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The effective actions for d =2,N =3,4 chiral supergravities with a linear and a nonlinear gauge alge-
bra are related to each other by a quantum reduction; the latter is obtained from the former by putting
quantum currents equal to zero. This implies that the renormalization factors for the quantum actions
are identical.
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I. INTRODUCTION

When a Lie algebra is generalized to a commutator
algebra that is not linear in its generators, but contains
quadratic or higher order polynomials as well, one ob-
tains a nonlinear algebra. Especially the infinite-
dimensional variety showing up in conformal field theory
have recently been studied intensively, the most celebrat-
ed class being the W algebras (for a review, see [1]), and
in particular the W3 algebra [2].

Among the properties that the 8 3 algebra, for one,
shares with linear algebras is a remarkable renormaliza-
tion property of the quantum theory that arises when one
couples the currents J generating these algebras to gauge
fields A. The resulting induced action for the gauge fields
is nonzero due to anomalies (central terms, quantum
corrections) in the current commutators as compared to
the classical Poisson brackets, and one can take this in-
duced action as a starting point to quantize the gauge
fields. For linear current algebras such as a%ne Lie alge-
bras and the Virasoro algebra this induced action I is
proportional to the central charge, r;„d[A]=cI' '[A].
Also, the effective action l,it[ A], or equivalently W, the
generator of connected Green functions' for 3, is related
[3,4] to the same basic functional by a field and coupling
renormalization r,z[ 3 ] =Z& I ' '[Zz 3 ]. There are
several methods to compute these Z factors [4,5], with
general agreement for Zz- and varying proposals for Zz,'
for a discussion see [6]. For nonlinear algebras on the
other hand, the dependence of the induced action on the
central charge is not simply proportionality, but instead
it can be expanded in powers of 1/c,

*Bevoegdverklaard Navorser, N.F.%'.O. Belgium.
Hereafter also called "effective action" for brevity. The sym-

bol used should resolve possible doubts on which functional is
meant.

It is remarkable that, nevertheless, for the quantum
theory based on this action, the renormalization property
still holds: the effective action is still equal, up to renor-
malization factors, to the "classical" (i.e., lowest order in
c) term I' '[2) of the induced action. This was shown
for W3 to first order (and conjectured to be true to all or-
ders) in [7]. This was recently proved in [8], and extend-
ed in [9] to arbitrary extensions of the Virasoro algebra
that can be obtained from a Drinfeld-Sokolov reduction
[10]of Wess-Zumino-Witten (WZW) models.

In this paper we point out that there are a few cases,
viz. , X =3,4 supergravities where the renormalization of
the linear and nonlinear effective actions is intimately re-
lated, due to the simple relation that exists between the
% =3,4 linear [11,12] and nonlinear [13,14] superconfor-
mal algebras. Namely, we will show in both cases that
the effective action 8' of the nonlinear theory results
from that of the linear theory by putting to zero an ap-
propriate set of currents (or integrating out an appropri-
ate set of fields for I ). By the same token we will then
have shown that for N =3,4 chiral supergravity the same
type of cancellations occur, as referred to above for 8'3.
Namely, nonleading terms in the central charge in

I;„d[A] cancel with quantum contributions to rdt. The
identity of the renormalization factors also follows.

II. % =3 SUPERGRAVITY

Both N =3 superconformal algebras contain the
energy-momentum tensor T, 3 supercharges
6', a H [ 1,2, 3 I and an so(3) affine Lie algebra,
U, a H [1,2, 3]. The linear one [11]contains in addition
a dimension —,

' fermion Q. The operator product expan-
sions (OPE's) of the generators are (we use tildes for the
nonlinear algebra)

TT =—[1], TT= —[1],
2

' 2

T@=hq, [4&], T4=hq, [4],
G~G =5~ [1]—E~"~2[U2c

3
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GaGb 5ab2( ) [1] ( ) abc[Uc]
c+ 1/2

[U~aUb~ — 5abT]
c+ 1/2 3c

Ua Ub 5ab[1 ]+&abc[ Uc]
3

(2.1)

where h@ =h@=—', , 1,—,
' for @=G',U', Q.

