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On ice-induced instability in free-surface flows
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The problem of stability of a water-coated ice layer is investigated for a free-surface
flow of a thin water film down an inclined plane. An asymptotic (double-deck) theory
is developed for a flow with large Reynolds and Froude numbers which is then used to
investigate linear two-dimensional, three-dimensional and nonlinear two-dimensional
stability characteristics. A new mode of upstream-propagating instability arising from
the interaction of the ice surface with the flow is discovered and its properties are
investigated. In the linear limit, closed-form expressions for the dispersion relation
and neutral curves are obtained for the case of Pr= 1. For the general case, the linear
stability problem is solved numerically and the applicability of the solution with
Pr = 1 is analysed. Nonlinear double-deck equations are solved with a novel global-
marching-type scheme and the effects of nonlinearity are investigated. An explanation
of the physical mechanism leading to the upstream propagation of instability waves
is provided.

1. Introduction
The problem of solidification front stability arises in a number of engineering

applications including casting (Glicksman, Coriell & McFadden 1986), pipe freezing
(Gilpin 1979, 1981; Seki, Fukusako & Younan 1984) and airplane icing (Vargas &
Reshotko 1998; Rothmayer & Tsao 1998). In all these applications we encounter an
interaction between an unsteady solidification front and the flow of the liquid phase
which can lead to instability of the solidification front.

Hydrodynamic and morphological instabilities of the solidification interface in alloy
solidification and crystal growth have been the subject of extensive research (see, for
example, Glicksman et al. 1986; Davis 1990; Batchelor, Moffatt & Worster 2000).
As a result, the coupling of a forced flow with morphological instabilities is a well-
known effect in the models where the interface formation is determined by the solute
concentration field near the solid/liquid interface. A characteristic feature of the solidi-
fication front instability observed in these problems is the upstream propagation of the
solid/liquid interface disturbance (see Brattkus & Davis 1988; Forth & Wheeler 1989).

The question of stability of the temperature-driven solidification fronts, and icing
in particular, has received comparatively little attention despite the experimental
evidence available. Gilpin (1979) performed a series of experiments in order to
study ice growth in a pipe at or near Reynolds numbers typical of laminar–turbulent
transition. He found that for the entire range of Reynolds numbers that was obtainable
in the experiment (up to 14 000), there existed a final steady-state ice profile with
a cyclic variation in height along the length of the pipe – an ‘ice-band’ structure.
However, another similar experiment by Kikuchi et al. (1986) demonstrated a smooth
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steady-state ice surface development without the ice-band structures. Gilpin (1981)
extended the earlier study to the range of transitional and turbulent flows. In this
second paper, he attributed the upstream propagation to the turbulent heat transfer
downstream of the separation point (separation occurred on the downstream inclined
ice slope). This explanation, however, does not seem to account for the initial stages
of the ice-band formation, when the perturbation of the uniform ice surface is small,
and no flow separation occurs. Seki et al. (1984) studied ice formation experimentally
in a water flow between two cooled parallel plates. They found that, depending on the
experimental conditions, expansions can form in the melt passageway and migrate
upstream, as in the experiments reported by Gilpin (1979, 1981). Similar behaviour
with characteristic upstream propagation was reported for ice formation under a
water film running down an inclined plane by Streitz & Ettema (2002).

Yao & Prusa (1989) in their review paper on solidification and melting noted that
the phenomenon of the solidification front instability has been extensively observed
experimentally, but has been almost completely ignored in modelling.

One attempt was made recently within the context of aircraft icing modelling. The
question of the influence of an ice layer on the flow stability for a boundary-layer-scale
water film was tackled analytically by Rothmayer & Tsao (1998). They developed a
two-dimensional viscous–inviscid interaction triple-deck theory in order to describe
the interaction between the air boundary layer, water film and ice sheet. This triple-
deck theory was further developed in Rothmayer & Tsao (2000). As a result of
their analysis, a new broadband ice instability mode was discovered in regimes with
simultaneous air and water cooling. However, the interpretation of the results in terms
of flow stability proves difficult, since there is no steady or base-state solution for
the flow in the problem investigated. Another difficulty of the complete triple-deck
approach is the number of instability mechanisms present in the problem and their
interaction, see, for example Timoshin (1997) and Timoshin & Hooper (2000).

In this paper we consider a gravity-driven water film flow on an inclined plane in
order to understand how the interaction between the ice layer and the flow affects the
stability characteristics. The film is considered at a boundary-layer scale in order to
approach aircraft icing conditions. We investigate this problem in the limit of large
Froude numbers and derive a double-deck theory, which allows us to isolate icing
instability. In this approximation we investigate the linear stability of the steady-state
solution, for which we obtain an analytic expression for the dispersion relation in the
case of Pr = 1 and a numerical solution in the general case for both three-dimensional
and two-dimensional flows. In particular, we show that icing instability emerges in
a two-dimensional flow provided the ice layer is sufficiently thick (in certain cases,
however, it is oblique-wave disturbances that are found to be most unstable). We
also solve the fully nonlinear problem in the viscous sublayer numerically in the two-
dimensional case and analyse the effects of nonlinearity. Finally, based on the results
obtained, we suggest a simple physical explanation of the upstream propagation effect
observed in such flows.

2. Problem formulation and the double-deck leading-order asymptotic
expansion

2.1. Boundary-layer-scale problem

We consider a thin water film with the same relative thickness as the boundary layer
thickness in the flow. The air/water boundary is taken to be a free surface with a
prescribed constant air temperature above the freezing point (i.e. warm air). From
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Figure 1. Flow scheme for a water film in the boundary-layer regime.

below, the water layer is bounded by a thin ice sheet. The ice sheet rests on a solid wall
whose temperature is prescribed. The wall is inclined at an angle φ to the horizontal.
The flow scheme for this configuration is shown on figure 1.

We use superscript * in order to denote variables with dimensions. For the problem
under consideration it is convenient to define dimensionless pressure as

P =
P ∗ − P ∗

a

ρ∗
l g

∗h∗

where P ∗ and P ∗
a denote local pressure and reference (air) pressure respectively, ρ∗

l

is the density of the liquid, g∗ is the acceleration due to gravity and h∗ is the height
of the unperturbed film. Also we will use the height of the unperturbed film h∗ as a
characteristic length in the direction normal to the wall (y) and assume a separate
characteristic length L∗ in the streamwise and spanwise directions (x and z). We
define characteristic velocity U ∗ to be the integral mean velocity in the unperturbed
flow. Dimensionless temperature is defined by

T =
T ∗ − T ∗

f

DT
,

where T ∗ is local temperature and DT = T ∗
a − T ∗

f . T ∗
f and T ∗

a denote freezing
temperature and external air temperature respectively. We denote the characteristic
time of the ice growth by τ ∗

i . In general, this characteristic time can be different from
the flow time scale

τ ∗
flow =

L∗

U ∗ .

Dimensionless parameters are defined as follows,

Sr =
τ ∗
i

τ ∗
flow

=
τ ∗
i U ∗

L∗

is the Strouhal number;

St =
CplDT

Hli

is the Stefan number, where Cpl and Hli denote the specific heat of water and the
latent heat of ice/water phase change respectively;

Θil = 1 − ρi

ρl
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is the volume change parameter depending on the ratio of ice density ρi to water
density ρl;

Re =
U ∗L∗

ν∗
l

is the Reynolds number;

Pr =
ν∗

l

κ∗
l

is the Prandtl number where ν∗
l and κ∗

l denote kinematic viscosity and thermal
diffusivity of water respectively;

Fr =
U ∗2

g∗h∗

denotes the Froude number;

We =
ρ∗

l U
∗2L∗

γ ∗

is the Weber, where γ ∗ is the surface tension coefficient.
We will assume that the film thickness is of the same order of magnitude as the

thickness of the boundary layer and h∗/L∗ = Re−0.5 � 1. Note that the approach can
be generalized by taking

√
Re = CL∗/h∗ where C ∼ 1 is a constant, which will result

in the multiplication of viscous terms by a 1/C2 coefficient. However the addition of
this coefficient will increase the parametric space of the problem and will not lead to
a qualitative difference in the results; therefore we restrict our discussion to the case
of C = 1.

