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Abstract

Analysis of the complete genomic sequences for several organisms indicates that 20-
25% of all genes code for transmembrane proteins (Jones, 1998, Wallin and von
Heijne, 1998), yet only a very small number of transmembrane 3D structures are
known. Hence, it is of great importance to develop theoretical methods capable of
predicting transmembrane protein structure and function based on protein sequence
alone. To address this, we sought to devise a systematic and high throughput method
for identifying homologous transmembrane proteins. Since protein structure is more
evolutionarily conserved than amino acid sequence, we predicted that adding
structural information to simple sequence alignment would improve homology
detection of transmembrane proteins. In the present work, we describe development

of a search method that combines sequence alignment with structural information.

In our method the initial sequence alignment searches are performed using PSI-
BLAST. Then profiles derived from the multiple sequence alignments are input into a
neural network, developed in this work to predict which transmembrane residues are
buried (core of the helix-bundle) or exposed (to the lipid environment). A maximum
accuracy of 86% was achieved. Moreover, for almost half of the query set, the
predicted residue orientation was more than 70% accurate. In the last step of the work
presented here, the predicted helix locations, residue orientations and loop length
scores are added to the PSI-BLAST E-value, to create a ‘combined’ classifier. A

linear equation was built for calculating the 'combined’ classifier score.

Our method was evaluated using two databases of proteins: Pfam and GPCRDB. The

Pfam database was chosen, as transmembrane proteins in this database have been



classified into various families. GPCRDB was employed as this database, though
narrow, is well-studied and maintained. Before building the ‘combined’ classifier,

PSI-BLAST sequence alignment was benchmarked using the Pfam database.

We found that our 'combined’ classifier, as compared to a classifier based solely on
PSI-BLAST, resulted in more true positives with less false positives when tested
using GPCRDB and could differentiate between GPCRDB families. However, our
‘combined’ classifier did not improve homology detection when searching

transmembrane proteins from the Pfam database.

A comparison of our ‘combined’ classifier method with two other published methods
suggested that profile-profile based searches could be more powerful than profile-
sequence based searches, even after the addition of structural information as described
here. In light of our study, we propose that combining structural information with
profile-profile sequence alignment into a 'combined’ classifier could result in a search
method superior to any existing ones for detecting homologous transmembrane

proteins.
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Chapter 1

Introduction

1.1 Membrane proteins

A wide range of fundamental biological processes such as cell signaling, transport of
membrane-impermeable molecules, cell-cell communication, cell recognition and cell
adhesion are mediated by membrane proteins. Therefore, understanding the structure
and function of membrane proteins is of high biological and pharmacological

importance.

Analysis of the complete genomic sequences for several organisms indicates that 20-
25% of all genes code for transmembrane proteins (Jones , 1998, Wallin and von
Heijne, 1998). Despite their large number and importance, less than 1% of all 3D
protein structures deposited in the Protein Data Bank (PDB) are of membrane proteins
(Berman et al., 2000), likely due to the challenges of crystallizing such proteins or
performing nuclear magnetic resonance (NMR) analyses. In light of this deficit of
empirical information, it is particularly important to develop efficient theoretical

methods for predicting the structure of transmembrane proteins.

1.1.1 The biology of membranes
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Biological membranes are composed of a lipid bilayer and serve to separate different
cellular compartments or the cell from its environment. The lipid bilayer is

impermeable to polar (soluble in water) molecules and ions.

The membrane can be represented three-dimensionally as shown in Figure 1. Each
phospholipid is composed of a negatively charged phosphate group and two tails,
which are two highly hydrophobic hydrocarbon chains. The hydrophobic effect
ensures that the tails of the phospholipids in each layer orient towards each other
creating a highly hydrophobic environment within the membrane. The charged

phosphate groups face out into the hydrophilic environment.

Phospholipid Bilayer
A Polar head

Hydrophobic
tail

Figure 1: Biological membranes.

Membrane proteins carry out most of the dynamic processes of the membrane.

Membrane lipids create the appropriate environment for the action of such proteins.

1.1.2 Types of membrane protein

Membrane proteins can be classified as either peripheral (membrane associated
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proteins) or integral, on the basis of how readily they dissociate from the membrane.
Peripheral membrane proteins are loosely associated with the membrane and usually
interact with the polar head groups of the membrane phospholipids. These proteins
can therefore be solubilized under relatively mild conditions, such as exposure to high
ionic strength. In contrast, integral membrane proteins, also termed transmembrane
proteins, are found to interact extensively with the hydrocarbon chains of the

membrane lipids (Figure 2) and can only be solubilized using detergents or an organic

solvent.
Peripheral Integral
membrane\ membrane
protein protein
Membrane<

DD
Integral / @ Peripheral
membrane -~ membrane
protein protein

Figure 2: Membrane proteins main types: peripheral membrane proteins and integral membrane
proteins.

1.12.1 Integral membrane proteins

Integral membrane proteins display particular structures that are remarkably stable
despite the high energetic cost of dehydrating the peptide bond during transfer into a
non-polar phase (White et al., 2001). This is enabled by two features. Firstly, and
perhaps most obviously, most of the amino acid side chains found within integral

membrane segments are non-polar. Secondly, the polar groups of the polypeptide
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backbone of the transmembrane segments participate in hydrogen bonds to lower the
energetic cost of membrane insertion. This second constraining feature of integral
membrane proteins is typically accomplished through two structural motifs: the
membrane-spanning alpha-helix bundle and the beta-barrel (White and Wimley,

1999).

1.1.2.1.1 Beta -barrel integral membrane proteins

The beta-barrel proteins, consist of beta-strands spanning the membrane connected by
short loops facing the periplasm and larger loops protruding outside the outer
membrane (von Heijne, 1996). The beta-strands are amphiphilic, i.e., the side chains
of the strand residues are alternately polar and hydrophobic with polar residues
toward the central pore. Thus the structure forms a pore with a polar environment (see

Figure 3 for example).

The beta-barrel proteins are found in the outer membrane of Gram-negative bacteria
and in the outer membrane of chloroplasts and mitochondria. Their function is to

facilitate diffusion of salts and polar compounds.

Figure 3: Example of beta-barrel protein, Porin (1OPF).
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1.1.2.1.2 Alpha-helical integral membrane proteins

The alpha-helical integral membrane proteins consist of alpha-helices, 17-25 residues
in length, which cross the membrane once or several times.
There are two types of alpha-helical integral membrane proteins:

e Bitopic proteins (or membrane-anchored proteins), which cross the membrane
once (or sometimes twice), exposing water-soluble domains on the
extracellular and cytoplasmic sides. Such proteins typically act as cell surface
markers, adhesion factors or receptors. The cytoplasmic domains often play a
role in cell signaling (e.g., tyrosine kinases) or connect to the cellular

cytoskeleton.

e Polytopic (multi-spanning) alpha-helical membrane proteins have more than
one alpha-helical transmembrane segment and the helices are arranged into a

bundle (Figure 4).

Figure 4: Example of an alpha helical bundle integral membrane protein — Bacteriorhodopsin.

In the current work we study only polytopic alpha-helical integral membrane proteins,

therefore these proteins hereafter are referred to simply as ‘transmembrane proteins’.
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1.2 Transmembrane proteins

1.2.1 Transmembrane protein functions

Transmembrane proteins are involved mainly in the following cellular processes:

Channels: Channel proteins mediate passive transport through the membrane,
but are typically highly selective. For example, ion channels play a key role in

the nervous system and in homeostasis of most cells.

Transporters: Transporter proteins mediate active transport of solutes across
the membrane. An example of active transport is the transportation of sodium
out of the cell and potassium into the cell by the sodium-potassium pump; this
process is mediated by ATP energy. There are also transporters, such as the
sodium-calcium exchanger, which transport one of the two substances in the
direction of its concentration gradient and yields the energy derived from this

transport to transport the other substance against its concentration gradient.

Receptors: Are transmembrane proteins that take part in communication
between the cell and the outside world. Extracellular signaling molecules
attach to the receptor, triggering signaling pathways within the cell. The

process is called signal transduction.

Polytopic alpha—helical membrane receptors can be sub-categorized into two

classes: G-protein-coupled receptors and ion channel-linked receptors.

G-Protein Coupled receptors (GPCRs), a pharmacologically important class,

which includes receptors for hormones, neurotransmitters, growth factors,



23

light and other diverse ligands (Dewji and Singer, 1997). GPCRs possess
seven transmembrane helices. After a ligand binds the GPCR, it causes a
conformational change in the GPCR, which then activates G-protein by

exchanging its bound GDP for a GTP.

lon channel-linked receptors, also called ligand-gated ion channels, are
involved in rapid signaling events mostly found in electrically excitable cells

such as neurons.

e Oxidative phosphorylation and photosynthesis transmembrane processes:
Helical transmembrane proteins are involved in energy generation processes,

typically incorporating cofactors and mediating oxidation of substrates.

1.2.2 Transmembrane protein folding process

While water-soluble proteins exist in only one kind of environment, transmembrane
proteins are present in three different environments: the hydrophilic environment, the
water-membrane interface and the inner-membrane phase. Accordingly, the
transmembrane protein folding process differs from that for soluble proteins (White
and Wimley, 1999). The interactions of transmembrane proteins with the lipid are
important for folding and stability (Lee, 2004). Possible driving forces for helix-helix
association in the lipid bilayer are van der Waals interactions and interhelical polar
interactions, including hydrogen bond and electrostatic interactions (Popot and

Engelman, 2000).

The folding process of transmembrane proteins comprises two stages (Engelman et

al., 2003). The first stage involves formation of stable helices across the hydrophobic
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region of the membrane lipid bilayer. In the second stage, the helices interact to
generate a functional membrane protein (Popot and Engelman, 1990). Assembly is
carried out by a translocon apparatus and involves the transient attachment of an
active ribosome to a translocon embedded in the membrane. As soon as the protein is
synthesized into the translocon and transferred into the membrane, the apparatus
disassembles leaving the folded protein within the membrane (White and

Wimley,1999).

1.2.3 Transmembrane protein structure

The secondary structure, i.e. the topology of transmembrane proteins, describes which
segments of the amino acid sequence span the membrane, the number of spanning
segments, and which ones protrude into the respective compartments on opposite
sides of the membrane (i.e., in-out location of the N and C termini relative to the
membrane). Knowing a protein’s topology is a significant step toward understanding
its structure and function. A topological description has also been referred to as 'low

resolution structure' (Kernytsky and Rost, 2003).

When alpha-helical transmembrane proteins are grouped according to topology,
differences between various species can be observed. In general eubacteria, archaea,
fungi and plants have a large collection of membrane proteins with 6 or 12
transmembrane segments, whereas in C. elegans and Homo sapiens the predominant

topology is membrane proteins with 7 segments (Wallin and von Heijne ,1998).
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Out

Membrane

Figure 5: Schematic presentation of a transmembrane protein with five membrane spanning helical
segments (blue boxes). The outer membrane regions of the protein are drawn in light blue (the loops).
The membrane is drawn in green. “In” designates the inner side of the membrane and “Out” designates
the outer side.

The transmembrane protein topology can be represented as boxes spanning the
membrane connected by protein loops, with each box representing a transmembrane
helix structure. The N-terminus and the C-terminus can be on either side of the

membrane (Figure 5).

Alpha-helical transmembrane proteins are comprised of a number of transmembrane
helices. Classically, the helices were considered to assemble mostly in parallel or anti-
parallel to one another and perpendicular to the membrane. However, recent studies
have revealed deviation from this structure. It was found that about 50% of
transmembrane proteins contain non-canonical elements (e.g., wide turns, tight turns,
and kinks) (Riek et al., 2008) and 10% contain reentrant loops, which go half way

through the membrane (Viklund et. al, 2006).

Yohannan et al. (2004) showed that 60% of transmembrane helix deformations occur
at proline residues. Yohannan et al. proposed an evolutionary hypothesis whereby a
mutation to proline initially induces a kink, and then further mutations occur locking

the kink in the structure. In an extension of this hypothesis, the premise is that
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nonproline kinks are places where prolines have been removed during evolution.

Reentrant loops are mostly found in ion and water channel proteins and less in cell
surface receptors. It was shown that the difference in residue composition makes the
reentrant loops less hydrophobic than the transmembrane helices. This reduced
hydrophobicity makes the reentrant loops less stable inside the hydrophobic
environment of the lipid membrane (Changhui and Jingru, 2010). An independent
study found that reentrant loops have very low hydrophobicity around the deepest
point buried in the membrane but relatively high hydrophobicity close to the
membrane surfaces (Yan and Luo, 2010). Moreover, the residues situated in reentrant
regions are significantly smaller on average as compared to those in other parts of the
protein. These unique features allow reentrant loops to be detected based on amino
acid composition (Viklund et al., 2006). Additionally, reentrant loops often contain

functional motifs that differentiate them from regular helices (Lasso et al., 2006).

1.3 Empirical approaches to solving transmembrane

protein structure

The first three-dimensional structure of a transmembrane protein, Rhodopseudomonas
viridis photosynthetic reaction centre, was solved in 1985 wusing X-ray
crystallographic analysis by Deisenhofer, Michel and Huber, who won a Nobel prize
for their work (Deisenhofer et al., 1985, Deisenhofer and Michel, 1989). Since then
the three-dimensional structures of only 263 transmembrane proteins have been
solved (von Heijne , 2011). Oberai et al. have estimated that ~1700 transmembrane

proteins structures are needed to cover each structural family (Oberai et al., 2006). At
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the current pace, as noted by White (2009), it will take approximately 30 years to

obtain these 1700 membrane protein structures.

The number of empirically determined transmembrane protein structures is small
because of the difficulties involved in expressing and crystallizing these proteins
(Grisshammer and Tate, 1995). As discussed above, transmembrane proteins are
hydrophobic in the transmembrane regions and consequently are difficult to unfold
and refold in vitro. In addition, transmembrane proteins are typically only expressed
at low concentrations and therefore it is necessary to over express them in a
membrane system, which has proved very difficult. There are various expression
systems but all are technically problematic. The technical problems include low vyield,
post-translational modification, low stability and partial proteolysis (Grisshammer and

Tate, 1995).

The difficulty in determining high-resolution structures of membrane proteins has
prompted development of alternative methods. The idea is to obtain structural hints
concerning the packing of transmembrane helices, which can be used to build and
model the whole structure of the protein. Several experimental approaches are used to

obtain such structural hints and are summarized in the next sections.

1.3.1 Fusion with a reporter protein

The most common procedure for determining transmembrane protein topology is to
fuse the C-terminal part of the protein with a reporter protein. The reporter proteins
are chosen according to properties, such as subcellular location or enzymatic activity,

and typically are active only in a specific compartment of the cell (van Geest and
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Lolkema , 2000). Constructs are created in which the gene encoding the reporter
protein is fused at different points in the gene encoding the membrane protein; the
resulting set of fusion proteins can be exploited to determine at which side of the
membrane the fusion sites reside and gain insight into the topology of the membrane

protein.

1.3.2 Proteolytic digestion in situ

In a typical approach, proteolytic enzymes are used to cut the loops outside the
membrane. It is then possible to analyze the segments protected by the membrane

using SDS-PAGE (Kuroiwa et al., 1996) .

Alternatively, the rhomboid family of intramembrane proteases can be used. These
enzymes cleave specifically transmembrane regions in a specific sequence, enabling
identification of membrane spanning segments that contain the target site (Strisovsky

et al., 2009).

1.3.3 Site directed mutagenesis

In this approach, residues hypothesized to be important for structure or function, such
as N-glycosylation sites, Cys residues, iodinatable sites and antibody epitopes, are
changed using site directed mutagenesis and the resulting mutant protein analyzed
(van Geest and Lolkema , 2000). In addition, tags added at different positions in the
protein can help predict the overall topology. Furthermore, antibodies directed against
the loop regions can be exploited to determine if a loop is positioned on the other side

of the membrane in the mutant protein.
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Despite the advances in empirical methods for determining structure, in silico
methods for predicting structure are required to better our understanding of diverse
transmembrane proteins. Currently available computational tools for predicting

structure of transmembrane proteins will be discussed in the next section.

1.4 Predicting structural features of transmembrane

proteins

At present there is no general-purpose method for predicting three—dimensional (3D)
structures for transmembrane proteins. For water-soluble proteins the most reliable
methods for predicting 3D structures use comparative or homology modeling.
Homology modeling is based on the identification of known protein structures that
resemble the structure of the query sequence, and on the production of an alignment
that maps residues in the query sequence to residues in the template sequence. The
sequence alignment and template structure are then used to produce a structural model
of the query protein. As protein structures are more conserved than protein sequences,
detectable levels of sequence similarity are typically associated with significant
structural similarity (Marti-Renom et al., 2000). The quality of the homology
modeling depends on the accuracy of the sequence alignment as well as the quality of

the template structure.

In the early 90s, efforts were made to comparatively model the rhodopsin protein
from the GPCR family, based on templates derived from bacteriorhodopsin. However,
it became clear after the crystal structure of rhodopsin was available that despite

similarities in the overall topology and approximate positioning of the helices, the
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structure of bacteriorhodopsin is substantially different in terms of helix packing
arrangements. The limited sequence similarity observed between the rhodopsin and
bacteriorhodopsin sequences also contributed to the inaccuracy of the predicted
structural models. At the time, it was concluded that homology modeling alone could
not provide accurate structures for GPCRs (Beeley and Sage, 2003). More generally,
it was pointed out that a lack of experimentally determined transmembrane structures
makes it difficult to find suitable template structures when performing homology

modeling.

Our appreciation of the complexity of transmembrane protein 3D structures is
growing as more structures are solved. For example, constraints on the length of the
transmembrane helices and the packing angles are not as strict as previously thought
(Gimpelev et al., 2004). Transmembrane proteins containing non-canonical elements
(e.g., wide turns, tight turns, kinks and reentrant loops) have been characterized (Riek
et al., 2001, Riek et al., 2008, Viklund et al., 2006). Unexpectedly, it was also shown
that the 3D structure of transmembrane proteins is not determined purely by protein
sequence but is influenced by insertion into the membrane, which is implemented by
the translocon complex (Goder et al., 2004). Furthermore, functional transmembrane
proteins could be part of larger complexes, such as photosynthetic reaction center of
the bacterium Rhodopseudomonas viridis, which consists of four subunits L, M, H,
each containing 5 alpha-helices and a cytochrome (Deisenhofer et al., 1985). Finally,
there have been reports of transmembrane proteins that accommodate water molecules

(Renthal, 2008) or other ligands and form more diverse structures.

These complexities notwithstanding, methods have been developed for predicting
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structural features of transmembrane proteins that can contribute toward predicting
3D structure. Topology predictions provide initial structural information, but the next
step towards full 3D modeling requires delineation of the orientations of each
transmembrane helix, i.e., the identification of which residues are exposed to the lipid
phase and which are packed against the interior of the transmembrane bundle. In
addition, predicting structural features such as kinks and reentrant loops is also crucial

for full 3D modeling.

1.4.1 Transmembrane protein topology prediction

Consideration of the strong physiological constraints on transmembrane proteins
facilitates prediction of which regions are helical and membrane spanning. As
described above, the membrane spanning segments have to possess hydrophobic side
chains interfacing with the lipids because the lipid bilayer is highly hydrophobic. In
summary, constraints imposed by the membrane reduce the number of possible

conformations of the protein.

Methods for predicting the topology of transmembrane proteins rely on two key
topological features. The first is that transmembrane helices are generally formed by
hydrophobic stretches of residues. The second is that regions flanking the
hydrophobic stretches contain predominantly positively charged residues, especially
on the intracellular side of the membrane: “the positive-inside” rule, whereby short
loops enriched with Lys and Arg residues are typically on the intracellular side and
vice versa (von Heijne, 1999, Wallin and von Heijne, 1998). Additional features have
been identified as characteristic of helix-bundle membrane proteins and are exploited

when predicting topology. For instance, connecting loops between membrane helices
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are typically shorter than 60 residues (Wallin and von Heijne, 1998).

More than 30 methods have been developed for predicting the topology of helix-
bundle membrane proteins (Kernytsky and Rost, 2003). Below is a brief,
chronological summary of the main methods, with particular emphasis given to

advances made over the last two decades.

Initially, hydrophobicity scales were developed (Kyte and Doolittle, 1982, Engelman
et al., 1986). These scales classify amino acids according to propensity to contact
polar versus non-polar environments, with a high hydrophobicity score indicating
tendency to interact with non-polar environments i.e., the membrane. One way of
assigning a hydrophobicity score to a given amino acid is to evaluate its hydrophilic
and hydrophobic tendencies (Nozaki and Tanford, 1971, Kyte and Doolittle, 1982,
Fauchere and Pliska, 1983, Engelman et al., 1986, Radzicka and Wolfenden, 1988,
Karplus, 1997). Another approach involves analyzing existing protein structures and
calculating the probability of a given amino acid to be exposed to the lipid (Wallin et

al., 1997).

Taking advantage of the hydrophobicity scales they devised, Kyte and Doolittle
developed a “moving-window” approach to identify membrane segments. A window
of 19 residues is moved along the protein sequence and the sum total of the 19
hydrophobicity scores is calculated for each window. Based on analysis of known
structures, Kyte and Doolittle designated a threshold value, above which a window is
considered as containing a membrane helix. This approach was designed only to
identify transmembrane segments and did not address the inside-outside location of

segments relative to the membrane.
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The first major advance in transmembrane topology prediction was the TopPred
method described by von Heijne (1992). Like previous approaches, TopPred exploited
hydrophobicity scales to predict transmembrane segments, but for the first time, these
predictions were combined with a simple topological rule: the positive-inside rule
(von Heijne, 1992). The observation that there is a strong bias for positively charged
residues on the inside facing segments of a transmembrane protein provided a means
to identify which predicted topology is most likely correct from a small number of
alternatives. Even though the starting point for TopPred was a basic hydrophobicity

plot, this method stands out as the first transmembrane topology prediction method.

