spatial

patterns in the seasonal cycles of the plankton are mostly driven by the differences

in temperature between the north North Sea and the southern North Sea, which cor-

responds with existing knowledge that suggests that plankton blooms may occur

earlier at warmer temperatures [79, 26].

In order to represent changes in the seasonal cycle one can look at the instan-

taneous frequency of the signal. The cycles are not perfectly sinusoidal, which is

seen in the instantaneous frequencies (see figure 4.14). This means that abundance

may be increasing or decreasing at different rates throughout the year. The median

value of the instantaneous frequencies tends to lay around 1/12, which suggests that

the signals are dominated by yearly cycles. Figure 4.15 shows the first and second

principal components for locations 2 and 167 in the Fourier domain. Across all

components there is a peak around 0.081, which corresponds to an oscillation with

period 12 months. This agrees with what can be intuitively learned from looking

at the time courses, that the components on the monthly averages are dominated

by the yearly cycles. There is also a peak in component one at location 2 and both

components at location 167 around 0.166. This corresponds to an oscillation with

period around 6 months. This may be due to the fact that some species have two

blooms in the course of a year [111], one in spring and another in summer, and so
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this oscillation captures that behaviour. Some care must be taken in interpreting this

however, as the second oscillation may be due to harmonics in the data.

4.5 Discussion

This chapter shows the effectiveness of sparse species PCA as a tool for decom-

posing spatial, temporal and species structure in the CPR data in a way that is

interpretable. The sparsity parameter and the number of components, which can

be viewed as measures of diversity, show spatial structure. In particular they take

higher values in regions where mixing occur. There is also spatial structure in the

species groupings, which show the distinction between north and south and between

coastal and open regions. It is important to take in to account the time delays, partic-

ularly when investigating the influence of climate variables. When the time delays

are not taken in to account the correlation with the climate variables is generally

weak, whilst the correlations are significant at more locations when the delays are

accounted for. This suggests that species are responding to the climate variables at

different times. Long term climate variation is shown to have a statistically signif-

icant relationship with the WinCPR data, as does the AMO. Comparing this with

previous studies of the physiology [48, 56], which have shown responses of cer-

tain species to temperature in experiments and have investigated the effect of water

column mixing on diatom species, this can be interpreted as a causal relationship.

Spatial structure is also seen in the monthly data, with increased diversity in the

southern part of the region. In the Fourier domain the data can be show to have

oscillations with a 12 month period and a 6 month period, the first being interpreted

as those species with annual blooms and the latter those species which have two

blooms per year. The methodology allows for further insights in to the complex

structure, as it produces summaries of behaviour in the different dimensions. In this

chapter it has been shown that this allows an understanding to be gained that would
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a) Sparsity parameter on the first component.

b) Number of components.

Figure 4.12: Values of the sparsity parameter and number of principal components
for the monthly data.
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a) Clusters on the first principal component.

b) Clusters on the first loading vector.

Figure 4.13: Clusters on the first PC and the first loading vector for the monthly
data. For the centres of the clusters, cluster one is shown in blue, cluster two in
green and cluster three in red.
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(a) First principal component at location 2. (b) Second principal component at location 2.

(c) First principal component at location 167. (d) Second principal component at location 167.

Figure 4.14: Plot showing the instantaneous frequencies in blue and the median
of those frequencies in red for the first and second principal components at two
locations.
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(a) First principal component at location 2. (b) Second principal component at location 2.

(c) First principal component at location 167. (d) Second principal component at location 167.

Figure 4.15: Plot showing the principal components in the Fourier domain for the
first and second principal components at two locations.

not have been possible without the statistical tools. It is shown that sparse PCA

can be used to investigate structure across space and time whilst studying multiple

species, which has not been done using the CPR data before [25].
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Chapter 5

Modelling the Raw CPR Data

5.1 Overview

In order to better capture the spatial structure a larger spatial region than the North

Sea is required. Raw data for the 109 species included in the WinCPR dataset is then

gridded using Kernel smoothing (see equation 2.3), which is used to grid the data by

interpolating the value at the centre of each grid square, for the North East Atlantic.

The spatial grid is chosen to be 1 degree by 1 degree and extends from 20 degrees

west to 10 degrees east and from 42 to 65 degrees north. The raw CPR data contains

abundances for species by year, month, longitude and latitude. In order to carry out

the analysis the data is interpolated in space and smoothed in both space and time

using Kernel smoothing methods [167] then gridded in space. The spatial grid is

shown in figure 5.1. Spatial PCA is used by Beaugrand et al [31, 25] to investigate

spatio-temporal structure across single species at a time. Since it is impossible to

look at multiple species at once with this kind of analysis they investigate indicator

species only, which are species thought to be indicative of the behaviour of the sys-

tem as a whole. In this thesis spatial PCA is carried out on Calanus finmarchius,

which is a cold water copepod; Calanus helgolandicus, a warm water copepod and

phytoplankton colour, which is thought to be an indicator of total phytoplankton
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Figure 5.1: Plot of the pixel locations for the gridded data across space.

biomass. Whilst such an analysis can give a general indication of the behaviour

of different species groupings, the drawback is that the choice of indicator species

has to be drawn from various assumptions about the data. In order to explore func-

tional groups of species sparse PCA (see section 2.3) is carried out first on spatially

averaged data to give an overview of their joint behaviour across the whole region

and then at each location in order to determine spatial structure, with the weights as

functions of species and the components as functions of time (see figure 2.2).

5.2 Methods Used in this Chapter

In this chapter the raw CPR data has been gridded and smoothed for each month

separately using Kernel Smoothing (section 2.1) and then yearly averages are taken.

Recall that Kernel Smoothing can be used both for interpolation and smoothing, as

missing data is estimated based on weighted sums of the observed data at nearby

locations, where the weights are a function of the distance which is maximised

at zero. Spatial PCA, where the weights are functions of location and the com-
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ponents are functions of time (section 2.2), is used in this chapter to analyse the

spatio-temporal behaviour of several indicator species. The components represent

the dominant trends for the indicator species and the weights show the spatial pat-

tern of these trends. Sparse species PCA (sections 2.2 and 2.3) is then used on

spatially averaged data to find species assemblages across the entire region. Recall

that this analysis can be used to select keystone species by forcing the weights of

rarer species to be zero and that it will also find the joint behaviour of these key-

stone species. This analysis is also repeated across each location to determine how

both dominant species groupings and common trends vary across space, which is

assessed using cluster analysis to find regions where the signals are similar (sec-

tion 2.4). Spatial variability is also explored using measure of diversity, which in

sparse species PCA is represented by the number of components, i.e. the number

of assemblages, and the sparsity parameter, the size of these assemblages. Finally

the relationship between the dominant trends at each location and various poten-

tial climate drivers is explored using Pearson’s correlation coefficient (section 2.5),

which as previously described is a measure of both the strength and the direction of

the relationship between two variables. In this case a strong relationship between

a component and a climate variable might be seen as an indication of causality if

there is a biological mechanism that might explain the relationship.

5.3 Spatial PCA on Indicator Species

5.3.1 Spatial PCA for Phytoplankton Colour Index

Figure 5.2 shows the first principal component and loading vector for phytoplankton

colour. The first component shows a stepwise increase post 1990, in that the aver-

age signal is greater after 1990 than before, perhaps corresponding to the ‘regime

shift’. This can be interpreted as a significant change in biomass of phytoplank-

ton on average recorded after 1990 and as can be seen from the component this
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a) The first loading vector.

b) The first principal component.

Figure 5.2: Plot of the loading vector and the first principal component for phyto-
plankton colour.
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a) The second loading vector.

b) The second principal component.

Figure 5.3: Plot of the loading vector and the second principal component for phy-
toplankton colour.
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change is not gradual. Since the loading vector is positive across the entire region,

it can be concluded that the phytoplankton colour index is on average increasing

across the entire North East Atlantic, indicating a total increase in phytoplankton

abundance. The increase in total phytoplankton biomass has been reported in other

studies [13, 99]. However since this index is a representation of biomass only this

is not informative as to how the structure community as a whole is changing [99]

and it may be that certain species are decreasing or showing no long term change

in abundance. Small species of phytoplankton may also be underestimated by the

CPR survey due to the size of the mesh [68], as cells that are small than the mesh

are less likely to be collected. This means that although this index can be used as

an indication of the overall change in phytoplankton, some care must still be taken

in the interpretation of this result.

The second component is an oscillation in time (figure 5.3) and is positively

weighted in the North West corner, whilst having negative weights in the North Sea

and the south west. The oscillation has a minimum just before 1990. One possibility

is that it may correspond to the AMO or a time-lagged version of the AMO, since

it has a similar period to the AMO and there is a possibility that this index might

be influential to certain phytoplankton species. Diatom species may be sensitive to

the AMO [56] and so this may explain why the AMO is a driver of phytoplankton

abundance in general. Comparing with the spatial pattern of the second principal

component on the sea surface temperature data, which is identified with the AMO

(figure 3.4), shows the AMO is positively weighted in the north of the region. This

may explain why the second principal component on the phytoplankton colour data

has positive weights in the north. The third principal component represents a shorter

term oscillation and has positive weights in the bay of Biscay and negative weights

north of Scotland. It is not clear if this is a response to a particular climate driver.
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a) The first loading vector.

b) The first principal component.

Figure 5.4: Plot of the loading vector and the first principal component for Calanus
finmarchius.



Chapter 5. Modelling the Raw CPR Data 143

a) The second loading vector.

b) The second principal component.

Figure 5.5: Plot of the loading vector and the second principal component for
Calanus finmarchius.
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Component NHT AMO NAO
1 -0.7057 / /
2 / -0.4473 /
3 / / 0.3830

Table 5.1: Pearson’s correlation coefficients between the first three principal com-
ponents of Calanus finmarchicus and the climate indices.

5.3.2 Spatial PCA for Calanus finmarchicus

Figures 5.4 and 5.5 show the first and second principal component for Calanus

finmarchius respectively and table 5.1 shows the Pearson’s correlation coefficients

between the principal components for Calanus finmarchius and different climate in-

dices. In the first principal component the cold water species [117] is most strongly

weighted in the north and shows a rapid decline over time. It is believed that one

of the effects of climate change is that warm water species have moved northwards

with rising temperatures, whilst cold water species begin to loose out due to the

effects of climate change [12]. The trend has positive weights across the region,

suggesting this decline is happening across the whole North East Atlantic, agreeing

with pre-existing knowledge about the behaviour of this species in response to cli-

mate change [74]. It has a negative correlation with the NHT warming trend, with

a Pearson’s correlation coefficient of -0.7057, again showing that as temperatures

rise the abundance is decreasing across the North East Atlantic.

The second principal component shows an oscillation in time and is negatively

correlated with the AMO with a Pearson’s correlation coefficient of -0.4473, sug-

gesting some link between the AMO and C. finmarchicus. The third principal com-

ponent is an oscillation with a peak just before 1990 and has positive weights in

the central north of the region. It correlates positively with the third component of

sea surface temperature, the NAO signal, with a Pearson’s correlation coefficient of

0.3830. The NAO is thought to have an influence on C. finmarchicus [59], although

this is far less important than the general warming trend [74].
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5.3.3 Spatial PCA for Calanus helgolandicus

Component NHT AMO NAO
1 0.7273 / /
2 / / /
3 / -0.3819 /

Table 5.2: Pearson’s correlation coefficients between the first three principal com-
ponents of Calanus helgolandicus and the climate indices.

The first principal component on Calanus helgolandicus, which is a warm wa-

ter copepod [117], shows a general trend of increasing abundance across the North

East Atlantic (figure 5.6), particularly in the north where it is strongly positively

weighted. This trend also has a significant correlation with the first principal com-

ponent on the non-detrended sea surface temperature data over the North East At-

lantic, which was interpreted as being the NHT warming trend. The Pearson’s cor-

relation coefficient is 0.7273 and the correlation is significant with a p-value of less

than 0.05. The Pearson’s correlation coefficients between the principal components

for Calanus helgolandicus and different climate indices are shown in table 5.2. The

relationship between the first component and the NHT indicates that whilst C. fin-

marchicus is decreasing across the entire North East Atlantic, C. helgolandicus is

increasing. The rate of increase in the northern North Sea supports the theory that

warm water species are replacing cold water species at higher latitudes [12].

The second principal component (figure 5.7) is short period oscillation, most

strongly weighted in the North Sea. It has some correlation with the third sea sur-

face temperature component, which was identified with the NAO. As with C. fin-

marchicus the NAO is thought to influence the abundance of C. helgolandicus [59],

although it has an opposite effect. This demonstrates that shorter term oscillations

are important to plankton abundance as well as long term warming trends. The third

principal component is also an oscillation but is most strongly weighted in the south

west. It correlates negatively with the second component of the sea surface temper-
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a) The first loading vector.

b) The first principal component.

Figure 5.6: Plot of the loading vector and the first principal component for Calanus
helgolandicus.
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a) The second loading vector.

b) The second principal component.

Figure 5.7: Plot of the loading vector and the second principal component for
Calanus helgolandicus.
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ature, which was identified with the AMO, with a Pearson’s correlation coefficient

of -0.3819, suggesting the AMO has a lesser influence on C. helgolandicus.

5.4 Species Principal Component Analysis for Spatially Aver-

aged Data

5.4.1 Averaged Zooplankton Data

Component NHT AMO NAO
1 -0.7017 / /
2 / / /
3 / -0.5202 /

Table 5.3: Pearson’s correlation coefficients between the first three principal com-
ponents of the zooplankton data averaged over space and the climate indices.

In using spatial PCA significant species must be chosen by making assump-

tions about the behaviour of the dataset. The strength of sparse PCA is that species

are automatically chosen from the data without any prior assumptions about their

importance. Rather than considering all species together, which can be problem-

atic given differences in the ways in which different groups are counted, two large

groups are considered separately: the zooplankton and the Diatoms.

Figure 5.8 shows principal components on the zooplankton community for data

averaged over the North East Atlantic. The first component has a strong negative

correlation with the NHT warming trend, with a Pearson’s correlation coefficient of

-0.7017, see table 5.3. This trend accounts for a large portion (50.87%) of the to-

tal variation in the abundance across all species averaged in space. Amongst those

species whose loadings have a positive real part are Chaetognatha traverse, Echin-

oderm larvae and Calanus helgolandicus. Chaetognatha are a species of marine

worms and are found both in cold and in temperate waters [68], they often prey

upon Copepods and next to Copepods are the most numerous species of zooplank-
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ton [68]. They are also found exclusively amongst the plankton [68]. Echinoderms

are a group of marine animals, which includes both starfish and sea urchins. Whilst

the adults live in primarily benthic communities, the larvae are pelagic and form

part of the plankton [88]. These species are increasing along with rising sea surface

temperatures. Calanus finmarchicus has instead a weight with a negative real part,

indicating its abundance is on average over the whole North Atlantic declining in

time, which agrees with the individual species analysis. Other species with weights

with negative real parts include Para-Pseudocalanus spp., Acartia spp., Oithona

spp. and Pseudocalanus spp. (adult atlantic). Para-Pseudocalanus and Acartia

are both small species of copepod, which are more abundant in the northern North

Sea than in the southern North Sea [68], suggesting a negative relationship with

temperature. Oithona and Pseudocalanus are also species of copepod. Since the

first component accounts for a large proportion of the variation it is clear that the

climate warming trend is an important driver for zooplankton species and the dif-

ference in the sign of the weights between different species suggests that increasing

temperatures will lead to a dramatic change in the composition of the zooplankton

community [132, 30, 22, 21].

The time signal for the second component on the spatially averaged zooplankton

abundances is an oscillation with a minimum around 1970 and a peak in the mid-

1990’s. The taxa Centropages typicus, Podon spp., Evadne spp., Chaetognatha

abundance and Echinoderm larvae have strong weights on the second component

all with negative real parts. Centropages typicus is a calanoid copepod. Although

both Podon and Evadne can be found in open oceans they are most common in

coastal regions [68] and the spatial pattern of their abundance has a tendency to

be patchy [68]. Chaetognatha and Echinoderm larvae are found in many regions.

One possibility therefore is that the second component could relate to some coastal

effect not determined by sea surface temperature.

