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The nonlinear Schrödinger (NLS) equation describes
the modulational limit of many surface water wave
problems. Dark solitary waves of the NLS equation
asymptote to a constant in the far field and have
a localized decrease to zero amplitude at the
origin, corresponding to water wave solutions that
asymptote to a uniform periodic Stokes wave in the
far field and decreasing oscillations near the origin.
It is natural to ask whether these dark solitary waves
can be found in the irrotational Euler equations. In this
paper, we find such solutions in the context of flexural-
gravity waves, which are often used as a model for
waves in ice-covered water. This is a situation in
which the NLS equation predicts steadily travelling
dark solitons. The solution branches of dark solitons
are continued, and one branch leads to fully localized
solutions at large amplitudes.

1. Introduction
Solitary waves play a central role in free surface
and interfacial flows. In the water wave problem, the
existence of various types of solitary waves is often
hinted at by model equations (Korteweg–de Vries,
Kadomtsev–Petviasvilli, nonlinear Schrödinger, and so
on) or local bifurcation analysis. Fully nonlinear waves
can then be sought through numerical means or proved
via analytical means. In particular, the (1+1)-dimensional
nonlinear Schrödinger (NLS) equation that governs
the modulation of quasi-monochromatic waves has
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families of solutions, among which, bright or dark solitons depending on the coefficients of the
equation (corresponding to the focusing or defocusing cases, respectively) [1,2]. Bright solitons of
NLS can be used to construct fully nonlinear capillary-gravity wave-packet solitary waves [3].

In this paper, we seek to find the counterpart of dark solitons of NLS in the Euler equations.
In order to do so, we consider the problem of flexural-gravity waves in infinite depth: the
propagation of waves in a semi-infinite fluid bounded above by a solid sheet that responds to
flexural (bending) forces only. This is a commonly used model for waves under floating ice [4].
Dark solitary wave solutions are sought in this context because: (i) the linear dispersion relation
has a minimum of phase speed at finite wavenumber, which means that at that wavenumber,
phase and group speed are equal, thus allowing for steadily travelling small amplitude nonlinear
wave-packets and (ii) in the case of deep enough water, the coefficients of the NLS equation for
this wavenumber correspond to the defocusing case, which is the case for which dark solitary
waves are expected. Dark solitons derive their name from nonlinear optics where they have
been studied and observed experimentally [5,6] and correspond to a relatively localized decrease
to zero in intensity of the wave-field. Whereas in nonlinear optics, the NLS equation is usually
used ab initio, in fluid mechanics it represents an asymptotic model whose predictions need
to be verified against solutions of the full potential flow equations. In this paper, we compute
dark soliton-like structures in the full potential flow equations and follow the solution branch
to amplitudes beyond those described by the NLS equation. To our knowledge, this is the first
computation of travelling dark solitons in free-surface fluid flows.

The modulational dynamics of weakly nonlinear surface wave-packets in one space dimension
can be described by the NLS equation

iAT + λAXX = µ|A|2A, (1.1)

where A is the complex envelope of a carrier wave with wavenumber k∗ and µ(k∗); λ(k∗) are real
coefficients. The primitive free surface variable ζ (x, t) is given by

ζ ∼ ϵ[A(X, T) ei(k∗x−ω(k∗)t + Ā(X, T) e−i(k∗x−ω(k∗)t] + O(ϵ2).

Here, ϵ is a non-dimensional small amplitude, T = ϵ2t, X = ϵ(x − cg(k∗)t), ω(k) is the dispersion
relation of the original system and cg(k) ≡ω′(k) is the group velocity. If the product of the
coefficients λµ < 0, the equation is of the focusing type, and there exist travelling solitary wave
solutions corresponding to localized wavepackets. If the product of the coefficients λµ > 0, the
equation is of the defocusing type, and there are travelling ‘dark solitons’ that are periodic
wavetrains with a localized decrease in amplitude (and a shift of π in phase) [2].