The MEMSAT method (Jones et al., 1994) generates statistical tables (log
likelihoods) from membrane protein data and utilizes a dynamic programming
algorithm to evaluate membrane topology models by expectation maximization. The
propensity of each amino acid to be in one of five states (inside loop, outside loop,
inside helix end, helix middle and outside helix end) is derived from experimentally
well-described membrane proteins. Using these propensities, MEMSAT calculates the
most probable length, location and topological orientation for each transmembrane

segment.

Similarly, TMAP (Persson and Argos, 1994) uses multiple sequence alignments to
produce a preference scale. The scores are calculated by statistically analyzing known
membrane proteins and serve to locate transmembrane segments. A notable advantage
of this method is incorporation of an algorithm for splitting long hydrophobic regions
into pairs of transmembrane helices, such regions are a common problem for other

methods.
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PHDhtm (Rost et al., 1996) was the first method to use neural networks (explained in
Appendix A) for predicting transmembrane helices. The method initially employs
information derived from multiple sequence alignments as input for a system of
neural networks. The neural network serves to calculate the likelihood of each
residue residing in a transmembrane helix or a loop. Then protein regions of 18
residues are searched for having the highest propensity to be in a transmembrane
helix. The preferences are input to a dynamic programming algorithm that identifies

the segments most likely to span the membrane.

TMHMM (Sonnhammer et al., 1998) and HMMTOP (Tusnady and Simon, 1998)
were the first methods based on Hidden Markov Models (see section 1.5.1.6).
TMHMM implements a cyclic model with seven states for transmembrane helix.
HMMTOP uses a Hidden Markov Model to distinguish between five structural states
(helix core, inside loop, outside loop, helix caps (C and N) and water-soluble
domains). The states are connected by transfer probabilities. Dynamic programming is
used to match a sequence against the model in order to find the most probable match.
Prodiv — TMHMM was developed by Viklund and Elofsson (2004) and incorporates

the best features of the earlier TMHMM method.

The first consensus approach was developed by Nilsson et al., (2002). Consensus
approaches derive from the consensus of topology prediction methods, in this case the
methods were: TMHMM, HMMTOP, MEMSAT, PHDhtm and TopPred. Nilsson et
al. reported that their approach correctly predicts topology for approximately 90% of
the structurally determined membrane proteins from both prokaryotic and eukaryotic

organisms, a higher accuracy than achieved by any previous method. Furthermore,
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they demonstrated that a consensus topology can be predicted for 70% of all
membrane proteins in a bacterial genome and for ~55% of all membrane proteins in

the eukaryotic genome (Nilsson et al., 2002).

Three other consensus methods have been developed. The first by Fariselli et al.
(2003), who combined a neural-network method with two different HMM methods
for predicting topology. The second by Taylor et al. (2003), who combined five
methods for predicting topology. The third called MetaTM, was developed recently
by Klammer et al. (2009), who combined six transmembrane helix prediction
methods: TopPred, PHDhtm, HMMTOP, TMHMM, PolyPhobius and MEMSAT.
Klammer et al. claim MetaTM achieves the greatest accuracy yet, with an average

prediction accuracy of 86.3%.

Kall et al. (2004) developed a method called Phobius, a HMM-based method that
simultaneously predicts transmembrane regions and signal peptides. This advance
solved the problem of discriminating between signal peptides and transmembrane
helices. PolyPhobius, a method developed by the same group (Kall et al., 2005),

incorporates homology information and further increases the accuracy of predictions.

Support Vector Machines (SVM) have also been used to predict transmembrane
protein topology. For example, Yuan et al. (2004) used an SVM for per-residue

prediction of helices, with a sliding window.

The MINNOU method (Cao et al., 2006) is considered an alternative strategy to
predicting topology for membrane proteins. Instead of using evolutionary sequence

profiles (see section 1.5.1.4), this method uses prediction-based ‘structural profiles’
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comprising predictions of relative solvent accessibility and secondary structure for
each residue. Though evolutionary profiles in the form of a multiple alignment are
indeed used to derive these simple 'structural profiles', the alignments are not used
explicitly for the membrane domain prediction and the overall number of parameters

in the model is significantly reduced.

MEMSAT3 was described by Jones (2007) and employs a neural network in addition
to the dynamic programming algorithm, the latter devised for MEMSAT (1994). The
advanced MEMSAT3 uses sequence profiles to train the neural network, in order to

produce a consensus topology score across an aligned family of sequences.

Recent prediction methods also consider reentrant loops, which as mentioned above
were only appreciated recently. Although the hydrophobic profiles of reentrant loops
and transmembrane helices are similar, predicting both structures simultaneously can
corrupt topology prediction. Therefore, it was important to develop methods that can

differentiate between the structures. Two such methods exist:

OCTOPUS developed recently by Viklund and Elofsson (2008) uses a combination of
hidden Markov models and artificial neural networks. OCTOPUS predicts the correct

topology for 94% of the sequences.

MEMSAT-SVM was developed recently by Nugent and Jones (2009). The method is
a support vector machine-based (SVM) TM protein topology predictor with reported
topology prediction accuracy of 89%. The method discriminates between water-
soluble and TM proteins with zero false positives. MEMSAT-SVM also attempts to

differentiate between signal peptides and reentrant helices, and predicts these
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structures with an accuracy of 93% and 44%, respectively.

1.4.2 Predicting helix orientation

The orientation of helices in the lipid membrane (Figure 6) is defined by the helix tilt
(z) and rotation (p). The value p is defined as the angle between the perpendicular
vector (r) from the helical axis (H) to the selected Ca reference residue (blue circle).

The value 7 is the angle formed between helical axis (H) and the membrane normal

(N).

Lipid exposure prediction provides information about the probable orientation of the
helices. Early attempts to predict helix orientation employed the hydrophobic moment
concept (Eisenberg, 1984, Rees et al., 1989). The hydrophobic moment is essentially
a vector pointing from the helix axis to the most hydrophobic surface of the helix. In
these methods, the orientations of transmembrane helices were predicted on the
assumption that the helical hydrophobic moments should point out into the lipid
phase. Later, however, it was found that hydrophobic moments are poor indicators of
the angular orientation of transmembrane helices due to the fact that hydrophobic
residues often face both the core of the protein and the lipid (Stevens and Arkin, 1999,

Rees and Eisenberg, 2000).
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Figure 6: The definition of helix tilt (z) and rotation (p). The value p is defined as the angle between
the perpendicular vector (r) from the helical axis (H) to the selected Ca reference residue (blue circle).
The value z is the angle formed between helical axis (H) and the membrane normal (N).

In later studies, statistical analyses were conducted using known high-resolution
structures of transmembrane proteins with the goal of defining the lipid exposure
propensities for each residue in a given transmembrane helix (Donnelly et al., 1993,
Donnelly 1994). The work of Donnelly is notable, in that it described very clearly the
utility of sequence conservation in discriminating between lipid exposed and buried
residues. Lipid exposed residues, though required to be highly hydrophobic, are not
under any significant steric constraints and so can be evolutionarily quite variable. In
contrast, buried residues though also typically hydrophobic, are indeed subject to
steric constraints and so are commonly highly conserved evolutionarily in sequence
alignments. Unfortunately, these studies were based on a dataset of insufficient size to

generate good statistics.

Taking an alternative approach to defining the lipid exposure propensities, Pilpel et al.
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(1999) proposed a knowledge-based scale. The authors made the assumption that
residues which tend to be exposed to the membrane (as opposed to buried within) will
be more frequent in the transmembrane segments of single spanning transmembrane
proteins than in multi-spanning proteins, whereas residues that prefer to be buried in

the transmembrane bundle interior would exhibit the opposite trend.

Other, more advanced methods developed for predicting residue orientation in
transmembrane proteins (Beuming and Weinstein, 2004, Adamian and Liang, 2006,
Hildebrand et al., 2006, Yuan et al., 2006, Park et al., 2007, Illergard et. al., 2010)

will be discussed in Chapter 2.

1.4.3 Predicting kinks and reentrant loops

A significant proportion of transmembrane proteins contain kinks (Riek et al., 2001).
Yohannan et al. (2004) developed an algorithm that predicts kinks with an accuracy
of > 90% by identifying peaks of proline in sequence alignments, as they had
surmised that 50% of the kinks are due to proline. Another method, based on
sequence pattern descriptors, predicts kinks and also other non-canonical helical
conformations (Rigoutsos et al., 2003). More recently, Hall et al. (2009) employed
molecular dynamic simulation using isolated helices with the goal of identifying the
position of helical kinks in transmembrane helices. The authors reported a capacity to
identify about 79% of the proline kinks. Furthermore, recently, Langelaan et al.
(2010) developed a method for predicting kinks using machine learning and
concluded that although kinks are somewhat predicted by sequence, kink formation
appears to be driven predominantly by other factors. Langelann et al. showed that

although the proline amino acid has been advanced as being essential for kinks
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formation (Yohannan et al., 2004) there are proline residues that do not induce a kink
and there are kinks in the absence of proline. Langelann et al. remarked that
Yohannan et al. tested their algorithm on a relatively small set of transmembrane

proteins.

More than 10% of transmembrane proteins contain reentrant loops (Viklund et al.,
2006). A reentrant loop goes part way through the membrane and turns and exits the

membrane in the same side it has entered.

Very few reentrant loop predicting methods exist. Viklund et al. (2006) developed the
method TOP-MOD for predicting reentrant regions with an accuracy of ~70% based
on their amino acid composition. TMLOOP also identifies re-entrant loops (Lasso et
al., 2006). As mentioned above, the method OCTOPUS developed by Viklund and
Elofsson (2008) and the method MEMSAT-SVM developed by Nugent and Jones
(2009) can predict the existence of reentrant loops in transmembrane proteins as well

as their topology.

Other methods that predict the existence of motifs such as signal peptides and signal

anchors are SignalP (Bendtsen et al., 2004) and TargetP (Emanuelsson et al., 2007).

1.4.4 Transmembrane protein 3D structure prediction

Various attempts have been made to develop prediction methods for transmembrane
protein 3D structure. Taylor et al. (1994) adapted some programs originally
developed for predicting water-soluble protein structures to derive a method for
predicting 3D structures of integral membrane proteins. The method uses the

“variphobicity” (evolutionarily variable and hydrophobic) faces of transmembrane
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helices to predict the structure. The method was successfully applied to two protein

family sequence alignments (bacteriorhodopsin and rhodopsin).

Helix-helix associations were modeled by Adams et al. (1996), on Glycophorin A,
using an energy function which searches for the best possible packing interactions
between helices. In 2001, a modeling approach was developed by Nikiforovich et al.
(2001). Their approach combined helical packing, based on the bacteriorhodopsin
template, and selection of low-energy conformers for loops that are closest to the
bacteriorhodopsin X-ray structure. Using this method the authors were able to

reproduce the bacteriorhodopsin structure.

Fleishman and Ben-Tal (2002) used knowledge of residue environment preferences to
predict the likely arrangement of transmembrane helices, on the basis of a rule: “small
residues go inside”. This method predicted successfully the native structure of
transmembrane protein glycophorin A. In the same year Ledesma et al. (2002)
produced a model for Uncoupling protein 1 (UCP1), using a computational docking
method. Later Chen and Chen (2003) used a Monte Carlo method for protein folding

and successfully predicted the seven helix bundle structure of rhodopsin 1.

Pellegrini-Calace et al. (2003) developed a method (FILM) for predicting small
membrane protein structure based on a method previously developed for predicting
tertiary structure of water-soluble proteins (FRAGFOLD). The method is based on the
assembly of super secondary structural fragments taken from a library of proteins with
known structure. A standard simulated annealing algorithm is used to narrow the
search of conformational space, which pre-selects fragments from a library of highly

resolved protein structures. The method was applied to small membrane proteins of
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known structure and was able to predict with a reasonable accuracy level the helix

topology and protein conformation.

Another modification of a water-soluble protein modeling program (ROSETTA) was
developed by Barth et al. (2007), which attained near atomic accuracy for several
small membrane proteins. More recently, the same group developed a method for
predicting the structure of large transmembrane proteins. The newer method
constrains helix-helix packing arrangements at particular positions according to
predictions from sequence analysis or in line with empirical data and produced near-

native models for 9 out of 12 tested proteins (Barth et al., 2009)

Fuchs et al. (2009) showed that applying water-soluble methods that predict helix-
helix interaction (contact map) to membrane proteins was not very effective. To
address this issue, they developed a method (TMHcon) based on neural networks,
which predicts helix-helix contacts in transmembrane proteins. In addition to the input
features commonly used for contact prediction of soluble proteins, such as windowed
residue profiles and residue distance in the sequence, the network also incorporates
features that apply to membrane proteins only, such as residue position within the
predicted transmembrane segment and orientation toward the lipid environment. The
obtained neural network can predict contacts between residues in transmembrane

segments with nearly 26% accuracy.

TMhit is another method that predicts helix-helix interaction in transmembrane
proteins (Lo et al., 2009). The method incorporates contact propensities, various
sequence, physico-chemical, and structural information in a two-level architecture

using support vector machines (SVMs). In the first level, contact residues are
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predicted and their pairing relationship or connectivity is further predicted in the

second level.

Recently Nugent and Jones (2010) developed a novel approach to predicting lipid
exposure, residue contacts, helix-helix interactions and the optimal helical packing
arrangement of transmembrane proteins. They employed molecular dynamics data to
label residues potentially exposed to lipid, trained and cross-validated a support vector
machine (SVM) classifier to predict for each residue the probability of lipid exposure,
reporting an accuracy rate of 69%. The resulting information is combined with
additional features to train a second SVM to predict residue contacts, which in turn
are used to determine helix-helix interactions. An accuracy rate of up to 65% was

reported when using stringent cross-validation conditions for a non-redundant test set.

Despite this progress in predicting the 3D structure of membrane proteins, more
advanced methods are needed that are reliable and fast enough to apply on a genomic

scale.

1.5 Computational approaches to characterizing

proteins

1.5.1 Sequence similarity methods

If two proteins have diverged from a common ancestor they are defined as
homologous proteins and are likely to have similar sequences. Computational
sequence comparison detects homologous proteins; it takes as input two sequences

and outputs the similarity between them. Sequence comparison can also serve to
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delineate the most probable set of point mutations, deletions and insertions that define

the evolutionary relationship between the two proteins.

Computational approaches to sequence alignment generally fall into two categories:
global alignment and local alignment. Global alignments span the entire length of the
query sequence. Conversely, local alignments identify regions of similarity within

long sequences that are often widely divergent elsewhere.

The algorithm for calculating either local or global sequence similarity does not give
equal weight to each amino-acid aligned. Instead, scoring matrices are used, which
give dissimilar weights to replacement of different amino acids. The most commonly
used scoring matrices are PAM (Dayhoff et al., 1978) and BLOSUM (Henikoff and

Henikoff, 1992), described in detail in Appendix B.

In addition, sequence alignment methods can be divided into three classes based on

the information used for the alignment:

1. Sequence-sequence alignments are pairwise methods that compare sequences

one against one.

2. Profile-sequence methods compare one sequence to an aligned family of

sequences.

3. Profile-Profile methods compare two aligned families of sequences.

Pairwise methods align the sequences assuming that all amino acids are equally
important. However, in reality, this is not the case; at some positions the amino acids
are conserved while at others they are not. The conserved amino acids are likely to be

more important for the protein structure and function. Profile based methods exploit
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this information for the alignment and therefore, are more sensitive than pairwise

methods. The next sections summarize the main algorithms for sequence alignment.

1.5.1.1 The Needleman -Wunsch algorithm

The Needleman-Wunsch algorithm performs global alignments of pairwise
sequences. The Needleman-Wunsch algorithm applied dynamic programming for the
first time to sequence comparison (Needleman and Wunsch, 1970). It maximizes the
number of matches between the sequences along the entire length of the two
sequences, thus the algorithm aligns the two sequences from the first residue to the
last even if only the middle of the sequences is similar. Insertions and deletions are

considered by conferring appropriate costs to gap opening and gap extensions.

This method is applied in the current thesis and therefore is explained in more detail.

The Needleman-Wunsch algorithm starts with initialization of the score matrix: a
matrix with M+1 columns and N+1 rows is created where M and N correspond to the
length of the sequences to be aligned. Then the matrix is filled: scores for aligned
residues are specified by the designated substitution matrix. Substitution matrices
describe the evolutionary rate at which one character in a sequence changes to another

character over time, where S(i,j) is the similarity score for residues i and j.

In the next step, for each position, M;; the maximum score at position i,j is calculated.

In the original publication from 1970, gap is not penalized and the maximum score is:

Mij = MAX hiks { M ja + Sij (AILB]), Miak + Sij (ALB))} (1)

When adding gap penalty (d) to the algorithm, which is a negative score, the
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maximum score is:

Mi,j = MAX{ Mi-l, 1t Si,j (Ai,Bj), Mi,j-l +d , Mi-l,j +d} (2)

In the last step traceback is performed. The traceback begins with the last cell to be
filled with the score, i.e., the bottom right cell. Traceback takes the current cell and
looks to the neighbor cells that could be direct predecessors. There are three possible
moves: diagonally (toward the top-left corner of the matrix), up or left. The algorithm
for traceback chooses as the next cell in the sequence one of the possible
predecessors. Continuing with the traceback step, the algorithm gets to a position in
column 0, row 0 which tells us that traceback has completed with the best scored
global alignment. The alignment is deduced from the values of cells along the

traceback path, taking into account the values of the cell in the traceback matrix.

A similar algorithm to Needleman-Wunch is the Smith-Waterman algorithm, which

applied dynamic programming to local alignment of sequences.

1.5.1.2 The Smith-Waterman and FASTA algorithms

The Smith-Waterman algorithm (Smith and Waterman, 1981) performs local
alignments of pairs of sequences, i.e. it identifies the most similar region shared
between two sequences. The method employs a dynamic programming algorithm in a
similar way to the Needleman-Wunsch algorithm except that negative scoring matrix
cells are set to zero. Backtracking starts at the highest scoring matrix cell and
proceeds until a cell with score zero is encountered, producing the highest scoring

local alignment.
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The Smith-waterman algorithm is time demanding. A more efficient alignment
method is FASTA. The FASTA algorithm (Lipman and Pearson, 1985, Pearson and
Lipman, 1988) is a heuristic approximation to the Smith-Waterman algorithm, which
reduces the time required by matching words of a given length. The length chosen for
the word impacts the speed and sensitivity of the algorithm. The method identifies
regions of similar sequences before performing an optimized search using a Smith-

Waterman type of algorithm.

The FASTA algorithm can be used to search databases for homologous proteins, but

is still not fast enough. A more advanced and faster algorithm is BLAST.

1.5.1.3 The BLAST algorithm

The BLAST (Altschul et al., 1990) algorithm searches a corresponding sequence
database by using a heuristic algorithm to find similar database sequences. First
BLAST locates words (with k letters) in the query sequence with match score above a
defined threshold, T, when compared to sequences in the database, using a scoring
matrix. Then BLAST begins to make local alignments from these initial matches, by
locating neighborhood words that again must have a match score of at least the
threshold. However, if the score is lower than this pre-determined T, the alignment
will cease to extend, preventing areas of poor alignment from being included in the

BLAST results. The algorithm extends the alignment in both directions.

By aligning only to sequences that satisfy a requirement of having a score of at least
the threshold, BLAST performs far fewer local alignments than FASTA which

performs local alignments on the full sequences. BLAST is therefore much faster than
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FASTA.

A more advanced method than BLAST is PSI-BLAST (Altschul et al., 1997). The
PSI-BLAST method is applied in the current work and is therefore explained in more

detail in the section below.

1.5.1.4 The PSI-BLAST algorithm

PSI-BLAST (Altschul et al., 1997), Position-Specific Iterated BLAST, identifies
homologous proteins iteratively. PSI-BLAST is one of the most commonly used and

powerful methods for detecting sequence similarity (Jones and Swindells, 2002).

PSI-BLAST, a profile-sequence alignment method, introduces evolutionary
information by constructing protein sequence profiles. Multiple sequence alignments
and corresponding sequence profiles represent one of the most significant
methodological improvements with impact on alignment accuracy. This
methodological approach was not new at the time PSI-BLAST was published.
Already in 1987, Gribskov et al. used profiles for homology searches, but PSI-
BLAST appeared to work better than any other profile-based search tool that had
existed previously (Jones and Swindells, 2002). The profiles are obtained by
computing the frequency of different residues in each alignment position. A sequence
profile lists a preference for the 20 standard amino acid residue types at each position
in a given multiple sequence alignment. Using sequence profiles adds more
information to the alignment regarding importance and conservation of specific
regions. The profile contains more information about the sequence family than a

single sequence.
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The PSI-BLAST algorithm (Figure 7) automatically generates a multiple alignment
from the output of an initial BLAST similarity search. This alignment is then used to
create a position-specific score matrix (PSSM), or profile, with dimensions n x 20,
where n is the length of the sequence. For each row, a substitution score for each of
the 20 amino acids is given. The main difference between PSSMs and standard
substitution matrices is that the score for the same amino acid type can differ
depending on its position within the sequence. The PSSM is used to search the
database. While searching for additional similar protein sequences the PSSM matrix is

updated after each iteration.