The third component on the zooplankton community accounts for 11.37% of the
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total variation and is correlated with the second sea surface temperature component

with a Pearson’s correlation coefficient of -0.5202 (table 5.3), which is driven by the

AMO. Centropages typicus, Evadne and Chaetognatha eyecount all have weights

with positive real parts. Echinoderm larvae and Calanus finmarchicus conversely

have weights with negative real parts. In the spatial PCA for Calanus finmarchi-

cus it was shown that the second component on the sea surface temperature was

negatively associated with the second species component, suggesting an inverse re-

lationship between the AMO and C. finmarchicus. The simple benthic zooplankton

taxa Copepod nauplii has a very strong negative weight on the third component.

As previously discussed the AMO can have an influence on water column mixing

[56, 43] and so might have an effect on plankton though its influence on the mixed

layer depth.

5.4.2 Averaged Phytoplankton Data

Figure 5.9 shows species principal components for diatom species averaged over the

North East Atlantic. The most important influence seems to be the AMO. Although

the results of the SST analysis showed that the AMO was not a particularly impor-

tant driver of SST in the North Sea, it does have an influence on the diatoms in this

region. This implies that there is an indirect effect of the AMO on local climate in

this region, perhaps linked to its influence on currents and wind speeds [141], which

in turn influences the behaviour of the diatoms. This suggests that diatoms are not

affected by temperature, aside perhaps from a secondary effect cause by changes in

their predators, so much as hydro-climatic variability [56]. The first component of

the phytoplankton communities accounts for 43.19% of the total variation across the

different species averages and is positively correlated with the second sea surface

temperature principal component. The time signal resembles an oscillation with a

period of about 50-60 years and a minimum around 1980. Almost all of the species

in the phytoplankton group are diatoms and have positive weights with respect to
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a) First principal component (blue) and the first principal component on the sea
surface temperature multiplied by minus one (red).

b) Second principal component (blue) and the second principal component on sea
surface temperature (red).

c) Third principal component (blue) and the first principal component on sea
surface temperature (red).

Figure 5.8: Plots of the first three species principal components on the zooplankton
subgroup averaged over the North East Atlantic.
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the first component, such as types of Pseudo-nitzschia and Skeletonema costatum.

The only negatively weighted species are the two diatoms Bacillaria paxillifer and

Gyrosigma spp.. This suggests for the most part diatoms are more abundant in the

positive phase of the AMO and that the average behaviour across Diatom species is

influenced by the AMO.

The second component on the phytoplankton is an increasing trend in time and

accounts for 20.8% of the variation. About two thirds of the species have weights

with positive real parts, amongst those are diatom species Paralia sulcata and Gy-

rosigma spp.. Species with negative weights include: Thalassiothrix longissima,

Fragilaria spp. and Navicula spp., which are also all diatoms. This may represent

the response of Diatom species to the warming trend, which may be a secondary

driver of their abundance. Other studies have shown that this change is heteroge-

neous across the North Sea, with a general increase in Diatom abundance in some

regions, a decrease in others and no change in some areas [99]. The averaged trend

will not capture differences in spatial responses, which shows why it is important

to analyse the data at a finer resolution too. The third component explains 7.19% of

the total variation and has a positive correlation with the fourth temperature com-

ponent. The time signal shows a small increase over time, along with an oscillation

of period around 15 years.

5.5 Multivariate and Spatio-Temporal Structure Modelled by

Sparse PCA

5.5.1 Modelling Across all Species

The analysis can be carried out over each location separately rather than spatially

averaged data in order to determine spatial variation in responses. Figure 5.11

shows the values of the sparsity parameter for the gridded data across all species.

There is an east west gradient in the first sparsity parameter, which might be at-
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a) First principal component (blue) and the second principal component on the sea
surface temperature (red).

b) Second principal component (blue) and the first principal component on sea
surface temperature (red).

c) Third principal component (blue) and the fourth principal component on sea
surface temperature (red).

Figure 5.9: Plots of the first three species principal components on the phytoplank-
ton subgroup averaged over the North East Atlantic.
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Figure 5.10: Plots of the Pearson correlation coefficients between the principal com-
ponents for the plankton data and the principal components on the sea surface tem-
perature data, see figure 3.4.

tributable to physical variables including currents, bathymetry and salinity and the

influence of these variables on the plankton [56, 105, 9]. The salinity has an east-

west gradient [9], as does the bathymetry [9], and so either of these variables may

be influencing this structure. The sparsity parameter on the first principal compo-

nent is in general higher in the shallower regions, indicating a greater degree of

diversity here. Subsequent sparsity parameters have less spatial structure but the

number of components is structured, with more groups being needed in the ocean

shelf region [123], where waters are shallower. Figure 5.12 shows clusters on the

first principal component and the centres associated with each cluster. The inter-

pretation of this is that the regions are defined by species assemblages with similar

functional behaviour, possibly because they are subject to similar climate effects.

There is a north south divide in the spatial regions. In the north, covered by cluster

one, there is an increasing trend. In the other two clusters the change is less dra-

matic but there seems to be a slight decline in the trend. These regions might be a

response to the differences in general abundance trends across the north and south
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a) Sparsity parameter on the first component.

b) Number of components.

Figure 5.11: Values of the sparsity parameter and the number of components plotted
for the whole of the North East Atlantic.
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Figure 5.12: Clusters on the first principal component for all species.

of the region. This is seen in the phytoplankton, where although total abundance

is increasing there are differential responses between diatoms and dinoflagellates

across space [99], and in the zooplankton as changes in the composition across dif-

ferent regions [26, 32, 75]. As these trends are aggregations of different types of

species they represent the average changes in abundance.

Spatial patterns might also be determined by the first loading vector. These clus-

ters might be interpreted as defining ecoregions because they are determined by the

dominant species. Figure 5.13 shows the clustering on the real part of the first load-

ing vector. The first cluster is mostly dominated by phytoplankton species. A few

zooplankton species have non-zero weights, for instance the cold water copepod

Calanus finmarchicus that has a negative weight in cluster three that covers mostly

the North Sea, where it is declining [74]. When clustering on the species instead of

a north south divide the regions are determined on an east west divide. This may

be due to the effect of bathymetry, as the North Sea is shallower than the rest of

the North East Atlantic [123] and so may support different subgroups of species.

Figure 5.14 shows the Pearson’s correlation coefficient between the first principal
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Figure 5.13: Clusters on the real values of the first loading vector for all species.

component on all species compared with the NHT warming trend and the AMO. In

the North Sea region there is a strong positive correlation with the AMO and the

warming trend. The correlation with the NHT is positive in much of the North Sea

but far weaker than the relationship with the AMO. From this it can be concluded

that the first principal component is driven by a mixture of the warming trend and

the AMO, as it was for the WinCPR dataset. This is due to having combined species

that are sensitive to temperature [9, 98, 117] with those that are more sensitive to

wind intensities [56].

Clusters on the second principal component for the data across all species are

less well defined than on the first principal component, although the North Sea

seems to be separated slightly from the rest of the region, since most of cluster one

is confined to the North Sea. The time signal in cluster one shows a slight increase.

Cluster three also has an increasing time signal and there is a decline in cluster

two. For the clusters on the real values of the second loading vector cluster two is

mostly confined to the North Sea. Of the zooplankton in the second cluster Calanus

helgolandicus and Echinoderm larvae are on average positively weighted, whilst



5.5 Multivariate and Spatio-Temporal Structure Modelled by Sparse PCA158

Calanus finmarchicus is negatively weighted. This means that those zooplank-

ton that respond positively to temperature have positive weights in this cluster and

those that respond negative have negative weights [26, 32, 75]. The most strongly

weighted phytoplankton species in this cluster are Paralia sulcata, which is influ-

enced by changes in temperature [64], and Cylindrotheca closterium, which both

have weights with positive real parts. The other two clusters are mostly dominated

by phytoplankton species. For the second principal component the North Sea region

has a slight positive correlation with the NHT warming trend, which agrees with the

distribution of positive and negative weights between cold and warm water species.

This suggests that as the temperature warms a change in species is observed. There

is a positive correlation between the second principal component across most of the

open ocean and the AMO. In this region the phytoplankton species tend to have

strong positive weights, which can be influenced by currents [56]. The correlations

are, however, weaker than for the first principal component.

5.5.2 Results for the Zooplankton Group

There are a number of reasons that it might be advantageous to study different

species groups separately. Amongst these is the fact that zooplankton and phyto-

plankton may respond to different trends and that they have different biomasses

[68], which makes it difficult to compare them.

Figure 5.15 shows the sparsity parameter for the first four principal components

across the entire time period from 1958 till 2009 for the zooplankton communities

and the number of principal components found by thresholding the culmative ex-

plained variance. Whilst the number of components can be seen as representing the

number of distinct assemblages, or the diversity of assemblages, the sparsity param-

eter is a representation of the number of different species in each assemblage. The

sparsity parameter on the first component (see figure 5.15 a.) follows the pattern

of the bathymetry of the North East Atlantic. Where the oceanic shelf is higher,
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a) Regression against the NHT warming trend.

b) Regression against the AMO.

Figure 5.14: Plots of Pearson’s correlation coefficient between the first principal
component at each location and the climate indices.
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which follow a curved line from about 5◦ west in the north to about 15◦ west in the

south, the sparsity parameter is also larger. By contrast in the open ocean where

waters are deeper the sparsity parameter is lower, meaning fewer species are in-

cluded when calculating the first component. One explanation for this might be

that the first component includes a number of species which are only found in shal-

lower waters, such as species of planktonic worms [68]. The sparsity parameter on

the second component is less structured in space. The number of principal com-

ponents is higher in the south than in the north, particularly in the southern North

Sea and south of the United Kingdom. The Bay of Biscay, which is known to be

a diverse and fertile region [62] since it is a mixing region [57], also has a large

number of principal components. This could be viewed as a measure of the number

of functional groups of species, which could in turn been seen as a measure of di-

versity. This indicates a spatial correlation between sea surface temperature, which

is higher in the south, and diversity [9]. Figure 5.16 shows clusters based on the

real values of the loadings for the first principal component on the data for the full

time course restricted to zooplankton species. Cluster one in the spatial plot is light

blue, cluster two is orange and cluster three is dark red. In the spatial plot cluster

two covers most of the north of the region, cluster one covers the edges between

clusters two and three and cluster three is mostly restricted to the southern part. In

cluster one, the mixing region, species such as Temora longicornis, a small copepod

[68]; Centropages typicus, an oceanic copepod [68], and Chaetognatha Traverse,

a marine worm [68], have positive weights. Oithona spp. and Evadne spp., both

of which are copepods, meanwhile are negatively weighted. In cluster two Podon

spp. and Evadne spp. are positively weighted and Calanus finmarchicus has a neg-

ative weight. The average time course in this region is increasing, suggesting that

the first two species are increasing in abundance and C. finmarchicus is declining.

Positively weighted species in cluster three are Acartia spp., Oithona spp., Evadne

spp. and Pseudocalanus spp. (Adult Atlantic), all species of copepod [68]. The
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a) Sparsity parameter on zooplankton species and across all time for the first
principal component.

b) Number of principal components for zooplankton species and across all time.

Figure 5.15: Sparsity parameter and number of principal components across zoo-
plankton species for the entire time course from 1958 till 2009.
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Regions based on zooplankton species over all time.

Figure 5.16: Plots of regions over all time based on clusters on the first loading
vector. Cluster one is blue, cluster two is orange and cluster three is dark red.

regions defined on the zooplankton seem to be governed both by temperature and

sea depth [123], suggesting both are drivers of species composition. Figure 5.17

shows the clusters on the first principal component, with cluster one in blue, cluster

two in orange and cluster three in dark red. Clusters one and three on the signals

overlap with clusters one and two on the loading vector, covering the north of the

region (see figure 5.16). The difference in the spatial pattern on the signals is that

there is a east west division in the north of the region. Cluster one corresponds to

an increasing trend in the signal, therefore those species with positive weights in

this region are increasing and those with negative weights are in decline. In clus-

ter three the trend is also increasing, although the increase seems to begin earlier

and the overall trend is shifted downwards. Cluster two exhibits an upwards trend

and the spatial region overlaps with the spatial region for cluster three on the load-

ing vectors, which implies those positively weighted species, such as the temperate

species Acartia spp are increasing in abundance in the oceanic part of the North East

Atlantic. The temporal trend also seems to be governed by latitude and sea depth
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[123]. This could be related to the rate of warming, which varies across the North

East Atlantic, and seems to be more pronounced in the southern North Sea than the

rest of the region (see figure 3.1). the clusters on the first principal component, with

the colour scheme as before. Clusters one and three on the signals overlap with

clusters one and two on the loading vector (see figure 5.16), covering the north of

the region. The difference in the spatial pattern on the signals is that there is a east

west division in the north of the region. Cluster one corresponds to an increasing

trend in the signal, therefore those species with positive weights in this region are

increasing and those with negative weights are in decline. In cluster three the trend

is also increasing, although the increase seems to begin earlier and the overall trend

is shifted downwards. Cluster two exhibits an upwards trend and the spatial region

overlaps with the spatial region for cluster three on the loading vectors, which im-

plies those positively weighted species, such as the temperate species Acartia spp

are increasing in abundance in the oceanic part of the North East Atlantic. The tem-

poral trend also seems to be governed by latitude and sea depth [123]. This could

be related to the rate of warming, which varies across the North East Atlantic, and

seems to be more pronounced in the southern North Sea than the rest of the region

(see figure 3.1). Figure 5.18 shows the regions based on the clusters on the second

loading vector. They are less well defined in space but there is still a north-south

divide. Clusters one and two cover most of the south of the region. Echinoderm

larvae and Oncaea spp. have positive weights in cluster 1. In cluster 2 Centropages

typicus and Pseudocalanus spp. (Adult Atlantic) have positive weights. Cluster 3

covers the north of the region and Temora longicornis,Acartia spp., Evadne spp.

and Calanus finmarchicus are all positively weighted in this region. The clusters

on the time courses for the second component are poorly defined in space. There is

some evidence of a east west divide. There is a slight upward trend in cluster two,

a downward trend in cluster one and cluster three is dominated by an oscillation,

perhaps attributable to the AMO, as the oscillation has a similar period to the AMO.
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a) Regions based on the time courses for zooplankton species. Cluster one is blue,
cluster two is orange and cluster three is dark red.

b) Time courses for each cluster, with cluster one shown in blue, cluster two in
green and cluster three in red.

Figure 5.17: Plots of regions based on the time courses for the first component over
all time.
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Regions based on zooplankton species over all time.

Figure 5.18: Plots of regions based on the second component over all time. Cluster
one is blue, cluster two is orange and cluster three is dark red.

Figure 5.19 shows the Pearson’s correlation coefficient between the first principal

component and the NHT trend and the AMO. There is a strong positive correlation,

in particular in the North, between the first principal component and the NHT. Com-

paring with the weights on two indicator species (see figure 5.20), it is possible to

see that Calanus finmarchicus and Calanus helgolandicus show greatest variation

in the northern North Sea, where the NHT has a positive relationship with the joint

behaviour. Calanus finmarchicus has negative weights in this region, implying a

negative relationship with temperature (i.e. the species is decreasing in abundance

as temperature increases). The warm water copepod Calanus helgolandicus has

positive weights, indicating the opposite relationship. This is supported by knowl-

edge of the physiology of these two species [117]. As with the averaged trend,

the NHT is a dominant driver of temporal behaviour of zooplankton species over

most regions. The correlation with the AMO is also positive in the northern North

East Atlantic and is strongest in the mixing region in the north along the oceanic

shelf. This suggests that where mixing occurs the AMO has more of an influence
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on the zooplankton group. Since phytoplankton production can be higher in mix-

ing regions [68] and certain species of phytoplankton are known to respond to the

AMO [56], this relationship between the zooplankton and the AMO in this region

may be a response to changes in their food supply. For the second component the

correlation with the NHT is weaker than for the first principal component, although

there is still a positive relationship in the North Sea. There is also a positive rela-

tionship between the second principal component and the AMO and NAO across

some regions, although the Pearson’s correlation coefficient rarely has an absolute

value greater than 0.3 suggesting these are only weak correlations.

5.5.3 Results for the Diatom Group

Figure 5.21 shows the sparsity parameters for the first principal component on the

full time series restricted just to the Diatom data and the number of components.

