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Abstract

Rationale: Globally there are approximately 9 million new active tuberculosis cases and 1.4 million deaths annually. Effective
antituberculosis treatment monitoring is difficult as there are no existing biomarkers of poor adherence or inadequate
treatment earlier than 2 months after treatment initiation. Inadequate treatment leads to worsening disease, disease
transmission and drug resistance.

Objectives: To determine if blood transcriptional signatures change in response to antituberculosis treatment and could act
as early biomarkers of a successful response.

Methods: Blood transcriptional profiles of untreated active tuberculosis patients in South Africa were analysed before,
during (2 weeks and 2 months), at the end of (6 months) and after (12 months) antituberculosis treatment, and compared to
individuals with latent tuberculosis. An active-tuberculosis transcriptional signature and a specific treatment-response
transcriptional signature were derived. The specific treatment response transcriptional signature was tested in two
independent cohorts. Two quantitative scoring algorithms were applied to measure the changes in the transcriptional
response. The most significantly represented pathways were determined using Ingenuity Pathway Analysis.

Results: An active tuberculosis 664-transcript signature and a treatment specific 320-transcript signature significantly
diminished after 2 weeks of treatment in all cohorts, and continued to diminish until 6 months. The transcriptional response
to treatment could be individually measured in each patient.

Conclusions: Significant changes in the transcriptional signatures measured by blood tests were readily detectable just 2
weeks after treatment initiation. These findings suggest that blood transcriptional signatures could be used as early
surrogate biomarkers of successful treatment response.
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Introduction

Approximately one third of the world’s population is infected

with the pathogen Mycobacterium tuberculosis (Mtb), the cause of

tuberculosis (TB). While most remain asymptomatic, with latent

TB, approximately 10% develop active TB during their lifetime

[1]. Over nine million new cases of active TB and 1.4 million

deaths annually have been reported [2]. Improved diagnostics,

treatments of shorter duration and improvements in treatment

monitoring are badly needed.

Active pulmonary TB diagnosis requires culture of Mtb, which

may take up to 6 weeks [3]. Although the World Health

Organisation (WHO) endorsed GeneXpert MTB/RIF automated
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molecular test for Mtb results in rapid diagnosis [4], this test still

requires sputum which may be difficult to obtain. Difficulties in

obtaining sputum lead to approximately 30% of patients in the

USA and 50% of South African patients to be treated empirically

[2,5]. After diagnosis there are no available early biomarkers

correlating with treatment success, resulting in significant delay in

assessing treatment response. Currently conversion to negative

culture after 2 months of treatment is the only accepted biomarker

[6]. However a systematic review and meta-analysis of sputum

conversion revealed low sensitivity and modest specificity for the

prediction of treatment failure [7]. Chest X-rays are commonly

used to assess response but are not universally available and

assessment is difficult to standardise [8]. This lack of effective

treatment monitoring can lead to the development and spread of

multidrug resistant (MDR) and extensively drug resistant (XDR)

TB, which are mainly caused by non-adherence or inappropriate

drug regimens, with a detrimental impact on global TB control.

To date transcriptional profiling has been used successfully in

cancer classification, to identify prognostic biomarkers [9], and to

distinguish between inflammatory and infectious diseases [10].

Moreover we recently demonstrated a whole blood transcriptional

signature which could distinguish active TB from latent TB and

other diseases, and which correlated with radiographic extent of

disease [11]. This active TB blood signature diminished in seven

patients after 2 months of successful treatment and reverted to that

of healthy individuals after completing treatment [11]. Earlier

blood biomarkers correlating with treatment response would

improve monitoring of individual patient treatment responses

without the need for sputum production, which may permit

stratification of patients requiring differing treatment regimens.

Additionally early biomarkers may aid in anti-TB drug develop-

ment.

Our study was therefore designed to establish if early changes in

blood transcriptional responses can be observed during standard

anti-TB treatment. In addition this adds to our previous study by

examining the transcriptional treatment response directly in a

larger cohort from a high-burden TB country, South Africa [2].