The search may be iterated many times, as new significant similarities are found. The
result of such a search is a list of possible homologues, sorted by E-value. The E-
value is a statistical score which represents the number of times one would expect to
get a hit with the same or better score by chance. The E-value for a given alignment

depend on the length m and n of the sequences and on the alignment score S. The

parameters K and A are constants that depend on the search space size and the

scoring system used. The E-value is calculated as:

E=K*n*m*e™® (3)

The lower the E-value is, the higher the probability that the query and match are
homologous. For example, the meaning of an E-value equal to 1 is that in a database
of the current size one might expect to see one match with this score or better, simply

by chance.
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Figure 7: Schematic overview of PSI-BLAST: In the first step a BLAST search is performed using a
substitution matrix (BLOSUM). Sequences below a given E-value threshold are listed and used for
multiple sequence alignment and converted into a PSSM. In the second step the PSSM constructed in
the first step is used to search the sequence database. Following steps: Second step is repeated
iteratively, each time a new PSSM is constructed, until no more sequences under a threshold E-value
are added or until a given maximum number of rounds have been accomplished. The result is a list of
sequence alignments from the final round.

The development of profile—sequence alignment methods such as PSI-BLAST has led

to a great improvement in sensitivity over sequence—sequence alignment methods.

1.5.1.5 Profile — profile algorithms

Another significant improvement in sequence alignment algorithms was achieved by
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developing profile-profile algorithms. Profile-profile algorithms align two sequence
profiles against each other; evolutionary information is included for both query and

database sequences.

Several groups have developed profile—profile alignment methods (Pietrokovski,1996,
Rychlewski et al., 1998, Yona and Levitt , 2002, Sadreyev and Grishin, 2003). The
idea behind all the methods is identical; a pair of sequence profiles is used instead of a
pair of sequences for the alignment. However, the alignment calculation differs:
Rychlewski et al. (1998) calculate the similarity score between positions in two
profiles by calculating the average of scores between all amino acid pairs according to
the probability distributions in each profile; Yona and Levitt (2002) proposed a
scoring formula based on a theoretical measure of differences between the two
probability distributions represented by the profiles; Sadreyev and Grishin (2003)
generates scores for matching positions of the two profiles by using a scheme of log-

odds ratios and Pietrokovski (1996) used Euclidean distances between the profiles.

Profile-profile methods have been shown to improve homology detection among
proteins to a greater extent than profile—sequence methods (Rychlewski et al., 1998,

Sadreyev and Grishin, 2003).

1.5.1.6 Hidden Markov Model based methods

Hidden Markov Models (HMMs) are probabilistic models that were originally applied
to the problem of speech recognition (Jelinek et al., 1975), and were later applied to
biological sequence analysis (Churchill, 1989). HMMs have been applied to many

problems in computational biology.
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Krogh et al. (1994) were the first to delineate an HMM architecture for protein
sequence alignment, termed the profile HMM, which is another representation of
multiple sequence alignment profiles. Profile HMMs are thus similar to simple
sequence profiles, but in addition to the amino acid frequencies in the columns of a
multiple sequence alignment, the columns also contain information about the
frequency of inserts and deletions and can also incorporate other types of data (such
as secondary structure propensities). In building a profile HMM, an existing multiple
alignment is given as input. For each column of the multiple alignment, a ‘Match' state
models the frequencies of the residues in the column. An ‘Insert’ state for each column
enables insertion of residues between that column and the next one, and 'Delete’ state
enables deleting of the residue between that column and the next one. The states in the
profile HMMs are sequentially connected so that each position in the multiple
sequence alignment is represented by a '‘Match' state, an 'Insert’ state and a 'Delete’
state. The model starts in 'Begin’ state and ends with 'End' state. The probabilities of

the profile HMM are converted to log-odds scores, which can then be summed.

One of the most well-known software packages used for generating profile HMMs
automatically from multiple sequence alignments is HMMER (Eddy, 1998). Figure 8
shows the architecture of HMMER model. The architecture is linear and corresponds
to a multiple sequence alignment, i.e., match states correspond to the conserved
columns of the alignment, insert states to the insertions and delete states to the
deletions. In addition, transitions between the states represent the deletions and the

insertions.



53

Figure 8: The HMMER model architecture (Eddy, 1998). It starts from Begin (B) state and finishes
at the End (E) state. The N and C states are the N and C terminals. Match states (M) correspond to the
conserved amino acids, insert state (1) to the insertion and delete state (D) to the deletions.

HMMs can also be used in profile HMM-profile HMM, methods which are similar to
profile-profile methods. HHpred (Soding et al., 2005) was the first server to employ
profile HMM-profile HMM comparison (uses the program HHsearch), based on a

novel statistical method. Using HMMs both for the query and the database greatly

enhances the sensitivity and selectivity of the method (Soding et al., 2005).

1.5.2 Computational approaches for classifying proteins

Only a small fraction of annotated proteins have been characterized functionally
(Ursing et al., 2002). The most powerful method for characterizing the biological
function of a protein is to search for other proteins in databases with sequence or

structure similarity.

Databases that classify proteins into families are based on protein resemblance in
sequence, structure and/or function. Protein classification is an important task in

bioinformatics, as it provides valuable clues to the structure and functions of unknown
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proteins and can be employed for evolutionary and statistical studies of protein
families. Moreover, classifications can be useful during large scale annotation of
proteins, as required by the growing body of sequence data generated by complete

genome sequencing.

When classifying according to sequence similarity, the classification can be based on
full length sequence or on domains or motifs. A protein domain is defined as a section
of protein sequence that encodes for a structure that can function independently of the
rest of the protein chain. Typically each domain forms a 3D structure that is
independently stable. Wetlaufer was the first to propose the domain concept (1973);
he defined domains as stable units of protein structure that fold autonomously.
Proteins comprising more than one structural domain are called multidomain proteins
and are often multifunctional proteins (Chothia, 1992). A domain can appear more
than once and in various configurations with other domains (Apic et al., 2001). In a
multidomain protein, each domain may function independently or in a concerted
manner with its neighbors. Liu et al. (2004) examine Pfam classified families and
found that most transmembrane proteins (78% for archaea and prokarya and 67% for

eukarya) contain only a single classified membrane domain.

The algorithms most commonly used for classifying proteins are based either on
sequence similarity, on structural similarities or on combinations of sequence and

structural similarities.

1.5.2.1 Classification based on sequence similarity

The underlying assumption of classification based on sequence similarity, is that
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proteins with high sequence identity are likely to share the same structure. However,
there are many examples of structurally similar proteins that do not display significant
sequence similarities. Accordingly, most classification methods that rely solely on
sequence data fail to recognize up to 30% of extremely distant homologs (Engelman
et al., 2003, Gough et al., 2001). Classification based on sequence similarity is
performed by searching for similarity to a given protein with a chosen specified
threshold. Specifying the threshold can be a difficult task. A restrictive threshold can
generate few matches and miss sequences that have diverged during evolution;
alternatively a less restrictive threshold can result in a list that includes unrelated

proteins, i.e., false positives.

There are three types of sequence-based classification:

1. Full length sequence analysis: In which the full length sequence is used for

classification.

ProtoNet (Sasson et al., 2003) and ProtoMap (Yona et al., 2000) are examples

for databases which are based on full length classification.

2. Domain/motif analysis: This approach was prompted by the observation that
some regions have been better conserved than others during evolution. Such
conserved regions are generally important for the function of a protein and for
the maintenance of its 3D structure. Analysis of the constant and variable
properties of sets of similar sequences, enabled derivation of a signature for a
protein family or domain, which distinguishes its members from all other

unrelated proteins. Thus, the underlying assumption of this type of
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classification is that proteins with similar domains are likely related even if
overall they display low sequence similarity. The limitation of domain-based
classification is that many proteins possess several domains whereas some
proteins do not contain recognized domains. In addition, it is not possible to

predict domains for some very small families (e.g., that comprise 2 members).

Some of the best known protein-related databases are based on motif or
domain classification, for example: Pfam (Bateman et al., 2004), which is
broadly used in the current work and therefore will be described in detail (in
section 1.5.2.1.1), PROSITE (Falquet et al., 2002), BLOCKS (Henikoff et al.,

2000), TIGRFAM (Haft et al., 2003) and PRINTS (Attwood et al., 2002).

3. Phylogenetic analysis: In this analysis, proteins are classified together if they
are inferred to be orthologs. Orthologs are genes of common origin that have
diverged through evolution. Typically, orthologous proteins have the same
domain architecture and the same function, although there are many
exceptions and complications to this generalization, particularly among

multicellular eukaryotes.

COGS (Tatusov et al., 2001), is a database which phylogenetically classifies

the entire encoded proteins (both predicted and characterized).

1.5.2.1.1 Pfam database

In the Pfam database (Bateman et. al, 2004), the protein sequences from SwissProt
and TrEMBL are organized into protein domain families. The classification is semi-

automatic and is based on multiple protein alignments that are used to derive profile-
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HMMs for the protein families. The HMMs are generated automatically using
HMMER (Sonnhammer et al., 1998). 74% of protein sequences have at least one
match to Pfam. Given a new sequence, it is possible to evaluate the probability of that
sequence belonging to the family modelled by a given HMM. A similarity score is
associated with a new sequence based on the most probable path through the HMM

which generates the input sequence.

Pfam provides a high quality description of each protein family, including text
description about function, cellular location, relevant literature references and links to

taxonomic groups in which the family is found.

Pfam families are categorized as A or B. Pfam-A is the partially manually curated
portion of the database that contains over 10,000 entries. For each entry a protein
sequence alignment and a hidden Markov model is stored. Because the entries in
Pfam-A do not cover all known proteins, an automatically generated supplement is
provided called Pfam-B. Pfam-B contains a large number of small families
automatically generated from clusters produced by the ProDom database in the early
releases (Corpet et al., 2000) and by the ADDA database (Heger et al.,2005) in recent
releases (since release 23.9, 2008) . Although of lower quality, Pfam-B families can
be useful when no Pfam-A families are found. Pfam data are freely accessible via the

web.

The Pfam-A database is generated in a semi-automated process, starting from a seed
based on multiple alignments. After manual inspection, an HMM is built and used to
search the database, thus members are added to the seed alignment and the process is

repeated.
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Pfam proteins are not only classified into families but also, groups of related families
are classified into clans (Finn et al., 2006). A clan is a collection of Pfam-A entries
that are judged likely to be homologous. A clan contains two or more Pfam families
that have arisen from a single evolutionary origin. Clans are built manually and based

on various sources of information: the primary literature, known structures, profile-

profile comparisons and other databases such as SCOP. Clan classifications were
developed because of the difficulties in classifying proteins into families. It was found
that there are many related Pfam families, the members of which effectively overlap.
Conversely, it was found that for some large, divergent families it was not possible to

build a single HMM that detects all members of the family.

1.5.2.2 Classification based on protein structure

Structural protein classification creates groups according to 3D structure similarity.
The most widely used structure classification resources are SCOP (Murzin et al.,

1995) and CATH (Orengo et al., 1997).

SCOP provides a detailed and comprehensive description of the structural and
evolutionary relationships between proteins with solved 3D structures. SCOP
classifies the proteins into a four-level hierarchy: Family (proteins with significant
sequence similarity), Superfamily (proteins with low sequence similarity, but with
structural and functional features suggesting a common evolutionary origin), Fold
(superfamilies with major structural similarity) and Class (high level classification).

SCORP classification is manual.

In CATH, the classification of protein domain structures is created using a
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combination of manual and automatic methods. There are four hierarchical levels in
CATH database: Class, Architecture, Topology (fold family) and Homologous
superfamily (Orengo et al., 1997). When classifying a new domain, if it has
sufficiently high sequence and structural similarity with a domain that has been
previously classified in CATH, the classification is automatically assigned.

Otherwise, the domain is classified manually.

1.5.2.3 Classification based on sequence and structure

InterPro (Apweiler et al., 2001) is a database that attempts to integrate the advantages

of each approach to classification.

InterPro is an integrated documentation resource for protein families, domains,
regions and sites. InterPro combines a number of databases (Pfam, PRINTS,
PROSITE, ProDom and TIGRFAMs) that use different methodologies and a varying
degree of biological information on well-characterized proteins to derive protein
signatures. By collating databases, InterPro capitalizes on individual strengths,

producing a powerful integrated database and diagnostic tool (Apweiler et al., 2001).

1.5.2.4 Classification of transmembrane proteins

As mentioned above, too few transmembrane protein structures have been solved to
allow classification of transmembrane proteins based on structure. In a similar
approach to that underlying the Pfam database, Liu et al. (2002, 2004) classified
transmembrane proteins from 26 genomes into 637 families according to number of
transmembrane helices and sequence similarity. They report that the majority of

integral transmembrane proteins have single domains unlike soluble proteins, which
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typically encompass several domains.

Other attempts have been made to classify efficiently transmembrane proteins. Aria et
al. (2004) focused on 87 complete prokaryotic genome sequences to develop a
method based on ‘topology similarity’, in which a score was calculated by comparing
the length of loop regions. Suwa et al. (2000) developed a classification method based
on computing the polar energy surface, which can reveal characteristic interaction
patterns for individual helices. The transmembrane proteins families in C. elegans
(and human orthologs) were classified by Remm and Sonnhammer (2000) on the

basis of sequence similarity using Hidden Markov Model techniques.

There have been many studies focused on classifying G protein coupled receptors
(GPCRs), a large membrane protein family important physiologically and
pharmacologically due to key roles in regulating cellular growth, death and
metabolism. This family is difficult to classify using only sequence homology as
members are highly divergent at the sequence level. Hedman et al. (2002) developed
a method to classify GPCRs that combines topological information with sequence
alignment (discussed in more detail in chapter 4). Recently, Huang et al. (2004)
attempted to classify GPCRs using a bagging classification tree algorithm based on
amino acid composition. Inoue et al. (2004) developed a binary topology pattern
method for GPCR classification, in which a binary pattern was obtained for each

functional class by assigning binary loop threshold lengths (short loop/long loop).

More recently, Marsico et al. (2010) developed a technique called structural fragment
clustering, which learns sequential motifs from 3D structural fragments in

transmembrane proteins. They concluded that structural fragment clustering enables
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sequence motifs to be linked to function. Once characterized, sequence motifs can be

used to identify and characterize membrane proteins in novel genomes.

Helical transmembrane proteins from the SCOP and CATH databases were analyzed

by Neumann et al. (2010). They concluded that effective classification of

transmembrane proteins with only a few membrane-spanning helices requires

integration of more fine-grained structural features such as helix-helix interactions

and reentrant regions.

Several databases of transmembrane proteins have been constructed and are

accessible through the Web. These databases are summarized in Table 1.

Table 1: Existing transmembrane protein databases.

Database Name

Description

Reference

Mptopo All currently known high-resolution transmembrane protein Jayasinghe et
structures with links to the PDB and PubMed entries. al.. 2000
Additionally, the database includes a list of proteins with ’
unknown 3D structure, but with topology that has been
experimentally annotated using low-resolution technigues.

PDBTM Database of known transmembrane protein structures proteins, Tusnady et
listed in the Protein Data Bank (PDB). al., 2004

OPM Includes all unique experimental structures of transmembrane Lomize et al.,
proteins. In addition it provides spatial arrangements of 2006. Lomize
membrane proteins with respect to the hydrocarbon core of the et al ' 2007
lipid bilayer. "

CAMPS Contain transmembrane proteins with three or more predicted Martin-
transmembrane helices. Proteins were subjected to single- Galiano and
linkage clustering using only sequence alignments. These Frishman
clusters were further subdivided into functionally 2006 '

homogeneous subclusters according to the COG. The clusters
are thus designed to reflect three main levels of interest for
structural genomics: fold, function, and modeling distance.
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TMPad Integrated structural database for helix-packing folds in Lo et al.,
transmembrane proteins. It integrates experimentally observed | o011
helix—helix interactions and related structural information for
transmembrane proteins.

Mplot Provides a quick and easy way for structural biologists to Rose et al.,
analyze, visualize and plot tertiary structure contacts of helical | 2910
transmembrane proteins.

GPCRDB Includes all G-protein coupled receptors and provides data Horn et al.,
about sequences, ligand binding constants and mutation 1998. Horn et
al., 2003
TCDB Transporter classification (TC) system that classifies all Saier et al.
transmembrane transporters. 2006. Saier et
al., 2009

1.6 The present work

Currently, there is no efficient and accurate method for classifying all transmembrane
proteins in an automated way. Since the number of known 3D structures is low, an
effective and reliable way to classify transmembrane protein into families based on
their sequence must be developed. Such a classification would require a method that
reliably detects distant homology between transmembrane proteins. The aim of the
present work was to develop an automated method for detecting homology among
transmembrane proteins, which predicts reliable and true relationships for the tested

protein based on sequence alone.

In the current work a method was developed that uses sequence similarity, topology,
predicted structural features (predicted residue lipid exposure) and loop lengths to
find homology between transmembrane proteins. The method relies on the

assumption that protein structures are more conserved than protein sequences among
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homologs and therefore, combining structural information with a simple sequence
alignment will improve homology detection (Chothia and Lesk, 1986, Kaczanowski

and Zielenkiewicz, 2010, Marti-Renom et al., 2000 ).
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Chapter 2

Predicting the lipid exposure of

transmembrane proteins

2.1 Introduction

Predicting the three-dimensional (3D) structure of transmembrane proteins remains a
challenging task. A simpler initial task, which can serve as a stepping-stone toward
predicting 3D structure, is predicting the relative exposure of each residue to the
membrane environment, i.e., predicting whether a residue faces the lipid environment

or is buried inside the protein.

For water soluble proteins, calculating solvent accessibility has proved quite
informative for identifying protein function and domains (Wodak, 1981). In addition,
solvent accessibility can be used as additional information when aligning regions with
remote sequence identity (Gaboriaud et al., 1987, Lemesle-Varloot et al., 1990). The
concept of solvent accessibility for water soluble proteins was introduced by Lee and
Richards (1971). The driving force during folding is the hydrophobic effect, where
folding occurs such that unfavorable interactions between hydrophobic residues and
the hydrophilic environment are minimized (Honig et al. 1995). Accordingly, folded
water soluble proteins consist of a hydrophobic interior and hydrophilic exterior.

Therefore, predicted solvent accessibility can indicate whether a given residue is
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interior or exterior and typically is defined either numerically, the real-valued solvent
accessibility, or as a binary classification into buried versus exposed states.
Alternatively, Rost and Sander (1994) classified a relative solvent accessibility into
three and ten states when predicting accessibility for water soluble proteins. For water
soluble proteins many methods have been developed for predicting accessibility.

However, only a few such methods have been developed for transmembrane proteins.

Early studies of the bacteriorhodopsin structure suggested that membrane proteins are
"inside-out"” relative to water soluble proteins, i.e., that they consist of a hydrophilic
interior and a hydrophobic exterior (Engelman et al,. 1980, Rees et al., 1989).
However, later it was found that the "inside-out” rule is not completely accurate (Rees
and Eisenberg, 1999, Stevens and Arkin, 1999). Transmembrane proteins typically
pass through the membrane multiple times. In order to satisfy the hydrogen-bonding
requirements of the polar back-bone atoms, transmembrane proteins adopt the
architecture of alpha-helical bundles in the regions situated in the membrane.
Accordingly, transmembrane proteins face three distinct environments: a hydrophobic
lipid environment inside the membrane, a hydrophilic water environment outside the
membrane and an interface region rich in phospholipid head-groups. Therefore, it is
energetically favorable for transmembrane proteins to expose different types of

residues in the different regions (lllergard et al., 2010).

As discussed in detail in Chapter 1, early attempts to predict helix orientation were
done using the hydrophobic moment concept (Eisenberg, 1984, Rees et al., 1989).
However, hydrophobic moments were found out to be a poor indicator of angular

rotation for transmembrane helices (Stevens and Arkin, 1999, Rees and Eisenberg,
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2000). In later studies, a statistical analysis was conducted on known high-resolution
structures of transmembrane proteins to find the lipid exposure propensities of the
different residues (Donnelly et al., 1993, Donnelly 1994). It was discovered that the

buried residues are highly conserved relative to the exposed residues.

Based on this finding, Beuming and Weinstein (2004) developed a method for
predicting if transmembrane protein residues are buried in the core of the
transmembrane helix bundle or exposed to the lipid environment. The method uses
information about residue distribution collected from solved structures and combines
it with evolutionary criteria about conservation (Briggs et al., 2001). This method
performed with at most 80% accuracy when predicting if a residue is lipid exposed or

buried.

Later, Adamian and Liang (2006) developed a method for predicting transmembrane
helix orientation — LIPS (LIPid-facing Surface). Their method predicts the face of the
transmembrane helix exposed to the membrane and not the hydrophobicity status of
individual transmembrane residues. Admian and Liang's method is based on a
canonical helical face model whereby the surface of each helix is partitioned into
seven surface patches (faces) that could interact with lipids or other helices. It allows
collective assessment of the evolutionary and physico-chemical properties for each of
the seven faces formed by residues centered at one of the seven positions. They
identify lipid exposure with an accuracy of about 88% from the sequence information
alone. The LIPS server IS available online at

http://gila.bioengr.uic.edu/lab/larisa/lips.html.