On principal component 1 the sparsity parameter is highest in the north east, whilst

across subsequent principal components it shows little spatial structure. The num-

ber of components is highest in the southern North Sea and near coastal regions,

indicating a higher degree of diversity in these regions. Some of the species of

phytoplankton will prefer shallower waters and so will be more abundant in these

coastal regions [56]. Figure 5.22 shows clusters on the real values of the load-

ing vectors for the first principal component across the entire time course for the

phytoplankton species. The real parts of the weights are almost universally posi-

tive, meaning that all species are tending towards behaving in the same way. The

clusters divide the North East Atlantic in to three regions across longitude. The

first cluster covers primarily the shallower waters, including coastal regions and the

North Sea. Strongly weighted species in cluster one include the diatoms Gyrosigma

spp., a bottom-dwelling plankton that is often carried near to the surface in coastal

waters [68]; Guinardia delicatula, which prefers temperate coastal waters [78]; and

Dactyliosolen fragilissimus, which prefers northern temperate regions [78]. This
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a) Regression against the NHT warming trend.

b) Regression against the AMO.

Figure 5.19: Plots of Pearson’s correlation coefficient between the first principal
component on the zooplankton species at each location and the climate indices.
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a) Real part of the loading vector for the first PC on Calanus finmarchicus.

b) Real part of the loading vector for the first principal component on Calanus
helgolandicus.

Figure 5.20: Plots of the real parts of the weights on two indicator species for the
first principal component.
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a) Sparsity parameter on Phytoplankton species and across all time for the first
principal component.

b) Number of principal components for Phytoplankton species and across all time.

Figure 5.21: Sparsity parameter and number of principal components across Phy-
toplankton species for the entire time course from 1958 till 2009.
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Regions based on Phytoplankton species over all time.

Figure 5.22: Plots of regions based on the first component on the phytoplankton
over all time. Cluster one is blue, cluster two is orange and cluster three is dark red.

indicates that the shallower waters are dominated by temperate and coastal species.

Cluster three occupies the central region between clusters one and two. The most

strongly weighted species here are two species that prefer cosmopolitan environ-

ments [78]: Skeletonema costatum and Asterionellopsis glacialis. Cluster two pri-

marily covers the open ocean to the very west. There are a mixture of different types

of species that have large weights in this region, including: Bacteriastrum spp, a

temperate species [78]; Navicula spp.; Cylindrotheca closterium, a cosmopolitan

species [78], and Pseudo-nitzschia seriata, a cold water species known to produce

harmful toxins [78]. When clustering on the first principal component the regions

are slightly different, see figure 5.23. The first PC strongly resembles the behaviour

of the AMO, with the correlation being significant over half of the locations even

accounting for the false discovery rate. When comparing the correlation against

the centre of each cluster, this relationship is strongest in cluster one, which occu-

pies the north east of the North East Atlantic. The AMO explains 66.71% of the

variation in the centre of cluster one with the median subtracted and the Pearson’s
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correlation coefficient between the two is 0.7834. This is judged to be significant,

with a p-value of less than 0.0001. When decomposing the sea surface temperature

using spatial PCA the AMO is shown to have the most positive weights in a similar

region to cluster one, which may explain why it is more influential in this cluster.

The correlation between the AMO and the centres of the other two clusters is still

significant but the relationship is less strong, with a Pearson’s correlation coefficient

of 0.4164 in cluster two and 0.4329 in cluster three. On the second time course, the

regionalisation is divided along east and west, with clusters two and three cover-

ing the eastern part and cluster 1 in the west. The time courses also correlate with

the AMO somewhat, with this correlation being strongest in cluster two. Figure

5.24 shows the Pearson’s correlation coefficient between the first principal compo-

nent on the phytoplankton and the NHT warming trend and the AMO respectively.

Though there is a slight relationship with the NHT, there is a much stronger pos-

itive correlation with the AMO. Even controlling for the false discovery rate [35]

this correlation between the AMO and the first component is significant at around

275 locations. This means that for most of the North East Atlantic the AMO is the

most important driver on the joint behaviour of the Diatom subgroup, which agrees

with pre-exiting knowledge of their physiology [56]. The first component has some

correlation with the NHT trend but the Pearson’s correlation coefficient is smaller

than for the AMO. The correlation between the AMO and the second principal

component on the phytoplankton communities is positive across some regions but

is slightly less significant than on the first principal component. The relationship is

significant across 175 locations when the false discovery rate is controlled for.

5.5.4 Spatial Structure in Relation to Bathymetry

Figure 5.25 shows the depth of the sea across space. This is compared to the sparsity

parameter, which represents the group size. For the phytoplankton group this has

a reasonably significant positive correlation with the sparsity parameter on the first
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a) Regions based on the time courses for Phytoplankton species. Cluster one is
blue, cluster two is orange and cluster three is dark red.

b) Time courses for each cluster.

Figure 5.23: Plots of regions based on the time courses for the first component over
all time.
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a) Regression against the NHT warming trend.

b) Regression against the AMO.

Figure 5.24: Plots of Pearson’s correlation coefficient between the first principal
component on the phytoplankton species at each location and the climate indices.
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Figure 5.25: Spatial plots of the level below the sea surface, where a red pixel
represents shallow waters and a blue pixel represents deeper waters.

principal component (p-value of 0.0505), which means that where waters are shal-

lower the first PC is less sparse. Likewise there is a positive correlation between the

number of principal components on the phytoplankton species and the bathymetry,

indicating that in shallower waters more components are required to adequately ex-

plain the variability. The Pearson’s correlation coefficient for the AMO and the

first principal component for the Diatoms correlates with the Bathymetry with a

Pearson’s correlation coefficient of 0.3868, which indicates that there is some rela-

tionship between depth and the influence of the AMO on plankton, possibly related

to vertical mixing [68]. This indicates that the AMO influences the Diatoms more

strongly in shallower waters.

5.5.5 Mixing Regions as Described by Colour Plots

For ecoregions defined by species assemblages the divisions between regions might

be blurred, i.e. the meeting point of two biogeographical regions may be a mixing

region [161] and as has been shown in previous studies mixing regions have an
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effect on the composition of plankton communities [68]. Clusters are first found

using normal K-means on the real part (since PCA has been computed in the Fourier

domain each loading will have a real and an imaginary part) of the loading vector

and the centre of each cluster is found. Rather than assigning each location to a

single cluster, proportional membership of each cluster at each location is found

by taking the inner product for the real values of the normalised loading vector at

that location with the normalised centre of each cluster. This inner product can

take values between zero and one, with a value of one indicating the loading vector

at that location is identical to the centre of that particular cluster. Since this inner

product is found for each cluster, this produces a three dimensional vector at each

location which can be represented in MatLab using the RGB (red, green, blue)

colour scale. In this colour map the vector [1 0 0] gives a red pixel, [0 1 0] a green

pixel and [0 0 1] a blue pixel. Therefore a pixel that is completely one of these

colours indicates that the loading vector at that location is exactly the same as the

centre of one of the clusters. If the loading vector at a fixed location has some

agreement with more than one cluster the pixel will be a mixture of colours.

Figure 5.26 shows the RGB plot for the first loading vector on the zooplankton

and the first loading vector on the phytoplankton. For the zooplankton the northern

North Sea is mostly blue. There is a mixing region that is purple along the ocean

shelf north of Ireland. The north west is covered by the red cluster, whilst the

rest of the open sea is in green. It can be seen that the transition from the blue

to the red cluster is continuous. The regions defined on the phytoplankton follow

the bathymetry fairly closely. The North Sea is predominantly red, although there

is some green in the very southern part. The ocean shelf is covered by a green

cluster and the open sea is blue. At the edge of each cluster there is some mixing

of colours, suggesting that there is a mixture of species groups at the transition

between regions.
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a) Clusters on the first loading vector for the zooplankton.

b) Clusters on the first loading vector for the phytoplankton.

Figure 5.26: RGB plots of the clusters on the real values of the first loading vector.
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5.6 Simulation Studies

One remaining question that may arise is whether the spatial structure is genuinely

an artefact of the dataset or if it is a result of the smoothing. This can be verified

using a simulation study [168]. Data is randomised by selecting the time courses for

each variable at each location to be a randomly selected weight from the output of

the zooplankton analysis multiplied by a randomly selected principal component.

Gaussian random noise with a standard deviation of 0.01 is added to the simulated

data) The data is then smoothed as before using Kernel smoothing methods. Figure

5.27 shows the results of the analysis run on data simulated in this way. It can

be seen that the sparsity parameter has little spatial structure, save for having a

slightly higher value in the southern North Sea). There are also a number of areas

where the resulting loading vector is not sparse, leading to a sparsity parameter

taking the value 1. The clustering on the loading vector and the first principal

component indicates no spatial structure, with the cluster that a location belongs to

being seemingly random.

In order to find the footprint of the Kernel smoothing function a vector with zero

values except for at a single pixel is interpolated on to the spatial grid. In this case

the vector is chosen to be one over longitude 14.5◦W to 15.5◦W and between 54.5◦N

and 55.5◦N and zero elsewhere. The spatial pattern at a single time point estimated

from smoothing this data is shown in figure 5.28. This shows that pixels more than

five degrees apart are more or less independent under this smoothing function. This

again supports the suggestion that the spatial patterns are true features of the dataset

rather than artefacts of the smoothing.

5.7 Discussion

In this chapter the structure of the CPR data has been investigated over a larger spa-

tial region and further biologically interpretable results have been obtained. Both
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a) The sparsity parameter for the simulated data)

b) Clusters on the real values of the first loading vector for the simulated data)

Figure 5.27: Spatial patterns on randomised data.
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Figure 5.28: Plot of the footprint of the Kernel smoothing function.

spatial and species PCA are used to better understand the spatio-temporal variation

within the data and the influence of climate variables is explored. This shows that

the influence of climate varies both across space and species, with the warming

trend being important for most species of zooplankton and the AMO being influen-

tial on the Diatoms. It can also be observed that the results are more interpretable

when these two groups of species are considered separately. Whilst the spatial PCA

is useful for gaining an understanding of individual species variation, species PCA

provides an useful overview of joint variability across species groups. The spatially

coherent patterns in both diversity and regions determined by species groups can

be shown to be a result of the data rather than an artefact of the smoothing through

comparison with simulation studies. Physical factors that appear to impact spatial

structure include temperature, causing a north-south division; the presence of mix-

ing regions, such as the bay of Biscay and the northern part of the continental shelf,

and the bathymetry. Since these patterns are found from the ecological data without

prior knowledge, it can be concluded that they are highly significant.
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Chapter 6

Modelling Changes in

Biogeographical Regionalisation

6.1 Overview

In previous chapters a statistical learning approach has been taken to find structure

across space, time and species in the CPR data without prior knowledge of the ecol-

ogy or the physical oceanography. When these results are compared with existing

knowledge they are shown to be interpretable, in that they can be accounted for

using pre-existing knowledge of the ecosystem. In this chapter an application of

these techniques to a biological question, whether changes in the biogeographical

regions of the North Atlantic as defined by the plankton have occurred over the past

few decades, is explored. Various other studies have found a northwards shift in

zooplankton species [30, 22, 132]. The strength of the analysis in this study is it

allows one to gain an overview of the structure across all species. Ecoregions can

be found by taking whole communities in to account. Since no previous studies

have carried analysis across such a large number of taxa it is possible to gain new

insights about the community structure related to biogeographical shifts.

Regionalisation is defined by K-means clustering on either the time course or the
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weight vector, which are found using sparse species PCA. By dividing the dataset in

to two periods, before 1985 and after 1985, it is possible to run the analysis again on

each portion of the dataset. This in turn allows us to identify whether the ecoregions

have changed.

6.2 Methods Used in this Chapter

This chapter follows directly from the previous one, using the same dataset which

has been interpolated using Kernel Smoothing (section 2.1). The same method-

ology is used to find dominant species assemblages and their joint functional be-

haviour across space, namely sparse principal component analysis (section 2.3),

except that this analysis is now carried out on the data restricted to before 1985 and

the data restricted to after 1985 separately in order to assess how the structure has

changed. As described in chapter 2, sparse principal component analysis will find

joint behaviour of dominant or keystone species. This means that changes in the

loading vectors will represent changes in the dominant species and changes in the

time courses will represent changes in the joint behaviour of the dominant species.

Biogeographical regions are defined on either the loadings, which recall represent

ecoregions defined by dominant species assemblages, or on the time courses, in

which case they represent regions defined by joint functional behaviour, using K-

means clustering (as described in section 2.4). The main results of this chapter

therefore can be used to assess how the regions might have changed over time. This

can be interpreted as whether the regions of the North East Atlantic as defined by

the dominant species of plankton have changed before and after 1985, i.e. has there

been a ‘regime shift’ in the dominant plankton assemblages across space.
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6.3 Modelling Changes across all Species

6.3.1 Time Courses and Sparsity Parameters Across all Species

In the first instance the ‘regime shift’ is explored using data for all species together,

although later the zooplankton and the Diatoms will be considered separately. Be-

fore investigating changes in the ecoregions, one can look at the number of compo-

nents, sparsity parameter and time course before and after 1985. The ‘regime shift’

might be observed as a non-stationarity in the dataset (i.e. a change in mean or

variance of the signal) and this non-stationarity might exist in time or space. There

might be changes in the behaviour of communities across time or a change in the

spatial distribution.

Figure 6.1 shows the average principal components for the data across the entire

time period and the data restricted to before and after 1985 for all species. The time

courses before and after 1985 tend to follow closely the time course for the entire

period. This indicates that there is no regime shift in the temporal behaviour on

average across species. The first PC seems to on average be an oscillation, which

resembles the AMO.

Figure 6.2 shows the sparsity parameter for the first principal component on the

data before 1985 and the data after 1985. In the pre-1985 regime it tends to be

slightly higher in the north west, whilst after 1985 it is slightly higher in the south.

It is thought that on average species are moving north [30, 132], with warm water

species increasing in abundance further north and cold water species decreasing.

Whether this will lead to an overall increase in total numbers of organisms will

depend on whether the rate of increase of warm water species exceeds the rate of

decline of cold water species. One reason for the sparsity parameter in the north

decreasing after 1985 is that cold water species may be disappearing from this re-

gion as the average temperature increases or moving yet further north in to Arctic

waters [30]. This would imply that the rate of decline of cold water species is higher
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than the rate of increase of warm water species in the northern North Sea, although

some caution must be taken in interpreting these results as both phytoplankton and

zooplankton have been included in this analysis.

The number of components (see figure 6.3) seems to be lower post-1985. This

suggests that there are fewer distinct functional groups after this period. This may

also be a result of the movement of cold water species away from the region, sup-

porting the hypothesis that warm water species may not be increasing in abundance

at the same rate as cold water ones are disappearing [30]. Another interpretation is

that species are behaving in more similar ways after 1985, meaning fewer compo-

nents are required to explain most of the variation.

6.3.2 Changes in Regionalisation Across all Species

Changes in the ecoregions of the North East Atlantic are explored using the output

of the sparse PCA. The loading vectors are then used to define regions before and

after 1985. The interpretation of the loading vectors is that they represent domi-

nant species groupings and the sparsity constraint means that only those that con-

tribute most to the total variation are included, i.e. only the most dominant species.

Clustering on these finds spatial patterns defined by the dominant species groups

before and after 1985 based on the dominant species groups. These patterns are

not completely smooth in space, as can be expected since there will be some mix-

ing at the boundary regions. Figure 6.4 shows the clustering on the real values of

the first loading vector before and after 1985. There is a clear relationship with the

bathymetry, with the shallower waters being covered by cluster two in both regimes,

although this area is smaller after 1985. Cluster one covers most of the open sea.

Cluster three before 1985 covers some very small regions, whilst afterwards it cov-

ers the area where cluster one and one meet. There are several species common to

cluster one both before and after 1985, with Paralia sulcata, Skeletonema costa-

tum and Bacteriastrum spp. having positive weights both before and after 1985 on
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average in cluster one. There are also certain species that have strong weights in

cluster 1 on average before but not after 1985: Fraglaria spp. and Guinardia striata.

Likewise there are species that are strongly weighted after but not before: Navic-

ula spp and Cylindrotheca closterium, which is common in coastal waters [78].

