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Abstract

For analysing complex multivariate data, the use of composite surrogates is a well es-

tablished tool. Composite surrogates involve the creation of a surrogate likelihood that

is the product of low dimensional margins of a complex model, and result in parame-

ter estimators with acceptable properties (such as lack of bias and efficiency) that are

relatively inexpensive to calculate. Some work has taken place in adjusting these com-

posite surrogates to restore desirable features of the data generating mechanism, but

the adjustments are not specific to the composite world: they could be applied to any

surrogate. An issue that has received less attention is the determination of weights to be

attached to each marginal component of a composite surrogate. This issue is the main

focus of this thesis. We propose a weighting scheme derived analytically from minimising

the Kullback-Leibler Divergence (KLD) between the data generating mechanism and the

composite surrogate, treating the latter as a bona fide density which requires considera-

tion of a normalising constant (a feature which is usually ignored). We demonstrate the

effect of these weights for a simulation. We also derive an explicit formulation for the

weights when the composite components are multivariate normal and, in certain cases,

show how they can be used to restore the original data generating mechanism.
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Notation

All vectors are taken to be column vectors as in, for instance, Barndorff-Nielsen and Cox

(1994). A function of p parameters (such as a loglikelihood) is differentiated (downwards)

with respect to the parameters, resulting in a p× 1 vector. It, in turn, is differentiated

(sideways) with respect to the parameters to produce a p× p matrix. On occasion, we

will differentiate that matrix with respect to the parameters. If p > 1, this will result in

an array of p matrices. We describe this array as a p vector of p × p matrices. Matrix

multiplication can then become a little unintuitive. For instance, if p > 1, W is a p× p

matrix, and θ and V are p× 1 vectors, then:

∂W

∂θ
V =

(
∂W

∂θ1
V , . . . ,

∂W

∂θp
V

)

and

V T ∂W

∂θ
=

(
V T ∂W

∂θ1
, . . . ,V T ∂W

∂θp

)T
.

are p× p matrices. We have omitted the tedious algebraic detail but more information

can be found in, for instance Wei (1997).

Vectors and matrices are only emboldened if it is certain that they are not scalars.

Any subscript added to an expectation (or variance etc) refers to the distribution over

which the expectation is to be taken. For instance,

EG[Y ]
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refers to the expected value of random variable Y under the distribution G.

The p × p identity matrix is described as Ip×p. IG and În are the derivatives of the

expected and observed estimating functions respectively.

We define a dataset to be a set of observations, y1, . . . , yn, each element of which could

be a cluster of datapoints, yi = (yi1, . . . , yimi
). The suffix i is used to represent clusters

and j, points within clusters. The first covariate for yij is xij 1 etc.

Certain letters are used to represent the same feature throughout this report:

• n - number of data elements

• mi - length of cluster i

• m - length of clusters if all the same

• θ - parameters - vector or scalar

• p - number of parameters

• l - number of parameters for a test hypothesis (if not p)

• q - number of components in a composite surrogate

• G - distribution that generated the data, generally unknown

• H - preferred surrogate distribution - normally not used

• F - surrogate distribution. In the case of a composite surrogate, the term is used

loosely so that

• FK - surrogate distribution with constant of proportionality and thus well defined

density

• K - constant of proportionality or normalising constant

• ψ - estimating function

• n as suffix - quantity calculated from n data elements
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• cs as suffix - relating to composite surrogate

• J - second derivative of Kullback-Leibler Divergence with respect to the weights

in new scheme.
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Outline

For analysing complex multivariate data, the use of composite surrogates is a well es-

tablished tool. Composite surrogates involve the creation of a surrogate likelihood that

is the product of low dimensional margins of a complex model, and result in acceptable

parameter estimators that are relatively inexpensive to calculate. Some work has taken

place in adjusting these composite surrogates to restore desirable features of the data

generating mechanism, but the adjustments are not specific to the composite world:

they could be applied to any surrogate. An issue that has received less attention is the

determination of weights to be attached to each marginal component of a composite

surrogate. This issue is the main focus of this thesis. We propose a weighting scheme

derived analytically from minimising the Kullback-Leibler Divergence (KLD) between the

data generating mechanism and the composite surrogate, treating the latter as a bona

fide density which requires consideration of a normalising constant (a feature which is

usually ignored). We demonstrate the effect of these weights for a simulation. We also

derive an explicit formulation for the weights when the composite components are mul-

tivariate normal and, in certain cases, show how they can be used to restore the original

data generating mechanism.

In Chapter 1, we review results for surrogates, which are likely not to have generated

the data. We use the KLD as a basis for parameter estimation, work with estimating

functions and equations wherever possible, and are particular in establishing the assump-

tions made at every stage. We derive standard asymptotic results for consistency and

distribution of parameter estimates, including the sandwich formulation for the variance,

and provide estimators for the parameters and elements of the sandwich. We show how

the usual test statistics are distributed in the case of surrogates. We review the use of
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a number of potential adjustments to surrogates that have been proposed in the liter-

ature. Finally, we examine how we might compare different surrogates for multivariate

parameters. A simple univariate single parameter example illustrates the concepts and

two continuing practical examples are described.

In Chapter 2, we examine the use of composite surrogates. Wherever possible we work

with an unknown data generating mechanism and do not assume that the composite

surrogate components are marginal for it. We look at bias, covariance estimation and, as

a new contribution, the effect of introducing a normalising constant so that the surrogate

can be regarded locally as a bona fide likelihood for a misspecified model. We illustrate

this with reference to a composite normal surrogate. We explore the performance of

the surrogate, and the adjustments, using a simulation based around clustered binary

outcomes in a logistic regression with cluster-specific random effect. The effect of using

higher order features for small samples is reviewed.

In Chapter 3, we examine the issue of weighting the components of a composite surro-

gate. We review the published work in this area, linking and extending it as required,

resulting in two optimally efficient schemes for estimating functions, one a simplification

of the other. We introduce a completely new weighting scheme, which takes into account

the normalising constant and consists of a set of equations to be solved for the weights,

proving its derivation from the KLD and explore how it might be used in practice. The

performance of this new scheme is assessed in a simulation study based around probit

regression and an autoregressive random effect, but the effect of the weights on the

results of the simulation is not significant.

In Chapter 4, we apply the new weighting scheme analytically to composite surrogates

whose components are multivariate normal and show that these surrogates represent

distributions of transformations of the data. We derive elegant forms for the weights

equations. We examine the circumstances under which the use of weights enables us to

recover the distribution that generated the data. We apply these to the simulation from

Chapter 3, again with no significant effect, and to autoregressive models.

In Chapter 5 we review the thesis. We suggest a reason for the results of the simulations

15



and discuss the value of using weights at all. We suggest areas for further research.
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Chapter 1

Surrogates

1.1 Introduction

Most data studied statistically arise from a mechanism that is at least partially unknown.

They are often analysed using a parametric model that is a surrogate for that mecha-

nism. In Section 1.2 we set up our terminology for the study of such surrogates, based

around the use of estimating functions, and introduce some recurring examples. Basic re-

sults arise from minimising the Kullback-Leibler discrepancy between the data generating

mechanism and the surrogate. In Section 1.3 we derive the standard asymptotic results

and in Section 1.4 the observed equivalent to various theoretical expressions. The distri-

butions of a number of test statistics are studied in Section 1.5. A range of adjustments

to loglikelihoods and estimating functions which simplify the asymptotic distribution of

test statistics is analysed in Section 1.6. They are shown to share common features. The

choice of which surrogate to use for any particular dataset is important and methods

for comparing these choices are outlined in Section 1.7. Finally, for completeness, two

Bayesian approaches are described in Section 1.8.
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1.2 Basics

We consider the analysis of data, y1, . . . , yn, which are realisations of random variables,

Y1, . . . , Yn, observed from an unknown distribution G, not necessarily belonging to a

parametric family. Each data item could be a vector of, possibly dependent, measure-

ments. We are interested in features of G - mean, variance etc - that we shall term

objects of interest. As G is unknown, we investigate objects of inference, θ = θ(G) ∈ Θ,

with dimension p, arising in F, a surrogate for G, using the data at hand. Although

much of our analysis will be carried out using estimating functions, our primary area

of interest is Maximum Likelihood Estimation, in which case we will use a likelihood,

LF, and loglikelihood, `F, based on F. The related joint density, f , may not be fully de-

scribed, particularly if the constant of proportionality (or normalising constant) is difficult

to derive.

The two sets of objects are related in that the value of estimators for the objects of

inference will depend upon the data and thus G. One could indeed establish a functional

from the set of possible Gs to the objects of inference so that θG would be the value of

θ that brings F ‘closest’ to G.

The focus of this thesis is the study of surrogate likelihoods which may arise from surro-

gate distributions and surrogate models. One might consider a range of surrogates for a

particular dataset using a variety of criteria to distinguish between them, such as math-

ematical tractability, computability, optimality (in a sense to be defined), information

criteria or robustness.

Example I - Poisson Surrogate for Gaussian Data. Suppose that we have

independent data, y1, . . . , yn from G ≡ N(µ, σ2). We have been explicit with the

density, g derived from G, for clarity’s sake in this example, but it is generally

unknown. Suppose that in the absence of knowledge of G our surrogate is F ≡

Poi(θ). Clearly, this will only work with non negative integer data and for this

example, we will assume that is the case (for example, non negative data may have

been rounded to integer values). Our object of inference is θ but our objects of

interest will be whichever features of G we are interested in, say the mean and
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variance. We will need to ensure that θ has the desired interpretation in the context

of G.

Define an estimating function (or inference function, McLeish and Small, 1980) as

ψ(θ; y), a k-vector valued function (k ≥ p) relating θ and y such that:

EG[ψ(θG;Y )] = 0 some θG ∈ Θ. (1.1)

the principal purpose of which is to define θG. Uniqueness is defined in Assumption

5. The subscript for θ denotes the fact that we have chosen an estimating function

which we believe will have something of interest to say about G at parameter values

θG, expectations being taken over the unknown G. Let E denote the class of all such

estimating functions.

We are likely to have multiple instances of Y , y1, . . . , yn. Each of these data elements

will be generated from G and may represent a cluster of datapoints, yi = yi1, . . . , yimi
.

Note that the data items may be of varying length. As shorthand we shall use m rather

than the set of mi and this may represent max(mi), 1 ≤ i ≤ n. We make no assumption

about the independence of the Yi. In practice the dependence that typically arises relates

to time or space, and so one might assume stationarity at some level in those continuums

(see Section 2.6).

We will make a number of assumptions in this thesis, some of which are specific to

particular sections. They are mostly to keep us in the realm of well behaved functions

that one would encounter in practice. For an analysis of many of the estimating function

assumptions, especially as they relate to asymptotic results in Section 1.3, see Jesus and

Chandler (2011). Where there are common exceptions to the assumptions, they will be

noted. At various points we develop expressions based upon taking expectations over the

distribution G. Where explicitly described, g(y), the corresponding density, is assumed

to be a continuous function in order to maintain simplicity with respect to integration.

Assumption 1. ψ(θ; y) is continuous in θ for any y and measurable in y for any

θ.
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An alternative definition for an estimating function (eg Song, 2007) just takes any

function that satisfies Assumption 1 and describes it is as unbiased if Eθ[ψ(θ;Y )] = 0

for all θ ∈ Θ. In that approach, as θ varies, so will G (which is taken to equal F),

the distribution over which expectations are being taken (resulting in the different use

of subscripts from this thesis). However, that assumes that a density g exists and is

parameterised by θ, an assumption that, in general, we are not making.

Assumption 2. Differentiation with respect to θ and integration with respect to y

are interchangeable.

This does not have to be the case, for instance where the range of integration depends

upon θ, as in the example where we have a distribution over [θ − 0.5, θ + 0.5].

In the familiar non surrogate situation (ie where F is G), g(y; θ) is a member of a

parametric family with score U(θ) = ∂ ln g(y; θ)/∂θ then:

EG[U(θ)] =

∫
∂ ln(g(y; θ))

∂θ
g(y; θ) dy

=

∫
∂g(y; θ)

∂θ

1

g(y; θ)
g(y; θ) dy

=

∫
∂g(y; θ)

∂θ
dy

=
∂

∂θ

∫
g(y; θ) dy by Assumption 2

=
∂1

∂θ

= 0. (1.2)

so the score is an estimating function for all θ ∈ Θ and, in particular, in an area around

the value of of θ in which we are interested. (1.2) is sometimes known as Bartlett’s first

identity.

However, in general, where g, if it exists, is not necessarily a member of a known

parametric family and we wish to use f (or its likelihood) as a parametric surrogate, we

20



commence the same proof:

EG

[
∂ ln(f(θ;Y ))

∂θ

]
=

∫
∂ ln(f(θ; y))

∂θ
g(y) dy (1.3)

=

∫
∂f(θ; y)

∂θ

1

f(θ; y)
g(y) dy

and can go no further.

The approach that we shall then use (which we shall term surrogate maximum likelihood

estimation or SMLE ) is to find the value of θ, θ∗, that maximises the expected loglike-

lihood arising from F under G, ie knowing that we are working with a surrogate, we are

looking for the parameter value that takes us as ‘close’ as possible to G. That involves

trying to maximise:

EG[`F(θ)] =

∫
`F(θ)g(y) dy (1.4)

sometimes known as the Fraser Information (Kent, 1982), over the parameters or, equiv-

alently, to minimise:

EG

[
ln(g(Y ))

`F(θ)

]
= EG[ln(g(Y ))]− EG[`F(θ)], (1.5)

known as the Kullback-Leibler Divergence (Cox, 2006) or KLD (also used is Kullback-

Leibler discrepancy in Davison 2003). The equivalence arises as the first term in (1.5) is

constant with respect to the parameters and is sometimes omitted (White, 1982). There

are other discrepancy functions that we could use but the Kullback-Leibler discrepancy

seems the most natural, particularly as we are working with likelihood functions. Lin-

hart and Zucchini (1986) describes many of these functions (such as those defined by

Kolmogorov, and Cramér and von Mises) and provides an overview of this approach to

inference.
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To maximise (1.4), we differentiate with respect to the parameters and set equal to zero:

0 =
∂
∫
`F(θ)g(y) dy

∂θ

∣∣∣∣
θ∗

=

∫
∂`F(θ)g(y)

∂θ

∣∣∣∣
θ∗

dy by Assumption 2

=

∫
∂`F(θ)

∂θ

∣∣∣∣
θ∗

g(y) dy as g(y) is not a function of θ

= EG[ψ(θ∗;Y )] say,

and we have an estimating function, as defined in (1.1), with θG = θ∗ so that under

SMLE, the score of a surrogate is an estimating function, when expectations are taken

over G.

Henceforth, we will assume that we are always working with surrogates and use defi-

nition (1.1). In maximum likelihood estimation, the estimating functions are the score

functions. Nomenclature for the objects of interest and inference is from Royall and

Tsou (2003), where the following example in which the two objects do not coincide is

given. Let E[Y ] be our object of interest for G, which is not lognormal, and consider

a surrogate, F ≡ Lognormal(µ, σ2), with density f . If we define µ as our object of

inference in the surrogate, then µG = exp (EG[ln(Y )] + σ2/2) which is not the same

as the object of interest. As, in general, we do not know G, it should not therefore be

assumed that objects of inference and interest always coincide.

We will formalise the uniqueness of θG in Assumption 5. This approach, whereby we

work with a single target θG, is consistent with that used in Generalised Method of

Moments (GMM) which arose originally through a least squares minimisation of orthog-

onal moment conditions (see, for instance, Hansen, 1982) and is discussed in Jesus and

Chandler (2011).

Example I continued - Poisson Surrogate for Gaussian Data. The estimating
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function for the surrogate is:

ψ(θ; y) =
∂ ln f(y; θ)

∂θ

=
∂ ln(θy exp(−θ)/y!)

∂θ

=
y

θ
− 1.

The zero of the expected value, θG satisfies:

0 = EG[ψ(θG;Y )]

= EG

[
Y

θG
− 1

]
=

µ

θG
− 1.

so that our object of inference θG = µ and we would use that value for estimating

our first object of interest, the mean of G. Our second object of inference, the

variance, would then also have to be given value θG due to the nature of the Poisson

distribution. Clearly this will not, in general, equal σ2, the object of interest.

Estimating (or inference) equations for a dataset Y1, . . . , Yn are:

ψn(θ; y) = ψn(θ; y1, . . . , yn) = 0. (1.6)

They are described as M-estimators or Z-estimators (‘Z’ for zero) in van der Vaart

(1998).

Under maximum likelihood estimation for instance, by setting the score functions equal

to zero we have estimating equations which we can solve for the maximum likelihood

estimator. In many cases, such as iid Yi under maximum likelihood estimation, we have:

ψn(θ; y) =
n∑
i=1

ψ(θ; yi) (1.7)

but in general it will not be possible to express ψn(θ; y) in terms of the basic ψ(θ; yi)

function.
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Example II - Weather Readings. Suppose we have weather readings (eg wind

speed, temperature) at m sites. Over a fixed period every site records a reading

hourly to give n clusters, each with m elements. In general, the clustered readings

will be neither independent (storms typically last longer than an hour so there will

be short term dependence for wind speed) nor identically distributed (seasonality

results in higher temperatures in summer). Whatever form a surrogate might take,

one could condition upon recent readings to eliminate the time dependence (see

Section 2.6) and build in seasonality so that an iid approach for clusters might be

justifiable (see, for instance Yan et al., 2002). There is no inherent order to the

elements within a cluster.

Example III - Longitudinal Study. Measurements (eg blood pressure, weight)

are taken from n patients over a period of a year after an initial reading on day one.

Readings are taken whenever a patient visits their GP, which will be irregularly and

may be never: mi will be greater than zero but not the same for all patients and we

define the set of readings for a patient as a cluster. While it is reasonable to assume

independence between clusters, they will certainly not be identically distributed and

(1.7) will not apply. Within each cluster, there is an obvious ordering based upon

time.

As a generalisation of (1.6), we shall normalise all ψn to give ψ̄n, ie:

ψ̄n(θ; y) ≡ Anψn(θ; y) (1.8)

where An are k × k symmetric invertible fixed matrices, possibly dependent upon n. In

Section 1.3 we will choose An so that ψ̄n converges to a deterministic function with

a root at θG as n → ∞. See Assumption 5 below for a description of asymptotic

behaviour of An. The symmetry of An is required at various points in this chapter.

While for estimating functions which are the derivatives of objective functions, such as

loglikelihoods or moment conditions, An will be diagonal, we have allowed for the more

general case but do require the assumption of symmetry. For the iid case in (1.7), we
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take An = 1
n
Ik×k and if θ is scalar:

ψ̄n(θ; y) =
1

n
ψn(θ; y)

=
1

n

n∑
i=1

ψ(θ; yi). (1.9)

We will solve our estimating equations, (1.6), to give θ̂n, an estimator of θG.

Assumption 3. θ̂n exists and is unique for all n.

This would normally require that we have the dimension of ψ (k) equal to the number

of unknowns (p). This is generally the case with the GMM and maximum likelihood

estimation approaches, where differentiation by each of the elements of θ results in

that number of estimating equations. However, one could use the estimating equations

directly to set up any number of moment conditions (eg Davidson and McKinnon, 2004,

page 371) and then some manipulation, perhaps using linear combinations of conditions,

is required to arrive at a set of p independent conditions. We will assume any such

manipulation has taken place so that k = p.

Example I continued - Poisson Surrogate for Gaussian Data. The estimating

equation for the n data items is:

0 = ψn(θ; y1, . . . , yn)

=

∑n
i=1 yi
θ

− n (1.10)

solving to give:

θ̂n =

∑n
i=1 yi
n

.

It is worth noting the connection with indirect inference (see, for instance, Gourieroux

et al., 1993). In that case, the density of G, g(y; ζ), is known and amenable to simulation

but otherwise intractable, and parameterised by ζ, distinct from θ which parameterises
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the surrogate F. Observations are used to derive θ̂, the standard maximum likelihood

estimator under F. For a range of values of ζ, one simulates data from G and estimates

θ under F. The estimate of ζ for which the resulting estimate of θ is closest to θ̂ is then

taken as optimal and is shown to have good asymptotic properties and enables hypothesis

testing to be carried out. While the set up of G is different from that described in this

thesis, this approach has similarities to those used for assessing robustness, described in

Section 1.7.4.

Henceforth, we shall use E[.] rather than EG[.] for simplicity’s sake but it is important

to remember that we are taking expectations over the (unknown) distribution G, unless

otherwise mentioned.

1.3 Asymptotic Results

In this section we deal with asymptotic results. There are times when we deal with

small samples and the results discussed here do not apply. In particular, the asymptotic

normal distribution, discussed at (1.18), is not appropriate and then the test statistics

we derive in Section 1.5 are not available. These issues are exacerbated when we deal

with surrogates, as poor model specification for small samples has a more deleterious

effect than for large. However, standard techniques for dealing with such cases, such as

t-tests, are available. Many of the applications that use composite likelihoods, such as

Example II, have a wealth of data and we can comfortably make use of the asymptotic

results in this section.

We want to understand the behaviour as n → ∞ of θ̂n, the solution to ψ̄n(θ) = 0

(omitting the Y s and ys for brevity wherever possible). We will first show that the

θ̂n are consistent for θG, the maximiser under SMLE of (1.4), and then examine their

asymptotic distribution. The structure of the proofs in this section can be found in, for

instance, van der Vaart (1998). We make use of a vector metric or distance function,

‖.‖v. In order to ensure that θG is well defined, we assume

Assumption 4. Θ is compact.
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As a result, the limit of any sequence of parameters in the space is itself in Θ. Jesus

and Chandler (2011) note that there may still be problems if θG lies on the boundary of

Θ and a function of θ that we wish to differentiate (such as an estimating function) is

undefined outside that space. There are alternatives to compactness, some of which are

described in van der Vaart (1998, Chapter 5).

Assumption 5. There exists a sequence, {An}, of symmetric invertible fixed matri-

ces converging in probability to some constant symmetric invertible matrix such that

ψ̄n(θ) ≡ Anψn(θ) converges uniformly in probability to ψ∞, a twice differentiable

fixed function of θ with a unique zero at θG under the metric, ie:

sup
θ

(
‖ψ∞(θ)− ψ̄n(θ)‖v

) p→ 0

where:

inf
θ:‖θ−θG‖v≥ε

(‖ψ∞(θ)‖v) > ‖ψ∞(θG)‖v = 0 (1.11)

for any ε > 0 and θ ∈ Θ.

There are alternatives to this (eg van der Vaart, 1998, Section 5.2) but, as in the

approach described here, they all require more than simple point convergence (although

with a scalar θ, Assumptions 1 and 3 are adequate). An early proof of the consistency

result (Huber, 1967), albeit not defined in terms of estimating functions, offers two

approaches each based around a different set of highly technical assumptions. Clearly,

in cases such as (1.7), E[ψ(θ)] satisfies the convergence conditions for ψ∞, and ψ∞ =

E[ψ(θ)] but we need to assume a unique zero. A consequence of the assumption is that

limn→∞ E[ψ̄n(θ)] = ψ∞(θ).

We apply Assumption 5 to ψ̄n at θ̂n. As n varies, so will θ̂n, but it will remain in Θ and

as Assumption 5 applies to the supremum over Θ we have

‖ψ∞(θ̂n)− ψ̄n(θ̂n)‖v
p→ 0
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so by the definition of θ̂n as a zero of ψ̄n:

‖ψ∞(θ̂n)‖v
p→ 0. (1.12)

However, if for some ε > 0 and for all n > n(ε) for some fixed n(ε):

‖θ̂n − θG‖v ≥ ε

then by (1.11):

‖ψ∞(θ̂n)‖v > ‖ψ∞(θG)‖v ≡ 0.

But, the probability of the left hand side being larger than zero tends to 0 by (1.12) and

so for all ε:

P(‖θ̂n − θG‖v ≥ ε)→ 0.

Thus, θ̂n are consistent for θG.

Example I continued - Poisson Surrogate for Gaussian Data. The results

of solving the estimating equations, θ̂n =
∑n

i=1 yi
n

, are consistent for µ by the Central

Limit Theorem.

We now turn to the asymptotic distribution of the estimators.

Assumption 6. ψ̄′n(θ) and ψ̄
′′
n(θ) exist and are continuous functions of θ in an area

around θG.

ψ̄
′′
n(θ) is a p-vector of p × p matrices; see the Notation note at the beginning for this

thesis for more details.

The existence of two derivatives is a strong assumption which fails, for instance, when

ψ(θ; y) = sgn(y− θ), which has a zero at the median. There are a variety of alternative

assumptions (eg van der Vaart, 1998, Section 5.3) to deal with such situations.
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Assumption 7. ψ̄′n(θG)
p→ ψ′∞(θG), which we shall define as −IG(θG), a gener-

alisation of the expected Fisher information, not dependent upon the data. IG(θG)

commutes with An and A
− 1

2
n .

We have implicitly used the same normalising matrix for ψ′n(θG), An, as we did for

ψn(θ) at (1.8) and in Assumption 5. This is not unreasonable as ψ′n(θ) is well behaved

around θG by Assumption 6. However, Jesus and Chandler (2011) do use a separate

normaliser. In the case of iid Yi the weak Law of Large Numbers (LOLN) means that

the convergence in Assumption 7 will take place in distribution.

Assumption 8. IG(θG) is nonsingular.

An extension of this to its estimator is given as Assumption 14.

By the Lagrange form of Taylor’s theorem:

ψ̄n(θ̂n) = ψ̄n(θG) + ψ̄′n(θG)(θ̂n − θG) +
1

2
((θ̂n − θG)T ψ̄

′′

n(θ̆n))(θ̂n − θG) (1.13)

for some θ̆n ’between’ θ̂n and θG (ie ‖θ̆n − θ̂n‖v ≤ ‖θG − θ̂n‖v and ‖θ̆n − θG‖v ≤

‖θG − θ̂n‖v). Then, because ψ̄n(θ̂n) = 0 by definition:

(θ̂n − θG) = −
(
ψ̄′n(θG) +

1

2
(θ̂n − θG)T ψ̄

′′

n(θ̆n)

)−1
ψ̄n(θG)

=

(
IG(θG) + op(1)− 1

2
(θ̂n − θG)T ψ̄

′′

n(θ̆n)

)−1
ψ̄n(θG)

where the second line follows by Assumption 7.

Assumption 9. The second derivative of ψ̄n is finite in an area around θG.

Specifically, since θ̂n and thus θ̆n are consistent for θG (ie they are, in probability, in the

area described in the assumption), ‖ψ̄′′n(θ̆n)‖ is Op(1)
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Thus, we have:

(θ̂n − θG) =

(
IG(θG) + op(1)− 1

2
(θ̂n − θG)TOp(1)

)−1
ψ̄n(θG)

=

(
IG(θG) + op(1) +

1

2
op(1)Op(1))

)−1
ψ̄n(θG) by consistency

= (IG(θG) + op(1) + op(1))−1 ψ̄n(θG)

= (IG(θG) + op(1))−1 ψ̄n(θG)

= I−1G (θG)ψ̄n(θG) +Op(1)op(1)

= I−1G (θG)ψ̄n(θG) + op(1) (1.14)

where the op(1) term in the penultimate line comes from ψ̄n(θG) tending to zero in

probability by Assumption 5. Therefore, (θ̂n − θG) has asymptotic expectation:

I−1G (θG)E[ψ̄n(θG)] → I−1G (θG)ψ∞(θG) by Assumption 5

= 0. (1.15)

Here and in later proofs, we have simplified the notation by not being explicit about the

dimensions of the op(1) and OP (1) expressions - this does not affect the results.

Assumption 10. A further condition on ψn is:

BnVar[ψn(θ)]Bn
p→ CG(θ).

for some fixed n × n matrices Bn and CG(θ), the former symmetric and the latter

not dependent upon the data. Bn commutes with I−1G (θG)

As with An, as discussed after (1.8), the rather awkward commutative requirements of

our normalising matrix, Bn, will not be required in the usual circumstances when Bn

is diagonal. With iid Yi, CG(θ) = E[ψ(θ)ψ(θ)T ]/n (ie Bn = A
1
2
n ) and Assumption 10

states that the variance of the sample score tends to its estimating function equivalent

in probability. A consequence of the assumption is that CG is symmetric.

Assumption 11. ψ̄′n(θ) is symmetric.
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We shall show in Section 1.4 that the limit in probability of ψ̄′n(θ) as n→∞ is IG(θG)

which must therefore also be symmetric. If IG(θG) or ψ̄′n(θ) is a covariance matrix or a

matrix of second derivatives of some function with a minimum at θG (which is the case

for our area of interest), then the assumption is not required.