Park and Helms (2006) studied in more detail the correlation between conservation
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patterns and empirical scales that score the exposure pattern of transmembrane
helices. They carried out a large scale benchmarking of the prediction scales proposed
so far. Unsurprisingly, this analysis revealed that scales incorporating structural data
show stronger correlation with exposure patterns than hydrophobicity-based scales.
This conclusion was expected as structure based scales were parameterized explicitly
for the purpose of predicting buried versus lipid-exposed faces of transmembrane
helices. The other scales (hydrophobicity-based scales) were developed before high-
resolution structural data existed. In light of their analysis, Park and Helms proposed a
framework that combines sequence conservation patterns and empirical scales, but
found that improvements gained from combining the two sources of information were

not dramatic in almost all cases.

Hildebrand et al. (2006) described a computational method for predicting whether a
given residue is located at a helix-helix interface in the membrane. They show that
when the sequence motifs typical for membrane channels and transporters were
exploited for predicting helix-helix contacts (i.e., the context of a residue was taken
into account), the quality of prediction rose by 16% to an average value of 76%,
compared to an equivalent approach when only single amino acid positions were

taken into account.

Yuan et al. (2006) developed a method to predict the solvent accessible surface areas,
with resulting correlation coefficients between predicted and observed accessible
surface areas of around 0.65. The method involved finding the best threshold of
accessible surface areas to differentiate between residues exposed to the lipid

environment or buried inside a protein. The method is based on support vector
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regression (SVR).

Park et al. (2007) developed TMX (TransMembrane eXposure), a method for
predicting the burial status of residues in transmembrane proteins. TMX derives
positional scores of transmembrane residues based on profiles and conservation
indices. Then, a support vector classifier is used to predict burial status. An accuracy

of 78.71% was reported for a benchmark data set.

Rose et al. (2009) generated a server for predicting the orientation of transmembrane
helices in channels and other membrane proteins (membrane—coils) called RHYTHM
(http://proteinformatics.de/rhythm). The prediction is based on precalculated packing
files and evolutionary information from sequence patterns collected from a
representative dataset of transmembrane proteins. The program uses two types of
position specific matrices to account for the different geometries of packing in
channels and transporters or other membrane proteins. The average AUC-values for
the prediction of helix—helix contacts was reported to be 0.72 for channels and 0.68

for membrane—coils, respectively.

Recently, Wang et al. (2010) developed an additional method for predicting the burial
status of residues in transmembrane proteins. The method incorporates
physicochemical scales and conservation indices to produce an efficient prediction
model using least squares support vector machine (SVM). In least squares SVM one
finds the solution by solving a set of linear equations instead of a convex quadratic
programming problem for classical SVMs. Wang et al. reported that the prediction

accuracy of this method was much better than reported for previous approaches.
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Illergard et al. (2010) compared the published methods for predicting accessibility in
transmembrane regions and concluded that the best one is by Park et al. (2007).
However, this method performs badly for non-membrane regions. Illergard et al.
summarized that all existing state-of-the-art predictors for surface area are optimized
for one of the environments and therefore perform poorly in the non-optimized
environment. To address this, Illergard et al. developed a method that predicts the
accessibility of transmembrane proteins for regions outside and inside the membrane.
The method, termed MPRAP, uses a support vector machine (SVM), which includes
the entire protein in the training set. MPRAP was shown to recognize the preferences
for exposed sites within and outside the membrane. In parallel, Nugent and Jones
(2010) developed another method that predicts lipid exposure, residue contacts, helix-
helix interactions and the optimal packing arrangement of transmembrane proteins.

Their method is described in chapter 1.

In summary, in the last few years there has been much progress in the ability to
predict the buried/exposed state of residues in helical transmembrane proteins.
Methods have been developed that combine propensity scales and sequence
conservation. In addition, more recently, methods have been generated that include

also structural information about contact between helices.

2.1.1 The present work

In the current work, a neural network has been used to predict residue orientation, i.e.,
to define which faces of transmembrane protein residues are buried and exposed. The
approach taken is similar to that employed by Rost and Sander (1994) in their study

on water soluble proteins.
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Evolutionary information was incorporated using profiles derived from multiple
sequence alignments and input into a neural network. The network was trained to
determine whether a residue is buried in the core of the helix-bundle or exposed to the
lipid environment surrounding the protein. Predicting residue orientation will be a key

step in our method aimed at identifying homologous transmembrane proteins.

2.2 Methods

2.2.1 Dataset for the analysis

The dataset used for developing our method comprised transmembrane proteins with
known topology and known 3D structure. The list of proteins was prepared from two
sources. The first was the MPtopo database, provided by Stephen White’s website
(http://blanco.biomol.uci.edu/) (Jayasinghe et al., 2001), which is a database of
transmembrane proteins with experimentally validated transmembrane segments. The
second resource also provided by Stephen White’s website, was a list of all
transmembrane proteins of known 3D structure. This list does not include information
about the transmembrane segments and therefore the locations of the transmembrane
helices were predicted using the program MEMSAT (Jones et al., 1994). The
transmembrane helices locations was used later to train the neural network (as

described below).

Proteins were selected so as to produce a non-redundant list with a 30% sequence
identity threshold, i.e., no pair of proteins in the final list had >30% sequence identity.

Only helix-bundle proteins were included in the dataset, i.e., the porin-like proteins
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were excluded. Furthermore, proteins with only one helix in the membrane were
excluded from the dataset in order to improve the prediction, as explained in the
results section, and proteins with low structure resolution were excluded as well. The

final dataset consisted of 42 protein chains.

A control dataset of 150 water-soluble proteins with known structure (extracted from
CATH, S-reps, v1.6, Orengo et al., 1997) were constructed as well. Proteins were

removed to produce a non-redundant list with a 30% sequence identity threshold.

2.2.2 Accessibility

The solvent accessible surface area (illustrated in Figure 9), or accessibility, of an
atom is the surface area of the van der Waals envelope around each atom that is
exposed to solvent; in our case the solvent under consideration is the membrane
phase. The residue accessibility is the sum of the accessibilities of the atoms in that
residue. The residue accessibility generally serves as an indicator of the residue's
location, on the surface or in the core, i.e., exposed to the membrane or buried in the

protein.
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van der Waals
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Figure 9: Accessibility estimation. The accessible surface area (green line) is at a water molecule's
estimated radius beyond the van der Waals radius (red lines).

Accessibility of each residue was calculated using the DSSP program (Kabsch and
Sander, 1983). The program employs the Shrake and Rupley (1973) method, that
uniformly distribute a mesh of points equidistant from each atom of the molecule and
uses the number of these points that are solvent accessible to determine the surface
area. The points are drawn at a water molecule's estimated radius beyond the van der
Waals radius. Each point is checked against the surface of neighboring atoms to
determine whether they are buried or accessible. For each atom, the number of test
points accessible is multiplied by the surface area value corresponding to each test

point in order to calculate the accessible surface area.

The DSSP program in the current work considers the whole protein structure taken
from the EBI Macromolecular structure database and searches using the Protein

Quaternary Structure Form (PQS).

For comparison between amino acids of different sizes, relative accessibility
(Accessibility / Maximum Accessibility) was calculated (Rost and Sander, 1994).

Henceforth, in this report relative accessibility is referred to simply as accessibility.
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The accessibility of each residue was first divided into binary states, i.e., buried or
exposed. According to Rost and Sander (1994), when developing a prediction
method, the best threshold to use for distinguishing between these two states is 16%.
However, since in this study the accessibility investigated is the accessibility to lipid
rather than water, it was not clear where to set the thresholds. Several thresholds were
tested: 16, 20, 24, 30 and 36 percent. 30 percent was found to be the optimal threshold
based on prediction quality. In addition, a three state accessibility was considered, i.e.,

buried, intermediate and exposed states.

2.2.3 Predicting Accessibility using Neural Networks

A system of neural networks was used in order to predict the lipid accessibility. The

architecture of the neural network was based on previous work by Jones (1999).

The inputs to the network were windows of 15 consecutive residues. This window
size was found to be the optimal size by Jones (1999). Additional window sizes were
tested (Table 2) including a smaller window size of 7, which was found to reduce
neural network performance, and windows of 11 and 19 residues, which produced
similar results as the 15 residue window. The window was passed only along the

sequence of the transmembrane protein helical region.

Profiles of multiple alignments were used as input. The profile was calculated using
PSI-BLAST, with the following parameters: NRDB90 database with 2 iterations (-]

2), and an E-value threshold of 10 used for profile inclusion (-h 10°®).
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The profile matrix elements were scaled to the required 0-1 range using the standard

1
+e

logistic function (Jones, 1999): 1

—X

where X is the raw profile matrix value.

The neural network output was the relative lipid accessibility, buried or exposed, of
the central residue. Two different neural networks were compared. First, a network
with one output, encoding for buried or exposed. Second, a network with three

outputs, encoding for buried, intermediate or exposed.

A standard feed-forward neural network was used with a single hidden layer (see
Appendix A) that was trained by backpropagation. The input layer comprised 315
input units, divided into 15 groups of 21 units, one group for each position in the
window (overall 6410 residues used as input). 20 units represent each amino acid and
the extra unit per amino acid is used to indicate if the window spans either the N or C
terminus of the protein chain.

A hidden layer of 75 units was used, based on the neural network architecture
described by Jones (1999). Additional sizes of neural network were tested (Table 3),
including a smaller hidden layer of 30 nodes, which produced similar results to the 75
units architecture and a bigger hidden layer of 120 nodes that was found to reduce

neural network performance.

The neural network system was built (Figure 10) and trained using the Neural
Network toolbox for Matlab (MathWorks, version 6.5). The training algorithm used
was the batch adaptive steepest descent with Momentum (traingdx), described in

detail in Appendix A. Training of the network was halted when the performance of
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the network on the test set began to degrade, to prevent over-fitting of the network.

For benchmarking leave one out cross-validation was performed.

Multiple Sequence alignment profile
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Figure 10: Neural network architecture. A standard feed-forward neural network with a single
hidden layer trained by backpropagation. Profiles derived from PSI-BLAST were input into a neural
network. The input layer comprised 315 input units, divided into 15 groups of 21 units. The output was
the buried state of the central residue. The neural network was trained using data concerning 41
transmembrane proteins with known structure (overall 6410 residues used as input).
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2.2.4 Predicting water-soluble protein accessibility

In order to test the neural network system, its ability to reproduce the results of Rost
and Sander (1994) was evaluated. Rost and Sander attempted to predict the solvent
accessibility of water-soluble proteins. In the present work 150 water-soluble proteins

were used as the dataset with the network described above.

The network trained with water-soluble proteins was used also as a control network

for transmembrane proteins accessibility prediction.

2.2.5 Assessing the accuracy of predictions

The accuracy of predictions was assessed by four scores (Baldi et al., 2000, Rost and
Sander, 1994):
1. Percentage of correctly predicted residues.

_ Correctly_predicted_residues

x 100 (4
Number_of _residues (4)

2. Percentage of correctly predicted exposed residues (Sensitivity).

Tp
Tp + Fn

Sensitivity = x 100 (5)

3. Percentage of correctly predicted buried residues (Specificity).

Specificity = x 100 (6)

Tn+ Fp
4. Matthews correlation coefficient (MCC).

Tp XTn—Fp X Fn
McCC = (7)
J(Tp + Fn) x (Tp + Fp) X (Tn + Fp) X (Tn + Fn)

Whereas, true positives (Tp) is the number of times the prediction is exposed and the
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target is exposed. True negative (Tn) is defined as the number of times the prediction
is buried and the target is buried. False positive (Fp) is defined as the number of times
the prediction is exposed and the target is buried. False negative (Fn) is defined as the
number of times the prediction is buried and the target is exposed.

A Receiver operating characteristic (ROC) curve was generated to further evaluate the
accuracy of predictions (Hanley and McNeil, 1982). The ROC curve is a plot of the
true positive rate (sensitivity) versus false positive rate (1 — specificity). The area
under the ROC curve (AUC) is considered a good measure of the overall accuracy of
the prediction method. Hanley and McNeil showed in their paper that there is a
correspondence between the area under the ROC curve and Wilcoxon rank-sum

statistic with a score of 50% representing random and 100% perfect prediction.

2.3 Results

2.3.1 Prediction with one state output

The architecture of the neural network for predicting the lipid accessibility was based
on previous work by Jones (1999). A window is passed along the sequence of the
transmembrane protein helix. According to Jones the optimal window size is 15
consecutive residues. A few additional window sizes were tested and the Matthews
correlation coefficient was calculated (Table 2). In the current work the 15 residues

window size was chosen for building the neural network.



78

Table 2: Results of predicting the buried/exposed residue state of a transmembrane protein set using
different window size as input to the neural network, evaluated using Matthews correlation coefficient

(MCC).

Window size | MCC
7 0.27
11 0.3

15 0.3

19 0.3

In addition, the hidden layer size was tested. According to Jones (1999) the optimal

hidden layer size is 75 nodes. Two additional hidden layer sizes were tested: hidden

layer sizes of 30 and 120 nodes. Matthews correlation coefficient for these neural

network architectures are shown in Table 3. In the current work, the 75 nodes hidden

layer was chosen for building the neural network.

Table 3: Results of predicting the buried/exposed residue state of a transmembrane protein set using
different neural network hidden layer sizes, evaluated using Matthews correlation coefficient (MCC).

Hidden layer size | MCC
(nodes number)

30 0.3

75 0.3
120 0.29
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Table 4 shows the accuracy scores for predicting the lipid exposed/buried residues of
a set of 41 chains taken from 41 transmembrane proteins. The threshold used for
distinguishing between these two states was 30%. The Matthews correlation
coefficient (MCC) for these predictions was 0.3. For the control test, the maximum
MCC was found to be 0.1. More than 70% of residues were correctly predicted (Q2)
in 19 proteins; the highest accuracy was 86% of residues correctly predicted (for
1JANA). These data indicate that the method is able to predict accessibility of residues

with very high accuracy for at least some of the proteins in the test set.

Analysis of the proteins, for which the buried/exposed state of constituent residues
was predicted badly, revealed that some of these proteins are channel proteins, such
as: 1k4c, lorg, Imxm and 1p7b. Notably, the environment in which channel proteins
exist in the membrane is different than that experienced by other transmembrane
proteins. Residues within channel proteins can exist in three different states in the
membrane: exposed to lipid, buried from lipid and exposed to solvent (the channel
itself). Therefore, it is not surprising that the buried/exposed state of residues within
such more complex protein structures would be harder to predict. Indeed, analysis
revealed that the buried/exposed state of residues was predicted with low accuracy for

all of the channel proteins.
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Table 4: Results of predicting the buried/exposed residue state of a transmembrane protein set using
neural network (MCC , Q2, Sensitivity, Specificity: for definition see page 74).

PDB Code No. of Chain MCC Q2 Sensitivity | Specificity
transmembrane | length
Helices

1j4nA 8 138 0.562 86 86 86
loccC 7 187 0.545 84 60 91
117vB 10 221 0.532 80 67 85
liwgA 11 227 0.420 80 43 92
larlA 12 352 0.441 79 69 82
1lprcM 5 139 0.432 79 43 93
1fftC 5 158 0.437 77 51 88
1nekD 3 82 0.482 76 50 92
1lbgyC 8 204 0.412 76 50 88
1jboL 2 44 0.567 75 47 100
ljgjA 6 122 0.468 75 63 82
1fx8A 8 165 0.363 75 61 79
1jbOF 2 41 0.576 73 57 100
lotsA 17 422 0.407 73 73 74
1glaC 5 146 0.369 73 44 88
logvL 5 115 0.353 73 40 89
larlB 2 65 0.475 72 58 87
1rh5A 10 254 0.396 71 71 71
1pwdA 12 326 0.316 71 46 83
1f88A 215 0.281 70 43 82
1nekC 88 0.343 69 55 77
1lel2A 182 0.333 69 44 85
1msiB 50 0.391 68 23 100
10ulA 10 255 0.316 68 61 71
1g16C 5 136 0.305 68 53 77
10hkA 13 382 0.276 67 66 67
lokcA 6 169 0.292 66 27 93
1pv7A 12 315 0.124 65 19 89
1p7bA 4 63 0.120 65 18 90
ImxmA 3 58 0.267 63 74 51
1kgfC 4 84 0.162 63 44 71
lorqC 6 120 0.170 61 52 65
1jb0A 11 218 0.135 61 18 90
110vC 3 55 0.078 58 21 84
110vD 3 64 0.038 57 18 78
1k4cC 2 48 0.068 56 46 60
loedE 4 116 0.197 55 24 90
1pfdA 6 151 0.123 52 39 72
1rwtA 3 85 0.104 49 26 82
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PDB Code

No. of
transmembrane
Helices

Chain
length

MCC

Q2

Sensitivity

Specificity

1fftB

2

60

0.082

45

41

50

1s7bA

4
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0.3

67.9

46.6

81.8

nar

0.7F

0.3

04

03F

0z2F

0k

= Tranzmembrane protein 7

— Cortrol

nz 03

0.4

0.5
1-Epecificity

0.6

nr 0.4

04 1

Figure 11: ROC curve for two state output network, predicting the lipid exposure (buried/exposed)

for a set of 41 transmembrane proteins with known structure.

The receiver operating characteristic (ROC) curves of predicting exposed/buried

residues for both the transmembrane protein and the control test (water-soluble

proteins) are shown in Figure 11. The area under the ROC curve (AUC) of the

prediction was calculated to be 0.73. As expected the control test shows results close

to random.
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As mentioned, several other accessibility thresholds were tested for distinguishing
between the two states; exposed/buried to lipid. The results are presented in Table 5.
Although the differences were not very significant between the thresholds tested, the
threshold 30% generated the best results.

Table 5: Results of predicting the buried/exposed residue state of a transmembrane protein set using

different accessibility thresholds for two state predictions (buried/exposed), evaluated using AUC and
MCC (see page 75 for definition).

Accessibility Thresholds | AUC MCC
16% 0.67 0.27
20% 0.67 0.26
24% 0.68 0.28
30% 0.73 0.3
36% 0.7 0.29

Training on a preliminary dataset, which included proteins with a single helix in the
membrane resulted in a Matthews correlation coefficient score of 0.15, which is close
to random. Therefore, these proteins were excluded from the final dataset as
described. One explanation for this finding is that helices structured as a bundle

possess particular features not exhibited by single helices.

2.3.2 Prediction with three state output

The ROC curve for a three state output network, Exposed (accessibility >30%),
Intermediate (10%-30% accessibility) and Buried (accessibility<10%) is shown in

Figure 12. The Matthews correlation coefficient (MCC) and area unser ROC curve
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(AUC) for these predictions is shown in Table 6.

Table 6: Results of predicting the buried/exposed residue state of a transmembrane protein set for a
three state output network (exposed/intermediate/buried), evaluated using MCC and AUC (see page 75
for definition).

State AUC MCC
Exposed 0.7 0.29
Intermediate 0.53 0.05
Buried 0.67 0.25
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Figure 12: ROC curve for three state output network predicting the lipid exposure
(buried/intermediate/exposed) of a set of 41 transmembrane proteins with known structure.

Another setting of accessibility thresholds was tested (<7%, 7%-36% , >36%) which

resulted in even lower Matthews correlation coefficients. In summary, a neural
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network with three state output was not able to predict the Intermediate state. We did

not study any further neural networks with a three state output.

2.3.3 Comparing accessibility predictions for

transmembrane versus water-soluble proteins

It was interesting to compare the accuracy of predicting lipid exposure for
transmembrane proteins to the accuracy of predicting solvent accessibility for water-
soluble proteins. The Matthews correlation coefficient score was 0.54 when the
method described here was used to predict the solvent accessibility of water-soluble
proteins, which is consistent with that reported by Rost and Sander, 1994. This score
is higher than the one obtained when our method is used to predict lipid accessibility

of transmembrane proteins (0.3).

2.3.4 Visualization of accessibility

The accessibility prediction can be visualized using the program RasMol (Sayle and
Milner-White, 1995). Figure 13 shows visualization of three predicted chains. Only
the helices are shown for each chain (i.e. without the loops). Lipid exposed residues
are colored red whereas buried residues are colored blue. As seen in the table, the
predicted and the observed accessibility patterns are similar. The quaternary protein
structure with highlighted chain (including loops) is represented in the table as well,
for better understanding of the accessibility patterns of the single chain. For example,
1j4n protein (AQP1 water channel ) is built from four identical chains; the buried
helices in blue, can be easily identified inside the quaternary protein structure,

whereas the exposed to the lipid residues in red can be identified around the structure.
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The 117v protein (ABC transporter) is built from two chains; therefore in the predicted
chain one can see the buried area, between the chains. Similarly, the 1gla protein
(Fumarate reductase flavor protein) is built from two chains in the same way as in the
1j4n protein, and it is possible to see the buried contact area between the chains

although the prediction in this case was not as accurate.
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PDB Observed Predicted Protein
code structure
Exposed
1j4nA
117vB
1gla

Buried

Exposed

Figure 13: Visual representation using RasMol of three of the predicted transmembrane chains
(helices only). Lipid - exposed residues are colored red, buried residues are colored blue. The

quaternary protein structure is represented, with the chosen chain colored in red.
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2.4 Discussion

The method presented here uses a neural network for predicting which residues of the
transmembrane helices are lipid-exposed versus buried inside the protein. When we
started the current work there had been very few attempts to predict transmembrane
residue orientation. None of these previous attempts achieved the high accuracy that
we managed to achieve here using a neural network system. While performing the
present study, others reported methods to predict residue orientation. Our results
exhibit accuracy comparable to such published studies. For example, the Matthews
correlation coefficient for the method developed by Nugent and Jones (2010) is 0.38,

which is comparable to the 0.3 of our method.