The two regimes are comparable because the time courses follow the average time

course for the whole dataset. Therefore it is possible to conclude that there has been

some changes in the types of species occurring in these shallower waters. In cluster

one, the open sea, there is a high degree of overlap in which species have strong

weights both before and after. Odontella sinensis, Thalassiothrix longissima, Dity-

lum brightwelli and Eucampia zodiacus all have strong positive weights. Eucampia

zodiacus is a cosmopolitan species, which is found in many regions save for polar

waters [78], which explains its presence in the open sea cluster. Asterionellopsis

glacialis has a strong weight before but not after. This leads to the conclusion that

there has been relatively little change in the types of species in the open sea. The

regionalisation based on the first loading vector has changed relatively little pre and

post 1985, which may be due to having failed to distinguish spatial patterns due to

combining species that are recorded differently [160].

Figure 6.5 shows the clusters on the real value of the second loading vector

across all species. Cluster one covers the shallower waters in both the pre-1985

and the post 1985 data. There is not much change in those species that have large

weights on average in this region from before to after 1985. Those that have large

weights in cluster one include: Paralia sulcata, Skelentonema costatum, Ditylum

brightwellii, Eucampia zodiacus and Fragilaria spp.. Clusters two and three cover

the open ocean. A few zooplankton species have non-zero weights both before

and after 1985, namely Evadne spp., Podon spp. and Echinoderm larvae, but the

weights are mostly dominated by phytoplankton species. Talassiothrix longissima

and Bacteriastrum spp. have large weights both before and after 1985 in the open

sea. A few species have large weights after 1985 but not before, indicating some
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changes in the composition of species over the ‘regime shift’. These include Dity-

lum brightwellii and Guinardia delicatula. As with the first component there is

some change in species before and after 1985 but not in the spatial patterns, indi-

cating again the need to separate different species types. The regionalisation based

on the first principal component is less structured. There is a some suggestion of a

north south divide in the regionalisation, which may be attributable to the different

trends in the phytoplankton between the north and the south [99], with little change

before and after 1985. The regionalisation based on the second component is even

less structured, although there is a slight east-west gradient.

Across both components the regionalisation based around the species remains

similar in both regimes, being governed by the bathymetry. There is greatest change

in species in the shallower waters, suggesting a greater influence of climate vari-

ables in these areas. When both zooplankton and phytoplankton are considered

together the phytoplankton have the strongest weights, suggesting that it may be

useful to consider the two groups separately. The higher weighting of phytoplank-

ton species is likely due to the fact that abundance rather than biomass is considered

and so the two groups are not comparable [160, 99]. There is little change in the

regionalisation based on the temporal behaviour and since the time courses before

and after follow the time courses for the whole dataset the two regimes are directly

comparable.

6.4 Changes in the Regionalisation for the Zooplankton

6.4.1 Non-Stationarity in the Time Courses for the Zooplankton

Since there was little change in the regionalisation when all species were consid-

ered together, it is of interest to determine whether the same holds true when dif-

ferent groups are considered separately. In earlier chapters it appeared that when

all species were considered together the output was dominated by phytoplankton
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a) b)

c) d)

Figure 6.1: Principal components all species for the entire time course from 1958
till 2009. Time course for the full dataset is shown in blue, before 1985 in green
and after 1985 in red. a) Averaged first principal component across all time and
for each half of the data before and after 1985 for all species. b) Averaged second
principal component across all time and for each half of the data before and after
1985 for all species. c) Averaged third principal component across all time and
for each half of the data before and after 1985 for all species. d) Averaged forth
principal component across all time and for each half of the data before and after
1985 for all species.
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a) Sparsity parameter on all species before 1985.

b) Sparsity parameter on all species after 1985.

Figure 6.2: Sparsity parameter across all species. There is a decrease in the sparsity
parameter in the North West and a slight decrease in the sparsity parameter in the
North Sea.
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a) Number of principal components on all species before 1985.

b) Number of principal components on all species after 1985.

Figure 6.3: Number of PCs on across all species.
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a) Regionalisation based on all species before 1985.

b) Regionalisation based on all species after 1985.

Figure 6.4: Plots of regions based on the first loading vector before and after 1985.
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a) Regionalisation based on all species before 1985.

b) Regionalisation based on all species after 1985.

Figure 6.5: Plots of regions based on the second loading vector before and after
1985.
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species, which further implies that it might be necessary to consider zooplankton

and phytoplankton separately. Figure 6.6 shows the time courses for each principal

component averaged over all locations for the entire time series in blue, the princi-

pal components on the data restricted just to before 1985 in green and after 1985

in red. For the first PC the average time series is oscillatory, with some evidence

of a decline in time, and has a minimum in the early 1970’s. In chapter 5 it was

determined that the first PC on the zooplankton data correlated with the NHT across

most locations. The average of the first principal component restricted just to the

first half of the data follows the full time series quite closely. After 1985 there is a

shift in the regime and the average first PC instead represents a decline in time. The

behaviour of the first PC after 1985 is similar to the second PC on the whole time

course, indicating that this ‘regime shift’ manifests as a change in the ordering of

the components, i.e. that a trend that was of only secondary importance previously

has now become the most important trend. The interpretation of this is that there

is a non-stationarity in the time series for the zooplankton species. If this is con-

sidered in terms of a ‘regime shift’ it might be hypothesised that after 1985 there

is a significant change in the dominant behaviour of the species, perhaps driven

by some climate driver. From an ecological viewpoint this is important because it

shows that there has been a significant change in the temporal behaviour of the zoo-

plankton species after 1985. An explanation of this is that after 1985 some physical

variable that is driving zooplankton abundance has become more prominent. One

suggestion is that prior to 1985 natural climate variability might play a larger role in

determining the abundance, whilst afterwards the influence of sea surface temper-

ature warming becomes more important than natural variability in determining the

abundance of zooplankton. If this is the case then this change indicates a dramatic

shift in the ecosystem. The strength of the decline after 1985, for instance, in abun-

dance might be reflective of the northwards migration of cold water species out of

the North Atlantic and in to more Arctic regions [30, 22]. Subsequent components
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exhibit a similar pattern, with the component on the first half of the data following

closely the component on the full time series and then the component on the second

half behaving differently. PC 2 on the full time series is oscillatory prior to the mid-

1980’s and after this shows a steep decline. On the data restricted to just after 1985

there is a switch in the ordering of the components and this decline becomes the

most important trend. There is some debate over whether changes in the behaviour

of the plankton should be viewed as ‘regime shifts’ or trends [146]. The change

in ordering of the PCs suggests it is a shift in the importance of functional groups.

The change in the ordering of the principal components from the pre-1985 data to

the post-1985 data can be viewed as a non-stationarity in the time series, which is

indicative of a ‘regime shift’ rather than a trend.

Figure 6.7 shows the sparsity parameter for the first principal component over

space for the zooplankton data before 1985 and after 1985. Before 1985 the spar-

sity parameter is larger in shallower regions, particularly in the North Sea, whilst

after 1985 the sparsity parameter is less structured in space. This could be because

the dominant trend in the first half of the data follows a different ‘regime’ to the

second half, with shallow water species being more important prior to 1985. It is

also thought that certain cold water species are moving away from the North Sea

[30, 22, 74, 132], which may explain the decrease in group size in this region. It

has also been suggested that the presence of an ecological niche for many species in

the North Sea could cause dramatic shifts at critical temperatures [23, 75, 23, 21],

which might explain the decrease in the group size. There is also a decrease in

the number of principal components required to explain most of the variation in

most regions in the post-1985 regime (see figure 6.8). This indicates a decrease in

the number of separate functional groups, again perhaps attributable to the decline

in cold water copepods at certain thermal thresholds [21]. Where the number of

components remains high post-1985 is in the fertile region in the bay of Biscay

[57]. Before 1985 the numbers of components show some spatial structure, typi-



Chapter 6. Modelling Changes in Biogeographical Regionalisation 193

cally larger numbers of components are required to explain most of the variability

in shallower and warmer waters. After 1985 the number of components is higher in

the Bay of Biscay than most of the rest of the region in this time period. In general

only a few components are required in the North West of the North East Atlantic

after 1985. The numbers of components after 1985 have in general decreased, indi-

cating perhaps there are fewer distinct functional groups. An interpretation of this

result is that after 1985 the species ‘behave together’ more frequently, meaning that

they are responding to the same climate trend so fewer components are required

to explain most of the variation. This implies that in the latter half of the dataset

there is an overriding effect that is driving the behaviour of most of the zooplank-

ton, which as has been discussed might be the warming trend. The warming trend

is present across the entirety of the North East Atlantic [21, 97] and so will have an

influence on zooplankton assemblages across the region. It may also be speculated

that there is a critical temperature threshold at which ecosystem changes might oc-

cur. For some species the North Sea is at the edge of an ecological niche and so

small perturbations in temperature might lead to drastic changes in behaviour [75].

Prior to this there is no dominant driver and so the species are behaving in more dis-

tinct ways, perhaps responding instead to natural variability which may have a more

heterogeneous effect. If there is a dominating trend after 1985 then this provides

further evidence of a shift in the behaviour of the zooplankton.

6.4.2 Changes in Regionalisation for the Zooplankton

The next step is to consider changes in the regionalisation based on the species

groupings for the zooplankton data. Figure 6.9 shows regions defined by clustering

on the absolute values of the loading vectors for the first component before and after

1985. Cluster one is depicted by light blue pixels, cluster two is orange and cluster

three is dark red. On the pre-1985 dataset the clusters divide the North East Atlantic

in to three regions: clusters one and two covering the open ocean and cluster three
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mostly covering shallower waters and the very north of the region. Acartia spp.,

Centropages typicus, Podon spp. and Evadne spp. are all strongly weighted species

in cluster one before 1985. Acartia spp. and Centropages typicus are both species

of Copepod, the former is known to prefer temperate waters whilst the latter lives

in coastal waters [78, 68]. After 1985 cluster one covers almost all of the open

ocean region. Acartia spp. is still strongly weighted in the oceanic region but C.

typicus has a much smaller weight. Oithona spp. is more strongly weighted in

the oceanic cluster in the post-1985 regime. Oithona spp. is a cyclopoid copepod

species, which prefers brackish waters and having late blooms [68, 78]. Changes

in sea surface temperature in the North Atlantic may have benefited this species, as

warmer conditions now occur earlier in the year [26]. The species Evadne spp. is

strongly weighted in this cluster both before and after 1985. A few species have

strong weights in cluster one after but not before 1985, including: Oithona spp.,

Copepod nauplii and Pseudocalanus (Adult atlantic). The latter two of these are

small copepods [68, 78]. This indicates that the changes in these species have

become more significant in the open sea after 1985.

Cluster two in the pre-1985 regime covers the central North Atlantic. Highly

weighted species in this region pre-1985 are Pseudocalanus (Adult atlantic), Podon

spp., Copepod nauplii and Echinoderm larvae. After 1985 this cluster is displaced

northwards and now covers a larger potion of the southern North Sea. Pseudo-

calanus (Adult atlantic), Podon spp. and Copepod nauplii all still have strong

weights after 1985 but Echinoderm larvae is less strongly represented in this re-

gion. In addition Temora longicornis, Centropages typicus and Evadne spp. have

strong weights after 1985 but not prior in cluster two.

Both before and after 1985 Centropages typicus, Oithona spp., Copepod nauplii

and Pseudocalanus (Adult atlantic) have weights with a large magnitude in cluster

three. Cluster three covers the northernmost part of the region in both regimes but

has shifted further north after 1985, which is most likely attributable to the north-
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wards movement of species [30, 22, 75]. Both C. finmarchicus and Echinoderm

larvae have weights with a large magnitude post-1985. This indicates that these

species are changing significantly in this region after 1985. It can be shown by a

spatio-temporal analysis of the species that Echinoderm larvae are increasing in the

north of the North East Atlantic, whilst C. finmarchicus by contrast are decreasing

in this region. This is reflected in the signs of the real part of the loading vec-

tor, which is on average positive for Echinoderm larvae in this region and negative

for C. finmarchicus. The decline of C. finmarchicus can be explained by rising

sea surface temperatures [74, 132]. It has been previously shown in our analysis

that the northern region is where the greatest changes are occurring in abundance

of Calanus finmarchicus and that it is declining as temperatures rise. After 1985

there is a general northwards movement of the clusters, with the oceanic region be-

ing covered by a single cluster post-1985. This indicates more homogeneity in the

open ocean in terms of species after 1985. Since the first component before and

after 1985 follow different time courses it is clear that there is a regime shift in the

data, with different functional groups becoming more important post 1985. Clus-

ters on the absolute values of the second loading vector are less structured in space.

There is some north-south divide, with clusters two and three mostly covering the

north of the region and cluster one being mostly in the south.

Figure 6.10 shows clusters defined on the first principal component for the data

before and after 1985 and the centres of these clusters. Before 1985 cluster one

covers the north east, cluster two covers shallower waters around the oceanic shelf

and cluster three covers the open ocean. The temporal trend in the north east be-

fore 1985 is oscillatory and slightly increasing. Cluster two is covered by a steady

trend and cluster three a declining trend. After 1985 cluster one covers most of the

shallower waters covered by cluster two pre-1985. Instead of remaining constant

the trend now peaks, then declines in this cluster. In cluster two, which overlaps

with cluster three pre-1985, the trend continues to decline. Finally in cluster three,
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which covers the bits to the north of the region, the temporal trend is increasing.

Clusters on the second principal component before and after 1985 have very little

spatial structure. The difference between the regions defined on the temporal trend

may be due to the fact that not all regions are warming at the same rate (see figure

3.1) and the fact that the zooplankton’s response to the warming trend is hetero-

geneous across space [108]. Different regions are dominated by different species

groups, all of which have differential responses to climate. Matching clusters on the

time courses before and after 1985 is trickier than matching clusters on the loading

vectors because inner products can not be used to determine whether it represents

the same trend. As such this clustering may be less interpretable than that carried

out on the weight vector.

6.5 Changes in the Regionalisation for the Phytoplankton

6.5.1 Time Courses and Sparsity Parameters for the Diatoms

The same analysis is now carried out restricted to the Diatom species only. Figure

6.11 shows the time course for the first four PCs on the phytoplankton for the full

dataset in blue, restricted to before 1985 in green and after 1985 in red. The most

notable feature is that unlike for the zooplankton there is no evidence of a regime

shift in the PCs, as both the pre and post 1985 segment follow the time course

for the full dataset closely. The first principal component resembles the Atlantic

Multidecadal Oscillation [141, 43], as it is an oscillation with a minimum about

1980. In chapter 5 the Pearson’s correlation coefficient between the first PC on the

phytoplankton and the AMO was show to be statistically significant over a large

number of locations. The analysis here shows that this holds both before and after

1985. Subsequent PCs appear to be declining in time, suggesting climate warming

may be a driver but is a less important influence than the AMO.

Figure 6.12 shows the sparsity parameter on the first component before and after
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a) b)

c) d)

Figure 6.6: Principal components zooplankton species for the entire time course
from 1958 till 2009. The time course for the entire period is shown in blue, before
1985 in green and after in red. a) Averaged first principal component across all
time and for each half of the data before and after 1985 for zooplankton species.
b) Averaged second principal component across all time and for each half of the
data before and after 1985 for zooplankton species. c) Averaged third principal
component across all time and for each half of the data before and after 1985 for
zooplankton species. d) Averaged forth principal component across all time and for
each half of the data before and after 1985 for zooplankton species.
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a) Sparsity parameter on zooplankton before 1985.

b) Sparsity parameter on zooplankton after 1985.

Figure 6.7: Sparsity parameter across zooplankton species.
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a) Number of principal components on zooplankton species before 1985.

b) Number of principal components on zooplankton species after 1985.

Figure 6.8: Number of PCs on across zooplankton species.
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a) Regionalisation based on zooplankton species before 1985.

b) Regionalisation based on zooplankton species after 1985.

Figure 6.9: Plots of regions before and after 1985.
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a) Regionalisation based on the time courses for zooplankton species before 1985.

b) Regionalisation based on the time courses for zooplankton species after 1985.

c) Time courses for each cluster before and after 1985.

Figure 6.10: Plots of regions based on the time courses for the first component
before and after 1985.
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1985. There is little spatial structure but there is on average an increase after 1985,

predominantly in shallow waters as the AMO enters its positive phase [141]. The

number of principal components (see 6.13) is lower after 1985 than before. There is

spatial structure both before and after, with more PCs being required to explain the

variation in shallower waters. Pre-1985 the highest group sizes are found in mixing

regions, such as the north of Scotland, and in fertile areas, such as the bay of Biscay

and the southern North Sea. After 1985 it appears to be the bathymetry that governs

the number of principal components. The decrease in the number of PCs in the

post-1985 regime indicates a decrease in the number of distinct functional groups,

which in turn may indicate a decrease in diversity. Since the group size on the first

PC has increased after 1985, it can be deduced that the species are behaving in

more similar ways in the positive phase of the AMO, whilst there are more distinct

functional groups during its low phase.