Thus, the covariance matrix of the difference between our parameter estimator and its

asymptotic limit, suitably normalised, is:

Var[BnA
−1
n (θ̂n − θG)] = BnA

−1
n I−1G (θG)Var[ψ̄n(θG)]I−1G (θG)TA−1n Bn from (1.14)

= I−1G (θG)BnA
−1
n Var[ψ̄n(θG)]A−1n BnI

−1
G (θG) (1.16)

by Assumptions 7, 10 and 11

= I−1G (θG)BnVar[ψn(θG)]BnI
−1
G (θG)

→ I−1G (θG)CG(θG)I−1G (θG) by Assumption 10. (1.17)

So, our standardised BnA
−1
n (θ̂n − θG) has asymptotic expectation 0 and variance

I−1G (θG)CG(θG)I−1G (θG). The form of the normalising matrix, BnA
−1
n , looks cumber-

some but reflects what is required. This ratio of normalising matrices is not apparent in

many situations as, per the iid case analysed above and below, the net effect is
√
nIp×p.

In many situations Central Limit type arguments can be used to show that the ψ̄n (or

ψn) are asymptotically normally distributed at θG. In such cases, from (1.15) and (1.16):

BnA
−1
n (θ̂n − θG) ∼ MVN(0, I−1G (θG)CG(θG)I−1G (θG)) or (1.18)

∼ MVN(0, SG(θG))

where SG(θG) = I−1G (θG)CG(θG)I−1G (θG). Alternatively, and omitting G for simplicity:

ZG = S
− 1

2
G BnA

−1
n (θ̂n − θG) ∼ MVN(0, Ip×p). (1.19)

Note that SG is a covariance matrix and thus positive semidefinite, so there is a unique

S
1
2
G , a real positive semidefinite and symmetric square root (Horn and Johnson, 1987,

theorem 7.2.6, page 405) which we will assume we have chosen. For independent Yi
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(the score, U(θ) is a sum of independent elements from a common distribution, and

thus normal by the Central Limit Theorem) we have:

√
n(θ̂n − θG) ∼ MVN(0,E[U ′(θG)]Var[U(θG)]E[U ′(θG)]).

This result can be extended in a similar fashion to martingales, with their limited depen-

dence (Crowder, 1986).

A number of papers, such as Sweeting (1980) and others cited therein, such as Bhat

(1974), take a more general approach (ie do not assume the usual iid observations and

the standard set of assumptions) to the asymptotic distribution of θ̂n. Some of the

assumptions are similar to those presented here but most of them also assume some

variant on Bartlett’s second identity (sometimes referred to as the information identity,

eg in Varin and Vidoni, 2005):

E[ψ(θG)ψ(θG)T ] = −E[ψ′(θG)]. (1.20)

This does not hold generally in the environment we are working with here for the same

reason that Bartlett’s first identity fails in (1.3), namely that there is no reason to

expect that the parametric family F used to form likelihoods will contain the unknown

G. The Bartlett identities, arising from differentiating
∫
f(y; θ) = 1 with respect to θ

for a density f are also known as balance equations (Barndorff-Nielsen and Cox, 1994).

Restoring the information identity plays a key role in adjusted surrogates as discussed in

Section 1.6.

The results in this section assume that there are no nuisance parameters. In practice,

that will not normally be the case and θ can be partitioned into (θ1, θ2) where θ1 is a

vector of parameters of interest and θ2 of nuisance parameters. If it is not possible to

integrate out the nuisance parameters (see the simulation in Section 2.7.1 where we do

just that), then a common approach to maximum likelihood estimation is to profile them

out (see, for instance, Garthwaite et al., 2006). This involves working with the profile

32



loglikelihood:

`p(θ1) = `(θ1, θ̂2(θ1))

with maxima at θ̂1 where θ̂2(θ1) is the vector of values of the nuisance parameter which

maximise the loglikelihood for fixed θ1. The resulting semiparametric likelihood is shown

in Murphy and van der Vaart (2000), under some fairly general conditions, to have a

quadratic expansion whose derivative terms are based around a score function shorn of

its nuisance elements, so that the usual normal asymptotic and test statistic results (see

Section 1.5) apply. This uses the standard result that θ̂1 is equal to the estimate of

the parameter of interest under maximum likelihood estimation for the full loglikelihood,

`(θ1, θ2).

1.4 Estimation of Theoretical Expressions

Most of the results from Section 1.3 include expectations of various expressions taken

over the distribution G. However, in general, we will not know that distribution and thus

need to estimate the expectations using the only information we have, namely the data.

Specifically, the values we will need to estimate are:

• θG, the solution to E[ψ(θ;Y )] = 0.

• IG(θG) = −ψ′∞(θG).

• CG(θG), the limit in probability of BnVar[ψn(θ)]Bn.

The approach is to consistently estimate each of these using the data. In the case of

the first of the three, we shall use θ̂n from the consistency proof in Section 1.3.

Assumption 12. The families of functions {ψ̄n(θ)} and {ψ̄′n(θ)} are, in probability,

equicontinuous at θG.

Equicontinuity means that in the neighbourhood of θG nothing untoward occurs to

members of the families as n → ∞. Formally, a countable family of functions, F ,
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is equicontinuous at a point θ0 if as θn → θ0, supf∈F(f(θn) − f(θ0)) → 0 (see, for

instance Billingsley, 1999, Chapter 2). We extend this probabilistically at θG so that

ψ̄n(θ̂n)− ψ̄n(θG) = op(1) and ψ̄′n(θ̂n)− ψ̄′n(θG) = op(1) as θ̂n
p→ θG.

Now, for our second approximation:

−ψ̄′n(θ̂n) = −ψ̄′n(θG) + op(1) by Assumption 12

p→ −ψ′∞(θG) by Assumption 7

= IG(θG)

to give our approximation.

Dealing with CG(θG) is more complex. If one were to follow the same route as for IG(θG),

one might select:

Bnψn(θ̂n)ψn(θ̂n)TBn.

Unfortunately, it suffers from the weakness that each of the middle terms is identically 0

by the definition of θ̂n. In fact, the potential complexity of ψn means that in the general

case one can only make an additional assumption.

Assumption 13. There exists nonsingular symmetric matrix V̂n(θ), such that at

θ = θ̂n for all n it is not identically 0 and

Var[ψn(θ̂n)]
p→ V̂n(θ̂n).

As a consequence:

BnV̂n(θ̂n)Bn = BnVar[ψn(θ̂n)]Bn + op(1)

p→ CG(θG).

We are looking for a sequence of matrices, {V̂n(θ)} that is close to, or may even be,

Var[ψ̄n(θ)]. In general, unlike the following case but similarly to the discussion after
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(1.7), that variance will not be expressible in terms of the simpler ψ(θ; yi) function.

The simplest example is for iid Yi where V̂n(θ;Y ) can be chosen as:

V̂n(θ;Y ) =
n∑
i=1

ψ(θ;Yi)ψ(θ;Yi)
T . (1.21)

So, as Bn = Ip×p/
√
n:

BnV̂n(θ̂n)Bn =
V̂n(θ̂n)

n

=
1

n

n∑
i=1

ψ(θ̂n;Yi)ψ(θ̂n;Yi)
T

=
1

n

n∑
i=1

(ψ(θ̂n;Yi)ψ(θ̂n;Yi)
T − E[ψ(θG;Yi)]E[ψ(θG;Yi)]

T ) (1.22)

since E[ψ(θG;Yi)] = 0. Now, the continuous mapping theorem states that for a con-

tinuous function f(θ), θn
p→ θ0 implies that f(θn)

p→ f(θ0). Applying that with

f = E[ψ]E[ψ]T at θG we have:

BnV̂n(θ̂n)Bn =
1

n

n∑
i=1

(
ψ(θ̂n;Yi)ψ(θ̂n;Yi)

T − E[ψ(θ̂n;Yi)]E[ψ(θ̂n;Yi)]
T
)

(1 + op(1))

= Var[ψ(θ̂n;Yi)](1 + op(1))

= nVar[ψ̄n(θ̂n;Y )](1 + op(1)) by (1.9)

p→ CG(θG) by its definition

and we have our estimator. There may be other cases where a simple estimator, as

above, can be found. This example relies on ψn(θ; y) being a linear combination of

independent ψ(θ; yi)s.

Our estimates for IG(θG) and CG(θG), În ≡ −ψ̄′n(θ̂n) and Ĉn ≡ BnV̂n(θ̂n)Bn respec-

tively, use a consistent estimator for the parameter as well as a usable form for the

function ψ∞. Our parameter variance estimator, Î−1n ĈnÎ
−1
n will require:

Assumption 14. În is nonsingular.

Assumption 8 is the equivalent for IG(θG). Cox (2006) provides some counter examples

for scalar θ but they can all be shown to have measure zero. Smith (1989) gives the
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example of a transformation of a bivariate extreme value distribution where the Fisher

Information becomes infinite as the parameter value tends towards its limit in a closed

space.

Example I continued - Poisson Surrogate for Gaussian Data. We can use

the form for V̂n(θ;Y ) given at (1.21) so that

V̂n(θ;Y ) =
n∑
i=1

(yi
θ
− 1
)2
.

Thus, the estimators are:

În = −ψ̄′n(θ̂n)

=

∑n
i=1 yi

nθ̂2n

=
1

θ̂n
and

Ĉn =
V̂n(θ̂n)

n

=
1

n

n∑
i=1

(
yi

θ̂n
− 1

)2

=

(∑n
i=1 y

2
i

nθ̂2n
− 1

)
.

Given n datapoints, we use for the variance of
√
n(θ̂n) in (1.18):

∑n
i=1 y

2
i

n
− θ̂2n.

This is (n− 1)/n times the sample variance, and so is the same value that we would

have arrived at if we had not used a surrogate but G with a known normal form. It

is biased by a factor of (n− 1)/n. If G had a known Poisson form then the variance

would have been θ̂n.
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1.5 Tests

In this subsection we shall assume that BnA
−1
n (θ̂n − θG) is asymptotically normally

distributed resulting in (1.19). Thus, we have what one might term a sandwich Wald

statistic for testing the null hypothesis H0 : θG = θ∗ (we discuss nuisance parameters

briefly at the end of the section):

TW = (S
− 1

2
G BnA

−1
n (θ̂n − θ∗))TS

− 1
2

G BnA
−1
n (θ̂n − θ∗) (1.23)

= (θ̂n − θ∗)TA−1n BNS
−1
G BnA

−1
n (θ̂n − θ∗)

∼ χ2
p asymptotically under the null hypothesis.

where SG(θG) = I−1G (θG)CG(θG)I−1G (θG). The penultimate step is due to SG being

symmetric as shown after (1.19). By inverting SG, we have tacitly assumed that CG(θG)

is invertible. We will formalise that and extend it to its estimate, which we require in

Section 1.6:

Assumption 15. CG(θG) and Ĉn are nonsingular.

Since CG(θG) is a transformation of covariance matrix, it is already positive semidefinite

and Assumption 15 means it is positive definite.

Under SMLE, TW is not generally asymptotically equivalent to the naive likelihood ratio

statistic (see below for a Wald type statistic that is):

Wl = 2(`F(θ̂n)− `F(θ∗)). (1.24)

where `F(θ) is the loglikelihood of the data arising from F at θ, which takes no account

of the sandwich adjustment to allow for any difference between F and G. In general

for correctly specified models, the likelihood ratio test is preferred as it appears to give

more accurate agreement between the true and asymptotic distributions (‘substantial

body of literature’ - Young and Smith 2005), is invariant to reparameterisation (unlike

the Wald test), is not as numerically unstable as the equivalent score test, and satisfies

the Neyman-Pearson lemma for simple hypotheses extended to uniformly most powerful

37



unbiased tests for composite ones (see Barndorff-Nielsen and Cox, 1994, chapter 4.2 for

a more complete discussion).

It can be shown that, when B2
n = An, the distribution of what one might call a naive

Wald statistic :

WW = (BnA
−1
n (θ̂n − θ∗))T IG(θ∗)BnA

−1
n (θ̂n − θ∗) (1.25)

= (θ̂n − θ∗)TA−1n BNIG(θ∗)BnA
−1
n (θ̂n − θ∗)

= (θ̂n − θ∗)TA
− 1

2
n IG(θ∗)A

− 1
2

n (θ̂n − θ∗)

is asymptotically equivalent to that of the naive likelihood ratio statistic (under SMLE)

and the naive score statistic :

Ws = ψn(θ∗)
TA

1
2
n I
−1
G (θ∗)A

1
2
n ψn(θ∗) (1.26)

(see Appendix A). The restriction on the normalising matrices, An and Bn is not is

severe as it initially appears: An is used to normalise ψn and B2
n for Var[ψn] so in many

cases B2
n = An. For instance, with iid Yi, An = Ip×p/n and Bn = Ip×p/

√
n, and the

condition holds for both simulations used in this thesis. The asymptotic distribution of

WW is not obvious but we shall now derive it.

Reorganising and simplifying notation by using ψ, CG and IG etc wherever possible:

WW = (S
1
2
GS
− 1

2
G BnA

−1
n (θ̂n − θ∗))T IG(S

1
2
GS
− 1

2
G BnA

−1
n (θ̂n − θ∗))

= ZT
G (S

1
2
G )T IGS

1
2
GZG per (1.19)

= ZT
GMZG say. (1.27)

M is symmetric since IG is. We can then use a spectral decomposition (Krzanowski,

2000, page 539):

M = LTDL

where L is a matrix consisting of orthonormal eigenvectors of M as its columns and D
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a diagonal matrix of the corresponding eigenvalues, so that expanding (1.27):

WW = ZT
GL

TDLZG

= Y T
G DYG

where YG = LZG. Since ZG ∼ MVN(0, Ip×p) by (1.19):

YG ∼ MVN(0, LLT )

= MVN(0, Ip×p)

as L is a matrix of orthonormal elements. As a consequence, asymptotically:

WW ∼
p∑
i=1

diVi

where the di are eigenvalues of S
1
2
GIGS

1
2
G = M and the Vi are independent χ2

1 variables.

The result applies equally well to Ws and Wl by asymptotic equivalence as in Appendix

A.

Clearly, if all the above eigenvalues of M are zero or one, then we have a standard χ2

distribution with degrees of freedom the number of ones. This will be the case if M

is idempotent, ie M = M2 (indeed, idempotency is given as a necessary and sufficient

condition for a standard χ2 distribution in such a case in Mathai and Provost, 1992,

Theorem 5.1.1).

It is worth noting that the only point in this section at which we use asymptotic normality

is in describing the distribution of ZG. If we drop that condition, then we still have

WW = Y T
G DYG, but YG is not necessarily distributed as MVN(0, Ip×p).

Kent (1982) extends this result to the situation where there are nuisance parameters

and outlines a proof using the same approach as above for profile likelihoods where the

Hessian and variance matrices are partitioned into blocks corresponding to the parameters

of interest and the nuisance parameters.

In the case of composite surrogates (see Chapter 2), Aerts and Claeskens (1999) suggest
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that using the parametric bootstrap for clustered binary data will give a consistent

estimator for the likelihood ratio statistic which is simpler to calculate and more robust

than the standard approach using eigenvectors outlined in this section. However, that

requires one to be able to simulate from the full multivariate distribution.

1.6 Adjusted Surrogates

1.6.1 General Approach

We saw in Section 1.5 that Wald tests (or, asymptotically, likelihood ratio tests) for

surrogates are either, (1.23), based upon the sandwich matrix

SG(θG)−1 = IG(θG)CG(θG)−1IG(θG),

in which case, for null hypothesis of dimension l, the resulting statistic is asymptotically

χ2
l , or, (1.25), upon IG(θG) in which case the resulting statistic is asymptotically a

weighted sum of χ2
1 distributions. Ideally, we would like to use the statistic from the

latter case but the distribution from the former as they are the simplest. That would be

possible if

IG(θG) = CG(θG),

ie the information identity, (1.20), held, as then

SG(θG)−1 = IG(θG). (1.28)

A number of papers, discussed in this section, begin with a surrogate likelihood, likelihood

ratio or estimating function and then adjust it so that (1.28) holds. Clearly, the adjusted

estimating function will still need to have an expected zero at θG. If ψa is our adjusted
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estimating function we will then require that

−E[ψ′a(θG)] = Var[ψa(θG)]

or for n data elements, estimated parameters, θan, and estimating function, ψan,

− ∂ψan(θ)

∂θ

∣∣∣∣
θ=θ̂an

= Var[ψan(θ̂an)] (1.29)

ie asymptotically we restore equality between the variance of the estimating function

and the inverse of Fisher’s information matrix. A consequence is that the variance of

the parameter estimator will be, from a version of (1.14) without the normalisation, for

n data elements

Var[θ̂an] =

(
∂ψan(θ)

∂θ

∣∣∣∣
θ=θ̂an

)−1
Var[ψan(θ̂an)]

(
∂ψan(θ)

∂θ

∣∣∣∣
θ=θ̂an

)−1
(1 + op(1))

= −
(
∂ψan(θ)

∂θ

∣∣∣∣
θ=θ̂an

)−1
(1 + op(1))

= −ψ′an(θ̂an)(1 + op(1)) say (1.30)

whereas for the unadjusted estimator, θ̂n

Var[θ̂n] =

(
∂ψn(θ)

∂θ

∣∣∣∣
θ=θ̂n

)−1
Var[ψn(θ̂n)]

(
∂ψn(θ)

∂θ

∣∣∣∣
θ=θ̂n

)−1
(1 + op(1))

= ψ′n(θ̂n)−1Var[ψn(θ̂n)]ψ′n(θ̂n)−1(1 + op(1)) (1.31)

Further justification for using the information identity, which may be necessary if the

parameter estimates are not normally distributed as assumed in Section 1.5, has been

given as:

Optimality McCullagh and Tibshirani (1990) point out that the sandwich information

(see Section 1.7.2) is maximised when the identity holds (see, for instance Song,

2007), for a ”limited” class of estimating functions. It assumes a known G and

reflects an extension of maximum likelihood estimation.

Robustness Stafford (1996) and Royall and Tsou (2003) claim that the identity im-
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proves robustness. The former suggests invariance to certain forms of reparam-

eterisation as a definition while the latter introduces a more formal approach: a

‘bump’ function assesses the probability of misleading evidence (likelihood ratios

greater than, say, k) for a range of potential parameter values, which is bounded

over all θ as a function of k when the information identity holds, but bounded by

a function that depends upon the data and θG otherwise. See Section 1.7.4 for a

longer discussion on the use of the term ’robust’.

Approximation An informal argument is used in McCullagh and Tibshirani (1990) to

suggest that an adjusted likelihood that conforms to this criterion is likely to give

a more accurate approximation of both the variance and the χ2 distribution of

the loglikelihood ratio statistic than one that does not. Some exponential family

examples are given. This argument is described in the case of an adjusted profile

loglikelihood, but, as we shall see, has wider application.

Adjustments are made either to the surrogate loglikelihood or to the estimating function

directly, which we shall term vertical, or to the parameter within the likelihood, which we

shall call horizontal, the names arising in Chandler and Bate (2007) and describing the

effect of a change on a plot of parameter values versus loglikelihood in low dimensions.

1.6.2 Horizontal Parameter Adjustments

We consider adjustments of the form:

`ah(θ; y) = `(θa; y)

where

θa = c+ Lθ (1.32)

for some p× 1 vector c and p× p non zero matrix B, both functions of the data but not

θ, as the adjustment is linear. We will seek values of c and L such that (1.29) holds.
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The adjusted estimating function is, with the ys omitted for simplicity

ψah(θ) =
∂`ah(θ)

∂θ
=

(
∂θa
∂θ

)T
∂`ah(θ)

∂θa
=

(
∂θa
∂θ

)T
∂`(θa)

∂θa
= LT

∂`(θa)

∂θa
,

where the transposed first term arises from our convention of treating the estimating

function as a column vector (see the Notation note at the beginning of this thesis), with

its observed equivalent for n data points:

ψahn(θ; y1, . . . , yn) = LTn
∂`n(θa; y1, . . . , yn)

∂θa
(1.33)

where Ln → L and, by Assumption 3, the left hand side has a unique root, θ̂ahn say, so

that

ψahn(θ̂ahn; y1, . . . , yn) = 0.

Note that for iid data, ψahn(θ; y1, . . . , yn) =
∑n

i=1 ψ(θa; yi). Repeating the differentia-

tion

∂ψah(θ)

∂θ
= LT

∂ψ(θa)

∂θa
L

with its observed equivalent for n data points:

∂ψahn(θ)

∂θ
= LTn

∂ψn(θa)

∂θa
Ln. (1.34)

We will require that the estimating equations, (1.33), have zeroes at θ = θ̂n, ie

θ̂ahn = θ̂n. (1.35)

An alternative would be to allow (1.33) to have new zeroes (ie not θ̂n) which are also

consistent for θG, but our current approach gives rise to a simple form of adjustment.

Since the left hand side of (1.33) has a unique value of θ for which it equals zero and

θa is linear in θ, the right hand side must have a unique value of θa for which it, in turn,
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also equals zero (Ln is invertible - see after Assumption 16). Since θa = θ̂n will certainly

make the right hand side zero, it is a unique root so that, from (1.32)

θ̂n = c+ Lnθ̂n and

c = θ̂n − Lnθ̂n.

In turn, our adjusted parameter will be

θa = θ̂n − Lnθ̂n + Lnθ

= θ̂n + Ln(θ − θ̂n)

which is the form of adjustment proposed in Chandler and Bate (2007).

For our adjusted parameter estimator we would like the information identity and thus

(1.30) to hold so that

Var[θ̂ahn] = −ψ′an(θ̂ahn)(1 + op(1))

= −(LTnψ
′
n(θ̂n)Ln)−1(1 + op(1)) from (1.34), as θ̂ahn = θ̂n

= −L−1n ψ′n(θ̂n)−1(LTn )−1(1 + op(1))

= −L−1n (ψ′n(θ̂n))−1(LTn )−1(1 + op(1))

Assuming, for the moment, that Mn and Nn, p× p matrices, exist we define

MT
nMn = −ψ′n(θ̂n)

NT
nNn = ψ′n(θ̂n)Var[ψn(θ̂n)]−1ψ′n(θ̂n)

Ln = M−1
n Nn
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so that

−L−1n ψ′n(θ̂n)−1(LTn )−1 = −N−1n Mnψ
′
n(θ̂n)−1MT

n (NT
n )−1

= N−1n (NT
n )−1

= (NT
nNn)−1

= (ψ′n(θ̂n)Var[ψn(θ̂n)]−1ψ′n(θ̂n))−1

= ψ′n(θ̂n)−1Var[ψn(θ̂n)]ψ′n(θ̂n)−1

= Var[θ̂n](1 + op(1)) per (1.31)

and our unadjusted and adjusted parameter estimators have the same first two moments

for large enough sets of data.

Now, we address the existence of Ln. We make

Assumption 16. ψ′n(θ̂n) is negative definite and Var[ψn(θ̂n)] is positive definite.

As a result, and using Assumption 11, MT
nM and NT

nNn must be symmetric and positive

definite. Therefore, Mn and Nn must exist as they could be genuine square root matrices

(Horn and Johnson (1987), Theorem 7.2.6), or formed by a Cholesky decomposition.

These roots must be positive definite and so Ln = M−1
n Nn exists, is positive definite

and invertible.

Our horizontal adjustment then becomes:

`ah(θ; y) = `(θa; y)

with

θa = θ̂n +M−1
n Nn(θ − θ̂n) (1.36)

for n data points. This adjustment was proposed in Chandler and Bate (2007) as an

adjustment to a composite likelihood (see Chapter 2) consisting of univariate margins of

some distribution: they show that the adjusted loglikelihood is a marked improvement

45



(shown via power curves) on the unadjusted one and, where a comparison is possible,

close to (but, clearly, not an improvement on) the true loglikelihood in calculating pa-

rameter estimates, standard errors and test statistics. We have derived it as the only

linear adjustment of the parameters which matches the θ̂n from the unadjusted estimat-

ing equations, subject to Assumption 16, for any loglikelihood. We shall examine its use

as an adjustment to a bivariate surrogate in Simulation I in Section 2.7.

Example I continued - Poisson Surrogate for Gaussian Data. We can easily

derive

Ln =

√
nθ̂n∑n

i=1 y
2
i − nθ̂2n

(1.37)

leading to an adjusted loglikelihood

`ahn(θ) ∝
n∑
i=1

yi ln
(
θ̂n + (θ − θ̂n)Ln

)
− n

(
θ̂n + (θ − θ̂n)Ln

)

and estimating equation

ψahn(θ̂n) =

∑n
i=1 yiLn

θ̂n + (θ − θ̂n)Ln
− nLn = 0.

We solve for θ̂h, the horizontally adjusted parameter estimate so that

Ln

(∑n
i=1 yi − n

(
θ̂n + (θ̂h − θ̂n)Ln

))
θ̂n + (θ̂h − θ̂n)Ln

= 0 (1.38)

which has unique solution

θ̂h = θ̂n.

One could investigate nonlinear adjustments to the parameters by considering

θa = c+ L(θ)θ

46



in contrast to (1.32) where L was not a function of the parameters. However, there

appear to be no simple forms akin to (1.36).

1.6.3 Vertical Estimating Function Adjustments

We now examine adjustments of the form

ψav(θ) = D(θ)ψ(θ) + e(θ) (1.39)

for some p×1 vector e(θ) and p×p nonsingular non random matrix D(θ), ie we reshape

and then centre the estimating functions. This is based upon, although more general (ie

for multidimensional θ) than, adjustments proposed by Stafford (1996) and Royall and

Tsou (2003), which, in turn, were based on an adjustment to the profile loglikelihood

given in McCullagh and Tibshirani (1990). Note that adjustments of the form (1.39) are

made to the estimating function rather than the likelihood function, as in the preceding

section.

Firstly, we require that the adjusted estimating function has expected value 0 at θG:

0 = E[ψav(θG)]

= E[D(θG)ψ(θG) + e(θG)]

= D(θG)E[ψ(θG)] + e(θG)

= e(θG)

and so, no centring is required, ie our parameter estimates are unchanged by the adjust-

ment.
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Secondly, we would like the information identity to hold:

E

[
dψav(θ)

dθ

]∣∣∣∣
θ=θG

=

E

[
d(D(θ)ψ(θ))

dθ

]∣∣∣∣
θ=θG

=

E

[(
dD(θ)

dθ

)T
ψ(θG) +D(θG)

dψ(θ)

dθ

]∣∣∣∣∣
θ=θG

=

(
dD(θ)

dθ

)T ∣∣∣∣∣
θ=θG

E[ψ(θG)] +D(θG)E

[
dψ(θ)

dθ

]∣∣∣∣
θ=θG

=

D(θG)E

[
dψ(θ)

dθ

]∣∣∣∣
θ=θG

= −Var[ψav(θG)]

= −Var[D(θG)ψ(θG)]

= −D(θG)Var[ψ(θ)]D(θG)T

where dD(θ)
dθ

is a p-vector of p × p matrices as defined in the Notation section at the

start of this thesis. Thus:

−Var[ψ(θG)]−1E

[
dψ(θ)

dθ

]∣∣∣∣
θ=θG

= D(θG)T

= D(θG) (1.40)

the final equality resulting from the symmetry of both elements in the left hand side.

Clearly, if the information identity, (1.20), holds for ψ(θG), the adjustment is just the

identity matrix.

We estimate both expected terms in the expression (1.40) per Section 1.4 to give:

ψav(θ) = Ĉ−1n Înψ(θ) (1.41)

so that we have used a consistent estimator, θ̂n, for the parameter as well as a surrogate

for the functions of ψ. Ĉn is non singular by Assumption 15 as it is the product of

nonsingular matrices. The adjustment will have no effect on parameter estimates as

we are just multiplying the estimating function by a constant. The variance of the

estimator remains unchanged as the adjustments are cancelled out by the sandwich
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form. Vertical adjustments recover the information identity and therefore benefit from

all the advantages set out at the beginning of Section 1.6.1. Note the similarity with

the proposed optimal efficiency improving weights given at the end of Section 3.2.4.

Stafford (1996) then shows that the resulting likelihood (for scalar θ so that we can

integrate the adjusted estimating function) has the following features:

• It is invariant under transformation. Pace et al. (2011) extend this to the multiple

parameter case. Clearly, by definition, the horizontal adjustment is not parame-

ter invariant, although that, in itself, does not preclude subtlety. It is direction

dependent but is a matrix rather than scalar adjustment of the parameters.

• Test statistics can be calculated for the adjusted likelihood as described in Section

1.5.

• To study the effectiveness of the adjustment, estimates of test statistics for both

the adjusted and the usual unadjusted likelihood are compared when the correct

model is used. Their first and third cumulants are similar but the adjusted statistic

has a larger variance and a formula for the relative efficiency is derived.

The situation for vector θ is discussed in Section 1.6.4.

Example I continued - Poisson Surrogate for Gaussian Data. The vertical

adjustment is

nθ̂n∑n
i=1 y

2
i − nθ̂2n

.

This is the square of the horizontal adjustment at (1.37). The adjusted estimating

equation becomes

ψav(θ̂n) =

(∑n
i=1 yi
θ

− n
)

nθ̂n∑n
i=1 y

2
i − nθ̂2n

= 0

which we solve for θ̂v, the vertically adjusted parameter estimate to give the unique
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solution

θ̂v = θ̂n

which is the same as that resulting from the horizontally adjusted and, obviously,

unadjusted estimating equations.

