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Abstract 

Analysis of the complete genomic sequences for several organisms indicates that 20-

25% of all genes code for transmembrane proteins (Jones, 1998, Wallin and von 

Heijne, 1998), yet only a very small number of transmembrane 3D structures are 

known. Hence, it is of great importance to develop theoretical methods capable of 

predicting transmembrane protein structure and function based on protein sequence 

alone. To address this, we sought to devise a systematic and high throughput method 

for identifying homologous transmembrane proteins. Since protein structure is more 

evolutionarily conserved than amino acid sequence, we predicted that adding 

structural information to simple sequence alignment would improve homology 

detection of transmembrane proteins. In the present work, we describe development 

of a search method that combines sequence alignment with structural information. 

In our method the initial sequence alignment searches are performed using PSI-

BLAST. Then profiles derived from the multiple sequence alignments are input into a 

neural network, developed in this work to predict which transmembrane residues are 

buried (core of the helix-bundle) or exposed (to the lipid environment). A maximum 

accuracy of 86% was achieved. Moreover, for almost half of the query set, the 

predicted residue orientation was more than 70% accurate. In the last step of the work 

presented here, the predicted helix locations, residue orientations and loop length 

scores are added to the PSI-BLAST E-value, to create a ‘combined’ classifier. A 

linear equation was built for calculating the 'combined’ classifier score. 

Our method was evaluated using two databases of proteins: Pfam and GPCRDB.  The 

Pfam database was chosen, as transmembrane proteins in this database have been 
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classified into various families. GPCRDB was employed as this database, though 

narrow, is well-studied and maintained. Before building the ‘combined’ classifier, 

PSI-BLAST sequence alignment was benchmarked using the Pfam database. 

We found that our 'combined’ classifier, as compared to a classifier based solely on 

PSI-BLAST, resulted in more true positives with less false positives when tested 

using GPCRDB and could differentiate between GPCRDB families. However, our 

‘combined’ classifier did not improve homology detection when searching 

transmembrane proteins from the Pfam database.  

A comparison of our ‘combined’ classifier method with two other published methods 

suggested that profile-profile based searches could be more powerful than profile-

sequence based searches, even after the addition of structural information as described 

here. In light of our study, we propose that combining structural information with 

profile-profile sequence alignment into a 'combined’ classifier could result in a search 

method superior to any existing ones for detecting homologous transmembrane 

proteins.
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Chapter 1 

 

Introduction 

1.1  Membrane proteins  

A wide range of fundamental biological processes such as cell signaling, transport of 

membrane-impermeable molecules, cell-cell communication, cell recognition and cell 

adhesion are mediated by membrane proteins.  Therefore, understanding the structure 

and function of membrane proteins is of high biological and pharmacological 

importance.  

Analysis of the complete genomic sequences for several organisms indicates that 20-

25% of all genes code for transmembrane proteins (Jones , 1998,  Wallin and von 

Heijne, 1998). Despite their large number and importance, less than 1% of all 3D 

protein structures deposited in the Protein Data Bank (PDB) are of membrane proteins 

(Berman et al., 2000), likely due to the challenges of crystallizing such proteins or 

performing nuclear magnetic resonance (NMR) analyses. In light of this deficit of 

empirical information, it is particularly important to develop efficient theoretical 

methods for predicting the structure of transmembrane proteins. 

1.1.1    The biology of membranes 
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Biological membranes are composed of a lipid bilayer and serve to separate different 

cellular compartments or the cell from its environment. The lipid bilayer is 

impermeable to polar (soluble in water) molecules and ions. 

The membrane can be represented three-dimensionally as shown in Figure 1. Each 

phospholipid is composed of a negatively charged phosphate group and two tails, 

which are two highly hydrophobic hydrocarbon chains. The hydrophobic effect 

ensures that the tails of the phospholipids in each layer orient towards each other 

creating a highly hydrophobic environment within the membrane. The charged 

phosphate groups face out into the hydrophilic environment. 

 Figure 1: Biological membranes. 

Membrane proteins carry out most of the dynamic processes of the membrane. 

Membrane lipids create the appropriate environment for the action of such proteins. 

1.1.2    Types of membrane protein  

Membrane proteins can be classified as either peripheral (membrane associated 

Hydrophobic 

 tail 

 

Polar head 

Phospholipid Bilayer 
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proteins) or integral, on the basis of how readily they dissociate from the membrane. 

Peripheral membrane proteins are loosely associated with the membrane and usually 

interact with the polar head groups of the membrane phospholipids. These proteins 

can therefore be solubilized under relatively mild conditions, such as exposure to high 

ionic strength. In contrast, integral membrane proteins, also termed transmembrane 

proteins, are found to interact extensively with the hydrocarbon chains of the 

membrane lipids (Figure 2) and can only be solubilized using detergents or an organic 

solvent.  

 
 

Figure 2:  Membrane proteins main types: peripheral membrane proteins and integral membrane 

 proteins. 

1.1.2.1 Integral membrane proteins 

Integral membrane proteins display particular structures that are remarkably stable 

despite the high energetic cost of dehydrating the peptide bond during transfer into a 

non-polar phase (White et al., 2001). This is enabled by two features. Firstly, and 

perhaps most obviously, most of the amino acid side chains found within integral 

membrane segments are non-polar. Secondly, the polar groups of the polypeptide 

Integral 

membrane 

protein 

 

Peripheral 

membrane 

protein 

Integral 

membrane 

protein 

Peripheral 

membrane 

protein 

Membrane 
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backbone of the transmembrane segments participate in hydrogen bonds to lower the 

energetic cost of membrane insertion. This second constraining feature of integral 

membrane proteins is typically accomplished through two structural motifs: the 

membrane-spanning alpha-helix bundle and the beta-barrel (White and Wimley, 

1999).  

1.1.2.1.1     Beta -barrel integral membrane proteins 

The beta-barrel proteins, consist of beta-strands spanning the membrane connected by 

short loops facing the periplasm and larger loops protruding outside the outer 

membrane (von Heijne, 1996). The beta-strands are amphiphilic, i.e., the side chains 

of the strand residues are alternately polar and hydrophobic with polar residues 

toward the central pore. Thus the structure forms a pore with a polar environment (see 

Figure 3 for example).   

The beta-barrel proteins are found in the outer membrane of Gram-negative bacteria 

and in the outer membrane of chloroplasts and mitochondria. Their function is to 

facilitate diffusion of salts and polar compounds. 

 

Figure 3: Example of beta-barrel protein, Porin (1OPF). 
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1.1.2.1.2    Alpha-helical integral membrane proteins 

The alpha-helical integral membrane proteins consist of alpha-helices, 17-25 residues 

in length, which cross the membrane once or several times.  

There are two types of alpha-helical integral membrane proteins: 

 Bitopic proteins (or membrane-anchored proteins), which cross the membrane 

once (or sometimes twice), exposing water-soluble domains on the 

extracellular and cytoplasmic sides. Such proteins typically act as cell surface 

markers, adhesion factors or receptors. The cytoplasmic domains often play a 

role in cell signaling (e.g., tyrosine kinases) or connect to the cellular 

cytoskeleton.  

 Polytopic (multi-spanning) alpha-helical membrane proteins have more than 

one alpha-helical transmembrane segment and the helices are arranged into a 

bundle (Figure 4).  

 

Figure 4: Example of an alpha helical bundle integral membrane protein – Bacteriorhodopsin. 

In the current work we study only polytopic alpha-helical integral membrane proteins, 

therefore these proteins hereafter are referred to simply as ‘transmembrane proteins’. 
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1.2 Transmembrane proteins  

1.2.1 Transmembrane protein functions  

Transmembrane proteins are involved mainly in the following cellular processes: 

 Channels: Channel proteins mediate passive transport through the membrane, 

but are typically highly selective. For example, ion channels play a key role in 

the nervous system and in homeostasis of most cells. 

 Transporters: Transporter proteins mediate active transport of solutes across 

the membrane. An example of active transport is the transportation of sodium 

out of the cell and potassium into the cell by the sodium-potassium pump; this 

process is mediated by ATP energy. There are also transporters, such as the 

sodium-calcium exchanger, which transport one of the two substances in the 

direction of its concentration gradient and yields the energy derived from this 

transport to transport the other substance against its concentration gradient. 

 Receptors: Are transmembrane proteins that take part in communication 

between the cell and the outside world. Extracellular signaling molecules 

attach to the receptor, triggering signaling pathways within the cell. The 

process is called signal transduction.   

Polytopic alpha–helical membrane receptors can be sub-categorized into two 

classes: G-protein-coupled receptors and ion channel-linked receptors. 

G-Protein Coupled receptors (GPCRs), a pharmacologically important class, 

which includes receptors for hormones, neurotransmitters, growth factors, 
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light and other diverse ligands (Dewji and Singer, 1997). GPCRs possess 

seven transmembrane helices. After a ligand binds the GPCR, it causes a 

conformational change in the GPCR, which then activates G-protein by 

exchanging its bound GDP for a GTP. 

Ion channel-linked receptors, also called ligand-gated ion channels, are 

involved in rapid signaling events mostly found in electrically excitable cells 

such as neurons.   

 Oxidative phosphorylation and photosynthesis transmembrane processes: 

Helical transmembrane proteins are involved in energy generation processes, 

typically incorporating cofactors and mediating oxidation of substrates. 

1.2.2 Transmembrane protein folding process 

While water-soluble proteins exist in only one kind of environment, transmembrane 

proteins are present in three different environments: the hydrophilic environment, the 

water-membrane interface and the inner-membrane phase. Accordingly, the 

transmembrane protein folding process differs from that for soluble proteins (White 

and Wimley, 1999). The interactions of transmembrane proteins with the lipid are 

important for folding and stability (Lee, 2004). Possible driving forces for helix-helix 

association in the lipid bilayer are van der Waals interactions and interhelical polar 

interactions, including hydrogen bond and electrostatic interactions (Popot and 

Engelman, 2000). 

The folding process of transmembrane proteins comprises two stages (Engelman et 

al., 2003). The first stage involves formation of stable helices across the hydrophobic 
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region of the membrane lipid bilayer. In the second stage, the helices interact to 

generate a functional membrane protein (Popot and Engelman, 1990). Assembly is 

carried out by a translocon apparatus and involves the transient attachment of an 

active ribosome to a translocon embedded in the membrane. As soon as the protein is 

synthesized into the translocon and transferred into the membrane, the apparatus 

disassembles leaving the folded protein within the membrane (White and 

Wimley,1999). 

1.2.3 Transmembrane protein structure 

The secondary structure, i.e. the topology of transmembrane proteins, describes which 

segments of the amino acid sequence span the membrane, the number of spanning 

segments, and which ones protrude into the respective compartments on opposite 

sides of the membrane (i.e., in-out location of the N and C termini relative to the 

membrane). Knowing a protein’s topology is a significant step toward understanding 

its structure and function. A topological description has also been referred to as 'low 

resolution structure' (Kernytsky and Rost, 2003). 

When alpha-helical transmembrane proteins are grouped according to topology, 

differences between various species can be observed. In general eubacteria, archaea, 

fungi and plants have a large collection of membrane proteins with 6 or 12 

transmembrane segments, whereas in C. elegans and Homo sapiens the predominant 

topology is membrane proteins with 7 segments (Wallin and von Heijne ,1998). 
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Figure 5: Schematic presentation of a transmembrane protein with five membrane spanning helical 

segments (blue boxes). The outer membrane regions of the protein are drawn in light blue (the loops). 

The membrane is drawn in green. “In” designates the inner side of the membrane and “Out” designates 

the outer side. 

The transmembrane protein topology can be represented as boxes spanning the 

membrane connected by protein loops, with each box representing a transmembrane 

helix structure. The N-terminus and the C-terminus can be on either side of the 

membrane (Figure 5).   

Alpha-helical transmembrane proteins are comprised of a number of transmembrane 

helices. Classically, the helices were considered to assemble mostly in parallel or anti-

parallel to one another and perpendicular to the membrane. However, recent studies 

have revealed deviation from this structure. It was found that about 50% of 

transmembrane proteins contain non-canonical elements (e.g., wide turns, tight turns, 

and kinks) (Riek et al., 2008) and 10% contain reentrant loops, which go half way 

through the membrane (Viklund et. al, 2006). 

Yohannan et al. (2004) showed that 60% of transmembrane helix deformations occur 

at proline residues. Yohannan et al. proposed an evolutionary hypothesis whereby a 

mutation to proline initially induces a kink, and then further mutations occur locking 

the kink in the structure. In an extension of this hypothesis, the premise is that 

Membrane 

In 

Out 
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nonproline kinks are places where prolines have been removed during evolution. 

Reentrant loops are mostly found in ion and water channel proteins and less in cell 

surface receptors. It was shown that the difference in residue composition makes the 

reentrant loops less hydrophobic than the transmembrane helices. This reduced 

hydrophobicity makes the reentrant loops less stable inside the hydrophobic 

environment of the lipid membrane (Changhui and Jingru, 2010). An independent 

study found that reentrant loops have very low hydrophobicity around the deepest 

point buried in the membrane but relatively high hydrophobicity close to the 

membrane surfaces (Yan and Luo, 2010). Moreover, the residues situated in reentrant 

regions are significantly smaller on average as compared to those in other parts of the 

protein. These unique features allow reentrant loops to be detected based on amino 

acid composition (Viklund et al., 2006). Additionally, reentrant loops often contain 

functional motifs that differentiate them from regular helices (Lasso et al., 2006).  

1.3 Empirical approaches to solving transmembrane 

protein structure 

The first three-dimensional structure of a transmembrane protein, Rhodopseudomonas 

viridis photosynthetic reaction centre, was solved in 1985 using X-ray 

crystallographic analysis by Deisenhofer, Michel and Huber, who won a Nobel prize 

for their work (Deisenhofer et al., 1985, Deisenhofer and Michel, 1989). Since then 

the three-dimensional structures of only 263 transmembrane proteins have been 

solved (von Heijne , 2011). Oberai et al. have estimated that ~1700 transmembrane 

proteins structures are needed to cover each structural family (Oberai et al., 2006). At 
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the current pace, as noted by White (2009), it will take approximately 30 years to 

obtain these 1700 membrane protein structures. 

The number of empirically determined transmembrane protein structures is small 

because of the difficulties involved in expressing and crystallizing these proteins 

(Grisshammer and Tate, 1995). As discussed above, transmembrane proteins are 

hydrophobic in the transmembrane regions and consequently are difficult to unfold 

and refold in vitro. In addition, transmembrane proteins are typically only expressed 

at low concentrations and therefore it is necessary to over express them in a 

membrane system, which has proved very difficult. There are various expression 

systems but all are technically problematic. The technical problems include low yield, 

post-translational modification, low stability and partial proteolysis (Grisshammer and 

Tate, 1995).  

The difficulty in determining high-resolution structures of membrane proteins has 

prompted development of alternative methods. The idea is to obtain structural hints 

concerning the packing of transmembrane helices, which can be used to build and 

model the whole structure of the protein. Several experimental approaches are used to 

obtain such structural hints and are summarized in the next sections. 

1.3.1 Fusion with a reporter protein  

The most common procedure for determining transmembrane protein topology is to 

fuse the C-terminal part of the protein with a reporter protein. The reporter proteins 

are chosen according to properties, such as subcellular location or enzymatic activity, 

and typically are active only in a specific compartment of the cell (van Geest and 
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Lolkema , 2000). Constructs are created in which the gene encoding the reporter 

protein is fused at different points in the gene encoding the membrane protein; the 

resulting set of fusion proteins can be exploited to determine at which side of the 

membrane the fusion sites reside and gain insight into the topology of the membrane 

protein. 

1.3.2  Proteolytic digestion in situ 

In a typical approach, proteolytic enzymes are used to cut the loops outside the 

membrane. It is then possible to analyze the segments protected by the membrane 

using SDS-PAGE (Kuroiwa et al., 1996) . 

Alternatively, the rhomboid family of intramembrane proteases can be used. These 

enzymes cleave specifically transmembrane regions in a specific sequence, enabling 

identification of membrane spanning segments that contain the target site (Strisovsky 

et al., 2009). 

1.3.3 Site directed mutagenesis  

In this approach, residues hypothesized to be important for structure or function, such 

as N-glycosylation sites, Cys residues, iodinatable sites and antibody epitopes, are 

changed using site directed mutagenesis and the resulting mutant protein analyzed 

(van Geest and Lolkema , 2000). In addition, tags added at different
 
positions in the 

protein can help predict the overall topology. Furthermore, antibodies directed against 

the loop regions can be exploited to determine if a loop is positioned on the other side 

of the membrane in the mutant protein.  
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Despite the advances in empirical methods for determining structure, in silico 

methods for predicting structure are required to better our understanding of diverse 

transmembrane proteins. Currently available computational tools for predicting 

structure of transmembrane proteins will be discussed in the next section.  

1.4 Predicting structural features of transmembrane 

proteins 

At present there is no general-purpose method for predicting three–dimensional (3D) 

structures for transmembrane proteins. For water-soluble proteins the most reliable 

methods for predicting 3D structures use comparative or homology modeling. 

Homology modeling is based on the identification of known protein structures that 

resemble the structure of the query sequence, and on the production of an alignment 

that maps residues in the query sequence to residues in the template sequence. The 

sequence alignment and template structure are then used to produce a structural model 

of the query protein. As protein structures are more conserved than protein sequences, 

detectable levels of sequence similarity are typically associated with significant 

structural similarity (Marti-Renom et al., 2000). The quality of the homology 

modeling depends on the accuracy of the sequence alignment as well as the quality of 

the template structure. 

In the early 90s, efforts were made to comparatively model the rhodopsin protein 

from the GPCR family, based on templates derived from bacteriorhodopsin. However, 

it became clear after the crystal structure of rhodopsin was available that despite 

similarities in the overall topology and approximate positioning of the helices, the 
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structure of bacteriorhodopsin is substantially different in terms of helix packing 

arrangements. The limited sequence similarity observed between the rhodopsin and 

bacteriorhodopsin sequences also contributed to the inaccuracy of the predicted 

structural models. At the time, it was concluded that homology modeling alone could 

not provide accurate structures for GPCRs (Beeley and Sage, 2003). More generally, 

it was pointed out that a lack of experimentally determined transmembrane structures 

makes it difficult to find suitable template structures when performing homology 

modeling.  

Our appreciation of the complexity of transmembrane protein 3D structures is 

growing as more structures are solved. For example, constraints on the length of the 

transmembrane helices and the packing angles are not as strict as previously thought 

(Gimpelev et al., 2004). Transmembrane proteins containing non-canonical elements 

(e.g., wide turns, tight turns, kinks and reentrant loops) have been characterized (Riek 

et al., 2001, Riek et al., 2008, Viklund et al., 2006). Unexpectedly, it was also shown 

that the 3D structure of transmembrane proteins is not determined purely by protein 

sequence but is influenced by insertion into the membrane, which is implemented by 

the translocon complex (Goder et al., 2004). Furthermore, functional transmembrane 

proteins could be part of larger complexes, such as photosynthetic reaction center of 

the bacterium Rhodopseudomonas viridis, which consists of four subunits L, M, H, 

each containing 5 alpha-helices and a cytochrome (Deisenhofer et al., 1985). Finally, 

there have been reports of transmembrane proteins that accommodate water molecules 

(Renthal, 2008) or other ligands and form more diverse structures. 

These complexities notwithstanding, methods have been developed for predicting 
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structural features of transmembrane proteins that can contribute toward predicting 

3D structure. Topology predictions provide initial structural information, but the next 

step towards full 3D modeling requires delineation of the orientations of each 

transmembrane helix, i.e., the identification of which residues are exposed to the lipid 

phase and which are packed against the interior of the transmembrane bundle. In 

addition, predicting structural features such as kinks and reentrant loops is also crucial 

for full 3D modeling. 

1.4.1 Transmembrane protein topology prediction 

Consideration of the strong physiological constraints on transmembrane proteins 

facilitates prediction of which regions are helical and membrane spanning. As 

described above, the membrane spanning segments have to possess hydrophobic side 

chains interfacing with the lipids because the lipid bilayer is highly hydrophobic. In 

summary, constraints imposed by the membrane reduce the number of possible 

conformations of the protein.  

Methods for predicting the topology of transmembrane proteins rely on two key 

topological features. The first is that transmembrane helices are generally formed by 

hydrophobic stretches of residues. The second is that regions flanking the 

hydrophobic stretches contain predominantly positively charged residues, especially 

on the intracellular side of the membrane: “the positive-inside” rule, whereby short 

loops enriched with Lys and Arg residues are typically on the intracellular side and 

vice versa (von Heijne, 1999,  Wallin and von Heijne, 1998). Additional features have 

been identified as characteristic of helix-bundle membrane proteins and are exploited 

when predicting topology. For instance, connecting loops between membrane helices 
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are typically shorter than 60 residues (Wallin and von Heijne, 1998). 

More than 30 methods have been developed for predicting the topology of helix-

bundle membrane proteins (Kernytsky and Rost, 2003). Below is a brief, 

chronological summary of the main methods, with particular emphasis given to 

advances made over the last two decades.  

Initially, hydrophobicity scales were developed (Kyte and Doolittle, 1982, Engelman 

et al., 1986). These scales classify amino acids according to propensity to contact 

polar versus non-polar environments, with a high hydrophobicity score indicating 

tendency to interact with non-polar environments i.e., the  membrane. One way of 

assigning a hydrophobicity score to a given amino acid is to evaluate its hydrophilic 

and hydrophobic tendencies (Nozaki and Tanford, 1971, Kyte and Doolittle, 1982, 

Fauchere and Pliska, 1983, Engelman et al., 1986, Radzicka and Wolfenden, 1988, 

Karplus, 1997). Another approach involves analyzing existing protein structures and 

calculating the probability of a given amino acid to be exposed to the lipid (Wallin et 

al., 1997).  

Taking advantage of the hydrophobicity scales they devised, Kyte and Doolittle 

developed a “moving-window” approach to identify membrane segments. A window 

of 19 residues is moved along the protein sequence and the sum total of the 19 

hydrophobicity scores is calculated for each window. Based on analysis of known 

structures, Kyte and Doolittle designated a threshold value, above which a window is 

considered as containing a membrane helix. This approach was designed only to 

identify transmembrane segments and did not address the inside-outside location of 

segments relative to the membrane. 
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The first major advance in transmembrane topology prediction was the TopPred 

method described by von Heijne (1992). Like previous approaches, TopPred exploited 

hydrophobicity scales to predict transmembrane segments, but for the first time, these 

predictions were combined with a simple topological rule: the positive-inside rule 

(von Heijne, 1992). The observation that there is a strong bias for positively charged 

residues on the inside facing segments of a transmembrane protein provided a means 

to identify which predicted topology is most likely correct from a small number of 

alternatives. Even though the starting point for TopPred was a basic hydrophobicity 

plot, this method stands out as the first transmembrane topology prediction method.  