6.5.2 Changes in Regionalisation for the Diatom Species

The regionalisation based on the first loading vector on the Diatom species appears

to change after 1985. Figure 6.14 shows clusters on the real value of the first loading

vector before and after 1985 for the phytoplankton communities. As the matching

of the clusters was less well defined than for the zooplankton species, different

colour schemes are used pre and post 1985 to indicate that it is not clear whether

regions match. The clusters after 1985 are more spatially structured than those be-

fore, with the region being clearly divided into oceanic and shallower waters. Since

the behaviour of the first principal component reflects the AMO, then changes in

the regionalisation must be a response to the AMO. Between the start of the dataset

and 1985 the AMO is declining and afterwards it is increasing. The positive phase

of the AMO is thought to influence wind intensities [90] and it has already been

demonstrated that its influence on the diatoms may be stronger in shallower wa-

ters (figure 5.24). Recalling from chapters 3 and 5 that although the AMO is not a
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strong driver of sea surface temperature in the North East Atlantic but nevertheless

has an indirect effect on the abundance of diatoms, this suggests that there is some

other mechanism that governs the relationship between diatoms and the AMO in

shallow waters. One potential explanation is that in the absence of sufficient nutri-

ents diatom species can enter a dormant state and sink to the bottom of the sea [68].

Water column mixing is required to return them to the plankton. Since this only

occurs in shallower waters this might explain why mixing has a greater impact on

diatom abundance in shallow waters. However the mechanism is not well under-

stood and further exploration would be required to verify this hypothesis. Together

this suggests that the spatial structure after 1985 is governed by the differential spa-

tial influence of the AMO on wind and currents [56, 141, 90]. The regionalisation

based on the second loading vector is less well defined, although there is some

differentiation between the deeper and shallower waters before 1985.

6.6 Discussion

In this chapter it was shown how the methodology developed can be adapted to

answering questions of biological importance, in addition to being used as an ex-

ploratory tool. The principal result in this section is the existence of non-stationarity

in the dataset, either in the temporal behaviour of the species assemblages or in

the ecoregions defined by groups of species. This provides evidence in support of

the hypothesis that a ‘regime shift’ has occurred in the CPR data around the mid-

1980’s. For the zooplankton this manifests in a change in the dominant temporal

behaviour and a shift in the spatial patterns, with a northwards movement of species

groupings occurring. For the diatom species although there is no shift in the domi-

nant behaviour in time, there is increased structuring of the spatial regionalisation,

which seems to follow the pattern of the bathymetry. Since these species appear to

be responding to a natural oscillation, namely the AMO, this restructuring may also
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a) b)

c) d)

Figure 6.11: Principal components Phytoplankton species for the entire time course
from 1958 till 2009. The time courses for the full dataset are shown in blue, before
1985 in green and after 1985 in red. a) Averaged first principal component across all
time and for each half of the data before and after 1985 for Phytoplankton species.
b) Averaged second principal component across all time and for each half of the
data before and after 1985 for Phytoplankton species. c) Averaged third principal
component across all time and for each half of the data before and after 1985 for
Phytoplankton species. d) Averaged forth principal component across all time and
for each half of the data before and after 1985 for Phytoplankton species.
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a) Sparsity parameter on Phytoplankton before 1985.

b) Sparsity parameter on Phytoplankton after 1985.

Figure 6.12: Sparsity parameter across Phytoplankton species.
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a) Number of principal components on Phytoplankton species before 1985.

b) Number of principal components on Phytoplankton species after 1985.

Figure 6.13: Number of PCs on across Phytoplankton species.
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a) Regionalisation based on Phytoplankton species before 1985.

b) Regionalisation based on Phytoplankton species after 1985.

Figure 6.14: Plots of regions before and after 1985.
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be a natural part of the diatom’s long term cycle. The ‘regime shift’ is therefore

characterised in different ways for different species groups. For the zooplankton

the evidence here seems to support the hypothesis that they have moved northwards

over the past few decades. For the phytoplankton, as defined by the diatoms, the

shift appears to occur in the spatial structure alone and might be a response to nat-

ural climate variability, although since the mechanism is not yet well understood

further empirical studies are required to better understand the reasons for the spa-

tial behaviour of the diatoms.

This suggests that changes in the biogeographical regionalisation of the North

East Atlantic are driven both by the effect of rising temperatures on certain species

and by natural oscillations in climate indices. In both cases these changes will

doubtless have consequences for other organisms at different scales. Understanding

variability in the plankton is crucial for developing an understanding of the marine

ecosystem as a whole. For example the spatial reorganisation of plankton species

could force changes in the spatial distribution of other organisms, as they are forced

to move to where their food source is most abundant [30]. From this analysis it

is apparent that the ecosystem has undergone drastic changes over the past few

decades, this will have wide reaching consequences.
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Chapter 7

Modelling Vulnerability to Climate

Variables

In this chapter we explore the vulnerability across space of different variables to

changes in the climate covariates. Species abundances are modelled as linear re-

sponses to climate covariates (see equation 7.3), where the species abundances are

taken to be responses to common trends across time and these common trends are

modelled as linear combinations of climate signals. The linear regression model

can be used to make predictions about changes in species abundance in response

to changes in the climate variables and vulnerability of a species is defined to be a

large change in species abundance in response to a relatively small change in the

climate variable, although some care must be taken not to extrapolate to far outside

the existing data. In a similar way the joint responses of the zooplankton and di-

atom assemblages can be explored in order to assess the vulnerability of groups of

species across space. It has previously been established that not all regions response

to climate change and natural climate oscillations in the same way [108], both in

the response of the sea surface temperature signal [43] (see chapter 3) and in the

responses of the plankton (see chapter 5). This suggests that some regions will be

more vulnerable to climate effects than others, either for an individual species or
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for the joint behaviour of a functional group of species, and we define these to be

climate ‘hotspots’. In the first section three indicator species are studied: Calanus

finmarchicus, a typical cold water copepod [48, 74]; Calanus helgolandicus, a typ-

ical warm water copepod [48], and Echinoderm larvae, the offspring of benthic

organisms and so know to be influential in benthic pelagic coupling [88]. In the

second section the focus is shifted to exploring the responses of the joint behaviour

of functional groups, concentrating on the zooplankton and Diatom groups. In the

final part a multiscale downscaling approach, where the data is first analysed over a

large region and then analysed at smaller scales with the average subtracted, is taken

to explore whether the influence of different climate indices vary across different

scales.

In our model the abundance each of species at each location is modelled as a

linear combination of the principal components and these in turn are modelled as

responses to climate covariates. This model can be used to make predictions as

to how the species abundance will change with changes in the climate variables.

The covariates used are the NAO, the AMO and the NHT signals. Since out of

sample predictions, i.e. predictions of the behaviour of the plankton outside the

timescale of the available data, can not be made using the existing climate data, an

approximation of the climate indices must be found. The AMO and the NAO can be

approximated by fitting sinusoids using the method described by Rice [133]. The

NHT can be approximated by fitting a combination of a linear trend and an oscil-

lation. Figure 7.1 shows these signals plus the fitted models for each signal. The

modelled NHT and AMO follow closely the true signals. The modelled NAO fits

better before 1985 than it does after, which may mean that PCs which are strongly

associated with the NAO might be less accurately modelled in this time period.



Chapter 7. Modelling Vulnerability to Climate Variables 211

a) The NHT signal (blue), the fitted trend line (green) and the modelled NHT (red).

b) The AMO signal (blue) and the modelled AMO (red).

c) The NAO signal (blue) and the modelled NAO (red).

Figure 7.1: Plots of the climate variables and the fitted climate variables. The true
climate variables are plotted in blue, the fitted variables in red and for the NHT the
trend line is plotted in green. The units of the NHT and the AMO are in degrees
Celsius. The NAO is taken from a dataset with standardised units.



7.1 Methods Used in this Chapter 212

7.1 Methods Used in this Chapter

In this chapter the vulnerability to different climate indices is explored using the

output of sparse PCA, which is described in detail in section 2.2. Vulnerability to

climate is explored both for individual species and for groups of species. Recall

from section 2.5 that each principal component might be seen as a joint response

of a species assemblage and that this might have a linear relationship with climate

trends. The parameters in equation 7.1 (see section 2.6) can be estimated and these

estimates can be used to make predictions about how the common component might

change under different values of the climate indices.

zi(t) = βi,0 + β1,ic1(t) + β2,ic2(t) + ...+ βN,icN(t) + εi(t), (7.1)

If the magnitude of βi,j standardised by the magnitude of cj(.) takes a high value

at a particular location then it can be said that principal component i is sensitive to

the climate variable cj(.) at this location, since this implies that a large change in

cj(.) will lead to a significant change in the principal component. Species that have

large weights on that particular component might also be said to be sensitive to

that climate variable. Linear regression analysis relies on a number of assumptions.

The relationship between the response and the predictors should be linear and the

residuals should be normally distributed. These assumptions are expected to ap-

proximately hold for the CPR data at least within a limited range of the covariates.

The assumption of normality of the residuals may be violated if there is a predic-

tor of species abundance that has not been included in the model, as there may be

some structure that is not explained by the covariates that have been included. Typ-

ically it would be expected that there is no collinearity between the predictors. This

is unlikely to hold for the climate variables. The AMO and the NAO are not lin-

early independent for instance, as the former can reinforce the latter during its high

phase. An alternative might be to use the principal components of the predictors to
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ensure no collinearity. However this might not be as readily interpretable as using

the climate covariates as predictors and so a compromise is made. The fit of the

model can be assessed by computing standard errors, which are the square root of

the sum of square residuals divided by the degrees of freedom, which are equal to

the number of observations minus two. The standard errors measure the amount of

variation in the dependent variable, i.e. the plankton variable, that is not explained

by the predictors and so should be relatively small if the model predicts well.

The vulnerability of each species to the climate variables can also be explored

using this model. If each species if a linear combination of the common components

then the regression model can be used to predict changes in the abundance of a

particular species, which recall can be written as

Y (p)(t; l) =
∑p̂(l)

i=1 a
(p)
i (l)(βi,0 (7.2)

+βi,1c1(t; l) + ...+ βi,ncn(t; l) + µi(t; l)) + εp(t; l)

.

Section 2.6 describes how the principal components might be used in linear

regression analysis to make predictions for individual taxa. The limitation of the

linear regression model is that predictions should not be made too far outside the

range of the existing data, since the assumption of a linear relationship may not

continue to hold. The advantage of using the principal components instead of each

species directly is that it saves computational effort by only estimating the regres-

sion parameters for the smaller set of components rather than every variable.



7.2 Sensitivity of Different Species to Climate Change 214

7.2 Sensitivity of Different Species to Climate Change

7.2.1 The Spatial Sensitivity of Calanus finmarchicus

In order to assess the validity of the model abundances were first approximated from

the model using the fitted values of the various covariates and then compared with

the true abundances. Using the regression model and the modelled climate signals

shown in figure 7.1, estimates of the abundances in 2008 and 1958, which are both

years at which data on the true abundances exist, of Calanus finmarchicus can be

obtained. It is important that it be shown that the modelled data and the fitted values

of the covariate accurately represent the true data before out of sample predictions

are made, in order to assess the validity of those predictions. Figure 7.2 shows the

estimated abundances of Calanus finmarchicus at two time points along with the

true abundances recorded in the CPR dataset at the same time points. The abun-

dance in the northern North Sea in 1958 is underestimated by the model, whilst in

2008 it overestimates the abundance in the north west but models the northern North

Sea well. Figure 7.3 shows the standard errors of the regression model as given by

equation 2.19. The prediction error is largest in the northern North Sea but over-

all most of the variability in abundance is captured by the regression model. The

histogram of the residuals shows that they are approximately normally distributed.

From this it can be concluded that there is some error in the model but it does pro-

duce reasonable estimates of the spatial structure. This model implicitly assumes

that the response of the species, at least for small perturbations, to climate will be

linear and that most of the variability in the species abundance can be explained by

the climate variables that have been included in the model. Where there are small

errors it may be due to a violation of one of these assumptions, in particular the

model does not account for local conditions which may have an influence on the

abundance in certain regions.

After verifying the model it is possible to use it to make predictions. If it is as-
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sumed that the AMO and the NAO will continue in the same oscillatory behaviour

over the next ten years, then projected values of these covariates in ten years time

can be taken from the fitted oscillations. Since the fitted NAO replicates the true val-

ues of the NAO less well than the fitted AMO does the true AMO then there will be

some errors in the predictions for those locations where the NAO has a strong influ-

ence. Figure 7.4 shows the predicted change in abundance of Calanus finmarchicus

under an increase of 1 degree in NHT over 10 years. Since the abundances have

been logarithmically transformed this change is presented on a log-scale. Suppos-

ing the change in abundance is relatively small then the change in log-abundance is

approximately equal to the proportion of change. Supposing the abundance in 2018

is equal to the abundance in 2008, denoted by Y (2008), plus some change δ then

log(Y (2008))−log(Y (2008)+δ) = log
(

Y (2008)

Y (2008) + δ

)
= −log

(
1 +

δ

Y (2008)

)
(7.3)

.

This is approximately equal to − δ
Y (2008)

. This means that a change of 0.2 in

logged abundance suggests approximately a 20% predicted decrease in abundance

from 2008 till 2018. The values of the AMO and NAO are taken from the model

in figure 7.1 in year 2018 and the NHT is taken as the value at 2008 from the

model plus a degree. This model estimates that the greatest region of change will

be in the North Sea, particularly the north. Under this model abundance of Calanus

finmarchicus is expected to decline in this region, as the values are greater under the

model in 2008 than in the projected model. The weights of Calanus finmarchicus

are negative on the first principal component on the zooplankton data in the northern

North Sea (see figure 5.20) and the first PC was thought to be positively responding

to the NHT in this region, which explains from a statistical perspective why the

model predicts a decline in this species under an increase in temperature in these
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regions. From an ecological perspective previous studies have remarked on the

migration of C. finmarchicus towards more Arctic regions [74, 132], which may

explain why it is disappearing from the northern North Sea, which is a region in

which it was previously abundant.

The model can also be used to estimate the change in temperature required to

produce small changes in abundance. It should not be used to predict large changes

in abundance because the assumption of the linear relationship may not continue

to hold at large values. The inverse model, in which equation 7.3 is rearranged to

give the NHT in terms of abundance, the AMO and the NAO, can be used to find

the approximate temperature change associated with a 10% decrease in the logged

abundance of Calanus finmarchicus. In the northern North Sea this is approximately

a 1◦ increase. In the southern and open sea part of the North East Atlantic the

abundance of Calanus finmarchicus is low and so the model is less appropriate in

these regions and so the temperature is set to zero in these regions.

7.2.2 The Spatial Sensitivity of Calanus helgolandicus

As for Calanus finmarchicus the model is assessed for validity initially by estimat-

ing abundances of Calanus helgolandicus at 1958 and 2008 using the modelled

covariates and comparing with the true abundances. Figure 7.5 shows the true

abundances of Calanus helgolandicus at two time points and the estimates from

the model. The spatial pattern is closer to the true abundances than those predicted

from Calanus finmarchicus, although it slightly underestimates how drastically the

abundance has increased in the northern North Sea. In 1958 both the true and mod-

elled abundance is highest off the south coast of the United Kingdom and off the

coasts of France and Spain. In 2008 abundance has increase dramatically in the

northern North Sea, where previously this species had had little presence. In the

very south of its habitat, abundance seems to have decreased in 2008. Previous

studies have suggested that Calanus finmarchicus is alternating in abundance with
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a) b)

c) d)

Figure 7.2: Plots of the true log-abundances of Calanus finmarchicus and the log-
abundances estimated from the modelled climate signals. a) Abundance of Calanus
finmarchicus in 1958. b) Abundance of Calanus finmarchicus estimated from the
regression model and using the modelled climate signals in 1958. c) Abundance
of Calanus finmarchicus in 2008. d) Abundance of Calanus finmarchicus estimated
from the regression model and using the modelled climate signals in 2008.

a) b)

Figure 7.3: a) Plot of the standard errors of the regression model given by equation
7.3 for Calanus finmarchicus. b) A histogram of the residuals from the regres-
sion model across all locations, with different locations being denoted by different
coloured bars.
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a) b)

Figure 7.4: Plots of the predicted change in logged Calanus finmarchicus abundance
over 10 years under the model. a) Estimated abundance of Calanus finmarchicus
under a 1 degree increase in NHT over 10 years. b) Abundance of Calanus fin-
marchicus estimated from the regression model in 2008 minus the estimated abun-
dance under a 1 degree increase in NHT over 10 years.