1.6.4 In Practice

In practice, one would prefer to use the likelihood ratio test, as opposed to the Score

or Wald tests, for the reasons given in Section 1.5. For the horizontal adjustment, the

likelihood ratio statistic for nested models is

∆ah = 2(`ah(θ̂ahn)− `ah(θ̃ahn))

= 2(`ah(θ̂n)− `ah(θ̃ahn))

as parameter estimates are unchanged by the adjustment, as discussed in Section 1.6.2,

and where θ̃ahn maximises `(θ)ahn subject to the restriction that we are testing, typically

∆θ = δ∗. This requires an additional maximisation process to calculate θ̃ahn. Instead,

Chandler and Bate (2007) suggest using

∆∗ah = 2c(`F(θ̂n)− `F(θ̃n))

where θ̃n maximises the unadjusted surrogate loglikelihood `F(θ) subject to ∆θ = δ∗,

which would be calculated anyway for the unadjusted bivariate test, and c is a ratio of

quadratic approximations to

`ah(θ̂n)− `ah(θ̃ahn)

`F(θ̂n)− `F(θ̃n)

which is easily calculated. This can produce substantial improvements to using the

unadjusted test statistic (Chandler and Bate, 2007) where comparisons are made by

power curves, but, as we shall see in Section 2.7, that is not always the case.
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For the vertical adjustment, things are more complex. For scalar θ, one can integrate the

estimating function to give a loglikelihood function, `av(θ) and one can use the likelihood

ratio test as usual. This will also be true for some vector θs but only where an integrated

function can be consistently derived. It is worth noting that for quadratic loglikelihoods

with vector θ, a necessary and sufficient condition for the adjusted estimating function

to integrate consistently is that the adjusted Hessian is symmetric.

Chandler and Bate (2007) get round the issue of integrating an adjusted estimating

function for vector θ by suggesting a similar looking vertical adjustment, but applied to

the loglikelihood:

`∗av2(θ) = `F(θ̂n) +
(θ − θ̂n)T ÎnĈ

−1
n În(θ − θ̂n)

(θ − θ̂n)T În(θ − θ̂n)
(`F(θ)− `F(θ̂n)) (1.42)

where the terms in used in the adjustment at (1.41) are converted to quadratic forms.

The result is an adjusted likelihood ratio statistic that can be calculated in all cases. If

θ is a scalar, then `∗av2 equals the likelihood ratio statistic that results from using the

adjustment at (1.41).

However, Pace et al. (2011) point out that the approximation (1.42) is not invariant to

reparameterisation and, again, we shall see in Section 2.7 that it does not always produce

improvements over the unadjusted test statistic. Pace et al. (2011) suggest a further

form of vertical adjustment which is parameterisation invariant and whose distribution is

asymptotically χ2
l . However, it requires an additional maximisation process and is thus

not as computationally efficient as the horizontal and vertical adjustments described

earlier in this section.

As a way of understanding the use of adjusted surrogates in practice, if we are testing

θ = θ∗ (a similar approach is taken for testing a subset of θ), we can use the sandwich

Wald statistic

TW = (θ̂n − θ∗)TA
− 1

2
n S−1G A

− 1
2

n (θ̂n − θ∗) (1.43)

∼ χ2
l asymptotically under the null hypothesis
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or we can apply the adjustment

(Ĉ−1n În)−1 = (Î−1n (ÎnĈ
−1
n În))−1 (1.44)

resulting in the simple Wald statistic, (1.25), with the weighted χ2
1 distribution, and then

we can apply the inverse of (1.44), or Ĉ−1n În, resulting in, say, the vertically adjusted

surrogate with the original distribution.

1.7 Comparing Surrogates

1.7.1 Introduction

For any particular dataset, one might wish to use and then compare a number of sur-

rogates. In certain well behaved theoretical models, analytical results based around

comparisons of estimates and efficiency can be extracted (eg Cox and Reid, 2004).

Otherwise, criteria used for comparison include, in simulations where one often has the

maximum likelihood estimator from G for comparison and in practice:

Power Power curves are created by plotting the power of tests as a function of the

parameters of interest (eg Chandler and Bate, 2007). We use this in Section 2.7.

The values at θ = 0, testing the null hypothesis H0 : θ = 0,should equal α, the

Type I error rate, and this is sometimes used as a criterion for comparison (eg Aerts

and Claeskens, 1999). Power is a useful tool for comparing procedures (Cox, 2006,

page 25). However, there are situations where such comparisons are misleading

(Young and Smith, 2005), dealt with by use of the conditionality principle (if the

minimal sufficient statistic can be partitioned as (S,C), where C does not depend

upon θ, then inference about θ should be based upon S|C), but they do not apply

to the examples we study in this thesis.

Confidence Intervals Coverage of confidence intervals (CIs) for parameter estimates

can be compared numerically or graphically (eg Heagerty and Lumley, 2000).
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Efficiency We analyse options for the multivariate parameter case in Section 1.7.2 and

make use of some of them in Sections 3.4.3 and 4.4. The scalar parameter case

is often used (eg Bevilacqua et al., 2012).

Model Selection One can extend model selection criteria such as the AIC to a com-

parison of surrogates. These are reviewed in Section 1.7.3.

Robustness There are a number of concepts of robustness used in the literature and

these are reviewed in Section 1.7.4.

In comparing estimating functions, we first understand whether classes of them are

equivalent so that their outcomes under various of the criteria listed above are the same.

For estimating functions, ψ(θ), and any nonsingular non random p× p matrix D(θ), at

θG:

E[D(θG)ψ(θG)] = D(θG)E[ψ(θG)] = 0

as E[ψ(θG)] = 0, so that D(θ)ψ(θ) is also an estimating function with the same zero.

We establish an equivalence relation, ∼, on E , the class of estimating functions defined

in Section 1.2, whereby for ψ, φ ∈ E :

ψ ∼ φ iff ψ(θ) = D(θ)φ(θ)

for some D(θ), resulting in a set of equivalence classes for use in comparisons.

It is simplest to represent each class by an estimating function with a particular feature

and here we shall use gradient as in, for instance, Davison (2003, page 318). We select

a standardised estimating function (approximations for observed data are given at the

end of Section 1.7.2), namely:

(E[ψ′(θ)])−1ψ(θ). (1.45)

Note that E[ψ′(θ;Y )] is nonsingular in an area around θG: from White (1982, Theorem

3.1(i)) it is negative definite (subject to a number of the assumptions set out earlier
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in this thesis) and thus it has an inverse. Intuitively, in the situations where ψ(θ;Y )

is a gradient vector, E[ψ′(θ;Y )] is the change in gradient around a maximum in all

dimensions and it makes sense for it to be negative definite.

Then, for any other equivalence class member, D(θ)ψ(θ) at θG (abbreviated to Dψ etc):

(
E

[
∂(Dψ)

∂θT

])−1
Dψ = (E[(Dψ)′])−1Dψ say

= (E[D′ψ +Dψ′])−1Dψ

= (D′E[ψ] +DE[ψ′])−1Dψ

= (E[ψ′])−1D−1Dψ

= (E[ψ′])−1ψ

so that normalising any member of a class by its expected gradient will give rise to the

same class representative at θG.

The reason for selecting (1.45) as a representative is that the expected gradient at θG

(omitting the θGs to simplify notation) is then:

E

[
∂((E[ψ′])−1ψ)

∂θT

]
= E

[
∂(E[ψ′])−1

∂θT
ψ

]
+ E[(E[ψ′])−1ψ′]

=
∂(E[ψ′])−1

∂θT
E[ψ] + (E[ψ′])−1E[ψ′]

= Ip×p

as E[ψ(θG)] = 0.

For n observations, our theoretical class representative will be I−1G (θ)ψ̄n(θ), which at θG

is the asymptotic estimation error of θ̂n for θG per (1.14) and in practice we will estimate

the representative at θG by

Î−1n ψ̄n(θ̂n).
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1.7.2 Efficiency

One method for choosing between estimating functions might be by comparing their

variances. However, within an equivalence class, variances could be arbitrarily large or

small depending upon D(θ) so, using our class representative from (1.45) we have that

at θG (omitted for brevity):

Var
[
E[ψ′]−1ψ

]
= (E[ψ′])−1Var[ψ](E[ψ′]T )−1 (1.46)

= E[ψ′]−1Var[ψ]E[ψ′]−1 by Assumption 11 (1.47)

which is the variance of our parameter estimates as in (1.16). We can estimate (1.46) by

Î−1n ĈnÎ
−1
n which is our estimate of the variance of the parameter estimates as described

in Section 1.4. Thus, by selecting an estimating function class representative with

minimum variance we are selecting a representative whose parameter estimates also

have minimum variance. Comparing these quantities for different choices of ψ enables

us to compare estimating function variances between equivalence classes. If θ is scalar,

we can use efficiency for a direct comparison. However, we need to extend that to

multiple parameters.

We do that using a positive semidefinite matrix condition: if we have two estimating

functions from different equivalence classes, ψ1(θ) and ψ2(θ), both of whose expected

values have zeroes at θG, such that:

Var
[
(E[ψ′1(θG)])−1ψ1(θG)

]
≺ Var

[
(E[ψ′2(θG)])−1ψ2(θG)

]
where C ≺ B means that B − C is positive definite (similarly � denotes positive

semidefiniteness) for matrices B and C, then the smaller variance for ψ1 might lead us

to prefer it over ψ2. In particular, if the difference between any two matrices is positive

semidefinite, then any linear combination of parameters is estimated at least as precisely

using ψ1 as it is under ψ2. We compare variances for individual parameters in Section

3.4.3. This positive semidefinite ordering is also known as Loewner ordering (see, for

instance, Lindsay et al., 2011).
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It has been shown (Chandrasekar and Kale, 1984; Joseph and Durairajan, 1991), subject

to certain assumptions already made in this thesis, that in comparing estimating functions

whose covariance matrices are positive definite the use of the Loewner ordering for

comparing matrices (described as M-optimality) produces the same results as the use

of either the trace (T-optimality), the determinant (D-optimality) or a quadratic loss

function (QC-optimality where ψTCψ is compared for some positive definite C). As all

but the Loewner ordering criterion are scalars then they can be used to calculate some

measure of relative ‘efficiency’. We explore M, T and D-optimality for a simulation in

Section 4.4.

The variance comparison has a parallel in the notion of Godambe Information which was

introduced in Godambe (1960) for scalar θ: further details are given in, for instance,

Song (2007). For this we assume that G is parameterised by the objects of inference

θ so we have g(Y ; θ). We have seen in (1.2) that the score function for g, U(θ;Y ),

is an estimating function for all θ ∈ Θ. Define the variance of that score, the Fisher

Information Matrix, as i(θ) (the Y being dropped for simplicity of notation). For any

surrogate estimating function, ψ(θ;Y ), the Godambe Information Matrix or GIM is

defined as:

jψ(θ) ≡ EG[ψ′(θ)]Var−1G [ψ(θ)]EG[ψ′(θ)] (1.48)

where, for obvious reasons, ψ′(θ) is defined as the sensitivity of ψ. Assumptions are

made consistent with those previously described. Then the Godambe inequality states

that:

jψ(θ) � i(θ) (1.49)

with equality holding iff ψ ∼ U . The proof is based around the Cauchy Schwartz

inequality.

There is a danger with using information criteria, such as Godambe Information, for

comparing objects in that there is no guarantee that any criterion is a good one (ie
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will give the ordering that one would ’like’ in every circumstance), as acknowledged

in Godambe (1960). In the case of Godambe Information, justification for (1.48) as

an optimality criterion can be most easily seen with a scalar θ. In that case, for the

estimating function, small variance (VarG[ψ(θ)]) and large sensitivity (EG[ψ′(θ)]), both

of which could be seen as desirable at θG as they define the function (and thus the

parameters) more sharply, will increase the value of the information.

Now, (1.48) at θG for n observations is proportional to the inverse of the asymptotic limit

of the variance of θ̂n per (1.16). So, minimising our variance comparator is equivalent

to maximising the Godambe information at θG and surrogates can be compared to each

other by relative efficiency or relative Godambe information as described earlier in this

section, for instance using the determinant of one over the other. Note that the pth root

of the determinant is often used (Davison, 2003, page 113) in order to keep the order of

the efficiency correct with respect to n. The major difference between the variance and

Godambe Information approaches is that in the former we have not assumed explicit

knowledge of G, while in the latter that is not the case and there is consequently a

bound for the information as described at (1.49).

1.7.3 Predictive ability

A common method for selecting a model is to use one of a number of information

criteria, the most well known being the Akaike Information Criterion or AIC. Varin and

Vidoni (2005) have proposed extending that to a particular form of surrogate, namely

the composite surrogates (see Chapter 2) by adapting Takeuchi’s Information Criteria

or TIC (sometimes known as the Network Information Criterion or NIC, see Davison,

2003). However, their proof, based on that of Takeuchi, works equally well for any

surrogate - the composite element is not critical. The overall idea, of both AIC and TIC,

is to select models that best forecast a future random variable (Yn+1 say), where the

judgment is made by minimising the Kullback-Leibler Divergence between F and G for

the prediction. However, as in (1.5), the G term is a constant and so one can compare

57



surrogates by maximising:

`F(θ̂n)− tr(ĈnÎ
−1
n )

where F ranges over the functions under consideration. The trace term is an approxima-

tion to the expected value of the likelihood ratio statistic under G. We are thus centring

the values for comparison purposes (AIC penalises with a cruder but simpler factor, p).

Example I continued - Poisson Surrogate for Gaussian Data. TIC is:

n∑
i=1

yi ln(θ̂n)− nθ̂n −
(∑n

i=1 y
2
i

nθ̂n
− θ̂n

)
.

One should take care before using TIC:

1. Burnham and Anderson (2002, page 65) point out that in fact AIC is a good

approximation to TIC and, as a consequence, we might prefer to use that as

calculation of the penalty term (namely p) is far more computationally efficient

than the inversion and multiplication of potentially large matrices.

2. TIC involves the approximations Ĉn and În which can be slow to approach their

asymptotic limit and again AIC may be more appropriate.

3. All the information criteria mentioned require the forecast future random variable

to be independent of those for which we have observations. This may not always

be the case (for instance in Example II, we have described short term temporal

dependence and seasonality) in this thesis and so these criteria only apply when

we have dealt with any dependence and are working with the resulting residuals.

A precursor to the currently used model selection criteria is given in Cox (1962) where a

test statistic is derived for testing the null hypothesis that the density of the mechanism

giving rise to the data belongs to a particular family of densities (f1(θ)) against the al-

ternative hypothesis that it belongs to another separate family (f2(ω)). This is expanded
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upon slightly in Cox (2006, page 142) where a likelihood ratio statistic, `f1(θ̂)− `f2(ω̂),

is suggested. Obviously, this can take positive or negative values and is asymptotically

normal by a central limit theorem argument (given in Cox, 1962, for iid and dependent

Yi). While not bearing directly on our surrogate questions, this does suggest a way of

distinguishing between potential Fs. Along similar lines, but varying G rather than F,

Foutz and Srivastava (1977) consider comparing the efficiency of the likelihood ratio

test for data arising from various possible Gi by considering the ratio of the likelihood

test statistics either exactly or, more likely, approximately in each case as n → ∞. It

assumes a known likelihood and also works with Gi parameterised, at least in part, by θ.

1.7.4 Robustness

The term robustness is widely used but, equally, has a wide range of definitions. It is

used in at least the following senses for surrogate likelihoods or models:

Data robustness The effect of a small change in the data gives rise to only a small

variation in θ̂n. This is the traditional definition as discussed in, for instance,

Maronna et al. (2006) and often involves the study of the effect of outliers. As,

frequently, the data is the only knowledge we have of G, this definition is closely

related to:

Model robustness We would like to work with a surrogate that fits well with a range

of Gs that might have generated the data under consideration. For instance, Copas

and Eguchi (2010) propose a loglikelihood envelope for parameters of interest

which is based upon the possibility that the data arises from a G contained in a

tubular neighbourhood of radius ε around F. Models are then treated as equivalent

to F if they satisfy the hypothesis that ε = 0 at a particular acceptance level and

this results in a loglikelihood with a plateau rather than a peak.

Likelihood robustness If we are testing a hypothesis for θ∗ of dimension l, the like-

lihood ratio follows a χ2
l distribution asymptotically (Kent, 1982). See the discus-

sion at the end of Section 1.5 for a summary of when this might be the case for
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surrogates.

Information robustness θ̂n is consistent for θG, asymptotically normal and the in-

formation identity holds empirically (Royall, 1986). We investigate the effect of

the last condition in Section 1.6.

Parameter robustness The parameters are invariant to certain forms of reparame-

terisation (Stafford, 1996). We discuss this with respect to adjustments in Sections

1.6.3 and 1.6.4.

Dimension robustness This can be applied to other forms of robustness and means

that, for instance, a composite surrogate (as defined in Chapter 2) is robust to

misspecification of the bivariate distributions as long as the univariate distributions

are correctly specified (Kuk, 2007).

Distribution robustness Use of the sandwich estimator for the estimated parameter

variance is described as robust (Chandler and Bate, 2007) compared to use of the

naive inverse Fisher information. This is studied in more detail in Section 1.6.2.

1.8 Bayesian Approaches

Two Bayesian techniques have been developed which make use of surrogate distribu-

tions or likelihoods: variational Bayes and approximate Bayesian computation. Both are

outlined here although neither will be explored further in this thesis.

Variational Bayes is analysed in more detail in, for instance, Beal (2003). It is used

where one is taking a Bayesian approach to choose between models. Then one might

be interested in the posterior probability of a model, m, given the data:

p(m|y) =
p(m)p(y|m)

p(y)
.

Maximising that expression over all models would lead one to a preferred model. To do
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that, amongst other things, one would need to evaluate:

p(y|m) =

∫
p(y|θ,m)p(θ|m)dθ

known as the marginal likelihood, where θ parameterises m. This is potentially complex.

Equally intractable integrals may also arise in calculating predictive distributions or den-

sities for latent variables. Rather than approximating using Monte Carlo methods, one

approximates the integral using a density, f , that is integrable and which forms a bound

for the target expression, and could thus be regarded as a form of surrogate. The idea is

to minimise the ’distance’ between the target density, g, and approximating expressions,

where both are parameterised by θ. So, we seek to maximise:

Ef

[
ln

(
g(θ; y)

f(θ)

)]
=

∫
ln

(
g(θ; y)

f(θ)

)
f(θ) dθ

over f . This quantity arises in information theory where it is defined as information

or in statistical physics where its negation is known as free energy, both referring to a

departure from randomness or entropy, and that appears to be the justification for its

more general variational Bayes usage. The usual approach (known as mean field) is

to assume in the simplified f that all the parameters are independent, which generally

permits the required integration. It is sometimes noted, for instance in Chappell et al.

(2007), that the above quantity plus:

Ef

[
ln

(
f(θ)

g(θ|y)

)]
(1.50)

is a constant, known as the expectation of the log evidence, E[P(θ)], and thus maximising

the free energy is equivalent to minimising (1.50). However, that expression is not the

KLD defined in (1.5) as expectations here are taken using the surrogate density, f , and

not the target density, g, so variational Bayes is not a direct equivalent of our surrogate

approach. Justification for using f is that it produces the best approximation to the true

posterior (Chappell et al., 2007), and the approach is used as a computational aid.

Approximate Bayesian computation, or ABC, however, is a closer parallel to surrogate
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methodology, a good introduction being Kennedy and O’Hagan (2001), where it is

described under the rubric of calibrating likelihood parameters in a Bayesian model,

although more recently the technique has been applied to model selection (see, for

instance Toni et al., 2009). It is used in the situation where data, yg are derived from an

unknown distribution with density, g(y). One then works with a known density, f(y; θ),

simulates data, yf , from that and under a variant of rejection sampling (Lee, 2004,

Section 9.5) accepts θ (drawn from a prior) if the distance between yg and yf is small

enough, ie

d(yg, yf ) ≤ δ

for some distance function, d, and scalar δ. A variation involves comparing summary

statistics about the observed and simulated data rather than the data themselves. A

further refinement known as generalised ABC involves assuming that the data is observed

with a measurement error, ε, specified by some prior, πε and θ is accepted with probability

proportional to πε(|yg−yf |). Having chosen our f , we then can influence the outcome by

choosing the summary statistics (in a similar fashion to generalised method of moments)

and then either d and δ, or πε.

In a similar fashion to composite surrogates (see Chapter 2), ABC is used because it

gives usable results for complex problems but appears to be carried out heuristically,

for instance the choice of distance function (eg Toni et al., 2009). The nature of the

simulation means that it is only used for relatively simple models with a low number of

parameters.

1.9 Summary

We have examined the use of surrogates using estimating functions, in situations where

the distribution that generated the data, G, is not either known, tractable, computable,

or available. Working with a detailed set of assumptions, we have derived the usual

asymptotic results together with approximations to expected values, that can be used in
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practice. We have described the distribution of the standard test statistics for surrogates.

We have then studied the options for adjusting surrogates to recover the information

identity, a feature of G. As data may support a range of surrogates, we have reviewed

how they may be compared, particularly for vector parameters. For completeness, we

have looked at some Bayesian equivalents to surrogates.

We now move to studying a particular form of surrogate, the composite surrogate that

has been widely used of late. We take forward all of the assumptions and many of

the results that we have derived in this chapter, particularly those for asymptotics,

adjusted surrogates and comparison of surrogates and, having applied them to composite

surrogates, analyse their effectiveness in a simulation.
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Chapter 2

Composite Surrogates

2.1 Introduction

A particular form of surrogate is the composite surrogate where the loglikelihood is the

weighted sum of a number of marginal loglikelihoods, not necessarily marginal for the

data generating mechanism (DGM). If the latter is the case, then the distribution for

which the loglikelihoods are marginal will presumably have been chosen as a plausible

parametric approximation for the DGM. In Section 2.2 we introduce the basic concepts

together with a simple example. In Sections 2.3 and 2.4 we examine the bias and variance

of estimators arising from composite surrogates. In the case of bias we introduce a new

assumption around the compatibility of estimates arising from the marginal components,

that continues to allow us to work with an unknown G. We explore the consequences

of adding a constant of proportionality to create a true density arising from a composite

surrogate in Section 2.5. In Section 2.6 we analyse how to deal with data elements

with short term dependence so that they can be treated as independent. In Section 2.7

we carry out a simulation, examining the effect of adjusting the bivariate surrogate as

described in Chapter 1 and examine the use of higher order asymptotics for testing small

samples.
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2.2 Basics

The use of a surrogate consisting of the product of low dimensional marginals of a com-

plex distribution is of particular value in the study of clustered data, ie where each data

element or observation is a vector of probably dependent datapoints, and is examined in

this section. Good summaries of the area are Varin (2008); Varin et al. (2011), where

the term composite marginal likelihoods is used. They also refer to a large number

of applied papers in a variety of different fields, particularly genetics, that exploit the

techniques outlined here.

In many situations the surrogate of choice arises from a complex parametric joint dis-

tribution, say H, which may not be the same as the potentially unknown G, and is

not easily handled mathematically or computationally and which may not be robust to

misspecification. In that case, one could try simplifying the procedure in order to make

it more analytically tractable computable and / or robust. We define a surrogate com-

posite likelihood, associated with a distribution F, to be a weighted product of lower

dimensional likelihoods with which we can work more comfortably:

Lsc(θ; y) =

(∏
C∈C

LC(θ; y)wC

)
(2.1)

where C is a set, of dimension q, of subsets of the dataset indices {1, . . . ,m} and each LC

acts on the appropriate subset of dependent elements within an observation and, possibly,

a subset of the parameters under consideration. Note the abuse of notation whereby we

have previously used a subscript on the (log)likelihood to refer to the surrogate F: as

we are certainly working with misspecified distributions here, the F is assumed and shall

be dropped henceforth. Also, LC is often parameterised by a subset of θ, θC say, but for

ease of notation we shall continue to use θ except where use of the subset is specifically

required.

The likelihood at (2.1) is easily set out but the related density may not be easily recovered

so as to be well defined. We have therefore restricted ourselves to the likelihood, Lsc,

as the constant of proportionality may not be known. This issue is explored further in
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Section 2.5. Clearly, F is misspecified but we are allowing H to be so as well.

The resulting loglikelihood, for an observation (or vector of observations), yi, is a

weighted sum of component loglikelihoods:

`sc(θ; yi) =
∑
C∈C

wC`C(θ; yi).

The loglikelihoods, `C are usually derived from low dimensional commonly used distribu-

tions, FC which are frequently identical in form but act on different subsets of the cluster,

and are marginal for H. We shall occasionally consider components that are derived from

conditional marginal distributions but will be clear when that is the case. The composite

loglikelihood is consequently analytically or computationally tractable and shares many

of the features of H, which are explored in this chapter. These are the reasons for its

use. The weights, wC, and the vector of them, w, allow for the possibility that different

subsets of the cluster might vary in importance, but are often all 1. These form the basis

of many of the new contributions in this thesis and are studied in Chapters 3 and 4.

So, for instance, one might prefer to use a high (m) dimensional multivariate normal

surrogate but deem the loglikelihood too complex to deal with. We could then define `sc

to be the product of q = m(m− 1)/2 bivariate normal likelihoods (one for each pair of

elements in y) with weights, wC all equal to 1. That would retain all the parameters from

the high dimensional surrogate but be more manageable and is examined in more detail

in Chapter 4. A different and even simpler model might assume an unknown correlation

parameter that is constant across all pairs of variables.

Example IV - Bivariate Normal Composite Surrogate. For random variables

(Y1, . . . , Ym), where we are interested in studying a common correlation between

them, consider taking as a surrogate a weighted composite loglikelihood consisting

of the sum of the possible standard bivariate normal loglikelihoods with a common

ρ, with, for instance, weight w12 being that for the bivariate distribution for y1 and
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y2. Then for m = 3

Lsc(ρ) =
1

(1− ρ2)w12/2
exp

(
− w12

2(1− ρ2)
(y21 − 2ρy1y2 + y22)

)
.

1

(1− ρ2)w13/2
exp

(
− w13

2(1− ρ2)
(y21 − 2ρy1y3 + y23)

)
.

1

(1− ρ2)w23/2
exp

(
− w23

2(1− ρ2)
(y22 − 2ρy2y3 + y23)

)

=
exp

(
−(y21(w12+w13)+y22(w12+w23)+y23(w13+w23)−2ρ(y1y2w12+y1y3w13+y2y3w23))

2(1−ρ2)

)
(1− ρ2)3/2

=
1

(1− ρ2)3/2
exp

(
−−y

TQy

2

)
,

incorporating a quadratic form where:

Q =
1

1− ρ2


w12 + w13 −ρw12 −ρw13

−ρw12 w12 + w23 −ρw23

−ρw13 −ρw23 w13 + w23

 .

We can see that the likelihood Lsc(ρ) can be considered as corresponding to the

likelihood from a trivariate normal distribution with mean 0 and covariance ma-

trix Q−1. This result is generalised and analysed further in Chapter 4. Theorem

4.3.1, which generalises this example, sets out conditions on the parameters for the

distributions described here to be genuine.

This can be extended relatively simply to composite surrogates where m takes any

integer value of at least 2 so that:

Lsc(ρ) =
1

(1− ρ2)q/2
exp

(
−−y

TQy

2

)

where

Q =
1

1− ρ2



∑m
i=1wi1 − w11 −ρw12 . . . −ρw1m

−ρw12

∑m
i=1wi2 − w22 . . . −ρw2m

. . . . . . . . . . . .

−ρw1m −ρw2m . . .
∑m

i=1wim − wmm


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and wij = wji.

The FCs could differ in form. For instance, they might represent all the univariate and

bivariate margins of H. This more general situation is considered in Cox and Reid (2004)

where the conditional composite surrogate introduced in Besag (1974) for dealing with

spatial data, probably the earliest example of the composite approach, is treated as a

subcase. We study this case for a particular example in Section 4.7.

In practice the use of bivariate composite components is becoming more widespread.

Recent examples that belong to categories we have already considered include

Example II continued - Weather Readings. Padoan et al. (2010) apply bi-

variate composite techniques to the modelling of spatial extremes using max-stable

processes. The theory is applied to rainfall readings in part of the United States.

The results allow flexible models, show good estimate behaviour compared with

traditional approaches and are computationally inexpensive.

Example III continued - Longitudinal Study. Vasdekis et al. (2012) use bivari-

ate composite likelihood estimation to study ordinal longitudinal responses. Time

dependent latent variables and random effects are considered. The promising tech-

niques are applied to extracts from the British Household Panel Survey.

2.3 Bias

Clearly, it would be ideal if any estimates arising from using a composite loglikelihood

are unbiased compared to those which would arise from H, or G if known. That is the

subject of this section. We can differentiate each component loglikelihood, `C(θ; y), and

from the results for general surrogates in Section 1.2, treat the result as an estimating

function, ψC(θ; y), with a zero under G at θGC
say, so that

EG[ψC(θGC
; y)] = 0. (2.2)
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In practice, we will generally be using the data as the source of our knowledge of G.

We make the following assumption to ensure unbiasedness as described above. Most

papers, for instance as summarised in Varin (2008), treat G = H as known and so, as

we shall see later in this section, the assumption is not required. It is stronger than it

need be for identifiability but is convenient for Section 2.5.