The MEMSAT method (Jones et al., 1994) generates statistical tables (log 

likelihoods) from membrane protein data and utilizes a dynamic programming 

algorithm to evaluate membrane topology models by expectation maximization. The 

propensity of each amino acid to be in one of five states (inside loop, outside loop, 

inside helix end, helix middle and outside helix end) is derived from experimentally 

well-described membrane proteins. Using these propensities, MEMSAT calculates the 

most probable length, location and topological orientation for each transmembrane 

segment.    

Similarly, TMAP (Persson and Argos, 1994) uses multiple sequence alignments to 

produce a preference scale. The scores are calculated by statistically analyzing known 

membrane proteins and serve to locate transmembrane segments. A notable advantage 

of this method is incorporation of an algorithm for splitting long hydrophobic regions 

into pairs of transmembrane helices, such regions are a common problem for other 

methods. 
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PHDhtm (Rost et al., 1996) was the first method to use neural networks (explained in 

Appendix A) for predicting transmembrane helices. The method initially employs 

information derived from multiple sequence alignments as input for a system of 

neural networks.  The neural network serves to calculate the likelihood of each 

residue residing in a transmembrane helix or a loop. Then protein regions of 18 

residues are searched for having the highest propensity to be in a transmembrane 

helix. The preferences are input to a dynamic programming algorithm that identifies 

the segments most likely to span the membrane.  

TMHMM (Sonnhammer et al., 1998) and HMMTOP (Tusnady and Simon, 1998) 

were the first methods based on Hidden Markov Models (see section 1.5.1.6). 

TMHMM implements a cyclic model with seven states for transmembrane helix. 

HMMTOP uses a Hidden Markov Model to distinguish between five structural states 

(helix core, inside loop, outside loop, helix caps (C and N) and water-soluble 

domains). The states are connected by transfer probabilities. Dynamic programming is 

used to match a sequence against the model in order to find the most probable match. 

Prodiv – TMHMM was developed by Viklund and Elofsson (2004) and incorporates 

the best features of the earlier TMHMM method. 

The first consensus approach was developed by Nilsson et al., (2002). Consensus 

approaches derive from the consensus of topology prediction methods, in this case the 

methods were: TMHMM, HMMTOP, MEMSAT, PHDhtm and TopPred. Nilsson et 

al. reported that their approach correctly predicts topology for approximately 90% of 

the structurally determined membrane proteins from both prokaryotic and eukaryotic 

organisms, a higher accuracy than achieved by any previous method. Furthermore, 
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they demonstrated that a consensus topology can be predicted for 70% of all 

membrane proteins in a bacterial genome and for ~55% of all membrane proteins in 

the eukaryotic genome (Nilsson et al., 2002).  

Three other consensus methods have been developed. The first by Fariselli et al. 

(2003), who combined a neural-network method with two different HMM methods 

for predicting topology. The second by Taylor et al. (2003), who combined five 

methods for predicting topology. The third called MetaTM, was developed recently 

by Klammer et al. (2009), who combined six transmembrane helix prediction 

methods: TopPred, PHDhtm, HMMTOP, TMHMM, PolyPhobius and MEMSAT. 

Klammer et al. claim MetaTM achieves the greatest accuracy yet, with an average 

prediction accuracy of 86.3%. 

Kall et al. (2004) developed a method called Phobius, a HMM-based method that 

simultaneously predicts transmembrane regions and signal peptides. This advance 

solved the problem of discriminating between signal peptides and transmembrane 

helices. PolyPhobius, a method developed by the same group (Kall et al., 2005), 

incorporates homology information and further increases the accuracy of predictions.  

Support Vector Machines (SVM) have also been used to predict transmembrane 

protein topology. For example, Yuan et al. (2004) used an SVM for per-residue 

prediction of helices, with a sliding window.  

The MINNOU method (Cao et al., 2006) is considered an alternative strategy to 

predicting topology for membrane proteins. Instead of using evolutionary sequence 

profiles (see section 1.5.1.4), this method uses prediction-based ‘structural profiles’ 
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comprising predictions of relative solvent accessibility and secondary structure for 

each residue. Though evolutionary profiles in the form of a multiple alignment are 

indeed used to derive these simple 'structural profiles', the alignments are not used 

explicitly for the membrane domain prediction and the overall number of parameters 

in the model is significantly reduced.  

MEMSAT3 was described by Jones (2007) and employs a neural network in addition 

to the dynamic programming algorithm, the latter devised for MEMSAT (1994). The 

advanced MEMSAT3 uses sequence profiles to train the neural network, in order to 

produce a consensus topology score across an aligned family of sequences. 

Recent prediction methods also consider reentrant loops, which as mentioned above 

were only appreciated recently. Although the hydrophobic profiles of reentrant loops 

and transmembrane helices are similar, predicting both structures simultaneously can 

corrupt topology prediction. Therefore, it was important to develop methods that can 

differentiate between the structures. Two such methods exist:  

OCTOPUS developed recently by Viklund and Elofsson (2008) uses a combination of 

hidden Markov models and artificial neural networks. OCTOPUS predicts the correct 

topology for 94% of the sequences. 

MEMSAT-SVM was developed recently by Nugent and Jones (2009). The method is 

a support vector machine-based (SVM) TM protein topology predictor with reported 

topology prediction accuracy of 89%. The method discriminates between water-

soluble and TM proteins with zero false positives. MEMSAT-SVM also attempts to 

differentiate between signal peptides and reentrant helices, and predicts these 
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structures with an accuracy of 93% and 44%, respectively.  

1.4.2  Predicting  helix orientation  

The orientation of helices in the lipid membrane (Figure 6) is defined by the helix tilt 

(τ) and rotation (ρ). The value ρ is defined as the angle between the perpendicular 

vector (r) from the helical axis (H) to the selected Cα reference residue (blue circle). 

The value τ is the angle formed between helical axis (H) and the membrane normal 

(N).  

Lipid exposure prediction provides information about the probable orientation of the 

helices. Early attempts to predict helix orientation employed the hydrophobic moment 

concept (Eisenberg, 1984, Rees et al., 1989). The hydrophobic moment is essentially 

a vector pointing from the helix axis to the most hydrophobic surface of the helix. In 

these methods, the orientations of transmembrane helices were predicted on the 

assumption that the helical hydrophobic moments should point out into the lipid 

phase. Later, however, it was found that hydrophobic moments are poor indicators of 

the angular orientation of transmembrane helices due to the fact that hydrophobic 

residues often face both the core of the protein and the lipid (Stevens and Arkin, 1999, 

Rees and Eisenberg, 2000).  
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Figure 6: The definition of helix tilt (τ) and rotation (ρ). The value ρ is defined as the angle between 

the perpendicular vector (r) from the helical axis (H) to the selected Cα reference residue (blue circle). 

The value τ is the angle formed between helical axis (H) and the membrane normal (N).  

In later studies, statistical analyses were conducted using known high-resolution 

structures of transmembrane proteins with the goal of defining the lipid exposure 

propensities for each residue in a given transmembrane helix (Donnelly et al., 1993, 

Donnelly 1994). The work of Donnelly is notable, in that it described very clearly the 

utility of sequence conservation in discriminating between lipid exposed and buried 

residues. Lipid exposed residues, though required to be highly hydrophobic, are not 

under any significant steric constraints and so can be evolutionarily quite variable. In 

contrast, buried residues though also typically hydrophobic, are indeed subject to 

steric constraints and so are commonly highly conserved evolutionarily in sequence 

alignments. Unfortunately, these studies were based on a dataset of insufficient size to 

generate good statistics. 

Taking an alternative approach to defining the lipid exposure propensities, Pilpel et al. 
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(1999) proposed a knowledge-based scale. The authors made the assumption that 

residues which tend to be exposed to the membrane (as opposed to buried within) will 

be more frequent in the transmembrane segments of single spanning transmembrane 

proteins than in multi-spanning proteins, whereas residues that prefer to be buried in 

the transmembrane bundle interior would exhibit the opposite trend.  

Other, more advanced methods developed for predicting residue orientation in 

transmembrane proteins (Beuming and Weinstein, 2004, Adamian and Liang, 2006, 

Hildebrand et al., 2006, Yuan et al., 2006, Park et al., 2007, Illergard et. al., 2010) 

will be discussed in Chapter 2. 

1.4.3 Predicting kinks and reentrant loops 

A significant proportion of transmembrane proteins contain kinks (Riek et al., 2001). 

Yohannan et al. (2004) developed an algorithm that predicts kinks with an accuracy 

of  > 90% by identifying peaks of proline in sequence alignments, as they had 

surmised that 50% of the kinks are due to proline. Another method, based on 

sequence pattern descriptors, predicts kinks and also other non-canonical helical 

conformations (Rigoutsos et al., 2003). More recently, Hall et al. (2009) employed 

molecular dynamic simulation using isolated helices with the goal of identifying the 

position of helical kinks in transmembrane helices. The authors reported a capacity to 

identify about 79% of the proline kinks. Furthermore, recently, Langelaan et al. 

(2010) developed a method for predicting kinks using machine learning and 

concluded that although kinks are somewhat predicted by sequence, kink formation 

appears to be driven predominantly by other factors. Langelann et al. showed that 

although the proline amino acid has been advanced as being essential for kinks 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Yohannan%20S%22%5BAuthor%5D
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formation (Yohannan et al., 2004) there are proline residues that do not induce a kink 

and there are kinks in the absence of proline. Langelann et al. remarked that 

Yohannan et al. tested their algorithm on a relatively small set of transmembrane 

proteins.  

More than 10% of transmembrane proteins contain reentrant loops (Viklund et al., 

2006). A reentrant loop goes part way through the membrane and turns and exits the 

membrane in the same side it has entered.   

Very few reentrant loop predicting methods exist. Viklund et al. (2006) developed the 

method TOP-MOD for predicting reentrant regions with an accuracy of ~70% based 

on their amino acid composition. TMLOOP also identifies re-entrant loops (Lasso et 

al., 2006). As mentioned above, the method OCTOPUS developed by Viklund and 

Elofsson (2008) and the method MEMSAT-SVM developed by Nugent and Jones 

(2009) can predict the existence of reentrant loops in transmembrane proteins as well 

as their topology. 

Other methods that predict the existence of motifs such as signal peptides and signal 

anchors are SignalP (Bendtsen et al., 2004) and TargetP (Emanuelsson et al., 2007). 

1.4.4 Transmembrane protein 3D structure prediction 

Various attempts have been made to develop prediction methods for transmembrane 

protein 3D structure. Taylor et al. (1994) adapted some programs originally 

developed for predicting water-soluble protein structures to derive a method for 

predicting 3D structures of integral membrane proteins. The method uses the 

“variphobicity” (evolutionarily variable and hydrophobic) faces of transmembrane 
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helices to predict the structure. The method was successfully applied to two protein 

family sequence alignments (bacteriorhodopsin and rhodopsin).  

Helix-helix associations were modeled by Adams et al. (1996), on Glycophorin A, 

using an energy function which searches for the best possible packing interactions 

between helices. In 2001, a modeling approach was developed by Nikiforovich et al. 

(2001). Their approach combined helical packing, based on the bacteriorhodopsin 

template, and selection of low-energy conformers for loops that are closest to the 

bacteriorhodopsin X-ray structure. Using this method the authors were able to 

reproduce the bacteriorhodopsin structure.   

Fleishman and Ben-Tal (2002) used knowledge of residue environment preferences to 

predict the likely arrangement of transmembrane helices, on the basis of a rule: “small 

residues go inside”. This method predicted successfully the native structure of 

transmembrane protein glycophorin A. In the same year Ledesma et al. (2002) 

produced a model for Uncoupling protein 1 (UCP1), using a computational docking 

method. Later Chen and Chen (2003) used a Monte Carlo method for protein folding 

and successfully predicted the seven helix bundle structure of rhodopsin I. 

Pellegrini-Calace et al. (2003) developed a method (FILM) for predicting small 

membrane protein structure based on a method previously developed for predicting 

tertiary structure of water-soluble proteins (FRAGFOLD). The method is based on the 

assembly of super secondary structural fragments taken from a library of proteins with 

known structure. A standard simulated annealing algorithm is used to narrow the 

search of conformational space, which pre-selects fragments from a library of highly 

resolved protein structures. The method was applied to small membrane proteins of 
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known structure and was able to predict with a reasonable accuracy level the helix 

topology and protein conformation. 

Another modification of a water-soluble protein modeling program (ROSETTA) was 

developed by Barth et al. (2007), which attained near atomic accuracy for several 

small membrane proteins. More recently, the same group developed a method for 

predicting the structure of large transmembrane proteins. The newer method 

constrains helix-helix packing arrangements at particular positions according to 

predictions from sequence analysis or in line with empirical data and produced near-

native models for 9 out of 12 tested proteins (Barth et al., 2009) 

Fuchs et al. (2009) showed that applying water-soluble methods that predict helix-

helix interaction (contact map) to membrane proteins was not very effective. To 

address this issue, they developed a method (TMHcon) based on neural networks, 

which predicts helix-helix contacts in transmembrane proteins. In addition to the input 

features commonly used for contact prediction of soluble proteins, such as windowed 

residue profiles and residue distance in the sequence, the network also incorporates 

features that apply to membrane proteins only, such as residue position within the 

predicted transmembrane segment and orientation toward the lipid environment. The 

obtained neural network can predict contacts between residues in transmembrane 

segments with nearly 26% accuracy.  

TMhit is another method that predicts helix-helix interaction in transmembrane 

proteins (Lo et al., 2009). The method incorporates contact propensities, various 

sequence, physico-chemical, and structural information in a two-level architecture 

using support vector machines (SVMs). In the first level, contact residues are 
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predicted and their pairing relationship or connectivity is further predicted in the 

second level.  

Recently Nugent and Jones (2010) developed a novel approach to predicting lipid 

exposure, residue contacts, helix-helix interactions and the optimal helical packing 

arrangement of transmembrane proteins. They employed molecular dynamics data to 

label residues potentially exposed to lipid, trained and cross-validated a support vector 

machine (SVM) classifier to predict for each residue the probability of lipid exposure, 

reporting an accuracy rate of 69%. The resulting information is combined with 

additional features to train a second SVM to predict residue contacts, which in turn 

are used to determine helix-helix interactions. An accuracy rate of up to 65% was 

reported when using stringent cross-validation conditions for a non-redundant test set. 

Despite this progress in predicting the 3D structure of membrane proteins, more 

advanced methods are needed that are reliable and fast enough to apply on a genomic 

scale. 

1.5 Computational approaches to characterizing 

proteins  

1.5.1  Sequence similarity methods 

If two proteins have diverged from a common ancestor they are defined as 

homologous proteins and are likely to have similar sequences. Computational 

sequence comparison detects homologous proteins; it takes as input two sequences 

and outputs the similarity between them. Sequence comparison can also serve to 
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delineate the most probable set of point mutations, deletions and insertions that define 

the evolutionary relationship between the two proteins.  

Computational approaches to sequence alignment generally fall into two categories: 

global alignment and local alignment. Global alignments span the entire length of the 

query sequence. Conversely, local alignments identify regions of similarity within 

long sequences that are often widely divergent elsewhere.  

The algorithm for calculating either local or global sequence similarity does not give 

equal weight to each amino-acid aligned. Instead, scoring matrices are used, which 

give dissimilar weights to replacement of different amino acids. The most commonly 

used scoring matrices are PAM (Dayhoff et al., 1978) and BLOSUM (Henikoff and 

Henikoff, 1992), described in detail in Appendix B.  

In addition, sequence alignment methods can be divided into three classes based on 

the information used for the alignment:    

1. Sequence-sequence alignments are pairwise methods that compare sequences 

one against one. 

2. Profile-sequence methods compare one sequence to an aligned family of 

sequences. 

3.  Profile-Profile methods compare two aligned families of sequences. 

Pairwise methods align the sequences assuming that all amino acids are equally 

important. However, in reality, this is not the case; at some positions the amino acids 

are conserved while at others they are not. The conserved amino acids are likely to be 

more important for the protein structure and function. Profile based methods exploit 
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this information for the alignment and therefore, are more sensitive than pairwise 

methods.  The next sections summarize the main algorithms for sequence alignment.  

1.5.1.1  The Needleman -Wunsch algorithm 

The Needleman–Wunsch algorithm performs global alignments of pairwise 

sequences. The Needleman-Wunsch algorithm applied dynamic programming for the 

first time to sequence comparison (Needleman and Wunsch, 1970). It maximizes the 

number of matches between the sequences along the entire length of the two 

sequences, thus the algorithm aligns the two sequences from the first residue to the 

last even if only the middle of the sequences is similar. Insertions and deletions are 

considered by conferring appropriate costs to gap opening and gap extensions. 

This method is applied in the current thesis and therefore is explained in more detail. 

The Needleman-Wunsch algorithm starts with initialization of the score matrix: a 

matrix with M+1 columns and N+1 rows is created where M and N correspond to the 

length of the sequences to be aligned. Then the matrix is filled: scores for aligned 

residues are specified by the designated substitution matrix. Substitution matrices 

describe the evolutionary rate at which one character in a sequence changes to another 

character over time, where S(i,j) is the similarity score for residues i and j.  

In the next step, for each position, Mi,j the maximum score at position i,j is calculated. 

In the original publication from 1970, gap is not penalized and the maximum score is: 

 Mi,j  =  MAX h<i,k<j { M h, j-1 + Si,j (Ai,Bj), Mi-1,k + Si,j (Ai,Bj)}     (1) 

When adding gap penalty (d) to the algorithm, which is a negative score, the 
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maximum score is: 

Mi,j  =  MAX{ Mi-1, j-1 + Si,j (Ai,Bj), Mi,j-1 + d , Mi-1,j +d}        (2) 

In the last step traceback is performed. The traceback begins with the last cell to be 

filled with the score, i.e., the bottom right cell. Traceback takes the current cell and 

looks to the neighbor cells that could be direct predecessors. There are three possible 

moves: diagonally (toward the top-left corner of the matrix), up or left. The algorithm 

for traceback chooses as the next cell in the sequence one of the possible 

predecessors. Continuing with the traceback step, the algorithm gets to a position in 

column 0, row 0 which tells us that traceback has completed with the best scored 

global alignment. The alignment is deduced from the values of cells along the 

traceback path, taking into account the values of the cell in the traceback matrix. 

A similar algorithm to Needleman-Wunch is the Smith-Waterman algorithm, which 

applied dynamic programming to local alignment of sequences. 

1.5.1.2  The Smith-Waterman and FASTA algorithms 

The Smith-Waterman algorithm (Smith and Waterman, 1981) performs local 

alignments of pairs of sequences, i.e. it identifies the most similar region shared 

between two sequences. The method employs a dynamic programming algorithm in a 

similar way to the Needleman-Wunsch algorithm except that negative scoring matrix 

cells are set to zero. Backtracking starts at the highest scoring matrix cell and 

proceeds until a cell with score zero is encountered, producing the highest scoring 

local alignment.  



 47 
 

 

 

 

The Smith-waterman algorithm is time demanding. A more efficient alignment 

method is FASTA. The FASTA algorithm (Lipman and Pearson, 1985, Pearson and 

Lipman, 1988) is a heuristic approximation to the Smith-Waterman algorithm, which 

reduces the time required by matching words of a given length. The length chosen for 

the word impacts the speed and sensitivity of the algorithm. The method identifies 

regions of similar sequences before performing an optimized search using a Smith-

Waterman type of algorithm.  

The FASTA algorithm can be used to search databases for homologous proteins, but 

is still not fast enough. A more advanced and faster algorithm is BLAST.  

1.5.1.3 The BLAST algorithm 

The BLAST (Altschul et al., 1990) algorithm searches a corresponding sequence 

database by using a heuristic algorithm to find similar database sequences. First 

BLAST locates words (with k letters) in the query sequence with match score above a 

defined threshold, T, when compared to sequences in the database, using a scoring 

matrix. Then BLAST begins to make local alignments from these initial matches, by 

locating neighborhood words that again must have a match score of at least the 

threshold. However, if the score is lower than this pre-determined T, the alignment 

will cease to extend, preventing areas of poor alignment from being included in the 

BLAST results. The algorithm extends the alignment in both directions.  

By aligning only to sequences that satisfy a requirement of having a score of at least 

the threshold, BLAST performs far fewer local alignments than FASTA which 

performs local alignments on the full sequences. BLAST is therefore much faster than 
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FASTA.  

 A more advanced method than BLAST is PSI-BLAST (Altschul et al., 1997). The 

PSI-BLAST method is applied in the current work and is therefore explained in more 

detail in the section below. 

1.5.1.4   The PSI-BLAST algorithm 

PSI-BLAST (Altschul et al., 1997), Position-Specific Iterated BLAST, identifies 

homologous proteins iteratively. PSI-BLAST is one of the most commonly used and 

powerful methods for detecting sequence similarity (Jones and Swindells, 2002).  

PSI-BLAST, a profile–sequence alignment method, introduces evolutionary 

information by constructing protein sequence profiles. Multiple sequence alignments 

and corresponding sequence profiles represent one of the most significant 

methodological improvements with impact on alignment accuracy. This 

methodological approach was not new at the time PSI-BLAST was published. 

Already in 1987, Gribskov et al. used profiles for homology searches, but PSI-

BLAST appeared to work better than any other profile-based search tool that had 

existed previously (Jones and Swindells, 2002). The profiles are obtained by 

computing the frequency of different residues in each alignment position. A sequence 

profile lists a preference for the 20 standard amino acid residue types at each position 

in a given multiple sequence alignment. Using sequence profiles adds more 

information to the alignment regarding importance and conservation of specific 

regions. The profile contains more information about the sequence family than a 

single sequence.  
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The PSI-BLAST algorithm (Figure 7) automatically generates a multiple alignment 

from the output of an initial BLAST similarity search. This alignment is then used to 

create a position-specific score matrix (PSSM), or profile, with dimensions n x 20, 

where n is the length of the sequence. For each row, a substitution score for each of 

the 20 amino acids is given. The main difference between PSSMs and standard 

substitution matrices is that the score for the same amino acid type can differ 

depending on its position within the sequence. The PSSM is used to search the 

database. While searching for additional similar protein sequences the PSSM matrix is 

updated after each iteration.  