Calanus helgolandicus, the latter increasing as the former declines [48]. Morpho-

logically the two species are similar apart from the fact that C. helgolandicus prefers

higher temperatures [117]. This explains why it is able to take hold in regions pre-

viously dominated by C. finmarchicus. Figure 7.6 shows the standard errors across

space for the regression model for Calanus helgolandicus, which shows that the

prediction error is smaller than for Calanus finmarchicus and is largest along the

oceanic shelf, and a histogram of the residuals, which are approximately Gaussian.

Projected values are then calculated for Calanus helgolandicus using the model

in order to determine which regions in space at which it is most sensitive to changes

in climate. Figure 7.7 shows that under the model a one degree increase in NHT will

result in an increase of Calanus helgolandicus in the northern North Sea and off the

coast of Ireland, with little or no change elsewhere. Since Calanus helgolandicus is

a warm water Copepod [37] it can be expected that rising temperatures will result

in an increase in its abundance. The model shows that the northern North Sea is

particular region of interest for this species, again exhibiting opposite behaviour to

C. finmarchicus. The northern North Sea might be a suitable habitat for Calanus

helgolandicus in terms of the available nutrients and food sources. It is morpholog-

ically similar to C. finmarchicus [48], apart from preferring warmer temperatures,
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a) b)

c) d)

Figure 7.5: Plots of the true log-abundances of Calanus helgolandicus and the log-
abundances estimated from the modelled climate signals. a) Abundance of Calanus
helgolandicus in 1958. b) Abundance of Calanus helgolandicus estimated from the
regression model and using the modelled climate signals in 1958. c) Abundance of
Calanus helgolandicus in 2008. d) Abundance of Calanus helgolandicus estimated
from the regression model and using the modelled climate signals in 2008.

and as the abundance of C. finmarchicus is high in the northern North Sea before

the increase in temperature this suggest that the habitat is indeed suitable for species

of Calanus. This explains why C. helgolandicus is most able to take hold here as

temperatures increase. The model shows a much smaller decrease in abundance in

the very south of the region, which might be attributable to temperatures rising too

much there for Calanus helgolandicus, although the change here is less dramatic.

7.2.3 The Spatial Sensitivity of Echinoderm Larvae

Figure 7.8 shows the true and modelled abundances of Echinoderm larvae in 1958

and 2008. The modelled abundances are slightly smoother in space than the true

abundances. Before 1958 this species is mainly present in the southern North Sea,
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a) b)

Figure 7.6: a) Plot of the standard errors of the regression model given by equation
7.3 for Calanus helgolandicus. b) A histogram of the residuals from the regres-
sion model across all locations, with different locations being denoted by different
coloured bars.

a) b)

Figure 7.7: Plots of the predicted change in logged Calanus helgolandicus abun-
dance over 10 years under the model. a) Estimated abundance of Calanus hel-
golandicus under a 1 degree increase in NHT over 10 years. b) Abundance of
Calanus helgolandicus estimated from the regression model in 2008 minus the esti-
mated abundance under a 1 degree increase in NHT over 10 years.
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whilst afterwards there has been a dramatic increase in its abundance particularly in

shallower waters and the northern North Sea. The change in shallower waters may

relate to a change in the adults, which are benthic species. One potential cause of

this increase might be due to the warming in these shallower waters, from which

benthic organisms are able to benefit from more than in deeper waters. In shallower

waters light is able to penetrate to the sea floor, which is beneficial to plant life on

the sea floor [68], and this is essential for the survival of many benthic organisms.

Consequently this may lead to an increase in the larvae of these organisms. Fig-

ure 7.9 shows the standard errors of the regression model for Echinoderm larvae

across space and a histogram of the residuals. The standard errors are larger than

those for Calanus finmarchicus and Calanus helgolandicus, suggesting the model

performs less well for Echinoderm larvae. This might indicate that there is some

other covariate that drives abundance of this species that has not been included in

the model. The residuals are reasonably normally distributed.

Figure 7.10 shows that under the model a 1 degree increase in the NHT will

lead to an increase in the abundance of Echinoderm larvae in the northern North

Sea. The Echinoderm larvae are a pertinent example of how changes in plankton

can impact the entire ecosystem, as increased numbers of larvae may well indicate

increased numbers of the adults because of benthic-pelagic coupling [88]. From the

positive relationship between Echinoderm larvae and NHT it can be inferred that

organisms such as starfish and sea urchins may be moving north as temperatures

rise.

7.3 Sensitivity of Joint Responses over Space to Climate Change

In this section projected community responses to climate variation across space are

explored. The linear regression model is used to estimate the relationship between

the principal components, representations of the joint responses across communi-
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a) b)

c) d)

Figure 7.8: Plots of the true log-abundances of Echinoderm larvae and the log-
abundances estimated from the modelled climate signals. a) Abundance of Echin-
oderm larvae in 1958. b) Abundance of Echinoderm larvae estimated from the
regression model and using the modelled climate signals in 1958. c) Abundance of
Echinoderm larvae in 2008. d) Abundance of Echinoderm larvae estimated from
the regression model and using the modelled climate signals in 2008.

a) b)

Figure 7.9: a) Plot of the standard errors of the regression model given by equa-
tion 7.3 for Echinoderm larvae. b) A histogram of the residuals from the regres-
sion model across all locations, with different locations being denoted by different
coloured bars.
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a) b)

Figure 7.10: Plots of the predicted change in logged Echinoderm larvae abundance
over 10 years under the model. a) Estimated abundance of Echinoderm larvae under
a 1 degree increase in NHT over 10 years. b) Estimated abundance of Echinoderm
larvae from the regression model in 2008 minus abundance of Echinoderm larvae
under a 1 degree increase in NHT over 10 years.

ties, and the different climate variables. By varying the value of a given covariate in

the model changes in the principal components in responses to changes in climate

can be estimated. These changes can be thought to correspond to changes in the

joint behaviour of functional groups of species as a response to different climate

variables. The biological problem relates to how regions where the community

response is most sensitive to climate variation can be found, and this is achieved

by determining in which regions the principal component changes the most under

a change in the value of the covariate. In this case the principal components are

viewed as being equivalent to joint responses of assemblages of dominant species,

since rarer species have been forced by the sparsity constraint to have zero weight.

For both the Diatom and the zooplankton groups the model is used on the first PC,

which represents the joint behaviour of the most dominant assemblage across each

location. The model is then used with the modelled covariates (see figure 7.1) to

find estimates of the PCs at each time point in order to see how well the model pre-

dicts the true spatial pattern of the component. The values of the covariates are then

varied and the difference between the PCs determined by those new covariates and

the true PCs is examined in order to see how changing each covariate separately

influences the species community.
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7.4 Joint Response of the Zooplankton Group

As was done for the individual species the model can be verified by using it to

estimate the values of the principal component at time points for which data exists

and then comparing these with the true values of the components at those time

points. Figure 7.11 shows the true and the modelled first principal component in

2008 for the zooplankton group. The model gives a reasonably good estimate of the

first component. The values are higher in the north, where the principal component

has a positive correlation with the NHT warming trend and lower further south,

where the correlation is negative. Standard errors of the regression model across

space are shown in figure 7.12.

Figure 7.13 show how the first PC varies when the covariates are increased.

The principal component is estimated by fixing the values of two of the covariates

and increasing the third by 50% of its value. The figure shows the estimated PC

from these covariates minus the true values of the PC in 2008 across space. The

plots therefore show the estimated change in the principal component under a 50%

increase in one covariate whilst the other two remain fixed. The model for the

change under a 50% rise in the NHT can be written as:

z1(2008)−β̂0,1−β̂1,1AMO(2008)−β̂2,1NAO(2008)−1.5×β̂3,1NHT(2008). (7.4)

Where z1(2008) is the value of the first component in 2008 and β̂j,1 are the

estimated parameters from the linear regression model. The model will not exactly

estimate the principal component, due to the effect of the error term in the regression

model, which corresponds to the effect of noise. It is assumed that the noise will be

normally distributed with mean zero. Increasing the AMO whilst fixing the NHT

and the NAO results in a slight increase in the north North Sea, particularly the

very north east of the region. The change is relatively small elsewhere. Increasing
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the NAO results in a very slight increase in the north east of the North Sea but this

is a very small in magnitude. The biggest change comes from varying the NHT,

which has the strongest correlation with the first PC across most spatial locations.

There is an increase in the north, particularly the north North Sea, with the increased

NHT. Helaout [75] discusses the concept of ecological niches in contributing to the

spatial sensitivity of the zooplankton and other studies have commented on critical

values of temperature that can lead to ‘regime shifts’ in zooplankton behaviour

[21]. For regions that lie at the edge of these thermal boundaries only a small

change is needed to force a large change in group behaviour of zooplankton species.

This can be seen in the northern North Sea in the zooplankton data. The reason

for the sensitivity of this region may be attributable to the high abundance of cold

water species in the early part of the dataset, which are gradually moving towards

more Arctic regions, coupled with the fact that these waters are beginning to reach

temperatures at which more warm water species can survive. Further south the

increase in average temperature has had less dramatic an effect, although in the

south there is some decrease as the NHT increases. The absolute values of the

change with the increased NHT are highest in the north east North Sea, suggesting

that the zooplankton are particularly sensitive to changes in temperature in this

region, as seen from the individual species model on Calanus finmarchicus and

Calanus helgolandicus.

7.5 Joint Response of the Diatoms

The same analysis is carried out on the Diatom species. It has already been estab-

lished that these species are less sensitive to changes in temperature but that the

spatial structure is influenced by changes in natural oscillations. Figure 7.14 shows

the real and the modelled first PC for the Diatom community and figure 7.15 shows

the standard errors of the regression model across space. The PC is positive over
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most of the North East Atlantic but particularly in the north of the region at this time

point. The first PC has a positive correlation in most places with the AMO and this

is particularly strong in the north of the North East Atlantic and in the North Sea.

In 2008 the AMO is in its high phase, resulting in a positive principal component in

most parts of the North East Atlantic. As can be observed the model estimates the

values of the first PC reasonably well, although it occasionally overestimates the

magnitude. Figure 7.16 shows the modelled change in the principal component

when each of the covariates is increased by 50%. It is clear that the greatest change

occurs by increasing the value of the AMO, which is to be expected as it has already

been established that this climate index has the strongest relationship with the di-

atoms of all the climate variables under consideration. This leads to an increase in

the PC particularly in the North Sea and the north east of the region. Elsewhere

the change in response to the AMO is less dramatic and even slightly negative in

the very south, though the magnitude of the change is smaller in these regions. The

response to the AMO may be linked to the Bathymetry as increasing the AMO has

more of a positive effect on the first principal component in shallower waters. This

effect is something that has been discussed earlier, where it was hypothesised that

the AMO has a greater influence on the Diatom community in shallower waters,

and it was suggested the influence of the AMO in shallower water may be linked

to its supposed influence on wind speeds and currents [141, 90]. As was discussed

in chapter 5 this implies that the influence of the AMO on water column mixing,

which is influential in driving Diatom abundance [56], is stronger in these shallower

waters. The changing the NAO whilst keeping the other two covariates the same has

relatively little effect on the PC, suggesting that the dominant trend in the Diatoms

is not sensitive to the NAO. There is some change when the NHT is increased. It

has a slight positive effect in some areas and a negative effect in others, particularly

coastal regions. The change however is smaller than that seen under varying the

AMO. Increased temperature may have an impact on Diatom abundance, although
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a) The first PC across space at 2008.

b) The modelled first principal component in space at 2008.

Figure 7.11: Plots of the true first principal component on the zooplankton species
in 2008 and the modelled values.
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Figure 7.12: Plots of the standard errors of the regression model for the first princi-
pal component of the zooplankton communities.

clearly this is secondary to the AMO.

7.6 Multiscale Downscaling

Up to this point the influence of different drivers on variability has either been stud-

ied at a large scale or at an individual level. The NHT and the AMO influence the

average behaviour across the whole North East Atlantic but it may be the case that

more small scale effects only have an influence at a more local level. Furthermore as

the average warming trend might obscure the influence of natural oscillations [141],

so might the influence of these major drivers obscure more local effects. As it has

been already shown that there is spatial heterogeneity in responses to climate, the

major drivers on plankton abundance may vary across different scales. For exam-

ple although the impact of the average warming trend is the most important driver

of zooplankton abundance over the whole North East Atlantic, at a local level the

impact of nutrients or other localised effects might be important. To study this a

multiscale downscaling approach can be used by finding provinces defined solely
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a) The estimated first PC under a 50% rise in the AMO.

b) The estimated first PC under a 50% rise in the NAO.

c) The estimated first PC under a 50% rise in the NHT.

Figure 7.13: Plots in space showing the difference between the first principal com-
ponent modelled under varying the covariates and the real first component.
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a) The first PC across space at 2008.

b) The modelled first principal component in space at 2008.

Figure 7.14: Plots of the true first principal component on the phytoplankton species
in 2008 and the modelled values.
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Figure 7.15: Plots of the standard errors of the regression model for the first princi-
pal component of the diatom communities.

on the CPR data [145]. In order to explore the different trends at different scales the

data is first averaged across all pixels, with abundances being weighted by the size

of each pixel, and the analysis is carried out over the whole North East Atlantic.

Since pixels are 1 degree latitude by 1 degree longitude they will have different ar-

eas at different latitudes, due to the curvature of the earth. The length of 1 degree in

longitude is proportional to the cosine of the latitude. This means the weights are

given by (cos(lat1) − fraccos(lat1)− cos(lat2)2)2, where lat1 is the lowest degree

of latitude and lat2 is the most northerly degree of latitude that bounds the pixel. In

order to analyse the data at more local scales the weighted average for each species

across time, normalised by the mean of the weights, is subtracted from the time

course for each species at each location. To find provinces the analysis is carried

out on the data with the averages removed and k-means clustering is used on the

weight vectors. Once these provinces have been defined the analysis is repeated on

the averages over each province in order to find local trends that are not obscured

by large scale features of the data.
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a) The estimated first PC under a 50% rise in the AMO.

b) The estimated first PC under a 50% rise in the NAO.

c) The estimated first PC under a 50% rise in the NHT.

Figure 7.16: Plots in space showing the difference between the first principal com-
ponent modelled under varying the covariates and the real first component.
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7.6.1 Zooplankton Data at Different Scales

Region Component NHT AMO NAO
North East Atlantic PC 1 -0.5 / /

Cluster 1 PC 1 -0.5433 / /
Cluster 1 PC 2 / / -0.5467
Cluster 2 PC 1 0.5572 / /
Cluster 3 PC 1 / / 0.4623
Cluster 3 PC 2 / 0.6491 /

Table 7.1: Table of the Pearson’s correlation coefficients between the principal com-
ponents of the zooplankton data over each cluster and different climate indices.

Recall in chapter 5 the zooplankton and the diatom species were analysed over

the average abundances for the whole North East Atlantic. On the data averaged

across the whole North East Atlantic the first PC on the zooplankton shows a gen-

eral decreasing trend. This is negatively correlated with the NHT trend with a time

lag of approximately 9 years and a p-value of less than 0.05. The Pearson’s corre-

lation coefficient is close to -0.5. The second component did not correlate strongly

with any of the climate variables under consideration and so is likely to be driven by

some unknown covariate. The third PC resembles the AMO (see chapter 5). This

implies that at a large scale long term trends and low frequency oscillations drive

most of the abundance of zooplankton. Local effects are averaged out and so do not

influence the results, meaning that heterogeneity [108] across space is cancelled out

in taking averages.