Assumption 17. The θGC
, which are the zeroes of EG[ψC(θ)], C ∈ C are mutually

compatible over all C Ie, where any element, say θt, of θ appears in more than

one component loglikelihood, with indices l1 and l2 say, the values of θt for which

EG[ψl1(θ)] = EG[ψl2(θ)] = 0 are the same in each case. 1.

If we do not make this assumption, then different components will give rise to parameter

estimates that may not be consistent for the same θG. In that case, the introduction of

weights may mean that our overall parameter estimates have a different limit from the

unweighted ones.

Example II continued - Weather Readings. For instance, if one decides that

standard bivariate normal components with common correlation, ρ, representing all

the possible pairs of locations should be used in the composite loglikelihood, then

as there is in practice likely to be distance based correlation, the estimates for ρ

from each component may vary considerably and the overall composite surrogate

estimate may not be susceptible to appropriate interpretation.

Thus, Assumption 17 is partially about model choice - one needs to think about the

situation being analysed before deciding upon an appropriate model and if that has

happened, then the assumption may prove to be unnecessary.

We then define our composite estimating function:

ψsc(θ : y) ≡
∑
C∈C

wCψC(θ; y). (2.3)

1An equivalent condition that will lead to a compatible set of zeroes is that up to pq equations
in p variables, the component estimating equations, would have to be solved consistently. For
instance, if our composite surrogate arises from q bivariate normal likelihoods with a common
correlation parameter, ρ, over m-dimensional Y (so that q = m(m − 1)/2), then our p = 2m + 1
dimensional θG (m means and variances, µi, σ

2 and ρ) will arise from solving (m − 1)(2 +m/2)
equations consistently (m− 1 for each µi and σ

2
i and m(m− 1)/2 for ρ).
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We define θG to be the compatible values from Assumption 17, so that by (2.2)

EG[ψsc(θG;Y )] = 0 (2.4)

and ψsc accords with our definition of an estimating function given at (1.1). Clearly, the

choice of weights will have no effect on 2.4.

We might describe this as a bottom up approach to building our ψsc - we construct it

from lower dimensional elements with compatible zeroes. An alternative is a top down

line of attack. In that case, where we begin with ψsc, elements of the overall zero, θG,

would then need to be a compatible set of zeroes of the component estimating functions.

In that case we would need to make assumptions about the nature of the families the

component likelihoods arise from in comparison to the family containing G (for instance,

the fC which give rise to the `C are marginal densities arising from a single joint density

g arising from G). Since, we are assuming an unknown G, that would be awkward. With

our approach, to assess compatibility of estimates we either approximate E[] from the

data or make assumptions about the goodness of fit of H for G.

The known G approach is also standard in inference from the margins (see, for instance

Joe, 1997) wherein parameters are estimated dimensionwise: univariate from a univari-

ate composite surrogate, then bivariate from a bivariate composite surrogate using the

univariate parameter values just calculated (via a profile loglikelihood approach), etc.

Our approach still allows the composite and choice surrogates to be compared, but in

the light of G, represented by the data.

In a similar fashion we define our estimating equation, ψscn(θ; y1, . . . , yn), for n data

points:

ψscn(θ; y1, . . . , yn) ≡
∑
C∈C

wCψC(θ; y1, . . . , yn) (2.5)
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with a zero at θ̂n. Where the Yi are iid:

ψscn(θ̂n) ≡
∑
C∈C

wC

n∑
i=1

ψC(θ̂n; yi) (2.6)

= 0.

If we do not make Assumption 17 then one would prefer the expected values of parameter

estimators arising from the use of a surrogate composite (θ̂n) to match those arising from

the corresponding preferred complex multivariate surrogate, H, (θ̂H). Unfortunately, this

is not always the case. Mardia et al. (2009) show that this issue is complex and describe

two cases in terms of the estimators

1. H belongs to a canonical exponential family for y with sufficient statistic t(y)

that is closed. Closure is defined so that if y is not scalar, then for any subvector

yB of y, its distribution is also a member of a canonical exponential family with

sufficient statistic tB(yB) a subvector of t(y). The requirement demands that the

individual elements of y are not too closely intertwined. Then, θ̂n is unique and

θ̂n = θ̂H so that the estimator is unbiased only if:

(a) Each of the FCs includes all of the elements of y (for instance, each is the

distribution of a single element of y, conditional upon all the other elements,

such as F1(y1|y2, . . . , yn)) and each element of t(y) is excluded from at least

one of the sets of sufficient statistics of the components of the composite

surrogate.

(b) The composite is either a product of all the marginal pairs or of all the

conditional pairs and for which all the elements of the sufficient statistic

contain at most 2 elements of y. For instance, the multivariate normal

distribution MVNp(0,Σ) has sufficient statistics based around the sample

covariance matrix, any marginal or conditional density is also normal and so

fulfils the criteria.

2. For all models, including those that are not closed, with the usual regularity con-

ditions (specified here in Section 1.2) and parameter identifiability, θ̂n → θ̂H as
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n → ∞. Identifiability requires that the composite surrogate contains all the in-

formation about θ. For instance, if θ includes parameters representing interactions

between more than two elements of Y , then for the bivariate composite surrogate,

E[θ̂n] may not tend to E[θ̂H].

We would expect this Case 2 to apply to the models under consideration in this thesis.

Note that expectations in (2.4) are being taken under the unknown G and that the

surrogate of choice, some high dimensional multivariate likelihood, H, is not mentioned.

If G is known, then each of the composite elements arises as a marginal distribution of

G and so when we solve the estimating equations for each marginal, the solutions for

the appropriate subsets of θ will be the same as if we had solved estimating equations

for G directly, subject to the conditions of the preceding paragraph, and are thus the

same across all sets of equations, satisfying Assumption 17. Combining these in the

composite estimating equations will have the same effect. This is often given (Varin,

2008) as a justification for a composite approach but our more general approach - an

unknown data generating mechanism, G, with a known preferred distribution, H, but

using the Kullback-Leibler Divergence between G and F as a justification - gives similar

outcomes. This approach is also taken in Kent (1982) and Xu and Reid (2011).

2.4 Covariance Matrix Estimation

Having examined the bias of a composite likelihood estimator, we now investigate its

covariance matrix. This will be needed for hypothesis testing as described in Section

1.5 and will also help us assess whether the composite surrogate approach is useful for

any particular set of data. If elements of the covariance matrix are extremely large then

another approach might be appropriate.

The normalised asymptotic distribution of θ̂n has covariance matrix, from (1.16):

I−1G (θG)CG(θG)I−1G (θG)
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Clearly, as G is unknown, this will need to be estimated and a number of techniques

have been developed.

The first is to extend the estimation of individual terms as in Section 1.4. Composite

surrogates add a further level of complexity to that estimation:

IG(θG). We estimate this generally by −Anψ′n(θ̂n) per Section 1.4. For composite

surrogates, we can expand the expression using (2.5) to give

−An

(∑
C∈C

wCψ
′
C(θ̂n; y1, . . . , yn)

)
,

which is easily calculated;

CG(θG). Our usual approximating function, per Section 1.4 is BnV̂n(θ̂n)Bn. In the iid

case we have from (1.22):

1

n

n∑
i=1

ψsc(θ̂n; yi)ψsc(θ̂n; yi)
T .

Substituting the definition of ψsc(θ̂n; yi) from (2.3):

1

n

n∑
i=1

(∑
C∈C

wCψC(θ̂n; yi)

)(∑
C∈C

wCψC(θ̂n; yi)

)T

(2.7)

where the component estimating functions, ψC(θ̂n; yi), may well be correlated

with each other (unlike in the partial likelihood (Cox, 2006), an early version of

the composite approach) and so (2.7) cannot be reduced to a sum of ψ2
C(θ̂n; yi)

terms. An example of how one might deal with uncorrelated components in certain

circumstances is given in Section 2.6.

As set out in Section 1.4, we estimate IG(θG) and CG(θG) by În and Ĉn respectively,

combining them to give the variance of the parameter estimator, Î−1n ĈnÎ
−1
n .

A second technique for estimating the variance of the parameter estimator, outlined in

Joe (1997), is to use the jackknife. In this the yi are omitted in turn (for larger samples

one could omit larger groups of data), leading to parameter estimates, θ̂
(i)
n , i = 1, . . . , n,
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and the covariance estimator is:

n∑
i=1

(θ̂(i)n − θ̂n)T (θ̂(i)n − θ̂n)

using arguments similar in form to those for the asymptotic distribution of BnA
−1
n (θ̂n−

θG).

A third technique, with similarities to both the first two, applies when the data can be

considered as ordered in some sense, perhaps by time and / or space. This approach to

estimation of CG is called window subsampling (Heagerty and Lumley, 2000) and involves

splitting the range of the order into r overlapping subranges, Ri and our estimator is:

1

r

r∑
i=1

riψscri(θ̂n; y ∈ Ri)ψscri(θ̂n; y ∈ Ri)
T

where ri denotes the size of the subrange.

Both the latter two methods are working with subsets of the data that are treated as

independent: as long as the data are well mixed, estimating an expected value by these

methods appears to be effective.

In the context of Generalized Estimating Equations (GEE ), Lu et al. (2007) examine two

alternatives to the sandwich estimator (1.16), for small samples involving bias correc-

tion. Crowder (2001) suggests that as an alternative to GEE estimation for longitudinal

studies, the covariance matrix for the parameters that are coefficients of covariates could

be estimated by adjusting that arising from Gaussian estimation. This has potential in

examples such as that studied in Section 2.7.

2.5 Constant of Proportionality

Composite and adjusted composite surrogate loglikelihoods do not necessarily arise from

a well defined density. If we wish to make use of such a density, as we do in Section 3.4

to derive a set of optimal weights, then we need to calculate a constant of proportionality
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(CoP), K−1, so that in the composite case:

1

K

∫
y

exp(`sc(θ; y))dy = 1,

ie:

K =

∫
y

exp(`c(θ; y))dy

=

∫
y

∏
C∈C

fC(yC; θ)wjdy (2.8)

where yC represents the subset of the vector y that appears in component C.

Assumption 18. The constant of proportionality is finite.

While this need not be the case, one would hope that the choice of H and F would make

it so. For the multivariate normal case, a more specific assumption is given as part of

the main result, Theorem 4.3.1.

K does not depend upon the data, they have been integrated out, but may be a function

of the parameters and the weights. We describe the resulting distribution as FK with

density fK , loglikelihood `K and estimating function ψK . We retain, by an abuse of

notation, F to refer to the composite surrogate and `sc to its loglikelihood. Clearly, we

can work with `K to derive parameter estimators etc as we have done with `sc. However,

there is no guarantee that the resulting parameter estimators, θ̂nK
and θ̂n respectively,

would tend to the same limits, θGK
and θG (remember that we have built composite

surrogates from the ground up rather than treating them as marginal for the distribution

that generated the data). In fact, for θGK
and θG to be equal we would need for non
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zero K:

0 = E[ψK(θGK
)]

= EG

[
−d ln(K)

dθ

]∣∣∣∣
θ=θG

+ E[ψ(θGK
)]

= EG

[
−d ln(K)

dθ

]∣∣∣∣
θ=θG

+ E[ψ(θG)]

= EG

[
−d ln(K)

dθ

]∣∣∣∣
θ=θG

=
d ln(K)

dθ

∣∣∣∣
θ=θG

as K is non random and by Assumption 2

or

0 =
dK

dθ

∣∣∣∣
θ=θG

(2.9)

so that either K is not dependent upon θ or its derivative has a factor of θ− θG. Thus,

although one might use FK for calculating weights, as in Section 3.4, care should be

taken about using it for estimating parameters.

The surrogate composite loglikelihood with CoP could also be viewed as a standard

composite loglikelihood where one of the components (ie − ln(K)), rather than being a

marginal density, is just a function of the parameters and weights. For that to fit within

our definition of a composite surrogate and thus be used for parameter estimation, the

extra term would have to satisfy Assumption 17, which, as we have seen, would require

(2.9) to hold, which is often not the case.

The assumptions we have made in this thesis to derive the asymptotic results in Section

1.3 have been made with reference to estimating functions in order to set out the theory

as generally as possible. However, in common with most papers (eg Varin (2008))

we have described composite surrogates in terms of loglikelihoods and then derived

estimating functions. It is worth noting here that if the asymptotic theory based around

surrogate densities (as opposed to surrogate estimating functions) is applied to the

composite case, Xu and Reid (2011) show that only minor adjustments to the equivalents

of our assumptions are required to cope with the fact that composite surrogates without
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a CoP are not genuine distributions.

Cox and Reid (2004) explore analytically the relative efficiency of a generalisation of

Example IV, as set out in Section 2.2, to any dimension of Y . They examine the

situation where G is standard multivariate normal with exchangeable correlation and the

composite surrogate loglikelihood is the sum of all the bivariate marginals. It shows

that as the length of the multivariate random variable, m, increases, the efficiency of

the bivariate composite surrogate, compared with that of the equivalent full multivariate

normal distribution, decreases, albeit fairly slowly.

Example IV continued - Bivariate Normal Composite Surrogate. Adding

in the CoP to the composite surrogate affects both the mean (as shown at (2.9))

and variance (as shown by Cox and Reid (2004)) of the estimator. We ran 1000

simulations each of 1000 datapoints generated from a standard multivariate nor-

mal distribution with common correlation ρ = 0.5 for a range of lengths of random

variable from 3 to 10 and examined the bias and efficiency of estimators arising

from bivariate normal composite surrogates with and without CoP. The results are

shown in Table 2.1. The bias of the bivariate normal composite surrogate with CoP

illustrates the result at (2.9), ie it is significant since neither of the conditions for

the estimate to be unbiased are met. There is no significant bias for the estimators

arising from the multivariate normal (as expected) or the bivariate surrogate with-

out CoP as Assumption 17 is satisfied - parameter estimates arising from marginal

distributions of the multivariate normal distribution are compatible. The efficiency

of the bivariate surrogate without CoP parameter estimator is consistent with the

results in Cox and Reid (2004) while that for the bivariate surrogate with CoP is

extremely poor.

The bias and efficiency results from the example show bear out the main result of this

section - one should not use a composite surrogate with CoP for parameter estimation.

However, the CoP can be useful in deriving weights and this is explored in Section 3.4.
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Bias Efficiency compared to MVN
m MVN BVN no CoP BVN CoP BVN no CoP BVN CoP
3 -0.00017 0.00002 -0.08522 99.6% 69.7%
5 0.00054 0.00111 -0.15459 96.9% 63.0%
8 -0.00007 -0.00007 -0.18939 89.2% 61.8%
10 0.00027 0.00037 -0.19864 84.5% 60.1%

Table 2.1: Comparison of mean and variance of parameter estimator for bivariate
composite normal surrogates (BVN) with and without constant of proportionality
(CoP), with multivariate normal distribution (MVN).

2.6 Ordered Dependence

In Example II in Section 1.2 we saw how one might need to condition upon other data

elements in order to ensure that each of the Yi are independent from each other. This

situation was discussed in Chandler and Bate (2007). Ordered dependence sits between

iid and unrestrictedly dependent Yi and falls under the umbrella of partial likelihood

outlined for instance, in Cox (2006, Section 7.6.5). In this situation, one ascribes some

sort of order to the Yi so that they are independent of each other, conditional upon a

set, Di, consisting of any or all of the Yi′ for i′ < i. One then works with a univariate

composite likelihood with the dependence conditioned out resulting in the standard

surrogate asymptotic distribution and χ2 test statistics (see Chapter 1). For instance,

taking the conditioning into account,

`scn(θ) =
n∑
i=1

∑
C∈C

wC`C(θ; yi|Di)

ψscn(θ) =
n∑
i=1

∑
C∈C

wCψC(θ; yi|Di)

and one can apply the results outlined for composite surrogates in earlier sections of this

chapter.

Chandler et al. (2007, pages 200-201) show that, if the univariate composite compo-

nents are marginal for G (ie H = G), then E[ψC(θG)], ie the expected value of the

estimating function contribution from each cluster at θG, is zero. Adapting that proof,

as suggested in the reference, we show that the estimating function contributions from

different components are uncorrelated at θG (see Appendix B) and as a result we can
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estimate CG(θG) with, adapting (2.7):

B
1
2
n

n∑
i=1

∑
C∈C

ψC(θ̂n;Yi|Di)ψC(θ̂n;Yi|Di)TB
1
2
n .

Example II continued - Weather Readings. Hourly weather readings will cer-

tainly have local time dependence. One could assess the extent of this (ie how many

hours) in practice by treating recent readings as covariates and examining their

significance. One could then condition upon that number of hours’ readings and

treat the resulting Yi|Di as independent, subject to any further dependencies such

as seasonality.

2.7 Simulation I

In order to compare the effectiveness of various composite surrogates, particularly those

that have been adjusted horizontally and vertically to restore the information identity,

(1.28), as described in Section 1.6, we use a simulation set out in Chandler and Bate

(2007) (where the versions of the adjustments that we use here were described for com-

posite surrogates, although, as we have seen, their applicability is more general). There,

univariate and horizontally adjusted univariate models are compared. Here we add bivari-

ate, horizontally and vertically adjusted bivariate, and the maximum likelihood estimator

from the data generating mechanism from G (MLE ) into the mix. The simulation and

other calculations have been carried out in R (R Development Core Team, 2012) unless

otherwise mentioned.

2.7.1 Composite Surrogates and Adjustments

The model used to generate the data has binary responses, together with covariates and

a random effect. We define

logit(µij) = β0 + β1xij 1 + β2xij 2.
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where i represents a cluster or vector of observations and j a datapoint within that

cluster and

• β0 is taken to be 0.25.

• The length of each cluster is 1 + Z where Z ∼ Poi(λ). One representation would

be a longitudinal study where measurements for the ith patient (cluster) are taken

at time 0, ti0, and then at each subsequent visit, ti1, . . . , timi
, which occur with

intervals determined by a Poisson process with arrival rate λ, up to time 1. Here,

we have used λ = 4.

• The first covariate, xij 1, consists of independent realisations of a Bernoulli random

variable with mean 0.2 + 0.6tij.

• The second covariate, xij 2, is a linear trend, tij. There is thus dependence between

the two covariates.

• The response variables, Yij, are taken from a Bernoulli distribution with mean pij

where:

pij ∼ Beta

(
a, a

1− µij
µij

)
. (2.10)

so that we introduce a random effect. For each cluster we randomly select ui from

U [0, 1] and then pij = F−1ij (ui) where Fij is the cumulative density function for

the beta distribution just described. The random effect is thus common within

each cluster, introducing intra cluster dependence. Here, we use a = 0.1 which

means that the pij tend to take on values closer to 0 or 1 than the corresponding

µij.

• The probabilities for cluster i with l elements are given by:

π(yi = (yi1, . . . , yil)) =
l∏

j=1

p
yij
ij (1− pij)1−yij .

Inference for the parameters (β0, β1, β2, a) was carried out, for data generated from 25

values of β1 = β2 regularly in [−0.6, 0.6], for 1000 simulations each of 30 clusters, by
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maximising loglikelihoods. The results were compared for likelihood ratio tests, testing

H0 : β1 = β2 = 0, using power curves at the 5% level for the following:

Univariate For reference purposes, as previously studied in Chandler (2004), entries

in a cluster were treated as if they were independent and the loglikelihood was

the sum of the loglikelihood for each element of a component. The likelihood

ratio test statistic has an asymptotic distribution which is a weighted sum of

χ2
1 distributions as described in Section 1.5. Varin (2008) proposes using the

Satterthwaite approximation for this weighted sum while Chandler and Bate (2007)

use an approximation described in Bowman and Azzalini (1997), a practice that

we have followed in this thesis.

Vertically Adjusted Univariate Chandler and Bate (2007)’s version of the vertical

adjustment described in Section 1.6.4 is applied to the univariate likelihood. This

results in a χ2
l distribution for the test statistic where l represents the number

of covariate coefficients hypothesised as 0. The horizontally adjusted univariate

model is not shown here but the results are very similar to those from the vertical

adjustment.

Bivariate Unadjusted A bivariate composite loglikelihood for cluster i, containing

mi elements, would be a sum of bivariate Bernoulli loglikelihoods

`i =
∑
j 6=k

(yij ln pij + (1− yij) ln(1− pij) + yik ln pik + (1− yik) ln(1− pik))

1 ≤ j, k ≤ mi (2.11)

where each pair has a common random effect, ui,jk, to generate the pij and pik.

Ideally, one would like to integrate out the random effect. This would require

knowing the explicit form of F−1ij , which is not possible. However, with a = 0.1

and µij varying between 0.26 and 0.82 (which is the case here), pij = F−1ij (ui,jk)

is sigmoid and can be approximated by the function

1/(1 + exp(−an(ui,jk − 1 + µij))), (2.12)
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where an is a nuisance parameter in place of a, a shifted and scaled inverse logistic

function, which retains the dependence upon µij. The random effect could be in-

tegrated out from the resulting loglikelihood, (2.11), and details of the integration

are given in Appendix C. If a cluster had only one member, an integrated out

univariate likelihood was taken, again summarised in Appendix C. The resulting

test statistic was compared to a weighted sum of χ2
1 distributions.

Bivariate Adjusted The loglikelihood in the previous item is adjusted horizontally

(Section 1.6.2) and vertically (Section 1.6.3) resulting in χ2
l distributions for the

test statistics.

MLE We would like to carry out maximum likelihood estimation for the model that

generated the data. However, the problem of integrating out the random effect,

as described in the Bivariate Unadjusted point, was present for the distribution

that generated the data but each random effect was common across the whole of

a cluster. The technique of analytically integrating out that random effect from a

sigmoid approximation, (2.12), was not practical for clusters of size greater than

three due to algebraic complexity. Therefore, a numerical approach was taken and

the loglikelihood of the data in each simulation was maximised with the random

effects being integrated out numerically. It did prove possible to do the same

with the original data generating mechanism (DGM), but each simulation then

took over two hours to run. For 10 simulations, the numerical approach was

compared for the DGM and the sigmoid approximation. The resulting differences

in p-values and parameter estimates were transformed to be approximately normal

and t-tests in both cases gave p-values over 0.4 for the hypotheses that there were

no differences between the two approaches, ie the use of the sigmoid function,

(2.12), is justified as an approximation to the inverse beta distribution.

In order to calculate the adjustments or the eigenvalues for the weighted χ2
1 distributions,

În and Ĉn were required, as described in Section 1.5. The former was taken as the

Hessian matrix in the nonlinear minimisation routines used in R (R Development Core

Team, 2012). The latter was calculated as the variance of the estimating function for
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the data under consideration per (2.7). Differentiation was carried out numerically using

Ridders’ method (Lourmas and Chandler, 2006).

Values of  β1 and  β2 used to generate data
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Figure 2.1: Simulation I. Power plots at level 0.05 for MLE and range of surrogates.

The resulting power plot is shown in Figure 2.1 and the following are of note:

1. Rejection rates for data generated at β1 = β2 = 0 are given in Table 2.2. As

the null hypothesis uses the same values, one would expect the rejection rates to

be 0.05. Chandler and Bate (2007) suggest that for small numbers of clusters,

the covariance estimator can be inefficient leading to slightly liberal tests. This is

borne out for a similar example in Section 3.4.5. However, the rates for the three

adjusted surrogates are more than double what they should be. We review higher

order features in Section 2.7.2.

2. As one might expect, the differences between the levels of complexity in the surro-

gates are reflected in the power curves: MLE is more powerful than the bivariate

surrogates which are more powerful than the independence ones.
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Univariate 0.078
Univariate Vertically Adjusted 0.101
Bivariate 0.092
Bivariate Horizontally Adjusted 0.126
Bivariate Vertically Adjusted 0.142
MLE 0.069

Table 2.2: Simulation I. Rejection rates for each of five tests at level 0.05 with data
generated from β1 = β2 = 0.

3. What is surprising is that the effect of adjusting the bivariate surrogate reduces the

power of the test. This is consistent with results in Padoan et al. (2010) and Pace

et al. (2011). It leads us to ask whether there are other methods that could improve

the power. One possibility is to vary the weights attached to each component; this

is investigated in Chapters 3 and 4. The most likely explanation for the reduction

in power is based around the Bartlett identities. We have only restored the first

two of them but they exist for all moments and those of order three or more

may have significant impact in this example. Note that the Bartlett Correction

discussed in the following Section is concerned with higher order approximations

for test statistics, not for Bartlett identities.

2.7.2 Bartlett Correction

We saw in Simulation I in Section 2.7.1 that the rejection levels for data generated from

β1 = β2 = 0 are higher than the expected 0.05, particularly for adjusted surrogates. One

approach for smaller sized samples (we have been using 30 clusters per simulation) is to

adjust the likelihood ratio statistic, W , to take into account higher order features of the

data than the two so far considered, per Appendix A. The standard approach to this is

to use the Bartlett correction or adjustment (details from McCullagh and Nelder (1989)

and Barndorff-Nielsen and Cox (1994)) which reduces the relative error from O(n−1) to

O(n−2). This result only holds where the distribution of the likelihood ratio statistic,

W , is asymptotically χ2
l , some l, and so we can only use it for our adjusted surrogates,

not the unadjusted ones.
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The idea is to multiply W by l/E0[W ], to give WB, where E0[W ] is the expected value

of W under the null hypothesis. The new statistic has the same mean as W and faster

convergence to χ2
l throughout the distribution.

The usual approach is to approximate the correction by a complex expression involving

multiple terms and products of high order cumulants. Deriving these analytically for

our simulation is analytically daunting and possibly impossible. However, there are

alternatives:

1. McCullagh and Nelder (1989, 15.3.2) derive a version of the correction, for Gener-

alized Linear Models (GLMs), that mostly involves matrices arising in the standard

theory of GLMs. This simplifies the calculations considerably. While our simula-

tion do not involve distributions of response variables from the exponential family,

they are similar and one could adapt the theory to those cases.

2. One could estimate the values of the required cumulants from a large data set.

3. Finally, we could estimate E0[W ] directly by taking a large set of simulated data-

points and calculate the mean of the likelihood ratios generated for the adjusted

surrogates under consideration.

The last two alternatives can only be used where one has the ability to simulate from

G, which is not generally possible in real applications. However, in order to understand

whether there is any value in using the Bartlett correction for adjusted surrogates we

will use the final approach in this case.

We apply the adjustment to the three adjusted models: univariate vertical, bivariate

vertical and bivariate horizontal. The resulting power curves are shown in Figure 2.2 and

the rejection levels at β1 = β2 = 0, compared to those without the Bartlett correction

are given in Table 2.3.

The overall effect is to shift the adjusted surrogate power curves slightly downwards.

This means that the rejection rate levels are brought much closer to the anticipated

0.05 although for the bivariate adjusted models they have overshot somewhat and are
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Figure 2.2: Simulation I. Power plots at level 0.05 for adjusted surrogates with and
without Bartlett correction.

between 0.036 and 0.037. However, the effect on the poor power performance of the

bivariate adjusted surrogates is to make it marginally worse.

A Bartlett type correction applied to the unadjusted surrogates would presumably have

a similar (although probably less marked as the rejection rates are not so poor) effect.

While not possible under the standard theory (Barndorff-Nielsen and Cox, 1994), such

a correction has been suggested in Viraswami and Reid (1998b) but only for scalar

θ. Extension to vector θ is discussed but not taken further as it is unlikely to be

Surrogate Original Bartlett Corrected
Univariate Vertically Adjusted 0.101 0.053
Bivariate Horizontally Adjusted 0.126 0.037
Bivariate Vertically Adjusted 0.142 0.036

Table 2.3: Simulation I. Rejection rates before and after applying a Bartlett correc-
tion for H0 : β1 = β2 = 0, target 0.05
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an improvement on the similar corrected score statistic derived in Viraswami and Reid

(1998a). In both papers, it is required that θG = θ0, the latter being the the value of

similarly defined parameters from the distribution that generated the data.

2.8 Summary

We have reviewed the theory behind composite surrogates, placing it in the context of

the more general theory of surrogates described in Chapter 1. We have examined the

bias and covariance matrix of the composite parameter estimators, features which will

help us determine whether the use of the composite surrogate has value. We have seen

in a simulation that composite surrogates, with and without the adjustments described

in Section 1.6 are not always as powerful as maximum likelihood estimation based on

the mechanism that generated the data and, indeed, the adjustments may reduce the

power. We have analysed the effect of creating a well defined density related to the

composite loglikelihood, ie one with a constant of proportionality. The use of this will

be studied in Chapter 3 where we analyse the effect of weighting each component of a

composite surrogate.
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Chapter 3

Weights

3.1 Introduction

Having reviewed how one might adjust the basic composite surrogate to recover features

of a preferred complex surrogate (such as the Information Identity), we now examine

how, by weighting components of the composite surrogate, we might improve one of a

number of desirable measures, such as efficiency. We begin, in Section 3.2, by surveying

different approaches to weighting used in the literature. In Section 3.3 we demonstrate a

more generally applicable version of one of those approaches, based on applying weights

to estimating functions. We also show that a computationally cheaper scheme is optimal

if dependence between estimating function components is not taken into account. In

Section 3.4 we suggest a new scalar weighting scheme based on taking into account

the constant of proportionality for the composite surrogate and minimising a Kullback-

Leibler Divergence (KLD). We study situations in which this scheme does not give rise

to unique weights. The effectiveness of the new scheme in practice is assessed through

simulation.
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3.2 General Approaches

3.2.1 Introduction

We recall that the standard definition of a composite surrogate loglikelihood (Section

2.2) is

`sc(θ; y) =
∑
C∈C

wC ln fC(θ : yC) (3.1)

where each of the q components, fC, from F, our composite surrogate, acts on a subset

of y, yC. There is a weight, wC, corresponding to each of the q components. While

composite surrogates are widely used (see Varin (2008) for a summary), formal methods

for choosing the weights have received comparatively little attention. Those approaches

that do exploit weights cover a greater range of schemes than that given in (3.1) and

they are described in the following subsections under the headings of scalar, component

type, estimating function and cluster. In practice, papers that do not focus on weights

(for instance Padoan et al. (2010)) will have tended to set most of the wC to one,

with the remainder, for components whose contribution to overall information is deemed

negligible, zero.