The search may be iterated many times, as new significant similarities are found. The 

result of such a search is a list of possible homologues, sorted by E-value. The E-

value is a statistical score which represents the number of times one would expect to 

get a hit with the same or better score by chance.  The E-value for a given alignment 

depend on the length m and n of the sequences and on the alignment score S. The 

parameters K and   are constants that depend on the search space size and the 

scoring system used. The E-value is calculated as: 

SemnKE  ***    (3) 

The lower the E-value is, the higher the probability that the query and match are 

homologous. For example, the meaning of an E-value equal to 1 is that in a database 

of the current size one might expect to see one match with this score or better, simply 

by chance. 
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Figure 7: Schematic overview of PSI-BLAST: In the first step a BLAST search is performed using a 

substitution matrix (BLOSUM). Sequences below a given E-value threshold are listed and used for 

multiple sequence alignment and converted into a PSSM. In the second step the PSSM constructed in 

the first step is used to search the sequence database. Following steps: Second step is repeated 

iteratively, each time a new PSSM is constructed, until no more sequences under a threshold E-value 

are added or until a given maximum number of rounds have been accomplished. The result is a list of 

sequence alignments from the final round. 

The development of profile–sequence alignment methods such as PSI-BLAST has led 

to a great improvement in sensitivity over sequence–sequence alignment methods.  

1.5.1.5 Profile – profile algorithms  

Another significant improvement in sequence alignment algorithms was achieved by 
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developing profile-profile algorithms. Profile-profile algorithms align two sequence 

profiles against each other; evolutionary information is included for both query and 

database sequences. 

Several groups have developed profile–profile alignment methods (Pietrokovski,1996, 

Rychlewski et al., 1998, Yona and Levitt , 2002, Sadreyev and Grishin, 2003). The 

idea behind all the methods is identical; a pair of sequence profiles is used instead of a 

pair of sequences for the alignment. However, the alignment calculation differs: 

Rychlewski et al. (1998) calculate the similarity score between positions in two 

profiles by calculating the average of scores between all amino acid pairs according to 

the probability distributions in each profile; Yona and Levitt (2002) proposed a 

scoring formula based on a theoretical measure of differences between the two 

probability distributions represented by the profiles; Sadreyev and Grishin (2003) 

generates scores for matching positions of the two profiles by using a scheme of log-

odds ratios and Pietrokovski (1996) used Euclidean distances between the profiles. 

Profile-profile methods have been shown to improve homology detection among 

proteins to a greater extent than profile–sequence methods (Rychlewski et al., 1998, 

Sadreyev and Grishin, 2003).   

1.5.1.6 Hidden Markov Model based methods  

Hidden Markov Models (HMMs) are probabilistic models that were originally applied 

to the problem of speech recognition (Jelinek et al., 1975), and were later applied to 

biological sequence analysis (Churchill, 1989). HMMs have been applied to many 

problems in computational biology.  
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Krogh et al. (1994) were the first to delineate an HMM architecture for protein 

sequence alignment, termed the profile HMM, which is another representation of 

multiple sequence alignment profiles. Profile HMMs are thus similar to simple 

sequence profiles, but in addition to the amino acid frequencies in the columns of a 

multiple sequence alignment, the columns also contain information about the 

frequency of inserts and deletions and can also incorporate other types of data (such 

as secondary structure propensities). In building a profile HMM, an existing multiple 

alignment is given as input. For each column of the multiple alignment, a 'Match' state 

models the frequencies of the residues in the column. An 'Insert' state for each column 

enables insertion of residues between that column and the next one, and 'Delete' state 

enables deleting of the residue between that column and the next one. The states in the 

profile HMMs are sequentially connected so that each position in the multiple 

sequence alignment is represented by a 'Match' state, an 'Insert' state and a 'Delete' 

state. The model starts in 'Begin' state and ends with 'End' state. The probabilities of 

the profile HMM are converted to log-odds scores, which can then be summed. 

One of the most well-known software packages used for generating profile HMMs 

automatically from multiple sequence alignments is HMMER (Eddy, 1998). Figure 8 

shows the architecture of HMMER model. The architecture is linear and corresponds 

to a multiple sequence alignment, i.e., match states correspond to the conserved 

columns of the alignment, insert states to the insertions and delete states to the 

deletions. In addition, transitions between the states represent the deletions and the 

insertions. 
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Figure 8: The HMMER model architecture (Eddy, 1998). It starts from Begin (B) state and finishes 

at the End (E) state. The N and C states are the N and C terminals. Match states (M) correspond to the 

conserved amino acids, insert state (I) to the insertion and delete state (D) to the deletions.  

HMMs can also be used in profile HMM-profile HMM, methods which are similar to 

profile-profile methods. HHpred (Soding et al., 2005) was the first server to employ 

profile HMM-profile HMM comparison (uses the program HHsearch), based on a 

novel statistical method. Using HMMs both for the query and the database greatly 

enhances the sensitivity and selectivity of the method (Soding et al., 2005).   

1.5.2 Computational approaches for classifying proteins 

Only a small fraction of annotated proteins have been characterized functionally 

(Ursing et al., 2002). The most powerful method for characterizing the biological 

function of a protein is to search for other proteins in databases with sequence or 

structure similarity.  

Databases that classify proteins into families are based on protein resemblance in 

sequence, structure and/or function. Protein classification is an important task in 

bioinformatics, as it provides valuable clues to the structure and functions of unknown 
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proteins and can be employed for evolutionary and statistical studies of protein 

families. Moreover, classifications can be useful during large scale annotation of 

proteins, as required by the growing body of sequence data generated by complete 

genome sequencing.  

When classifying according to sequence similarity, the classification can be based on 

full length sequence or on domains or motifs. A protein domain is defined as a section 

of protein sequence that encodes for a structure that can function independently of the 

rest of the protein chain. Typically each domain forms a 3D structure that is 

independently stable. Wetlaufer was the first to propose the domain concept (1973); 

he defined domains as stable units of protein structure that fold autonomously. 

Proteins comprising more than one structural domain are called multidomain proteins 

and are often multifunctional proteins (Chothia, 1992). A domain can appear more 

than once and in various configurations with other domains (Apic et al., 2001). In a 

multidomain protein, each domain may function independently or in a concerted 

manner with its neighbors. Liu et al. (2004) examine Pfam classified families and 

found that most transmembrane proteins (78% for archaea and prokarya and 67% for 

eukarya) contain only a single classified membrane domain. 

The algorithms most commonly used for classifying proteins are based either on 

sequence similarity, on structural similarities or on combinations of sequence and 

structural similarities. 

1.5.2.1  Classification based on sequence similarity 

The underlying assumption of classification based on sequence similarity, is that 
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proteins with high sequence identity are likely to share the same structure. However, 

there are many examples of structurally similar proteins that do not display significant 

sequence similarities. Accordingly, most classification methods that rely solely on 

sequence data fail to recognize up to 30% of extremely distant homologs (Engelman 

et al., 2003, Gough et al., 2001). Classification based on sequence similarity is 

performed by searching for similarity to a given protein with a chosen specified 

threshold. Specifying the threshold can be a difficult task. A restrictive threshold can 

generate few matches and miss sequences that have diverged during evolution; 

alternatively a less restrictive threshold can result in a list that includes unrelated 

proteins, i.e., false positives.  

There are three types of sequence-based classification:  

1. Full length sequence analysis: In which the full length sequence is used for 

classification.  

ProtoNet (Sasson et al., 2003) and ProtoMap (Yona et al., 2000) are examples 

for databases which are based on full length classification. 

2. Domain/motif analysis: This approach was prompted by the observation that 

some regions have been better conserved than others during evolution. Such 

conserved regions are generally important for the function of a protein and for 

the maintenance of its 3D structure. Analysis of the constant and variable 

properties of sets of similar sequences, enabled derivation of a signature for a 

protein family or domain, which distinguishes its members from all other 

unrelated proteins. Thus, the underlying assumption of this type of 
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classification is that proteins with similar domains are likely related even if 

overall they display low sequence similarity. The limitation of domain-based 

classification is that many proteins possess several domains whereas some 

proteins do not contain recognized domains. In addition, it is not possible to 

predict domains for some very small families (e.g., that comprise 2 members).  

Some of the best known protein-related databases are based on motif or 

domain classification, for example: Pfam (Bateman et al., 2004), which is 

broadly used in the current work and therefore will be described in detail (in 

section 1.5.2.1.1), PROSITE (Falquet et al., 2002), BLOCKS (Henikoff et al., 

2000), TIGRFAM (Haft et al., 2003) and PRINTS (Attwood et al., 2002).   

3. Phylogenetic analysis:  In this analysis, proteins are classified together if they 

are inferred to be orthologs. Orthologs are genes of common origin that have 

diverged through evolution. Typically, orthologous proteins have the same 

domain architecture and the same function, although there are many 

exceptions and complications to this generalization, particularly among 

multicellular eukaryotes.   

COGS (Tatusov et al., 2001), is a database which phylogenetically classifies 

the entire encoded proteins (both predicted and characterized). 

1.5.2.1.1  Pfam database  

In the Pfam database (Bateman et. al, 2004), the protein sequences from SwissProt 

and TrEMBL are organized into protein domain families. The classification is semi-

automatic and is based on multiple protein alignments that are used to derive profile-
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HMMs for the protein families. The HMMs are generated automatically using 

HMMER (Sonnhammer et al., 1998). 74% of protein sequences have at least one 

match to Pfam. Given a new sequence, it is possible to evaluate the probability of that 

sequence belonging to the family modelled by a given HMM. A similarity score is 

associated with a new sequence based on the most probable path through the HMM 

which generates the input sequence. 

Pfam provides a high quality description of each protein family, including text 

description about function, cellular location, relevant literature references and links to 

taxonomic groups in which the family is found. 

Pfam families are categorized as A or B. Pfam-A is the partially manually curated 

portion of the database that contains over 10,000 entries. For each entry a protein 

sequence alignment and a hidden Markov model is stored. Because the entries in 

Pfam-A do not cover all known proteins, an automatically generated supplement is 

provided called Pfam-B. Pfam-B contains a large number of small families 

automatically generated from clusters produced by the ProDom database in the early 

releases (Corpet et al., 2000) and by the ADDA database (Heger et al.,2005) in recent 

releases (since release 23.9, 2008) . Although of lower quality, Pfam-B families can 

be useful when no Pfam-A families are found. Pfam data are freely accessible via the 

web. 

The Pfam-A database is generated in a semi-automated process, starting from a seed 

based on multiple alignments.  After manual inspection, an HMM is built and used to 

search the database, thus members are added to the seed alignment and the process is 

repeated.  
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Pfam proteins are not only classified into families but also, groups of related families 

are classified into clans (Finn et al., 2006). A clan is a collection of Pfam-A entries 

that are judged likely to be homologous. A clan contains two or more Pfam families 

that have arisen from
 
a single evolutionary origin. Clans are built manually and based 

on various sources of information: the primary literature, known structures, profile–

profile comparisons and other databases such as SCOP. Clan classifications were 

developed because of the difficulties in classifying proteins into families. It was found 

that there are many related Pfam families, the members of which effectively overlap. 

Conversely, it was found that for some large,
 
divergent families it was not possible to 

build a single HMM that detects
 
all members of the family.   

1.5.2.2   Classification based on protein structure  

Structural protein classification creates groups according to 3D structure similarity. 

The most widely used structure classification resources are SCOP (Murzin et al., 

1995) and CATH (Orengo et al., 1997).   

SCOP provides a detailed and comprehensive description of the structural and 

evolutionary relationships between proteins with solved 3D structures. SCOP 

classifies the proteins into a four-level hierarchy: Family (proteins with significant 

sequence similarity), Superfamily (proteins with low sequence similarity, but with 

structural and functional features suggesting a common evolutionary origin), Fold 

(superfamilies with major structural similarity) and Class (high level classification). 

SCOP classification is manual. 

In CATH, the classification of protein domain structures is created using a 
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combination of manual and automatic methods. There are four hierarchical levels in 

CATH database: Class, Architecture, Topology (fold family) and Homologous 

superfamily (Orengo et al., 1997). When classifying a new domain, if it has 

sufficiently high sequence and structural similarity with a domain that has been 

previously classified in CATH, the classification is automatically assigned. 

Otherwise, the domain is classified manually. 

1.5.2.3  Classification based on sequence and structure  

InterPro (Apweiler et al., 2001) is a database that attempts to integrate the advantages 

of each approach to classification. 

InterPro is an integrated documentation resource for protein families, domains, 

regions and sites.  InterPro combines a number of databases (Pfam, PRINTS, 

PROSITE, ProDom and TIGRFAMs) that use different methodologies and a varying 

degree of biological information on well-characterized proteins to derive protein 

signatures. By collating databases, InterPro capitalizes on individual strengths, 

producing a powerful integrated database and diagnostic tool (Apweiler et al., 2001). 

 1.5.2.4  Classification of transmembrane proteins  

As mentioned above, too few transmembrane protein structures have been solved to 

allow classification of transmembrane proteins based on structure. In a similar 

approach to that underlying the Pfam database, Liu et al. (2002, 2004) classified 

transmembrane proteins from 26 genomes into 637 families according to number of 

transmembrane helices and sequence similarity. They report that the majority of 

integral transmembrane proteins have single domains unlike soluble proteins, which 
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typically encompass several domains.  

Other attempts have been made to classify efficiently transmembrane proteins. Aria et 

al. (2004) focused on 87 complete prokaryotic genome sequences to develop a 

method based on ‘topology similarity’, in which a score was calculated by comparing 

the length of loop regions. Suwa et al. (2000) developed a classification method based 

on computing the polar energy surface, which can reveal characteristic interaction 

patterns for individual helices. The transmembrane proteins families in C. elegans 

(and human orthologs) were classified by Remm and Sonnhammer (2000) on the 

basis of sequence similarity using Hidden Markov Model techniques.  

There have been many studies focused on classifying G protein coupled receptors 

(GPCRs), a large membrane protein family important physiologically and 

pharmacologically due to key roles in regulating cellular growth, death and 

metabolism. This family is difficult to classify using only sequence homology as 

members are highly divergent at the sequence level. Hedman et al. (2002) developed 

a method to classify GPCRs that combines topological information with sequence 

alignment (discussed in more detail in chapter 4). Recently, Huang et al. (2004) 

attempted to classify GPCRs using a bagging classification tree algorithm based on 

amino acid composition. Inoue et al. (2004) developed a binary topology pattern 

method for GPCR classification, in which a binary pattern was obtained for each 

functional class by assigning binary loop threshold lengths (short loop/long loop). 

More recently, Marsico et al. (2010) developed a technique called structural fragment 

clustering, which learns sequential motifs from 3D structural fragments in 

transmembrane proteins. They concluded that structural fragment clustering enables 
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sequence motifs to be linked to function. Once characterized, sequence motifs can be 

used to identify and characterize membrane proteins in novel genomes.  

Helical transmembrane proteins from the SCOP and CATH databases were analyzed 

by Neumann et al. (2010). They concluded that effective classification of 

transmembrane proteins with only a few membrane-spanning helices requires 

integration of more fine-grained structural features such as helix-helix interactions 

and reentrant regions. 

Several databases of transmembrane proteins have been constructed and are 

accessible through the Web. These databases are summarized in Table 1. 

Table 1: Existing transmembrane protein databases. 

Database Name Description Reference 

Mptopo All currently known high-resolution transmembrane protein 

structures with links to the PDB and PubMed entries. 

Additionally, the database includes a list of proteins with 

unknown 3D structure, but with topology that has been 

experimentally annotated using low-resolution techniques. 

Jayasinghe et 

al., 2000 

PDBTM Database of known transmembrane protein structures proteins, 

listed in the Protein Data Bank (PDB). 
Tusnady et 

al.,  2004 

OPM Includes all unique experimental structures of transmembrane 

proteins. In addition it provides spatial arrangements of 

membrane proteins with respect to the hydrocarbon core of the 

lipid bilayer. 

Lomize et al., 

2006, Lomize 

et al., 2007 

CAMPS Contain transmembrane proteins with three or more predicted 

transmembrane helices. Proteins were subjected to single-

linkage clustering using only sequence alignments. These 

clusters were further subdivided into functionally 

homogeneous subclusters according to the COG. The clusters 

are thus designed to reflect three main levels of interest for 

structural genomics: fold, function, and modeling distance. 

Martin-

Galiano and 

Frishman , 

2006 
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TMPad Integrated structural database for helix-packing folds in 

transmembrane proteins. It integrates experimentally observed 

helix–helix interactions and related structural information for 

transmembrane proteins. 

Lo et al., 

2011 

Mplot Provides a quick and easy way for structural biologists to 

analyze, visualize and plot tertiary structure contacts of helical 

transmembrane proteins. 

Rose et al., 

2010 

GPCRDB Includes all G-protein coupled receptors and provides data 

about sequences, ligand binding constants and mutation 
Horn et al., 

1998, Horn et 

al., 2003 

TCDB Transporter classification (TC) system that classifies all 

transmembrane transporters. 
Saier et al. 

2006, Saier et 

al., 2009 

 

1.6  The present work 

Currently, there is no efficient and accurate method for classifying all transmembrane 

proteins in an automated way. Since the number of known 3D structures is low, an 

effective and reliable way to classify transmembrane protein into families based on 

their sequence must be developed. Such a classification would require a method that 

reliably detects distant homology between transmembrane proteins. The aim of the 

present work was to develop an automated method for detecting homology among 

transmembrane proteins, which predicts reliable and true relationships for the tested 

protein based on sequence alone.  

In the current work a method was developed that uses sequence similarity, topology, 

predicted structural features (predicted residue lipid exposure) and loop lengths to 

find homology between transmembrane proteins. The method relies on the 

assumption that protein structures are more conserved than protein sequences among 
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homologs and therefore, combining structural information with a simple sequence 

alignment will improve homology detection (Chothia and  Lesk, 1986, Kaczanowski 

and Zielenkiewicz, 2010,  Marti-Renom et al., 2000 ).  



 64 
 
 

 

 

Chapter 2 

 

Predicting the lipid exposure of 

transmembrane proteins 

 

2.1 Introduction 

Predicting the three-dimensional (3D) structure of transmembrane proteins remains a 

challenging task. A simpler initial task, which can serve as a stepping-stone toward 

predicting 3D structure, is predicting the relative exposure of each residue to the 

membrane environment, i.e., predicting whether a residue faces the lipid environment 

or is buried inside the protein.  

For water soluble proteins, calculating solvent accessibility has proved quite 

informative for identifying protein function and domains (Wodak, 1981). In addition, 

solvent accessibility can be used as additional information when aligning regions with 

remote sequence identity (Gaboriaud et al., 1987, Lemesle-Varloot et al., 1990). The 

concept of solvent accessibility for water soluble proteins was introduced by Lee and 

Richards (1971). The driving force during folding is the hydrophobic effect, where 

folding occurs such that unfavorable interactions between hydrophobic residues and 

the hydrophilic environment are minimized (Honig et al. 1995). Accordingly, folded 

water soluble proteins consist of a hydrophobic interior and hydrophilic exterior. 

Therefore, predicted solvent accessibility can indicate whether a given residue is 
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interior or exterior and typically is defined either numerically, the real-valued solvent 

accessibility, or as a binary classification into buried versus exposed states. 

Alternatively, Rost and Sander (1994) classified a relative solvent accessibility into 

three and ten states when predicting accessibility for water soluble proteins. For water 

soluble proteins many methods have been developed for predicting accessibility. 

However, only a few such methods have been developed for transmembrane proteins.  

Early studies of the bacteriorhodopsin structure suggested that membrane proteins are 

"inside-out" relative to water soluble proteins, i.e., that they consist of a hydrophilic 

interior and a hydrophobic exterior (Engelman et al,. 1980, Rees et al., 1989). 

However, later it was found that the "inside-out" rule is not completely accurate (Rees 

and Eisenberg, 1999, Stevens and Arkin, 1999). Transmembrane proteins typically 

pass through the membrane multiple times. In order to satisfy the hydrogen-bonding 

requirements of the polar back-bone atoms, transmembrane proteins adopt the 

architecture of alpha-helical bundles in the regions situated in the membrane. 

Accordingly, transmembrane proteins face three distinct environments: a hydrophobic 

lipid environment inside the membrane, a hydrophilic water environment outside the 

membrane and an interface region rich in phospholipid head-groups. Therefore, it is 

energetically favorable for transmembrane proteins to expose different types of 

residues in the different regions (Illergard et al., 2010). 

As discussed in detail in Chapter 1, early attempts to predict helix orientation were 

done using the hydrophobic moment concept (Eisenberg, 1984, Rees et al., 1989). 

However, hydrophobic moments were found out to be a poor indicator of angular 

rotation for transmembrane helices (Stevens and Arkin, 1999, Rees and Eisenberg, 
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2000). In later studies, a statistical analysis was conducted on known high-resolution 

structures of transmembrane proteins to find the lipid exposure propensities of the 

different residues (Donnelly et al., 1993, Donnelly 1994). It was discovered that the 

buried residues are highly conserved relative to the exposed residues. 

Based on this finding, Beuming and Weinstein (2004) developed a method for 

predicting if transmembrane protein residues are buried in the core of the 

transmembrane helix bundle or exposed to the lipid environment. The method uses 

information about residue distribution collected from solved structures and combines 

it with evolutionary criteria about conservation (Briggs et al., 2001). This method 

performed with at most 80% accuracy when predicting if a residue is lipid exposed or 

buried. 

Later, Adamian and Liang (2006) developed a method for predicting transmembrane 

helix orientation – LIPS (LIPid-facing Surface). Their method predicts the face of the 

transmembrane helix exposed to the membrane and not the hydrophobicity status of 

individual transmembrane residues. Admian and Liang's method is based on a 

canonical helical face model whereby the surface of each helix is partitioned into 

seven surface patches (faces) that could interact with lipids or other helices. It allows 

collective assessment of the evolutionary and physico-chemical properties for each of 

the seven faces formed by residues centered at one of the seven positions. They 

identify lipid exposure with an accuracy of about 88% from the sequence information 

alone. The LIPS server is available online at 

http://gila.bioengr.uic.edu/lab/larisa/lips.html. 