When applying our method to water soluble proteins we obtained a higher Matthews
correlation coefficient than when it was applied to transmembrane proteins. One
possible explanation could be the larger size of the water-soluble protein set. As more
transmembrane structures become available, it is likely that prediction efficiency will
improve. Another explanation is the intrinsically more complex nature of
transmembrane proteins. Water-soluble proteins have hydrophobic buried residues
versus hydrophilic exposed residues, whereas, transmembrane proteins hydrophobic
residues face both the core of the protein and the lipid (Stevens and Arkin, 1999, Rees
and Eisenberg, 2000). Another level of complexity is that the hydrophobic residues in
transmembrane proteins face two distinct environments, internally versus lipid. In this
regard, it is noteworthy that the measurement of accessibility uses a water molecule as
a probe (Shrake and Rupley, 1973). Perhaps water is not the correct size probe when

considering accessibility to lipids.
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Prediction accuracy could also be influenced by the use of only helical regions for the
prediction; it could be that using the entire protein would result in better predictions.
Moreover, the prediction is calculated based on single protein chains and not on the
multimeric protein complex. Since transmembrane proteins could constitute
multimeric complexes, predicting the accessibility of only a single chain could

compromise the prediction accuracy.

Finally, the multi-helical nature of many transmembrane proteins could affect
prediction accuracy. It is expected that it would be harder to predict the lipid exposure
for chains containing large numbers of helices as the structure is more complex. This
said, a survey of our data did not support such a premise (Table 4), as among the most
accurate predictions were chains, comprising 8-12 helices, as well as a small number

of helices.

In summary, the prediction method presented here was highly accurate in many cases
and comparable to other prediction methods. Therefore, we incorporated this method
into our overall strategy for improving homology detection, as described in the

following chapters.
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Chapter 3

Evaluating the performance of PSI-

BLAST for transmembrane proteins

3.1 Introduction

3.1.1 Benchmarking homology detection methods

Homology detection methods aim to identify all, and only, the proteins in the database
that are homologous to a query protein. In practice, the methods often designate non-
homologous proteins as homologous and miss genuinely homologous proteins. The
challenge of designing a detection method that identifies only true positives (TP) is
illustrated in Figure 14 (Karwath and King, 2002). In the figure two distributions are
shown, for homologous (true positives, TP) and non-homologous (true negatives, TN)
proteins. False negatives (FN) are genuinely homologous proteins that are mistakenly
predicted to be non-homologous proteins. Conversely, false positives (FP) are the
non-homologous proteins that are mistakenly predicted to be homologous. Depending
on the threshold (E-value) used, the method detects different proportions of TP, TN,

FP and FN.
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Figure 14: A graphical representation of two different distributions of a homology search (Karwath
and King, 2002).

The ability to evaluate the performance of a homology detection method depends
mainly on the quality of the database used. Specifically, the database should be
annotated such that the true relationship between query and database proteins is
known. There are a number of structural classification databases for proteins, based
on analysis of protein 3D structure, which serve as a benchmark when evaluating the
performance of homology detection methods. For example, the true relationships
between proteins in the SCOP (Murzin et al., 1995) and CATH (Orengo et al., 1997)
databases are known. Unfortunately, the number of transmembrane proteins in these
databases is still low; only 381 non-redundant chains are described by Neumann et al.
(2010) in the PDB database, and therefore such datasets cannot be employed to
evaluate the performance of transmembrane protein homology detection methods.
There is a database called OPM (Lomize et al., 2006), that includes all unique
experimental structures of transmembrane proteins. When OPM was first published it

contained only 126 unique 3D structures that represented 506 PDB entries (Lomize et
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al., 2006), due to the low number of known structures. In light of the paucity of
known transmembrane protein structures, a non-structural classification database,
Pfam, is employed, in the current work, when evaluating the performance of
homology detection method for transmembrane proteins. The proteins in the Pfam
database are classified according to sequence, based on an optimized set of Hidden
Markov Model (HMM) profiles for protein domain families. The proteins are

classified into families, which are in turn, grouped into clans.

3.1.2 Benchmarking PSI-BLAST

PSI-BLAST (Altschul et al., 1997) is a widely used sequence—based homology
detection method. In Chapter 1 we discussed the method in detail. Briefly, the PSI-
BLAST algorithm first searches the sequence database to collect obviously
homologous sequences, decided by considering E-values smaller than a chosen
parameter h. These sequences are collected and aligned to generate a position specific
scoring matrix (a PSSM). The PSSM is used in the next iterations to identify more
homologous sequences, which are added to the PSSM if their E-value is below the
cut-off. PSI-BLAST is usually run for a defined number of iterations or until no new

homologous proteins are found.

A key parameter of the detection method, which can be set by the user, is the E-value
cut-off, which effectively determines the level of confidence in the conclusion that the
proteins under consideration are indeed homologs (h-value). Setting this parameter to
a low value can lower the number of false positives but concomitantly also lower the
total number of true positives. In other words, if the h-value is set too low, only

closely homologous proteins are used to make the PSSM and the sequence variation is
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too limited to efficiently find homologues. Conversely, if the h-value is set too high,
non-homologous proteins will be incorporated into the PSSM, and the next iteration is
likely to mistakenly select more non-homologous proteins. Accordingly, it is essential

to fine-tune the h-parameter in order to get the optimal output.

In the following sections, previous studies of PSI-BLAST benchmarking are
described, where the PSI-BLAST method h-value parameter was fine-tuned to

optimize performance.

3.1.2.1 Benchmarking PSI-BLAST for water-soluble proteins

PSI-BLAST was shown to be very effective for detecting homology among water-
soluble proteins (Schaffer et al., 2001, Lindahl and Elofsson 2000). Schaffer et al.
(2001) used 103 queries, for which human experts had annotated the true positives in
yeast. Sensitivity curves were created that plotted the number of true positive PSI-
BLAST search results against the number of false positives hits when using increasing
E-values for inclusion in the multiple alignment profile (h-parameter). Based on this
analysis, the threshold 10° was determined to be the best threshold for attaining the
highest accuracy, i.e., low number of false positives and high number of true
positives. In earlier work, Park et al. (1998) concluded that an h-value of 5x10™ is

optimal and results in a low rate of false positives.

In the study of Shaffer et al. (2001), a drawback of the PSI-BLAST search method,
termed ‘PSSM corruption’ was delineated. After each iteration, PSI-BLAST
constructs a profile, from which a PSSM is generated. In situations when a sequence

unrelated to the query sequence is included, then the next PSSM contains more
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unrelated sequences and such a PSSM is termed corrupted. Schaffer et al. defined the
corruption threshold as a PSSM containing a false positive alignment with E-value <
10" compared to the database. They suggested that, since a single corrupted sequence
can affect greatly the plot and reliability of the sensitivity curve, one should consider
ignoring such sequences. Schaffer et al. showed that it was possible to avoid
corruption during PSI-BLAST searches of water-soluble proteins by setting the PSI-
BLAST h-parameter to a low value: a threshold of h = 10" avoided most corrupted
sequences and a threshold of h = 10" had none. However the obvious consequence of
lowering the h-parameter to avoid corruption is that the number of true positives

detected is smaller.

3.1.2.2 Benchmarking PSI-BLAST for transmembrane proteins

The lipid environment constrains the structural and sequence diversity of
transmembrane proteins and therefore increases the likelihood of false resemblance to
unrelated transmembrane proteins. Therefore homology searches for transmembrane
proteins using sequence alignment alone are more prone to false positives. Indeed,
Jones and Swindells (2002) remarked in their study that homology searches are most
powerful for proteins with high complexity, as in these cases all 20 amino acids are

exploited.

PSI-BLAST was found to be less effective for detecting homology among
transmembrane proteins (Hedman et al., 2002). Hedman et al. benchmarked PSI-
BLAST using only G-protein-coupled receptors (GPCRs) and concluded that there is
a difference in the performance of PSI-BLAST when dealing with closely related

versus distantly related GPCRs. They showed that for closely related proteins the best
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performance is obtained using a very restrictive E-value (10™*°) whereas for distantly

related proteins PSI-BLAST performs better when the E-value is less restrictive.

Forrest et al. (2006) also benchmarked PSI-BLAST. However, instead of using
GPCRs, they built a database of transmembrane protein structures called HOMEP,
which included all available transmembrane protein structures with more than four
helices, and as such, comprised 36 structures. Homology searches were performed
using PSI-BLAST combined with multiple sequence alignments (ClustalW) on
HOMEP, and based on these data they concluded that PSI-BLAST based methods can

be effective for transmembrane proteins.

Of note, the studies of Hedman et al. and Forrest et al. examining the utility of PSI-
BLAST based methods for transmembrane homology searches were conducted using
small datasets. An open question addressed by the present study is the ability of PSI-
BLAST methods to detect transmembrane protein homology when considering larger

datasets.

3.1.4 The present work

The ability of PSI-BLAST to detect homologous transmembrane proteins was
investigated. The query sequences included representatives of various transmembrane
protein families classified in the Pfam database and searched against a database
comprised of all non-redundant Pfam protein domains recognized to be

transmembrane.

As a control, a water-soluble domain set from Pfam was employed as query set

against a database of the entire non-redundant Pfam protein domains.
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Our benchmarking of PSI-BLAST for transmembrane proteins considered two
homology levels. First, we tested the ability to detect sequences within a Pfam family.
In this case, only proteins inside the query protein family were considered true
positives. Next, we tested the ability to detect sequences within a Pfam clan. In this

case, only proteins inside the query protein clan were considered true positives.

Our goal was to improve the capacity of the sequence alignment method, PSI-
BLAST, to detect homologous transmembrane proteins. The information retrieved
from this step, of benchmarking PSI-BLAST, was necessary for the development of
our more complex search method described in Chapter 4, in particular, for choosing

the h- parameter.

3.2 Methods

3.2.1 Databases

Protein domains were extracted from the Pfam database (Bateman et al., 2004, Finn et
al., 2006). The Pfam database, as described in detail in chapter 1, contains protein
domains classified using multiple alignments and profile-HMMs into families, and the
families grouped into clans. Pfam consists of two parts, Pfam-A, which is curated
manually and Pfam-B, an automatically generated supplement. Only Pfam-A is used
in the current study. The following files describe Pfam data and are available for
downloading: the "pfamseq" file contains all the protein sequences and corresponding
descriptions (from SWISS-PROT and SP-TrEMBL); "Pfam-A.fasta” contains the

domain sequences; "Pfam-A.full* contains the families, their description and
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domains; and "Pfam-C" contains each clan in the database and its constituent families.

The sequences considered when benchmarking PSI-BLAST were the parts of the
protein sequences aligned in the Pfam database. A non-redundant query set was
generated that had a 50% sequence identity threshold (i.e., no pair of proteins in the
final list had >50% sequence identity). In addition, a 90% sequence identity threshold
database used for running the PSI-BLAST searches was generated. Redundant
sequences were found using CD-HIT (Li et al., 2001, Li et al., 2002). In addition,
domains were excluded from the database if their description (from "pfamseq"” file)
encompassed any of the following terms: uncharacterized, unidentified, unknown,

predicted, hypothetical, undetermined or probable.

Two query sets and corresponding databases were created, for transmembrane

proteins and water-soluble proteins, described in the next sections.

3.2.1.1 Transmembrane protein query set and database

The database of Pfam transmembrane domains, for sequence alignment, was built by
selecting domains in the Pfam database version 19.0 (Pfam-A file) that had at least
one of the following transmembrane protein terms in their description:
transmembrane, membrane, membranous, intramembrane, transporter, pump, channel
and receptor. The final transmembrane proteins database used for PSI-BLAST

searches contained 909,822 protein domains.

The query set (targets to be tested) from the Pfam database was selected as follows.
Initially, all clans with transmembrane terms in their description (as described above)

were listed (using the Pfam-C file). Then the families within each clan and the
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domains they contain were listed. Domain sequences were extracted from the “Pfam-
A.fasta” file, which contains each domain name and the family with which it is
associated. Furthermore, only domains with more than one transmembrane helix
according to TMHMM (Krogh et al., 2001) were retained. Finally, the domain query
set was chosen randomly from this list of domain sequences. The final query set

included 112 randomly chosen proteins, from 29 different clans.

3.2.1.2 Water-soluble protein query set and database

To create the water-soluble protein database, all proteins with the transmembrane
proteins terms (listed above) in their Swiss-Prot description were removed. The final
water-soluble protein database used for PSI-BLAST searches contained 3,912,930

protein domains.

The set of queries were chosen randomly. Domain sequences were extracted from the
“Pfam-A.fasta” file as described. The final water-soluble query set included 71

domains.

3.2.2 Sequence alignment using PSI-BLAST

Sequence alignment searches were performed using PSI-BLAST (Altschul et
al.,1997) to identify all the protein domains homologous to a given query in the

corresponding test database.

PSI-BLAST was performed to detect all possible homologous protein domains using
various E-values (-h parameter: 10% 10° 108 10™°), with the parameter that

determines the maximum number of aligned proteins (-v 3000) set to 3,000. Up to 5
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iterations were allowed (-j 5). Remaining PSI-BLAST parameters were left at default
values. PSI-BLAST results with an E-value smaller than 1 were listed and analyzed (-

el).

3.2.2.1 Running PSI-BLAST with NRDB90 database before Pfam

database

Schaffer et al. (2001) claimed that PSI-BLAST is more sensitive to distant
relationships when score matrices are created from larger and diverse sets of related
sequences. In other words, they recommend searching a comprehensive sequence
database for a few iterations, saving the resulting position-specific matrix (PSSM) as
a checkpoint, and then restarting PSI-BLAST using that checkpoint matrix to search
the narrower database of interest. In the present work, we compared this protocol,
whereby PSI-BLAST is run for 4 iterations using the NRDB90 database and then
restarted for one iteration using the Pfam database, with running PSI-BLAST for 5

iterations with our constructed Pfam database.

It was not found to improve detection of homologous proteins when PSI-BLAST was

run using the NRDB90 database before the Pfam A-derived database.

3.2.3 Assessment of homology detection

A PSI-BLAST result file (list of hits) was generated for each query domain and each
result was checked and defined as true positive or false positive. The performance was
evaluated by generating sensitivity curves in which true positives are plotted against

false positives for each h-parameter: 10°, 10, 10® and 10™. In addition, all PSI-
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BLAST results were collected in a list that was ordered according to E-value.
Generally, it is desirable for more true positives to appear before a given number of

false positives, with the number of false positives as low as possible.

3.3. Results

3.3.1 Evaluating the performance of PSI-BLAST on water-

soluble proteins

The results presented in the next sections will be divided according to the homology

level tested.

3.3.1.1 Evaluating PSI-BLAST at the Pfam family level

Initially, PSI-BLAST was benchmarked using Pfam A-derived water-soluble proteins
as a control for benchmarking PSI-BLAST using Pfam A-derived transmembrane

proteins.

In this experiment the family level was considered, i.e, true positives are proteins in
the same Pfam family as the query. Sensitivity curves resulting from PSI-BLAST run
using the water-soluble protein query set and corresponding Pfam database for 5
iterations, at four different settings of threshold parameter (h-parameter) are shown in

Figure 15.
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Figure 15: Sensitivity curves for homology searches performed using the Pfam water-soluble test
database and query set with four settings of the threshold parameter (h-parameter): 10° (blue), 10°
(green), 10 (red), 10™ (light blue). Pfam family homology level.

h-parameters of 10, 108, 10™° resulted in similar curves, although the overall number
of true positives was smaller the smaller the h-value. The higher h-parameter 107

resulted in a dramatically increased number of false positives and fewer true positives.

One explanation for this behavior is the phenomenon of PSSM ‘corruption’, described
above and characterized by Schaffer et al. (2001). To examine this premise, we scored
the number of corrupted queries at each h-value (Table 7), using Schaffer et al.
definition of corruption (PSSM containing a false positive alignment with E-value <
10™). However this approach to scoring PSSM corruption did not reveal significantly

increased corruption at h = 10,
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Table 7: The number of corrupted queries for each h-value for the water-soluble test database, taken
from Pfam (family homology level).

h-value used for running PSI-BLAST | Corrupted queries
h=10" 2
h=10° 1
h=10" 1
h=10" 0

A different way of addressing PSSM corruption is to count the number of false
positives that have a smaller E-value than the h—parameter after the first iteration,
second iteration and so on. Such false positives would be used to build the PSSM for
the next iteration and cause the number of false positives to increase. First iteration
PSI-BLAST results were found to have very small numbers of false positives. The

number of false positives started to rise only after 2 iterations.

A diagram of the E-value distribution of the PSI-BLAST false positive hits after
running two iterations using the h-parameter of 10 shows that the number of false
positives begins to rise above an E-value of 10 (Figure 16). This could explain the
large number of false positives observed after five iterations when using an h-

parameter of 10°°.
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Figure 16: E-value distribution of the PSI-BLAST results found to be a false positive in the second
iteration when using h-parameter of 10 for water-soluble test database, taken from Pfam (family
homology level).

Conversely, a corresponding diagram of the E-value distribution of the PSI-BLAST

false positive hits after running two iterations using the h-parameter of 10°® shows that

the number of false positives is very low under an E-value of 10°® (Figure 17).
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Figure 17: E-value distribution of the PSI-BLAST results found to be false positives in second
iteration when using h-parameter of 10 for water-soluble test database, taken from Pfam (family
homology level).

3.3.1.2 Evaluating PSI-BLAST at Pfam clan level

In this experiment the clan level was considered, i.e., true positives are proteins in the
same Pfam clan as the query. Sensitivity curves resulting from PSI-BLAST run using
the water-soluble protein query set and corresponding Pfam database for 5 iterations,

at four different settings of threshold parameter (h-parameter) are shown in Figure 18.
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Figure 18: Sensitivity curves for homology searches performed using the Pfam water-soluble test
database and query set with four settings of the threshold parameter (h-parameter): 10 (blue), 10°
(green), 107 (red), 10™ (light blue). Pfam clan homology level.

The graph shows that PSI-BLAST performed with high accuracy. The number of
false positives was low (maximum 5 false positives) while the number of true
positives was high for all h-values. Using an h-value of 10 the number of true
positives was higher with fewest false positives. It is hard to compare between the

performances of PSI-BLAST with the tested h-parameters due to the fact that there

are very few false positives in all cases.

3.3.2 Evaluating the performance of PSI-BLAST on

transmembrane proteins
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3.3.2.1 Evaluating PSI-BLAST at the Pfam family level

In this experiment, the family level was considered, i.e, true positives are proteins in
the same Pfam family as the query. Sensitivity curves resulting from PSI-BLAST run
using the transmembrane protein query set and corresponding Pfam database for 5
iterations, at four different settings of threshold parameter (h-parameter: 107, 107,

108, 10™") are shown in Figure 19 (A and B).

The sensitivity curves for detecting transmembrane proteins behave differently as
compared to the sensitivity curves for detecting water-soluble proteins. Notably, for
transmembrane proteins, PSI-BLAST run using a bigger h-parameter (107 results in
the lowest number of false positives. This pattern changes when the number of true
positives exceeds 8000, from which point on the h-parameter of 107 resulted in the
highest false positive versus true positive rate. In the case of the sensitivity curves for
detecting water-soluble proteins, all 4 h-parameter settings result in almost zero false
positives for up to 7000 true positives, and only at this point the number of false

positives begin to rise at the h-parameter setting of 107.
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Figure 19 : A: Sensitivity curves for homology searches performed using the Pfam transmembrane
test database and query set with four settings of h-parameter: 10 (blue), 10 (green), 10 (red), 10

(light blue). Pfam family homology level. B: Focus on true positives under 1.4x10*
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As observed when detecting water-soluble proteins using the h-parameter setting of
1073, the sensitivity curve for detecting transmembrane proteins using the h-parameter
of 10® indicates PSSM corruption. Each transmembrane query was scored for
corruption at the different h-values (see Table 8). In line with the observed sensitivity

curves, the greatest number of corrupted queries were associated with h = 107,

Table 8: The number of corrupted queries for each h-value for transmembrane test database, taken
from Pfam (family homology level).

h-value used for running PSI-BLAST | Corrupted
h=103 40
h=10° 27
h=10° 26
h=10" 24

3.3.2.2 Evaluating PSI-BLAST at the Pfam clan level

In this experiment the clan level was considered, i.e. true positives are proteins in the
same Pfam clan as the query. Sensitivity curves resulting from PSI-BLAST run using
the transmembrane protein query set and corresponding Pfam database for 5
iterations, at four different settings of threshold parameter (h-parameter: 1073, 107,

10®, 10™%®) are shown in Figure 20.
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Figure 20: Sensitivity curves for homology searches performed using the Pfam transmembrane test
database and query set with four settings of h-parameter: 10° (blue), 10 (green), 10® (red), 10
(light blue). Pfam clan homology level.

For detecting transmembrane homology at the Pfam clan level, the sensitivity curves

show that the higher the h-parameter, the fewer false positives versus true positives.

As for water-soluble proteins, PSI-BLAST performs with greatest accuracy at the
Pfam clan homology level. However, unlike as observed for water-soluble proteins,
the alignment of transmembrane proteins generates a greater number of false

positives.