In order to isolate the icing instability, we consider the problem on the time scale of
the evolution of the ice sheet. The evolution of the ice surface is linked to the flow field
via the Stefan condition (see, for example Alexiades & Solomon 1993). We are looking
for the characteristic time at which the Stefan condition remains in its full form. The
Stefan condition written in dimensionless form in boundary-layer scaling yields

λil

∂Ti

∂n
− ∂T

∂n
= Θil

1

StSr
Pr

1

|∇H |
∂H

∂t
, (2.1)

where Ti denotes ice temperature, H (x, y, z, t) = 0 is an implicit equation of the ice
surface and n is a unit vector normal to the ice surface. In order to preserve the inter-
action between the ice layer and the flow, it is necessary to maintain the full form of
the Stefan condition (2.1). Then the dimensionless combination on the right-hand side
of (2.1) should be O(1), which yields the following estimate for the Strouhal number:

Sr ∼ ΘilPr

St
. (2.2)

For water near 0 ◦C and DT ∼ O(1), the Stefan number based on water properties
is O(10−2) and PrΘil ∼ O(1). Then in order to preserve Stefan condition in the
boundary-layer scaling

Sr ∼ 1

St
, (2.3)

from which we can obtain the characteristic time of ice growth

τi ∼ L∗

StU ∗ . (2.4)

This simple qualitative analysis also shows that the time required for the ice structure
to reach a final steady state in a temporal evolution should be inversely proportional
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to the Stefan number. This was observed in numerical computations of ice growth
in a pipe flow by Lee (1993). Note that under these conditions Sr � 1 and the time
derivatives can be neglected in the boundary layer equations.

Using the characteristic time defined by (2.4) and assuming that the Reynolds
number is large we obtain the following initial system of dimensionless equations in
the water layer:

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0,

u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= − 1

Fr

∂P

∂x
+

√
Re sinφ

Fr
+

∂2u

∂y2
,

∂P

∂y
= −cosφ,

u
∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= − 1

Fr

∂P

∂z
+

∂2w

∂y2
,

u
∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
=

1

Pr

∂2T

∂y2
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.5)

as is usual for a boundary-layer-type flow, with u, v and w denoting the components
of dimensionless velocity in directions x, y and z respectively. The heat conduction
in the ice layer is governed by the reduced heat equation for the ice temperature

∂2Ti

∂y2
= 0, (2.6)

on account of the assumed small thickness of the ice sheet and the relatively large
time scale of the ice development.

On the upper boundary of the water layer we assume constant air pressure and
zero friction. Then the boundary conditions at the air/water interface (y = f (x, z, t))
are given by

v − u
∂f

∂x
− w

∂f

∂z
= 0, (2.7a)

∂u

∂y
= 0, (2.7b)

∂w

∂y
= 0, (2.7c)

P = −sinφ

3We

(
∂2f

∂x2
+

∂2f

∂z2

)
, (2.7d)

T = 1, (2.7e)

Equation (2.7a) corresponds to the kinematic condition, (2.7b–d) are derived from the
zero stress condition and (2.7e) stipulates constant air temperature. At the water/ice
interface y = h (x, z, t), we obtain

u = v = w = 0,

T = Ti = 0,

λil

∂Ti

∂y
− ∂T

∂y
= PrΘil

∂h

∂t
,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (2.8)

where λil = λi/λl is the ratio of ice thermal conductivity λi to liquid thermal conduc-
tivity λl . Note that since we are considering a problem on the ice time scale, the time
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derivative is retained in the Stefan condition but not in the kinematic condition. The
conditions for velocity in (2.8) are derived from the kinematic condition at the ice
surface and the zero tangential velocity condition, taking into account boundary-layer
scaling and large Strouhal number. The last two equations of (2.8) represent constant
freezing temperature and the Stefan condition respectively. Finally, at the solid wall
(y = −H0), we require a constant ice temperature,

Ti = Tw, (2.9)

where Tw denotes the constant wall temperature.
The base flow solution to be used in the stability calculations below corresponds to

flat water/ice and air/water interfaces. It is given by a half-Poiseuille velocity profile
with linear temperature profiles in water and in ice:

u0 = 3
(
y − 1

2
y2

)
, v0 = w0 = 0,

P0 = (1 − y) cosφ, T0 = y,

T0i = − y

H0

Tw,

⎫⎪⎪⎬⎪⎪⎭ , (2.10)

Also, as the solution in the undisturbed state (for example, far upstream of the region
under consideration) is gravity-driven, viscous dissipation balances gravity parallel to
the slope (see, for example, Bowles 1995) which leads to

√
Re sin φ

Fr
= 3. (2.11)

2.2. The limit of large Froude numbers

In order to simplify the formulation a little further, we consider the large Froude
number limit, Fr � 1. Then the flow field can be divided into two layers with the
lower ‘viscous’ layer maintaining the balance between inertia and viscous forces and
the upper layer governed by predominantly inviscid dynamics. The derivation is
generally similar to the analysis of the boundary-layer flows in the triple-deck theory,
see, for example, Sychev et al. 2000). Of more relevance to the present study is the
double-deck asymptotic theory of liquid film flows in Gajjar (1987).

Let us derive the scales for the lower viscous layer. From the form of the base
flow solution (2.10), we can see that in the viscous sublayer (denoted by subscript 1)
u1 ∼ y1 and in order to maintain all terms in the continuity equation, we need
v1 ∼ y2

1/x1 and w1 ∼ y1z1/x1. In order to maintain the full form of the x1 momentum
equation, we need

1

Fr

∂P1

∂x1

∼ ∂2u1

∂y2
1

, therefore
P1

x1Fr
∼ 1

y1

also from the balance of convective and pressure terms in the same equation

P1

x1Fr
∼ v1

∂u1

∂y1

, therefore
P1

x1Fr
∼ y2

1

x1

.

Combining these, we obtain:

P1 ∼ Fry2
1 ∼ x1Fr

y1

,

therefore in the viscous sublayer y3
1 ∼ x1. Then as the variation of pressure is of the

same order as the variation of height, we have P1 ∼ y1 ∼ Fry2
1 which leads to y1 ∼ Fr−1

and x1 ∼ Fr−3. Similarly the balance of convective and pressure terms in the equation
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for the z1 component of the momentum gives

u1

∂w1

∂x1

∼ 1

Fr

∂P1

∂z1

, therefore w1 ∼ P1x1

z1y1Fr
∼ y1z1

x1

,

which leads to

w1 ∼ x1

Frz1

∼ Fr−1.

Also, as the initial temperature profile is linear we have T1 ∼ y1 so that, in order to
maintain the time derivative ∂h/∂t in the viscous sublayer, we arrive at the estimate
for the time scale in the problem, t1 ∼ Fr−1.