In fluid problems, travelling wave solutions to the NLS equation correspond, in general, to
unsteady solutions in the primitive variables because the envelope travels at speeds close to the
group velocity whereas the carrier wavecrests travels at the phase velocity. One important special
case is when these two velocities are equal, which occurs at an extremum of the phase speed
c(k) ≡ω(k)/k. In this case, the NLS solutions describe approximate steadily travelling solutions
in the primitive variables [3,7] and exact travelling solutions may be sought. For the bright
solitons of the focusing NLS equation, under these conditions, and in the setting of gravity-
capillary waves, the resulting solitary water wave can be found in the primitive potential flow
equations [8]. The condition of group and phase speed being equal renders the computation
tractable since by seeking travelling wave solutions of the primitive equations, the dimensionality
of the problem is reduced by one. In this paper, we show that dark soliton solutions can also be
found in the potential flow equations. At larger amplitudes, we shall see that the dark solitary
wave branch yields solutions that appear to consist of two bright wavepacket waves with small
non-decaying periodic tails.

2. Formulation
Consider the problem of surface waves on a semi-infinite ideal fluid in two dimensions bounded
above by a flexible elastic sheet. The two competing restoring forces are gravity and the flexural
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elasticity of the sheet. The irrotational Euler equations with the fully nonlinear kinematic and
dynamic boundary conditions are used for the fluid, and the simplest Kirchoff–Love nonlinear
elasticity model appropriate for thin flexible sheets is used for the solid as in [9,10]. This elasticity
model yields a restoring force in the form of a pressure jump across the elastic sheet equal to

D∂2
xκ ,

where D is the flexural rigidity of the sheet and κ is its curvature. Denoting the free surface by
y = ζ (x, t) and the velocity potential by φ(x, y, t), the governing equations for the flow and the
boundary conditions are given by

)φ = 0 for − ∞ < y < ζ (x, t), (2.1)

φ→ 0 as y → −∞, (2.2)

ζt + φxζx = φy at y = ζ (x, t) (2.3)

and φt = −1
2

[φ2
x + φ2

y ] − ζ − ∂xx
ζxx

(1 + ζ 2
x )3/2

at y = ζ (x, t). (2.4)

These equations have been made dimensionless by choosing

(
D
ρg

)1/4
,

(
D
ρg5

)1/8
,

(
Dg3

ρ

)1/8

, (Dρ3 g3)1/8

as the units of length, time, velocity and pressure, where ρ is the density of the fluid and g is the
acceleration owing to gravity. Travelling solutions to the potential flow equations (2.1)–(2.4) with
wave speed c can be found by assuming that all functions in the original variables depend on
x − ct, thus replacing time derivatives with −c∂x.

In order to handle the unknown free surface, we reformulate this system using a conformal
map from the physical domain to the lower-half plane with horizontal and vertical coordinates
denoted by ξ and η, respectively. The map can be found by solving the harmonic boundary value
problem

yξξ + yηη = 0 for − ∞ < η< 0,

y = Y(ξ ) at η= 0,

y ∼ η as η→ −∞,

where Y(ξ , t) = ζ (x(ξ , 0)). The harmonic conjugate variable x(ξ , η) is defined through the Cauchy–
Riemann relations for the complex function z(ξ , η) = x(ξ , η) + iy(ξ , η). In the transformed plane,
the velocity potential φ(ξ , η) ! φ(x(ξ , η), y(ξ , η)) and its harmonic conjugate ψ(ξ , η) also satisfy
Laplace’s equation.

Under this transformation, the kinematic boundary condition becomes Ψ = cY, the conjugate
variable relation yields

Xξ = 1 − H [Yξ ], (2.5)

and the dynamic boundary condition becomes

c2

2

(
1
J

− 1
)

+ Y + M
X3
ξ J7/2

= 0, (2.6)

where J = X2
ξ + Y2

ξ , H is the Hilbert transform and the bending term M is a lengthy function given
in [11]. These equations complete an integro-differential system for the free surface displacement
Y. They are equivalent to that obtained in [10] by using a conformal map on a steady solution
under the action of a mean flow opposite c.
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Linearizing (2.1)–(2.4) and assuming monochromatic waves ζ = A ei(kx−ωt) and φ =
B e|k|y ei(kx−ωt), one obtains the dispersion relation

ω2 = |k|(1 + k4) or c2 =
(

1
|k|

+ |k|3
)

, (2.7)

which has a phase speed minimum with

k∗ = ( 1
3 )1/4 ≈ 0.7598, c∗ =

√
31/4 + 3−3/4 ≈ 1.3247.