Park and Helms (2006) studied in more detail the correlation between conservation 
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patterns and empirical scales that score the exposure pattern of transmembrane 

helices. They carried out a large scale benchmarking of the prediction scales proposed 

so far. Unsurprisingly, this analysis revealed that scales incorporating structural data 

show stronger correlation with exposure patterns than hydrophobicity-based scales. 

This conclusion was expected as structure based scales were parameterized explicitly 

for the purpose of predicting buried versus lipid-exposed faces of transmembrane 

helices. The other scales (hydrophobicity-based scales) were developed before high-

resolution structural data existed. In light of their analysis, Park and Helms proposed a 

framework that combines sequence conservation patterns and empirical scales, but 

found that improvements gained from combining the two sources of information were 

not dramatic in almost all cases. 

Hildebrand et al. (2006) described a computational method for predicting whether a 

given residue is located at a helix-helix interface in the membrane. They show that 

when the sequence motifs typical for membrane channels and transporters were 

exploited for predicting helix-helix contacts (i.e., the context of a residue was taken 

into account), the quality of prediction rose by 16% to an average value of 76%, 

compared to an equivalent approach when only single amino acid positions were 

taken into account.  

Yuan et al. (2006) developed a method to predict the solvent accessible surface areas, 

with resulting correlation coefficients between predicted and observed accessible 

surface areas of around 0.65.  The method involved finding the best threshold of 

accessible surface areas to differentiate between residues exposed to the lipid 

environment or buried inside a protein. The method is based on support vector 
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regression (SVR). 

Park et al. (2007) developed TMX (TransMembrane eXposure), a method for 

predicting the burial status of residues in transmembrane proteins. TMX derives 

positional scores of transmembrane residues based on profiles and conservation 

indices. Then, a support vector classifier is used to predict burial status. An accuracy 

of 78.71% was reported for a benchmark data set. 

Rose et al. (2009) generated a server for predicting the orientation of transmembrane 

helices in channels and other membrane proteins (membrane–coils) called RHYTHM 

(http://proteinformatics.de/rhythm). The prediction is based on precalculated packing 

files and evolutionary information from sequence patterns collected from a 

representative dataset of transmembrane proteins. The program uses two types of 

position specific matrices to account for the different geometries of packing in 

channels and transporters or other membrane proteins. The average AUC-values for 

the prediction of helix–helix contacts was reported to be 0.72 for channels and 0.68 

for membrane–coils, respectively. 

Recently, Wang et al. (2010) developed an additional method for predicting the burial 

status of residues in transmembrane proteins. The method incorporates 

physicochemical scales and conservation indices to produce an efficient prediction 

model using least squares support vector machine (SVM). In least squares SVM one 

finds the solution by solving a set of linear equations instead of a convex quadratic 

programming problem for classical SVMs. Wang et al. reported that the prediction 

accuracy of this method was much better than reported for previous approaches. 
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Illergard et al. (2010) compared the published methods for predicting accessibility in 

transmembrane regions and concluded that the best one is by Park et al. (2007). 

However, this method performs badly for non-membrane regions. Illergard et al. 

summarized that all existing state-of-the-art predictors for surface area are optimized 

for one of the environments and therefore perform poorly in the non-optimized 

environment. To address this, Illergard et al. developed a method that predicts the 

accessibility of transmembrane proteins for regions outside and inside the membrane. 

The method, termed MPRAP, uses a support vector machine (SVM), which includes 

the entire protein in the training set. MPRAP was shown to recognize the preferences 

for exposed sites within and outside the membrane. In parallel, Nugent and Jones 

(2010) developed another method that predicts lipid exposure, residue contacts, helix-

helix interactions and the optimal packing arrangement of transmembrane proteins. 

Their method is described in chapter 1. 

In summary, in the last few years there has been much progress in the ability to 

predict the buried/exposed state of residues in helical transmembrane proteins. 

Methods have been developed that combine propensity scales and sequence 

conservation. In addition, more recently, methods have been generated that include 

also structural information about contact between helices.  

2.1.1 The present work 

In the current work, a neural network has been used to predict residue orientation, i.e., 

to define which faces of transmembrane protein residues are buried and exposed. The 

approach taken is similar to that employed by Rost and Sander (1994) in their study 

on water soluble proteins. 
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Evolutionary information was incorporated using profiles derived from multiple 

sequence alignments and input into a neural network. The network was trained to 

determine whether a residue is buried in the core of the helix-bundle or exposed to the 

lipid environment surrounding the protein. Predicting residue orientation will be a key 

step in our method aimed at identifying homologous transmembrane proteins. 

2.2  Methods 

2.2.1    Dataset for the analysis 

The dataset used for developing our method comprised transmembrane proteins with 

known topology and known 3D structure. The list of proteins was prepared from two 

sources. The first was the MPtopo database, provided by Stephen White’s website 

(http://blanco.biomol.uci.edu/) (Jayasinghe et al., 2001), which is a database of 

transmembrane proteins with experimentally validated transmembrane segments. The 

second resource also provided by Stephen White’s website, was a list of all 

transmembrane proteins of known 3D structure. This list does not include information 

about the transmembrane segments and therefore the locations of the transmembrane 

helices were predicted using the program MEMSAT (Jones et al., 1994). The 

transmembrane helices locations was used later to train the neural network (as 

described below).  

Proteins were selected so as to produce a non-redundant list with a 30% sequence 

identity threshold, i.e., no pair of proteins in the final list had >30% sequence identity. 

Only helix-bundle proteins were included in the dataset, i.e., the porin-like proteins 



 71 
 
 

 

 

were excluded.  Furthermore, proteins with only one helix in the membrane were 

excluded from the dataset in order to improve the prediction, as explained in the 

results section, and proteins with low structure resolution were excluded as well. The 

final dataset consisted of 42 protein chains.  

A control dataset of 150 water-soluble proteins with known structure (extracted from 

CATH, S-reps, v1.6, Orengo et al., 1997) were constructed as well. Proteins were 

removed to produce a non-redundant list with a 30% sequence identity threshold. 

2.2.2 Accessibility  

The solvent accessible surface area (illustrated in Figure 9), or accessibility, of an 

atom is the surface area of the van der Waals envelope around each atom that is 

exposed to solvent; in our case the solvent under consideration is the membrane 

phase. The residue accessibility is the sum of the accessibilities of the atoms in that 

residue. The residue accessibility generally serves as an indicator of the residue's 

location, on the surface or in the core, i.e., exposed to the membrane or buried in the 

protein. 
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Figure 9: Accessibility estimation. The accessible surface area (green line) is at a water molecule's 

estimated radius beyond the van der Waals radius (red lines).  

Accessibility of each residue was calculated using the DSSP program (Kabsch and 

Sander, 1983). The program employs the Shrake and Rupley (1973) method, that 

uniformly distribute a mesh of points equidistant from each atom of the molecule and 

uses the number of these points that are solvent accessible to determine the surface 

area. The points are drawn at a water molecule's estimated radius beyond the van der 

Waals radius. Each point is checked against the surface of neighboring atoms to 

determine whether they are buried or accessible. For each atom, the number of test 

points accessible is multiplied by the surface area value corresponding to each test 

point in order to calculate the accessible surface area.  

The DSSP program in the current work considers the whole protein structure taken 

from the EBI Macromolecular structure database and searches using the Protein 

Quaternary Structure Form (PQS). 

For comparison between amino acids of different sizes, relative accessibility 

(Accessibility / Maximum Accessibility) was calculated (Rost and Sander, 1994). 

Henceforth, in this report relative accessibility is referred to simply as accessibility. 

Accessible 

surface area Water molecule 

van der Waals 

surface area 

. 

Protein'atom' 
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The accessibility of each residue was first divided into binary states, i.e., buried or 

exposed.  According to Rost and Sander (1994), when developing a prediction 

method, the best threshold to use for distinguishing between these two states is 16%.  

However, since in this study the accessibility investigated is the accessibility to lipid 

rather than water, it was not clear where to set the thresholds. Several thresholds were 

tested: 16, 20, 24, 30 and 36 percent. 30 percent was found to be the optimal threshold 

based on prediction quality. In addition, a three state accessibility was considered, i.e., 

buried, intermediate and exposed states. 

2.2.3     Predicting Accessibility using Neural Networks 

A system of neural networks was used in order to predict the lipid accessibility. The 

architecture of the neural network was based on previous work by Jones (1999).  

The inputs to the network were windows of 15 consecutive residues. This window 

size was found to be the optimal size by Jones (1999). Additional window sizes were 

tested (Table 2) including a smaller window size of 7, which was found to reduce 

neural network performance, and windows of 11 and 19 residues, which produced 

similar results as the 15 residue window. The window was passed only along the 

sequence of the transmembrane protein helical region. 

Profiles of multiple alignments were used as input. The profile was calculated using 

PSI-BLAST, with the following parameters: NRDB90 database with 2 iterations (-j 

2), and an E-value threshold of 10
-6

 used for profile inclusion (-h 10
-6

).  



 74 
 
 

 

 

The profile matrix elements were scaled to the required 0-1 range using the standard 

logistic function (Jones, 1999):
  

xe1

1
         

where x is the raw profile matrix value. 

The neural network output was the relative lipid accessibility, buried or exposed, of 

the central residue. Two different neural networks were compared. First, a network 

with one output, encoding for buried or exposed. Second, a network with three 

outputs, encoding for buried, intermediate or exposed. 

A standard feed-forward neural network was used with a single hidden layer (see 

Appendix A) that was trained by backpropagation. The input layer comprised 315 

input units, divided into 15 groups of 21 units, one group for each position in the 

window (overall 6410 residues used as input). 20 units represent each amino acid and 

the extra unit per amino acid is used to indicate if the window spans either the N or C 

terminus of the protein chain. 

A hidden layer of 75 units was used, based on the neural network architecture 

described by Jones (1999). Additional sizes of neural network were tested (Table 3), 

including a smaller hidden layer of 30 nodes, which produced similar results to the 75 

units architecture and a bigger hidden layer of 120 nodes that was found to reduce 

neural network performance.  

The neural network system was built (Figure 10) and trained using the Neural 

Network toolbox for Matlab (MathWorks, version 6.5). The training algorithm used 

was the batch adaptive steepest descent with Momentum (traingdx), described in 

detail in Appendix A. Training of the network was halted when the performance of 
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the network on the test set began to degrade, to prevent over-fitting of the network. 

For benchmarking leave one out cross-validation was performed.  

 

Figure 10:  Neural network architecture. A standard feed-forward neural network with a single 

hidden layer trained by backpropagation. Profiles derived from PSI-BLAST were input into a neural 

network. The input layer comprised 315 input units, divided into 15 groups of 21 units. The output was 

the buried state of the central residue. The neural network was trained using data concerning 41 

transmembrane proteins with known structure (overall 6410 residues used as input). 

Multiple Sequence alignment profile 

Network: 315 input, 75 hidden units 

Buried/ 

Exposed 

Input 

layer 

Hidden 
layer 

Output 
layer 
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2.2.4 Predicting water-soluble protein accessibility 

In order to test the neural network system, its ability to reproduce the results of Rost 

and Sander (1994) was evaluated. Rost and Sander attempted to predict the solvent 

accessibility of water-soluble proteins. In the present work 150 water-soluble proteins 

were used as the dataset with the network described above. 

The network trained with water-soluble proteins was used also as a control network 

for transmembrane proteins accessibility prediction. 

2.2.5 Assessing the accuracy of predictions 

The accuracy of predictions was assessed by four scores (Baldi et al., 2000, Rost and 

Sander, 1994):  

1. Percentage of correctly predicted residues. 

   
                            

                  
            

2. Percentage of correctly predicted exposed residues (           ).    

            
  

     
            

3. Percentage of correctly predicted buried residues (Specificity). 

            
  

     
            

4. Matthews correlation coefficient (MCC).           

    
           

                                
        

 

Whereas, true positives (Tp) is the number of times the prediction is exposed and the 
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target is exposed. True negative (Tn) is defined as the number of times the prediction 

is buried and the target is buried. False positive (Fp) is defined as the number of times 

the prediction is exposed and the target is buried. False negative (Fn) is defined as the 

number of times the prediction is buried and the target is exposed.    

A Receiver operating characteristic (ROC) curve was generated to further evaluate the 

accuracy of predictions (Hanley and McNeil, 1982). The ROC curve is a plot of the 

true positive rate (sensitivity) versus false positive rate (1 – specificity). The area 

under the ROC curve (AUC) is considered a good measure of the overall accuracy of 

the prediction method. Hanley and McNeil showed in their paper that there is a 

correspondence between the area under the ROC curve and Wilcoxon rank-sum 

statistic with a score of 50% representing random and 100% perfect prediction. 

2.3 Results 

2.3.1 Prediction with one state output 

The architecture of the neural network for predicting the lipid accessibility was based 

on previous work by Jones (1999). A window is passed along the sequence of the 

transmembrane protein helix. According to Jones the optimal window size is 15 

consecutive residues. A few additional window sizes were tested and the Matthews 

correlation coefficient was calculated (Table 2). In the current work the 15 residues 

window size was chosen for building the neural network. 
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Table 2: Results of predicting the buried/exposed residue state of a transmembrane protein set using 

different window size as input to the neural network, evaluated using Matthews correlation coefficient 

(MCC). 

Window size MCC 

7 0.27 

11 0.3 

15 0.3 

19 0.3 

 

In addition, the hidden layer size was tested.  According to Jones (1999) the optimal 

hidden layer size is 75 nodes. Two additional hidden layer sizes were tested:  hidden 

layer sizes of 30 and 120 nodes. Matthews correlation coefficient for these neural 

network architectures are shown in Table 3. In the current work, the 75 nodes hidden 

layer was chosen for building the neural network. 

Table 3: Results of predicting the buried/exposed residue state of a transmembrane protein set using 

different neural network hidden layer sizes, evaluated using Matthews correlation coefficient (MCC). 

Hidden layer size 

(nodes number) 

MCC 

30 0.3 

75 0.3 

120 0.29 
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Table 4 shows the accuracy scores for predicting the lipid exposed/buried residues of 

a set of 41 chains taken from 41 transmembrane proteins. The threshold used for 

distinguishing between these two states was 30%. The Matthews correlation 

coefficient (MCC) for these predictions was 0.3. For the control test, the maximum 

MCC was found to be 0.1. More than 70% of residues were correctly predicted (Q2) 

in 19 proteins; the highest accuracy was 86% of residues correctly predicted (for 

1J4NA). These data indicate that the method is able to predict accessibility of residues 

with very high accuracy for at least some of the proteins in the test set. 

Analysis of the proteins, for which the buried/exposed state of constituent residues 

was predicted badly, revealed that some of these proteins are channel proteins, such 

as: 1k4c, 1orq, 1mxm and 1p7b. Notably, the environment in which channel proteins 

exist in the membrane is different than that experienced by other transmembrane 

proteins. Residues within channel proteins can exist in three different states in the 

membrane: exposed to lipid, buried from lipid and exposed to solvent (the channel 

itself). Therefore, it is not surprising that the buried/exposed state of residues within 

such more complex protein structures would be harder to predict. Indeed, analysis 

revealed that the buried/exposed state of residues was predicted with low accuracy for 

all of the channel proteins. 
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Table 4: Results of predicting the buried/exposed residue state of a transmembrane protein set using 

neural network (MCC , Q2, Sensitivity, Specificity: for definition see page 74). 

 

PDB Code No. of 

transmembrane 

Helices 

Chain 

length 

MCC Q2 Sensitivity Specificity 

1j4nA 8 138 0.562 86 86 86 

1occC 7 187 0.545 84 60 91 

1l7vB 10 221 0.532 80 67 85 

1iwgA 11 227 0.420 80 43 92 

1ar1A 12 352 0.441 79 69 82 

1prcM 5 139 0.432 79 43 93 

1fftC 5 158 0.437 77 51 88 

1nekD 3 82 0.482 76 50 92 

1bgyC 8 204 0.412 76 50 88 

1jb0L 2 44 0.567 75 47 100 

1jgjA 6 122 0.468 75 63 82 

1fx8A 8 165 0.363 75 61 79 

1jb0F 2 41 0.576 73 57 100 

1otsA 17 422 0.407 73 73 74 

1qlaC 5 146 0.369 73 44 88 

1ogvL 5 115 0.353 73 40 89 

1ar1B 2 65 0.475 72 58 87 

1rh5A 10 254 0.396 71 71 71 

1pw4A 12 326 0.316 71 46 83 

1f88A 7 215 0.281 70 43 82 

1nekC 3 88 0.343 69 55 77 

1e12A 7 182 0.333 69 44 85 

1mslB 2 50 0.391 68 23 100 

10ulA 10 255 0.316 68 61 71 

1q16C 5 136 0.305 68 53 77 

10hkA 13 382 0.276 67 66 67 

1okcA 6 169 0.292 66 27 93 

1pv7A 12 315 0.124 65 19 89 

1p7bA 4 63 0.120 65 18 90 

1mxmA 3 58 0.267 63 74 51 

1kqfC 4 84 0.162 63 44 71 

1orqC 6 120 0.170 61 52 65 

1jb0A 11 218 0.135 61 18 90 

1l0vC 3 55 0.078 58 21 84 

1l0vD 3 64 0.038 57 18 78 

1k4cC 2 48 0.068 56 46 60 

1oedE 4 116 0.197 55 24 90 

1pf4A 6 151 0.123 52 39 72 

1rwtA 3 85 0.104 49 26 82 
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PDB Code No. of 

transmembrane 

Helices 

Chain 

length 

MCC Q2 Sensitivity Specificity 

1fftB 2 60 0.082 45 41 50 

1s7bA 4 88 0.020 42 21 80 

Total/Average 6.3 156.3 0.3 67.9 46.6 81.8 

 

Figure 11: ROC curve for two state output network, predicting the lipid exposure (buried/exposed) 

for a set of 41 transmembrane proteins with known structure. 

The receiver operating characteristic (ROC) curves of predicting exposed/buried 

residues for both the transmembrane protein and the control test (water-soluble 

proteins) are shown in Figure 11. The area under the ROC curve (AUC) of the 

prediction was calculated to be 0.73. As expected the control test shows results close 

to random. 
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As mentioned, several other accessibility thresholds were tested for distinguishing 

between the two states; exposed/buried to lipid. The results are presented in Table 5. 

Although the differences were not very significant between the thresholds tested, the 

threshold 30% generated the best results.   

Table 5: Results of predicting the buried/exposed residue state of a transmembrane protein set using 

different accessibility thresholds for two state predictions (buried/exposed), evaluated using AUC and 

MCC (see page 75 for definition). 

Accessibility Thresholds AUC MCC 

16% 0.67 0.27 

20% 0.67 0.26 

24% 0.68 0.28 

30% 0.73 0.3 

36% 0.7 0.29 

Training on a preliminary dataset, which included proteins with a single helix in the 

membrane resulted in a Matthews correlation coefficient score of 0.15, which is close 

to random. Therefore, these proteins were excluded from the final dataset as 

described. One explanation for this finding is that helices structured as a bundle 

possess particular features not exhibited by single helices.  

2.3.2 Prediction with three state output 

The ROC curve for a three state output network, Exposed (accessibility >30%), 

Intermediate (10%-30% accessibility) and Buried (accessibility<10%) is shown in 

Figure 12. The Matthews correlation coefficient (MCC) and area  unser ROC curve 



 83 
 
 

 

 

(AUC)  for these predictions is shown in Table 6. 

Table 6: Results of predicting the buried/exposed residue state of a transmembrane protein set for a 

three state output network (exposed/intermediate/buried), evaluated using MCC and AUC (see page 75 

for definition). 

State AUC MCC 

Exposed 0.7 0.29 

Intermediate 0.53 0.05 

Buried 0.67 0.25 

 

 

Figure 12: ROC curve for three state output network predicting the lipid exposure   

(buried/intermediate/exposed) of a set of 41 transmembrane proteins with known structure. 

Another setting of accessibility thresholds was tested (<7%, 7%-36% , >36%) which 

resulted in even lower Matthews correlation coefficients. In summary, a neural 
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network with three state output was not able to predict the Intermediate state. We did 

not study any further neural networks with a three state output. 

2.3.3 Comparing accessibility predictions for 

transmembrane versus water-soluble proteins                                                                                                                                                                                                       

It was interesting to compare the accuracy of predicting lipid exposure for 

transmembrane proteins to the accuracy of predicting solvent accessibility for water-

soluble proteins. The Matthews correlation coefficient score was 0.54 when the 

method described here was used to predict the solvent accessibility of water-soluble 

proteins, which is consistent with that reported by Rost and Sander, 1994. This score 

is higher than the one obtained when our method is used to predict lipid accessibility 

of transmembrane proteins (0.3).  

2.3.4 Visualization of accessibility 

The accessibility prediction can be visualized using the program RasMol (Sayle and 

Milner-White, 1995). Figure 13 shows visualization of three predicted chains. Only 

the helices are shown for each chain (i.e. without the loops). Lipid exposed residues 

are colored red whereas buried residues are colored blue. As seen in the table, the 

predicted and the observed accessibility patterns are similar. The quaternary protein 

structure with highlighted chain (including loops) is represented in the table as well, 

for better understanding of the accessibility patterns of the single chain. For example, 

1j4n protein (AQP1 water channel ) is built from four identical chains; the buried 

helices in blue, can be easily identified inside the quaternary protein structure, 

whereas the exposed to the lipid residues in red can be identified around the structure. 
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The 1l7v protein (ABC transporter) is built from two chains; therefore in the predicted 

chain one can see the buried area, between the chains. Similarly, the 1qla protein 

(Fumarate reductase flavor protein) is built from two chains in the same way as in the 

1j4n protein, and it is possible to see the buried contact area between the chains 

although the prediction in this case was not as accurate. 
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Figure 13: Visual representation using RasMol of three of the predicted transmembrane chains 

(helices only). Lipid - exposed residues are colored red, buried residues are colored blue. The 

quaternary protein structure is represented, with the chosen chain colored in red.                                                                                                                                    
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2.4  Discussion  

The method presented here uses a neural network for predicting which residues of the 

transmembrane helices are lipid-exposed versus buried inside the protein. When we 

started the current work there had been very few attempts to predict transmembrane 

residue orientation. None of these previous attempts achieved the high accuracy that 

we managed to achieve here using a neural network system. While performing the 

present study, others reported methods to predict residue orientation. Our results 

exhibit accuracy comparable to such published studies. For example, the Matthews 

correlation coefficient for the method developed by Nugent and Jones (2010) is 0.38, 

which is comparable to the 0.3 of our method.  