The relation between the two algebras is [14] that Q
commutes with the combinations that constitute the non-
linear algebra

T= T — —QBQ,
3

2c

U'U = — 5' [1]+E' '[ U']
3

UaGb=5ab[Q]+E bc[Gc] UaGb=Eabc[Gc]

QG'= [U'], QQ = —
3

[11

G':—G'+ —U'Q,3
c

while the central charges are related by c =c —
—,'.

The induced action I' is defined by

(2.2)

z[h, c/, A, p]= exp' —pfh, g, A, pj=(exp ——J d'x(h (&)&(&)+p.(&)a'(x)+ &,~x)U'~&~+p~x~Q~&~~
)

1 (2.3)

and similarly, without the g field, for the nonlinear induced action I . These actions are completely determined by con-
sidering their transformation properties under X =3 supergravity transformations. These transformations read, for the
linear case,

5h ='de+@Oh —Beh+2O'g„5@'=Bg'+@BE' ,'Be@'+—,'O—'Bh —Bg—'h —e' '(O A'+co f'),
5Aa $ a+ gA a &abc(ggbqc gbgyc)+ga abc bA c 5 ag + qa

5~=ar+~a~+ ,'a~~+-g'aA. a~ y—. ,'rah———ash .

(2.4)

For the nonlinear case, they are the same, except that there is of course no field g and no parameter ~, and 5A, con-
tains a c-dependent extra term

A a abc( ggbqc gbgyc)=3
c

The anomaly for the linear theory is

5r[a, q, A, ~]=—,' f~a'a —,' f g'a'q. + ' f~'aA. +,' fry.
Defining

12~ 6I, 3~ 5I, 3m 5I 3a 5I
c 5h

' c 5g'' c 5A'' c 5g

we obtain the Ward identities for the linear theory by combining Eqs. (2.4) and (2.6):

8 h =Vt —(2$, B +68@,)g'+48 A, u' —(2gB —2BrI)q,

8 g, =Vg' ,'p't +E' 'Abg—'+—qu'+E'"'(28gb+QbB)u'+RA, q,
5A, =Vu' —z'b'pbg'+E'b'Abu' —(g, B+Bg, )q, rI=Vq —g, u',

where

V@=(B—hB —h (Bh))@,

with hq, =2, —,', 1,—,
' for N=t, g', u', q.

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

The Ward identities provide us with a set of functional differential equations for the induced action. Since these have
no explicit dependence on c, the induced action can be written as

~All functional derivatives are left derivatives.
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I [h, g, A, il]=c r( )[h, g, A, il],
where I' ' is c independent.

The nonlinear theory can be treated in a parallel way. The anomaly is now

sr[h, q, A]= — ' fa'h —' ' f e'a'q. + '+' f~'aA. — fe.y, v'v"
12m 3' '

3m
'

rr(c + 1/2) eff

(2.10)

(2.11)

The last term, which is due to the nonlinear term in the algebra equation (2.1), can further be rewritten as

r

U'U ' (x)= V'U"'(x) exp ——f hT+g, G'+ A, U' exp —I
L

2c+ 1/2
3

(c+ I/2)n 1. au'(x) —:5('(x y)5' —+a—b
a

(2.12)

The limit in the last term of Eq. (2.13) refiects the point-splitting regularization of the composite terms in the GG OPE
(2.1). One notices that in the limit c —+ oo, u becomes c independent and one has simply

3
lim

v ~ c+1/2

'2,
V'U"' (x)=u'(x)u (x) . (2.13)

Using Eq. (2.13) we find that Eq. (2.11) can be rewritten as

f e(ayb) au (X)
y~x aAb(y)

—:5('(x —y)5, b

a 2 (2.14)

where the last term disappears in the large c limit. The term proportional to f e, $bu u in Eq. (2.14) can be absorbed

by adding a field-dependent term in the transformation rule for A:

~extra A a ea 0b u (2.15)

Doing this we find that in the large c limit, the anomaly reduces to the minimal one. Combining the nonlinear transfor-
mations with Eq. (2.14), and defining

12~ 5It=, g'=
c 6h

3~ 5I
Q

c —1 8g. '
3m 5I

c+ I/2 &A,
(2.16)

we find the Ward identities for I [h, g, A ] (they can also be found in [15]):

a'h=VF 1 ——' (—2q. a+6ay. )g'+4 1+ '
aA, u',

C C

a'q. =Vg' —+ —q, r+E"A„g'+E"(2ay, +y, a)u' 1+—1 1
2

U(avb)
c+ 1/2

(2.17)

BA, =V'u' — 1—
2c+ 1

c'b'q g'+E b'A u'

The normalization of the currents has been chosen so
that the anomalous terms on the left-hand side (LHS)
have coefficient unity. The explicit c dependence of the
Ward identities arises from several sources: the fact that
in the nonlinear algebra Eq. (2.1) some couplings are ex-
plicitly c dependent, the c dependence of the transforma-
tion Eq. (2.5), and the field-nonhnearity. The depen-
dence implies that the induced action is given by a 1/c
expansion:

r[h, q, A]= y -'-'r"[h, y, A] . (2.18)

This is familiar from JV3 [7].
Turning back to the Ward identities for the linear

theory equation (2.8), we observe a remarkable relation
with the nonlinear ones. If we take e=c+ —,

' and put
q =0 we find from the last identity in Eq. (2.8) that
il= —g, u'. Substituting this back into the first three
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identities in Eq. (2.8) yields precisely the Ward identities
for the nonlinear theory equation (2.17) in the c —+ ()() lim-
it. Also, the extra term in the nonlinear 5A, [Eq. (2.5)]
that was added to bring the anomaly to a minimal form
now electively reinserts the 0'q term that dropped out of
the linear transformation, Eq. (2.4). This strongly sug-

gests that the relation between the eftective theories
should be obtained by putting the current q equal to zero
on the quantum level. We will now derive this fact.

First we rewrite Eq. (2.3) using Eq. (2.2), the crucial in-
gredient being that Q commutes with the nonlinear alge-
bra, thus factorizing the averages:

Z[h, (), A, x)]=(exp ——f (hT+Q, G'+A, U') (exp ——J( hT+pgx))
tt

I g

exp ——j(hT+eh, G'+A, U') —T[h, x)] ), (2.19)

where

T~= QaQ, ~=~—,y. U'.=3 -= 1
(2.20)

The Q integral can easily be expressed in terms of the Po-
lyakov action:

r[h, ~]= r...[h] — f ~
1 c ~ 1

where V =8—h 0 —
—,'Bh and

r...[h]= f a'h —' ' —'a'h .
1 —h-

a

Using Eqs. (2.19) and (2.21) we find

(2.22)

(2.23)exp[ —I [h, g, A]]= exp I h, g=rj+ gb exp[ —I [h, g, A, rj]] .
6

3c 5Ab

The double functional derivative in the exponential is well defined due to the presence of the nonlocal operator V
This formula was checked explicitly on the correlation functions using [17]. Introducing the Fourier transform of I
with respect to 3,

exp[ —I [h, g, A, i)]]=f [du] exp —1 [h, g, u, g]+ f u'A, (2.24)

Eq. (2.23) further reduces to

exp[ —1 [h, g, A]]

= exp - I p„[h] f [du] exp —r[h, it, u, q] — f q+p, u' = rl+gbu + f u'A, . (2.25)0 6~ . ' . V . ' . 3~

As the LHS of Eq. (2.25) is il independent the RHS should also be. We can integrate both sides over i) with a measure
chosen such that the integral is equal to one:

exp I p ][h ] [d'q ] exp q+ '|t), u ' —'r)+ gi u
1 b

48~ 6~ (2.26)