Figure 7.17 shows clusters in space on the real values of the weight vector for

the zooplankton data, where the average for the whole North East Atlantic has been

subtracted at each location. The regions are distinct from those found earlier in the

study because the average behaviour is no longer dominating the spatial structure

and can be seen as representing regions defined by species assemblages which have

significant local variability not fully accounted for by the average trend. The clus-

ters here might be viewed as regionalisation driven by local behaviour rather than
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the spatial influence of large scale climate drivers. Whereas earlier when clustering

on the first loading vector for the data without the average removed the clusters

showed a north-south division, the spatial pattern now seems driven more by the

bathymetry. The deeper waters around the open ocean are divided in to two clus-

ters, clusters one and three. Cluster one covers the southern half of this area and

cluster three the north west. Cluster two occupies shallower waters, such as the

North Sea and around the ocean shelf in the south. On average it is thought that the

temperature was the main driving force being the spatial pattern of the zooplankton,

with cold water species dominating the north and warm water species further south

[12]. There was also a trend towards increasing numbers of warm water species in

the north [5, 12]. Once the average effect has been removed bathymetry and cur-

rents may play more of a role in determining the spatial distribution and this effect

was obscured by the larger effect of temperature. The influence high frequency os-

cillations, such as the NAO, on plankton may be determined by physical features,

such as the ocean shelf, rather than bathymetry [59]. The pattern of the influence of

the NAO on the SST is not determined by latitude but by the position of its two pres-

sure centres (see figure 3.2 and [76]). This also explains why the spatial patterns

might change once the average effect has been removed.

Figure 7.18 shows the principal components for each cluster. Summaries of the

relationships between the principal components of the zooplankton data for each

region and the different climate indices are shown in table 7.1. In clusters one and

two the first component correlates strongly with the NHT warming trend. In cluster

one, which covers the southern part of the open sea, the first component has a Pear-

son’s correlation coefficient with the NHT of -0.5433 (see table 7.1). In cluster two,

which covers the shallower waters including the North Sea the Pearson’s correlation

coefficient between the first component and the NHT is positive (see table 7.1). Un-

like the averaged data, however, there is no time lag between the two signals. Given

there is some correlation with the NHT trend in these regions even after the average
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for the whole North East Atlantic is subtracted the warming trend is likely most

important in these regions than it is for the average over the entire area. The second

PC in region one has a negative correlation with the NAO (see table 7.1). In clus-

ter three, the north west region, the warming trend is less important. The first PC

correlates with the NAO positively and the second has a strong positive correlation

with the AMO (see table 7.1). Once the average trend has been removed it becomes

clear that NAO has an influence on the plankton abundance as well, although this

might have been obscured by the dominant trend, which is thought to be primarily

driven by the NHT. The relationship between the NAO and zooplankton has been

observed in C. finmarchicus and C. helgolandicus [59], although other studies have

shown that this is less significant than the overall warming trend [74]. This implies

that it may be a more localised effect on the zooplankton.

Figure 7.17: Plots of the clusters on the first loading vector for the zooplankton data
with the spatial average for the whole North East Atlantic removed.
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a) The principal components for the zooplankton with the spatial average removed
averaged across the first cluster.

b) The principal components for the zooplankton with the spatial average removed
averaged across the second cluster.

c) The principal components for the zooplankton with the spatial average removed
averaged across the third cluster.

Figure 7.18: Plots of the principal components for each region for the zooplankton
with the spatial average for the whole North East Atlantic removed across the each
of the clusters. The first component is shown in dark blue, the second in green, the
third in red and the fourth in light blue.
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Region Component NHT AMO NAO
North East Atlantic PC 1 / 0.6563 /

Cluster 1 PC 1 / 0.5917 /
Cluster 1 PC 2 / / 0.4194
Cluster 2 PC 1 / -0.7487 /
Cluster 3 PC 1 / / -0.5073
Cluster 3 PC 2 0.3857 / /

Table 7.2: Table of the Pearson’s correlation coefficients between the principal com-
ponents of the diatom data over each cluster and different climate indices.

7.6.2 Diatom Data at Different Scales

On the Diatom species the first principal component over the whole region has a

strong correlation with the AMO [56], with a Pearson’s correlation coefficient of

0.6563. The principal components for the Diatom species on the data averaged

over the North East Atlantic shows oscillatory behaviour in time and do not cor-

relate strongly with the NHT warming trend. Before the average is removed the

clusters on the Diatom data follow closely the pattern of the Bathymetry, especially

post-1985 (see chapter 5). Once the average for the whole North East Atlantic has

been subtracted at each location and clusters on the loading vectors from the data

with this average subtracted are found, the spatial pattern becomes less structured.

This may be because the spatial structure that was driven by the AMO has been

removed. It still follows the Bathymetry to an extent, as seen from figure 7.19,

since clusters one and three seem to primarily cover deeper waters and cluster two

primarily covers shallow waters. Cluster three covers the region in the south where

the ocean shelf lies and there is a lot of mixing of species. However it also covers

the very shallow waters of the southern North Sea. Around the northern coast of

Scotland, which is a know mixing region due to the presence of the oceanic shelf

and the boundary between North Sea and open ocean waters [161], there is a mix-

ture of regions belonging to different clusters, meaning the regionalisation is not

spatially smooth here.
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Another effect of removing the average vector is that the number of principal

components needed to explain most of the variation increases. Figure 7.20 shows

the principal components and loading vector for the Diatom data with the average

for the whole North East Atlantic subtracted at each location them averaged over

each cluster. Table 7.2 contains summaries of the Pearson’s correlation coefficient

between the principal components of the diatom data across each region and the

different climate indices. In the first cluster, which mostly covers the open sea, the

first PC correlates positively with the AMO (see table 7.2). The second component

correlates positively with the NAO (see table 7.2). In cluster two, which covers the

shallower waters, the first PC correlates with the AMO with a large negative Pear-

son’s correlation coefficient (see table 7.2). As with the NHT and the zooplankton

data there remains a correlation with the principal components on the Diatoms and

the AMO in some regions even after the average signal has been subtracted. This

indicates that these regions respond more strongly to the AMO than the average

signal for the whole North East Atlantic. In the third cluster, which covered some

of the mixing regions and the southern North Sea, the NAO correlates negatively

with the first PC (see table 7.2). The second component in this region has a weaker

correlation with the NHT warming trend with a positive Pearson’s correlation co-

efficient (see table 7.2), suggesting that temperature might have a small impact on

Diatom abundance in this region. As with the zooplankton the NAO only corre-

lated with the phytoplankton components once average effects had been removed.

Schlesinger [141] discusses how the warming trend can obscure the effect of nat-

ural oscillations when looking at the SST signal. The same appears to be true of

the plankton, in that higher frequency oscillations can be obscured by the average

trends, since PCA finds the trends that explain the majority of the variance.
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Figure 7.19: Plots of the clusters on the first loading vector for the Phytoplankton
data with the spatial average for the whole North East Atlantic removed.

7.7 Discussion

In this chapter the question of whether the sensitivity or the plankton to climate

variables varies in space and what changes in the distribution of the plankton are

likely to occur with changes in climate variables. The results suggest that the north-

ern North Sea is a particular region of vulnerability for the zooplankton, with warm

water species being increasing and cold water species declining in abundance. This

change seems to be primarily driven by the NHT. For the Diatom species the great-

est change occurs by varying the AMO and this change is greatest in shallower

waters, with the presence of ‘hotspots’ being linked to the bathymetry for the Di-

atom species. Some caution must be taken in making out of sample predictions, as

these make the assumption that the linear relationship will continue. Clearly it is

untrue that the linear relationship will hold indefinitely, for example it is likely that

there is a critical temperature at which the abundance of the warm water copepod

Calanus helgolandicus will begin to decline, and so only relatively small changes

in the climate variables are explored in this study. The slight decline of this species
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a) The principal components for the Phytoplankton with the spatial average
removed averaged across the first cluster.

b) The principal components for the Phytoplankton with the spatial average
removed averaged across the second cluster.

c) The principal components for the Phytoplankton with the spatial average
removed averaged across the third cluster.

Figure 7.20: Plots of the principal components for the Phytoplankton with the spa-
tial average for the whole North East Atlantic removed across the each of the clus-
ters. The first component is shown in dark blue, the second in green, the third in
red, the fourth in light blue, the fifth in purple and the sixth in yellow.
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in the very south of the region under an increased NHT supports the hypothesis that

there is a maximum optimal temperature for this species. Predictions are, however,

useful for members of industry and for policy makers who wish to understand better

what steps to take in light of projected changes in the ecology.

At different scales the sensitivity of the plankton to environmental factors changes.

Once the large scale trends have been removed, for instance, the Diatom species

show more complex local structure. It is also apparent that although the NAO was

not found to have a significant correlation with the plankton data in the earlier part,

once the influence of other drivers is removed it does have a significant correlation

in certain provinces. This suggests that the influence of smaller scale oscillations

can be obscured by longer term trends. This chapter demonstrates how sparse PCA

might be used to assess the vulnerability of different species to different climate

drivers both across space and at different scales. Although some care must be taken

to keep in mind the assumptions of the model, this chapter shows that the methods

described can be used to make projections about the behaviour of plankton commu-

nities.
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Chapter 8

Conclusions

8.1 Discussion of the Main Results

In this study a novel approach was used to explore the CPR dataset across different

dimensions and two applications of this methodology are presented. This approach

adapts existing statistical methodology in order to study the structure of the CPR

dataset over space, time and species. This approach to the analysis of the CPR

data was novel as most previous studies have restricted to focusing on one or two

indicator species [25] and even those that take a more multivariate approach have

studied only a relatively small subgroup of species [24]. The two research questions

are addressed are whether a ‘regime shift’ in the biogeographical regionalisation of

the North Atlantic has occurred and whether particular regions can be said to be

more vulnerable to climate change. Only by using suitable statistical methods can

these questions be addressed at a community level. The results of this work show

that complex multivariate structure in both space and time across the Continuous

Plankton Recorder can be modelled using sparse PCA and that this model allows

new insights in to the ecosystem to be made. This methodology has been applied

to two biological questions but it is clear that it could be extended as a tool for

addressing various different research problems with the CPR data or even using
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other ecological datasets. In this chapter an overview of the main findings of the

study is presented and suggestions for further extensions of this work are made.

8.1.1 Species Structure

In this analysis the impact of climate drivers was explored both across individual

species and across communities. One potential consequence of the ‘regime shift’ is

a change in the species composition of the North East Atlantic [75, 66, 143, 5] and

this will have consequences for the entire habitat.

Analysis of individual indicator species using spatial PCA can be used to gain

some understanding of how climate can effect the ecosystem of the North Atlantic

[25, 31] and how the influence of different drivers might vary in space. In this

study it has been shown that species of copepod, such as Calanus finmarchicus and

Calanus helgolandicus, are primarily driven by fluctuations in temperature. These

two species are morphologically similar but respond in different ways to temper-

ature. By using sparse PCA to determine the vulnerability of different species to

climate the northern North Sea is shown to be a particular region of change for these

two species, with a predicted decrease in C. finmarchicus and a predicted increase in

C. helgolandicus if temperatures continue to rise in this region (see figures 7.4 and

7.7). These results support the hypothesis that the species composition has changed

and is likely to continue to change with rising sea surface temperatures, since cer-

tain species becoming more able to establish themselves with rising temperatures in

waters which would have previously been too cold. Meanwhile it has been shown

in this analysis that cold water species, such as C. finmarchicus, are likely to retreat

even further north. The study of the vulnerability across space shows temperature

changes may lead to switching in the dominant species from cold water species to

warm water ones [48] and this can be seen by comparing C. finmarchicus and C.

helgolandicus.

Spatial PCA shows that phytoplankton biomass is on average increasing as tem-
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peratures rise. This has been reported in a number of other studies [54]. The phyto-

plankton form the basis of the marine food web and so changes in their abundance

and composition will have knock on effects on other organisms [68]. The AMO

has a secondary influence on phytoplankton biomass. Some care must be taken in

interpreting these results however, since the phytoplankton colour index is merely

a representation of total phytoplankton biomass [13] and it is known that not all

species of phytoplankton respond to climate in the same way [99].

Plankton are also important to the ecosystem due to their influence other marine

organisms through the coupling of pelagic and benthic systems [88]. The abun-

dance of Echinoderm larvae, which are the offspring of the group of marine organ-

isms that includes starfish, is also predicted to be increasing in the northern North

Sea. If the rate of survival to adulthood remains constant then this will have an

impact on the adults and thus effect the composition of the benthic system. This

again demonstrates the importance of understanding the behaviour of the plankton

in order to make projections about how possible changes in climate may affect the

marine ecosystem.

One advantage of this multivariate analysis over analysing individual species is

that the sensitivity to different drivers can be tested across multiple species without

the computational intensity of performing a regression analysis for each individual

species at each location. This is due to the fact that most of the variation is explained

by five or fewer components. This part of the research is novel in that an extensive

analysis of the CPR data across species, space and time has never been carried out

before. The techniques used in this study allow one to make use of the extensive

data available and to summarise complex structure in an interpretable way.

In carrying out the community analysis various challenges were presented. The

first was how to determine the number of species to retain for each component. A

mixture model was used to estimate this number and then the method was carried

on out pre-processed data in order to assess the validity. The WinCPR dataset was
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used to select the mixture model for the loading vector by showing that a Laplace

mixture captured the distribution well (see figure 4.1). Further modelling challenges

were presented when analysing the raw dataset. It became apparent that there might

be difficulties with combining different types of species in a single analysis. Since

zooplankton and phytoplankton have different biomasses and are counted in differ-

ent ways the weights on these species might not be representative (see figure 6.4).

The loading vectors placed a much higher weight on the phytoplankton species

than the zooplankton, suggesting that the results might not be informative about the

behaviour of the zooplankton and that it is inadvisable to compare abundances of

phytoplankton and zooplankton without taking in to account their relative magni-

tudes. Therefore the analysis was also carried out on just the zooplankton and just

the Diatoms in addition to the whole community.

8.1.2 Temporal Structure

In this study PCA was used to find the dominant trends in both sea surface tem-

perature and plankton assemblages across time. For the sea surface temperature

data PCA proves to be a useful tool in separating the spatio-temporal trends. In

particular two of the dominant modes of variability in the sea surface temperature

data were shown to correspond to known climate indices. After detrending the first

and third largest sources of variation can be matched to the AMO and the NAO

respectively both in their spatial and temporal representations (see figure 3.2). The

second component cannot be identified with a known climate oscillation, although

the north-south dipole in its spatial influence resembles the spatial pattern of the

EAP [43, 165]. Several possible explanations for what may be driving the second

component were proposed but none of these was verifiable.

The study then focused on the dominant trends across both indicator species

and species communities for the CPR dataset. Using the results of the sparse PCA

on the species assemblages the influence of both the recent warming trend and nat-
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ural climate oscillations was explored. The initial analysis using the pre-processed

WinCPR dataset demonstrated the importance of taking in to account misalignment

when working across different species, in particular when comparing the dominant

trends with climate signals (see figure 4.11). This implies that there are time lags

between species. These may arise for a number of reasons: species with differing

physiology might respond to changes more or less quickly or there may be lags

between species which interact with one another. The latter might be the case for

species that predate on others. If the change in the climate variable affects the pre-

dated species then the predator’s abundance might be impacted. As there is causal

link between abundance of predator and the abundance of prey it can be expected

that there will be a time delay between the change in abundance of the predated

species and the change in abundance of the predator. This suggests that time lags

might be useful for understanding species relationships.

Once the time lags had been accounted for it was found that there were strong

correlations between the joint responses of the plankton assemblages and various

climate drivers across a large number of spatial locations. Whilst the greatest driver

of abundance for the zooplankton is the average warming trend [127], for the Di-

atoms it is the AMO [56] (see figures 5.19 and 5.24). There is a time lag between the

average zooplankton response over the whole North Atlantic and the NHT, suggest-

ing perhaps some delay in response times. The AMO also plays a role in driving

zooplankton abundance in addition to the warming trend and thus should not be

ignored. There is however a high degree of variability in the importance of these

drivers in space [108].

For many species assemblages temperature is the most important driver of abun-

dance but for those groups of species that are less directly metabolically affected

by changes in temperature other factors, such as the mixed layer depth, play a more

important role. Diatoms are known to be sensitive to mixed layer depth [56], which

in turn is driven by wind intensity and currents which are thought might be linked to
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the Atlantic Multidecadal oscillation. The warming trend might obscure the pres-

ence of natural oscillations and so it can often by useful to linearly detrend the sea

surface temperature before exploring the influence of these oscillations [141, 90].