In much of this chapter, we will use multivariate efficiency, described in Section 1.7.2,

as the criterion for assessing weighting schemes. This is equivalent to maximising the

sandwich information under the positive semidefinite or Loewner ordering.

It is worth noting that the weights we consider depend upon the data through the

particular parameter values estimated for the dataset under consideration (Sections 3.2.2

and 3.2.4) as well as the length of the data clusters (Sections 3.2.3 and 3.2.5). In

practice we will estimate parameters from the data and then use those estimates to

calculate weights. Section 3.4.4, for example, explores this in more detail.

Also, we place no constraint on the support for the weights. In Section 4.8 we shall

see an example with a negative weight. However, note that Lindsay et al. (2011) states

that ”if we were to include sub-likelihoods with negative weights, the guarantee of Fisher
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consistency would be lost”. Indeed, arbitrary negative weights could give rise to such

issues. This is most easily seen geometrically (see Section 3.2.4 for a longer geometric

discussion). The weighted loglikelihood for a component with a positive weight will, in

the area around θG have decreasing gradient and a maximum. However, with a negative

weight, there will be an increasing gradient and a minimum. Informally, as we wish the

weighted composite loglikelihood to have a maximum, the components with negative

weights must not overwhelm those with negative weights. Formally, Assumption 3 states

that θ̂n exists and is unique and so the sum of the component loglikelihoods must have

the decreasing gradient around θG. We thus permit negative weights subject to that

assumption as, if the negatively weighted components predominated, there would be

no unique maximum. See Section 3.2.2 for an example of what that might mean for

scalar parameters. Our structured approach to assumptions and derivation of weights

(see Section 3.4) ensures that any negative weights do not cause the problems described

above.

3.2.2 Scalar Weights

Where θ is a scalar, the relative efficiency of θ̂ is just a number, rather than the matrix

resulting from vector θ, and is a straightforward way to compare weighting schemes.

Denote by ψS(θ) the q×1 vector of stacked ψC(θ)s from each of the composite compo-

nents. Lindsay (1988) assumes that our data generating distribution G is parameterised

by θ, with density g and score U(θ), and then shows that the vector of optimal efficiency

improving weights, for a composite surrogate with estimating function ψ(θ), is:

w∗S = Var−1[ψS(θG)]E[U(θG)ψS(θG)] (3.2)

where E[U(θG)] = 0 (we have shown that θ̂n is consistent for θG in Section 1.3). The

vector w∗S represents (w∗1, . . . , w
∗
q)
T where the w∗j are the optimal component weights.

The result is derived by minimising E[U(θG) − wT
SψS(θG)]2, ie by maximising the Go-

dambe information of the estimating function over the weights and treating the score as

optimal per Section 1.7.2.
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Clearly this result requires knowledge of G and only applies to scalar θ, but is a useful

starting place for an understanding of the effect of varying weights.

It is worth exploring further the notion of negative weights, introduced in Section 3.2.1,

for this simple situation. It is quite possible that (3.2) would have negative elements.

For instance if we take a randomly generated covariance matrix with inverse

Var−1[ψS(θG)] =



0.154 −0.057 −0.006 −0.008

−0.057 0.322 −0.023 −0.015

−0.006 −0.023 0.148 −0.005

−0.008 −0.015 −0.005 0.158


and set E[U(θG)ψS(θG)] = (0.1, 0.9, 0.1, 0.1)T then

w∗S = (−0.0373, 0.2803,−0.007, 0.001)T .

The constraint that prevents any negatively weighted components overwhelming those

with positive weights is that Var−1[ψS(θG)] must be positive semidefinite, in fact positive

definite as the inverse exists, and so:

(E[U(θG)ψS(θG)])TVar−1[ψS(θG)]E[U(θG)ψS(θG)] ≥ 0 or

(E[U(θG)ψS(θG)])Tw∗S ≥ 0. (3.3)

In the example above we have negative weights but (E[U(θG)ψS(θG)])Tw∗S = 0.24794.

Alternative approaches that relax the need for θ to be scalar have been suggested in

specific contexts. For instance, the use of weighted bivariate composite likelihoods

for large space time datasets has been studied by Bevilacqua et al. (2012). A simple

weighting scheme, allocating weights per (3.1), is reviewed, whereby each weight is

either 0 or 1 depending upon whether the distance and time between the pair of data

points in that particular component are less than (dt, ds), say, respectively. These tuning

parameters can be chosen by minimising numerically the trace of the variance matrix of

the surrogate. In certain cases, this simple scheme is shown to be more efficient than
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that involving weights from the whole of [0, 1]. A more sophisticated version of this is

applied to the surrogate’s estimating function and is reviewed in Section 3.2.4.

We propose a new scalar weighting scheme, that is more generally applicable than those

reviewed above, in Section 3.4.

3.2.3 Component Type Weights

In the case of composite likelihoods whose components are of more than one data

dimension (eg a mixture of univariate and bivariate), several authors have worked with

a subset of scalar weights where the weights differ only with the dimension of the data

in the marginal components to which they are attached. The number of weights is the

number of different marginal dimensions present. Varying the weights, may result in a

variety of related distributions and in some cases will give rise to plausible interpretations

(see, for instance, Section 4.8).

For instance, Cox and Reid (2004) consider the case where it is possible to specify

the univariate and bivariate distributions but none of a higher dimension for a partic-

ular dataset. In that case, for m elements in a cluster, we have a weighted surrogate

loglikelihood

`sc(θ; y) =
∑
s>t

ln fst(ys, yt : θ)− wm
m∑
s=1

ln fs(ys; θ) (3.4)

where the suffix for f consists of the elements of y for which that distribution is marginal,

and w is chosen by solving an optimality problem. The weight, w, can be considered as a

relative weight attached to the univariate margins, and different choices lead to different

interpretations. A particular instance, the pseudo-likelihood consisting of the product of

all combinations of conditioning one data element upon another, was examined in Besag

(1974) in the context of spatially interacting random variables. In that case (omitting
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the ys and θs for simplicity) the surrogate loglikelihood is

`sc =
∑
s 6=t

ln fs|t 1 ≤ s, t ≤ m

=
∑
s 6=t

(ln fst − ln ft)

= 2
∑
s>t

ln fst − (m− 1)
∑
t

ln ft

and, as loglikelihoods are equivalent, for parameter estimation, up to a multiplicative

constant, we can recover (3.4) by taking w = (m − 1)/2m (note that Cox and Reid

(2004) suggest using w = 1/2 for the same example). Technically, as we use the

loglikelihood by differentiating it and setting the result equal to zero, we could reduce

the number of weights required in all component type weight situations by one, by setting

the weight of one of the composite terms to one and adjusting the rest of the weights

accordingly.

This approach was extended in Lindsay et al. (2011), using the more general additive

estimating function framework rather than loglikelihoods. At θ ∈ Θind, the subset

of parameters at which all the YCs are independent from each other, it is shown that

certain values of weights (Hoeffding scores) maximise the sandwich information for the

related parameter estimates. This elegant result is based upon starting with univariate

components and then adding components of higher dimension (eg pairs, triplets) that

are orthogonal to all previous components. For instance, if we just consider univariate

and bivariate margins, the estimating function would be

ψ∗2 =
∑
t

ψt +
∑
s>t

(ψst − ψs − ψt) 1 ≤ s, t ≤ m (3.5)

=
∑
s>t

ψst − (m− 2)
∑
t

ψt

where the suffixes are as in (3.4), and we have recovered an estimating function version

of (3.4) with w = (m−2)/m. The result arises as the residuals, U −ψ∗2, where U is the

score from G, are shown to be orthogonal to the basis of the set of additive estimating

functions under consideration and thus to create an estimating function that is closer to

U , one would have to add margins of higher dimension than two.
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However, the result does not apply away from Θind. If we only considered the values of

Θind for which the YCs are independent, then one would not bother with multivariate

analysis at all. So, the value in this approach lies in how it can be extended to other

parts of Θ, which is discussed in Section 3.2.4.

Note the difference in w for the Besag (1974) ((m− 1)/2m) and Lindsay et al. (2011)

((m− 2)/m) schemes. Besag (1974, Section 7.2.2), who was not aiming for optimality,

does discuss overdependence on certain components in his model and this accounts for

the difference in weights.

3.2.4 Estimating Function Weights

In Section 3.2.2, we have seen how scalar weights can optimise efficiency for a scalar

parameter. More generally, θ will be vector valued and, in order to optimise efficiency,

subtler weighting schemes may be required, so that weights can affect individual elements

of the parameter vector within each composite component. The estimating function, as

well as arising from a wider range of situations than just the loglikelihood, allows us to

use these more complex weighting schemes.

One way of thinking about a loglikelihood surface for a composite surrogate is as the sum

of a series of surfaces for each of the composite components. Each component surface

will have expected maxima at the same place as the summary surface. Scalar weighting

schemes multiply each component surface by a constant whereas estimating function

schemes enable one to manipulate the shape of each surface, albeit, generally, through

the surface representing the derivative of the loglikelihood. So, if we consider one of the

elements that contributes to efficiency, namely the sharpness of the loglikelihood at θG,

expressed through the matrix of second derivatives there, a scalar weighting scheme just

permits us to place greater emphasis on those components with greater sharpness (or

sensitivity), while an estimating function weighting scheme actually allows us to improve

the sharpness of each component. The latter scheme will thus improve sharpness and,

consequently, efficiency of the composite surrogate more effectively than the former.
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Lindsay et al. (2011) extends the incremental orthogonal scheme described in Section

3.2.3 away from Θind by applying more complex weights (modified Hoeffding scores)

to estimating functions. So, each element in the right hand in (3.5), ψst − ψs − ψt, is

replaced by

ψst −Bsψs −Btψt

where Bs and Bt are p× p matrices derived by minimising

E[(ψst −Bsψs −Btψt)(ψst −Bsψs −Btψt)
T ].

Application to specific multivariate normal examples is examined in more detail in Section

4.2.

A more general weighting scheme would be to apply matrix valued weights to the vector

components of estimating functions so that they sum to a weighted composite surrogate

(wcs) estimating function

ψwcs(θ; y) =
∑
C∈C

W CψC(θ : yC)

so that each weight, W C, is a p× p matrix and we have q of these matrices, each with

p2 weights.

Lindsay et al. (2011) claims that the set of W j which maximises efficiency, which we

shall describe as the Best Weighted Estimating Function (BWEF ), can be found as

follows. As in Section 3.2.2, define ψS(θ) = (ψ1(θ), . . . , ψq(θ))T as the pq × 1 vector

formed by stacking the component estimating functions in order, and then set

CS(θ) = Var[ψS(θ)] and

IS(θ) = −E

[
∂ψS(θ)

∂θ

]
or − E[ψ′S(θ)],
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being pq × pq and pq × p matrices respectively. Then, set:

WB = IS(θG)TCS(θG)−1, (3.6)

where WB = (WB1 , . . . ,WBq) is a p × pq matrix of the weighting matrices stacked

horizontally. This results in the BWEF, ψB(θ), which is the weighting scheme resulting

in the most efficient parameter estimates under a positive definite matrix partial order:

ψB(θ) = WBψS(θ) (3.7)

=
∑
C∈C

WBC
ψC(θ). (3.8)

A similar approach is taken in the Generalized Method of Moments (Hansen, 1982) for

the derivation of optimal weighting matrices. In that case, which is not restricted to

composite estimating functions, θG minimises ψ(θ)TΩψ(θ) where Ω is a p× p matrix of

weights. It can then be shown that the Ω which maximises efficiency is Var−1[ψ(θG)].

The result at (3.7) is merely stated and not proved in Lindsay et al. (2011). In addition,

WB is only defined if CS(θG) is non singular. This assumption is never stated but

appears to be made a number of times in the paper. A more general version of this

result is suggested and proved in Section 3.3.1.

The main disadvantage of (3.6), as noted in Lindsay et al. (2011), is its computational

inefficiency - it requires the inversion of a pq×pq matrix. One way to avoid that inversion

is to ignore any dependence between elements of ψS(θ), irrespective of whether those

elements belong to the same component. Bevilacqua et al. (2012) do that, amongst

other things, to extend their simple weighting scheme, described in Section 3.2.2, to

estimating functions, resulting in a weighted composite score, eW (θ):

eW (θ) = diag(IS(θ))ψS(θ).

Justification is through minimising an upper bound for the asymptotic variance of the

surrogate parameter estimates. The scheme appears to improve efficiency in certain
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cases compared with unweighted and scalar weighted composite surrogates.

A half way house that takes into account dependence between estimating function ele-

ments of the same component is considered in Section 3.3.2.

3.2.5 Cluster Weights

Most references for composite likelihoods (eg Lindsay, 1988; Varin, 2008; Varin et al.,

2011) just specify multivariate data, y, each instance or cluster being of some fixed

length, m. In some situations, such as repeated weather readings from a fixed number

of stations, this is appropriate, although missing or unreliable data could cause problems.

However, in, for instance, longitudinal data studies, the clusters are very likely to be

of unequal length. In that case, the use of equal weights in composite likelihoods will

implicitly derive more information from clusters with greater length. This may not always

be appropriate.

For instance, le Cessie and van Houwelingen (1994) studied the effects of various (mostly

peri-natal) effects on binary outcomes of mortality and morbidity of children over the

first few years of their lives. As some of the children were members of twins, triplets

etc, there was correlation between the observations of the effects for members of the

same multiple birth groups. The impact of each of these individuals compared with

the single birth event individuals thus needed to be reduced. This particular situation

was then generalised to consider blocks or clusters of length mi in bivariate composite

loglikelihoods and it was proposed, heuristically, that weights of 1/(mi−1) were applied

to cluster i to reduce the effect of dependent individuals from larger clusters. Thus,

the weights are attached to the clusters rather than the components and there are q of

them.

Joe and Lee (2009) introduced more sophisticated functions of the cluster size to cope

with situations where there is one large and many small clusters. These are derived

heuristically from multivariate normal models where the data generating mechanism and

the bivariate composite surrogates have common means and variances, and exchange-
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able correlations. The various weighting schemes are compared for relative efficiency.

This comparison is analytical for one (correlation) unknown parameter. For all three

parameters simultaneously, the results are through simulation. Results vary for possi-

ble length of clusters and parameter values but, in general, weights of 1/(mi − 1) and

1/((mi − 1)(1 + (mi − 1)/2) perform best.

Example III continued - Longitudinal Study. If we apply the second of the

preferred weighting schemes from Joe and Lee (2009) to patient measurements where

one patient has had one measurement and a second many, then the weighted con-

tribution of the second to the loglikelihood used for parameter estimation will be

of the same order as that from the first (the weighting of the second is of the same

order as the number of composite components). This does not seem appropriate as

the second patient will be contributing far more information to the study.

There is potential for exploring combined cluster length and, for instance, scalar weights.

3.2.6 The Way Ahead

We have seen a variety of proposed weighting schemes for composite surrogates. Many of

them are developed heuristically or apply only to specific distributions. The only one that

meets some general optimality criterion, in this case efficiency, analytically is the BWEF

described in Section 3.2.4. However, that scheme, as proposed but not proved, makes

the implicit assumption that each component varies with every parameter . That is not

always the case: for instance, where we have bivariate components derived from a full

multivariate distribution, each correlation parameter will only appear in one component.

We suggest and prove a more general result that does not make that assumption in

Section 3.3.1. The scheme is potentially computationally expensive and so we propose a

restricted version that assumes no dependence between component estimating functions

in Section 3.3.2 and show that it is still best in its class.

The theory of surrogates as set out in Chapter 1 is based around minimising the KLD

between the distribution that generated that data and the surrogate. We take that
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principle and apply it to a composite surrogate with constant of proportionality in Section

3.4. This results in a completely new set of equations that can be solved to derive weights

under the KLD optimality criterion.

It is worth noting that the number of weights in the different schemes reviewed so far

varies from the number of component dimensions (usually two) for component type

weights to p2q2 for the BWEF proposal. The new KLD proposal has q weights and

the partially dependent scheme qp2. The number of weights does not necessarily reflect

the complexity of calculation, and the weights may well have to be calculated for each

cluster if the cluster distributions are not iid.

3.3 Estimating Function Weighting Schemes

3.3.1 A Fully Dependent Weighting Scheme

We saw in Section 3.2.4 that the proposed optimal estimating function weighting scheme

in Lindsay et al. (2011) required CS(θG) to be non singular. This requires, inter alia,

that we are working with a full composite surrogate which we define in the following:

Full composite surrogate Each component of the composite varies with the full set

of parameters under consideration (ie the full set used in the composite surrogate,

not the set used in some idealised joint distribution). This will often be the case

where we are working with covariates and a link function, such as in the Generalized

Linear Model

Projected composite surrogate Each component of the composite varies with only

a proper subset of the parameters under consideration. An example of this is where

we have multivariate data (dimension greater than two) with a bivariate composite

surrogate where each component is bivariate normal and will thus depend upon

parameters relating to only two of the elements of the data. The term ”projected”

is used to denote the fact that we have collapsed the parameter space for any

component onto the dimensions for which parameters exist.
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If we are working with a projected composite surrogate, then there will be at least one

zero element in ψS(θG) and equivalent zero row and column in CS(θG), so the latter

will be singular. To address this problem we here provide a more precise statement and

proof of Lindsay et al. (2011)’s proposal.

Define ψ0
S(θ) to be ψS(θ) with the zero rows removed, ie ψ0

S(θ) = BψS(θ) where

B is a pq × pq identity matrix with the rows corresponding to zeroes in ψS(θ) deleted.

Similarly, define I0S(θG) = BIS(θG) and C0
S(θG) = BCS(θG)BT . Finally, set

W 0
B = I0S(θG)TC0

S(θG)−1 (3.9)

so that

ψ0
B(θ) = W 0

Bψ
0
S(θ).

Assumption 19. C0
S(θG) and its estimate, Ĉ

0

n (see Section 1.4), is nonsingular.

In Section 1.6.3 we see that Cn is non-singular, but Assumption 19 is a further require-

ment: that invertibility remains when we look at the composite components individually,

in blocks down the main diagonal of C0
S(θG), and in pairs, off the main diagonal. Tech-

nically, we require that the product of I0S(θG) with various other matrices is nonsingular

but this assumption ensures that is the case.

Note that we are typically working with classes of estimating functions per Section 1.7

where an estimating function is premultiplied by I−1(θG) to give the class representative.

We thus premultiply any weighting scheme by a normalising matrix I0S(θG)T to adjust

for that and allow us to compare any weighting scheme.

We now state and prove our optimality theorem for ψ0
S(θ).

Theorem 3.3.1. W 0
B, as defined in (3.9), is the most efficient estimating function

weighting scheme for ψ0
S(θ), subject to the existence of the appropriate moment

functions of ψ0
S(θ).
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Proof Firstly, note that ψ0
B(θ) = W 0

Bψ
0
S(θ) is an estimating function. By Assumption

17, each of the elements of ψ0
S(θ) has expected value zero at θG under G and thus any

linear combination will have the same characteristic, so that E[ψ0
B(θG)] = 0.

For proving efficiency, we adopt a similar approach to that in Hansen (1982). This

originally arose in the study of General Method of Moments (GMM) where the dimension

of the estimating function (moment function in GMM) is not necessarily the same as

that of θ.

We consider the asymptotic parameter variance under BWEF (VarB[θ̂∞]) which has the

usual sandwich form but can also be reduced, all functions being evaluated at θ = θG

(and the suffix 0 being dropped for notational simplicity):

VarB[θ̂∞] = (E[ψ′B]T )−1Var[ψB]E[ψ′B]−1

= (E[WBψ
′
S]T )−1Var[WBψS]E[WBψ

′
S]−1

= (E[ψ′S]TW T
B)−1WBVar[ψS]W T

B(WBE[ψ′S])−1

= (ITSW
T
B)−1WBCSW

T
B(WBIS)−1

= (ITSC
−1
S IS)−1ITSC

−1
S CSC

−1
S IS(ITSC

−1
S IS)−1

= (ITSC
−1
S IS)−1(ITSC

−1
S IS)(ITSC

−1
S IS)−1

= (ITSC
−1
S IS)−1.

If we then consider any other weighting scheme

ψW = WψS

W = ITSV
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for some pq × pq symmetric matrix V , its asymptotic parameter variance will be the

usual sandwich form

VarW [θ̂∞] = (E[ψ′W ]T )−1Var[ψW ]E[ψ′W ]−1

= (E[Wψ′S]T )−1Var[WψS]E[Wψ′S]−1

= (E[ψ′S]TW T )−1WVar[ψS]W T (WE[ψ′S])−1

= (ITSW
T )−1WCSW

T (WIS)−1

= (ITSV IS)−1ITSV CSV IS(ITSV IS)−1

as above. This expression cannot be simplified further in general as we have made no

assumptions about how V and CS are related. Then:

VarW [θ̂]− VarB[θ̂] = (ITSV IS)−1ITSV CSV IS(ITSV IS)−1 − (ITSC
−1
S IS)−1

= (ITSV IS)−1(ITSV C
1
2
S )
(
I −C−

1
2

S IS(ITSC
−1
S IS)−1ITSC

− 1
2

S

)
.(ITSV C

1
2
S )T (ITSV IS)−1

= LMLT
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say, where C
1
2
S is a unique real positive definite and symmetric square root (Horn and

Johnson, 1987, theorem 7.2.6, page 405, as C is positive definite) and:

MMT = (I −C−
1
2

S IS(ITSC
−1
S IS)−1ITSC

− 1
2

S )(I −C−
1
2

S IS(ITSC
−1
S IS)−1ITSC

− 1
2

S )T

= I − (C
− 1

2
S IS(ITSC

−1
S IS)−1ITSC

− 1
2

S )T − (C
− 1

2
S IS(ITSC

−1
S IS)−1ITSC

− 1
2

S )

+(C
− 1

2
S IS(ITSC

−1
S IS)−1ITSC

− 1
2

S )(C
− 1

2
S IS(ITSC

−1
S IS)−1ITSC

− 1
2

S )T

= I − 2(C
− 1

2
S IS(ITSC

−1
S IS)−1ITSC

− 1
2

S )

+(C
− 1

2
S IS(ITSC

−1
S IS)−1ITSC

− 1
2

S )(C
− 1

2
S IS(ITSC

−1
S IS)−1ITSC

− 1
2

S )

= I − 2(C
− 1

2
S IS(ITSC

−1
S IS)−1ITSC

− 1
2

S )

+(C
− 1

2
S IS(ITSC

−1
S IS)−1(ITSC

−1
S IS)(ITSC

−1
S IS)−1ITSC

− 1
2

S )

= I − 2(C
− 1

2
S IS(ITSC

−1
S IS)−1ITSC

− 1
2

S )

+(C
− 1

2
S IS(ITSC

−1
S IS)−1ITSC

− 1
2

S )

= I − (C
− 1

2
S IS(ITSC

−1
S IS)−1ITSC

− 1
2

S )

= M

where the third equality arises as C−1S and then BC−1S B
T are symmetric for any pq×pq

matrix B (Horn and Johnson, 1987, Section 4.1). Finally, we can see that:

VarW [θ̂]− VarB[θ̂] = LMLT

= LMMTLT

= (LM )(LM )T

which is semi-positive definite and therefore by the definition of efficiency in Section

1.7.2 the BWEF gives rise to the smallest possible parameter variance.

We can now return to a weighted estimating function with components containing the

right number of elements by

ψB(θ) = BTψ0
B(θ),
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which restores the zeroes in the same locations that they were taken away before As-

sumption 19, and then destacking the components. One might consider restoring non

zero elements to the estimating function. However, by Assumption 17, in order for it to

remain as an estimating function, the expected value of these elements would have to

be zero. Since, by Assumption 3, the estimating equations give rise to unique parameter

estimators, these new non zero elements would just be linear combinations of the existing

estimating function elements. As a consequence, they add no new information and the

parameter estimators taking them into account would be no more efficient than those

without them.

A useful property of our most efficient estimating function follows.

Theorem 3.3.2. The estimating function ψ0
B(θ) ≡ W 0

B(θG)ψ0
S(θ) satisfies the

Information Identity at θG.

Proof We omit the θGs, where appropriate, for ease of notation:

Var[ψ0
B(θ)]|θ=θG

= Var[W 0
Bψ

0
S]

= W 0
BVar[ψ0

S](W 0
B)T

= (I0S)T (C0
S)−1Var[ψ0

S](C0
S)−1I0S

= (I0S)T (C0
S)−1C0

S(C0
S)−1I0S

= (I0S)T (C0
S)−1I0S

and

dψ0
B

dθ

∣∣∣∣
θ=θG

=
dW 0

Bψ
0
S

dθ

∣∣∣∣
θ=θG

= W 0
B

dψ0
S

dθ

∣∣∣∣
θ=θG

= (I0S)T (C0
S)−1

dψ0
S

dθ

∣∣∣∣
θ=θG

= −(I0S)T (C0
S)−1I0S.
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This is useful for hypothesis testing, since nested models can be compared using a χ2

distribution rather than a weighted sum of χ2
1s for the difference in surrogate loglikelihood

as described in Section 1.5.

As well as the very strong assumption made about the non singularity ofC0
S(θ), Theorem

3.3.1 requires knowledge of some moments of ψ and its derivative in the area of of θG.

However, the most significant issue with this approach to optimality in practice is that

we are required to invert a pq×pq (or slightly smaller to account for the zeroes) matrix.

The number of computer operations required to do this is O(p3q3). One of the reasons

for using composite surrogate techniques is the complexity of the model we would like

to study, ie the number of parameters (p) and / or the dimension of each cluster (q)

is large. The matrix inversion would then be formidable and so this result may not be

useful in practice.

3.3.2 A Partially Dependent Weighting Scheme

We saw in Section 3.2.4 that optimal estimating function weighting schemes are compu-

tationally expensive. The dependence between elements within and between components

of estimating functions ensures that we are required to invert a potentially large matrix.

We also saw a scheme that ignores all such dependencies. In this section we propose

a scheme that retains the dependence between elements of estimating functions in the

same composite component but ignores the dependence between components. We con-

sider the weighted estimating function

ψ∗w(θ) =
∑
C∈C

W ∗
CψC(θ)

= −
∑
C∈C

E[ψ′C(θG)]TVar[ψC(θG)]−1ψC(θ) (3.10)

(3.11)

This does require the inversion of q covariance matrices but they have dimensions only

p× p giving a total of O(qp3) operations compared to the O(q3p3) operations required

for the BWEF inversion described at (3.6). The scheme is similar to the vertical ad-
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justment described in Section 1.6.3 where an adjustment (I(θG)TC(θG)−1) is made to

the whole of the surrogate estimating function. However, here a similar type of weight

(IC(θG)TCC(θG)−1) is applied separately to each component of the composite surrogate.

If we take the same approach as we did in Section 3.3.1, ie make Assumption 19, deal

with zero elements in the estimating function and assume appropriate moments exist,

then Appendices D and E show that (3.10) defines the most efficient weighting scheme

amongst the class of estimating functions where dependence between components is

ignored, at θG. The proof used in Section 3.3.1 does not seem to work in this case and

so we make use of an alternative approach.

In practice this scheme involves the inversion of q p× p matrices. While that is compu-

tationally cheaper than the scheme from Section 3.3.1, many applications, for instance

in genetics, have large numbers of parameters and make even this approach unfeasible.

We now turn to a completely new scheme based around scalar weights.

3.4 A Weighting Scheme Based Upon Constant

of Proportionality

3.4.1 Introduction

In Section 1.2, we established the minimisation of the Kullback-Leibler Divergence (KLD)

as a criterion for estimating parameters. We have seen other criteria, such as efficiency,

used for calculating weights but it seems reasonable to understand the effect of extending

the KLD approach in order to do the same. In essence, we are trying to improve model

fit.

A naive approach to calculating weights for a given surrogate composite loglikelihood of

the form given in (3.1) would be to minimise the KLD between the surrogate and the

density, g, from which the data was generated. As there are no weights present in the

latter, however, this is equivalent is maximising the expected value of the loglikelihood
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of the surrogate over the weights. The value is just a linear combination of the weights

and we can thus maximise it by assigning a weight of one to the weight (wm) with the

largest coefficient (ln fm(θ; ym)). A different dataset might assign primacy to a different

component. This approach takes no account of either of complexity in the composite

model nor of natural variation in the data. It is thus unsatisfactory.