3.3.3 Comparing the effectiveness of PSI-BLAST for

transmembrane versus water-soluble proteins
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In order to compare the effectiveness of PSI-BLAST for transmembrane versus water-

soluble proteins, a graph of the log of the E-value against the false positive ratio

(calculated by False_ positive_number ) was drawn for the transmembrane protein
Total _results

set and for the water-soluble proteins set at the Pfam family level (Figure 21).
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Figure 21: The false positive ratio versus the natural log of E-value of the PSI-BLAST results for
transmembrane proteins (blue) and water-soluble proteins (green).

The results shown are for running PSI-BLAST with the h-parameter of 10, which
appears to result in the best false positive ratio. The false positive rate starts rising
above zero at a lower E-value for transmembrane proteins. More generally, the graphs
are hard to compare as they cross over in several places.

Since we aimed to use our method (presented in chapter 4) for homology detection at
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the level of protein families, which is a more restricted level than the clan homology

level, we conducted this comparison at the family homology level.

3.4 Discussion

In this chapter we present an evaluation of the performance of PSI-BLAST both for
water-soluble proteins and for transmembrane proteins using Pfam as the source

database.

3.4.1 Benchmarking PSI-BLAST for water-soluble proteins

For water-soluble proteins at the Pfam family level, we found that h-parameters of
10, 10°® and 10 resulted in similar sensitivity curves; a false positive rate that stays
low with a high true positive rate. The lower the h-parameter, the better the sequence
alignment performed but the overall number of true positives was smaller. This
finding agrees with previous benchmarking studies and supports the idea that a very

low h-value is restrictive.

In line with the study of Schaffer et al. (2001), we observed a very large number of
false positives versus true positives when PSI-BLAST was run using an h-parameter
of 10, the phenomenon being termed corruption. However, in our study the number
of “corrupted” queries, as defined by Schaffer et al., was low. Nevertheless, our result
could be explained by our analysis of the distribution of false positives according to
E-value when PSI-BLAST was run for two iterations at 10 versus 10 h-parameter
settings. A great number of false positives were observed at E-values greater than 10™

when running PSI-BLAST with the 10 h-parameter than are observed at E-values
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greater than 10°® when running PSI-BLAST with the 10° h-parameter.

The reasons why false positives with low E-values were observed in the second
iteration of running PSI-BLAST on water-soluble protein is not obvious. It could be
that the query proteins chosen (randomly) are relatively similar also to different
families and therefore a restrictive h-parameter (smaller than 107 is required for
accurate homology detection. This explanation is in agreement with a report by Finn
et al. (2006), the creators of Pfam, describing difficulties in classifying some proteins
into Pfam families. Finn et al. describe that building new Pfam families and/or
revisiting existing families often highlights two confounding issues. (1) Many Pfam
families are related and have artificially high thresholds to stop them from
overlapping. Thus, two proteins can have evolved from a common ancestor but not be
classified in the same family. For example, Globins are haem-containing proteins
involved in binding and/or transporting oxygen that share the same folding pattern
and are considered to have evolved from a common ancestor. There are two Pfam
families containing Globins (PF00042, PF01152) and the separation between these
families is not clear. (2) For some large, divergent families a single HMM that

detects all family members could not be built.

A closer look at the PSI-BLAST results after the second iteration with h-parameter
10 supports the premise that some of the false positives were proteins that are

homologous to more than one family:

« 50 false positives aligned wrongly to Siderophore-interacting protein
(AOQF87) in family PF08021 (Siderophore-interacting FAD-binding domain

9) with low E- value (<107).
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For example:

Both the PSI-BLAST results Q11TL8 and A0JZXO0 are in a different family of

FAD binding domain 6 (PF00970).

e 23 false positives aligned wrongly to protein A4R870 from the family

PF08022 that is FAD-binding domain 8, as well.
For example:

The PSI-BLAST result B111C3 belongs to the family PF02900 that is a

Catalytic LigB subunit of aromatic ring-opening dioxygenase

e 28 false positives aligned wrongly to protein A7UW98 from the family

PF08022 mentioned before.
For example:

The PSI-BLAST result, ASWDAS belongs to a different FAD-binding domain

(6) (PF00970), Oxidoreductase FAD-binding domain.

All of these false positives belong to the same clan CL0076, raising the possibility

that proteins in these families are very similar.

The challenges of classifying proteins based on sequence alone only serve to highlight
the need to develop computational approaches to classification that incorporate

structural information.

For water-soluble proteins at the Pfam clan level, PSI-BLAST run using an h-value of
10 performed the best; although with all h-parameters tested the number of false

positive was very low.
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3.4.2 Benchmarking PSI-BLAST for transmembrane

proteins

For transmembrane proteins at the Pfam family level, PSI-BLAST performed best for
very closely related proteins when using an h-parameter of 10 and for more distantly
related proteins when using an h-parameter of 10°. These findings are not in
agreement with the results of Hedman et al. (2002). They concluded that PSI-BLAST
performs best with an E-value of 10™ for very closely related proteins but for
distantly related proteins it performs better when using a less restrictive E-value (10°
%). The key difference between the present study and Hedman’s is the query set and
corresponding database. Hedman et al. were studying GPCR proteins only whereas in

our study we benchmarked various transmembrane families.

3.4.3 Comparing the effectiveness of PSI-BLAST for

transmembrane versus water-soluble proteins

Since the lipid environment constrains the structural and sequence diversity of
transmembrane proteins, it was expected that homology searches, such as PSI-BLAST
would be less effective for transmembrane proteins than for water-soluble proteins.
Nevertheless, our results did not accord with this expectation. Indeed, PSI-BLAST
performed similarly on water-soluble proteins and on transmembrane proteins when
tested using Pfam database families. This finding contrasts with that of Hedman et al.
(2002), who reported that PSI-BLAST performs better on water-soluble proteins. It
could be that the way Pfam families are built explains the different findings or the fact

that Hedman et al. conducted their research using GPCRDB only. Another possibility
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is that the more simple classification of transmembrane proteins into fewer families
relative to water-soluble proteins (Oberai et al., 2009) compensates for the low

complexity in transmembrane protein sequence.

3.4.4 Choosing the best PSI-BLAST h-parameter

Based on our data, 10° is the best h-parameter when using PSI-BLAST to detect
homologous water-soluble proteins at the Pfam family level, as this parameter results
in a low number of false positives without limiting severely the number of true
positives. This conclusion corroborates earlier findings of Schaffer et al. (2001) and

Park et al. (1998), who each used a different database source for their studies.

Similarly, 10°® is the best h-parameter when using PSI-BLAST to detect homologous
transmembrane proteins at the Pfam family level, as this parameter results in a low

number of false positives without limiting severely the number of true positives.

When using PSI-BLAST to detect homology at the Pfam clan level, an h-parameter of

107 is optimal for both water-soluble and transmembrane proteins.

3.4.5 Conclusions

The purpose of benchmarking PSI-BLAST was to determine the best h-parameter
when detecting homology among transmembrane proteins. We wanted to benchmark
PSI-BLAST using the exact protein set that will be used when developing our new

homology search method.

We found that PSI-BLAST run with the h-parameter of 10° is the best option for
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getting a minimal number of false positives with the highest number of true positives

when considering the Pfam family homology level. The goal of our more complex
detection method, described in the next chapter, was to further decrease this false

positive number.
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Chapter 4

Integrating sequence similarity and
structural information to identify

homologous transmembrane proteins

4.1 Introduction

One way of annotating an unknown protein and learning about its function is to search
for already characterized homologous proteins. In the past decade this approach has
been applied successfully to identify globular proteins but has been less effective for
transmembrane proteins. Various transmembrane protein homology detection studies

that have attempted to address this problem are summarized below.

4.1.1 Methods based on sequence alignment

The amino acid composition and conservation patterns of transmembrane and water
soluble regions differ (Cserzo et al., 1997). This reflects an obvious spatial difference,
namely that transmembrane proteins are present simultaneously in two different

physicochemical environments whereas soluble proteins are present in only one.
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Accordingly, the amino acid composition of the transmembrane regions must be
predominantly hydrophobic to be stable within the lipid environment of the
membrane. Conversely, surface residues, particularly in soluble proteins are exposed
to water and tend to be hydrophilic. More specifically, it has been noted that
transmembrane helices display an alternating pattern of conserved and non-conserved
amino acids, with the conserved amino acids in the core of the protein structure and
the non-conserved hydrophobic amino acids facing the lipids (Donnelly et al., 1993).
The dissimilar amino acid composition of transmembrane versus soluble proteins has
been explored as a signature for sequence alignment methods. Indeed, several groups
reasoned that homology detection for transmembrane proteins based on sequence
alignment could be improved if amino acid substitution matrices specifically designed
for transmembrane proteins were introduced into the search protocol, e.g., the JTT
matrix (Jones et al., 1994), the PHAT matrix (Ng et al., 2000) and the SLIM matrix
(Muller et al., 2001). Indeed, these groups found that homology searches performed
using such matrices proved more effective than searches that employed regular amino

acid substitution matrices.

Subsequently, the STAM method (Shafrir and Guy, 2004) was developed that
improved alignment accuracy further by combining different subtitution matrics.
However, Forrest et al. found that using a bipartite scheme (based on BLOSUM®62
and PHAT) does not significantly improve transmembrane protein sequence
alignment (Forrest et al., 2006). In light of this finding, Forrest et al. proposed that
previous reported improvements in sequence alignment due to acid substitution
matrices specifically designed for transmembrane proteins could be attributable to the

separation and independent alignment of transmembrane and non-transmembrane
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regions and to differences in gap penalties, rather than to the choice of substitution

matrix.

Pirovano et al. (2008), developed a new method for aligning transmembrane proteins
(Praline TM) that not only employs transmembrane specific substitution matrices
(PHAT) but also incorporates a higher gap penalty setting, different from the typical
one used when searching for homologous globular proteins. Higher gap penalty for
the transmembrane regions (15-18) and using PHAT matrix for the transmembrane
regions yield better performance. Nevertheless, the effect of the gap penalty on the

performance was minor.

In summary, the utility of substitution matrices specifically designed for
transmembrane proteins remains debatable. In light of this uncertainty concerning the
effectiveness of transmembrane protein specific substitution matrices, we chose in the
current work not to use such matrices when conducting sequence alignment for

transmembrane proteins but to use regular BLOSUMG62.

4.1.2 Methods based on loop lengths

Another feature of transmembrane proteins is the loops between transmembrane
helices, which are less conserved than the transmembrane regions (Forrest et al.,
2006). These loops range in size and exhibit structural flexibility and variability.
Thus, the patterns of amino acid insertion/deletion are different in transmembrane
versus globular proteins, potentially confounding homology searches for

transmembrane proteins based on multiple sequence alignments.
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To address this issue, Arai et al. (2004) devised a search protocol that incorporates
information about loop lengths and performed modified searches using 87 complete
prokaryotic genome sequences. Briefly, in this method transmembrane protein
function is classified on a proteomic scale by applying a single-linkage clustering
method based on sequence similarity and predicted topological similarity, the latter
calculated by comparing the lengths of loop regions between helices. Notably, an
assumption underlying this approach is that members of a given family possess the
same number of transmembrane helices. Proteins are initially divided into groups
according to the number of transmembrane helices and only then a “loop score”
calculated, which relates to the loop lengths exhibited by each pair of compared
proteins. Arai et al. reported that this clustering approach raised the rate of

transmembrane proteins classified functionally and identified from 24.3% to 60.8%.

Similarly, Sugiyama et al. (2003) developed a method for classifying transmembrane
proteins based on the number of transmembrane segments, the loop length and the N-
terminus location. In this method, the length of each loop is expressed as ‘1’ or ‘0’
depending on whether it is longer or shorter than the threshold length defined for each
loop. Next, for each functional group the average of binary loop length is calculated.
Using these averages, a binary topology pattern (BTP) is determined for each
transmembrane functional group. After testing 37 functional transmembrane protein
groups, Sugiyama et al. reported that the BTPs are very accurate at identifying the

individual functions.

Wistrand et al. (2006) designed a method (GPCRHMM) to identify new G Protein

Coupled Receptors (GPCRs) based on a Hidden Markov Model. A set of GPCRs were
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analyzed to determine distinct loop length patterns and differences in amino acid
composition between cytosolic loops, extracellular loops, and membrane regions. The
hidden Markov model, GRCRHMM, was designed to fit the observed parameters.
When applied to search for novel GPCR superfamily members across five proteomes,
GPCRHMM detected 120 sequences that lacked annotation and, as such are novel

putative GPCRs.

4.1.3 Methods based on hydropathy profiles

The structure of transmembrane proteins is reflected in the hydropathy profile of the
amino acid sequence. Accordingly, the hydropathy profile is often better conserved
than the underlying sequence and can be used as an additional tool when searching for
homologous transmembrane proteins. Indeed, Lolkema and Slotboom demonstrated
that two transmembrane proteins with only marginal sequence identity or two non-
related families of membrane proteins can have very similar hydropathy profiles,

indicating similar global structures (Lolkema and Slotboom, 1998).

Subsequently, a search method that incorporates patterns of hydropathy profiles was
developed by Clements and Martin (2002). A hydropathy profile pattern is the pattern
of peaks in the hydropathy profile of a given protein. Searches based on hydropathy
profile patterns were shown to identify new members of functional classes of

transmembrane proteins not detected by sequence alignment alone.

4.1.4 Methods that combine sequence alignment with

secondary structure information
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The detection of homologous globular proteins was improved by combining sequence
alignment with secondary structure information (Rost et al., 1997, Park et al., 1998,
Rychlewski et al., 2000 , Lindahl and Elofsson, 2000). Similarly, a small number of
studies have developed search protocols for homologous transmembrane proteins
based on sequence comparisons that incorporate topological information. These
studies are especially relevant to the current work and therefore are discussed in

detail.

Hedman et al. (2002) focused on finding homologous members of the G Protein
Coupled Receptor (GPCR) family and developed a new approach, called the Pmembr
method, which adds information about predicted transmembrane segments to standard
Smith-Waterman and profile-sequence (PSI-BLAST) search algorithms. Basically,
the alignment score is increased if two residues predicted to belong to transmembrane
segments align. A notable advantage of Pmembr, compared to methods using only
sequence based algorithms, is that the number of false positives is significantly

reduced in searches for closely and distantly related proteins.

The first group to design a homology search that combines transmembrane protein
specific sequence constraints with profile-profile based comparisons was Bernsel et
al. (2007). Termed SHRIMP, the protocol incorporates a Hidden Markov Model
(HMM) that integrates sequence information with predicted topology and
hydrophobicity data to detect related proteins. The HMM profile is constructed from
multiple sequence alignments and expanded using a second alphabet corresponding to
predictions of either hydrophobicity or transmembrane topology. Sequence profiles,

with the same additional information, are then scored against the model, and paths
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through the model corresponding to alignments where transmembrane regions are
matched to each other will have a relatively higher probability. This search method
was applied initially to the database of G-protein coupled receptors (GPCRDB; Horn
et al., 2003). To gauge the ability to detect distant homologs, only hits to GPCRs from
different classes were considered positives, whereas hits within a GPCR class were
ignored and hits to non-GPCRs (from GPCRDB and Swiss-Prot) were considered
negative. Evaluation of SHRIMP indicated that introducing structural information to
the profile-profile method improves detection of distant homologs. In addition,
SHRIMP performed better than the profile-sequence based method Pmembr. The
ability of the SHRIMP method to find close homologs within, rather than between,
GPCR classes was also assessed. Again, the SHRIMP method performed better than

Pmembr method.

Subsequently, the SHRIMP method was applied to the HOMEP database (Forrest et
al., 2006). The HOMEP database comprises 36 homologous transmembrane proteins
with solved crystal structures, which can be classified into 11 SCOP families.
Applying SHRIMP to HOMEP corroborated that adding topological information
improves homology detection. This notwithstanding, Bernsel et al. found that the
SHRIMP method does not clearly recognize clan relationships in the Pfam database.
Specifically, Bernsel et al. reported that although the performance of the SHRIMP
classifier was greater across the whole range of false positive rates (relative to a

simple classifier based on sequence similarity), the improvement was limited.

4.1.5 Methods based on helix interaction patterns
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Recently, Fuchs and Frishman (2010) reported a new search method, which identifies
relationships between transmembrane proteins by clustering them according to
similarities among transmembrane helix interaction graphs. A helix interaction graph
IS generated by considering the transmembrane helices as graph nodes and the
interactions between helices as the edges of the graph. For each pair of helices, the
number of residues in contact is determined from the structure by evaluating a
minimal distance between opposing side chains or backbone atoms. All helix pairs
with at least one residue in contact were considered as interacting. This method
produces a score called HISS, which encapsulates to what extent the architecture of
transmembrane helix bundles are conserved. The search method was applied to all the
available transmembrane proteins with solved 3D structures and revealed that
common helix interaction patterns are indeed conserved among proteins with
distinctly different sequences but with the same structure. Moreover, when clustering
was performed according to helix interaction similarity on structurally available
transmembrane proteins with more than four transmembrane helices, 20 recurrent
helix architectures were discovered and 15 singleton proteins. Of note, this
classification approach, as it is based on the extent helix interactions are similar, is
reminiscent of conventional structural classifications for globular proteins, such as
SCOP and CATH, and led to the appreciation that helix interactions are key in

determining transmembrane protein structure.

4.1.6 The present work

In the current work, a transmembrane protein homology detection method is presented

that integrates sequence alignment with structural information. Our method
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incorporates into iterative multiple sequence alignments (PSI-BLAST) information
regarding the predicted transmembrane segments as well as comparisons between
predicted residue orientations and loop lengths. This approach to detecting
homologous transmembrane proteins is expected to correctly detect the relationship
between transmembrane proteins in cases when simple sequence alignment (such as
PSI-BLAST) fails to detect any homology. Of note, the current work is the first
method to employ helix orientation predictions when searching for homology among
transmembrane proteins. Moreover, our method is the first to combine a number of
different structural features of transmembrane proteins with sequence alignment.
Another novel feature is that when more structural information is available, it will be

fairly easy to incorporate it into our method.

In addition to improving the accuracy of homology detection, we aimed to ensure that
this advanced search method could be used on a large scale for automated
classification of transmembrane proteins. This feature is critical as transmembrane
proteins are challenging to work with experimentally and currently there is no
structure-based transmembrane protein database comparable to the water-soluble
protein databases, such as SCOP and CATH. In particular, the difficulty in
performing structural studies underscores the need for innovative bioinformatics tools
that enable automated classification of the functional and evolutionary relationships

between transmembrane proteins.
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4.2 Methods

4.2.1 Databases

When evaluating a homology detection method, it is crucial to have query set and a
test database where both false and true relationships between the queries and database
proteins are already known. For globular proteins, structure-based databases such as
SCOP (Murzin et al., 1995) and CATH (Orengo et al., 1995) can serve this purpose.
However, a “gold standard” database for transmembrane proteins does not yet exist,

as very few transmembrane protein structures have been solved.

This notwithstanding, the G-protein coupled receptor database (GPCRDB; Horn et
al., 1998, Horn et al., 2003) has proved a reliable database when testing searches for
homologous transmembrane proteins. It is a well maintained and manually curated
database, collating and validating large amounts of heterogeneous data concerning
GPCRs. Categorization in GPCRDB is based on classes, which contain proteins with
similar function and sequence homology. The GPCRDB database divides the GPCR
superfamily into six classes: Class A rhodopsin-like, which account for over 80% of
all GPCRs, Class B secretin-like, Class C metabotropic glutamate receptors, Class D
pheromone receptors, Class E cAMP receptors and the Class F frizzled/smoothened

family. Initially, we used GPCRDB when developing and testing our search method.

To evaluate whether the search method can be applied to other transmembrane
proteins, subsequently we tested our method using the Pfam database (Bateman et al.

2004; described in detail in Chapter 1). Pfam is a semi-automatically maintained
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database that contains a collection of protein families and domains, as well as multiple
alignments and profile-HMMs that characterize these families. Of note, Pfam is not as
reliable as GPCRDB with regards to categorizing the relationships between proteins,
as the former employs a semi-automated classification method unlike GPCRDB that
is manually curated. Protein domains are categorized in the Pfam database into
families and clans. A clan is a collection of families judged likely to be homologous.
Families are classified mostly automatically but clans are built manually, based on

various sources of information.

4.2.1.1 GPCRDB

Our search method was tested using the GPCRDB, and we chose to build the test data
set in a similar way to previous studies (Hedman et al., 2002 and Bernsel et al., 2007).
The query set was created by downloading six classes of GPCRs from GPCRDB
(June 2006 release 10.0) and selecting randomly 127 proteins such that they were
proportionately distributed among the GPCRDB classes. Redundant proteins were
removed using the CD-HIT program (Li et al., 2002) to ensure that the sequence
identity between any two proteins was less than 50%. The final query set is shown in

Table 9.

Table 9: Query set from GPCRDB.

Class No. of proteins in GPCRDB No. of proteins in
Rhodopsin like 4949 90
Frizzled-Smoothened 113 6

Secretin like 231 12

Fungal pheromone receptors 58 7
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Metabotropic glutamate / pheromone 160 12

CAMP receptors 7 1

The test database for sequence alignment included proteins from the six GPCRDB
classes with a maximum of 90% redundancy (according to CD-HIT). In addition the
test database included ~21,000 proteins from the non-redundant sequence database
Uniref90 (Suzek et al., 2007) to serve as potential false hits (negative set). Only
proteins containing more than one transmembrane helix according to TMHMM
prediction (Krogh et al., 2001) were added to the database. GPCRs were excluded
from the ~21,000 protein negative set by screening for GPCR description in Swiss-
Prot entries both manually and automatically. In addition, CD-HIT-2D (Li et al.,
2002) was utilized, which compares two protein sets and identifies the sequences in a
second set that are similar to those in the first set above a preset threshold; the identity
threshold was set at 99%. Moreover, proteins were excluded from the test database if
their Swiss-Prot description had any of the following terms: uncharacterized,
unidentified, unknown, predicted, hypothetical, undetermined or probable. These
proteins were excluded from the database because relationships between these

proteins and others are known to be confounding.