Based on these scaling considerations, the leading-order asymptotic expansion for
the velocity, pressure and temperature in the viscous layer is given by

u = Fr−1u1, v = Frv1, w = Fr−1w1,

P = Fr−1P1, T = Fr−1T1,

which leads to the following system of equations

∂u1

∂x1

+
∂v1

∂y1

+
∂w1

∂z1

= 0,

u1

∂u1

∂x1

+ v1

∂u1

∂y1

+ w1

∂u1

∂z1

= −∂P1

∂x1

+
∂2u1

∂y2
1

,

∂P1

∂y1

= cosφ,

u1

∂w1

∂x1

+ v1

∂w1

∂y1

+ w1

∂w1

∂z1

= −∂P1

∂z1

+
∂2w1

∂y2
1

,

u1

∂T1

∂x1

+ v1

∂T1

∂y1

+ w1

∂T1

∂z1

=
1

Pr

∂2T1

∂y2
1

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.12)

The ice surface height in the viscous sublayer scales with the y coordinate and hence
we can define h = H1Fr−1, where H1 ∼ 1. Then the heat transfer problem in ice can
be solved readily, and we obtain the following solution for the ice temperature:

Ti = Tw

H1 − y1

H1 + H0

. (2.13)

In the inviscid layer (denoted by subscript 2) we write an expansion of our solution
as

u = u0(y) + εu2, v = εv2, w = εw2,

P = P0(y) + εP2, T = T0(y) + εT2,

where the value of ε is obtained from scaling as follows. In the inviscid layer
x2 ∼ x1 ∼ Fr−3 and u0 ∼ 1. Then, assuming that the streamline inclination is of the
same order in both layers we have

1

v2

∼
√

u2
1 + w2

1

v1

∼ Fr−2,

therefore v2 ∼ Fr2. When we decompose the x2 component of the velocity in the
inviscid layer into a base flow part u0 and a perturbation part u2, from the continuity
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equation we obtain

u2 ∼ v2x2

y2

∼ Fr−1.

The magnitude of the pressure perturbation is the same in both layers, P2 ∼ P1 ∼ Fr−1.
Then from the balance of convective and pressure terms for the z2 component of the
momentum we obtain

1

Fr

∂P2

∂z2

∼ u0

∂w2

∂x2

and hence w2 ∼ Fr−1x2

z2Fr
.

From the viscous sublayer scaling it follows that z2 ∼ x2 and we obtain w2 ∼ Fr−2.
Therefore in the upper inviscid layer the appropriate expansion of the solution is
found in the following form (taking into account the leading order of perturbation):

u = u0(y) + Fr−1u2, v = v2Fr2, w = w2Fr−2,

P = P0(y) + Fr−1P2, T = T0(y) + Fr−1T2.

The expansion for the free-surface shape is given by f = 1+Fr−1F2. Then the system
of equations (2.5) written in the inviscid-layer scaling becomes

u0

∂u2

∂x2

+ v2

∂u0

∂y2

= 0, u0

∂w2

∂x2

= −∂P2

∂z2

,

∂P2

∂y2

= 0,
∂u2

∂x2

+
∂v2

∂y2

= 0,

u0

∂T2

∂x2

+ v2

∂T0

∂y2

= 0.

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(2.14)

We now derive the solution in the upper inviscid layer. From the system of equations
(2.14) it immediately follows that P2 = P2(x2, z2, t1). Furthermore, from the linearized
kinematic condition on the free surface, we obtain

v2 (x2, 1, z2, t1) = u0 (1) F2(x2, z2, t1). (2.15)

We consider the temperature to be constant at the free surface. Expanding the
boundary condition for the perturbation of temperature on the unperturbed free
surface (y2 = 1) we obtain

T = T0(1 + Fr−1F2) + Fr−1T2(Fr−1F2)

= T0(1) + Fr−1

(
F2

∂T0

∂y2

(1) + T2(1)

)
+ O(Fr−2) = T0(1). (2.16)

The base temperature profile T0 satisfies the boundary condition on the unperturbed
free surface, therefore

T2(x2, 1, z2, t1) = −F2(x2, z2, t1)
∂T0

∂y2

(1) . (2.17)

From continuity of the stress tensor at the free surface we obtain the relations

∂u2

∂y2

(1) =
∂w2

∂y2

(1) = 0, (2.18)

and also the pressure-displacement law

P2 = F2 cos φ − sinφ

3We

(
∂2F2

∂x2
2

+
∂2F2

∂z2
2

)
. (2.19)
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From (2.15) and (2.17), the solution to (2.14) can be obtained in the following form:

v2 = u0(y2)
∂A

∂x2

(x2, z2, t1),

u2 = −∂u0

∂y2

(y2)A(x2, z2, t2) + C1(y2, z2, t1),

T2 = −∂T0

∂y2

(y2)A(x2, z2, t2) + C2(y2, z2, t1),

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(2.20)

with functions A, C1 and C2 to be determined from the boundary conditions. Assuming
an unperturbed solution in the incoming flow we obtain C1 = C2 = 0. Furthermore,
∂A/∂x2 → 0 and A → 0 as x → −∞. Then, from the boundary conditions for the
temperature and velocity at the free surface, it follows that A = F2. An expression
for the perturbation of w can be obtained directly from (2.14) using the pressure-
displacement law (2.19). Finally we obtain the solution in the upper inviscid layer
written in terms of the free-surface displacement

v2 = 3

(
y2 − y2

2

2

)
∂F2

∂x2

, u2 = −3(1 − y2)F2,

w2 = − K

3

(
y2 − y2

2

2

) , T2 = −F2,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(2.21)

where

K(x2, z2, t1) =

∫ x

−∞

∂F2(ξ, z2, t1)

∂z2

cos φ +
sinφ

3We

(
∂3F2(ξ, z2, t1)

∂ξ 2∂z2

+
∂3F2(ξ, z2, t1)

∂z3
2

)
dξ.

(2.22)

The system (2.21) expressed in the viscous sublayer variables yields the following
boundary conditions in the viscous sublayer as y1 → ∞:

v1 = 3y1

∂F2

∂x2

, u1 = 3y1 − 3F2,

w1 = − K

3y1

, T1 = y1 − F2.

⎫⎪⎪⎬⎪⎪⎭ (2.23)

The boundary conditions on the ice surface (y1 = H1) in the viscous sublayer scaling
become

u1 = 0, v1 = 0, w1 = 0, T1 = 0,

∂T1

∂y1

= −λilTw

1

H1 + H0

− a
∂H1

∂t1
,

⎫⎪⎬⎪⎭ (2.24)

where a = PrΘil ∼ 1 for a water/ice interface. Equations (2.12) complemented with
the boundary conditions given by (2.23) and (2.24) determine the solution in the
viscous layer together with the displacements of the water and ice surfaces.

Since we have applied an asymptotic expansion in Froude number to the system of
boundary layer equations, which itself represents an asymptotic form of the Navier–
Stokes set of equations at large Reynolds numbers, the validity domain of this dual
expansion needs to be examined. The underlying asymptotic procedure requires, first
of all that Re � 1 and Fr � 1. Also, for a gravity-driven flow, Fr =

√
Re sinφ/3.

In the boundary layer equations for the vertical velocity, the u(∂v/∂x)/
√

Re term
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was neglected as it was small compared to (∂P/∂y)
√

Re. When we introduce the
double-deck scaling, the multiplier of the u2(∂v2/∂x2) in the y momentum equation
in the inviscid layer is much greater than 1 and the multiplier of ∂P2/∂y2 is much less
then 1. However the convection term should still be much smaller than the pressure
gradient term. This requirement leads to the following restriction Fr4/

√
Re �

√
ReFr−1.