When applying our method to water soluble proteins we obtained a higher Matthews 

correlation coefficient than when it was applied to transmembrane proteins. One 

possible explanation could be the larger size of the water-soluble protein set. As more 

transmembrane structures become available, it is likely that prediction efficiency will 

improve. Another explanation is the intrinsically more complex nature of 

transmembrane proteins. Water-soluble proteins have hydrophobic buried residues 

versus hydrophilic exposed residues, whereas, transmembrane proteins hydrophobic 

residues face both the core of the protein and the lipid (Stevens and Arkin, 1999, Rees 

and Eisenberg, 2000). Another level of complexity is that the hydrophobic residues in 

transmembrane proteins face two distinct environments, internally versus lipid. In this 

regard, it is noteworthy that the measurement of accessibility uses a water molecule as 

a probe (Shrake and Rupley, 1973). Perhaps water is not the correct size probe when 

considering accessibility to lipids.  
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Prediction accuracy could also be influenced by the use of only helical regions for the 

prediction; it could be that using the entire protein would result in better predictions. 

Moreover, the prediction is calculated based on single protein chains and not on the 

multimeric protein complex. Since transmembrane proteins could constitute 

multimeric complexes, predicting the accessibility of only a single chain could 

compromise the prediction accuracy.  

Finally, the multi-helical nature of many transmembrane proteins could affect 

prediction accuracy. It is expected that it would be harder to predict the lipid exposure 

for chains containing large numbers of helices as the structure is more complex. This 

said, a survey of our data did not support such a premise (Table 4), as among the most 

accurate predictions were chains, comprising 8-12 helices, as well as a small number 

of helices. 

In summary, the prediction method presented here was highly accurate in many cases 

and comparable to other prediction methods. Therefore, we incorporated this method 

into our overall strategy for improving homology detection, as described in the 

following chapters.
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Chapter 3 

Evaluating the performance of PSI-

BLAST for transmembrane proteins 

 

 

 

 

3.1 Introduction 

3.1.1   Benchmarking homology detection methods 

Homology detection methods aim to identify all, and only, the proteins in the database 

that are homologous to a query protein. In practice, the methods often designate non-

homologous proteins as homologous and miss genuinely homologous proteins. The 

challenge of designing a detection method that identifies only true positives (TP) is 

illustrated in Figure 14 (Karwath and King, 2002). In the figure two distributions are 

shown, for homologous (true positives, TP) and non-homologous (true negatives, TN) 

proteins. False negatives (FN) are genuinely homologous proteins that are mistakenly 

predicted to be non-homologous proteins. Conversely, false positives (FP) are the 

non-homologous proteins that are mistakenly predicted to be homologous. Depending 

on the threshold (E-value) used, the method detects different proportions of TP, TN, 

FP and FN.  
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Figure 14: A graphical representation of two different distributions of a homology search (Karwath 

and King, 2002). 

The ability to evaluate the performance of a homology detection method depends 

mainly on the quality of the database used. Specifically, the database should be 

annotated such that the true relationship between query and database proteins is 

known. There are a number of structural classification databases for proteins, based 

on analysis of protein 3D structure, which serve as a benchmark when evaluating the 

performance of homology detection methods. For example, the true relationships 

between proteins in the SCOP (Murzin et al., 1995) and CATH (Orengo et al., 1997) 

databases are known. Unfortunately, the number of transmembrane proteins in these 

databases is still low; only 381 non-redundant chains are described by Neumann et al. 

(2010) in the PDB database, and therefore such datasets cannot be employed to 

evaluate the performance of transmembrane protein homology detection methods. 

There is a database called OPM (Lomize et al., 2006), that includes all unique 

experimental structures of transmembrane proteins. When OPM was first published it 

contained only 126 unique 3D structures that represented 506 PDB entries (Lomize et 
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al., 2006), due to the low number of known structures. In light of the paucity of 

known transmembrane protein structures, a non-structural classification database, 

Pfam, is employed, in the current work, when evaluating the performance of 

homology detection method for transmembrane proteins. The proteins in the Pfam 

database are classified according to sequence, based on an optimized set of Hidden 

Markov Model (HMM) profiles for protein domain families. The proteins are 

classified into families, which are in turn, grouped into clans.  

3.1.2 Benchmarking PSI-BLAST 

PSI-BLAST (Altschul et al., 1997) is a widely used sequence–based homology 

detection method. In Chapter 1 we discussed the method in detail. Briefly, the PSI-

BLAST algorithm first searches the sequence database to collect obviously 

homologous sequences, decided by considering E-values smaller than a chosen 

parameter h. These sequences are collected and aligned to generate a position specific 

scoring matrix (a PSSM). The PSSM is used in the next iterations to identify more 

homologous sequences, which are added to the PSSM if their E-value is below the 

cut-off. PSI-BLAST is usually run for a defined number of iterations or until no new 

homologous proteins are found. 

A key parameter of the detection method, which can be set by the user, is the E-value 

cut-off, which effectively determines the level of confidence in the conclusion that the 

proteins under consideration are indeed homologs (h-value). Setting this parameter to 

a low value can lower the number of false positives but concomitantly also lower the 

total number of true positives. In other words, if the h-value is set too low, only 

closely homologous proteins are used to make the PSSM and the sequence variation is 
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too limited to efficiently find homologues. Conversely, if the h-value is set too high, 

non-homologous proteins will be incorporated into the PSSM, and the next iteration is 

likely to mistakenly select more non-homologous proteins. Accordingly, it is essential 

to fine-tune the h-parameter in order to get the optimal output. 

In the following sections, previous studies of PSI-BLAST benchmarking are 

described, where the PSI-BLAST method h-value parameter was fine-tuned to 

optimize performance. 

3.1.2.1 Benchmarking PSI-BLAST for water-soluble proteins 

PSI-BLAST was shown to be very effective for detecting homology among water-

soluble proteins (Schaffer et al., 2001, Lindahl and Elofsson 2000). Schaffer et al. 

(2001) used 103 queries, for which human experts had annotated the true positives in 

yeast. Sensitivity curves were created that plotted the number of true positive PSI-

BLAST search results against the number of false positives hits when using increasing 

E-values for inclusion in the multiple alignment profile (h-parameter). Based on this 

analysis, the threshold 10
-6 

was determined to be the best threshold for attaining the 

highest accuracy, i.e., low number of false positives and high number of true 

positives. In earlier work, Park et al. (1998) concluded that an h-value of 5x10
-4

 is 

optimal and results in a low rate of false positives. 

In the study of Shaffer et al. (2001), a drawback of the PSI-BLAST search method, 

termed ‘PSSM corruption’ was delineated. After each iteration, PSI-BLAST 

constructs a profile, from which a PSSM is generated. In situations when a sequence 

unrelated to the query sequence is included, then the next PSSM contains more 
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unrelated sequences and such a PSSM is termed corrupted. Schaffer et al. defined the 

corruption threshold as a PSSM containing a false positive alignment with E-value < 

10
-4 

compared to the database. They suggested that, since a single corrupted sequence 

can affect greatly the plot and reliability of the sensitivity curve, one should consider 

ignoring such sequences. Schaffer et al. showed that it was possible to avoid 

corruption during PSI-BLAST searches of water-soluble proteins by setting the PSI-

BLAST h-parameter to a low value: a threshold of h = 10
-3 

avoided most corrupted 

sequences and a threshold of h = 10
-9 

had none. However the obvious consequence of 

lowering the h-parameter to avoid corruption is that the number of true positives 

detected is smaller.  

3.1.2.2 Benchmarking PSI-BLAST for transmembrane proteins 

The lipid environment constrains the structural and sequence diversity of 

transmembrane proteins and therefore increases the likelihood of false resemblance to 

unrelated transmembrane proteins. Therefore homology searches for transmembrane 

proteins using sequence alignment alone are more prone to false positives. Indeed, 

Jones and Swindells (2002) remarked in their study that homology searches are most 

powerful for proteins with high complexity, as in these cases all 20 amino acids are 

exploited.  

PSI-BLAST was found to be less effective for detecting homology among 

transmembrane proteins (Hedman et al., 2002). Hedman et al. benchmarked PSI-

BLAST using only G-protein-coupled receptors (GPCRs) and concluded that there is 

a difference in the performance of PSI-BLAST when dealing with closely related 

versus distantly related GPCRs. They showed that for closely related proteins the best 
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performance is obtained using a very restrictive E-value (10
-15

) whereas for distantly 

related proteins PSI-BLAST performs better when the E-value is less restrictive.  

Forrest et al. (2006) also benchmarked PSI-BLAST. However, instead of using 

GPCRs, they built a database of transmembrane protein structures called HOMEP, 

which included all available transmembrane protein structures with more than four 

helices, and as such, comprised 36 structures. Homology searches were performed 

using PSI-BLAST combined with multiple sequence alignments (ClustalW) on 

HOMEP, and based on these data they concluded that PSI-BLAST based methods can 

be effective for transmembrane proteins. 

Of note, the studies of Hedman et al. and Forrest et al. examining the utility of PSI-

BLAST based methods for transmembrane homology searches were conducted using 

small datasets. An open question addressed by the present study is the ability of PSI-

BLAST methods to detect transmembrane protein homology when considering larger 

datasets.  

3.1.4 The present work  

The ability of PSI-BLAST to detect homologous transmembrane proteins was 

investigated. The query sequences included representatives of various transmembrane 

protein families classified in the Pfam database and searched against a database 

comprised of all non-redundant Pfam protein domains recognized to be 

transmembrane. 

As a control, a water-soluble domain set from Pfam was employed as query set 

against a database of the entire non-redundant Pfam protein domains.  
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Our benchmarking of PSI-BLAST for transmembrane proteins considered two 

homology levels. First, we tested the ability to detect sequences within a Pfam family. 

In this case, only proteins inside the query protein family were considered true 

positives. Next, we tested the ability to detect sequences within a Pfam clan. In this 

case, only proteins inside the query protein clan were considered true positives.  

Our goal was to improve the capacity of the sequence alignment method, PSI-

BLAST, to detect homologous transmembrane proteins. The information retrieved 

from this step, of benchmarking PSI-BLAST, was necessary for the development of 

our more complex search method described in Chapter 4, in particular, for choosing 

the h- parameter. 

3.2  Methods 

3.2.1 Databases  

Protein domains were extracted from the Pfam database (Bateman et al., 2004, Finn et 

al., 2006). The Pfam database, as described in detail in chapter 1, contains protein 

domains classified using multiple alignments and profile-HMMs into families, and the 

families grouped into clans. Pfam consists of two parts, Pfam-A, which is curated 

manually and Pfam-B, an automatically generated supplement. Only Pfam-A is used 

in the current study. The following files describe Pfam data and are available for 

downloading:  the "pfamseq" file contains all the protein sequences and corresponding 

descriptions (from SWISS-PROT and SP-TrEMBL); "Pfam-A.fasta" contains the 

domain sequences; "Pfam-A.full" contains the families, their description and 
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domains; and "Pfam-C" contains each clan in the database and its constituent families. 

The sequences considered when benchmarking PSI-BLAST were the parts of the 

protein sequences aligned in the Pfam database. A non-redundant query set was 

generated that had a 50% sequence identity threshold (i.e., no pair of proteins in the 

final list had >50% sequence identity). In addition, a 90% sequence identity threshold 

database used for running the PSI-BLAST searches was generated. Redundant 

sequences were found using CD-HIT (Li et al., 2001, Li et al., 2002). In addition, 

domains were excluded from the database if their description (from "pfamseq" file) 

encompassed any of the following terms: uncharacterized, unidentified, unknown, 

predicted, hypothetical, undetermined or probable. 

Two query sets and corresponding databases were created, for transmembrane 

proteins and water-soluble proteins, described in the next sections. 

3.2.1.1 Transmembrane protein query set and database 

The database of Pfam transmembrane domains, for sequence alignment, was built by 

selecting domains in the Pfam database version 19.0 (Pfam-A file) that had at least 

one of the following transmembrane protein terms in their description: 

transmembrane, membrane, membranous, intramembrane, transporter, pump, channel 

and receptor. The final transmembrane proteins database used for PSI-BLAST 

searches contained 909,822 protein domains.   

The query set (targets to be tested) from the Pfam database was selected as follows. 

Initially, all clans with transmembrane terms in their description (as described above) 

were listed (using the Pfam-C file). Then the families within each clan and the 
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domains they contain were listed. Domain sequences were extracted from the “Pfam-

A.fasta” file, which contains each domain name and the family with which it is 

associated. Furthermore, only domains with more than one transmembrane helix 

according to TMHMM (Krogh et al., 2001) were retained. Finally, the domain query 

set was chosen randomly from this list of domain sequences. The final query set 

included 112 randomly chosen proteins, from 29 different clans. 

3.2.1.2 Water-soluble protein query set and database 

To create the water-soluble protein database, all proteins with the transmembrane 

proteins terms (listed above) in their Swiss-Prot description were removed. The final 

water-soluble protein database used for PSI-BLAST searches contained 3,912,930 

protein domains. 

The set of queries were chosen randomly. Domain sequences were extracted from the 

“Pfam-A.fasta” file as described. The final water-soluble query set included 71 

domains. 

3.2.2 Sequence alignment using PSI-BLAST 

Sequence alignment searches were performed using PSI-BLAST (Altschul et 

al.,1997) to identify all the protein domains homologous to a given query in the 

corresponding test database.  

PSI-BLAST was performed to detect all possible homologous protein domains using 

various E-values (-h parameter: 10
-3

, 10
-6

, 10
-8

, 10
-15

), with the parameter that 

determines the maximum number of aligned proteins (-v 3000) set to 3,000. Up to 5 
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iterations were allowed (-j 5). Remaining PSI-BLAST parameters were left at default 

values. PSI-BLAST results with an E-value smaller than 1 were listed and analyzed (-

e 1).  

3.2.2.1 Running PSI-BLAST with NRDB90 database before Pfam 

database 

Schaffer et al. (2001) claimed that PSI-BLAST is more sensitive to distant 

relationships when score matrices are created from larger and diverse sets of related 

sequences. In other words, they recommend searching a comprehensive sequence 

database for a few iterations, saving the resulting position-specific matrix (PSSM) as 

a checkpoint, and then restarting PSI-BLAST using that checkpoint matrix to search 

the narrower database of interest. In the present work, we compared this protocol, 

whereby PSI-BLAST is run for 4 iterations using the NRDB90 database and then 

restarted for one iteration using the Pfam database, with running PSI-BLAST for 5 

iterations with our constructed Pfam database. 

It was not found to improve detection of homologous proteins when PSI-BLAST was 

run using the NRDB90 database before the Pfam A-derived database. 

3.2.3 Assessment of homology detection  

A PSI-BLAST result file (list of hits) was generated for each query domain and each 

result was checked and defined as true positive or false positive. The performance was 

evaluated by generating sensitivity curves in which true positives are plotted against 

false positives for each h-parameter: 10
-3

, 10
-6

, 10
-8

 and 10
-15

. In addition, all PSI-
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BLAST results were collected in a list that was ordered according to E-value. 

Generally, it is desirable for more true positives to appear before a given number of 

false positives, with the number of false positives as low as possible. 

3.3. Results 

3.3.1 Evaluating the performance of PSI-BLAST on water-

soluble proteins  

The results presented in the next sections will be divided according to the homology 

level tested.  

 

3.3.1.1  Evaluating PSI-BLAST at the Pfam family level 

Initially, PSI-BLAST was benchmarked using Pfam A-derived water-soluble proteins 

as a control for benchmarking PSI-BLAST using Pfam A-derived transmembrane 

proteins.  

In this experiment the family level was considered, i.e, true positives are proteins in 

the same Pfam family as the query. Sensitivity curves resulting from PSI-BLAST run 

using the water-soluble protein query set and corresponding Pfam database for 5 

iterations, at four different settings of threshold parameter (h-parameter) are shown in 

Figure 15.  



 100 

 

 

 

 

Figure 15: Sensitivity curves for homology searches performed using the Pfam water-soluble test 

database and query set with four settings of the threshold parameter (h-parameter): 10
-3

 (blue),  10
-6

 

(green), 10
-8

 (red), 10
-15

 (light blue). Pfam family homology level. 

 

h-parameters of 10
-6

, 10
-8

, 10
-15 resulted in similar curves, although the overall number 

of true positives was smaller the smaller the h-value. The higher h-parameter 10
-3 

resulted in a dramatically increased number of false positives and fewer true positives.  

One explanation for this behavior is the phenomenon of PSSM ‘corruption’, described 

above and characterized by Schaffer et al. (2001). To examine this premise, we scored 

the number of corrupted queries at each h-value (Table 7), using Schaffer et al. 

definition of corruption (PSSM containing a false positive alignment with E-value < 

10
-4

). However this approach to scoring PSSM corruption did not reveal significantly 

increased corruption at h = 10
-3. 
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Table 7: The number of corrupted queries for each h-value for the water-soluble test database, taken 

from Pfam (family homology level). 

h-value used for running PSI-BLAST Corrupted queries 

h = 10
-3

 2 

h = 10
-6

 1 

h = 10
-8

 1 

h = 10
-15

 0 

A different way of addressing PSSM corruption is to count the number of false 

positives that have a smaller E-value than the h–parameter after the first iteration, 

second iteration and so on. Such false positives would be used to build the PSSM for 

the next iteration and cause the number of false positives to increase. First iteration 

PSI-BLAST results were found to have very small numbers of false positives. The 

number of false positives started to rise only after 2 iterations.  

A diagram of the E-value distribution of the PSI-BLAST false positive hits after 

running two iterations using the h-parameter of 10
-3 

shows that the number of false 

positives begins to rise above an E-value of 10
-4

 (Figure 16). This could explain the 

large number of false positives observed after five iterations when using an h-

parameter of 10
-3

.  
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Figure 16: E-value distribution of the PSI-BLAST results found to be a false positive in the second 

iteration when using h-parameter of 10
-3

 for water-soluble test database, taken from Pfam (family 

homology level).
 

Conversely, a corresponding diagram of the E-value distribution of the PSI-BLAST 

false positive hits after running two iterations using the h-parameter of 10
-6 

shows that 

the number of false positives is very low under an E-value of 10
-6 

(Figure 17).
  

 



 103 

 

 

 

 

 
  

Figure 17: E-value distribution of the PSI-BLAST results found to be false positives in second 

iteration when using h-parameter of 10
-6

 for water-soluble test database, taken from Pfam (family 

homology level).
 

3.3.1.2 Evaluating PSI-BLAST at Pfam clan level  

In this experiment the clan level was considered, i.e., true positives are proteins in the 

same Pfam clan as the query. Sensitivity curves resulting from PSI-BLAST run using 

the water-soluble protein query set and corresponding Pfam database for 5 iterations, 

at four different settings of threshold parameter (h-parameter) are shown in Figure 18.  
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Figure 18: Sensitivity curves for homology searches performed using the Pfam water-soluble test 

database and query set with four settings of the threshold parameter (h-parameter): 10
-3

 (blue), 10
-6

 

(green), 10
-8

 (red), 10
-15

 (light blue). Pfam clan homology level.
  

The graph shows that PSI-BLAST performed with high accuracy. The number of 

false positives was low (maximum 5 false positives) while the number of true 

positives was high for all h-values. Using an h-value of 10
-3

 the number of true 

positives was higher with fewest false positives. It is hard to compare between the 

performances of PSI-BLAST with the tested h-parameters due to the fact that there 

are very few false positives in all cases. 

3.3.2 Evaluating the performance of PSI-BLAST on 

transmembrane proteins  
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3.3.2.1 Evaluating PSI-BLAST at the Pfam family level 

In this experiment, the family level was considered, i.e, true positives are proteins in 

the same Pfam family as the query. Sensitivity curves resulting from PSI-BLAST run 

using the transmembrane protein query set and corresponding Pfam database for 5 

iterations, at four different settings of threshold parameter (h-parameter: 10
-3

, 10
-6

,  

10
-8

, 10
-15

) are shown in Figure 19 (A and B).  

The sensitivity curves for detecting transmembrane proteins behave differently as 

compared to the sensitivity curves for detecting water-soluble proteins. Notably, for 

transmembrane proteins, PSI-BLAST run using a bigger h-parameter (10
-3

) results in 

the lowest number of false positives. This pattern changes when the number of true 

positives exceeds 8000, from which point on the h-parameter of 10
-3

 resulted in the 

highest false positive versus true positive rate. In the case of the sensitivity curves for 

detecting water-soluble proteins, all 4 h-parameter settings result in almost zero false 

positives for up to 7000 true positives, and only at this point the number of false 

positives begin to rise at the  h-parameter setting of 10
-3

.  
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A: 

B:  

     

Figure 19 : A: Sensitivity curves for homology searches performed using the Pfam transmembrane 

test database and query set with four settings of h-parameter: 10
-3

 (blue),  10
-6

 (green), 10
-8

 (red), 10
-15

 

(light blue). Pfam family homology level. B: Focus on true positives under 1.4x10
4
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As observed when detecting water-soluble proteins using the h-parameter setting of 

10
-3

, the sensitivity curve for detecting transmembrane proteins using the h-parameter 

of 10
-3 

indicates PSSM corruption. Each transmembrane query was scored for 

corruption at the different h-values (see Table 8). In line with the observed sensitivity 

curves, the greatest number of corrupted queries were associated with h = 10
-3. 

Table 8: The number of corrupted queries for each h-value for transmembrane test database, taken 

from Pfam (family homology level). 

h-value used for running PSI-BLAST Corrupted 

queries h = 10
-3

 40 

h = 10
-6

 27 

h = 10
-8

 26 

h = 10
-15

 24 

3.3.2.2  Evaluating PSI-BLAST at the Pfam clan level 

In this experiment the clan level was considered, i.e. true positives are proteins in the 

same Pfam clan as the query. Sensitivity curves resulting from PSI-BLAST run using 

the transmembrane protein query set and corresponding Pfam database for 5 

iterations, at four different settings of threshold parameter (h-parameter: 10
-3

, 10
-6

,  

10
-8

, 10
-15

) are shown in Figure 20.  
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Figure 20: Sensitivity curves for homology searches performed using the Pfam transmembrane test 

database and query set with four settings of h-parameter: 10
-3

 (blue),  10
-6

 (green), 10
-8

 (red), 10
-15

 

(light blue). Pfam clan homology level.
 

For detecting transmembrane homology at the Pfam clan level, the sensitivity curves 

show that the higher the h-parameter, the fewer false positives versus true positives.  