Our study demonstrated that a change in the whole blood host

transcriptional signatures was significantly detectable as early as 2

weeks after initiation of treatment, providing potential for the

development of early biomarkers for treatment monitoring.

Materials and Methods

Study Population and Inclusion Criteria
All participants in South Africa were recruited from the Ubuntu

TB/HIV clinic in Khayelitsha, a large peri-urban African

township in Cape Town which has over 1000 TB notifications

annually. During the period May 2008– August 2010 whole blood

was collected from adult patients (age .17 years) with drug

sensitive Mtb culture proven active pulmonary TB (Figure 1A).

Due to the population’s high Mtb exposure, controls were

considered as asymptomatic individuals with previous exposure

to Mtb (latent TB patients); exposure was evidenced by a positive

QuantiFERON-TB Gold In-Tube (QFT) (Cellestis). Participants

with latent TB were recruited from individuals self-referring to the

voluntary testing clinic. All participants had negative HIV status.

The UK 2011 Active TB Validation Cohort were all Mtb

culture proven adults (.17 years) recruited between August 2009 -

November 2011 from the Royal Free Hospital, London

(Figure 1B). All participants in our earlier 2009 study were

selected as previously described [11]. Clinical and demographic

data was recorded for all participants and stored in a database.

Ethics Statement
This study was approved by the University of Cape Town

Faculty of Health Sciences Human Research Ethics Committee,

Cape Town, South Africa (FHS HREC 012/2007), and the

Central London 3 Research Ethics Committee (09/H0716/41).

All participants gave informed written consent.

Follow Up Period
All 29 treated 2011 South Africa active TB patients completed a

full 6 months of treatment. Patients were sampled for venous blood

at time points: pre-treatment (29/29 patients), 2 weeks (25/29

patients), 2 months (24/29 patients), 6 months (25/29 patients)

and 12 months (29/29 patients) after initiation of treatment

(Figure 1A). Patient’s response to anti-TB treatment was assessed

clinically during the 12 month period. All patients were discharged

from the program as cured.

Eight treated 2011 UK Active TB patients completed a full 6

months of treatment, one patient completed 9 months of treatment

due to radiographic uncertainty of treatment success. Each patient

was sampled for venous blood at 2 weeks, 2 months, 4 months and

6 months after initiation of treatment (Figure 1B). Four patients

had a sample at every time point, three patients had samples at 2,

4 and 6 months, and four patients had samples at 2 weeks and 6

months. As part of their routine medical care all patients had chest

X-rays at the beginning and end of their treatment.

IFNc Release Assay Testing
The QFT Assay (Cellestis) was performed according to the

manufacturer’s instructions.

Gene Expression Profiling
3 ml of whole blood were collected into Tempus tubes (Applied

Biosystems/Ambion) by standard phlebotomy, vigorously mixed

immediately after collection, and stored between 220 and 280uC
before RNA extraction. South Africa and UK 2011 sample’s RNA

was isolated using 1.5 ml whole blood and the MagMAX-96

Blood RNA Isolation Kit (Applied Biosystems/Ambion) according

to the manufacturer’s instructions. 250 mg of isolated total RNA

was globin reduced using the GLOBINclear 96-well format kit

(Applied Biosystems/Ambion) according to the manufacturer’s

instructions. Total and globin-reduced RNA integrity was assessed

using an Agilent 2100 Bioanalyzer (Agilent Technologies). RNA

yield was assessed using a NanoDrop800 spectrophotometer

(NanoDrop Products, Thermo Fisher Scientific). Biotinylated,

amplified antisense complementary RNA (cRNA) targets were

then prepared from 200–250 ng of the globin-reduced RNA using

the Illumina CustomPrep RNA amplification kit (Applied

Biosystems/Ambion). 750 ng of labelled cRNA was hybridized

overnight to Illumina Human HT-12 V4 BeadChip arrays

(Illumina), which contained more than 47,000 probes. The arrays

were washed, blocked, stained and scanned on an Illumina iScan,

as per manufacturer’s instructions. GenomeStudio (Illumina) was

then used to perform quality control and generate signal intensity

values.