Therefore, in order for the double-deck expansion to be valid, it is necessary that the
following conditions are satisfied (expressed in terms of Re and φ )

Re � 1, sinφ � Re−1/2, sin5 φ � Re−3/2. (2.25)

The first inequality has to be satisfied in order for the boundary-layer approximation
to be valid. The second inequality represents the condition Fr � 1 required in the
double-deck expansion. The third inequality has to be satisfied in order for the double-
deck expansion to be applicable within the scope of the boundary-layer equations. In
order to satisfy the last two inequalities, the angle of incline should be bounded by
Re−1/2 � sinφ � Re−3/10.

3. Linear stability analysis
Let us consider the behaviour of the viscous-layer solution for a small perturbation

of the ice surface (ε ∼ H1 ∼ F2 � H0). Then in the viscous layer, the leading-order
expansion of the perturbed solution is given by

H1 = εH11, v1 = εv11, w1 = εw11,

P1 = P0 + εP11 = (1 − y1) cos φ + εP11,

u1 = u0 + εu11 = 3y1 + εu11, T1 = T0 + εT11 = y1 + εT11;

⎫⎬⎭ (3.1)

also F2 = εF11.
For the perturbations we obtain the following system of equations:

∂u11

∂x1

+
∂v11

∂y1

+
∂w11

∂z1

= 0,

3y1

∂u11

∂x1

+ 3v11 = −∂P11

∂x1

+
∂2u11

∂y2
1

,

3y1

∂w11

∂x1

= −∂P11

∂z1

+
∂2w11

∂y2
1

,

3y
∂T11

∂x1

+ v11 =
1

Pr

∂2T11

∂y2
1

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.2)

Boundary conditions for the perturbations on the outer edge of the viscous sublayer
and for the ice surface are obtained from the expansion of (2.23), and (2.24) which
yields

v11 = 3y1

∂F11

∂x1

, u11 = −3F11,

T11 = −F11, w11 = − K

3y1

,

⎫⎪⎬⎪⎭ y1 → ∞, (3.3)

and

v11 = 0, u11 = −3H11, w11 = 0, T11 = −H11,
∂T11

∂y1

= −a
∂H11

∂t1
− H11

H0

,

⎫⎬⎭ y1 = 0 (3.4)

respectively.
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Let us take Fourier transform in x1 and z1 and use a wide hat to denote transforms
of the functions, for example

u11(x1, y1, z1, t1) =

∫∫
û11(α, β, y1, t1)e

iαx1+iβz1 dα dβ, (3.5)

where α and β are wavenumbers in the corresponding directions. Then we obtain the
following system for the transforms:

iαû11 +
∂v̂11

∂y1

+ iβŵ11 = 0, (3.6a)

3iαy1û11 + 3v̂11 = −iαP̂11 +
∂2û11

∂y2
1

, (3.6b)

3iαy1ŵ11 = −iβP̂11 +
∂2ŵ11

∂y2
1

, (3.6c)

3iαy1T̂11 + v̂11 =
1

Pr

∂2T̂11

∂y2
1

. (3.6d)

The pressure-displacement law can be written in terms of the Fourier transform of
the pressure function P11 as

P̂11 = ΦF̂11, (3.7)

where Φ is a function of the wavenumbers α and β ,

Φ = cos φ +
α2 + β2

We

sin φ

3
. (3.8)

At the leading order, the boundary conditions on the ice surface become

û11 = −3Ĥ11, v̂11 = 0, ŵ11 = 0, T̂11 = −Ĥ11,

∂T̂11

∂y1

= −a
∂Ĥ11

∂t1
− Ĥ11

H0

.

⎫⎪⎬⎪⎭ y1 = 0. (3.9)

Note that in numerical computations we apply boundary conditions at a cutoff point
y1 = ye. In this case, a better precision can be obtained if we derive one more term
in the expansion for v̂11 and use it as a correction to the boundary condition at large
values of y1. In order to do this, we write the condition for v̂11 as y1 → ∞ in the form

v̂11 = 3iαy1F̂11 + X, where X is some unknown function. Then the limit of equation
(3.6a) as y1 → ∞ leads to

−9iαy1F̂11 + 9iαy1F̂11 + 3X = −iαP̂11 + 0. (3.10)

Hence the second term in the expansion for v̂11 does not depend on y1 and the
boundary condition for v̂11 as y1 → ∞ becomes

v̂11 = 3iαy1F̂11 − iα

3
F̂11Φ. (3.11)

Also, from the solution for w2 in the inviscid layer given by (2.21) it follows that, in
terms of Fourier transforms, the boundary condition for ŵ11 as y1 → ∞ is given by

ŵ11 = − β

3α
F̂11Φ

1

y1

. (3.12)

Finally, with the correction for v̂11 taken into account, the complete set of boun-
dary conditions for Fourier transforms at the outer edge of the viscous layer can be
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written as

û11 = −3F̂11, v̂11 = 3iαy1F̂11 − iα

3
F̂11Φ,

ŵ11 = − β

3α
F̂11Φ

1

y1

, T̂11 = −F̂11.

⎫⎪⎬⎪⎭ y1 → ∞. (3.13)

3.1. Analytic solution, Pr = 1

When the base-flow velocity profile is linear, the Orr–Sommerfeld equation contains
solutions in terms of Airy functions (for example, see Hooper & Boyd 1983). In our

case, equations for û11 and T̂11 are similar when Pr = 1 and the solution can be
obtained analytically in terms of Airy functions for the system with temperature as
well.

The equation for ŵ11 in (3.2) can be rewritten in the form of the Scorer equation.
By setting

M(ζ ) = ŵ11(y1), ζ = (3iα)1/3y1 and η(α, β) =
iβ

(3iα)2/3
P̂11 =

iβ

(3iα)2/3
F̂11Φ

we obtain
∂2M

∂ζ 2
− ζM = η(α, β). (3.14)

The general solution of equation (3.14) can be written in the form

M(ζ ) = C1M1(ζ ) + C2M2(ζ ) − πη(α, β)M3(ζ ). (3.15)

Here M1 and M2 are two linearly independent solutions of the Airy equation and M3

is any particular solution of the Scorer equation. Taking Ai(ζ ), Bi(ζ ) and Gi(ζ ) as a
group of solutions for the Scorer equation (see, for example, Abramowitz & Stegun
1972) and noticing that Bi is not bounded at infinity, (3.15) can be reduced to

M(ζ ) = C1Ai(ζ ) − πη(α, β)Gi(ζ ). (3.16)

From the boundary condition for ŵ11 on the ice surface, it follows that M(0) = 0.
Therefore

C1 = πη(α, β)
Gi(0)

Ai(0)
= πη(α, β)

1√
3
.