As for water-soluble proteins, PSI-BLAST performs with greatest accuracy at the 

Pfam clan homology level. However, unlike as observed for water-soluble proteins, 

the alignment of transmembrane proteins generates a greater number of false 

positives.  

3.3.3 Comparing the effectiveness of PSI-BLAST for 

transmembrane versus water-soluble proteins 
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In order to compare the effectiveness of PSI-BLAST for transmembrane versus water-

soluble proteins, a graph of the log of the E-value against the false positive ratio 

(calculated by 

resultsTotal

numberpositiveFalse

_

__  ) was drawn for the transmembrane protein 

set and for the water-soluble proteins set at the Pfam family level (Figure 21).  

Figure 21: The false positive ratio versus the natural log of E-value of the PSI-BLAST results for 

transmembrane proteins (blue) and water-soluble proteins (green).  
 

The results shown are for running PSI-BLAST with the h-parameter of 10
-6, which 

appears to result in the best false positive ratio. The false positive rate starts rising 

above zero at a lower E-value for transmembrane proteins. More generally, the graphs 

are hard to compare as they cross over in several places.  

Since we aimed to use our method (presented in chapter 4) for homology detection at 
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the level of protein families, which is a more restricted level than the clan homology 

level, we conducted this comparison at the family homology level. 

3.4 Discussion 

In this chapter we present an evaluation of the performance of PSI-BLAST both for 

water-soluble proteins and for transmembrane proteins using Pfam as the source 

database.  

3.4.1 Benchmarking PSI-BLAST for water-soluble proteins  

For water-soluble proteins at the Pfam family level, we found that h-parameters of  

10
-6

, 10
-8

 and 10
-15 resulted in similar sensitivity curves; a false positive rate that stays 

low with a high true positive rate. The lower the h-parameter, the better the sequence 

alignment performed but the overall number of true positives was smaller. This 

finding agrees with previous benchmarking studies and supports the idea that a very 

low h-value is restrictive. 

In line with the study of Schaffer et al. (2001), we observed a very large number of 

false positives versus true positives when PSI-BLAST was run using an h-parameter 

of 10
-3

, the phenomenon being termed corruption. However, in our study the number 

of “corrupted” queries, as defined by Schaffer et al., was low. Nevertheless, our result 

could be explained by our analysis of the distribution of false positives according to 

E-value when PSI-BLAST was run for two iterations at 10
-3

 versus 10
-6 

h-parameter 

settings. A great number of false positives were observed at E-values greater than 10
-4

 

when running PSI-BLAST with the 10
-3

 h-parameter than are observed at E-values 
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greater than 10
-6

 when running PSI-BLAST with the 10
-6

 h-parameter.  

The reasons why false positives with low E-values were observed in the second 

iteration of running PSI-BLAST on water-soluble protein is not obvious. It could be 

that the query proteins chosen (randomly) are relatively similar also to different 

families and therefore a restrictive h-parameter (smaller than 10
-3

) is required for 

accurate homology detection. This explanation is in agreement with a report by Finn 

et al. (2006), the creators of Pfam, describing difficulties in classifying some proteins 

into Pfam families. Finn et al. describe that building new Pfam families and/or 

revisiting existing families often highlights two confounding issues. (1) Many Pfam 

families are related and have artificially high thresholds to stop them from 

overlapping. Thus, two proteins can have evolved from a common ancestor but not be 

classified in the same family. For example, Globins are haem-containing proteins 

involved in binding and/or transporting oxygen that share the same folding pattern 

and are considered to have evolved from a common ancestor. There are two Pfam 

families containing Globins (PF00042, PF01152) and the separation between these 

families is not clear.  (2) For some large, divergent families a single HMM that 

detects all family members could not be built.  

A closer look at the PSI-BLAST results after the second iteration with h-parameter 

10
-3 

supports the premise that some of the false positives were proteins that are 

homologous to more than one family:  

 50 false positives aligned wrongly to Siderophore-interacting protein 

(A0QF87) in family PF08021 (Siderophore-interacting FAD-binding domain 

9) with low E- value (<10
-3

).  
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For example:  

Both the PSI-BLAST results Q11TL8 and A0JZX0 are in a different family of 

FAD binding domain 6 (PF00970). 

 23 false positives aligned wrongly to protein A4R870 from the family 

PF08022 that is FAD-binding domain 8, as well.  

For example: 

The PSI-BLAST result B1I1C3 belongs to the family PF02900 that is a 

Catalytic LigB subunit of aromatic ring-opening dioxygenase 

 28 false positives aligned wrongly to protein A7UW98 from the family 

PF08022 mentioned before.  

For example: 

The PSI-BLAST result, A5WDA3 belongs to a different FAD-binding domain 

(6)   (PF00970), Oxidoreductase FAD-binding domain. 

All of these false positives belong to the same clan CL0076, raising the possibility 

that proteins in these families are very similar. 

The challenges of classifying proteins based on sequence alone only serve to highlight 

the need to develop computational approaches to classification that incorporate 

structural information. 

For water-soluble proteins at the Pfam clan level, PSI-BLAST run using an h-value of  

10
-3

 performed the best; although with all h-parameters tested the number of false 

positive was very low. 
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 3.4.2  Benchmarking PSI-BLAST for transmembrane 

proteins  

For transmembrane proteins at the Pfam family level, PSI-BLAST performed best for 

very closely related proteins when using an h-parameter of 10
-3

 and for more distantly 

related proteins when using an h-parameter of 10
-6

. These findings are not in 

agreement with the results of Hedman et al. (2002). They concluded that PSI-BLAST 

performs best with an E-value of 10
-15 

for very closely related proteins but for 

distantly related proteins it performs better when using a less restrictive E-value (10
-

3
). The key difference between the present study and Hedman’s is the query set and 

corresponding database. Hedman et al. were studying GPCR proteins only whereas in 

our study we benchmarked various transmembrane families.  

3.4.3 Comparing the effectiveness of PSI-BLAST for 

transmembrane versus water-soluble proteins 

Since the lipid environment constrains the structural and sequence diversity of 

transmembrane proteins, it was expected that homology searches, such as PSI-BLAST 

would be less effective for transmembrane proteins than for water-soluble proteins. 

Nevertheless, our results did not accord with this expectation. Indeed, PSI-BLAST 

performed similarly on water-soluble proteins and on transmembrane proteins when 

tested using Pfam database families. This finding contrasts with that of Hedman et al. 

(2002), who reported that PSI-BLAST performs better on water-soluble proteins.  It 

could be that the way Pfam families are built explains the different findings or the fact 

that Hedman et al. conducted their research using GPCRDB only. Another possibility 



 114 

 

 

 

 

is that the more simple classification of transmembrane proteins into fewer families 

relative to water-soluble proteins (Oberai et al., 2009) compensates for the low 

complexity in transmembrane protein sequence.   

3.4.4 Choosing the best PSI-BLAST h-parameter  

Based on our data, 10
-6 

is the best h-parameter when using PSI-BLAST to detect 

homologous water-soluble proteins at the Pfam family level, as this parameter results 

in a low number of false positives without limiting severely the number of true 

positives. This conclusion corroborates earlier findings of Schaffer et al. (2001) and 

Park et al. (1998), who each used a different database source for their studies.  

Similarly, 10
-6 

is the best h-parameter when using PSI-BLAST to detect homologous 

transmembrane proteins at the Pfam family level, as this parameter results in a low 

number of false positives without limiting severely the number of true positives.  

When using PSI-BLAST to detect homology at the Pfam clan level, an h-parameter of  

10
-3

 is optimal for both water-soluble and transmembrane proteins.  

3.4.5 Conclusions 

The purpose of benchmarking PSI-BLAST was to determine the best h-parameter 

when detecting homology among transmembrane proteins. We wanted to benchmark 

PSI-BLAST using the exact protein set that will be used when developing our new 

homology search method.  

We found that PSI-BLAST run with the h-parameter of 10
-6

 is the best option for 
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getting a minimal number of false positives with the highest number of true positives  

when considering the Pfam family homology level. The goal of our more complex 

detection method, described in the next chapter, was to further decrease this false 

positive number.
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Chapter 4 

 

Integrating sequence similarity and 

structural information to identify 

homologous transmembrane proteins  

 

4.1  Introduction 

One way of annotating an unknown protein and learning about its function is to search 

for already characterized homologous proteins. In the past decade this approach has 

been applied successfully to identify globular proteins but has been less effective for 

transmembrane proteins. Various transmembrane protein homology detection studies 

that have attempted to address this problem are summarized below.  

4.1.1 Methods based on sequence alignment  

The amino acid composition and conservation patterns of transmembrane and water 

soluble regions differ (Cserzo et al., 1997). This reflects an obvious spatial difference, 

namely that transmembrane proteins are present simultaneously in two different 

physicochemical environments whereas soluble proteins are present in only one. 
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Accordingly, the amino acid composition of the transmembrane regions must be 

predominantly hydrophobic to be stable within the lipid environment of the 

membrane. Conversely, surface residues, particularly in soluble proteins are exposed 

to water and tend to be hydrophilic. More specifically, it has been noted that 

transmembrane helices display an alternating pattern of conserved and non-conserved 

amino acids, with the conserved amino acids in the core of the protein structure and 

the non-conserved hydrophobic amino acids facing the lipids (Donnelly et al., 1993). 

The dissimilar amino acid composition of transmembrane versus soluble proteins has 

been explored as a signature for sequence alignment methods. Indeed, several groups 

reasoned that homology detection for transmembrane proteins based on sequence 

alignment could be improved if amino acid substitution matrices specifically designed 

for transmembrane proteins were introduced into the search protocol, e.g., the JTT 

matrix (Jones et al., 1994), the PHAT matrix (Ng et al., 2000) and the SLIM matrix 

(Muller et al., 2001). Indeed, these groups found that homology searches performed 

using such matrices proved more effective than searches that employed regular amino 

acid substitution matrices. 

Subsequently, the STAM method (Shafrir and Guy,  2004) was developed that 

improved alignment accuracy further by combining different subtitution matrics. 

However, Forrest et al. found that using a bipartite scheme (based on BLOSUM62 

and PHAT) does not significantly improve transmembrane protein sequence 

alignment (Forrest et al., 2006). In light of this finding, Forrest et al. proposed that 

previous reported improvements in sequence alignment due to acid substitution 

matrices specifically designed for transmembrane proteins could be attributable to the 

separation and independent alignment of transmembrane and non-transmembrane 
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regions and to differences in gap penalties, rather than to the choice of substitution 

matrix. 

Pirovano et al. (2008), developed a new method for aligning transmembrane proteins 

(Praline TM) that not only employs transmembrane specific substitution matrices 

(PHAT) but also incorporates a higher gap penalty setting, different from the typical 

one used when searching for homologous globular proteins. Higher gap penalty for 

the transmembrane regions (15-18) and using PHAT matrix for the transmembrane 

regions yield better performance. Nevertheless, the effect of the gap penalty on the 

performance was minor.  

In summary, the utility of substitution matrices specifically designed for 

transmembrane proteins remains debatable. In light of this uncertainty concerning the 

effectiveness of transmembrane protein specific substitution matrices, we chose in the 

current work not to use such matrices when conducting sequence alignment for 

transmembrane proteins but to use regular BLOSUM62. 

4.1.2 Methods based on loop lengths 

Another feature of transmembrane proteins is the loops between transmembrane 

helices, which are less conserved than the transmembrane regions (Forrest et al., 

2006). These loops range in size and exhibit structural flexibility and variability. 

Thus, the patterns of amino acid insertion/deletion are different in transmembrane 

versus globular proteins, potentially confounding homology searches for 

transmembrane proteins based on multiple sequence alignments.  
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To address this issue, Arai et al. (2004) devised a search protocol that incorporates 

information about loop lengths and performed modified searches using 87 complete 

prokaryotic genome sequences. Briefly, in this method transmembrane protein 

function is classified on a proteomic scale by applying a single-linkage clustering 

method based on sequence similarity and predicted topological similarity, the latter 

calculated by comparing the lengths of loop regions between helices. Notably, an 

assumption underlying this approach is that members of a given family possess the 

same number of transmembrane helices. Proteins are initially divided into groups 

according to the number of transmembrane helices and only then a “loop score” 

calculated, which relates to the loop lengths exhibited by each pair of compared 

proteins. Arai et al. reported that this clustering approach raised the rate of 

transmembrane proteins classified functionally and identified from 24.3% to 60.8%.  

Similarly, Sugiyama et al. (2003) developed a method for classifying transmembrane 

proteins based on the number of transmembrane segments, the loop length and the N-

terminus location. In this method, the length of each loop is expressed as ‘1’ or ‘0’ 

depending on whether it is longer or shorter than the threshold length defined for each 

loop. Next, for each functional group the average of binary loop length is calculated.  

Using these averages, a binary topology pattern (BTP) is determined for each 

transmembrane functional group. After testing 37 functional transmembrane protein 

groups, Sugiyama et al. reported that the BTPs are very accurate at identifying the 

individual functions.  

Wistrand et al. (2006) designed a method (GPCRHMM) to identify new G Protein 

Coupled Receptors (GPCRs) based on a Hidden Markov Model. A set of GPCRs were 
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analyzed to determine distinct loop length patterns and differences in amino acid 

composition between cytosolic loops, extracellular loops, and membrane regions. The 

hidden Markov model, GPCRHMM, was designed to fit the observed parameters. 

When applied to search for novel GPCR superfamily members across five proteomes, 

GPCRHMM detected 120 sequences that lacked annotation and, as such are novel 

putative GPCRs. 

4.1.3 Methods based on hydropathy profiles 

The structure of transmembrane proteins is reflected in the hydropathy profile of the 

amino acid sequence. Accordingly, the hydropathy profile is often better conserved 

than the underlying sequence and can be used as an additional tool when searching for 

homologous transmembrane proteins. Indeed, Lolkema and Slotboom demonstrated 

that two transmembrane proteins with only marginal sequence identity or two non-

related families of membrane proteins can have very similar hydropathy profiles, 

indicating similar global structures (Lolkema and Slotboom, 1998).  

Subsequently, a search method that incorporates patterns of hydropathy profiles was 

developed by Clements and Martin (2002). A hydropathy profile pattern is the pattern 

of peaks in the hydropathy profile of a given protein. Searches based on hydropathy 

profile patterns were shown to identify new members of functional classes of 

transmembrane proteins not detected by sequence alignment alone. 

4.1.4 Methods that combine sequence alignment with 

secondary structure information 
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The detection of homologous globular proteins was improved by combining sequence 

alignment with secondary structure information (Rost et al., 1997, Park et al., 1998,  

Rychlewski et al., 2000 , Lindahl and Elofsson, 2000). Similarly, a small number of 

studies have developed search protocols for homologous transmembrane proteins 

based on sequence comparisons that incorporate topological information. These 

studies are especially relevant to the current work and therefore are discussed in 

detail. 

Hedman et al. (2002) focused on finding homologous members of the G Protein 

Coupled Receptor (GPCR) family and developed a new approach, called the Pmembr 

method, which adds information about predicted transmembrane segments to standard 

Smith-Waterman and profile-sequence (PSI-BLAST) search algorithms. Basically, 

the alignment score is increased if two residues predicted to belong to transmembrane 

segments align. A notable advantage of Pmembr, compared to methods using only 

sequence based algorithms, is that the number of false positives is significantly 

reduced in searches for closely and distantly related proteins.  

The first group to design a homology search that combines transmembrane protein 

specific sequence constraints with profile-profile based comparisons was Bernsel et 

al. (2007). Termed SHRIMP, the protocol incorporates a Hidden Markov Model 

(HMM) that integrates sequence information with predicted topology and 

hydrophobicity data to detect related proteins. The HMM profile is constructed from 

multiple sequence alignments and expanded using a second alphabet corresponding to 

predictions of either hydrophobicity or transmembrane topology. Sequence profiles, 

with the same additional information, are then scored against the model, and paths 
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through the model corresponding to alignments where transmembrane regions are 

matched to each other will have a relatively higher probability. This search method 

was applied initially to the database of G-protein coupled receptors (GPCRDB; Horn 

et al., 2003). To gauge the ability to detect distant homologs, only hits to GPCRs from 

different classes were considered positives, whereas hits within a GPCR class were 

ignored and hits to non-GPCRs (from GPCRDB and Swiss-Prot) were considered 

negative. Evaluation of SHRIMP indicated that introducing structural information to 

the profile-profile method improves detection of distant homologs. In addition, 

SHRIMP performed better than the profile-sequence based method Pmembr. The 

ability of the SHRIMP method to find close homologs within, rather than between, 

GPCR classes was also assessed. Again, the SHRIMP method performed better than 

Pmembr method.  

Subsequently, the SHRIMP method was applied to the HOMEP database (Forrest et 

al., 2006). The HOMEP database comprises 36 homologous transmembrane proteins 

with solved crystal structures, which can be classified into 11 SCOP families. 

Applying SHRIMP to HOMEP corroborated that adding topological information 

improves homology detection. This notwithstanding, Bernsel et al. found that the 

SHRIMP method does not clearly recognize clan relationships in the Pfam database. 

Specifically, Bernsel et al. reported that although the performance of the SHRIMP 

classifier was greater across the whole range of false positive rates (relative to a 

simple classifier based on sequence similarity), the improvement was limited. 

4.1.5 Methods based on helix interaction patterns 
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Recently, Fuchs and Frishman (2010) reported a new search method, which identifies 

relationships between transmembrane proteins by clustering them according to 

similarities among transmembrane helix interaction graphs. A helix interaction graph 

is generated by considering the transmembrane helices as graph nodes and the 

interactions between helices as the edges of the graph. For each pair of helices, the 

number of residues in contact is determined from the structure by evaluating a 

minimal distance between opposing side chains or backbone atoms. All helix pairs 

with at least one residue in contact were considered as interacting. This method 

produces a score called HISS, which encapsulates to what extent the architecture of 

transmembrane helix bundles are conserved. The search method was applied to all the 

available transmembrane proteins with solved 3D structures and revealed that 

common helix interaction patterns are indeed conserved among proteins with 

distinctly different sequences but with the same structure. Moreover, when clustering 

was performed according to helix interaction similarity on structurally available 

transmembrane proteins with more than four transmembrane helices, 20 recurrent 

helix architectures were discovered and 15 singleton proteins. Of note, this 

classification approach, as it is based on the extent helix interactions are similar, is 

reminiscent of conventional structural classifications for globular proteins, such as 

SCOP and CATH, and led to the appreciation that helix interactions are key in 

determining transmembrane protein structure. 

4.1.6   The present work  

In the current work, a transmembrane protein homology detection method is presented 

that integrates sequence alignment with structural information. Our method 
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incorporates into iterative multiple sequence alignments (PSI-BLAST) information 

regarding the predicted transmembrane segments as well as comparisons between 

predicted residue orientations and loop lengths. This approach to detecting 

homologous transmembrane proteins is expected to correctly detect the relationship 

between transmembrane proteins in cases when simple sequence alignment (such as 

PSI-BLAST) fails to detect any homology. Of note, the current work is the first 

method to employ helix orientation predictions when searching for homology among 

transmembrane proteins. Moreover, our method is the first to combine a number of 

different structural features of transmembrane proteins with sequence alignment. 

Another novel feature is that when more structural information is available, it will be 

fairly easy to incorporate it into our method.  

In addition to improving the accuracy of homology detection, we aimed to ensure that 

this advanced search method could be used on a large scale for automated 

classification of transmembrane proteins. This feature is critical as transmembrane 

proteins are challenging to work with experimentally and currently there is no 

structure-based transmembrane protein database comparable to the water-soluble 

protein databases, such as SCOP and CATH. In particular, the difficulty in 

performing structural studies underscores the need for innovative bioinformatics tools 

that enable automated classification of the functional and evolutionary relationships 

between transmembrane proteins. 
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4.2 Methods  

4.2.1 Databases  

When evaluating a homology detection method, it is crucial to have query set and a 

test database where both false and true relationships between the queries and database 

proteins are already known. For globular proteins, structure-based databases such as 

SCOP (Murzin et al., 1995) and CATH (Orengo et al., 1995) can serve this purpose. 

However, a “gold standard” database for transmembrane proteins does not yet exist, 

as very few transmembrane protein structures have been solved.  

This notwithstanding, the G-protein coupled receptor database (GPCRDB; Horn et 

al., 1998, Horn et al., 2003) has proved a reliable database when testing searches for 

homologous transmembrane proteins. It is a well maintained and manually curated 

database, collating and validating large amounts of heterogeneous data concerning 

GPCRs. Categorization in GPCRDB is based on classes, which contain proteins with 

similar function and sequence homology. The GPCRDB database divides the GPCR 

superfamily into six classes: Class A rhodopsin-like, which account for over 80% of 

all GPCRs, Class B secretin-like, Class C metabotropic glutamate receptors, Class D 

pheromone receptors, Class E cAMP receptors and the Class F frizzled/smoothened 

family. Initially, we used GPCRDB when developing and testing our search method. 

To evaluate whether the search method can be applied to other transmembrane 

proteins, subsequently we tested our method using the Pfam database (Bateman et al.  

2004; described in detail in Chapter 1). Pfam is a semi-automatically maintained 
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database that contains a collection of protein families and domains, as well as multiple 

alignments and profile-HMMs that characterize these families. Of note, Pfam is not as 

reliable as GPCRDB with regards to categorizing the relationships between proteins, 

as the former employs a semi-automated classification method unlike GPCRDB that 

is manually curated. Protein domains are categorized in the Pfam database into 

families and clans. A clan is a collection of families judged likely to be homologous. 

Families are classified mostly automatically but clans are built manually, based on 

various sources of information. 

4.2.1.1 GPCRDB  

Our search method was tested using the GPCRDB, and we chose to build the test data 

set in a similar way to previous studies (Hedman et al., 2002 and Bernsel et al., 2007). 

The query set was created by downloading six classes of GPCRs from GPCRDB 

(June 2006 release 10.0) and selecting randomly 127 proteins such that they were 

proportionately distributed among the GPCRDB classes. Redundant proteins were 

removed using the CD-HIT program (Li et al., 2002) to ensure that the sequence 

identity between any two proteins was less than 50%. The final query set is shown in 

Table 9. 

Table 9: Query set from GPCRDB. 