The equation governing modulations of a monochromatic wave is derived by substituting
(
ζ

φ

)

∼ ϵ

(
A(X, T)

B(X, T) e|k|y

)

ei(kx−ωt) + c.c. + ϵ2

(
ζ1
φ1

)

+ ϵ3

(
ζ2
φ2

)

+ · · · (2.8)

into (2.1)–(2.4), and ensuring that the series is well ordered for t = O(ϵ−2). The steps are standard
and we state the results for the minimum speed carrier wave k∗ only. Then, A satisfies (1.1),
B = −ic∗A, and

λ= 37/8

2
, µ = 79

88
3−9/8.

Because λµ > 0, there is a family of dark solitary waves given by

A = a tanh(qX) e−iΩT, q =
( µ

2λ

)1/2
a, Ω = µa2. (2.9)

In the original fluid equations, these solutions asymptote to the first-order Stokes’ wave solution
in the far field. Stokes-like waves with A constant have the same amplitude-dependent frequency
Ω(a). The Stokes and dark solitary waves have c > c∗ with approximate speed–amplitude
dependence in the primitive variables given by

c − c∗ ∼ µ

4k∗ |ζmax|2.

These results will be compared below with the numerically computed solutions to the full
potential flow system. We restrict ourselves in this paper to dark solitary waves with zero
amplitude at the origin and with a phase-shift of π in the carrier wave between ±∞,
corresponding, in the NLS case, to (2.9). In addition to these, the NLS equation supports ‘grey’
solitary waves, depending on an additional parameter K

A = a
√

q2 + K2
[q tanh(qX) − iK] ei(KX−ΩT)

and
q2 =

( µ

2λ

)
a2 − K2, Ω = µa2 + λK2.

For 0 < K ≤ (µ/2λ)1/2a, these solutions are also asymptotic to Stokes’ waves at infinity, but have
a non-zero minimum amplitude of (2λ/µ)1/2K at the origin and a phase shift 2 tan−1(q/K) < π .
We believe that there is no a priori reason that such solutions cannot be translated into steadily
travelling solutions of the potential flow equations, but their numerical computation appears
more delicate. Solutions of this type will therefore be considered elsewhere.

3. Results
Two new branches of solutions to the full travelling-wave potential equations (2.5)–(2.6) are
computed on a large periodic domain using a Fourier approximation. The resulting algebraic
equations for the Fourier coefficients are solved using Newton’s method, and once a solution
on a branch is found, solutions along this branch are computed through continuation methods.
It is somewhat delicate to find the initial dark solitary wave solutions because there are other
solutions (such as constant amplitude nonlinear periodic Stokes waves) with the same carrier
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Figure 1. Speed–amplitude solution curves for travelling wave branches near the minimum linear speed c∗ (which is shown
by the vertical line). The dashed curves labelled SW, GSW and PW correspond to, respectively, the bright solitary, generalized
solitary and periodic travelling waves discussed in [11]. There are two dark solitary wave branches shown with diamonds and
circles corresponding, at small amplitudes, to the two cases of (3.1). The branch of waves with a minimum at x = 0 at small
amplitude (see figure 2) is shown on (a) (diamonds). The branch of waves with a maximum at x = 0 at small amplitude (see
figure 3) is shown on (b) (circles). This latter solution branch can be extended to c < c∗, where it is no longer a dark soliton,
but a solitary wave. In both graphs, the solid line is the speed–amplitude curve predicted by the NLS equation. The amplitude
parameter in all cases is 1

2 [max(Y) − min(Y)].

period and nonlinear speed. In order to find an initial branch of non-trivial dark solitary solutions,
we fix c < c∗ and add a localized ‘forcing’ F(x − ct) (physically corresponding to a pressure force
on the free surface) to (2.5)–(2.6). This forced branch is then continued by increasing c to values
c > c∗, where the solutions are no longer localized near the forcing, and have periodic ‘tails’. If
one then removes the forcing gradually, one obtains free finite-amplitude solutions (i.e. the tails
alone, without the localized disturbance of the forced solution). In most cases, the method we
just described yields uniform periodic Stokes waves. Dark solitary waves are found by choosing
judiciously the computational domain length L. For c ≈ c∗, the tails described above are the carrier
wave that we wish to modulate into a dark solitary wave. This carrier wave has a period close
to 2π/k∗. Because dark solitary waves (2.9) add a phase shift of π to the carrier, we chose a
domain L ≈ (2n + 1)π/k∗ for a relatively large n. This forces the solution to have the requisite
phase shift and avoids the purely periodic Stokes wave. All solutions were assumed to be even
about x = 0, and this symmetry centres the dark solitary wave there. In most examples presented,
L = 368.4 and n = 44. In the computations shown typically 1024 Fourier modes provide accurate
solutions although we performed computations at different resolutions to confirm convergence.
The convergence criterion was that the residual, measured in the l1-norm, was less than 10−10.