An extension of this analysis, which looked at how the abundance of different

species of plankton might change under possible changes in the climate drivers, was

also presented. These results indicated that a further increase in the warming trend

would influence the zooplankton group in particular (see figure 7.13).The model is

useful for making short range predictions, which may effect the decisions of policy

makers, but since the plankton ecosystem is highly complex continued study is also

necessary. With the increase in the number of global surveys it can be hoped that

more detailed data over more spatial regions might be available in the future in

order to study the long term impact of climate change.

8.1.3 Spatial Structure

Part of this study explored spatial heterogeneity. Spatial patterns were found using

a statistical learning approach and without prior knowledge. These results were

shown to be interpretable in light of the ecology and oceanography, which sup-

ported the validity of the methodology as an exploratory tool. One example of

the spatial heterogeneity is in the average warming trend. Unlike the average over

the Northern Hemisphere in the subpolar gyre a cooling effect is instead observed,

which may be attributable to changes in the flow of currents in this region [118].

The southern North Sea is instead warming at a slightly quicker rate. Consequently

any approach to climate modelling that does not take in to account the spatial het-

erogeneity might lead to misleading results. It has been shown that the influence

of climate drivers on both sea surface temperature and plankton is heterogeneous

in space [108] and across species. The presence of different physical features, such

as changes in the bathymetry and ocean gyres, can determine how influential dif-

ferent drivers are in space [90, 43, 123]. The plankton forms a complex ecosystem
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on which most marine life is dependent [68] and so understanding this heterogene-

ity is vital to both environmental policy makers and member of marine industries

[136]. From this it can be shown that there is non-stationarity in the regionalisation

of the North Atlantic as defined by plankton assemblages and that certain regions

are indeed more vulnerable to different climate variables. This analysis could also

be extended to other spatial regions by including additional climate variables, since

on a global scale different climate variables are more influential in different regions

of the world.

In investigating the influence of climate on individual species across space the

concept of ecological niches is important. An ecological niche is the region and

environment to which a particular species is well suited [75, 74]. For certain cold

water species, such as the Copepod Calanus finmarchicus, the North Sea might lie

at the edge of an ecological niche making them particularly vulnerable to changes

in climate in this region [75, 74]. It is thought that these rising temperatures will

impact the spatial distribution of species such as C. finmarchicus and that given its

importance to the ocean habitat that this will have a major effect on the entire marine

system [132] and the spatial distribution of many important marine organisms [57,

27]. For many other species temperature is also a the primary driver in their spatial

distribution [117, 21], meaning these sort of changes can be expected on a large

scale should the warming trend continue. In our study we observe that there are

regions in which certain species are more vulnerable to changes in climate.

The spatial structure is also explored across species communities. The strength

of the community analysis is that, in addition to gaining insights in to how dif-

ferent drivers effect abundance of plankton across space, it allows one to visualise

the complex spatio-temporal structure across species groups. This in turn allows

the identification of ecoregions defined on species groups rather than just individ-

ual species and to understand how these ecoregions might change, which provides

entirely new insights in to the CPR dataset. The output of the sparse PCA also
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produces summaries of the assemblage structure across space, which are given in

terms of the sparsity parameter and the number of components. The estimates of

the sparsity parameter, which is a representation of the number of members of each

assemblage, for the WinCPR data from this model are spatially interpretable. It

can be shown that across all species using the WinCPR data the sparsity parameter

and the number of principal components, which is a representation of the number

of distinct assemblages, are highest in the north west of the North Sea. This is the

region where the oceanic waters mix with the waters from the North Sea, implying

that there will be a mixture of different species types in this region.

The number of principal components, which could be seen as a representation

of the number of functional groups, also shows some structure in latitude. The

number of groups is particularly high in the southern North Sea and the bay of

Biscay, suggesting higher zooplankton diversity in these regions. For the Diatoms

the major driver of the spatial distribution is the bathymetry. It may be that they are

sensitive to changes in currents driven by the bathymetry. The sparsity parameter

for the zooplankton species is higher in shallower waters, particularly in the bay of

Biscay.

Cluster analysis on both the output of the sparse PCA on the WinCPR dataset

and on the raw data produces spatially coherent and biologically meaningful re-

gions. Clustering on the species representation for the WinCPR data, for example,

shows a north-south division in the North Sea, which may be due to differences

in temperature and bathymetry. Similarly interpretable spatial patterns are found

using the raw data, with the regions on the zooplankton species being driven by

temperature and the regions on the diatoms relating to the bathymetry. The spatial

pattern of the regions based on the species for the zooplankton for the raw shows

a north-south divide (figure 6.9), for example. One potential challenge is how one

can be certain that these spatial patterns are not simply due to the interpolation

methods used. A simulation study can be used to verify that these spatial patterns
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are features of the data rather than an effect of the smoothing (see figures 5.27 and

5.28).

This analysis was then used in order to find whether there could be said to be

a ‘regime shift’ in the ecoregions of the North East Atlantic defined by dominant

species of plankton. The community analysis also demonstrates how spatial pat-

terns of plankton are changing over time. The north North Sea is a particular re-

gion where change is occurring, with warm water species increasing in abundance

as temperatures rise and cold water species declining (see figure 5.20). Recent

studies predict a northwards movement of species of zooplankton to be occurring

[132, 127, 166, 75] and changes in the regime of the North Atlantic to be happening

as a result [22]. These sort of changes could have a profound effect on the marine

ecosystem, for example for fish larvae that prey upon the zooplankton [27]. Another

effect of the changing regime in the North Atlantic is the detection of species that

have not been observed in this region previously in post-industrial era data [131].

Our results show that clusters on the zooplankton species have indeed shifted north-

wards post 1985 (see figure 6.9). For the Diatoms temperature is a less important

driver and so this northwards movement is not observed. There is however increas-

ing structure seen in the spatial pattern, which seems to follow the bathymetry,

which may be attributable to the positive phase of the AMO (figure 6.14). When in-

vestigating the spatial vulnerability of species the northern North Sea was revealed

to be a ‘hotspot’ for the zooplankton. In this analysis joint responses of the plankton

were assumed to be linearly dependent on climate variables, with the coefficients

being estimated by regression. The linear regression model has some limitations in

its assumptions, meaning it can not be used to predict changes over long time peri-

ods. In particular it may be inadvisable to assume that the linear relationship will

hold for large perturbations. This means that continued monitoring, particularly

in vulnerable regions, of plankton ecosystems is required in order best understand

how the environment might change over time.
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In the final part of the analysis variability at smaller spatial scales was briefly

explored. Although at a large scale the warming trend and the AMO are the pri-

mary drivers of zooplankton and Diatom abundance respectively, the multiscale

approach demonstrates how other influences such as the NAO might also have an

effect. In the north west North Atlantic and to a lesser extent other parts of the

North Atlantic the principal components for the zooplankton found once the aver-

age trend has been removed correlate with the NAO. The North Atlantic Oscilla-

tion is known to be a driver of plankton abundance [122] but it may be that at a

large scale its effects are obscured by the dominating influence of the NHT trend

on abundance. For the Diatom species the structure becomes more complex after

the average signal is removed, suggesting more variability at a local level. There

can be found some correlation between the resulting principal components and the

NHT and NAO trends, which was not apparent before the average signal was sub-

tracted. There is the opportunity for further investigation to be carried out using

these tools, in particular looking at physical drivers that might have an influence on

more localised behaviour.

8.2 Possibilities for Further Study

In the first part of the analysis the spatio-temporal structure of the sea surface tem-

perature was explored. Since the second trend in the sea surface temperature data

explained a large proportion of the variation it would be of great interest to establish

what may be driving it and so this may warrant further investigation. Further stud-

ies of the spatial heterogeneity of climate indices might look at other spatial regions

and how the influences of different climate indices can change or even at the in-

fluence of different climate indices at different scales, in order to determine which

smaller scale effects might influence local climate. Regions with more complex

local climate might be better understood by investigating more localised effects.
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Long term changes in climate warrant further monitoring. It is known that changes

in climate in certain regions may have a detrimental effect on the environment as a

whole [166] but it is not certain whether current patterns will continue or whether

these will change. For example the subpolar gyre may not continue to cool. By

continuing to monitor these effects the long term consequences may be better un-

derstood.

The second part of the plankton analysis focused on the raw CPR dataset, which

unlike the WinCPR dataset analysed earlier had not been interpolated on to a reg-

ular spatial grid. The challenges associated with modelling such a complex dataset

were discussed in detail. Amongst these challenges is how best to approach the

irregularity of the spatial sampling. One approach is the inverse distance interpo-

lation method used to produce the WinCPR dataset. Another is Kernel smoothing,

which allows one to control the amount the data is smoothed through a bandwidth

parameter. In this study when studying the plankton data Kernel smoothing was

first used to both estimate missing values and to reduce the effects of noise. In this

case a fixed bandwidth was used across space but an alternative approach might

have been to vary the bandwidth according to the amount of sampling in a region

and to thus make use of the fact that certain regions were better sampled. An ex-

tension of this may be to investigate how fine a scale it is possible to study the data

at before the spatial irregularity of the sampling becomes problematic. Too small a

bandwidth might not remove the effect of the sampling transects from the resulting

dataset. However with the wealth of data available it would be of interest to study

the influence of small scale features, such as localised nutrients and pollution, on

the plankton, for which a fine resolution would be useful. A spatially varying band-

width would preserve the detail available along the transects, whilst accounting for

the fact that some regions have almost no samples taken from them.

This study also highlighted the importance of taking in to account time delays

between species when studying temporal behaviour across communities. This in-
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teresting result highlights a number of possible avenues for further study. Further

investigation might focus in more depth upon differences in time delays between

species, for example. Time delays between species might be used in prediction in

order to investigate how changes between one species might influence another. On

the monthly data phase shifts could be used to investigate whether seasonal blooms

have moved forward with rising average temperatures. This is of particular interest

when studying predator-prey relationships, as changes in seasonal blooms might

lead to misalignment between the annual cycles of predators and prey.

The relationship between plankton and climate was studied extensively in this

analysis. One particularly interesting result of this was the strength of the relation-

ship between the diatom communities and the AMO. It has been speculated that

this may be due to the influence of mixed layer depth of the diatoms [56] but the

mechanism is not well understood and as such warrants further investigation.

Further extension of the community analysis could be used to investigate species

interactions. This research did not investigate whether species co-occurrence was

due to them responding to similar climate trends or was due to species interac-

tions. Other areas of ecology have developed methods for approaching species

interactions, which could be applied to the CPR dataset. Ovaskainen [124] ex-

plores species interactions in multivariate ecological datasets. When two or more

species occur together in a region it may be that they are interacting or that they

are responding to the same climate trend. Our study does not presently differentiate

between these two scenarios. Ovaskainen’s approach is to use multivariate logistic

regression on presence or absence data, where the value for each species is 1 if it

has been observed and 0 is there are no observations so that the response is binary,

for that species in order to determine whether a particular species is under or over-

represented in a region according to what is predicted from the covariates. A similar

approach might be applicable to the CPR dataset.

Finally whilst the concept of different drivers at different spatial scales has been
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touched upon, the effects of local influences such as nutrient influxes were not in-

vestigated. This study focuses upon the influences of long term temperature fluc-

tuations and the influence of natural climate oscillations but the spatial resolution

of the data would allow for the study of more local influences as well. The effect

of smoothing was discussed and one possible avenue of exploration is how fine a

resolution it would be possible to model whilst still accommodating for the irregu-

larity of the sampling. Data on nutrient fluxes and currents could be incorporated in

to the model that has already been developed in order to better analyse more local

features and to understand better the spatial heterogeneity of the plankton.

8.3 Conclusions

In conclusion the community analysis is a useful tool in both confirming previously

stated hypotheses about changes in the spatio-temporal structure and for provid-

ing new insight in to the behaviour of the ecosystem, including a community level

analysis. The plankton form a complex system, in which variability across spatial,

temporal and species dimensions must all be taken in to consideration. This work

has involved developing techniques for producing summaries of the data across all

of these dimensions, which has not been done before. From this strong evidence

is brought forward about the nature of the changing ecosystem in the North At-

lantic, changes which could have severe consequences for all marine life. Finally

although this analysis focused upon one dataset in particular, the tools and tech-

niques could be applied to other types of ecological data in order to gain a deeper

understanding over complex ecological structure. The issue of climate change is

likely to be of great importance to policy makers over coming decades, which may

lead to more surveys like the CPR being required to understand the complex rela-

tionship between climate and the environment. Long term changes can be expected

to be seen in many different ecosystems, particularly if the warming trend contin-
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ues, but these changes can be non-intuitive due to the multitude of variables and

possible covariates as well as the heterogeneity of different responses. Together

this makes the development and application of a range of statistical tools essential

to understanding these systems as a whole.
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Number Species
1 Calanus I-IV
2 Para-Pseudocalanus spp.
3 Temora longicornis
4 Acartia spp. (unidentified)
5 Centropages typicus
6 Centropages hamatus
7 Isias clavipes
8 Oithona spp.
9 Corycaeus spp.
10 Calanus Total Traverse
11 Total Copepods
12 Podon spp.
13 Evadne spp.
14 Chaetognatha Traverse
15 Cyphonautes
16 Echinoderm larvae
17 Calanus finmarchicus
18 Calanus helgolandicus
19 Calanus hyperboreus
20 Rhincalanus nasutus
21 Metridia lucens
22 Candacia armata
23 Labidocera wollastoni
24 Tomopteris spp.
25 Gammaridea
26 Hyperiidea
27 Decapoda larvae (Total)
28 Clione limacina
29 Euphausiacea Total
30 Chaetognatha eyecount
31 Fish eggs
32 Fish larvae
33 Harpacticoida Total Traverse
34 Oncaea spp.
35 Parapontella brevicornis
36 Copepod nauplii
37 Cirripede larvae
38 Euphausiacea calyptopis
39 Anomalocera patersoni
40 Polychaete larvae (unidentified)
41 Cumacea
42 Isopoda
43 Mysidacea
44 Echinoderm post larvae
45 Branchiostoma lanceolatum
46 Salpidae
47 Appendicularia
48 Siphonostomatoida
49 Bivalvia larvae
50 Pseudocalanus spp. Adult Atlantic
51 Caprelloidea
52 Paraeuchaeta hebes
53 Paraeuchaeta norvegica

Table 8.1: Species numbers part 1: zooplankton.
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Number Species
55 Paralia sulcata
56 Skeletonema costatum
57 Thalassiosira spp.
58 Dactyliosolen antarcticus
59 Rhizosolenia imbricata shrubsolei
60 Rhizosolenia styliformis
61 Rhizosolenia hebetata semispina
62 Rhizosolenia alata indica
63 Chaetoceros(Hyalochaete) spp.
64 Chaetoceros(Phaeoceros) spp.
65 Odontella sinensis
66 Thalassiothrix longissima
67 Thalassionema nitzschioides
68 Ceratium fusus
69 Ceratium furca
70 Ceratium lineatum
71 Ceratium macroceros
72 Ceratium horridum
73 Ceratium longipes
74 Actinoptychus spp.
75 Bacillaria paxillifer
76 Bacteriastrum spp.
77 Bellerochea malleus
78 Biddulphia alternans
79 Phaeocystis pouchetii
80 Odontella granulata
81 Odontella regia
82 Odontella rhombus
83 Corethron criophilum
84 Coscinodiscus concinnus
85 Ditylum brightwellii
86 Eucampia zodiacus
87 Fragilaria spp.
88 Guinardia flaccida
89 Gyrosigma spp.
90 Leptocylindrus danicus
91 Navicula spp.
92 Cylindrotheca closterium
93 Rhizosolenia setigera
94 Stephanopyxis spp.
95 Ceratium bucephalum
96 Ceratium minutum
97 Dinophysis spp. Total
98 Prorocentrum spp. Total
99 Coscinodiscus wailesii
100 Proboscia alata
101 Leptocylindrus mediterraneus
102 Proboscia inermis
103 Asterionellopsis glacialis
104 Pseudo-nitzschia delicatissima complex
105 Pseudo-nitzschia seriata complex
106 Guinardia delicatula
107 Dactyliosolen fragilissimus
108 Guinardia striata
109 Lauderia annulata

Table 8.2: Species numbers part 2: phytoplankton.
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