Class No. of proteins in GPCRDB No. of proteins in 

query set Rhodopsin like 4949 90 

Frizzled-Smoothened 113 6 

Secretin like 231 12 

Fungal pheromone receptors 58 7 
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Metabotropic glutamate / pheromone 

receptors 

160 12 

 
cAMP receptors 7 1 

 

The test database for sequence alignment included proteins from the six GPCRDB 

classes with a maximum of 90% redundancy (according to CD-HIT). In addition the 

test database included ~21,000 proteins from the non-redundant sequence database 

Uniref90 (Suzek et al., 2007) to serve as potential false hits (negative set). Only 

proteins containing more than one transmembrane helix according to TMHMM 

prediction (Krogh et al., 2001) were added to the database. GPCRs were excluded 

from the ~21,000 protein negative set by screening for GPCR description in Swiss-

Prot entries both manually and automatically. In addition, CD-HIT-2D (Li et al., 

2002) was utilized, which compares two protein sets and identifies the sequences in a 

second set that are similar to those in the first set above a preset threshold; the identity 

threshold was set at 99%. Moreover, proteins were excluded from the test database if 

their Swiss-Prot description had any of the following terms: uncharacterized, 

unidentified, unknown, predicted, hypothetical, undetermined or probable.  These 

proteins were excluded from the database because relationships between these 

proteins and others are known to be confounding. 

4.2.1.2 Pfam database 

The database of Pfam transmembrane domains, used for testing homology search, was 

the same database used in chapter 3, for benchmarking PSI-BLAST. It was built by 

selecting proteins in the Pfam database, version 19.0 (Pfam-A file) that had at least 

one of the following transmembrane protein terms in their Swiss-Prot description: 
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transmembrane, membrane, membranous, intramembrane, transporter, pump, channel 

and receptor. Proteins were excluded from the database if the Swiss-Prot description 

had any of the following terms: uncharacterized, unidentified, unknown, predicted, 

hypothetical, undetermined or probable. In addition, highly homologous sequences 

(greater than 90% identity) were excluded; homology reduction was carried out using 

the CD-Hit program.  

The query set from the Pfam database, was same set used in chapter 3. For building 

the set initially, all clans with transmembrane terms in their description (as described 

above) were listed (using the Pfam-C file). Then the families within each clan and the 

domains they contain were listed. Domain sequences were extracted from the “Pfam-

A.fasta” file, which contains each domain name and the family with which it is 

associated. Homologous sequences (greater than 50% identity) were excluded from 

the list using the CD-HIT program. Furthermore, only domains with more than one 

transmembrane helix according to TMHMM (Krogh et al., 2001) were retained. 

Finally, the domain query set was chosen randomly from this list of domain 

sequences. The final query set included 112 randomly chosen proteins, from 29 

different clans.  

4.2.2 Sequence alignment searches using PSI-BLAST  

Sequence alignment searches were performed using PSI-BLAST (Altschul et al., 

1997) to identify all the transmembrane proteins homologous to a given query in a 

corresponding test database.  

After inspecting the PSI-BLAST benchmarking results (presented in chapter 3) we 
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concluded that the best value to use for the h-parameter, which defines the E-value for 

inclusion when building up the PSI-BLAST profile, is 10
-6 

for Pfam family homology 

level and 10
-3 

for Pfam clan level. This value resulted in the optimal sensitivity for 

transmembrane homology detection, namely the number of true positive PSI-BLAST 

results was high yet the number of false positives was low. Since we aimed to use our 

method for homology detection at the level of proteins families, which is a more 

restricted level than clans homology level we chose to run PSI-BLAST with E-value 

of 10
-6

. 

The parameter that determines the maximum number of aligned proteins printed (-v 

parameter) was set to 3,000. PSI-BLAST was set to run up to 5 iterations (-j 

parameter). The remaining PSI-BLAST parameters were left at default values. PSI-

BLAST results with an E-value smaller than 1 were listed and analyzed (-e 1).  

For each query, PSI-BLAST results were listed and noted for further study. The E-

value of each PSI-BLAST result was used as the PSI-BLAST method score. As 

mentioned previously, the E-value represents the number of times one would expect 

to get a hit with the same or better score by chance. Thus, the lower the E-value, the 

greater the sequence similarity between the PSI-BLAST result and the query protein. 

4.2.3 Integrating secondary structure information with PSI-

BLAST E-values to improve searches for homologous 

proteins 
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The following steps were performed to calculate secondary structure scores (Figure 

22): 

(1) For the GPCRDB query set, all PSI-BLAST results were listed and noted for 

further analyses. For Pfam database queries, full length sequences were extracted for 

both queries and PSI-BLAST results. It should be noted that when searching for 

homologs in the Pfam database the PSI-BLAST search was performed using only 

domain sequences, nevertheless when considering the secondary structure we chose to 

look at the full length sequence. According to Liu et al. (2004), the majority of 

transmembrane proteins have only a single transmembrane domain. Therefore, we 

assumed that working with full length proteins at this point in our method would not 

impact the results and would enable better, more accurate detection of homologous 

proteins, especially in cases where the sequence domains are truncated.  However, 

later it was found that this precaution was unnecessary, as the full length sequences 

and the Pfam domains possessed the same number of helices in all proteins under 

study. 

(2) Each PSI-BLAST result was aligned to the corresponding query protein using 

sequence to sequence global alignment with the Needleman-Wunsch algorithm, using 

Blosum62 as the substitution matrix and gap penalty of 8. As mentioned, when 

considering secondary structure we chose to consider the entire length of all query 

sequences and therefore could not use the PSI-BLAST output alignments.  

(3) The locations of possible transmembrane helices were predicted using 

TMHMM2.0 (Krogh et al., 2001). TMHMM was applied to both the query proteins 

and the PSI-BLAST result. TMHMM2.0 was chosen because of its speed relative to 

other methods such as MEMSAT-SVM (Nugent and Jones, 2009), though the latter is 
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a better predictor of transmembrane helix location and topology. 

(4) The following structural scores were calculated: transmembrane helix location 

score (henceforth referred to as ‘helix score’), residue orientation score, loop score 

and combined score, the latter representative of the other scores (see below). How 

each score was calculated is described below.  
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Figure 22: Diagrammatic outline of the developed search method. Homology detection using PSI-

BLAST was the fundamental step. Then the locations of helices were predicted using TMHMM. Next, 

several structural scores (helix score, residues orientation score and loop score) were calculated for 

each PSI-BLAST result. The last step involved finding the optimal weights to generate a combined 

score.   
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4.2.3.1 Helix score  

The transmembrane helix location score (helix score) was calculated by counting the 

number of residues aligned between the query and the PSI-BLAST result that are 

predicted in both cases to reside in a transmembrane helix. The resulting value was 

normalized by dividing it by the total number of residues in all the predicted helices in 

the query protein.   

4.2.3.2 Residue orientation score  

The orientation of each residue was predicted as described in detail in Chapter 2. 

Briefly, the sequences of each query and PSI-BLAST results were input to a neural 

network, which had been trained to determine whether a residue is buried in the core 

of a helix-bundle or exposed to the lipid environment surrounding the transmembrane 

protein. The residues orientation score was calculated by counting the number of 

residues aligned between the query and the PSI-BLAST result that are predicted in 

both cases to be not only inside a helix but also in the same orientation. The resulting 

value was normalized by dividing it by the number of residues in all the predicted 

helices in the query. 

Alternative ways of calculating an orientation score were tested and found to be less 

effective (Table 12). Briefly, we tried scoring the overall orientation of each helix 

based on a threshold number of residues that are buried or exposed and assigning 1 to 

the score when the test and query had similar helix orientation. In addition, we tried 

calculating Euclidian distance between the helixes score of the target and the PSI-

BLAST result.  
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4.2.3.3 Loop score 

 

The loop score was calculated as reported previously by Aria et al. (2004): 











1

1

,2,1

1

1

,2,12,1 ),max(/),min(*100(%)
n

i

ii

n

i

ii llllS         (8) 

Where n is the number of transmembrane helices. l1,i and l2,i are the length of the i-th 

loop in sequences 1 and 2, namely the sequences of the query and PSI-BLAST result, 

respectively. When the number of helices in the query protein and PSI-BLAST result 

were not equal, the best score from aligning any continuous combination of loops was 

used. 

4.2.3.4 Combined score 

The combined score for each PSI-BLAST result was defined as the classifier of our 

search method. The E-value, helix score, residues orientation score and loop score 

were combined as follows: 

 (9) 

Additional ways of combining the scores were evaluated but found to be less 

effective, including:  

 Using the scores as they are, in a simple linear equation. 

 A linear equation:  

LoopnOrientatioHelix ewewewEvalwCombined  4321     (10) 

The steps for calculating the weights used to generate the combined score are 

LoopwnorientatiowHelixwEvalwCombined *4*3*2))log((*1 
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described in Figure 23. In the first step the query set was divided randomly into ten 

sets of proteins. For each of the ten training sets from GPCRDB or Pfam, the 

Paramopt program (by Prof. D. Jones, not published) was run separately to determine 

the optimal weights. The Paramopt program searches for an optimal set of command 

line parameters using a genetic-style search. Paramopt used the AUC (the area under 

the ROC curve) for minimization.  

This test was repeated five times, resulting in a total of 50 sets of weights for each 

database. The mode and the average values of the weights were calculated. Then the 

performance of using the PSI-BLAST E-value score alone was compared to the 

performance of using the combined score calculated using the mode or average 

weights. 

Overfitting of the weights was avoided by applying a 10-fold cross validation test: the 

50 training sets of a particular database were divided into ten sets. Then the mode and 

the average values of the weights were calculated each time without one of the sets. 

The resulting weight values were then used to calculate a combined score.  
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Figure 23: Diagrammatic outline of the steps we took to calculate the combined score weights. The 

queries were divided to 10 training sets. Paramopt program was run on each set to derive the optimal 

set of weights. This was repeated five times, resulting in 50 sets of weights. The 10-cross validation 

test was performed to calculate the mode and average of the weights, which were then tested on all (50) 

training sets.  

For GPCRDB: the mode values of the weights were similar for all of the 10 tests, 

and were found to work on all 50 training sets individually. Accordingly, the 

combined score using these weights was found to perform better than PSI-BLAST E-
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value score. In contrast, the average values of the weights were comparable across the 

50 training sets, but could not be applied to each one of the test sets. Therefore, the 

mode values of the weights were used to generate the combined score for GPCRDB 

proteins.   

For Pfam database: the mode values of the weights were: E-value weight = 1, Helix 

weight = 0, combined weight = 0 and Loop weight = 0. Meaning, that the E-value 

score is the only score that contributes to the combined score in most of the training 

sets. In addition, the average values could not be applied to each one of the test sets. 

Similar results were obtained for clan and family homology level. 

4.2.4 Evaluating the ability of the search method to identify 

homologous transmembrane proteins 

For each query, PSI-BLAST results were listed and their scores (helix score, 

orientation score and combined score) were calculated. Then each one of the scores 

was used as a classifier, i.e., used for discriminating between true positive PSI-

BLAST results and false positive PSI-BLAST results, and their performance was 

evaluated as described in the next sections. 

4.2.4.1 Defining a true positive – homologous proteins  

In the case of homology searches performed using GPCRDB, a PSI-BLAST result 

was considered a true positive if it is classified in the GPCRDB database in the same 

class as the query protein. 
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For searches performed using the Pfam database, two levels of homology were tested: 

(i) A PSI-BLAST result was considered true positive if the query and the PSI-BLAST 

result appear in the same Pfam family. (ii) A PSI-BLAST result was considered true 

positive if the query and PSI-BLAST result appear in the same Pfam clan. 

4.2.4.2  Classifier performance assessment  

Receiver operating characteristic (ROC) curve analysis was used in order to assess the 

performance of using each classifier: PSI-BLAST E-value, helix score, orientation 

score and the combined score. The ROC curve is a plot of the true positive rate (TPR) 

against false positive rate (FPR), as the threshold value of the classifier is varied. True 

positive (Tp) and False negative (Fn) together constitute the total number of true 

results, in other words the truly homologous proteins, while False positives (Fp) and 

True negatives (Tn) constitute the total number of false results, namely unrelated 

proteins. 

True positive rate (TPR, equation 5) and False positive rate (FPR) are calculated as 

follows:

 

TnFp

Fp
FPR


        (11) 

An ROC curve can be interpreted either graphically or numerically. Interpreting the 

ROC curve numerically involves calculating the AUC (the Area Under the ROC 

curve, Hanley and McNeil, 1982). An AUC score of 1 indicates that the true positives 

are perfectly separated from the negatives; i.e., the classifier assigns higher scores to 

all true positives than to any false positives, so that the true positives are at the top of 
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the sorted list. An AUC score of 0 indicates that no true positives are found. If one 

ROC curve is higher than another, it has a greater AUC indicating a better classifier 

performance. If two ROC curves cross over at any point, then each classifier 

outperforms the other under some conditions, and comparing AUC values is not very 

informative. 

A ROC curve was plotted for each classifier: PSI-BLAST E-value, helix score, 

residues orientation score and combined score. Then the corresponding AUC was 

calculated.  

4.2.4.3 Testing the weights used to generate the combined score  

A set of weights was tested by comparing the performance of a combined score 

classifier generated using the weights to the performance of a classifier that is the PSI-

BLAST E-value alone. In other words, the area under the ROC curve (AUC) was 

calculated when the PSI-BLAST E-value was used as a classifier and compared with 

that calculated when the combined score was used as the classifier.  

4.3 Results and discussion 

Results for the two different databases tested, GPCRDB and Pfam, are presented 

separately in the sections below.  
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4.3.1 Homology detection - GPCRDB 

4.3.1.1 Finding the optimal weights for the combined score - 

GPCRDB 

As described above, to integrate structural information with sequence alignment data 

all four parameters (E-value, helix score, residue orientation score and loop score) 

were consolidated into one combined score by a linear combination of the log of the 

E-value and the three other scores (Equation 9). The weights for the equation were 

found by dividing the query set into ten training sets (repeated five times) and using 

the Paramopt program for retrieving the optimal weights for these training sets. The 

mode values of the weights (Table 10) were found to work and are applicable to all 

test sets.  

Table 10: The optimal weights for each parameter used to generate a combined score. 

Parameter Weight 

-Log(E-value) 10 

Helix score 0 

Residue orientation score 10 

Loop score 0 

 

The PSI-BLAST E-value and the residues orientation score are both high, indicating 

that they are the key parameters for detecting homology among proteins in this 

database. However, as the E-value parameter is exponential (in the range used, 
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smaller than 1), there will be high E-values that reduce its contribution to the 

combined score such that the other parameter, the orientation score, predominates. 

Notably, the high number for the orientation score weight reveals that this structural 

parameter in particular plays an important role in the performance of the classifier and 

contributes considerably to improving homology detection versus using only the E-

value score.  

4.3.1.2  Homology detection results - GPCRDB 

 

Homology searches were performed using the GPCRDB test database and query set 

and each of the following classifiers: PSI-BLAST E-value, helix score, residues 

orientation score, and the combined score.  

Examination of the ROC curve (Figure 24) revealed that when the false positive rate 

was low, the residues orientation score, helix score and the combined score performed 

better as classifiers than the PSI-BLAST E-value. Nevertheless, the best classifier 

overall was the combined score. The AUC values confirmed that the combined score 

performed as the best classifier (Table 11). In summary, ROC curve analysis shows 

that integrating the parameters improves homology detection when using the 

GPCRDB test database. 
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Figure 24: ROC curves for homology searches performed using the GPCRDB test database and 

query set and each of the following classifiers: E-value (blue), helix score (green), residue orientation 

score (red), combined score (light blue). 

Table 11: AUC values when each classifier is used to search for homologous proteins in the 

GPCRDB test database.  

Classifier AUC 

PSI-BLAST E-value 0.93 

Helix score 0.83 

Residues orientation score 0.84 

Combined score 0.96 
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The results of two alternative ways of calculating an orientation score are shown in 

Table 12. In one approach a helix orientation score was calculated based on the 

overall orientation of each helix. In the second method a helix orientation score was 

calculated based on the Euclidian distance between the helix scores of the target and 

the PSI-BLAST result. Calculating the orientation score using either of these 

approaches was not effective. 

Table 12: AUC values when each classifier is used to search for homologous proteins in the 

GPCRDB test database – testing alternative ways of calculating the residue orientation. 

 

Classifier AUC 

Residue orientation score 0.84 

Helix orientation score  0.54 

Helix orientation score – 

Euclidian distance 

0.46 

4.3.2 Homology detection - Pfam database 

To see if the combined classifier can identify homologous transmembrane proteins 

when other transmembrane protein families are included in the search, we applied our 

method to detect homologous proteins in the Pfam database. The ability of the 

combined classifier to detect two levels of homology was tested; the first level was 

homologous family membership and the second level was homologous clan 

membership.  
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4.3.2.1 Finding the optimal weights for the combined score – Pfam 

database 

Initially, homology searches were performed using the Pfam test database and query 

set and the combined classifier, the latter based on the weights derived using the 

GPCRDB test database and query set. However, a combined score based on these 

GPCRDB weights did not perform well as a classifier. Therefore, we decided to 

derive independently for each level of homology (family and clan) a set of weights 

using the Pfam set. We reasoned that each database and Pfam homology level was 

created in a different way and has distinct features with potential to influence the 

classifier performance. Specifically, the Pfam families were classified automatically 

based on domain sequences whereas Pfam clans were built manually by gathering 

Pfam families together according to structure and function similarity. Thus, domains 

in a Pfam clan could have distant sequence homology. 

Even more dramatically than when the weights were derived using the GPCRDB 

query set, when weights were derived for the Pfam query set we found that the PSI-

BLAST E-value is the key and only parameter for detecting homology. Thus, in the 

case of the combined score derived using the Pfam query set, it is clear that sequence 

similarity plays a dominant role. The only weight above 0 in the mode values of the 

weights was the weight for the E-value score. In addition, when testing the average 

values of the weights, it was impossible to generalize the weights of the combined 

score for clan homology level and for family homology level as well. Thus, it was 

impossible to derive optimal weights that could be used for all training sets of Pfam 

families and clans. For some training sets, the PSI-BLAST E-value was the only 
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parameter that contributed to the combined score but for other training sets the 

residues orientation score was the key parameter and introducing any other reduced 

the performance of the classifier. The inability to derive an optimal set of weights is 

likely explained by the fact that though most Pfam families were built automatically 

and are thus, generally sequence dependent, other Pfam families were manually 

generated. Alternatively, it is possible that the combined score does not work well 

when trying to detect homologous proteins from different families. It could be that 

there are families in which the proteins are similar to each other in sequence and other 

families in which the sequence similarity is smaller, but the structural similarity is 

prominent. 

4.4  Comparing our search method to other 

transmembrane homology detection methods 

 
There are only two other methods comparable to the one developed in the current 

work. The first is the Pmembr method (Hedman et al., 2002) and the second one is 

SHRIMP (Bernsel et al., 2007), both were detailed in the introduction of this chapter. 

Like the present method, these other two methods combine structural and sequence 

information for transmembrane homology detection.  

4.4.1 Comparison with the Pmembr method 

Pmembr (Hedman et al., 2002), described before in section 4.1.4, incorporates 

information about predicted transmembrane segments into standard Smith-Waterman 
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and profile-sequence search algorithm, PSI-BLAST. This method was tested using the 

GPCRDB on two homology levels. First, individual classes within the GPCRDB were 

considered. Therefore, hits to GPCR sequences outside a given class were ignored and 

only hits inside the class defined as true. Second, GPCRDB was considered as a 

superfamily. Thus, hits to GPCR sequences in all classes were considered true and 

hits to the same class were ignored. In both tests, non-GPCRs were defined as 

incorrect hits. Using these tests, the Pmembr search method, which adds topology 

information to the PSI-BLAST search method, was demonstrated to improve slightly 

the ability to detect both closely related GPCRs (first level of homology) and distantly 

related GPCRs (second level of homology), as compared to PSI-BLAST alone.  

Adding the structural information to standard Smith-Waterman was less effective. 

In the present work we tested the ability of our method to classify sequences correctly 

to the relevant GPCR class. Therefore, hits to GPCRs inside the given class were 

considered true and all other hits were defined as incorrect, including hits to GPCRs 

in other classes. Using these strict criteria, we noted that most of the false positive 

results were GPCRs belonging to other classes that did indeed possess some sequence 

and structural similarity. It is likely that the performance of our search method would 

have attained a higher score if we had chosen to ignore such false positives, as in the 

Hedman et al. study. We applied such strict criteria as our goal was to develop a 

method that is capable of correctly classifying to a specific class, as we consider this 

capability a requirement for automatic classification.  

In summary, in light of the dissimilar test criteria and query set it is impossible to 

directly compare rigorously our method with the Pmembr method. In addition, the 
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Pmembr website is not maintained anymore and we have experienced difficulties with 

running a standalone Pmembr program (e.g., an error message was received saying 

the profile is too long and this error could not solved. Of note, the authors were 

contacted but were not able to solve the problem). Nevertheless, Pmembr result files 

could be downloaded from the Pmembr website from a directory that contained all 

queries and corresponding PSI-BLAST results files with the Pmembr score, and these 

files were used to compare the Pmembr method with our method. We chose to 

download the results of running PSI-BLAST with the h-parameter (threshold for 

inclusion of new sequences in each iteration of PSI-BLAST) set at 10
-5

, which is 

similar to the value employed in our method (10
-6

) and considered the best h-value to 

detect both closely and distantly related GPCRs (Hedman et al. 2002). For the 

comparison between Pmembr and our method, the definition of false and true positive 

hits for Pmembr were changed to meet our test criteria, i.e., true positive hits were 

defined as GPCRs inside the given class and all other hits were considered false 

positives, including GPCRs in other classes. In addition, only PSI-BLAST results 

with an E-value smaller than 1 were listed (Hedman et al. listed hits with an E-value 

smaller than 99). 
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Figure 25: ROC curves for homology searches (a) performed using Hedman et al. (2002) test 

database and  query set and each of the following classifiers: PSI-BLAST E-value (red), Hedman score 

(light blue) (b) performed using the current method database and each of the following classifiers: PSI-

BLAST E-value (current work, dark blue) or combined score (current work, green). 

ROC curves were plotted for the PSI-BLAST classifier (generated using Hedman et 

al. data) and the Pmembr classifier (Figure 25) and compared to curves generated 

using the classifiers defined in the current work (PSI-BLAST E-value and combined 

score, using the data generated in the current work); AUCs were calculated (Table 

13). 

The AUC values (Table 13) support that the Pmembr score serves as a better classifier 

than the PSI-BLAST E-value even when our criteria are applied to the analyses. 