There are two families of even solutions that can be sought. Because the NLS solution (2.9) is
odd about x = 0, the carrier wave also has to be odd, of the form ±2 sin(k∗(x − cpt)), resulting in
two free surface profiles at small amplitude:

ζ ∼ ±2ϵa tanh
(
ϵa
( µ

2λ

)1/2
(x − cgt)

)
sin (k(x − (cp + µ(ϵa)2)t)). (3.1)
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Figure 2. Travelling darkwave solitarywave solutions corresponding to the positive sign branch in (3.1). From (a–d), onemoves
along the branch increasing the amplitude parameter from solutions whose envelope is well described by the dark soliton of
NLS (dashed line) to a solution that resembles pairs of bright solitary waves with non-decaying periodic tails.
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Figure 3. Travelling dark wave solitary wave solutions corresponding to the negative sign branch in (3.1). From (a–d), one
moves along thebranch increasing the amplitudeparameter fromsolutionswhose envelope iswell describedby the dark soliton
of NLS (dashed line) to a solution that resembles pairs of bright solitary waves with non-decaying periodic tails.

The positive sign corresponds to a wave with a minimum at x = 0, whereas the negative sign
wave has a corresponding maximum. This distinction seems to be valid only at very small
amplitude.
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Figure 4. Localized solution on the dark solitary wave branch. The solution was computed on the same domain as in figure 3
but is shown on a smaller domain.

In figure 1, we show the bifurcation diagram for these two branches of dark solitary waves,
together with the branches of bright solitary (localized wave packet solitary waves), generalized
solitary waves (wavepacket solitary with finite amplitude far field oscillations) and periodic
waves found previously in [11]. Note that, even though small amplitude wave packet solitary
waves are not allowed by the defocusing NLS equation in this situation, they do occur at large
amplitudes. The two new branches of dark solitary waves compare well with the predictions
from the NLS equation for small amplitude. At larger amplitude, the branches of solution
follow closely those of generalized solitary waves. In figures 2 and 3, sample profiles along
the dark solitary wave branches corresponding to the two cases in (3.1) are shown. Clearly, as
the amplitude increases, the solution transitions from a hyperbolic tangent-like dark soliton to
pairs of large amplitude bright solitons with non-decaying periodic tails akin to those found
in [11]. The principal difference at larger amplitudes between the solution of figures 2 and 3 is
the separation distance between the two largest troughs. Solution curves in figure 1 are shown up
to the points where we feel confident that the solutions are well resolved (by changing domain
size and resolution). The continuation of the branches past these points was delicate with slow
convergence of Newton iterations and high sensitivity on domain size and resolution. One of the
branches could be continued to the region c < c∗ and the solution, as seen in figure 4 becomes
localized on two bright solitary waves.

4. Conclusions
Dark solitary wave solutions, predicted by the NLS equation, were successfully computed in the
primitive irrotational Euler equations for water waves with flexural-gravity boundary conditions.
The NLS solutions approximate these waves well for small amplitude, but at larger amplitudes
we find that the branches become a pair of bright solitary or a pair of bright generalized solitary
waves. While the infinite extent of these dark solitons may preclude their observation, the
existence of these waves point to the possibility of ‘wave defects’ in more realistic situations where
the phase of the carrier wave jumps by ±π . There are other possible free surface fluid systems with
travelling wave dark solitons worth investigating, most notably the interfacial problem between
two immiscible fluids of different densities, under the action of both gravity and surface tension
forces. In this case, if the densities are close, the defocusing NLS equation arises out of a minimum
of the phase speed [12] and we expect, similarly, the full equations to have dark solitary waves.
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More generally, these results for travelling waves are a good indication that unsteady dark solitary
waves could also, in principle, be found in the primitive potential flow equations, for example in
deep water gravity waves. Theoretical arguments for this are given in [13].

This work was supported by EPSRC, under grant nos. GR/S47786/01, EP/J019569/1 and EP/J019321/1, and
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