Then for ŵ11, we obtain the following solution:

ŵ11 =

(
Ai(ζ )√

3
− Gi(ζ )

)
π

iβ

(3iα)2/3
F̂11Φ. (3.17)

If we multiply the partial derivative with respect to y1 of equation (3.6a) by iα, add
it to the partial derivative with respect to y1 of equation (3.6b) multiplied by iβ and
use the expression for ∂v̂11/∂y1 from the continuity equation, we obtain the following
equation for v̂11:

∂4v̂11

∂y4
1

= 3iαy1

∂2v̂11

∂y2
1

, (3.18)

which constitutes an Airy equation for the second derivative ∂2v̂11/∂y
2
1 . The solution

of (3.18) yields

∂2v̂11

∂y2
1

= W (α, β)Ai(ζ ), (3.19)

where the function W is to be determined from the boundary conditions.
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Using (3.17), (3.19) and the continuity equation differentiated by y1, we obtain the
following expression for the first derivative of the x1 component of velocity:

∂û11

∂y1

= − 1

iα

(
∂2v̂11

∂y2
1

+ iβ
∂ŵ11

∂y1

)
= − 1

iα

(
WAi(ζ ) + iβ

(
1√
3

dAi(ζ )

dζ
− dGi(ζ )

dζ

)
iβπF̂11Φ

(3iα)1/3

)
. (3.20)

Then we note that if Pr = 1, equations (3.6b) and (3.6d) are similar. If we multiply
the equation for temperature by 3 and subtract the equation for the x1 component of
velocity from it, we obtain

3iαy1(3T̂11 − û11) − iαP̂11 =
∂2(3T̂11 − û11)

∂y2
1

. (3.21)

Clearly, (3.21) represents a Scorer equation for (3T̂11 − û11) in terms of the variable ζ

and its solution is given by

3T − u = π

(
Ai(ζ )√

3
− Gi(ζ )

)
(iα)1/3

32/3
FΦ. (3.22)

Equations (3.17), (3.19), (3.20) and (3.22) allow us to obtain solution for û11, v̂11,

ŵ11 and T̂11 in terms of the unknown function W , and Fourier transforms of the

ice-surface displacement Ĥ11 and free-surface displacement F̂11. Now let us use all the

boundary conditions apart from the Stefan condition to derive equations linking Ĥ11,

F̂11 and W , which we can use to reduce the Stefan condition to a differential equation
containing the ice-surface displacement alone.

From the equations for û11 and ŵ11 in the system (3.6d) taken at y1 = 0 we obtain
the following expressions for the second derivatives of û11 and ŵ11:

∂2û11

∂y2
1

(0) = iαF̂11Φ, (3.23)

∂2ŵ11

∂y2
1

(0) = iβF̂11Φ. (3.24)

Substituting (3.23) and (3.24) into the expression for the third derivative of v̂11 derived
from (3.19) we obtain

∂3v̂11

∂y3
1

(0) = (3iα)1/3W
dAi(ζ )

dζ
(0) = −iα

∂2û11

∂y2
1

− iβ
∂2ŵ11

∂y2
1

= F̂11Φ(α2 + β2), (3.25)

which gives us the first relation between F̂11 and W :

W = X0F̂11, (3.26)

where

X0 = (α2 + β2)
Φ

dAi(ζ )

dζ
(0)(3iα)1/3

. (3.27)
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Next, let us consider the integral from 0 to ∞ in y1 of ∂2v̂11/∂y
2
1 given by (3.19)

with the appropriate boundary conditions (see (3.9) and (3.13))∫ ∞

0

∂2v̂11

∂y2
1

dy1 = −iαû11(∞) + iαû11(0) = 3iα(F̂11 − Ĥ11). (3.28)

At the same time from (3.19) we have∫ ∞

0

∂2v̂11

∂y2
1

dy1 =
1

3
(3iα)−1/3W. (3.29)

Equating (3.28) and (3.29) and using (3.26) to eliminate W , we obtain the second

equation linking F̂11 and Ĥ11:

F̂11 = X1Ĥ11, (3.30)

where

X1 =

⎛⎜⎜⎝1 − Φ(α2 + β2)

3
dAi(ζ )

dζ
(0)(3iα)5/3

⎞⎟⎟⎠
−1

. (3.31)

Now we can differentiate (3.22) by y1 and use the solution for ∂û11/∂y1 given by

(3.20) to eliminate ∂T̂11/∂y1 from the Stefan condition. Then, if we eliminate F̂11

and W using (3.26) and (3.30) respectively, we finally obtain a differential equation
defining the evolution of the Fourier transform of the ice surface in the following
form:

∂Ĥ11

∂t1
= G(φ, α, β, H0, a)Ĥ11, (3.32)

where the complex growth rate G is given by

G =
X1

3aiα

⎛⎜⎜⎝π
2(3iα)5/3

35/2
Φ

dAi(ζ )

dζ
(0) − 3iα

H0X1

+ X0Ai(0) −
2
dAi(ζ )

dζ
(0)πβ2

√
3(3iα)1/3

Φ

⎞⎟⎟⎠, (3.33)

and Φ , X0 and X1 are defined by (3.8), (3.27) and (3.31) respectively.
The real part of the complex growth rate is given by wi =Re(G) and the real

phase speed of the wave travelling with the wavenumber vector (α, β) is given

by cr = −Im(G)/
√

α2 + β2. The formula for the growth rate of two-dimensional
disturbances can be obtained by taking the limit of (3.33) as β → 0. Note that from
the formula for the complex growth rate it can be seen immediately that the Prandtl
number and the water/ice density ratio do not influence neutral curves of the linear
problem.

The neutral stability domain is given by wi = Re(G) = 0. For specified ice/water
properties and the angle of incline φ, the neutral curve represents a surface in (α, β, H0)
space which is given by the following expression:

H0 (α, β, We, φ) = 2
1 −

√
3A2 + A2

2

−1 +
√

3A2

1

−A1 + A3 + A4

, (3.34)
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Figure 2. Two-dimensional neutral curves for Pr = 1. (a) Dependence on φ (We=100).
(b) Dependence on Weber number (φ = 0.01).

where coefficient functions A1−4 are defined as follows:

A1(α, β, We, φ) = 2π3−5/6α2/3 dAi(ζ )

dζ
(0), (3.35)

A2(α, β, We, φ) = −(3α)−5/3 α2 + β2

dAi(ζ )

dζ
(0)

(
cosφ +

α2 + β2

We

sinφ

3

)
, (3.36)

A3(α, β, We, φ) =
Ai(0)

dAi(ζ )

dζ
(0)

α2 + β2

31/3α4/3

(
cosφ +

α2 + β2

We

sinφ

3

)
, (3.37)

A4(α, β, We, φ) = −2
dAi(ζ )

dζ
(0)

πβ2

35/6α4/3

(
cosφ +

α2 + β2

We

sin φ

3

)
. (3.38)

An expression for the neutral curve in two-dimensional flow can be obtained by
taking the limit of (3.34) as β → 0. In the two-dimensional case, it is convenient to
analyse neutral curves in the (H0, α) parameter plane for fixed values of the angle
of incline and the Weber number. Figure 2 shows two-dimensional neutral curves in
this plane for varying angle of incline (figure 2a) and inverse of the Weber number
(figure 2b) respectively. Note that under the double-deck assumptions we have We � 1
in the water flow. A decrease in the Weber number or an increase in the angle of
incline lead to damping of short-wave disturbances.

An important property of icing instability immediately visible from the two-
dimensional neutral curves is that there exists a limiting value of the initial ice height
below which the mode is stable to two-dimensional disturbances. Similar qualitative
behaviour has been observed in channel icing experiments by Gilpin (1979, 1981).

From the form of the expression for the complex growth rate (3.33) it follows that
the value of H0 has no influence on the phase speed. Figure 3 shows the growth rate
and the real part of the complex phase speed as functions of the wavenumber α for
different values of the initial ice thickness H0 in the two-dimensional case.