Combining this with Eq. (2.25) we obtain finally a very simple expression for I [h, g, A ] in terms of I [h, P, u, g]:

exp [ —1 [h, it(, A ] ]= f [d i) ] exp [—1 [h, f, u, ]]i). (2.27)

Introducing the generating functionals 8'

(2.28)exp[ —W[t, g, u, q]]=f [dh][dP][d ][Ad ]ei)xp —1 [h, g, A, g]+ f (ht +4/'g, 4A, u' 4rIq—)—1
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W[t, g, u]= W[t, g, u, q =0] . (2.29)

Therefore, the two theories are related by a quantum
Hamiltonian reduction.

III. W =4 SUPERGRAVITY

Now we extend the method applied for %=3 to the
case of N =4. Again, there is a linear N =4 algebra and
a nonlinear one, obtained [14] by decoupling 4 free fer-
mions and a U(1) current. In the previous case we made
use in the derivation of the explicit form of the action in-
duced by integrating out the fermions. In the present
case no explicit expression is available for the corre-
sponding quantity, but we will see that in fact it is not
needed.

The N =4 superconformal algebra [12] is generated by
the energy-momentum tensor T, 4 supercharges G',
a E [1,2, 3,4], an so(4) affine Lie algebra,
U' = —U ', a, b H [1,2, 3,4], 4 free fermions Q' and a
U(l) current P. The two su(2) algebras have levels k+
and k . The supercharges G' and the dimension —,

' fields
Q' form two (2,2) representations of SU(2)SU(2). The
central charge is given by

and similarly for W (without the g term), one finds by
combining Eqs. (2.27) and (2.28), an extremely simple ex-
pression of the relation between the quantum theories of
induced X =3 supergravities based on the linear and non-
linear algebras:

GaGb — 5ab[1]+[ 2Uab+gEabcdUcd]
2

UabUcd 5ad5bc 5ac5bd g&abcd
k
2

+ [5bdUac 5bcUad 5adU bc+ 5acUbd]
r

UabGc g 5bc[Qa] 5ac[Qb] + abcd[Qd]

—(5 '[G'] —5"[G ])

Q aG b 5ab[p] 1 Eabcd[ Ucd]

QaUbc 5ac[Qb] 5ab[Qc] pG [Q

Q'Q'= ——5"[1],a b k ab

2 '
2

(3.2)

(3.3)

where k =k+ +k and g=(k+ —k )/k.
The induced action I [h, g, A, b, rt] is defined as in (2.3).

All the structure constants of the linear algebra (3.2) de-
pend only on the ratio k+ /k . Apart from this ratio, k
enters as a proportionality constant for all two-point
functions. As a consequence, I depends on that ratio in
a nontrivial way, but its k dependence is simply an
overall factor k.

Using the definitions

12m 6I, 3~ 6I
c 5h' c 5g,g

6k k

k++k
The OPE's are (we omit the OPE's of T)

(3.1) 2~ 6I. 2~ 6rp=

and y =6k/c, the Ward identities are

8 h =V't —2(Q, B+3BQ, )g'+2yBA, u'"+ (Oil, —iI, B)q'+yBhp,

d Q, = Vg' 2A, bg
—,' g, t + ——E,b,d gb u '"+—(pb B+2Bgb )(2u '

gE,b,d u '—
)

+ ~Bbq'+ ~gBA, bq + E,b,dBAb, q "+——i),p,
(3.4)

aA.b+ ..„daA,d=V u'" 4A, u")' —
y,.gb)+~, .—qb—) gq, .a+ay, .—qb) ,".„d(q,a+a/—,—)q',

rt, =Vq' —2A, q
—P,p +E,b,dgbu', Bb =7'p —(P,B+Bg, )q' .