However, if we take into account the effect of adding a constant of proportionality, K−1,

to a composite surrogate to give a distribution FK with a density, fK , as described in

Section 2.5, this unsatisfactory weighting will no longer be the case. Example IV in that

section shows that K is likely to be a function of the weights and we will make that

explicit below by using K(w). While this approach takes us away from the simplicity

of composite likelihoods, it is not completely unreasonable as we are working with a

genuine density that is derived from the multivariate distribution with which we would

like to work (H).

The main theorem, giving equations to be solved for optimal weights is stated, proved

and discussed in Section 3.4.2. The situation where unique weights may not result is

discussed in Section 3.4.3. Use of the equations in practice is analysed in Section 3.4.4

and applied to a simulation in Section 3.4.5.

3.4.2 Theory

A surrogate with a constant of proportionality has density

fK(y) =
1

K(w)

∏
C∈C

fC(yC; θ)wC .

For a given dataset generated by a possibly unknown distribution G, with density g(y),

we can calculate weights by minimising the KLD between FK and G. This results in the

rather pleasing

Theorem 3.4.1. For a composite surrogate, FK, that includes a constant of pro-

portionality, the set of weights that minimise D(θ), the KLD from G, at θG can be
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found as a solution to

EFK
[ln fC(YC; θG)] = EG[ln fC(YC; θG)] C ∈ C (3.12)

where fC is the component of F acting on YC, a subset of Y . In addition, for

C1,C2 ∈ C

∂2D

∂wCi
∂wCj

= EFK
[ln fCi

(YCi
; θG) ln fCj

(YCj
; θG)]

−EFK
[ln fCi

(YCi
; θG)]EFK

[ln fCj
(YCj

; θG)]T (3.13)

and thus the matrix of second derivatives of D with respect to the weights, J say, is

just the covariance matrix of {ln fC(YC; θG) : C ∈ C} under FK.

Proof For simplicity of notation, the proof given here assumes that Y has a continuous

density function. The extension to more general settings is straightforward by an ap-

propriate choice of measure for the integration - the proof is otherwise unchanged. We

omit the θG for brevity. By the definition of the Kullback-Leibler Divergence

D = EG[ln(g(Y )/fK(Y ))]

=

∫
g(y) (ln g(y)− ln fK(y)) dy

=

∫
g(y)

(
ln g(y)− ln

(
K(ω)−1

∏
C∈C

fC(yC)wC

))
dy

= lnK(ω) +

∫
g(y)

(
ln g(y)−

∑
C∈C

wC ln fC(yC)

)
dy.

Differentiating with respect to wk, the weight for composite component k

∂D

∂wk
= K(ω)−1

∂K(ω)

∂wk
−
∫
g(y) ln fk(yk)dy

= K(ω)−1
∂K(ω)

∂wk
− EG[ln fk(Yk)].
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From the definition of K(w) at (2.8)

∂K(ω)

∂wk
=

∂

∂wk

(∫ ∏
C∈C

fC(yC)wCdy

)

=

∫
ln fk(yk)

∏
C∈C

fC(yC)wCdy (3.14)

so that

K(ω)−1
∂K(ω)

∂wk
=

∫
K(ω)−1

∏
C∈C

fC(yC)wC ln fk(yk)dy

= EFK
[ln fk(Yk)]. (3.15)

In order to minimise D over the weights, we set ∂D/∂wk = 0 so that

EFK
[ln fC(YC)] = EG[ln fC(YC)] C ∈ C.

This establishes the first part of the theorem.

Next, differentiating D with respect to the weights for any two, possibly equal, composite

components Ci and Cj, we obtain

∂2D

∂wC1∂wC2

=
∂

∂wC2

(
K(ω)−1

∂K(ω)

∂wC1

)
= K(ω)−1

∂2K(ω)

∂wC1∂wC2

−K(ω)−2
(
∂K(ω)

∂wC1

∂K(ω)T

∂wC2

)
= K(ω)−1

∂2K(ω)

∂wC1∂wC2

− EFK
[ln fC1(YC1)]EFK

[ln fC2(YC2)]
T by (3.15)

= EFK
[ln fC1(YC1) ln fC2(YC2)]− EFK

[ln fC1(YC1)]EFK
[ln fC2(YC2)]

T

= CovFK
[ln fC1(YC1), ln fC2(YC2)]

where the penultimate line arises by applying (3.14) twice. Thus, the second derivative

of D with respect to the weights, J , is just a covariance matrix

J = Cov [{ln fC(YC; θG) : C ∈ C}] .
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A number of points can be made about this result:

1. A weighted composite loglikelihood varies with both the parameters and the

weights. We derive values for each of them separately. Thus, the optimal weights

we arrive at through solving (3.12) will vary, typically with the value of θ used. We

are aiming for a target value of θ that most closely matches our object of interest

from G and there will be weights that match that value. Any parameter estimator,

θ̂, will depend upon the choice of weights. Since, by Assumption 17, the parame-

ter estimates arising from each component are the same, θ̂ will be consistent for

θG irrespective of the choice of weights. How this is implemented in practice is

explored in Section 3.4.4.

2. Adding together the different equations from (3.12) we get, for any value of θ

EFK
[`c(θ;Y )] = EG[`c(θ;Y )]; or (3.16)

EFK
[`K(θ;Y )] + ln(K) = EG[`c(θ;Y )], (3.17)

where `K is the loglikelihood of the composite surrogate including constant of

proportionality, so that the optimal weights represent the point where the expected

value of the composite surrogate likelihood is the same under the distribution

that generated the data and the composite distribution including the constant of

proportionality, (3.16).

3. The simplicity of (3.12) may turn into a very messy set of q equations to solve

for the weights. The left hand side (LHS) requires knowledge of the form of

K(w), as shown, for example, in Example IV in Section 2.5, which may not

always be possible. In addition, these equations may be expensive to solve -

O(q3) for linear equations in the weights, the same order for every iteration of a

numerical approximation such as Newton-Raphson. However, see Section 4.7 for

an approximation that is cheaper - O(m3) rather than O(q3), where m < q: for

bivariate composites q = m(m− 1)/2.

4. No assumption is made about the form of or our knowledge of G on the right
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hand side (RHS). However, if the components of F are marginal for G, then

EG[ln fC(YC))] = EFC
[ln fC(YC))] (ie we can take expectations over the appropriate

marginal distribution) and an analytical form may be available. An example of this

case is considered in Section 4.3.

5. As mentioned in Section 3.2.5 there are two sorts of clustered data one might

encounter and each gives rise to a different approach to calculating the weights:

(a) Clusters are iid and will therefore necessarily be of fixed length. This might

be the case for some controlled trials within treatment groups or, for weather

readings as described in Example II where summary information is being

analysed ,ie where we have disposed of issues around short term dependence,

per Section 2.6, seasonality and missing data. In that case, we can estimate

the RHS of (3.12) simply from the data by using

n∑
i=1

ln fC(yC; θ̂n)

n
,

by the law of large numbers, since θ̂n is consistent for θG (Section 1.3). We

can also calculate a single set of weights that is common to all clusters.

(b) The clusters vary in length and distribution, as in longitudinal datasets. Here,

weights will need to be calculated separately for each cluster. There will thus

be only one item of data for the RHS of (3.12) in each calculation and so

no averaging is possible. Some assumptions will need to be made about the

form of G in order for the RHS of (3.12) to be calculated.

6. A reason that we might be interested in the second derivative of D, J , is if we

calculate the weights as the solution to (3.12) using a numerical approximation

scheme such as Newton-Raphson. Defining the vector j as the derivative of D

with respect to the weights, then under such an iterative scheme we move from

one estimate of the weights, w(i), to the next, w(i+1), by

w(i+1) = w(i) − J−1j. (3.18)
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7. As J is a covariance matrix it is positive semidefinite. If however, it is not positive

definite, there will be a linear combination of the {ln fC(YC; θG) : C ∈ C} that will

equal zero. Consequently, the same linear combination of the equations (3.12) will

be zero, leading to more than one set of weights that solve these equations, as we

would have more weights than equations. Alternatively, the iteration in (3.18) will

not work as J will not be invertible. Examples where this occurs are explored in

the next section.

8. Where the composite elements of FK are univariate, so that yC = yj and

Kj =

∫
yj

fj(yj)
wjdyj 1 ≤ j ≤ q

say, the LHS of (3.12) can be expanded for all 1 ≤ j ≤ q:

EF[lnfj(yj)] =
1

K

∫
yq

. . .

∫
y1

lnfj(yj)f1(y1)
w1 . . . fq(yq)

wq dy1 . . . dyq

=

∏q
j=1Kj

KKj

∫
yj

lnfj(yj)fj(yj)wjdyj (3.19)

where all the constants of proportionality, Kj, involve weights. If, in addition, the

components of F are the univariate margins of G, then the RHS of (3.12) can be

expanded similarly:

EG[lnfj(yj)] =

∫
yq

. . .

∫
y1

lnfj(yj)g(y)dy1 . . . dyq

=

∫
yj

lnfj(yj)fj(yj)dyj. (3.20)

If we select all the weights to be 1 then all the Kjs and K will also be 1, and

(3.19) and (3.20) will be identical. Thus, in the univariate case, the KLD criterion,

(3.12), has a solution with uniform weights. Furthermore, if the covariance matrix

of Y is of full rank then so will J be and this solution will be unique.

112



Components present J singular
(y1, y2), (y1, y3), (y1, y4), (y2, y3), (y2, y4), (y3, y4) 100%
(y1, y3), (y1, y4), (y2, y3), (y2, y4), (y3, y4) 100%
(y1, y3), (y1, y4), (y2, y3), (y2, y4) 100%
(y1, y4), (y2, y3), (y2, y4), (y3, y4) 100%
(y1, y4), (y2, y3), (y2, y4) 0%
(y1, y4), (y2, y4), (y3, y4) 0%
(y2, y3), (y2, y4), (y3, y4) 0%

Table 3.1: Percentage of simulations for which J is not invertible in a range of
bivariate composite surrogates for data from a multivariate normal distribution with
zero means and exchangeable correlation, of order 4.

3.4.3 Uniqueness of Weights

Following on from Note 7 in Section 3.4.2 it is of interest to see whether the non

uniqueness of optimal weights, arising from the singularity of J , is likely to be an issue

in practice. We now examine this issue in more detail. A natural starting point is the

multivariate normal distribution.

We work with a more general version of Example IV. Data, (y1, y2, y3, y4), are generated

from a multivariate normal distribution, G, with zero means, dimension m = 4 and co-

variance matrix with variances and exchangeable correlation, resulting in five parameters.

We examine a number of bivariate composite surrogates, all unweighted and having the

same mean and covariance matrix assumptions as were used to generate the data, in

which we vary the number of component pairs. We ran 1000 simulations, each with

a randomly generated covariance matrix, of 1000 data items and tested whether the

resulting J was singular. The results are given in Table 3.1.

We have used unweighted composite surrogates built from {fC : C ∈ C} say. There

would be no change if we were to use non zero weighted composite surrogates built

from {f̃C ≡ fwC
C : C ∈ C}. The Js in the weighted and unweighted cases would be

the covariance matrices of {ln fC} and {ln f̃C} respectively and the second is just a full

rank transformation of the first (by a diagonal matrix of the weights). The singularity

or otherwise of J is thus unaffected by weighting.

The results of the simulations would seem to indicate that, in many cases, such as when
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all pairs are present, the standard bivariate composite surrogate for the multivariate

normal distribution has components which are linear combinations of other components.

These correlations become fewer as the number of component pairs are reduced and

disappear once we have reached three pairs. Varying the components to be eliminated,

for instance the final simulation eliminates all pairs containing y1, has no effect on the

results - it is the number of distinct components that is important.

Define fij to be the density derived from the distribution that is marginal for G for yi, yj.

Correlation between the ln fij(yi, yj)s is not immediately clear algebraically as, for the

full covariance matrix with ith variance σ2
i and correlation coefficient ρ,

ln fij(yi, yj) = −ln(2π)

−1

2

(
lnσ2

i + lnσ2
j + ln(1− ρ2) +

1

1− ρ2

(
y2i
σ2
i

+
y2j
σ2
j

− 2ρyiyj
σiσj

))
,

and there is no obvious linear combination of these, as i and j vary, that is zero, A

lengthier analysis shows otherwise, and in Appendix F, for example, we prove that the

covariance matrix of {ln fij(Yi, Yj; θG) : 1 ≤ i, j ≤ q}, ie for all pairs, under FK is indeed

singular. Thus, the simulations for m = 4, seem to indicate more general results.

The effect of eliminating components in the composite surrogate on parameter estimates

and their variances is interesting. Continuing the example described at the start of this

section, we ran 1000 simulations, each of 1000 data elements, with data generated from a

multivariate normal distribution with means zero, variances (2.907, 7.719, 5.707, 4.723),

common correlation 0.244, all chosen randomly (given to 3dp), and calculated the Rel-

ative Mean Squared Error (RMSE ) of individual parameters for bivariate composite

surrogates with 6, 5, 4 and 3 components, against parameter estimates from a distribu-

tion of the form that generated the data. RMSE is defined analogously to efficiency - it

is the MSE of data generating distribution over that of the composite surrogate. For 54

of the 1000 simulations, the nonlinear minimisation routine for G did not complete and

those results were not taken into account. The pairs eliminated in turn were (y1, y3),

(y3, y4), (y1, y2) and (y2, y4). A wider range of methods for comparing variances of

multiple parameter estimates is described in Section 1.7.2 and explored in practice in
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Number of components
6 5 4 3 2

σ2
1 0.9931 0.9943 0.9900 0.9804 0.9749
σ2
2 0.9915 0.9868 0.9792 0.9806 0.9733
σ2
3 0.9943 0.9954 0.9859 0.9841 0.9800
σ2
4 0.9959 0.9906 0.9928 0.9854 0.9787
ρ 1.0001 0.8626 0.7031 0.5766 0.4327

Table 3.2: Comparison of relative mean squared error for bivariate normal compos-
ites with data dimension 4 for decreasing numbers of components.

Section 4.4. The results of the simulations are given in Table 3.2.

Note firstly, that the RMSE with all components present are very close to one. See

Section 4.4 for a discussion of this phenomenon, the fact that they are not exactly one

resulting from two separate numerical minimisations. As we eliminate components the

RMSE for the variances decrease slightly. This presumably results from the fact that the

information about the variance parameters mostly exists in the remaining components.

However, for the correlation parameter, the RMSE reduces considerably as each compo-

nent, each of which will contain unique information about the correlation parameter, is

eliminated.

3.4.4 Practice

Given the intertwined nature of parameter estimates and weights described in Note 1 in

Section 3.4.2, the obvious approach to implementing a weighting scheme is to iterate as

follows:

1. With all the weights set to 1, calculate θ̂(0) in the usual way by solving the esti-

mating equations.

2. Derive a set of weights, w(1), at θ̂(0), for instance by solving the weights equations

(3.12).

3. Calculate θ̂(1) by solving the estimating equations with weights w(1).
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Since both θ̂(0) and θ̂(1) are consistent for θG, the target parameter value, their difference

is asymptotically zero. As a consequence, if we consider the Kullback-Leibler difference

that we are minimising, D(θ,w) per Theorem 3.4.1, as a function of both the parameters

and the weights then, by the continuous mapping theorem described in Section 1.4 (we

make the not unreasonable assumption that D is continuous as a function of θ in the

area around θG), D(θ̂(0),w(1)) → D(θ̂(1),w(1)). Asymptotically, with respect to the

weights, D(θ̂(0),w) and D(θ̂(1),w) will have the same minimum points (ie at w(1)) and

thus repeating the iteration described in this Section is unnecessary. Clearly, this will

require unique solutions to (3.12), as discussed in Note 7 in Section 3.4.2.

As discussed in Note 5 in Section 3.4.2, if we have iid clusters then we can calculate

common weights for all the data whereas if the distributions vary, then we will require

separate sets of weights for each cluster.

3.4.5 Simulation II

In order to examine the effect of the optimal weights described in Section 3.4.2 we

introduce a simulation in which we compare the power of unweighted and weighted

bivariate composite surrogates.

Consider a longitudinal study where each patient has a measurement taken at time

zero and then some or no repeat measurements over a period, tij denoting the jth

measurement time for the ith patient. We introduce a random effect which is more

closely correlated the nearer in time any two measurements for a particular patient

occur. The fixed effects are the same as described in Simulation I in Section 2.7.1. We

choose to describe this situation, statistically, as follows.

Data are generated by a probit regression model with a random effect

probit(µij) = Φ−1(µij) = ηij + Ξij = β0 + β1xij 1 + β2xij 2 + Ξij (3.21)

with binary responses Yij, µij = E[Yij]. The first suffix, i, represents a cluster of variable

length, mi ∼ 1 + Poi(4), the second, j, the position in the cluster. The first covariate,
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xij 1, consists of independent realisations of a Bernoulli random variable with mean

0.2 + 0.6tij. The second covariate, xij 2 = tij, is a linear trend with values from U[0, 1],

the value for the first item in every cluster being zero, so that we have normalised the

period over which patients might be measured to [0, 1]. Instance of the random effects,

Ξij, for cluster i of length mi, (ξi1, . . . , ξimi
), are generated from a multivariate normal

distribution with means 0, exchangeable variance σ2 and correlation exp(−α|tij − tik|)

for members j and k of cluster i.

We had five parameters and set their values for generating the data as follows

• β0 = 0.25 for consistency with Simulation I.

• β1 = β2 for 25 values between -0.6 and 0.6 in increments of 0.05 for consistency

with Simulation I.

• σ = 0.5 so that the random effect is large enough to be noticeable but does not

swamp the data.

• α = 2 so that the correlation belongs to (0.135, 1] and is significant but shows

ample variation.

For each of the values of β1 = β2 we generated 1000 datasets, each with 100 clusters.

Two surrogates were studied and then compared using power curves over the range of

values for β1 = β2, against the null hypotheses, H0 : β1 = β2 = 0.

Bivariate unweighted A standard bivariate composite surrogate per (3.1) with all

the weights set to 1.

Bivariate weighted A standard bivariate composite surrogate per (3.1) iterated once

with weights calculations as described in Section 3.4.4. As the clusters are of

variable length, weights were calculated separately for each cluster. The longest

cluster for which weights were calculated had length 18. See Note 3 for a discussion

on the computational cost of solving the weights equations.
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Inference for the surrogates was carried out by a process described in, for instance,

Cox and Snell (1989, Section 1.3) and customised for this particular situation. As

the outcomes studied here are binary, one could view the probit function in terms of

latent variables. Specifically, for element j in cluster i we introduce a latent variable

Zij ∼ N(0, 1) and set Yij = 1 if Zij < ηij + Ξij etc. This means that

Pr(Yij = 1) = Pr(Zij < ηij + Ξij) (3.22)

= Φ(ηij + Ξij). (3.23)

which is equivalent to the description set out in (3.21). When we examine the probability

of a bivariate outcome we find that the distribution of the pair of random effects variables

(Ξij,Ξik) is bivariate normal with zero means, common variance σ2 and correlation

exp(−α|tij − tik|). Then, considering a particular outcome:

Pr(Yij = 1, Yik = 1)

= Pr(Zij < ηij + Ξij, Zij < ηik + Ξik)

= Pr(Zij − Ξij < ηij, Zij − Ξik < ηik)

= Pr(Z∗ij < ηij, Z
∗
ik < ηik))

where we define Z∗ij = Zij − Ξij etc, so that

Z∗ij
Z∗ik

 ∼ BVN(0,ΣB)

and

ΣB =

 1 + σ2 σ2 exp(−α|tij − tik|)

σ2 exp(−α|tij − tik|) 1 + σ2


where Z∗ij/(1 +σ2)

1
2 has a standard normal distribution. In a similar fashion, as partially
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described in, say Ashford and Sowden (1970),

Pr(Yij = 1, Yik = 0) = Pr(Z∗ij < ηij)− Pr(Z∗ij < ηij, Z
∗
ik < ηik)

Pr(Yij = 0, Yik = 1) = Pr(Z∗ik < ηik)− Pr(Z∗ij < ηij, Z
∗
ik < ηik)

Pr(Yij = 0, Yik = 0) = Pr(Z∗ij < −ηij, Z∗ik < −ηik).

The bivariate joint probabilities are all thus expressed in terms of cumulative bivariate

normal densities which are easily calculable. We used a routine based on an algorithm

in Donnelly (1973).

Maximisation of loglikelihoods for estimating parameters and minimisation of the KLD

for calculating weights were carried out using the nonlinear minimisation function ’nlm’

in R (R Development Core Team, 2012). As the objective function for parameter estima-

tion appeared to be very unstable, initial estimates were calculated using Nelder-Mead

optimisation via the function ’optim’ in R (R Development Core Team, 2012).

Univariate only surrogates were not examined as the parameters are not all identifiable.

For a univariate outcome

Pr(Yij = 1) = Pr(Zij < ηij + ξij) from (3.22)

= Pr(Z∗ij < ηij)

= Φ(ηij/(1− σ2)
1
2 )

= Φ

(
β0 + β1xij 1 + β2xij 2

(1− σ2)
1
2

)
,

the penultimate step arising from the distribution of Z∗ij/(1 + σ2)
1
2 . Minimising a log-

likelihood consisting of sums of these types of terms, one cannot differentiate between

changes in, for instance, σ2 and {βi : i = 0, 1, 2} for a given set of data, and so the full

set of parameters is not identifiable.

The resulting power curves are shown in Figure 3.1. Examining the plot reveals no

significant differences between the two surrogates as at different points on the steeper

parts of the curves, each of them has the greatest power. At the minimum points of
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Figure 3.1: Simulation II. Power plots at level 0.05 for a bivariate and weighted
bivariate surrogates.

the curves, where one would like values as close as possible to 0.05, the unweighted

surrogate has value 0.080 and the weighted, 0.079.

The data which have been used to generate the power curves are the p-values of the

hypothesis that H0 : β1 = β2 = 0 for 1000 simulations of each of the 25 values of β1 = β2

used to generate the data. For a range of those values (−0.35,−0.2, 0.0.2, 0.35), the

resulting p-values were compared to see whether any significant differences emerged.

The data were transformed to be approximately normal and then compared using paired

t-tests. Again, no consistent patterns emerged and the results reflected the patterns of

the power curves in Figure 3.1.

Finally, unlike the multivariate normal example described in Section 3.4.3, the weights

that are calculated for the bivariate weighted surrogate are unique, ie the matrix J

discussed in Point 7 of Section 3.4.2 is invertible. Further surrogates are examined in

Section 4.7.1.
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3.5 Summary

In this chapter we have reviewed the existing literature on weighting components of

composite surrogates. We have suggested a more generally applicable version of one

such optimal scheme but it is still expensive computationally to implement. We have

also suggested a restricted version of that scheme that is optimal within its class. We

have then derived, analytically, equations to be solved to give optimal scalar weights, on

the basis of minimising the Kullback-Leibler discrepancy between G and the weighted

composite surrogate, taking into account the constant of proportionality for the sur-

rogate. The resulting weights may not be unique. We have explored how to calculate

these weights in practice and then used them in a simulation. The resulting power shows

no significant improvement once the weights are taken into account. In order to better

understand the effect and structure of the weights, in Chapter 4 we analyse the scalar

weighting scheme for multivariate normal composite surrogates.
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Chapter 4

Multivariate Normal Composite

Surrogates

4.1 Introduction

In Section 3.4 we presented some equations, derived from minimising the Kullback-

Leibler Divergence (KLD) between the distribution that generated the data, G, and a

composite surrogate with constant of proportionality, FK , that can be solved to calculate

the scalar weights for the surrogate, namely

EFK
[ln fC(YC; θG)] = EG[ln fC(YC; θG)] C ∈ C (4.1)

where fC is the component of F, the surrogate without the constant of proportionality,

acting on YC, a subset of Y and C is the set of all subsets of 1, . . . .m used in the

composite. The analytical form of those equations is generally complex and not always

tractable. In this section we present an example, the multivariate normal (MVN), where

(4.1) can be simply expressed. We begin, in Section 4.2, with a review of the use of

weighted multivariate normal composite surrogates from the literature. In Section 4.3 we

derive the MVN version of (4.1) for calculating weights. One of the consequences of the

theory set out in Section 4.3 is that MVN composite surrogates can be considered as data

transforms and this aspect is considered in Section 4.4. We examine examples of normal
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composite surrogates - univariate, bivariate and combined univariate and bivariate - in

Sections 4.5 to 4.7. We show how in the combined case, one can recover the original

data generating distribution for particular choices of weights. We apply that lesson to the

simulation from Chapter 3 in Section 4.7.1 and the use of MVN composites as surrogate

for data generated from autoregressive distributions in Section 4.8.

In a number of places in this Chapter we shall derive a distribution whose density is

proportional to the exponential of a multivariate quadratic form. Clearly, the distribution

will then be multivariate normal with the constant of proportionality calculated according

to the standard formulation. A specific condition for finiteness of the CoP forms part of

the main result - Theorem 4.3.1.

4.2 Literature Review

As we have seen, there are very few published papers that examine the use of weighted

composite surrogates, although many of those go on to consider multivariate normal

distributions explicitly. Lindsay et al. (2011) examine two simple examples where the data

arise from a multivariate normal distribution with zero means, and covariance matrices

with exchangeable variances, σ2, and correlations, ρ, for a variety of data dimensions, d.

Each of the two examples treats one of the parameters as known and one as unknown.

The five methods compared in each case are:

1. Unweighted bivariate composite consisting of all pairs.

2. The composite surrogate formed from all conditional densities between pairs of

observations. We discussed this in Section 3.2.3 where it is reformulated as a

weighted sum of univariate and bivariate marginals.

3. The second order Hoeffding score (ie bivariate and univariate) described in Section

3.2.2.

4. The modified second order Hoeffding score described in Section 3.2.4.

5. MLE.
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The simplicity of the parameter schemes mean that we just have to consider component

type weights, as opposed to weights for every component, as set out in Section 3.2.3.

Investigations are carried out, theoretically, to see whether the surrogate can recover the

distribution that generated the data (MLE) and by simulation to investigate efficiency.

For the case where the variance is the unknown parameter, only the conditional and

modified Hoeffding methods recover the MLE for specific, albeit different, relationships

between ρ and d. For large d, a large ρ is also required. Simulations show that as d

increases, the conditionals method is the most efficient (50% for d = 50) followed by

the two Hoeffding approaches.

For the case where the correlation is the unknown parameter, recovering the MLE is

not considered in Lindsay et al. (2011) due to algebraic complexity. Simulations show

that as d increases, the modified Hoeffding method is most efficient (30% for d = 50)

followed by the conditionals approach.

Obviously, these examples are fairly rudimentary and, in particular, they only address

scalar unknown parameters. For large d, efficiency is not high. More sophisticated

techniques set out in Joe and Lee (2009) are discussed in Section 3.2.5.

4.3 Constant of Proportionality Weights

As we remarked in Note 3 to Theorem 3.4.1, the KLD minimising equations, (3.12),

that result in weights can be messy and will usually have to be solved using some form

of Newton-Raphson approach, such as ’nlm’ in R (R Development Core Team, 2012).

However, for the multivariate normal case, elegant analytical solutions exist. The core

theorem proved in this Section drives the results from the rest of the chapter. In addition,

in contrast to some of the results described in Section 4.2, the weights can be derived

analytically.

Theorem 4.3.1. Consider a distribution G of random variables Y ∼ MVN(µ,Σ),

of dimension m, where Σ is positive definite. Let fC(yC), µC and ΣC represent the

density and components of µ and Σ respectively for the marginal distribution of YC,
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of dimension c, corresponding to subset C of 1, . . . ,m. Define a weighted composite

surrogate constructed from the densities {fC(yC) : C ∈ C} and denote by FK the

distribution corresponding to that surrogate with a constant of proportionality as

described in Section 2.5. Then FK is a multivariate normal distribution with mean

µ and covariance ΣF say where

Σ−1F =
∑
C∈C

wCA
T
C(ACΣAT

C)−1AC

and AC is a c × m matrix with a single 1 per row, corresponding to the marginal

locations, and 0s elsewhere.