Note that the sign of cr is negative. This indicates that the ice-surface perturbation
may propagate upstream, at least when in the form of harmonic waves. However,
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Figure 3. Two-dimensional growth rate and phase for φ = 0.001
and We= 1000: (a) wi , (b) cr .
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Figure 4. H11(t1), two-dimensional case for φ = 0.001 and We = 1000. (a) Stable case,
H0 = 5. (b) Unstable case, H0 = 30.

in order to establish whether the same is also true for wave-packet perturbations,
one either has to perform the spatio-temporal analysis described, for example, in
Briggs (1964) or, alternatively, consider the evolution of a spatially localized initial
disturbance. We have employed the latter method and considered the evolution of
a small Gaussian disturbance to the ice shape, Hinit = εe−x2

. The real function for
H11 was obtained by inverting the Fourier transform and computing the resulting
integral numerically. Computations performed for the chosen form of the initial
disturbance demonstrate that a disturbance introduced into the flow under unstable
conditions grows and propagates upstream, whereas disturbance introduced under
stable conditions decays, but still propagates upstream. The behaviour of growing
and decaying solutions is illustrated in figure 4 for ε = 0.1.

In the three-dimensional case, the neutral curve is a surface in the (α, β, H0) space.
It is convenient then to examine the contours of this surface for fixed values of H0.
Figure 5 shows the variation of the three-dimensional neutral stability curve with the
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Figure 5. Three-dimensional neutral curve dependence on H0(φ = 0.01, We = 100); (a) large
H0, (b) small H0.
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Figure 6. Three-dimensional neutral curve dependence on φ and We: (a) dependence on
φ(H0 = 100,We = 100), (b) dependence on We(H0 = 100, φ = 0.01).

change of H0 for large (figure 5) and small (figure 5) values of H0, respectively. As
in the two-dimensional case, the domain of unstable wavenumbers increases as we
increase the initial ice height; however, there is a limiting curve which is approached
rapidly (there is no visible difference in the curves for H0 = 100 and H0 = 1000).
Furthermore, from figure 5(b) it can be seen that there is a range of H0 values where
the ice surface becomes unstable to three-dimensional disturbances before becoming
unstable to two-dimensional disturbances, i.e. if the ice layer grows from zero initial
thickness, the initial evolution of the ice surface roughness occurs at an angle to
the flow direction. This behaviour was observed experimentally by Streitz & Ettema
(2002).

The effect of the Weber number and the angle of incline is essentially the same as
in the two-dimensional case, with the increase of the angle of incline or decrease of
the Weber number leading to increased impact of surface tension, thus suppressing
short-wave disturbances (see figure 6).
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3.2. Numerical solution for Pr �= 1

In the general case Pr �= 1 and equations for temperature and horizontal velocity
cannot be combined, but the solutions for Fourier transforms û11, v̂11 and ŵ11 (which
can be obtained from equations (3.20), (3.19) and (3.17) respectively) are still valid.
In this case, it is possible to use the solution for the velocity field in terms of the
Airy functions and solve the equation for temperature numerically. This method leads
to a Scorer-type equation for temperature with a non-constant source term, which
contains a double integral of the Airy function Ai. On the other hand, if we build
a numerical solver for the Airy-type equations, then it is easy to solve the whole
problem numerically without reducing it to a single temperature equation, and thus
avoid the overhead introduced by double numerical integration of the Airy function.
This approach is more efficient than solving the temperature equation directly.

The system of linear stability equations for the double-deck flow can be converted
into a system of second-order differential equations by introducing the following set
of functions:

V =
v̂11

F̂11

− 3iαy1, VII =
1

F̂11

∂2v̂11

∂y2
1

, θ = 1 +
T̂11

F̂11

. (3.39)

Then we obtain the following system of equations for V , VII and θ:

∂2VII

∂y2
1

= 3iαy1VII ,
∂2V

∂y2
1

= VII ,
∂2θ

∂y2
1

= 3iαy1θ + V, (3.40)

with boundary conditions given by

∂VII

∂y1

(0) =
(
α2 + β2

) (
cos φ +

α2 + β2

We

sinφ

3

)
,

V (0) = 0, θ (0) = 1 − 1

X1

, VII (∞) = 0,

V (∞) = − iα

3

(
cos φ +

α2 + β2

We

sinφ

3

)
,

θ (∞) = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(3.41)

Once the numerical solution of (3.40)–(3.41) is known, we can compute the value
of ∂θ/∂y1(0) which is needed to solve the evolution equation for the ice-surface

displacement Ĥ11. The latter can be written in terms of the function θ as

∂Ĥ11

∂t1
= −Ĥ11

a

(
X1

∂θ

∂y1

(0) +
1

H0

)
. (3.42)

The real ice-surface perturbation function H11(x1, z1, t1) can then be obtained by

taking the inverse Fourier transform of Ĥ11(α, β, t1). Also, since the coefficient of Ĥ11

on the right-hand side of (3.42) does not depend on t1, the system (3.40)–(3.41) need
be solved only once on a chosen grid in (α, β) space, then the resulting matrix of

coefficients can be used to determine Ĥ11(x1, z1, t1) for any t1.
We employed a standard second-order-accurate central differences approximation

of the derivatives in order to discretize the second-order system (3.40)–(3.41). The
resulting 3-diagonal linear system of equations was solved using forwards–backwards
substitution (see, for example, Isaacson & Keller 1966). The original function
H11(x1, z1, t1) was then obtained from the Fourier image by a direct numerical
integration.
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Figure 7. The dependence of the linear problem solution on the Prandtl number (H0 = 100,
φ = 0.001 and We = 1000) (a) t = 2, (b) t = 5.

The numerically determined approximation order in y1 was found to be 1.992 on a
grid of 1000 nodes in y1 and improved on finer grids. The upper boundary conditions
have to be set at some finite cutoff distance y1 = ye; the numerically determined
convergence in ye was ∼ ye/M , where M = const < 10−3 for ye > 10. Based on the
grid and cutoff value convergence studies, we have chosen an equally spaced grid of
2000 points in y1 with ye = 20, which was used to compute all results reported in this
section.

With the numerical solution to hand, the obvious question to ask is how relevant is
our exact solution with Pr = 1. In other words, how different is the solution for the
Prandtl number for water ( ∼ 13.47 at 0 ◦C) from the solution for Pr = 1? In order to
analyse the influence of the Prandtl number, we note that it appears in the equations
only in two places, namely in the advection–diffusion equation for the temperature
(3.6d) and in the Stefan condition on the ice surface (3.9). In the latter case it appears
as the multiplier of the only time derivative left in the system, and can be removed
by rescaling the time. With this in mind let us consider the following three cases:

(a) Pr1 = 13.47, water at 0 ◦C, computed numerically at time t1 = t0
1 ;

(b) Pr2 = 1.0, analytic solution at t1 = t0
1 ;

(c) Pr2 = 1.0, analytic solution at t1 = t1
1 = t0

1Pr2/P r1.
A comparison between these three cases for a two-dimensional disturbance is shown
in figure 7 (computations for other values of the parameters yielded similar results,
therefore we use only one point in the parameter space as an illustration). It can be
clearly seen that the analytic solution for Pr = 1 with rescaled time differs negligibly
from the numeric solution for Pr = 13.47. This demonstrates that the major influence
of the Prandtl number is in the growth rate coefficient and the analytic solution can
be used when Pr �= 1, provided we rescale the time accordingly. This result essentially
means that in the linear problem, the thermal boundary layer affects the speed of
disturbance propagation but has no significant impact on the shape of disturbances.
The behaviour of three-dimensional disturbances was found to be similar.