The nonlinear X =4 superconformal algebra has the same structure as (3.2) but there is no P and Q'. The central
charge is related to the su(2) levels by c = [3(k+2k+k )]/(2+k) where k =k++k . We only give the GG OPE ex-
plicitly:

4k+ k 2k k+ —k
G G"= 5a"[1]— [Uab]+ s [U d]

k+2 k+2

+ 2k 5abz. + 1
E E„(Uc Uc +Uc Uc )k+2k+k 4(k+2)

(3.5)

To write down the Ward identities in this case we define

12~ 6I
c 6h

(0+2)~ 5I,b m. 51
k 5A.b

(3.6)
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k(k+2)
k.k

6kK—
c

(3.7)

a'h =vt — (@.a+3a@.)g'+2~aA. ,u",
y

8 P, =Vg
' —2 A,bg

— P, t — E„d Eb,fs Qb ( ( U'"U'f ),fr+ ( U'f U' ),tt)
2a 4k(k+2)

+ (g &+2&gb)(2 '"—g&, ,d
' ),

4(k+2)
—b]c 4aA.b+ s.„„aA,„=Vu" 4A, (—.ub)'

q,
—.g—b) .

2 '' ' ''
y

(3.8)

Uab Uab gagb2
k

(3.9)

and the constants in the algebras are related by
k+ =k+ —1, and thus c =c —3. Again, we find agree-
ment between the large k limit of the Ward identities put-
ting q' and p to zero, and solve q, and Bb from the two
last identities of (3.4). bote that the b field is present only
as a derivative in Eq. (3.4). Thus again the suggestion
presents itself that the nonlinear action can be obtained
by putting some currents to zero.

I

As in the previous section we will use the results of [14]
on the construction of a nonlinear algebra by eliminating
free fermion fields. In the present case it turns out that,
at the same time, one can also eliminate the U(1)-field P.
The new currents are

T= T + PP + —B—g 'Q ',1 1

k k

We now set out to write the nonlinear effective action
in terms of the effective action of the linear theory. In
analogy with the N = 3 case, it would seem that, again,
the operators of the nonlinear theory can be written as
the difference of the operators of the linear theory, and a
realization of the linear theory given by the free fermions.
In the present case, this simple linear combination works
for the integer spin currents T and U, but not for 6. A
second complication is that, due to the presence of a tri-
linear term (in Q) in the relation between G and G, in-
tegrating out the Q fields is more involved. Nevertheless,
we can still obtain an explicit formula relating the
effective actions.

There is a variety of ways to derive this relation, start-
ing by rewriting the decompositions of (3.9) in different
ways. %'e will use the form

G'+ —c.,b,dg
"U'"=G' — PQ'+ —E,b,dg "Q'Q

(3.10)

This leads immediately to

exp ——j hT+Q. G'+ A. U' +bPe+q, g'+ —e,e,eg, g'U'"
)

=
( exp ——J' hT+Q, G'+ A,b

U'

+ ——hP —
hing Q, 2$,PQ +2A, b—g Q +bP+rI Q + c,b,dg, g Q'Q. (3.11)

Again the crucial step is that in the RHS, the expectation value factorizes: the average over Q' and P can be computed
separately, since these fields commute with the nonlinear supersymmetric (SUSY) algebra. This average is in fact close-
ly related to the partition function for the linear % =4 algebra with k+ =k = 1 and c =3, up to the renormalization of
some coef5cients. We have

Note that there are no normal ordering problems as the OPE's of the relevant operators turn out to be nonsingular (e.g., the term
cubic in the Q' is an antisymmetric combination).
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Z' 'lh, g, &be, j , (=e pxf ——PP+i3g, g' —g, PQ'+ —,'E, , Q Q'Q +A, Q'Q +bP+v4Q ),
(3.12)

where the average value is over free fermions Q' and a free U(1)-current P. These are normalized in a k-independent
fashion,

PP= —[1], Q'Q = —5'~[1], (3.13)

(3.14)