4.2.1.2 Pfam database

The database of Pfam transmembrane domains, used for testing homology search, was
the same database used in chapter 3, for benchmarking PSI-BLAST. It was built by
selecting proteins in the Pfam database, version 19.0 (Pfam-A file) that had at least

one of the following transmembrane protein terms in their Swiss-Prot description:
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transmembrane, membrane, membranous, intramembrane, transporter, pump, channel
and receptor. Proteins were excluded from the database if the Swiss-Prot description
had any of the following terms: uncharacterized, unidentified, unknown, predicted,
hypothetical, undetermined or probable. In addition, highly homologous sequences
(greater than 90% identity) were excluded; homology reduction was carried out using

the CD-Hit program.

The query set from the Pfam database, was same set used in chapter 3. For building
the set initially, all clans with transmembrane terms in their description (as described
above) were listed (using the Pfam-C file). Then the families within each clan and the
domains they contain were listed. Domain sequences were extracted from the “Pfam-
A.fasta” file, which contains each domain name and the family with which it is
associated. Homologous sequences (greater than 50% identity) were excluded from
the list using the CD-HIT program. Furthermore, only domains with more than one
transmembrane helix according to TMHMM (Krogh et al., 2001) were retained.
Finally, the domain query set was chosen randomly from this list of domain
sequences. The final query set included 112 randomly chosen proteins, from 29

different clans.

4.2.2 Sequence alignment searches using PSI-BLAST

Sequence alignment searches were performed using PSI-BLAST (Altschul et al.,
1997) to identify all the transmembrane proteins homologous to a given query in a

corresponding test database.

After inspecting the PSI-BLAST benchmarking results (presented in chapter 3) we
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concluded that the best value to use for the h-parameter, which defines the E-value for
inclusion when building up the PSI-BLAST profile, is 10 for Pfam family homology
level and 10 for Pfam clan level. This value resulted in the optimal sensitivity for
transmembrane homology detection, namely the number of true positive PSI-BLAST
results was high yet the number of false positives was low. Since we aimed to use our
method for homology detection at the level of proteins families, which is a more
restricted level than clans homology level we chose to run PSI-BLAST with E-value

of 10°.

The parameter that determines the maximum number of aligned proteins printed (-v
parameter) was set to 3,000. PSI-BLAST was set to run up to 5 iterations (-]
parameter). The remaining PSI-BLAST parameters were left at default values. PSI-

BLAST results with an E-value smaller than 1 were listed and analyzed (-e 1).

For each query, PSI-BLAST results were listed and noted for further study. The E-
value of each PSI-BLAST result was used as the PSI-BLAST method score. As
mentioned previously, the E-value represents the number of times one would expect
to get a hit with the same or better score by chance. Thus, the lower the E-value, the

greater the sequence similarity between the PSI-BLAST result and the query protein.

4.2.3 Integrating secondary structure information with PSI-
BLAST E-values to improve searches for homologous

proteins
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The following steps were performed to calculate secondary structure scores (Figure
22).

(1) For the GPCRDB query set, all PSI-BLAST results were listed and noted for
further analyses. For Pfam database queries, full length sequences were extracted for
both queries and PSI-BLAST results. It should be noted that when searching for
homologs in the Pfam database the PSI-BLAST search was performed using only
domain sequences, nevertheless when considering the secondary structure we chose to
look at the full length sequence. According to Liu et al. (2004), the majority of
transmembrane proteins have only a single transmembrane domain. Therefore, we
assumed that working with full length proteins at this point in our method would not
impact the results and would enable better, more accurate detection of homologous
proteins, especially in cases where the sequence domains are truncated. However,
later it was found that this precaution was unnecessary, as the full length sequences
and the Pfam domains possessed the same number of helices in all proteins under
study.

(2) Each PSI-BLAST result was aligned to the corresponding query protein using
sequence to sequence global alignment with the Needleman-Wunsch algorithm, using
Blosum62 as the substitution matrix and gap penalty of 8. As mentioned, when
considering secondary structure we chose to consider the entire length of all query
sequences and therefore could not use the PSI-BLAST output alignments.

(3) The locations of possible transmembrane helices were predicted using
TMHMM2.0 (Krogh et al., 2001). TMHMM was applied to both the query proteins
and the PSI-BLAST result. TMHMM2.0 was chosen because of its speed relative to

other methods such as MEMSAT-SVM (Nugent and Jones, 2009), though the latter is
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a better predictor of transmembrane helix location and topology.

(4) The following structural scores were calculated: transmembrane helix location
score (henceforth referred to as ‘helix score”), residue orientation score, loop score
and combined score, the latter representative of the other scores (see below). How

each score was calculated is described below.
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Figure 22: Diagrammatic outline of the developed search method. Homology detection using PSI-
BLAST was the fundamental step. Then the locations of helices were predicted using TMHMM. Next,
several structural scores (helix score, residues orientation score and loop score) were calculated for
each PSI-BLAST result. The last step involved finding the optimal weights to generate a combined

score.
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4.2.3.1 Helix score

The transmembrane helix location score (helix score) was calculated by counting the
number of residues aligned between the query and the PSI-BLAST result that are
predicted in both cases to reside in a transmembrane helix. The resulting value was
normalized by dividing it by the total number of residues in all the predicted helices in

the query protein.

4.2.3.2 Residue orientation score

The orientation of each residue was predicted as described in detail in Chapter 2.
Briefly, the sequences of each query and PSI-BLAST results were input to a neural
network, which had been trained to determine whether a residue is buried in the core
of a helix-bundle or exposed to the lipid environment surrounding the transmembrane
protein. The residues orientation score was calculated by counting the number of
residues aligned between the query and the PSI-BLAST result that are predicted in
both cases to be not only inside a helix but also in the same orientation. The resulting
value was normalized by dividing it by the number of residues in all the predicted
helices in the query.

Alternative ways of calculating an orientation score were tested and found to be less
effective (Table 12). Briefly, we tried scoring the overall orientation of each helix
based on a threshold number of residues that are buried or exposed and assigning 1 to
the score when the test and query had similar helix orientation. In addition, we tried
calculating Euclidian distance between the helixes score of the target and the PSI-

BLAST result.
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4.2.3.3 Loop score

The loop score was calculated as reported previously by Aria et al. (2004):

n+l n+l
812(%)=100*> min(l,;. 1)/ > max(l,;,L;)  (8)

i=1 i=1
Where n is the number of transmembrane helices. I1;and |,; are the length of the i-th
loop in sequences 1 and 2, namely the sequences of the query and PSI-BLAST result,
respectively. When the number of helices in the query protein and PSI-BLAST result

were not equal, the best score from aligning any continuous combination of loops was

used.

4.2.3.4 Combined score

The combined score for each PSI-BLAST result was defined as the classifier of our
search method. The E-value, helix score, residues orientation score and loop score

were combined as follows:
Combined = wl*(—log( Eval)) + w2* Helix+w3*orientation+w4*Loop  (9)

Additional ways of combining the scores were evaluated but found to be less

effective, including:

e Using the scores as they are, in a simple linear equation.

e A linear equation:

Combined = WL Eval + w2 x e+ w3xg®rematie L w4 g% (10)

The steps for calculating the weights used to generate the combined score are
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described in Figure 23. In the first step the query set was divided randomly into ten
sets of proteins. For each of the ten training sets from GPCRDB or Pfam, the
Paramopt program (by Prof. D. Jones, not published) was run separately to determine
the optimal weights. The Paramopt program searches for an optimal set of command
line parameters using a genetic-style search. Paramopt used the AUC (the area under

the ROC curve) for minimization.

This test was repeated five times, resulting in a total of 50 sets of weights for each
database. The mode and the average values of the weights were calculated. Then the
performance of using the PSI-BLAST E-value score alone was compared to the
performance of using the combined score calculated using the mode or average

weights.

Overfitting of the weights was avoided by applying a 10-fold cross validation test: the
50 training sets of a particular database were divided into ten sets. Then the mode and
the average values of the weights were calculated each time without one of the sets.

The resulting weight values were then used to calculate a combined score.
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Figure 23: Diagrammatic outline of the steps we took to calculate the combined score weights. The
queries were divided to 10 training sets. Paramopt program was run on each set to derive the optimal
set of weights. This was repeated five times, resulting in 50 sets of weights. The 10-cross validation
test was performed to calculate the mode and average of the weights, which were then tested on all (50)
training sets.

For GPCRDB: the mode values of the weights were similar for all of the 10 tests,

and were found to work on all 50 training sets individually. Accordingly, the

combined score using these weights was found to perform better than PSI-BLAST E-
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value score. In contrast, the average values of the weights were comparable across the
50 training sets, but could not be applied to each one of the test sets. Therefore, the
mode values of the weights were used to generate the combined score for GPCRDB

proteins.

For Pfam database: the mode values of the weights were: E-value weight = 1, Helix
weight = 0, combined weight = 0 and Loop weight = 0. Meaning, that the E-value
score is the only score that contributes to the combined score in most of the training
sets. In addition, the average values could not be applied to each one of the test sets.

Similar results were obtained for clan and family homology level.

4.2.4 Evaluating the ability of the search method to identify

homologous transmembrane proteins

For each query, PSI-BLAST results were listed and their scores (helix score,
orientation score and combined score) were calculated. Then each one of the scores
was used as a classifier, i.e., used for discriminating between true positive PSI-
BLAST results and false positive PSI-BLAST results, and their performance was

evaluated as described in the next sections.

4.2.4.1 Defining a true positive — homologous proteins

In the case of homology searches performed using GPCRDB, a PSI-BLAST result
was considered a true positive if it is classified in the GPCRDB database in the same

class as the query protein.
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For searches performed using the Pfam database, two levels of homology were tested:
(i) A PSI-BLAST result was considered true positive if the query and the PSI-BLAST
result appear in the same Pfam family. (ii) A PSI-BLAST result was considered true

positive if the query and PSI-BLAST result appear in the same Pfam clan.

4.2.4.2 Classifier performance assessment

Receiver operating characteristic (ROC) curve analysis was used in order to assess the
performance of using each classifier: PSI-BLAST E-value, helix score, orientation
score and the combined score. The ROC curve is a plot of the true positive rate (TPR)
against false positive rate (FPR), as the threshold value of the classifier is varied. True
positive (Tp) and False negative (Fn) together constitute the total number of true
results, in other words the truly homologous proteins, while False positives (Fp) and
True negatives (Tn) constitute the total number of false results, namely unrelated

proteins.

True positive rate (TPR, equation 5) and False positive rate (FPR) are calculated as

follows:

Fp
Fp+Tn

FPR = (12)

An ROC curve can be interpreted either graphically or numerically. Interpreting the
ROC curve numerically involves calculating the AUC (the Area Under the ROC
curve, Hanley and McNeil, 1982). An AUC score of 1 indicates that the true positives
are perfectly separated from the negatives; i.e., the classifier assigns higher scores to

all true positives than to any false positives, so that the true positives are at the top of
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the sorted list. An AUC score of 0 indicates that no true positives are found. If one
ROC curve is higher than another, it has a greater AUC indicating a better classifier
performance. If two ROC curves cross over at any point, then each classifier
outperforms the other under some conditions, and comparing AUC values is not very

informative.

A ROC curve was plotted for each classifier: PSI-BLAST E-value, helix score,
residues orientation score and combined score. Then the corresponding AUC was

calculated.

4.2.4.3 Testing the weights used to generate the combined score

A set of weights was tested by comparing the performance of a combined score
classifier generated using the weights to the performance of a classifier that is the PSI-
BLAST E-value alone. In other words, the area under the ROC curve (AUC) was
calculated when the PSI-BLAST E-value was used as a classifier and compared with

that calculated when the combined score was used as the classifier.

4.3 Results and discussion

Results for the two different databases tested, GPCRDB and Pfam, are presented

separately in the sections below.
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4.3.1 Homology detection - GPCRDB

4.3.1.1 Finding the optimal weights for the combined score -

GPCRDB

As described above, to integrate structural information with sequence alignment data
all four parameters (E-value, helix score, residue orientation score and loop score)
were consolidated into one combined score by a linear combination of the log of the
E-value and the three other scores (Equation 9). The weights for the equation were
found by dividing the query set into ten training sets (repeated five times) and using
the Paramopt program for retrieving the optimal weights for these training sets. The
mode values of the weights (Table 10) were found to work and are applicable to all

test sets.

Table 10: The optimal weights for each parameter used to generate a combined score.

Parameter Weight
-Log(E-value) 10
Helix score 0

Residue orientation score 10

Loop score 0

The PSI-BLAST E-value and the residues orientation score are both high, indicating
that they are the key parameters for detecting homology among proteins in this

database. However, as the E-value parameter is exponential (in the range used,
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smaller than 1), there will be high E-values that reduce its contribution to the
combined score such that the other parameter, the orientation score, predominates.
Notably, the high number for the orientation score weight reveals that this structural
parameter in particular plays an important role in the performance of the classifier and
contributes considerably to improving homology detection versus using only the E-

value score.

4.3.1.2 Homology detection results - GPCRDB

Homology searches were performed using the GPCRDB test database and query set
and each of the following classifiers: PSI-BLAST E-value, helix score, residues

orientation score, and the combined score.

Examination of the ROC curve (Figure 24) revealed that when the false positive rate
was low, the residues orientation score, helix score and the combined score performed
better as classifiers than the PSI-BLAST E-value. Nevertheless, the best classifier
overall was the combined score. The AUC values confirmed that the combined score
performed as the best classifier (Table 11). In summary, ROC curve analysis shows
that integrating the parameters improves homology detection when using the

GPCRDB test database.
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query set and each of the following classifiers: E-value (blue), helix score (green), residue orientation
score (red), combined score (light blue).

Table 11: AUC values when each classifier is used to search for homologous proteins in the

GPCRDB test database.

Classifier AUC
PSI-BLAST E-value 0.93
Helix score 0.83
Residues orientation score | 0.84
Combined score 0.96
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The results of two alternative ways of calculating an orientation score are shown in
Table 12. In one approach a helix orientation score was calculated based on the
overall orientation of each helix. In the second method a helix orientation score was
calculated based on the Euclidian distance between the helix scores of the target and
the PSI-BLAST result. Calculating the orientation score using either of these

approaches was not effective.

Table 12: AUC values when each classifier is used to search for homologous proteins in the
GPCRDB test database — testing alternative ways of calculating the residue orientation.

Classifier AUC

Residue orientation score 0.84

Helix orientation score 0.54

Helix orientation score — 0.46

Euclidian distance

4.3.2 Homology detection - Pfam database

To see if the combined classifier can identify homologous transmembrane proteins
when other transmembrane protein families are included in the search, we applied our
method to detect homologous proteins in the Pfam database. The ability of the
combined classifier to detect two levels of homology was tested; the first level was
homologous family membership and the second level was homologous clan

membership.
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4.3.2.1 Finding the optimal weights for the combined score — Pfam

database

Initially, homology searches were performed using the Pfam test database and query
set and the combined classifier, the latter based on the weights derived using the
GPCRDB test database and query set. However, a combined score based on these
GPCRDB weights did not perform well as a classifier. Therefore, we decided to
derive independently for each level of homology (family and clan) a set of weights
using the Pfam set. We reasoned that each database and Pfam homology level was
created in a different way and has distinct features with potential to influence the
classifier performance. Specifically, the Pfam families were classified automatically
based on domain sequences whereas Pfam clans were built manually by gathering
Pfam families together according to structure and function similarity. Thus, domains

in a Pfam clan could have distant sequence homology.

Even more dramatically than when the weights were derived using the GPCRDB
query set, when weights were derived for the Pfam query set we found that the PSI-
BLAST E-value is the key and only parameter for detecting homology. Thus, in the
case of the combined score derived using the Pfam query set, it is clear that sequence
similarity plays a dominant role. The only weight above 0 in the mode values of the
weights was the weight for the E-value score. In addition, when testing the average
values of the weights, it was impossible to generalize the weights of the combined
score for clan homology level and for family homology level as well. Thus, it was
impossible to derive optimal weights that could be used for all training sets of Pfam

families and clans. For some training sets, the PSI-BLAST E-value was the only
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parameter that contributed to the combined score but for other training sets the
residues orientation score was the key parameter and introducing any other reduced
the performance of the classifier. The inability to derive an optimal set of weights is
likely explained by the fact that though most Pfam families were built automatically
and are thus, generally sequence dependent, other Pfam families were manually
generated. Alternatively, it is possible that the combined score does not work well
when trying to detect homologous proteins from different families. It could be that
there are families in which the proteins are similar to each other in sequence and other
families in which the sequence similarity is smaller, but the structural similarity is

prominent.

4.4 Comparing our search method to other

transmembrane homology detection methods

There are only two other methods comparable to the one developed in the current
work. The first is the Pmembr method (Hedman et al., 2002) and the second one is
SHRIMP (Bernsel et al., 2007), both were detailed in the introduction of this chapter.
Like the present method, these other two methods combine structural and sequence

information for transmembrane homology detection.

4.4.1 Comparison with the Pmembr method

Pmembr (Hedman et al., 2002), described before in section 4.1.4, incorporates

information about predicted transmembrane segments into standard Smith-Waterman
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and profile-sequence search algorithm, PSI-BLAST. This method was tested using the
GPCRDB on two homology levels. First, individual classes within the GPCRDB were
considered. Therefore, hits to GPCR sequences outside a given class were ignored and
only hits inside the class defined as true. Second, GPCRDB was considered as a
superfamily. Thus, hits to GPCR sequences in all classes were considered true and
hits to the same class were ignored. In both tests, non-GPCRs were defined as
incorrect hits. Using these tests, the Pmembr search method, which adds topology
information to the PSI-BLAST search method, was demonstrated to improve slightly
the ability to detect both closely related GPCRs (first level of homology) and distantly
related GPCRs (second level of homology), as compared to PSI-BLAST alone.

Adding the structural information to standard Smith-Waterman was less effective.

In the present work we tested the ability of our method to classify sequences correctly
to the relevant GPCR class. Therefore, hits to GPCRs inside the given class were
considered true and all other hits were defined as incorrect, including hits to GPCRs
in other classes. Using these strict criteria, we noted that most of the false positive
results were GPCRs belonging to other classes that did indeed possess some sequence
and structural similarity. It is likely that the performance of our search method would
have attained a higher score if we had chosen to ignore such false positives, as in the
Hedman et al. study. We applied such strict criteria as our goal was to develop a
method that is capable of correctly classifying to a specific class, as we consider this

capability a requirement for automatic classification.

In summary, in light of the dissimilar test criteria and query set it is impossible to

directly compare rigorously our method with the Pmembr method. In addition, the
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Pmembr website is not maintained anymore and we have experienced difficulties with
running a standalone Pmembr program (e.g., an error message was received saying
the profile is too long and this error could not solved. Of note, the authors were
contacted but were not able to solve the problem). Nevertheless, Pmembr result files
could be downloaded from the Pmembr website from a directory that contained all
queries and corresponding PSI-BLAST results files with the Pmembr score, and these
files were used to compare the Pmembr method with our method. We chose to
download the results of running PSI-BLAST with the h-parameter (threshold for
inclusion of new sequences in each iteration of PSI-BLAST) set at 10°, which is
similar to the value employed in our method (10°) and considered the best h-value to
detect both closely and distantly related GPCRs (Hedman et al. 2002). For the
comparison between Pmembr and our method, the definition of false and true positive
hits for Pmembr were changed to meet our test criteria, i.e., true positive hits were
defined as GPCRs inside the given class and all other hits were considered false
positives, including GPCRs in other classes. In addition, only PSI-BLAST results
with an E-value smaller than 1 were listed (Hedman et al. listed hits with an E-value

smaller than 99).
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Figure 25: ROC curves for homology searches (a) performed using Hedman et al. (2002) test
database and query set and each of the following classifiers: PSI-BLAST E-value (red), Hedman score
(light blue) (b) performed using the current method database and each of the following classifiers: PSI-
BLAST E-value (current work, dark blue) or combined score (current work, green).

ROC curves were plotted for the PSI-BLAST classifier (generated using Hedman et
al. data) and the Pmembr classifier (Figure 25) and compared to curves generated
using the classifiers defined in the current work (PSI-BLAST E-value and combined

score, using the data generated in the current work); AUCs were calculated (Table

13).

The AUC values (Table 13) support that the Pmembr score serves as a better classifier
than the PSI-BLAST E-value even when our criteria are applied to the analyses.

However, examination of the ROC curves (Figure 25) revealed that our classifier (the
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combined score) slightly improves homology detection relative to the PSI-BLAST E-

value, even more than Pmembr.

Table 13: AUC values for homology searches when each Pmembr classifier is used (Hedman et al.,
2002).