4. Nonlinear two-dimensional flow
We shall now address two-dimensional nonlinear flow regimes in the viscous layer.

As in the linear case, we can derive an exact solution for the temperature distribution
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in the ice layer. Using this solution to eliminate the ice temperature from the boundary
conditions on the ice surface, we obtain a boundary-value problem for the nonlinear
viscous double-deck flow in the following form:

∂u1

∂x1

+
∂v1

∂y1

= 0, (4.1a)

u1

∂u1

∂x1

+ v1

∂u1

∂y1

= −∂P1

∂x1

+
∂2u1

∂y2
1

, (4.1b)

u1

∂T1

∂x1

+ v1

∂T1

∂y1

=
1

Pr

∂2T1

∂y2
1

, (4.1c)

P1 = F2 cosφ − ∂2F2

∂x2
1

sinφ

3We
, (4.1d)

u1(H1) = 0, u1(∞) = 3y1 − 3F2, (4.1e)

v1(H1) = 0, v1(∞) = 3y1

∂F2

∂x1

, (4.1f)

T1(H1) = 0, T1(∞) = y1 − F2, (4.1g)

∂T1

∂y1

(H1) = −λil

Tw

H1 + H0

− a
∂H1

∂t1
. (4.1h)

The formulation above is similar to those arising in the triple-deck theory of
boundary-layer flows at large Reynolds numbers. Therefore it seems reasonable
to employ numerical approaches that have been successfully applied in the triple-deck
theory for steady and unsteady problems of boundary-layer separation. We derive a
global-marching-type scheme for this problem, similar to the schemes used by Cassel,
Ruban & Walker (1995), but based on the conservation form of the equations. In
order to do this we introduce derivatives in pseudo-time τ to construct an iterative
process and rewrite our equations in the conservative form (see for example Chung
2002) in Cartesian coordinates as

∂ Qc

∂τ
+

∂ Ec

∂x1

+
∂Gc

∂y1

= 0, (4.2)

where the fluxes are given by

Ec =

∥∥∥∥u2
1 + P1

u1T1

∥∥∥∥ , (4.3)

Gc =

∥∥∥∥∥∥∥∥
u1v1 − ∂u1

∂y1

v1T1 − 1

Pr

∂T1

∂y1

∥∥∥∥∥∥∥∥ , (4.4)

and

Qc =

∥∥∥∥Qc1

Qc2

∥∥∥∥ (4.5)

is a function used to construct iterations which can be varied in order to obtain better
convergence. Similarly to Cassel et al. (1995), we apply arctangent transform to map
our computational domain onto a rectangle (−1..+1, 0..+1) and solve the equations
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in the transformed (ξ, η) space defined by

ξ =
2

π
arctan

(x1 − x10

A

)
, η =

2

π
arctan

(
y1 − H1(x1, t1)

B

)
, (4.6)

where x10 gives the centre of grid compression. Constants A and B can be used to
adjust grid concentration. The significant difference is that in our case the transform
is time-dependent, i.e. we are solving the flow equations on a moving grid. However
the Jacobian of the transformation J given by

J (ξ, η) =
∂(x1, y1)

∂(ξ, η)
= AB

(π

2

)2 1

cos2
(

π
2
ξ
)
cos2

(
π
2
η
) (4.7)

does not depend on time, which simplifies computations. The governing equations
retain their conservative form in the (ξ, η)-space:

∂ Q
∂τ

+
∂ E
∂ξ

+
∂G
∂η

= 0, (4.8)

where Q = J Qc and the fluxes are given by (taking into account the form of (4.6))

E = J (ξ, η)
∂ξ

∂x1

∥∥∥∥u2
1 + P1

u1T1

∥∥∥∥ (4.9)

and

G = J (ξ, η)

⎛⎜⎜⎝ ∂η

∂x1

∥∥∥∥u2
1 + P1

u1T1

∥∥∥∥ +
∂η

∂y1

∥∥∥∥∥∥∥∥
u1v1 − ∂η

∂y1

∂u

∂η

T1v1 − 1

Pr

∂η

∂y1

∂T

∂η

∥∥∥∥∥∥∥∥
⎞⎟⎟⎠ . (4.10)

The continuity equation in the new variables becomes

∂ξ

∂x1

∂u1

∂ξ
+

∂η

∂x1

∂u1

∂η
+

∂η

∂y1

∂v1

∂η
= 0. (4.11)

Finally, the pressure-displacement law can be expressed in (ξ, η)-space as

P1 = F2cosφ − sinφ

3We

∂ξ

∂x1

(
∂2F2

∂ξ 2

∂ξ

∂x1

+
∂F2

∂ξ

∂2ξ

∂x1∂ξ

)
. (4.12)

For computational purposes, we cannot set the upper boundary at η = 1, as
the boundary conditions on the outer edge of the viscous sublayer contain y1(ξ, η).
Therefore, the outer-edge boundary conditions are evaluated at a cutoff value η = ηe.
Note that in this case we have compression of the grid provided via the transform
(4.6), and ηe can be set to a sufficiently large value so that second-order corrections
to boundary conditions become unnecessary.

The boundary conditions on the ice surface and the outer edge of the viscous
sublayer are given by

u1 = 0, v1 = 0, T1 = 0,

a
∂H1

∂t1
= −∂T1

∂η

∂η

∂y1

− λil

Tw

H1 + H0

,

⎫⎬⎭ (4.13)

at η = 0 and

v1 = 3y1

∂F2

∂x1

, u1 = 3y1(ξ, η) − 3F2, T1 = y1(ξ, η) − F2, at η = ηe, (4.14)
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respectively. On the left boundary we assume undisturbed flow

u1 = 3y1(ξ, η),

v1 = 0,

T1 = −y1(ξ, η),

⎫⎬⎭ ξ → −1 (4.15)

and on the right boundary the required quantities are obtained by linear extrapolation
from the computational domain.

The algorithm applied to obtain the numerical solution can be described as follows:
(a) Consider the ice surface shape H1 to be fixed at some time step.
(b) For this fixed ice surface shape, we perform u1 − v1 − F2 global marching

iterations while the appropriate derivative in pseudo-time (used to construct the
iterations) exceeds computational precision.

(c) Once the momentum equations have converged, we perform global marching
iterations for the temperature equation for fixed ice- and free- surface shapes and
known velocity field.

(d) As a result of steps (a)–(c), we obtain the solution for the temperature field
corresponding to the fixed ice shape at a given time step. Then the Stefan condition
is used in order to find the ice surface shape at the next time step.
The momentum equations were discretized using a second order in space and first
order in pseudo-time finite-difference scheme. The iteration function Qc was set to(
u2

1, u1T1

)T
, which is equivalent to the solution of unsteady equations with a local

non-uniform time step defined by ∆τl = ∆τ/u1. This approach proved to increase the
speed of convergence towards a steady-state solution in comparison to computations
with a constant time step. A detailed description of the numerical scheme can be
found in Shapiro (2004).

In the computations presented in this section we have used fixed values for the angle
of incline (0.001) and for the Weber number (1000). In order to compare nonlinear
results with linear results for the same configuration, we note that if media properties,
the angle of incline and the Weber number are all fixed, then the only free parameter
left in the linear problem is the initial ice height H0.