However, examination of the ROC curves (Figure 25) revealed that our classifier (the 
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combined score) slightly improves homology detection relative to the PSI-BLAST E-

value, even more than Pmembr.  

Table 13: AUC values for homology searches when each Pmembr classifier is used (Hedman et al., 

2002). 

Classifier AUC 

PSI-BLAST E-value –Hedman et al. 0.926 

Pmembr score – Hedman et al. 0.940 

PSI-BLAST E-value – current work 0.93 

Combined score – current work 0.96 

The performance of the classifiers was evaluated also by plotting sensitivity curves 

(Figure 26), which show the true positive number versus the false positive number per 

query. The reason for drawing sensitivity curves for the comparison and not only 

ROC curves was the different number of total results, between the current work set 

and Hedman et al. set, and in addition the E-value classifier of Hedman et. al and the 

current work result in different plots, making comparison of ROC curves less clear. 

For sensitivity curves generally, when considering the sorted list it is desirable for 

more true positives to appear at the top of the list before a given number of false 

positives, such that the number of false positives is as low as possible. 

Examination of the sensitivity curves (Figure 26) revealed that the total number of 

false positive hits in homology searches performed using the Hedman et al. data and 

Pmembr classifiers is much bigger than in the current study. To understand this 

finding the list of false positives from the Pmembr data was inspected, with special 
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attention paid to hits not belonging to any of the GPCRDB classes (from Swiss-Prot). 

It was found that in some cases the false positives were GPCRs not present in 

GPCRDB, some were proteins with only one helix and some had one of the following 

terms: uncharacterized, unidentified, unknown, predicted, hypothetical, undetermined 

and probable in their  Swiss-Prot description (again, these were filtered out of our test 

database and quey set). Thus, it is likely that some of the false positives detected 

using the Hedman et al. set and Pmembr classifiers are due to the less rigorous 

filtering of the Hedman et al. test database and query set. Nevertheless, because the 

control plots (PSI-BLAST E-value curves) are dissimilar, it is hard to compare the 

two methods using the sensitivity curve. 

Figure 26: Sensitivity curves for homology searches performed using one of the following 

classifiers: PSI-BLAST E-value (current work, blue), combined score (current work, green), PSI-

BLAST E-value (Hedman et al., red) or Pmembr score (Hedman et al., light blue). The true and false 

positive numbers were divided by the number of proteins in the test set (79 in the case of Hedman et al. 

and 112 in the case of the current work) to show the false positive/true positive per query. 
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4.4.2 Comparison with SHRIMP method 

The SHRIMP method (Bernsel et al., 2007), described before in section 4.1.4,  

incorporates a Hidden Markov Model (HMM) that integrates sequence information 

with predicted topology and hydrophobicity, with each of these structural features 

added separately to the HMM. The method was tested originally using the GPCRDB 

on two homology levels, in a similar way to the Pmembr method. It was shown that 

introducing structural information to the method improves homology detection for 

distantly related GPCRs but is less helpful for close homologs. Furthermore, for both 

homology levels, it was demonstrated that the SHRIMP method performs much better 

than the Pmembr method. When SHRIMP was tested using another database, 

HOMEP (Forrest et al., 2006), similar levels of improvement in detection were 

reported.  

The SHRIMP method was also tested using the Pfam database and found to be unable 

to clearly recognize clan relationships. Specifically, it was reported that although the 

performance of the classifier was increased across the whole range of false positive 

rates, the improvement was limited and the data was not shown. In the supplementary 

data files of the SHRIMP study there was a list of 126 alignments, which were the 

false hits that had high scores when detecting Pfam clan homology. Bernsel et al. 

suggested that domains in the list as yet unassigned to a clan were likely genuine 

homologs. SHRIMP was not tested on Pfam families, or it was not reported. 

It appears that the developers of SHRIMP encountered the same problems as we did 

when testing their search method using Pfam clans. In particular, a difficulty to 
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differentiate between false and true positives with high scores assigned to alignments 

between Pfam domains not belonging to the same clan.  

Comparing the reported SHRIMP test results directly with our method results is 

unhelpful as different definitions and query sets were employed in each case. 

Unfortunately, we were unable to compare our method with the SHRIMP method 

directly using our database and query set because we encountered problems when 

running the standalone program. Running a standalone SHRIMP program involves 

two steps: in the first one a profile database is made containing transmembrane helix 

predictions for all the sequences in the database (using the create_db.pl script) and in 

the second step another script is used (search_db.pl) which creates a profile-HMM 

from the query sequence, then predicts its transmembrane topology and finally uses 

the HMM to search for homologs in the profile database. Already when running the 

first step (create_db.pl script) we got an error message and the second step created an 

empty results file. In line with advice from the developers of SHRIMP (Prof. Arne 

Elofsson), we tried using older versions of PSI-BLAST (blast-2.2.10 and blast-2.1.3) 

from the one we typically employ (blast-2.2.21), but still encountered the same 

problems.  

To compare our method indirectly with SHRIMP, we reviewed supplementary data in 

Bernsel et al. (2007), concerning detecting close homologs within, rather than 

between, GPCR classes. Here we should emphasize that for the SHRIMP evaluation, 

a result was considered a false positive if it was not classified to any GPCRDB class. 

Whereas in the current work, false positives are also proteins classified to different 

GPCR classes (other than the query's class).  
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 In Figure 27 (Bernsel et al., 2007), the methods, PSI-BLAST and Pmembr, were 

compared to the method SHRIMP, which was found to perform better. The SHRIMP 

results are presented in three ROC curves: sequence + topology information 

(SHRIMP-tmpred), sequence + hydrophobicity (SHRIMP-hphob) and sequence only 

(SHRIMP-seq). All three ROC curves reach the true positive rate 1.0 at very low false 

positive rates. Thus, for closely related homologs, sequence alone is sufficient when 

using SHRIMP.  

 

Figure 27: ROC curves presented in supplementary data of Bernsel et al., 2007. Comparison 

between the method PSI-BLAST (black),  Pmembr (blue), HHpred (Soding et al., 2005,  green),  and 

SHRIMP (red) : sequence + topology information (SHRIMP-tmpred), sequence   + hydrophobicity 

(SHRIMP-hphob) and sequence only (SHRIMP-seq). 

Given these data, as our method performs only slightly better than Pmembr, we 

suspect that the SHRIMP method is superior to ours in detecting related 

transmembrane proteins. If this is indeed the case, then it appears that a method which 
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is based on a profile HMM-profile HMM algorithm could be more powerful than 

methods in which structural information has been added to a profile-sequence based 

method, as presented in the current study. Nevertheless, in light of the present study, 

we propose that developing a combined score for adding to a system similar to 

SHRIMP's method could result in an even better performance. 

4.4.3 Exploring helices number in Pfam clans and TMHMM 

performance 

In order to check features of the Pfam database which might have contributed to the 

poor performance of our homology search of this particular database, we checked the 

number of helices in all the clans in the queries set (Table 14). 

By exploring Table 13 we became aware that the Pfam database contains truncated 

sequence. For example Pfam Clan CL0192 which contains GPCRs with mostly 7 

transmembrane helices was predicted to have mean number of 5.7 transmembrane 

helices. 

In addition we compared TMHMM performance with another topology method, 

MEMSAT-SVM (Nugent and Jones, 2009) and applied to the GPCR database, which 

contains only proteins with 7 transmembrane helices (Table 15).  
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Table 14: Statistics of transmembrane helices in Pfam clan protein domains; TMHMM was used 

when predicting number of helices  

Pfam clan name Mean number of 

helices 

Standard 

deviation CL0015 11.4 1.8 

CL0030 8.0 3.4 

CL0062 11.1 2.3 

CL0111 9.8 2.4 

CL0130 7.8 1.6 

CL0347 3.5 1.1 

CL0192 5.7 1.9 

CL0375 3.8 0.6 

CL0425 11.1 4.4 

CL0404 6.5 2.6 

 

Table 15: Comparing TMHMM and MEMSAT-SVM prediction of number of transmembrane 

helices in  GPCRDB. 

Topology method used Mean number of helices Standard deviation  

TMHMM 6.8 0.8 

MEMSAT-SVM 7 0.6 
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4.5  Conclusions 

In this chapter we have presented a new method for detecting homologous 

transmembrane proteins. On the premise that structure is better conserved than 

sequence, our method combines multiple sequence alignment (PSI-BLAST) with 

structural information regarding helical regions, helical residue orientations and loop 

lengths. We validated that our method has an improved capability to detect true 

relationships between transmembrane proteins relative to a method based solely on 

simple multiple sequence alignments.  

Specifically, we found that combining the PSI-BLAST E-value with the structural 

parameter (residues orientation score) generated a combined score that served as a 

superior classifier, detecting more true positives with less false positives when using 

the GPCRDB. To combine the parameters, we had to derive optimal weights and thus, 

we corroborated that the PSI-BLAST E-value, i.e., sequence similarity between the 

proteins, is a key parameter. This finding is in agreement with data from numerous 

studies of GPCRs, establishing that helical sequences are strongly conserved among 

GPCRs. Conserved residues that mediate ligand binding and selectivity of G-protein 

coupling tend to cluster on the cytoplasmic side of transmembrane helices, while 

residues unique to each subfamily tend to appear on the extracellular side (Suwa et 

al., 2011). Accordingly, we found that the residues orientation parameter also 

contributes significantly to the performance of the classifier.  

Notably, the loop parameter was found to have no effect on homology detection, 

indicating that loop lengths are not conserved enough to influence the performance of 
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a classifier. Accordingly, the length of the third cytoplasmic loop (CL3) and the N- 

and C-terminal loops have been shown to vary among GPCRs, though the other loops 

have conserved lengths (EL1, EL2,  EL3, CL1, CL2) in nearly all GPCRs (Suwa et 

al., 2011). 

The helix parameter also did not improve classifier performance. This finding is likely 

explained by the fact that the orientation score already encompasses topological 

information; namely, the orientation score relates specifically to residues predicted to 

be in helical regions both in the query protein and PSI-BLAST result.  

Our newly developed search method proved less effective at detecting homology 

among Pfam database proteins. Our method was not able to improve the ability to 

detect homology at the level of Pfam clans or at the level of Pfam families. We 

suspect that this is due to the way clans are defined, which is based on sequence 

similarity. In addition, as mentioned above, there are unassigned domains which are 

possibly genuinely homologous. Moreover, while GPCR is well characterized 

database, it could be that the Pfam clans are not characterized well enough.  

In addition, we suspect that certain features common to GPCRs contribute to the 

ability of our method to detect GPCR homology. In particular, all or most GPCRs 

have 7 transmembrane helices and share similar topology. For example, GPCRs do 

not contain any non-canonical elements such as wide turns, tight turns, kinks and 

reentrant loops, which makes it easier to accurately predict topology and residue 

orientation. It is not surprising that familial relationships between transmembrane 

proteins with dissimilar numbers of helices or more complicated structural features, as 

present in the Pfam database, are going to be harder to identify. 
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More generally, our detection method is based on two key predicted parameters: the 

location of the transmembrane regions, which is predicted using TMHMM, and the 

orientation of the residues, which is predicted by a neural network developed in the 

current work. The incorporation of two predicted parameters into the final score raises 

the possibility of error particularly if the number of helices is not constant within a 

family. 

We also submit that certain features of the Pfam database might have contributed to 

the poor performance of our homology search of this particular database. First, when 

checking the Pfam Clan CL0192 (Table 13), which contains GPCRs with mostly 7 

transmembrane helices, we became aware that the Pfam database contains truncated 

sequences. Second, as exemplified by Clan CL0192 that comprises almost all GPCRs, 

the classification of clans is fairly broad. In contrast, in the GPCRDB GPCRs are 

categorized into five classes. This second feature likely underscores why we got a 

smaller number of false positives when testing Pfam clans as opposed to GPCRDB. 

We also suspected that the performance of our method was influenced by our choice 

to use TMHMM when predicting the helical regions. To explore this possibility, 

TMHMM was compared with another topology method, MEMSAT-SVM (Nugent 

and Jones, 2009) and applied to the GPCR database, which contains only proteins 

with 7 transmembrane helices. The results (Table 14) indicate that although 

MEMSAT-SVM is slightly more accurate at detecting the 7 transmembrane helices of 

the GPCRs than TMHMM, TMHMM does work well at least for the GPCRDB.  

Bernsel et. al. (2007) remark in their study that perhaps Pfam is not an optimal set 

choice when testing homology detection methods. We share this opinion. A better test 
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of homology detection among transmembrane protein families, other than GPCR, will 

require future characterization of a greater number of transmembrane protein 

structures. 

A comparison of our developed method with two other published methods suggested 

that profile HMM-profile HMM based methods could be more powerful than profile-

sequence based methods, even after the addition of structural information as described 

here. Nevertheless, based on the present study, we propose that combining a profile-

profile method with a combined score could improve even further the detection of 

related transmembrane proteins. 
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Chapter 5  
 

 

Discussion and Future work 

5.1 Discussion 

Transmembrane proteins play crucial roles in a variety of cellular processes and 

comprise 20-25% of fully sequenced genomes (Jones, 1998, Wallin and von Heijne, 

1998). Nevertheless, the tertiary structures of only a small number of transmembrane 

proteins are known. Hence, it is of great importance to develop theoretical methods 

capable of predicting transmembrane protein structure and function based on protein 

sequence alone. To address this, in the current work we aimed to develop a method 

for identifying homologous transmembrane proteins that could be used for classifying 

the proteins into structural and functional families based on sequence similarity and 

predicted structural features.  

The method for detecting homology, presented in this thesis, comprises in the first 

step sequence alignment searches, which are performed using PSI-BLAST. Then 

profiles derived from the multiple sequence alignments are input into a neural 

network, developed in this work to predict which transmembrane residues are buried 

(core of the helix-bundle) or exposed (to the lipid environment). A maximum 

accuracy of 86% was achieved. Moreover, for almost half of the query set, the 
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predicted residue orientation was more than 70% accurate. In the last step of the work 

presented here, the predicted helix locations, residue orientations and loop length 

scores are combined with the PSI-BLAST E-value, to create a ‘combined’ classifier 

score. A few approaches to incorporating the information were tested. In the end, a 

linear equation was chosen for calculating the 'combined score' classifier score. While 

validating the performance of our ‘combined classifier’, it became clear that the 

sequence similarity between proteins is a dominant parameter. In addition, however, 

we found that the residue orientation parameter also contributes significantly to the 

performance of the classifier. In contrast, the loop parameter had negligible impact on 

homology detection, suggesting that loop lengths are not conserved enough to 

influence the performance of a classifier.  

Having developed a homology detection method we tested its accuracy using a 

database of proteins. Ideally the database should be one in which the true relationships 

between transmembrane proteins are known. The Pfam database was chosen, as 

transmembrane proteins in this database have been classified into various families, 

though not entirely reliably.  In addition, GPCRDB was employed, as this database, 

though narrow, is well-studied and maintained. 

We found that the 'combined score' classifier, as compared to a classifier based solely 

on PSI-BLAST, resulted in more true positives with less false positives when it was 

tested using GPCRDB and could differentiate between GPCRDB families. However, 

the combined classifier did not improve homology detection when searching 

transmembrane proteins from the Pfam database. Other attempts to improve 

homology detection among transmembrane proteins from the Pfam database have 

failed as well (Bernsel et al., 2007), highlighting the challenge of generating 
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improved approaches to classify transmembrane proteins. 

5.2 Future work  

A comparison between the homology detection method developed here and two 

published methods (Hedman et al., 2002 and Bernsel et al., 2007) leads us to 

conclude that profile-profile based methods could be more powerful than profile-

sequence based methods, even when the latter encompasses structural information as 

described here. In light of this finding, we propose that a profile-profile method 

should be developed to incorporate a combined score, as this is likely to improve even 

further the accuracy of homology searches among transmembrane proteins.  

A profile-profile based method for detecting homology among transmembrane 

proteins that incorporates structural information could be developed in two possible 

ways:  

1. To switch the PSI-BLAST alignment search in the presented ‘combined score’ 

method with a profile-profile alignment search, such as HHpred (Soding et al., 

2005). In this way, the effectiveness of profile-profile based searches is 

exploited to find candidate homologs and then structural information is also 

considered, to help identify the genuinely homologous proteins. 

2. To develop a new method, in which the 'combined score' is encompassed as a 

second alphabet of a profile HMM model. Bernsel et al. (2007) took a similar 

approach, whereby hydrophobicity was added to a profile HMM and then a 

profile HMM-profile HMM method was constructed.  
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In addition to the structural information incorporated in the current work into a 

‘combined score’, there are different types of structural information about 

transmembrane proteins that should be considered in future studies: 

1. Predicted location of re-entrant loops and kinks. 

2. Predicted helix-helix interactions and helix tilt angles. 

3. Predicted location of special functional motifs in the sequence, such signal 

peptides. Such motifs strongly influence the folding of transmembrane 

proteins, as they diminish the length of the final sequence by promoting the 

cleavage of specific segments at the N-termini (signal peptides) . 

4. Predicted disulfide bridges. These are covalent bonds that link closely together 

two cysteine residues, constraining protein folding (Martelli et al., 2004). 

The presented method could also be used to improve detection of homologous beta-

barrel transmembrane proteins in a very simple way: the training set for the Neural 

Network used for residues orientation prediction should include beta-barrel proteins. 

Very few methods exist that detect homology among and classify beta-barrel 

transmembrane proteins (Remmert et al., 2009). 

In summary, the method presented here can certainly be improved, but still serves as a 

useful starting point for developing an effective method for detecting homology. We 

suspect that as more transmembrane protein structures are characterized and 

classified, it will become easier to develop better methods for detecting homology 

among transmembrane proteins.   
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Appendices 

Appendix A  

Introduction to backpropagation neural 

networks  

Artificial Neural Network 

Artificial Neural Networks are processing devices that are based on the operation of 

biological neural networks. Neural networks are organized in layers made up of a number 

of interconnected and interacting components called nodes or neurons which contain an 

'activation function'. The activation function of a node defines the output of that node given 

an input or set of inputs. The first layer of a typical neural network is the 'input layer', which 

communicates with one or more 'hidden layers' where the actual processing is done. The 

hidden layers then link to an 'output layer' where the answer is output.  

Most neural networks have some type of learning rule which modifies the weights through a 

learning algorithm, according to the input patterns presented to it. Thus, the network learns by 

example.  

There are numerous kinds of neural network architecture the most commonly used is 

backpropagation network, which is used in the current work and is presented in the next 

section. 
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Backpropagation network architecture  

The most commonly used backpropagation network architecture is a feedforward 

network, as shown in Figure 28.  

 

Figure 28: Backpropagation network architecture. Each input is weighted by a real number – w. The 

sum of the weighted inputs and the bias b forms the input to the transfer function f at each hidden node. 

Neurons may use any differentiable transfer function to generate their output. 

The input vectors are used to train a network until it can approximate a function. The 

training process requires a set of inputs and outputs as an example of proper network 

behavior. Through the training process the weights and biases of the network are 

iteratively adjusted to minimize the mean square error (mse), which is the average 

squared error between the network outputs and the target outputs. 

A standard backpropagation training algorithm is the gradient-descent algorithm, also 
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known as steepest descent, in which the network updates the weights and biases in the 

direction of the negative of the gradient.  

Adaptive steepest descent with momentum (traingda in Matlab), combines the 

“Adaptive steepest descent algorithm” with the “Steepest descent with momentum 

algorithm”. “Adaptive steepest descent” is a steepest descent algorithm, which 

changes the learning rate during the training process. This algorithm trains the 

network faster than the simple steepest descent algorithm.  In “Steepest descent with 

momentum”, a momentum constant regulates the amount of the weight change, which 

can be a number between 0 and 1. When the momentum constant is 0 a weight change 

is based solely on the gradient. When the moment constant is 1, the new weight 

change is set equal to the last weight change and the gradient is ignored. Momentum 

can prevent the algorithm from getting stuck in a shallow local minimum (Neural 

Network toolbox for Matlab).   

The training can be done in two ways: incremental mode or batch mode. In the 

incremental mode, the weights are updated after each input is applied to the network. 

In the batch mode all of the inputs are applied to the network before the weights are 

updated.  
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Appendix B  

Substitution matrices in sequence similarity 

methods 

Substitution matrices describe the rate at which one character in a sequence changes 

to another character over time. In the process of evolution, from one generation to the 

next the amino acid sequences of an organism's proteins are gradually altered through 

the action of DNA mutations. Each amino acid is more or less likely to mutate into 

various other amino acids.  

A substitution matrix  is a 20x20 matrix where the ( i , j ) th entry is 

equal to the probability of the i th amino acid being transformed into the j th 

amino acid over a given amount of evolutionary time. There are many different ways 

to construct such a matrix. The most common substitution matrixes are: PAM and 

BLOSUM.  

PAM 

One of the first amino acid substitution matrices, the PAM matrix, was developed by 

Dayhoff (Dayhoff et al., 1978). This matrix is calculated by observing the differences 

in closely related proteins. The PAM1 matrix estimates what rate of substitution 

would be expected if 1% of the amino acids had changed. The PAM1 matrix is used 

as the basis for calculating other matrices by assuming that repeated mutations would 



 168 
 

 

 

follow the same pattern as those in the PAM1 matrix, and multiple substitutions can 

occur at the same site (PAM 30 and the PAM70 are most commonly used). 

BLOSUM 

The BLOSUM was developed by Henikoff and Henikoff (1992). A set of matrices 

were constructed using multiple alignments of evolutionarily divergent proteins. The 

probabilities used in the matrix calculation are computed by looking at "blocks" of 

conserved sequences found in multiple protein alignments. These conserved 

sequences are assumed to be of functional importance within related proteins. To 

reduce bias from closely related sequences, segments in a block with a sequence 

identity above a certain threshold were clustered, giving weight 1 to each such cluster. 

For the BLOSUM62 matrix, this threshold was set at 62%. Pair frequencies were then 

counted between clusters, hence pairs were only counted between segments less than 

62% identical. One would use a higher numbered BLOSUM matrix for aligning two 

closely related sequences and a lower number for more divergent sequences. 

BLOSUM62 matrix works well detecting similarities in distant sequences, and that is 

the matrix used by default in most recent alignment applications such as BLAST. 
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Appendix C 

Publication arising from the thesis 

Hurwitz N., Pellegrini-Calace M. and Jones D.T. (2006)  

Towards Genome-scale Structure Prediction for Transmembrane Proteins 

Phil. Trans. R. Soc. B   361, 465–475 
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