Classifier AUC
PSI-BLAST E-value —Hedman et al. 0.926
Pmembr score — Hedman et al. 0.940
PSI-BLAST E-value — current work 0.93
Combined score — current work 0.96

The performance of the classifiers was evaluated also by plotting sensitivity curves
(Figure 26), which show the true positive number versus the false positive number per
query. The reason for drawing sensitivity curves for the comparison and not only
ROC curves was the different number of total results, between the current work set
and Hedman et al. set, and in addition the E-value classifier of Hedman et. al and the
current work result in different plots, making comparison of ROC curves less clear.
For sensitivity curves generally, when considering the sorted list it is desirable for
more true positives to appear at the top of the list before a given number of false

positives, such that the number of false positives is as low as possible.

Examination of the sensitivity curves (Figure 26) revealed that the total number of
false positive hits in homology searches performed using the Hedman et al. data and
Pmembr classifiers is much bigger than in the current study. To understand this

finding the list of false positives from the Pmembr data was inspected, with special
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attention paid to hits not belonging to any of the GPCRDB classes (from Swiss-Prot).
It was found that in some cases the false positives were GPCRs not present in
GPCRDB, some were proteins with only one helix and some had one of the following
terms: uncharacterized, unidentified, unknown, predicted, hypothetical, undetermined
and probable in their Swiss-Prot description (again, these were filtered out of our test
database and quey set). Thus, it is likely that some of the false positives detected
using the Hedman et al. set and Pmembr classifiers are due to the less rigorous
filtering of the Hedman et al. test database and query set. Nevertheless, because the
control plots (PSI-BLAST E-value curves) are dissimilar, it is hard to compare the

two methods using the sensitivity curve.
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Figure 26: Sensitivity curves for homology searches performed using one of the following
classifiers: PSI-BLAST E-value (current work, blue), combined score (current work, green), PSI-
BLAST E-value (Hedman et al., red) or Pmembr score (Hedman et al., light blue). The true and false
positive numbers were divided by the number of proteins in the test set (79 in the case of Hedman et al.
and 112 in the case of the current work) to show the false positive/true positive per query.
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4.4.2 Comparison with SHRIMP method

The SHRIMP method (Bernsel et al., 2007), described before in section 4.1.4,
incorporates a Hidden Markov Model (HMM) that integrates sequence information
with predicted topology and hydrophobicity, with each of these structural features
added separately to the HMM. The method was tested originally using the GPCRDB
on two homology levels, in a similar way to the Pmembr method. It was shown that
introducing structural information to the method improves homology detection for
distantly related GPCRs but is less helpful for close homologs. Furthermore, for both
homology levels, it was demonstrated that the SHRIMP method performs much better
than the Pmembr method. When SHRIMP was tested using another database,
HOMEP (Forrest et al., 2006), similar levels of improvement in detection were

reported.

The SHRIMP method was also tested using the Pfam database and found to be unable
to clearly recognize clan relationships. Specifically, it was reported that although the
performance of the classifier was increased across the whole range of false positive
rates, the improvement was limited and the data was not shown. In the supplementary
data files of the SHRIMP study there was a list of 126 alignments, which were the
false hits that had high scores when detecting Pfam clan homology. Bernsel et al.
suggested that domains in the list as yet unassigned to a clan were likely genuine

homologs. SHRIMP was not tested on Pfam families, or it was not reported.

It appears that the developers of SHRIMP encountered the same problems as we did

when testing their search method using Pfam clans. In particular, a difficulty to
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differentiate between false and true positives with high scores assigned to alignments

between Pfam domains not belonging to the same clan.

Comparing the reported SHRIMP test results directly with our method results is
unhelpful as different definitions and query sets were employed in each case.
Unfortunately, we were unable to compare our method with the SHRIMP method
directly using our database and query set because we encountered problems when
running the standalone program. Running a standalone SHRIMP program involves
two steps: in the first one a profile database is made containing transmembrane helix
predictions for all the sequences in the database (using the create_db.pl script) and in
the second step another script is used (search_db.pl) which creates a profile-HMM
from the query sequence, then predicts its transmembrane topology and finally uses
the HMM to search for homologs in the profile database. Already when running the
first step (create_db.pl script) we got an error message and the second step created an
empty results file. In line with advice from the developers of SHRIMP (Prof. Arne
Elofsson), we tried using older versions of PSI-BLAST (blast-2.2.10 and blast-2.1.3)
from the one we typically employ (blast-2.2.21), but still encountered the same

problems.

To compare our method indirectly with SHRIMP, we reviewed supplementary data in
Bernsel et al. (2007), concerning detecting close homologs within, rather than
between, GPCR classes. Here we should emphasize that for the SHRIMP evaluation,
a result was considered a false positive if it was not classified to any GPCRDB class.
Whereas in the current work, false positives are also proteins classified to different

GPCR classes (other than the query's class).
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In Figure 27 (Bernsel et al., 2007), the methods, PSI-BLAST and Pmembr, were
compared to the method SHRIMP, which was found to perform better. The SHRIMP
results are presented in three ROC curves: sequence + topology information
(SHRIMP-tmpred), sequence + hydrophobicity (SHRIMP-hphob) and sequence only
(SHRIMP-seq). All three ROC curves reach the true positive rate 1.0 at very low false
positive rates. Thus, for closely related homologs, sequence alone is sufficient when

using SHRIMP.

TPR o. SHRIMP-tmpred =
SHRIMP-seq =s==san
SHRIMP-hphob
Pmembr
PSI-BLAST mmm—

HHpred

03

0.1 -

0 I L i I
0.0001 0.001 0.01 0.1 1

FPR

Supplementary figure S5

Figure 27: ROC curves presented in supplementary data of Bernsel et al., 2007. Comparison
between the method PSI-BLAST (black), Pmembr (blue), HHpred (Soding et al., 2005, green), and
SHRIMP (red) : sequence + topology information (SHRIMP-tmpred), sequence + hydrophobicity
(SHRIMP-hphob) and sequence only (SHRIMP-seq).

Given these data, as our method performs only slightly better than Pmembr, we

suspect that the SHRIMP method is superior to ours in detecting related

transmembrane proteins. If this is indeed the case, then it appears that a method which
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is based on a profile HMM-profile HMM algorithm could be more powerful than
methods in which structural information has been added to a profile-sequence based
method, as presented in the current study. Nevertheless, in light of the present study,
we propose that developing a combined score for adding to a system similar to

SHRIMP's method could result in an even better performance.

4.4.3 Exploring helices number in Pfam clans and TMHMM

performance

In order to check features of the Pfam database which might have contributed to the
poor performance of our homology search of this particular database, we checked the

number of helices in all the clans in the queries set (Table 14).

By exploring Table 13 we became aware that the Pfam database contains truncated
sequence. For example Pfam Clan CL0192 which contains GPCRs with mostly 7
transmembrane helices was predicted to have mean number of 5.7 transmembrane

helices.

In addition we compared TMHMM performance with another topology method,
MEMSAT-SVM (Nugent and Jones, 2009) and applied to the GPCR database, which

contains only proteins with 7 transmembrane helices (Table 15).
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Table 14: statistics of transmembrane helices in Pfam clan protein domains; TMHMM was used
when predicting number of helices

Pfam clan name | Mean number of Standard
CL0015 11.4 1.8
CL0030 8.0 3.4
CL0062 111 2.3
CLO111 9.8 2.4
CL0130 7.8 1.6
CL0347 35 1.1
CL0192 5.7 1.9
CL0375 3.8 0.6
CL0425 11.1 4.4
CL0404 6.5 2.6

Table 15: Comparing TMHMM and MEMSAT-SVM prediction of number of transmembrane
helices in GPCRDB.

Topology method used | Mean number of helices | Standard deviation

TMHMM 6.8 0.8

MEMSAT-SVM 7 0.6
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4.5 Conclusions

In this chapter we have presented a new method for detecting homologous
transmembrane proteins. On the premise that structure is better conserved than
sequence, our method combines multiple sequence alignment (PSI-BLAST) with
structural information regarding helical regions, helical residue orientations and loop
lengths. We validated that our method has an improved capability to detect true
relationships between transmembrane proteins relative to a method based solely on

simple multiple sequence alignments.

Specifically, we found that combining the PSI-BLAST E-value with the structural
parameter (residues orientation score) generated a combined score that served as a
superior classifier, detecting more true positives with less false positives when using
the GPCRDB. To combine the parameters, we had to derive optimal weights and thus,
we corroborated that the PSI-BLAST E-value, i.e., sequence similarity between the
proteins, is a key parameter. This finding is in agreement with data from numerous
studies of GPCRs, establishing that helical sequences are strongly conserved among
GPCRs. Conserved residues that mediate ligand binding and selectivity of G-protein
coupling tend to cluster on the cytoplasmic side of transmembrane helices, while
residues unique to each subfamily tend to appear on the extracellular side (Suwa et
al., 2011). Accordingly, we found that the residues orientation parameter also

contributes significantly to the performance of the classifier.

Notably, the loop parameter was found to have no effect on homology detection,

indicating that loop lengths are not conserved enough to influence the performance of
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a classifier. Accordingly, the length of the third cytoplasmic loop (CL3) and the N-
and C-terminal loops have been shown to vary among GPCRs, though the other loops
have conserved lengths (EL1, EL2, EL3, CL1, CL2) in nearly all GPCRs (Suwa et

al., 2011).

The helix parameter also did not improve classifier performance. This finding is likely
explained by the fact that the orientation score already encompasses topological
information; namely, the orientation score relates specifically to residues predicted to

be in helical regions both in the query protein and PSI-BLAST result.

Our newly developed search method proved less effective at detecting homology
among Pfam database proteins. Our method was not able to improve the ability to
detect homology at the level of Pfam clans or at the level of Pfam families. We
suspect that this is due to the way clans are defined, which is based on sequence
similarity. In addition, as mentioned above, there are unassigned domains which are
possibly genuinely homologous. Moreover, while GPCR is well characterized

database, it could be that the Pfam clans are not characterized well enough.

In addition, we suspect that certain features common to GPCRs contribute to the
ability of our method to detect GPCR homology. In particular, all or most GPCRs
have 7 transmembrane helices and share similar topology. For example, GPCRs do
not contain any non-canonical elements such as wide turns, tight turns, kinks and
reentrant loops, which makes it easier to accurately predict topology and residue
orientation. It is not surprising that familial relationships between transmembrane
proteins with dissimilar numbers of helices or more complicated structural features, as

present in the Pfam database, are going to be harder to identify.
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More generally, our detection method is based on two key predicted parameters: the
location of the transmembrane regions, which is predicted using TMHMM, and the
orientation of the residues, which is predicted by a neural network developed in the
current work. The incorporation of two predicted parameters into the final score raises
the possibility of error particularly if the number of helices is not constant within a

family.

We also submit that certain features of the Pfam database might have contributed to
the poor performance of our homology search of this particular database. First, when
checking the Pfam Clan CL0192 (Table 13), which contains GPCRs with mostly 7
transmembrane helices, we became aware that the Pfam database contains truncated
sequences. Second, as exemplified by Clan CL0192 that comprises almost all GPCRs,
the classification of clans is fairly broad. In contrast, in the GPCRDB GPCRs are
categorized into five classes. This second feature likely underscores why we got a

smaller number of false positives when testing Pfam clans as opposed to GPCRDB.

We also suspected that the performance of our method was influenced by our choice
to use TMHMM when predicting the helical regions. To explore this possibility,
TMHMM was compared with another topology method, MEMSAT-SVM (Nugent
and Jones, 2009) and applied to the GPCR database, which contains only proteins
with 7 transmembrane helices. The results (Table 14) indicate that although
MEMSAT-SVM is slightly more accurate at detecting the 7 transmembrane helices of

the GPCRs than TMHMM, TMHMM does work well at least for the GPCRDB.

Bernsel et. al. (2007) remark in their study that perhaps Pfam is not an optimal set

choice when testing homology detection methods. We share this opinion. A better test
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of homology detection among transmembrane protein families, other than GPCR, will
require future characterization of a greater number of transmembrane protein

structures.

A comparison of our developed method with two other published methods suggested
that profile HMM-profile HMM based methods could be more powerful than profile-
sequence based methods, even after the addition of structural information as described
here. Nevertheless, based on the present study, we propose that combining a profile-
profile method with a combined score could improve even further the detection of

related transmembrane proteins.
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Chapter 5

Discussion and Future work

5.1 Discussion

Transmembrane proteins play crucial roles in a variety of cellular processes and
comprise 20-25% of fully sequenced genomes (Jones, 1998, Wallin and von Heijne,
1998). Nevertheless, the tertiary structures of only a small number of transmembrane
proteins are known. Hence, it is of great importance to develop theoretical methods
capable of predicting transmembrane protein structure and function based on protein
sequence alone. To address this, in the current work we aimed to develop a method
for identifying homologous transmembrane proteins that could be used for classifying
the proteins into structural and functional families based on sequence similarity and

predicted structural features.

The method for detecting homology, presented in this thesis, comprises in the first
step sequence alignment searches, which are performed using PSI-BLAST. Then
profiles derived from the multiple sequence alignments are input into a neural
network, developed in this work to predict which transmembrane residues are buried
(core of the helix-bundle) or exposed (to the lipid environment). A maximum

accuracy of 86% was achieved. Moreover, for almost half of the query set, the
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predicted residue orientation was more than 70% accurate. In the last step of the work
presented here, the predicted helix locations, residue orientations and loop length
scores are combined with the PSI-BLAST E-value, to create a ‘combined’ classifier
score. A few approaches to incorporating the information were tested. In the end, a
linear equation was chosen for calculating the ‘combined score' classifier score. While
validating the performance of our ‘combined classifier’, it became clear that the
sequence similarity between proteins is a dominant parameter. In addition, however,
we found that the residue orientation parameter also contributes significantly to the
performance of the classifier. In contrast, the loop parameter had negligible impact on
homology detection, suggesting that loop lengths are not conserved enough to

influence the performance of a classifier.

Having developed a homology detection method we tested its accuracy using a
database of proteins. Ideally the database should be one in which the true relationships
between transmembrane proteins are known. The Pfam database was chosen, as
transmembrane proteins in this database have been classified into various families,
though not entirely reliably. In addition, GPCRDB was employed, as this database,

though narrow, is well-studied and maintained.

We found that the ‘combined score’ classifier, as compared to a classifier based solely
on PSI-BLAST, resulted in more true positives with less false positives when it was
tested using GPCRDB and could differentiate between GPCRDB families. However,
the combined classifier did not improve homology detection when searching
transmembrane proteins from the Pfam database. Other attempts to improve
homology detection among transmembrane proteins from the Pfam database have

failed as well (Bernsel et al., 2007), highlighting the challenge of generating
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improved approaches to classify transmembrane proteins.

5.2 Future work

A comparison between the homology detection method developed here and two
published methods (Hedman et al., 2002 and Bernsel et al., 2007) leads us to
conclude that profile-profile based methods could be more powerful than profile-
sequence based methods, even when the latter encompasses structural information as
described here. In light of this finding, we propose that a profile-profile method
should be developed to incorporate a combined score, as this is likely to improve even

further the accuracy of homology searches among transmembrane proteins.

A profile-profile based method for detecting homology among transmembrane
proteins that incorporates structural information could be developed in two possible

ways:

1. To switch the PSI-BLAST alignment search in the presented ‘combined score’
method with a profile-profile alignment search, such as HHpred (Soding et al.,
2005). In this way, the effectiveness of profile-profile based searches is
exploited to find candidate homologs and then structural information is also

considered, to help identify the genuinely homologous proteins.

2. To develop a new method, in which the ‘combined score' is encompassed as a
second alphabet of a profile HMM model. Bernsel et al. (2007) took a similar
approach, whereby hydrophobicity was added to a profile HMM and then a

profile HMM-profile HMM method was constructed.
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In addition to the structural information incorporated in the current work into a
‘combined score’, there are different types of structural information about

transmembrane proteins that should be considered in future studies:

1. Predicted location of re-entrant loops and Kinks.

2. Predicted helix-helix interactions and helix tilt angles.

3. Predicted location of special functional motifs in the sequence, such signal
peptides. Such motifs strongly influence the folding of transmembrane
proteins, as they diminish the length of the final sequence by promoting the
cleavage of specific segments at the N-termini (signal peptides) .

4. Predicted disulfide bridges. These are covalent bonds that link closely together

two cysteine residues, constraining protein folding (Martelli et al., 2004).

The presented method could also be used to improve detection of homologous beta-
barrel transmembrane proteins in a very simple way: the training set for the Neural
Network used for residues orientation prediction should include beta-barrel proteins.
Very few methods exist that detect homology among and classify beta-barrel

transmembrane proteins (Remmert et al., 2009).

In summary, the method presented here can certainly be improved, but still serves as a
useful starting point for developing an effective method for detecting homology. We
suspect that as more transmembrane protein structures are characterized and
classified, it will become easier to develop better methods for detecting homology

among transmembrane proteins.
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Appendices

Appendix A

Introduction to  backpropagation neural

networks

Artificial Neural Network

Acrtificial Neural Networks are processing devices that are based on the operation of
biological neural networks. Neural networks are organized in layers made up of a number
of interconnected and interacting components called nodes or neurons which contain an
‘activation function'. The activation function of a node defines the output of that node given
an input or set of inputs. The first layer of a typical neural network is the 'input layer', which
communicates with one or more 'hidden layers' where the actual processing is done. The

hidden layers then link to an ‘output layer' where the answer is output.

Most neural networks have some type of learning rule which modifies the weights through a
learning algorithm, according to the input patterns presented to it. Thus, the network learns by

example.

There are numerous kinds of neural network architecture the most commonly used is
backpropagation network, which is used in the current work and is presented in the next

section.
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Backpropagation network architecture

The most commonly used backpropagation network architecture is a feedforward

network, as shown in Figure 28.

Input Input layer
value —» Flow of activity

Hidden layer ——— Error backpropagation

*
Y Network
output

Desired output
f( Z WijP + b) P
i

Figure 28: Backpropagation network architecture. Each input is weighted by a real number — w. The
sum of the weighted inputs and the bias b forms the input to the transfer function f at each hidden node.
Neurons may use any differentiable transfer function to generate their output.

The input vectors are used to train a network until it can approximate a function. The
training process requires a set of inputs and outputs as an example of proper network
behavior. Through the training process the weights and biases of the network are
iteratively adjusted to minimize the mean square error (mse), which is the average

squared error between the network outputs and the target outputs.

A standard backpropagation training algorithm is the gradient-descent algorithm, also
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known as steepest descent, in which the network updates the weights and biases in the

direction of the negative of the gradient.

Adaptive steepest descent with momentum (traingda in Matlab), combines the
“Adaptive Steepest descent algorithm” with the “Steepest descent with momentum
algorithm”. “Adaptive steepest descent” is a steepest descent algorithm, which
changes the learning rate during the training process. This algorithm trains the
network faster than the simple steepest descent algorithm. In “Steepest descent with
momentum”, a momentum constant regulates the amount of the weight change, which
can be a number between 0 and 1. When the momentum constant is 0 a weight change
is based solely on the gradient. When the moment constant is 1, the new weight
change is set equal to the last weight change and the gradient is ignored. Momentum
can prevent the algorithm from getting stuck in a shallow local minimum (Neural

Network toolbox for Matlab).

The training can be done in two ways: incremental mode or batch mode. In the
incremental mode, the weights are updated after each input is applied to the network.
In the batch mode all of the inputs are applied to the network before the weights are

updated.
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Appendix B

Substitution matrices In sequence similarity

methods

Substitution matrices describe the rate at which one character in a sequence changes
to another character over time. In the process of evolution, from one generation to the
next the amino acid sequences of an organism's proteins are gradually altered through
the action of DNA mutations. Each amino acid is more or less likely to mutate into

various other amino acids.

A substitution matrix is a 20x20 matrix wherethe ( 1, J ) thentryis

equal to the probability of the I  th amino acid being transformed into thej th

amino acid over a given amount of evolutionary time. There are many different ways
to construct such a matrix. The most common substitution matrixes are: PAM and

BLOSUM.

PAM

One of the first amino acid substitution matrices, the PAM matrix, was developed by
Dayhoff (Dayhoff et al., 1978). This matrix is calculated by observing the differences
in closely related proteins. The PAM1 matrix estimates what rate of substitution
would be expected if 1% of the amino acids had changed. The PAM1 matrix is used

as the basis for calculating other matrices by assuming that repeated mutations would
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follow the same pattern as those in the PAM1 matrix, and multiple substitutions can

occur at the same site (PAM 30 and the PAM70 are most commonly used).

BLOSUM

The BLOSUM was developed by Henikoff and Henikoff (1992). A set of matrices
were constructed using multiple alignments of evolutionarily divergent proteins. The
probabilities used in the matrix calculation are computed by looking at "blocks™ of
conserved sequences found in multiple protein alignments. These conserved
sequences are assumed to be of functional importance within related proteins. To
reduce bias from closely related sequences, segments in a block with a sequence
identity above a certain threshold were clustered, giving weight 1 to each such cluster.
For the BLOSUM®62 matrix, this threshold was set at 62%. Pair frequencies were then
counted between clusters, hence pairs were only counted between segments less than
62% identical. One would use a higher numbered BLOSUM matrix for aligning two
closely related sequences and a lower number for more divergent sequences.
BLOSUM®62 matrix works well detecting similarities in distant sequences, and that is

the matrix used by default in most recent alignment applications such as BLAST.
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Appendix C

Publication arising from the thesis

Hurwitz N., Pellegrini-Calace M. and Jones D.T. (2006)
Towards Genome-scale Structure Prediction for Transmembrane Proteins

Phil. Trans. R. Soc. B 361, 465-475
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