Moreover, denoting by ΣFC
the covariance matrix for index subset C under FK,

equations (3.12) in the statement of Theorem 3.4.1 become

tr(Σ−1C ΣFC
) = c, (4.2)

where Σ−1C is the matrix inverse of ΣC, and the second derivative matrix defined in

equations (3.13) is

CovFK
[ln(fCi

(YCi
), ln(fCj

(YCj
)] =

1

2
tr((Σ−1)Ci

ΣFCi
(Σ−1)Cj

ΣFCj
). (4.3)

Proof From the standard properties of the multivariate normal distribution, we have for

any subset C of Y that

fC(yC) = (2π)−
c
2 |ΣC|−

1
2 exp

(
−1

2
(yC − µC)TΣ−1C (−1

2
(yC − µC)

)
. (4.4)

Note that we can write YC = ACY , µC = ACµ and ΣC = ACΣAT
C . The surrogate
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distribution FK , as defined in Section 2.5, then has density

f(y) ∝
∏
C∈C

fC(yC)

∝ exp

(
−1

2

∑
C∈C

wC(yC − µC)TΣ−1C (yC − µC)

)

= exp

(
−1

2

∑
C∈C

wC (AC(y − µ))T
(
ACΣAT

C

)−1
(AC(y − µ))

)

= exp

(
−1

2
(y − µ)T

(∑
C∈C

wCA
T
C(ACΣAT

C)−1AC

)
(y − µ)

)

so that once we take into account the constant of proportionality

FK ≡ MVN

µ,(∑
C∈C

wCA
T
C(ACΣAT

C)−1AC

)−1 ≡ MVN(µ,ΣF). (4.5)

Since, we have specified that Σ is positive definite then so must ΣF be. This proves the

first part of the theorem. Next, from (4.4) we have that

EFK
[ln(fC(YC)] = EFK

[
−1

2
(YC − µC)TΣ−1C (YC − µC)

]
− c

2
ln(2π)− 1

2
ln |ΣC|. (4.6)

There is a general result that

E[ZTAZ] = tr(ΛA) (4.7)

for any Z ∼ MVN(0,Λ) and appropriately dimensioned A (see, for instance, Schott,

1997, Theorem 9.18(a)). Applying this to (4.6) gives

EFK
[ln(fC(YC)] = −

(
1

2
tr(ΣFC

Σ−1C ) +
c

2
ln(2π) +

1

2
ln |ΣC|

)
= −

(
1

2
tr(Σ−1C ΣFC

) +
c

2
ln(2π) +

1

2
ln |ΣC|

)
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as tr(AB) = tr(BA). Now

EG[ln(fC(YC)] = EG

[
−1

2
(YC − µC)TΣ−1C (YC − µC)

]
− c

2
ln(2π)− 1

2
ln |ΣC|

= −
(

1

2
tr(ΣCΣ−1C ) +

c

2
ln(2π) +

1

2
ln |ΣC|

)
by (4.7)

= −
(
c

2
+
c

2
ln(2π) +

1

2
ln |ΣC|

)

and we have proved the second part of the theorem, namely

tr(Σ−1C ΣFC
) = c. (4.8)

Finally, we note that Cov[ZTAZ,ZTBZ] = 2tr(AΛBΛ) whereA andB are symmet-

ric and Z ∼ MVN(0,Λ) (Schott, 1997, Theorem 9.21(b)). The proof of that result is

easily extended to distinct random variables, Zi ∼ MVN(0,Λi) and Zj ∼ MVN(0,Λj),

so that Cov[ZT
i AZi,Z

T
j BZj] = 2tr(AΛiBΛj). Therefore

CovFK
[ln(fC(YCi

), ln(fC(YCj
)]

= CovFK

[
−1

2
(YCi
− µCi

)TΣ−1Ci
(YCi
− µCi

),−1

2
(YCj
− µCj

)TΣ−1Cj
(YCj
− µCj

)

]
=

1

2
tr(Σ−1Ci

ΣFCi
Σ−1Cj

ΣFCj
)

completing our theorem.

There are a number of points worth making about this result:

1. To evaluate our weights we solve equations involving the ratio of covariance ma-

trices from the distribution that generated the data and our composite surrogate.

This makes some sort of sense as with our surrogate we are trying to recover

features of the distribution that generated the data. For an example, see Section

4.7.

2. It requires knowledge of G. For an example of where we use an MVN composite

as a surrogate for a distribution that is not MVN, see Section 4.8.
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3. In practice, the result has limitations. We need to calculate ΣFC
for all C ∈ C.

From (4.5), we can see that Σ−1F is easily derived, but it is its inverse that we

require and so, to calculate optimal weights, in general, we need to invert an

m×m matrix.

4. J , the second derivative of the KLD, D, with respect to the weights is the co-

variance matrix of {ln fC(YC; θG) : C ∈ C} under FK not G. The covariance

matrix under the latter is temptingly easy to calculate (the diagonals are all 1 for

instance), this is not the case under FK - the distribution is multivariate normal

but its covariance matrix is complex. We explore this, amongst other things, for

particular types of components in Sections 4.5 to 4.7.

In Section 4.4 we explore a consequence of part of Theorem 4.3.1. In Sections 4.5 to

4.7 we review some specific examples of composite surrogates - univariate, bivariate

and combined univariate and bivariate in order to examine the optimal weights arising

from solving (4.2), and to understand whether, by a suitable choice of weights we can

recover G. For simplicity we assume zero means, and take Σ to have variances σ2
i and

correlations ρij for 1 ≤ i, j ≤ m. We define R to be the corresponding correlation

matrix.

4.4 Composite Surrogates are Transforms

This section examines certain features of composite surrogates, irrespective of whether

they are weighted. We shall work with multivariate normal distributions with zero means

to simplify notation, but the results extend relatively easily to uncentred distributions.

A corollary of Theorem 4.3.1 where we saw that if G is multivariate normal, then so is

FK , is the following

Corollary 4.4.1. Let G be a distribution of random variables Y ∼ MVN(0,Σ),

with dimension m > 1, and FK a composite surrogate, with constant of propor-

tionality, whose components are marginal for G, describing random variables Z.
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Then, if Σ and ΣF, as defined in Theorem 4.3.1, are positive definite, Z is a linear

transformation of Y , ie Z = AY for some m×m matrix A of full rank.

Proof We can see from Theorem 4.3.1 that the distribution of Z will be multivariate

normal, say MVN(0,ΣF). Define M and MF such that MMT = Σ and MFM
T
F =

ΣF and consider the distribution of X = MFM
−1Y . Since Σ and ΣF are positive

definite, M , MF and M−1 must all exist (there is, for instance, a unique positive

definite square root per Horn and Johnson, 1987, Theorem 7.2.6). Also, we can see that

X ∼ MVN(0,MFM
−1Σ(MFM

−1)T ) (eg Krzanowski, 2000, page 205). But

MFM
−1Σ(MFM

−1)T ) = MFM
−1Σ(M−1)TMT

F

= MFM
−1MMT (M−1)TMT

F

= MFM
T
F

= ΣF

so that X = Z and we have shown that the distribution of the composite surrogate

is just that of a transformation of the random variables under consideration, with the

transformation matrix

A = MFM
−1

where A is of full rank as MF and M−1 are positive definite.

M and M z could also be Cholesky roots. We now compare inference about the pa-

rameters contained in Σ for the distributions of Y and Z. Rather than describing the

parameters as a vector, we shall use the matrix Σ and for parameter estimates, Σ̂.

Theorem 4.4.1. With the terminology of Corollary 4.4.1, if there is a full set of

distinct parameters in Σ, then the parameter estimator Σ̂, under maximum likelihood

estimation, is identical whether one analyses the distributions of Y or Z.
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Proof For data y1, . . . ,yn, so that zi = Ayi, 1 ≤ i ≤ n, we define

S =
n∑
i=1

(yi − ȳ)(yi − ȳ)T and

T =
n∑
i=1

(zi − z̄)(zi − z̄)T

where ȳ and z̄ are the means of the respective datasets. It is a standard result (see,

for instance, Kotz et al. (2000, page 161)) that the maximum likelihood estimator, Σ̂,

is S/n. Let Λ = AΣAT (for a full set of parameters) and we saw in Corollary 4.4.1

that Z ∼ MVN(0,Λ). Again, we can carry out maximum likelihood estimation for the

parameters in Λ with data z1, . . . ,zn so that the estimator, Λ̂, is T /n.

From the definition of Λ, an estimator for Σ, Σ̃, can be calculated from Λ̂ = AΣ̃AT

so that, as A is defined as being of full rank

Σ̃ = A−1Λ̂(AT )−1

= A−1T (AT )−1/n

= A−1ASAT (AT )−1/n

= S/n

= Σ̂

and inference about the parameters in Σ is identical whether one analyses the distribu-

tions of Y or Z.

Thus, we can treat a composite surrogate of a multivariate normal distribution as if

it were a transformation of the random variables. This might provide a hint as to

why composite surrogates are effective in general (ie not just for multivariate normal

distributions) and will be the subject of further work. It is worth noting that

1. The fact that Σ̂ = S/n as the maximum likelihood estimator only holds as Y ∼

MVN(0,Σ). A similar argument applies to Λ, T and Z.

2. Taking Corollary 4.4.1 and Theorem 4.4.1 together, we see that, subject to the
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conditions outlined there, for data generated from a multivariate normal distribu-

tion, equivalent inference about the parameters of that distribution can be gained

by carrying out maximum likelihood estimation either on the originating distribu-

tion itself or on a composite surrogate with constant of proportionality. We can

only do the latter estimation as, from the previous point, the composite surrogate

is the distribution of known transformed data, Z

3. In Section 3.4.3 we saw that for multivariate normal data with an exchangeable

correlation coefficient, the first and second moments of the parameter estimators

from the bivariate composite surrogate do indeed appear to match those from the

data generating distribution. Note there, however, that no constant of propor-

tionality was involved. Also, there was not a full set of parameters as required in

Theorem 4.4.1.

4. In the worked example in Section 2.5, we noted that Cox and Reid (2004) gave the

example of a bivariate standard multivariate normal surrogate with an exchangeable

correlation coefficient where the parameter estimates became less efficient as the

number of composite components (ie, the length of the vector Y ) grew. This

example does not contravene Theorem 4.4.1 as there is not a full set of distinct

parameters. As a consequence, in this case Σ̂ 6= S/n as, for instance, S/n will

not have 1s down the diagonal. Also, as with the previous point, no constant

of proportionality was involved, but unlike that point, inference is not maintained

with the composite surrogate.

Resolution of the apparent tension between these points and the extent to which Theorem

4.4.1 might explain the effectiveness of the composite approach will be the subject of

future work.

4.5 Univariate Margins

We first consider the case when all the composite components are univariate margins

of G. So, C will consist of sets each containing an individual element from {1, . . . ,m}.
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For instance, if we take C = {i}, some i, then using the terminology of Theorem 4.3.1

(AiΣA
T
i )−1 = σ−2i

and AT
i (AiΣA

T
i )−1Ai has one non zero element, σ−2i , in the ith entry of the main diag-

onal and zeroes elsewhere. FK is the resulting weighted univariate composite surrogate

with constant of proportionality, whose covariance matrix

Σ−1F =
∑
C∈C

wCA
T
C(ACΣAT

C)−1AC,

has ith diagonal element

wii
σ2
i

where wii denotes the weight for the ith margin (the double subscript is used for con-

sistency with material in Section 4.7) and zeroes elsewhere.

The KLD weights equations, (4.2) become

Σ−1C ΣFC
= 1 C ∈ C,

where ΣC = Σ(i,i) etc, which results in:

wii = σ2
iΣ
−1
(i,i) (4.9)

= 1

in agreement with Note 8 of Section 3.4.2. Thus, for these optimal weights

Σ−1F =



σ−21 . . . 0 . . . 0

...
...

0
. . . 0

...
...

0 . . . 0 . . . σ−2m


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which is Σ−1 with zeroes replacing all the off diagonal elements, and

ΣF =



σ2
1 . . . 0 . . . 0

...
...

0
. . . 0

...
...

0 . . . 0 . . . σ2
m


which is Σ−1 with zeroes replacing all the off diagonal elements. We have not recovered

Σ as we have only considered univariate margins, but we have made the most of the

information in those margins.

We now examine J , the second derivative with respect to the weights of the KLD

between G and FK . The composite surrogate has m components and weights so J will

be an m×m matrix with (i, j)th entry, by (4.3),

J (i,j) =
1

2
tr(Σ−1Ci

ΣFCi
Σ−1Cj

ΣFCj
)

=
1

2
Σ−1(i,i)

σ2
i

wii
Σ−1(j,j)

σ2
j

wjj

=
σ2
i σ

2
jΣ
−1
(i,i)Σ

−1
(j,j)

2wiiwjj

and substituting our optimal weights we have

J (i,j) =
1

2
.

J is thus singular and so, as described in Note 7 to Theorem 3.4.1, numerical approxima-

tion schemes for calculating the weights will not work. Fortunately, they are unnecessary

as we have an analytical solution, (4.9).
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4.6 Bivariate Margins

4.6.1 Main Results

We now review the case when all our composite components are bivariate marginals of

G. C will then consist of the q = m(m− 1)/2 pairs of distinct elements in {1, . . . ,m}.

For instance, if C = {i, j} (i < j), then, using the terminology of Theorem 4.3.1

(AijΣA
T
ij)
−1 =

1

1− ρ2ij

 σ−2i −ρij/σiσj

−ρij/σiσj σ−2j


so that

AT
ij(AijΣA

T
ij)
−1Aij =

1

1− ρ2ij



0 . . . 0 . . . 0 . . . 0

...
...

...
...

0 . . . σ−2i . . . −ρij/σiσj . . . 0

...
...

...
...

0 . . . −ρij/σiσj . . . σ−2j . . . 0

...
...

...
...

0 . . . 0 . . . 0 . . . 0


with non zero entries only in the ith and jth rows and columns. As a consequence,

for FK , the bivariate composite surrogate with constant of proportionality, Σ−1F =∑
C∈C wCA

T
C(ACΣAT

C)−1AC will have off diagonal (i, j) element

−wijρij
σiσj(1− ρ2ij)

and ith diagonal element

1

σ2
i

∑
k 6=i

wik
1− ρ2ik

.
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Note that

Σ−1F = D(σ)−1A−1D(σ)−1 (4.10)

where D(σ) is the m × m diagonal matrix whose entries are σ1, . . . , σm and A−1 is

an m × m matrix with all entries being functions of the ρijs. For the exchangeable

correlation case with equal weights (ie unweighted), A will have diagonal entries that

are identical and off diagonal entries that are also identical, all entries being functions

of ρ but not the σ2
i s. This formulation is used in Appendix F.

If we use the weights equations (4.2) to calculate weights, we have

tr(Σ−1C ΣFC
) = 2 C ∈ C.

At first sight, unlike the univariate case, there appears to be no simple algebraic form

for any solution to these equations. However, if

Σ−1FC
ΣC = I2×2 ; or, equivalently

Σ−1FC
= (Σ−1)C

for all C ∈ C then (4.11) would hold. This would mean that

Σ−1F Σ = Im ; or, equivalently (4.11)

Σ−1F = Σ−1 (4.12)

and we would have recovered the covariance matrix from G, so that G and FK represent

the same distribution. There may be other solutions but this would be ideal and, indeed,

would be a good aim for any surrogate.

Unfortunately, in general, there are no consistent solutions to (4.11) and (4.12). For

instance, if we take data dimension, m, as four, examining the equations at (1, k) for

135



k = 2, 3, 4 in (4.12) we have

w1k =
−(R−1)(1,k)(1− ρ21k)

ρ1k
(4.13)

where w1k represents the weight for the composite component for (y1, yk). Similarly,

the equation at (1, 1) in (4.11) results in

4∑
k=2

w1k

1− ρ21k
−

4∑
k=2

w1kρ1k
1− ρ21k

ρ1k = 1 or

4∑
k=2

w1k = 1. (4.14)

It is easy to construct a positive definite Σ (or R as the σ2
i s are irrelevant in this case)

whereby the weights in (4.13) do not satisfy (4.14). For instance, with a positive definite

R =



1 0.1 0.2 0.3

0.1 1 0.4 0.5

0.2 0.4 1 0.6

0.3 0.5 0.6 1


we find from (4.13) that w12 = 0.7909, w13 = −0.2256 and w14 = −1.0406 and they

certainly do not sum to one as required by (4.14).

Thus, for bivariate composites, it is not, in general, possible to use the normalising

constant and weights to recover the covariance matrix and so the distribution for G.

That is because there are m(m + 1)/2 incompatible equations for the m(m − 1)/2

weights. Also, as we saw in Section 3.4.3 there are multiple sets of weights that do

satisfy the weights equations (4.2), ie that minimise the KLD we are considering. We

propose a method to resolve both these problems in Section 4.7.

4.6.2 Alternative Derivation

Rather than using the weights equation, (4.1), to calculate the weights, some elegant

results arise if we minimise the Kullback-Leibler Divergence (KLD) directly, ie we min-
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imise

EG[ln(g)− ln(fK)]

over w, the vector of weights of dimension q, where q =
(
m
2

)
, and g and fK are the

densities corresponding to the two distributions under consideration. Now

ln(g)− ln(fK) = −1

2
(Y − µ)TΣ−1(Y − µ)− m

2
ln(2π)− 1

2
ln |Σ|

−(−1

2
(Y − µ)TΣ−1F (Y − µ)− m

2
ln(2π)− 1

2
ln |ΣF|)

= −((Y − µ)T (Σ−1 −Σ−1F )(Y − µ) + ln |Σ| − ln |ΣF|)/2

so that

EG[ln(g)− ln(fK)] = −(tr(ΣΣ−1)− tr(ΣΣ−1F ) + ln |Σ| − ln |ΣF|)/2 by (4.7)

=
(
− ln |Σ| −m− ln

∣∣Σ−1F

∣∣+ tr
(
ΣΣ−1F

))
/2. (4.15)

The first step in the minimisation is to differentiate ln
∣∣Σ−1F

∣∣. We use (for instance

Schott, 1997, Theorem 8.1 (b))

∂|A|
∂x

= tr

(
adj (A)

∂A

∂x

)

for any matrix A and variable x and where adj (A) is the adjugate matrix (ie A−1 =

|A|−1adj(A)), so that, if C = {i, j}

∂ ln
∣∣Σ−1F

∣∣
∂wC

=
1∣∣Σ−1F

∣∣tr

(
adj
(
Σ−1F

) ∂Σ−1F

∂wC

)
= tr

(
adj
(
Σ−1F

)∣∣Σ−1F

∣∣ ∂Σ−1F

∂wC

)

= tr

(
ΣF

∂Σ−1F

∂wC

)
. (4.16)

We are just considering one of the derivatives, that with respect to wC, here but the

results extend to the rest of the weights.
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It is clear that for n× n matrices A = {akl} and B = {bkl}

tr(AB) =
n∑
k=1

n∑
l=1

aklblk. (4.17)

Now, from the contribution of component C to F−1 given at (4.10), ∂Σ−1

F

∂wC
has zero

entries everywhere except for the submatrix consisting of the intersections of the ith and

jth rows and columns:

1

(1− ρ2ij)

 σ−2i −ρij/σiσj

−ρji/σiσj σ−2j

 .

which is Σ−1C . So

∂ ln
∣∣Σ−1F

∣∣
∂wC

= tr

(
ΣF

∂Σ−1F

∂wC

)
by (4.16)

=
m∑

k,l=1

ΣF(k,l)

(
∂Σ−1F

∂wC

)
(l,k)

from (4.17)

=
∑
k,l∈C

ΣF(k,l)

(
∂Σ−1F

∂wC

)
(l,k)

as other elements have a zero second term

= tr
(
ΣFC

Σ−1C

)
from (4.17)

= tr
(
Σ−1C ΣFC

)
. (4.18)

Also, by calculating individual components of the matrix product,

tr
(
ΣΣ−1F

)
=

m∑
i=1

(
σ2
i

∑
k 6=i

wik
σ2
i (1− ρ2ik)

−
∑
k 6=i

ρikσiσkρikwik
σiσk(1− ρ2ik)

)

=
m∑
i=1

∑
k 6=i

wik

= 2
∑
C∈C

wC (4.19)

which is extremely elegant. The derivative of tr
(
ΣΣ−1F

)
with respect to any weight will

thus be 2.
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Combining (4.18) and (4.19), we differentiate (4.15) to get

(
−tr

(
Σ−1C ΣFC

)
+ 2
)
/2 (4.20)

and by setting (4.20) equal to zero for the minimum value, it matches the result at (4.2).

4.7 Combined Bivariate and Univariate Margins

We have seen how the use of our KLD criterion produces easily calculable weights in the

univariate but not the bivariate case. We now examine what happens if we combine the

two, ie our composite components consist of all univariate and all bivariate marginals of

the distribution that generated the data, G.

Clearly, from its definition at (4.5), Σ−1F for the combined case is just the sum of its

values for the univariate and bivariate cases so that, from (4.10), it will have off diagonal

(i, j) element

−wijρij
σiσj(1− ρ2ij)

and, from (4.9) and (4.10), ith diagonal element

1

σ2
i

(
wii +

∑
k 6=i

wik
1− ρ2ik

)
.

We follow the bivariate case and examine equations (4.11) and (4.12) to see if there are

values of the weights for which ΣF = Σ. The advantage in the combined case is that we

have the same number of weights and equations, namely m(m + 1)/2. The equations

resulting from the off diagonal comparisons in (4.12) are all linear in individual weights

giving, for position (i, j)

− ωijρij
σiσj(1− ρ2ij)

= (Σ−1)(i,j)
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or

wij = −
(R−1)(i,j)(1− ρ2ij)

ρij

= −
(R−1)(i,j)(1− (R(i,j))

2)

R(i,j)

. (4.21)

Taking the ith diagonal comparison in (4.11) we see that

(
wii
σ2
i

+
∑
k 6=i

wik
σ2
i (1− ρ2ik)

)
σ2
i −

∑
k 6=i

wikρik
σiσk(1− ρ2ik)

ρikσiσk = 1 (4.22)

wii +
∑
k 6=i

wik(1− ρ2ik)
1− ρ2ik

= 1

n∑
k=1

wik = 1 (4.23)

which is elegant. Note that (4.22) is equivalent to combining the m equations from row

i of (4.12), but the derivation we have used is simpler algebraically.

We have thus derived a set of weights uniquely from (4.11) and (4.12) such that ΣF = Σ

and we have recovered the original distribution G. These weights do not involve the

variances from Σ - they are derived solely from the corresponding correlation matrix, R.

These weights uniquely solve (4.11) and (4.12) and so, following the argument in Note

7 of Section 3.4.2, the second derivative of the KLD with respect to the weights must

be nonsingular.

Interpretation of the optimal value for the off diagonal weights, (4.21), relies on un-

derstanding R−1. Elements of the inverse of a covariance matrix, sometimes known as

the concentration matrix, can be understood in the context of partial correlation. For

instance, for Y ≡ (Y1, . . . , Ym) distributed with zero mean and covariance matrix Σ,

Cox and Wermuth (1996, Section 3.4), show that the correlation between Yi and Yj,

conditional upon the other elements of Y , (ie the partial correlation) is

−
(Σ−1)(i,j)

((Σ−1)(i,i)(Σ
−1)(j,j))0.5

. (4.24)
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Now, it is simple to show that (4.24) equals

(R−1)(i,j)

((R−1)(i,i)(R
−1)(j,j))0.5

.

and so our weight, wij, is zero whenever the partial correlation is zero.

If one is going to use a bivariate normal composite surrogate, then we have seen that

by adding in univariate elements and then applying optimal weights one can recover

the equivalent multivariate normal distribution. In practice, by using (4.21) and (4.23)

to calculate the optimal weights requires knowledge of and then inversion of Σ. It is

more computationally efficient than solving the weights equations, (4.2), through some

iterative process such as nonlinear minimisation, as we just have to invert Σ once rather

than additionally having to invert J for every iteration. It also replaces any parameter

estimation through solving the estimating equations, which, for numerical approaches,

involves repeated inversion of the matrix of derivatives of the estimating equations.

Having derived our weights equations, (4.2), for the multivariate normal distribution,

we have applied them to some generic cases. We have seen that we need to consider

composite surrogates consisting of univariate and bivariate components in order to arrive

at unique optimal weights, which we have derived analytically. We first apply these

insights to Simulation II and then to a specific case, where we find that there is some

value in using the weighted approach as the optimal weights bear interpretation.

4.7.1 Simulation II

Having seen the effect of combining bivariate with univariate components in Section 4.7,

it is of interest to see whether that insight has any effect on Simulation II from Section

3.4.5. To that end, it was updated to include the following two further surrogates

Bivariate and univariate unweighted A standard combined univariate and bivari-

ate composite surrogate per (3.1) with all the weights set to 1.

Bivariate and univariate weighted A standard univariate and bivariate composite
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surrogate per (3.1) iterated with weights calculations as in Section 3.4.4. As the

clustered datasets are of variable length, weights were calculated separately for

each cluster.

The resulting power curves are shown in Figure 4.1 where they are compared to the

bivariate surrogate curve. Examining the plot, again reveals no significant differences

between the surrogates as at different points on the steeper parts of the curves, each of

them has the greatest power. At the minimum points of the curves, where one would

like values as close as possible to 0.05, the bivariate surrogate has value 0.08 while the

unweighted and weighted combined surrogates have values 0.057 and 0.063 respectively.

Values of  β1 and  β2 used to generate data

P
ow

er

−0.6 −0.3 0.0 0.3 0.6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.05

1000 simulations
100 clusters

Bivariate

Biv. and univariate.

Biv and uni. wtd

Testing  H0 : β1=β2=0

Figure 4.1: Simulation II. Power plots at level 0.05 for a range of surrogates.

Once again, as described in Section 3.4.5, the raw data which were used to generate the

power curves were tested against the null hypothesis that the means of the p-values of

the three surrogates were identical. The results showed no consistent pattern but it is

worth noting that at data generated with β1 = β2 = 0, the mean for the unweighted

142



combined univariate and bivariate surrogate (but not for the weighted) was significantly

lower than that for the bivariate surrogate (p-value 0.0017).

Despite the minor advantage that the unweighted combined surrogate has over the other

surrogates at the minimum of the power curves, there is no overall significant difference

between any of the four surrogates studied. This suggests that, in practice, there may

be no advantage in applying weights to composite surrogates and is discussed, together

with a possible explanation, in Chapter 5.

4.8 Autoregressive Models

We now examine combined weighted univariate and bivariate normal composites, FK , as

surrogates for the distribution of data (of length m) generated from stationary autore-

gressive models, G. We define Yt, t ∈ N as an autoregressive process of order l < m,

AR(l), with mean zero if

Yt =
l∑

i=1

φiYt−i + εt

where the {εt : t ∈ N} form a white noise sequence (ie a sequence of iid random variables

with zero mean), uncorrelated with the Yts, and with variance σ2. Stationarity requires

that all the roots of the characteristic equation

1−
l∑

i=1

φix
i = 0

lie outside the unit circle.

We now attempt to recover the covariance matrix, Σ, that was involved in generating

the data by using the combined bivariate and univariate composite surrogate results from

Section 4.7. Standard results (see, eg, Brockwell and Davis, 1991, Section 5.1.1) show
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that in the AR(1) case,

Σ =
σ2

1− φ2



1 φ φ2 . . . φm−1

φ 1 φ . . . φm−2

φ2 φ 1 . . .
...

...
...

...
. . . φ

φm−1 φm−2 . . . φ 1


with the correlation matrix, R, found by omitting the σ2/(1−φ2) factor. It is then easy

to verify that

R−1 =
1

1− φ2



1 −φ 0 . . . 0

−φ 1 + φ2 −φ . . . 0

0 −φ 1 + φ2 . . .
...

...
...

...
. . . −φ

0 0 . . . −φ 1


Working with a combined univariate and bivariate normal weighted composite surrogate

as in Section 4.7, (4.21) gives us, for |i− j| = 1

wij = −−φ(1− φ2)

(1− φ2)φ

= 1

and for |i − j| > 1, zero. Then, from (4.23), wii will be −1 for all i except i = 1,m

when it will be zero. The simplest way to lay that out is in an m ×m weights matrix,

W where W (i,j) = wij:

W =



0 1 0 . . . 0

1 −1 1 . . . 0

0 1 −1 . . .
...

...
...

...
. . . 1

0 0 . . . 1 0


. (4.25)
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Note that

1. W is a convenient way of representing the weights, particularly in light of (4.23).

Note that the weights for all the bivariate pairs appear twice in the matrix but

only once in the composite likelihood.

2. The optimal weights are not functions of the parameters. We have seen from Sec-

tion 4.7 that σ2 is not involved in the weights but, here, the correlation coefficient

is also excluded.

3. (4.25) makes some sort of intuitive sense in that

• we learn about ρ and σ2 from the lag one pairs, (yi, yi+1). Adding more

distant pairs does not give us any more critical information which is consistent

with the zeroes in W ; and

• all but the outer two random variables, y1 and ym, appear in two pairs in our

composite surrogate. The univariate information about them has thus been

duplicated and the −1s in W remedy that.

4. Davis and Yau (2011) note that the exact loglikelihood for an AR(1) sequence is

`(φ, σ2; ym) =
m−1∑
i=1

ln fi+1|i(yi+1|yi) + ln f1(y1) (4.26)

where the subscripts to the densities f denote appropriate marginality from the

density corresponding to G. If we then apply the weights we have just calculated for

normal composite surrogates to a combined univariate and bivariate loglikelihood

based on those marginal densities, we have a composite surrogate loglikelihood

`c(φ, σ
2;y) =

m−1∑
i=1

ln fij(yi, yi+1)−
m−1∑
i=2

ln fi(yi)

=
m−1∑
i=1

ln fi+1|i(yi+1|yi) + ln f1(y1) (4.27)

where y = (y1, . . . , ym), and we have recovered the exact loglikelihood from

(4.26). Davis and Yau (2011) point out the similarity between the exact and bi-
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variate composite loglikelihoods but take no account of the univariate components.