The (nonlocal) form of the free action for P follows from its two-point function: it is the usual (local) free scalar field ac-
tion if one writes P =OP. The connection between the linear theory, the nonlinear theory, and the c =3 realization is
then

and the explicit form [16,12] of the currents making up the c =3 algebra has been used. The average can be represented
as a functional integral with the measure

[dQ ][dP ] exp — P P+ Q—'BQ,
2'IT

,b,d 5 6
exp ——e Z[g, A, ri, b]

=Z[g, A] exp (4+&2k )e' ' g, Z' [h, f, A, g&k/2, bv'k/2] . (3.15)
7T' ,b,d 5 5 5

3k '
5gb 6g, 6gd

Contrary to the N =3 case, where the Polyakov partition function was obtained very explicitly, this connection is not
particularly useful, but the representation (3.14) of Z'= as a functional integral can be used effectively. Indeed, when
we take the Fourier transform of Eq. (3.15), i.e., we integrate (3.15) with

f [dh][dg)[dA][db][dg]exp —f ht+g, g'+ A,&u' +bp+g, q'1 (3.16)

we obtain, using Eqs. (3.12) and (3.14),

a l b cdexp —8' t, g ——c.,b,dq u, u,p, q

a= exp — p —p+q'Bq,
a

(3.17)

giving the concise relation

W[t, g', u' ]+ p —p +q'Bq,

(3.18)

Putting the free p and q' currents equal to zero, one ob-
tains the equality of effective actions:

W[t,g', u' ]=W[t, g', u', p =O, q'=0] . (3.19)

IV. DISCUSSION

We take for granted that the linear theory is given by
simple renormalizations of the "classical" theory, as de-

scribed in the Introduction. Then Eqs. (2.29) and (3.19)
immediately transfer this property to the nonlinear
theory. Moreover, since the "classical" parts are equal
also (as implied by the c~ ~ limit of the Ward identities)
the renorrnalization factors for both theories are the same
(for couplings as well as for fields) if one takes into ac-
count the shifts in the values for the central extensions c,
k+, and k . This fact can be confirmed by looking at

4The effective action W is defined by the Fourier transform of Z, and similarly for 8'.
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N=3:

N=4:

Nonlinear all-order
2c+1

F

2c+ 1
A

2c 5
Zp =c+3

ZA =1

Linear semiclassical

Zz- =c 3

c
ZA c —3

Zi- =c
ZA =1

explicit calculations of these renormalization factors.
For N =3, a semiclassical approximation to the nonlinear
renormalization factors was set up in [15]. This calcula-
tion was amended in [9], which also contains an all-order
calculation of these factors. On the other hand, [9] also
contains a semiclassical derivation of the factors for the
linear algebras, and the N =4 factors as well. The results
are

of (bosonic and fermionic) dimension- —, fields, and an
aSne super algebra by which we will identify them.
There are the osp(m

~

2n ) cases with
~
m —2n —3

~

~ 1

(with I =3,4 and n =0 treated in this paper, and
m =2, n =0 the ordinary N =2 superalgebra) and the
u(n~m) cases with ~n

—I —2~ ~ 1 from the series in [18],
and further the osp(n~2m)sl2 algebras with
n —2m +3

~

~ 1 from [19]. These same algebras arise
also (among others) by quantum Drinfeld-Sokolov reduc-
tion from the list [9] where there are no corrections to the
coupling beyond one loop. This is reminiscent of N =2
supergravity, and consequently also of supersymmetry
nonrenormalization theorems [20], but the evidence is
not conclusive. It would be interesting to investigate
whether one can extend the analysis of the present paper
in this direction.

and the other field renormalization factors
(Z&, Z„,Z, Z ) for the efFective action are the same.
Clearly, these results coincide if one takes into account
that c =c+—,

' for N = 3 and c =c+3 for N =4.
The remarkable property that the values of the central

extensions of the Virasoro and aKne algebras are related
by c =6k +n with n EZ, is shared by a number of other
nonlinear superconformal and quasisuperconformal alge-
bras. These contain only one dimension-2 field, a number
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