Consider first flow regimes with strong linear instability. The analytic results in
the previous section indicate that the growth rate increases with the initial ice height
and that the neutral stability curve tends to a limiting curve as H0 → ∞. In order
to investigate the effects of nonlinearity in a highly linearly unstable flow we have
chosen H0 = 1000, based on the behaviour of the linear stability neutral curve. The
initial perturbation of the ice surface was taken to be of the form Hae

−x2
1 with the

amplitude Ha = 0.1.
The nonlinear disturbance evolves as a wave packet. Compared to the linear regime,

the nonlinear solution has a similar phase speed at small times. However, the growth
rate is smaller than that of the linear wave packet (figure 8). On a longer time scale, it
becomes noticeable that the nonlinear solution does not possess the strong dispersion
characteristics of the linear disturbance, and that the propagation speed of the first
peak is higher in the nonlinear case. Figure 9 shows the evolution of the ice surface
for linear and nonlinear problems at large times. Again, comparison between linear
and nonlinear solutions demonstrates lower growth rate due to nonlinearity and faster
upstream propagation of the nonlinear disturbance. Finally at 60 time units, the linear
solution represents a fully developed wave packet, while in the nonlinear solution only
one secondary peak is observed (figure 10). The free-surface shape follows distortions
in the ice surface but with slightly larger amplitude (figure 11).
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Figure 8. Linear and nonlinear ice surface, initial stages: (a) t1 = 4, (b) t1 = 10.
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Figure 9. (a) Linear and (b) nonlinear ice surface evolution, large time scale.
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Figure 10. (a) Linear and (b) nonlinear ice surface shape, t1 = 60.
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Figure 11. Comparison of free surface and ice shapes, t1 = 10: (a) linear, (b) nonlinear.
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Figure 12. Ice-surface amplitude evolution: (a) linear, (b) nonlinear.

Owing to the slow evolution of the nonlinear wave packet and its rapid upstream
propagation, it was not possible to follow the solution development on very large
time scales as the numerical grids that could be used proved insufficient to resolve
the solution far upstream. However a certain tendency of the limiting behaviour can
be seen if we consider a suitable norm of the solution and plot it as a function of
time. In order to do this, we have chosen to use the following norm:

N = ‖H‖ = max
i=1,Nx

Hi − min
i=1,Nx

Hi, (4.16)

where Nx denotes the total number of grid nodes in the x1 direction. This choice
was motivated by the fact that the absolute-value norm will not represent the total
variation of the solution. The comparison between the norm of linear and nonlinear
solutions is shown in figure 12 for the ice-surface shape. The norm of the linear
solution grows exponentially as expected; however, the norm of the nonlinear wave
packet exhibits linear growth initially and then tends to stabilize.



Ice-induced instability in free-surface flows 49

Ice

0

Water

H0

F0

x

y

T

Tw

Ti

Tf

Flow

Ta

Figure 13. Liquid/solid interface instability mechanism, initial state.

5. A mechanism for upstream propagation of icing instability
Based on the observed behaviour of icing instability, it is possible to propose a

simple physical explanation of the upstream propagation of growing distortions in
the ice surface. Moreover, one can derive such an explanation based solely on an
interaction between the free-surface disturbances and perturbations in the shape of
the ice layer. Consider a two-dimensional liquid film flow over a solid phase under
the following assumptions:

(a) The time scale of the solidification process is much larger than that of the
liquid flow.

(b) The initial distribution of temperature is linear and both the solid/liquid
interface and the free surface are flat initially.

(c) The temperature is constant on the lower boundary of the solid phase T = Tw

and also at the solid/liquid interface T = Tf and on the free surface T = Ta .
In the equilibrium state, the heat flux balance on the liquid/solid interface can be
written as

λi

∂Ti

∂y
= λl

∂T

∂y
. (5.1)

Since the unperturbed temperature profile is linear, the temperature gradients
expressed in terms of the boundary values and initial thicknesses of the solid and
liquid layers, H0 and F0, are given by

∂Ti

∂y
=

Tf − Tw

H0

(5.2)

and
∂T

∂y
=

Ta − Tf

F0

(5.3)

respectively. Consider a localized small perturbation of the ice surface, h(x), small
enough for the temperature profiles to remain linear at leading order. This assumption
can be relevant, for example, to long-wave disturbances. Since we assume that the
time scale of the solid surface growth is much larger than the time scale of the
flow, the flow in the liquid phase can be treated as quasi-steady so that the flow
field can be determined initially for a fixed shape of the solid surface h(x). This will
give us the perturbation of the free surface f (x). The problem of a liquid film flow
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over an obstacle is thoroughly investigated and it is known that perturbations in
the free surface are able to propagate upstream of the obstacle (see, for example,
Bowles 1995). This mechanism of upstream influence has no immediate relation to
hydrodynamic instabilities in liquid films. Let us consider a point x0 located in front
of the liquid/solid interface perturbation. If the solid/liquid perturbation is small,
and the temperature distribution can still be considered linear, then at the ice surface
the heat flux is no longer balanced, specifically

λi

Tf − Tw

H0

> λl

Ta − Tf

F0 + f (x0)
. (5.4)

The heat flux from the liquid side decreases as the thickness of the liquid layer increases
and therefore the liquid/solid interface has to lift up in order to compensate the heat-
flux imbalance. This in turn causes the ice perturbation to propagate upstream.

6. Conclusions
In this paper we develop an asymptotic theory for a boundary-layer-type flow in

a liquid film at large Froude numbers. We consider linear and nonlinear stability of
the flow with a half-Poiseuille velocity profile down an inclined plane covered with
an ice layer. This leads to the description of a new mode of upstream propagating
instability arising because of the presence of the ice layer.

In the linear approximation for the viscous sublayer of the asymptotic double-deck
theory, we derive an exact solution in terms of the Airy functions in the three-
dimensional and two-dimensional cases for Pr = 1. In the general case with Pr �= 1,
we provide a numerical solution for three-dimensional and two-dimensional linear
disturbances. Using the numerical solution of the linear problem, we show that our
closed-form solution is indeed applicable to the flow with Pr = 13.47 (as is the case
for water near freezing temperature), provided the time is rescaled accordingly. This
suggests that the thermal boundary layer affects the speed of propagation of small
disturbances but has no significant impact on the shape of disturbances. In the three-
dimensional case we found that the flow can become unstable to oblique waves before
it becomes unstable to two-dimensional perturbations provided the initial thickness
of the undisturbed ice layer is small. This can provide an explanation for the initial
growth of ice-surface perturbations at an angle to the flow direction as observed in
the experiments by Streitz & Ettema (2002).

For nonlinear double-deck equations, we develop a novel global-marching-type
numerical scheme and use it to study the evolution of nonlinear two-dimensional
disturbances. The computed solution demonstrates that nonlinearity tends to weaken
the dispersive properties of the individual wave components with a decrease in the
growth rates and an increase in the speed of upstream propagation.

The mode of the icing instability we discover in the flows governed by the large-
Froude-number double-deck theory does not require cooling below the freezing point
at the free surface (as is often the case in wind tunnel investigations of airfoil icing).
This instability is also distinct from the short-scale instability of supercooled liquids
resolved on the shortest scales by the freezing temperature modification via the Gibbs–
Thomson effect. We also show that the icing instability in a gravity-driven liquid layer
is different from the flow-induced morphological instabilities of the solidification
front, the latter also being able to propagate upstream under certain conditions (see,
for example Brattkus & Davis 1988; Forth & Wheeler 1989; Batchelor et al. 2000).
The icing instability in this study is due to an interaction between the free surface
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of the liquid layer and the liquid/solid interface via heat fluxes at the boundaries
combined with the pressure-induced upstream influence in the liquid phase.

The asymptotic theory in this paper inevitably has its limits, since we use
approximations to the equations of motion formally valid when both the Reynolds
and Froude numbers are large. The formal domain of its validity is discussed in detail
in § 2. However, a linear stability analysis reported in a recent paper by Shapiro &
Timoshin (2006) confirms the presence of the icing instability mode in flows with
finite values of the control parameters.

Useful discussion and helpful comments of the referees are gratefully acknowledged.
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