Joe and Lee (2009) make a similar comment but on the assumption that the vari-

ances (and means if appropriate) are known. We do not make that assumption

here.

5. If we define B(Yi, Yi+1) to be the bivariate distribution for Yi and Yi+1 (and U(Yi)

similarly for univariate), then our composite surrogate is (omitting the parameters,

for simplicity, and any constant of proportionality)

B(Y1, Y2)B(Y2, Y3|Y2) . . . B(Ym−1, Ym|Ym−1)

or, the more usual Markov chain result

U(Y1)B(Y2|Y1)B(Y3|Y2) . . . B(Ym|Ym−1) (4.28)

equivalent to that at (4.27).

6. (4.25) is consistent with Lindsay et al. (2011)’s general result given at (3.5) for

the set of parameters such that the Yt are mutually independent, θ ∈ Θind. Here,

we are working with a particular example, but the result holds not just in Θind.

7. Returning to the partial correlation interpretation of the weights described in Sec-

tion 4.7, we see from W that the partial correlation between Yi and Yi+1 is the

same for all i and that the partial correlation between elements that are not adja-

cent is zero. This is consistent with the AR(1) model that we are examining.

Unfortunately, the analogous results for higher order AR models are more difficult to

interpret. For the AR(2) case, the inverse of the covariance matrix that was involved

in generating the data, Σ, is given in Barry et al. (1997) in the form of a Cholesky

decomposition whereby Σ−1 = 1
σ2Q

TQ. Note however, that the (2, 2) entry for Q

should be (1−φ2
2)

1
2 not (1−φ2)

1
2 as given in Barry et al. (1997). As one would expect,

the matrix has zeroes everywhere apart from a strip up to five entries wide down the

main diagonal. We can solve for the weights in exactly the same way as for AR(1) and
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the resulting weights matrix is symmetric along both main diagonals. The upper left

hand corner of (1 + φ2)W is



− (1−φ2)φ2
φ21−φ22+φ2

1
φ2(1+φ21−φ22)
φ21−φ22+φ2

0 . . .

1 − (1−φ2)(φ21−φ22+2φ2)

φ21−φ22+φ2
1− φ2

φ2(1+φ21−φ22)
φ21−φ22+φ2

. . .

φ2(1+φ21−φ22)
φ21−φ22+φ2

1− φ2 − (1−φ2)(φ21−φ22+3φ2)

φ21−φ22+φ2
1− φ2 . . .

0
φ2(1+φ21−φ22)
φ21−φ22+φ2

1− φ2 − (1−φ2)(φ21−φ22+3φ2)

φ21−φ22+φ2
. . .

0 0
φ2(1+φ21−φ22)
φ21−φ22+φ2

1− φ2 . . .

0 0 0
φ2(1+φ21−φ22)
φ21−φ22+φ2

. . .

...
...

...
...

. . .


which is, however, hard to interpret directly.

The use of univariate and bivariate normal composites as surrogates for distributions

more generally will be the subject of future work.

4.9 Summary

In this chapter we have derived an elegant form of the optimal scalar weighting scheme for

the multivariate normal case. One of the consequences of that form is that a composite

surrogate consisting of multivariate normal components has a related density that is also

multivariate normal, and that if the data under consideration is itself generated from

a multivariate normal distribution then the composite surrogate is just the distribution

of a linear transformation of the data. We have then applied the multivariate normal

form to univariate, bivariate and combined univariate and bivariate composite surrogates.

Only in the latter case can a weighting scheme recover the data generating distribution.

We apply that knowledge to the simulation from Chapter 3 but, again, there is no

significant improvement in power. Finally, we create a combined multivariate surrogate

for autoregressive processes. In the case of data from an AR(1) distribution, it recovers

a standard presentation of that distribution.
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Chapter 5

Discussion

We have explored a number of options for applying weights to the components of com-

posite surrogates. We have done that by understanding the theory behind surrogate

distributions (Chapter 1), applying that theory to composite surrogates (Chapter 2) and

then focusing on the weights for components, in theory (Chapter 3) and as applied to

specific examples (Chapters 3 and 4). Our most significant contributions are, in the

order in which they were introduced

1. Assumption 17 in Section 2.3, which allows us to work with unbiased composite

estimating functions when the data generating mechanism (DGM) is unknown.

2. The introduction of the constant of proportionality (or normalising constant) into

the study of composite likelihoods in Section 2.5, resulting in a genuine density

function.

3. Applying the Bartlett correction to adjusted composite surrogates, in Section 2.7.2,

for small samples results in rejection levels that are closer to the Type I error rate

than that for the uncorrected surrogates, when the parameters that are the coeffi-

cients of the covariate data are set to 0. This was carried out in a simulation where

the correction is relatively easy to calculate. In a real example, that calculation is

more complex.

4. A more general version of an optimal weighting scheme for composite estimating
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functions described in Lindsay et al. (2011), proved in Section 3.3.1.

5. A version of that scheme, in Section 3.3.2, that is optimal in its restricted class,

and is computationally cheaper.

6. In Section 3.4 a completely new weighting scheme for composite likelihoods based

on minimising the Kullback-Leibler discrepancy (KLD) over the weights between

the weighted distribution, taking into account the constant of proportionality

(CoP), and the DGM, resulting in a set of equations to be solved to generate,

not necessarily unique, weights.

7. Application of that new scheme to the multivariate normal distribution in Section

4.3 to give elegant equations for deriving the optimal weights.

8. Demonstration that multivariate normal composite surrogates have a distribution

that is that of a transformation of the random variables that generated the data,

in Section 4.4.

9. Exploration of multivariate normal composites consisting of univariate and / or

bivariate components. In Section 4.7 it is shown that only when all bivariate

and univariate components are combined can the DGM’s covariance matrix be

recovered.

10. A simulation based on probit regression with an autoregressive random effect to

which weights from the weights equations and the combined composite surrogate

lesson are applied in Sections 3.4.5 and 4.7.1. They show no significant improve-

ment on the standard unweighted bivariate composite surrogate.

11. Application of that combined bivariate and univariate principle to multivariate

composite surrogates for autoregressive data and, in Section 4.8, it is shown that in

the AR(1) case, the covariance matrix involved in generating the data is recovered.

The most significant of these contributions is the new scalar weighting scheme in Point

6 and we now analyse that and its application, with particular reference to the simulation

in Point 10.
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There are two key features to the derivation of the new weighting scheme The first is the

minimisation of the KLD over the weights between the DGM and the weighted composite

surrogate loglikelihood in order to derive the weights equations. This is similar to our

approach to parameter estimation as described in Section 1.2, where we minimise the

KLD over the parameters between the DGM and a surrogate loglikelihood. A strength

of this new scheme is thus the commonality of approach with parameter estimation.

However, there is a difference, which is that in the former we take into account the CoP,

our second key feature, while in the latter we do not. There are good reasons in each

case. For weights, if we use the KLD without the CoP, we end up with all the weight

attached to one component, as described in Section 3.4.1. For parameters, if we take

the CoP as a feature of the surrogate, then the estimates can be biased (see Section

2.5).

Having derived the weights equations, we need to solve them to calculate optimal

weights. We saw in Section 3.4.3 an example where the solutions are not unique.

However, that is not always the case as in Simulation II in Section 3.4.5. Usually, the

equations will not be linear in the weights, and their number and complexity will require

a numerical minimisation routine.

Associated with each set of weights are a set of parameter estimators which will need

to be calculated in the usual way for the weighted composite surrogate. Repeating the

process by calculating further weights (based on the weighted estimates) and estimators

is unnecessary as described in Section 3.4.4. It is the estimators in which we are interested

as, generally, the weights will not have a plausible interpretation.

We can now assess the effectiveness of weighted composite surrogates by whichever

criterion we deem appropriate (see Section 1.7 for a review). For Simulation II, we have

chosen power, and in Sections 3.4.5 and 4.7.1, we see that applying weights to bivariate

and combined univariate and bivariate composite surrogates has no significant effect.

It might be thought that this is because there is no further power to be had, ie the

bivariate composite is as powerful as the DGM. However, Simulation I in Section 2.7 is

a case where the DGM is clearly more powerful and, again, applying our optimal weights
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to the bivariate composite surrogate results in no significant improvement.

An informal explanation for the lack of improvement in power might be that the infor-

mation contained within the bivariate surrogate is repeated many times as we consider

all bivariate pairs. In that case, any weighting scheme will just be shuffling around the

multiple instances of information and is unlikely to show any significant improvement.

Lindsay et al. (2011) suggest that there may be such redundant information, as described

in Sections 3.2.3 and 3.2.4. To test this possibility, one would need to reduce the number

of bivariate components to the point that there is little redundant information and then

assess the effect of optimal weights. However, this would be a time consuming process

and would not improve the results from the all pair bivariate surrogate. In simple ex-

amples such as AR(1) in Section 4.8 or the multivariate normal considered in Section

3.4.3, it is relatively simple to interpret the weights as emphasising useful or downgrading

redundant information. However, the complexity of the structure of Simulation II with a

link function and partially correlated covariates, means that it is very difficult to interpret

each weight directly and anticipate the relative size of the weights with respect to useful

marginal information.

It is worth considering, then, the circumstances in which further exploration of weighting

schemes might be worthwhile. The first is in the case of clustered data of varying lengths

as discussed in Section 3.2.5. Various formulae, dependent upon the cluster length, for

the common cluster weight have been suggested. Contrast that with Simulation II,

where we have calculated different weights for each component of each cluster, each

cluster treated separately from one other. One possibility for further research might

be to combine the two ideas so that the individual weights for each cluster component

would undergo some form of normalisation across the whole of the data.

A second possibility might be to explore further the optimally efficient weighting schemes

described in Points 4 and 5. While the former is likely to be too computationally expen-

sive for interesting situations, ie large numbers of parameters or composite components,

the latter is only expensive for large numbers of parameters and might be worth under-

standing better for composite surrogates with large numbers of components, such as
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can arise from long time series.

Further work, not related to weighting schemes, resulting from ideas in this thesis could

be undertaken in

• Understanding whether the form of multivariate normal composites described in

Point 8 has more general applicability to the understanding of any composite

surrogate.

• Analysing the effect of using combined bivariate and univariate composite surro-

gates as opposed to bivariate alone, as set out in Point 9.

Overall, we have shown that there may be no advantage to scalar weighting schemes for

the components of composite surrogates. Optimal weighting schemes may be either com-

putationally very expensive or show no significant improvement over their unweighted,

relatively cheap to calculate, equivalents.
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Appendix A

Equivalence of the Three Usual

Statistics

We show that, asymptotically, the Wald, score and likelihood ratio statistics for surro-

gates, as defined in Section 1.5, are equivalent. Our null hypothesis is that θG = θ∗.

The proof begins with a modified version of that from Kent (1982). By the Lagrange

form of Taylor’s theorem, for any n:

`(θ) = `(θ̂n) + ψn(θ̂n)T (θ − θ̂n) +
1

2
(θ − θ̂n)Tψ′n(θ̆n)(θ − θ̂n)

for some θ̆n ‘between’ θ and θ̂n

= `(θ̂n) +
1

2
(θ − θ̂n)Tψ′n(θ̆n)(θ − θ̂n) by the definition of θ̂n (A.1)

where ‘between’ is used in the sense described after (1.13). Similarly:

`(θ) = `(θG) + ψn(θG)T (θ − θG) +
1

2
(θ − θG)Tψ′n(θ̃n)(θ − θG)

for some θ̃n ‘between’ θ and θG

= `(θG) + ψn(θ̂n)T (θ − θG)(1 + op(1)) +
1

2
(θ − θG)Tψ′n(θ̃n)(θ − θG)

by Assumption 12

= `(θG) +
1

2
(θ − θG)Tψ′n(θ̃n)(θ − θG) by the definition of θ̂n. (A.2)
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Evaluating (A.1) at θ = θG we find for the likelihood ratio statistic as defined in (1.24):

Wl = −(θG − θ̂n)Tψ′n(θ̆n)(θG − θ̂n)

= −(θG − θ̂n)Tψ′n(θG)(θG − θ̂n)(1 + op(1))

asymptotically, as θ̂n is consistent for θG, θ̆n is ‘between’ the two and using

Assumption 12

= −(θG − θ̂n)TA−1n ψ̄′n(θG)(θG − θ̂n)(1 + op(1)) by the definition of ψ̄′n(θG)

= −(θG − θ̂n)TA−1n ψ′∞(θG)(θG − θ̂n)(1 + op(1)) by Assumption 7

= (θG − θ̂n)TA−1n IG(θG)(θG − θ̂n)(1 + op(1)) by the definition of IG(θG)

= (θG − θ̂n)TA
− 1

2
n IG(θG)A

− 1
2

n (θG − θ̂n)(1 + op(1)) by Assumption 7 (A.3)

and so under the null hypothesis, H0 : θG = θ∗, the likelihood ratio and Wald statistics

are asymptotically equivalent :

Wl = Ww(1 + op(1)) by (1.25).

Similarly, evaluating (A.2) at θ = θ̂n we have from (1.24):

Wl = (θ̂n − θG)Tψ′n(θ̃n)(θ̂n − θG)

= −(θ̂n − θG)TA
− 1

2
n IG(θG)A

− 1
2

n (θ̂n − θG)(1 + op(1))

asymptotically, by a similar argument to (A.3)

= −(I−1G (θG)ψ̄n(θG))TA
− 1

2
n IG(θG)A

− 1
2

n (I−1G (θG)ψ̄n(θG))(1 + op(1)) by (1.14)

= −(I−1G (θG)Anψn(θG))T (A
− 1

2
n )TIG(θG)A

− 1
2

n I−1G (θG)Anψn(θG)(1 + op(1))

by the definition of ψ̄n(θG)

= −ψn(θG)TA
1
2
n I
−1
G (θG)A

1
2
n ψn(θG)(1 + op(1))

by Assumption 7 and the symmetric condition from Assumption 5.

Thus under the null hypothesis, H0 : θG = θ∗, the likelihood ratio and score statistics
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are asymptotically equivalent:

Wl = Ws(1 + op(1)) by (1.26)

the required change in sign being noted in, for instance, Cox (2006, page 105).
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Appendix B

Cluster Estimating Functions Are

Uncorrelated

We consider clustered data where there is an order (eg time, space) to those elements

and where the marginal components of our composite likelihood are marginal for G, as

described in Section 2.6. We show that if the elements are independent (eg Yi), condi-

tional upon earlier elements (eg Di), then the univariate composite surrogate estimating

functions components are uncorrelated. We define those elements of θ that parameterise

the marginal structure as α (αG having the obvious meaning), the rest of the parameters

providing intra cluster dependence. Let i < i′ be cluster indices. Then:

Cov[ψi(θG;Y ), ψi′(θG;Y )]

= Cov[ψi(αG;Y ), ψi′(αG;Y )]

= E[ψi(αG;Y )Tψi′(αG;Y )]

=

∫
y

∂ ln fi
∂α

∣∣∣∣
αG

∂ ln fi′

∂α

∣∣∣∣
αG

fc(y|D) dy

=

∫
y

1

fi(y|Di;αG)

∂fi
∂α

∣∣∣∣
αG

1

fi′(y|Di′ ;αG)

∂fi′

∂α

∣∣∣∣
αG

n∏
j=1

fj(y|Dj;α) dy

=

∫
y1

f1(y|D1;α) . . .

∫
yi

fi(y|Di;α)

fi(y|Di;αG)

∂fi
∂α

∣∣∣∣
αG

. . .

∫
yi′

fi′(y|Di′ ;α)

fi′(y|Di′ ;αG)

∂fi′

∂α

∣∣∣∣
αG

. . .

∫
yn

fn(y|Dn;α) dy
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where the {fj} are conditional densities which integrate to 1. Working from right to left

each term integrates to 1 until the term with index i′. For that:

∫
yi′

fi′(y|Di′ ;α)

fi′(y|Di′ ;αG)

∂fi′

∂α

∣∣∣∣
αG

dyi =
∂

∂α

∫
yi′

fi′(y|Di′ ;α)

fi′(y|Di′ ;αG)
fi′(y|Di′ ;αG) dyi

=
∂

∂α

∫
yi′

fi′(y|Di′ ;α) dyi

=
∂1

∂α

= 0

leading to the overall covariance being 0.
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Appendix C

Integrating Out the Random

Effect in Simulation I Bivariate

Surrogates

As part of our composite surrogate simulation in Section 2.7 we create a further surrogate

for the bivariate case. The advantage of this further surrogate is that we can integrate

out the random effect, as we demonstrate here. For cluster i, and any two elements in

that cluster, yj1 , yj2 , the surrogate for our bivariate component has Bernoulli density, πb,

such that

πb(yij1 , yij2 ;β, a, uij12) = p
yij1
ij1

(1− pij1)1−yij1p
yij2
ij2

(1− pij2)1−yij2

where β is the vector of parameters in which we are interested, uij12 ∼ U [0, 1], the

random effect, and

pijl =
1

(1 + exp(−an(uij12 − 1 + µijl))
l = 1, 2
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where an is a nuisance parameter in place of a. Assuming that all clusters have more

than one member, the overall composite loglikelihood for all pairs is then

n∑
i=1

∑
j1 6=j2

ln(πb(yij1 , yij2 ;β, a, uij12)).

We wish to integrate out the random effects as described in, for instance, Fahrmeir and

Tutz (2001, Section 7.4.1), to give a marginal loglikelihood

n∑
i=1

∑
j1 6=j2

ln

(∫ 1

0

πb(yij1 , yij2|uij12 ;β, an)p(uij12)duij12

)

as, in the composite, each random effect is unique to each bivariate pair. For a pair

(j1, j2) in cluster i, integration results in one of two loglikelihoods, omitting the gory

details

1. µij1 6= µij2 :

ln

(
yij1yij2 +

1

an(b2 − b1)

.

(
ln

(
1 + exp(an)b1

1 + b1

)
(b2(1− 2yij1)(1− yij2)− b1(1− 2yij1)yij2)

+ ln

(
1 + exp(an)b2

1 + b2

)
(−b1(1− 2yij2)(1− yij1) + b2(1− 2yij2)yij1)

))

where bl = exp(−25µijl), l = 1, 2.

2. µij1 = µij2 :

ln

(
yij1yij2 +

1

an

(
ln

(
1 + exp(an)b

1 + b

)
(1− yij1 − yij2)

+
b(1− exp(an))

(1 + exp(an)b)(1 + b)
(1− 2yij1 − 2yij2 + 4yij1yij2)

))

where b = exp(−25µij1).

There will be occasions when cluster i has just one member y1. In that case, we clearly

cannot take a bivariate loglikelihood but just replace it with the standard univariate
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density, πu

πu(yi1;β, an, ui) = pyi1i1 (1− pi1)1−yi1

where ui is the random effect for the component and cluster and

pi1 =
1

(1 + exp(−an(ui − 1 + µi1)))
l = 1, 2 :

for nuisance parameter a. In that case the loglikelihood for the marginal component is:

ln

(
yi1 +

1− 2yi1
an

ln

(
1 + exp(an)b

1 + b

))

where b = exp(−25µi1).

All integrations in this Appendix have been checked using Mathematica (Wolfram Re-

search, Inc, 2008). One can then differentiate the loglikelihoods analytically to get

estimating functions etc. However, numerical differentiation as described in Section

2.7.1 performs equally well.
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Appendix D

The Partially Dependent

Weighting Scheme Minimises

Parameter Variance

We consider the class of estimating functions whose components are independent at θG.

We show that the weighting scheme described in Section 3.3.2

ψ∗w(θ) =

q∑
j=1

W ∗
CψC(θ)

= −
∑
C∈C

E[ψ′C(θG)]TVar[ψC(θG)]−1ψC(θ) (D.1)

is the most efficient in that class at θG, ie the parameter estimator has minimal variance

(or maximised sandwich information) over the class. We follow the approach outlined

in Crowder (1986, Theorem 4.1) and extended as suggested but not worked through in

Crowder (1987, Section 5). We adopt the same strategy with respect to zero elements

in component estimating function as we did for the BWEF weighting scheme in Section

3.3.1 - namely, we delete them before inversion of any matrix derived from those compo-

nents and restore them afterwards. We also need to make Assumption 19 - in this case

C0
S(θG) (ie after we have removed the zero rows and columns) will be block diagonal

and so the assumption will force each of those blocks to be nonsingular which is what
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we require. Finally, we assume that the appropriate moments of ψC for C ∈ C exist.

Consider any estimating function (EF ) weighting scheme, ψw

ψw(θ) =

q∑
j=1

WCψC(θ)

and let

L =

 Var[ψw(θG)] E[ψ′w(θG)]T

E[ψ′w(θG)] −E[ψ∗
′
w (θG)]

 .

where ′ represents the derivative. Note that for any weighted component of ψ∗w, W ∗
CψC,

we have

W ∗
CψC(θG) = −E[ψ′C(θG)]TVar[ψC(θG)]−1ψC(θG)

from (D.1) so that

Var[W ∗
CψC(θG)] = Var

[
E[ψ′C(θG)]TVar[ψC(θG)]−1ψC(θG)

]
= E[ψ′C(θG)]TVar[ψC(θG)]−1Var[ψC(θG)]Var[ψC(θG)]−1E[ψ′C(θG)]

= E[ψ′C(θG)]TVar[ψC(θG)]−1E[ψ′C(θG)]

= −E[W ∗
Cψ
′
C(θG)] (D.2)

and therefore

E[ψ∗
′

w (θG)] =
∑
C∈C

E[W ∗
Cψ
′
C(θG)] from (D.1)

= −
∑
C∈C

Var[W ∗
CψC(θG)] from (D.2). (D.3)
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We take z = (z1, z2)
T a 2p×1 vector with each element having dimension p and consider

zTLz = zT1 Var[ψw(θG)]z1 + 2zT1 E[ψ′w(θG)]T z2 − zT2 E[ψ∗
′

w (θG)]z2

= zT1 Var[ψw(θG)]z1 + 2zT1 E[ψ′w(θG)]T z2 + zT2
∑
C∈C

Var[W ∗
CψC(θG)]z2

from (D.3)

=
∑
C∈C

(zT1 WCVar[ψC(θG)]W T
C z1 + 2zT1 WCE[ψ′C(θG)]z2 +

zT2 E[ψ′C(θG)]TVar[ψC(θG)]−1E[ψ′C(θG)]z2)

as EF components taken to be independent

=
∑
C∈C

(
(zT1 WCVar[ψC(θG)]1/2 + zT2 E[ψ′C(θG)]TVar[ψC(θG)]−1/2) .

(zT1 WCVar[ψC(θG)]1/2 + zT2 E[ψ′C(θG)]TVar[ψC(θG)]−1/2)T
)

≥ 0

where matrix square roots are taken so as to be symmetric (Horn and Johnson, 1987,

theorem 7.2.6, page 405), so that L is semi-positive definite.

Now, by the process known as sweeping, if L is positive semidefinite (PSD) then so is:

 Var[ψw(θG)]−1 Var[ψw(θG)]−1E[ψ′w(θG)]T

−E[ψ′w(θG)]Var[ψw(θG)]−1 −E[ψ∗
′
w (θG)]− E[ψ′w(θG)]Var[ψw(θG)]−1E[ψ′w(θG)]T


(see Appendix E) or M , say. Sweeping is a technique developed for finding matrix

inverses and determinants, for instance, in an incremental manner, usually on a computer

(see for instance Beaton, 1964). The partially swept matrix M has had the sweeping

process applied to the upper left block of L. The use of sweeping replaces the use of

the Cauchy-Schwarz inequality typically found in proofs such as this, see for instance

(1.49), but allows us to work with an unknown G. Note that in Song (2007) a weighting

scheme similar to the one under consideration here is compared with the data generating

mechanism, G, and found to be as efficient. Unfortunately, it makes the component

independence assumption tacitly and so the proof is not valid.
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Clearly, if M is PSD then so must the bottom right hand corner of M

−E[ψ∗
′

w (θG)]− E[ψ′w(θG)]TVar[ψw(θG)]−1E[ψ′w(θG)]

be (for any vector z2 for the latter, use (0, z2) for the former). Thus the sandwich

information is greater in ψ∗w than in any other estimating function weighting scheme.

Asymptotically, after the usual normalisation, observed quantities converge to their ex-

pected values, as discussed in Section 1.4, and so we can use this proof for asymptotic

optimality.
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Appendix E

Swept PSD Matrix Is Still PSD

Let

L =

 R S

ST U


where R is symmetric, be SPD so that for any z∗ = (z∗1, z

∗
2)

z∗
T

1 Rz
∗
1 + 2z∗

T

1 Sz
∗
2 + z∗

T

2 Uz
∗
2 ≥ 0.

Consider

M =

 R−1 R−1S

−STR−1 U − STR−1S


which to be SPD requires that for any z = (z1, z2)

zT1R
−1z1 + zT2 (U − STR−1S)z2 ≥ 0.

If we now transform by

z1 = Rz∗1 + Sz∗2

z2 = z∗2
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then for SPD we require that

z∗
T

1 RR
−1Rz∗1 + 2z∗

T

1 RR
−1Sz∗2 + z∗

T

2 (U − STR−1S + STR−1S)z∗2

= z∗
T

1 Rz
∗
1 + 2z∗

T

1 Sz
∗
2 + z∗

T

2 Uz
∗
2

≥ 0

which is true for any z∗ = (z∗1, z
∗
2).
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Appendix F

Example Where J Is Singular

We consider the example where data of dimension m are generated from a multivariate

normal distribution, G, with zero means, variances σ2
1, . . . , σ

2
m and exchangeable cor-

relation ρ. Our composite surrogate, FK , is unweighted and has components that are

bivariate and marginal for G, and thus bivariate normal with zero means, appropriate σ2
i s

and exchangeable correlation ρ. We will show that the second derivative with respect to

the weights of the KLD between G and FK , J , at θG (omitted subsequently to simplify

notation) is always singular, indeed it is a matrix with equal entries throughout.

From (4.10), we see that the inverse of the covariance matrix for FK has the form

Σ−1F = D(σ)−1A−1D(σ)−1

where D(σ) is the m × m diagonal matrix whose entries are σ1, . . . , σm and A−1 is

a matrix with diagonal entries that are identical and off diagonal entries that are also

identical, all entries being functions of ρ but not the σ2
i s. As a consequence

ΣF = D(σ)AD(σ)

where, similarly, A is a matrix with diagonal entries that are identical and off diagonal

entries that are also identical, all entries being functions of ρ but not the σ2
i s. For any

pair of distinct entries from the data vector, say yij = (yi, yj), there is a component of
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the composite whose likelihood function is

ln fij(y
ij) = −ln(2π)−

ln |ΣFij
|

2
−

(yij)TΣ−1Fij
yij

2
(F.1)

where ΣFij
is the matrix consisting of the ith and jth rows and columns of ΣF so that

ΣFij
= D(σi, σj)AijD(σi, σj)

Σ−1Fij
= D(σi, σj)

−1A−1ij D(σi, σj)
−1 (F.2)

whereD(σi, σj) is the diagonal matrix with entries σi, σj andAij is the matrix consisting

of the ith and jth rows and columns of A, which will still have the same features as A

in miniature. Note that Aij will be the same for all pairs as it is just a function of ρ

with the same entries for all pairs (i, j) and so we shall refer to it as AB.

As we have seen in Theorem 3.4.1, J is the covariance matrix of the {ln fij(Y ij)}s

under FK . So, for not necessarily distinct pairs (i, j) and (k, l)

CovFK
[ln fij(Y

ij), ln fkl(Y
kl)]

= CovFK

[
−ln(2π)−

ln |ΣFij
|

2
−

(yij)TΣ−1Fij
yij

2

,−ln(2π)− ln |ΣFkl
|

2
−

(ykl)TΣ−1Fkl
ykl

2

]
by (F.1)

= CovFK

[
−

(yij)TΣ−1Fij
yij

2
,−

(ykl)TΣ−1Fkl
ykl

2

]
=

1

4
CovFK

[
(yij)TD(σi, σj)

−1A−1B D(σi, σj)
−1yij

, (ykl)TD(σk, σl)
−1A−1B D(σk, σl)

−1ykl
]

by (F.2)

=
1

4
CovFK

[(zij)TA−1B z
ij, (zkl)TA−1B z

kl]

say, where zi = yi/σi for 1 ≤ i ≤ m, etc. As we have seen in Section 4.3,

Cov[ZT
aAZa,Z

T
bBZb] = 2tr(AΛaBΛb)

for symmetric A and B, and Za ∼ MVN(0,Λa) and Zb ∼ MVN(0,Λb). Therefore, we
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have

CovFK
[ln fij(Y

ij), ln fkl(Y
kl)] =

1

4
CovFK

[(zij)TA−1B z
ij, (zkl)TA−1B z

kl]

=
1

2
tr(ABΛABΛ)

where Λ = CovFK
[zij] = CovFK

[zkl] is a 2× 2 matrix, whose entries are just rows and

columns of A. Thus, every entry in the covariance matrix of the {ln fij(Y ij)}s under

FK is identical and the matrix is singular. This confirms the numerical results we found

in Section 3.4.3.
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