The 393- and 86-transcript signatures were translated from the

HT-12 V3 BeadChip arrays to HT-12 V4 BeadChip arrays using

GeneSpring GX version 11.5 (Agilent Technologies) and trans-

lated to slightly fewer probes in V4 (Figure S3).

Raw data were processed using GeneSpring GX version 11.5

(Agilent Technologies) and the following was applied to all

analyses. After background subtraction each probe was attributed

a flag to denote its signal intensity detection p-value. Flags were

used to filter out probe sets that did not result in a ‘present’ call in

Early Detection of Tuberculosis Treatment Response
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Figure 1. Numbers enrolled and assigned to cohorts. (A) South Africa: A total of 67 active and latent TB patients were enrolled into the
untreated South Africa 2011 Cohort. A total of 29 active TB patients were included in the treated South Africa 2011 Cohort. 15 were randomised into
the Active TB Training Set and 14 into the Active TB Test Set. (B) UK: A total of 8 active TB patients were enrolled into the treated UK 2011 Cohort.
doi:10.1371/journal.pone.0046191.g001
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at least 10% of the samples, where the ‘present’ lower cut off

= 0.99. Signal values were then set to a threshold level of 1, log2

transformed, and per-chip normalised using 75th percentile shift

algorithm. Next per-gene normalisation was applied by dividing

each messenger RNA transcript by the median intensity of the

latent TB samples. All statistical analysis was performed after this

stage.

The raw and normalised microarray data has been deposited

with the GEO (GSE40553). All data collected and analysed in the

experiments adhere to the Minimal Information About a

Microarray Experiment (MIAME) guidelines.

Data Analysis
GeneSpring 11.5 was used to select transcripts that displayed a

degree of expression variability. A filter was set to include only

transcripts that had at least twofold changes from the median and

present in at least 10% of the samples. To divide the South Africa

2011 cohort into a training and test set we used a computer

algorithm for randomisation [12]. For the specific treatment

response signature transcripts had to satisfy a threefold expression

filter in 12 of the 15 training set matched untreated and 6 month

treated samples.

Selected transcripts were then filtered by different levels of

statistical stringency in GeneSpring 11.5. Non-parametric tests

with multiple testing corrections were applied to all analyses

[13,14]. The active TB-transcriptional signatures was generated

by Mann Whitney unpaired Bonferroni p,0.01 (Figure 2A). The

statistical filter used to generate the specific TB treatment

response-transcriptional signature was Mann Whitney paired

Benjamini Hochberg p,0.01. The 393 and 86 active TB

signatures were obtained as described previously (Figure S2)

[11]. Visualisation of the data was performed by heatmaps using

hierarchical clustering where the correlation distance metric

employed for the clustering was Pearson’s uncentered with

average linkage [15]. Heatmaps displayed either hierarchical

clustering of both transcripts and samples or hierarchical clustering

of transcripts with forced grouping of samples. Visualisation of

common and different transcripts by venn diagrams was

performed in GeneSpring 11.5.

Molecular distance to health (MDTH) was determined for each

time point, as previously described [16]. The temporal molecular

response was calculated for a particular gene list for each

individual patient. The raw intensity transcript values in the gene

list were consecutively compared at each time point to the baseline

(pre-treatment). The numbers of transcripts that were at least two-

fold up or two-fold down from the baseline were added together

for each time point. This sum was then divided by the total

number of transcripts in the gene list to calculate a percentage

score for each time point. This generated a percentage score of

change at each time point compared to the baseline, where the

baseline always remains zero (no change from itself). To allow for

two-fold changes from zero any baseline raw transcript intensity

values of zero were converted to 10220. MDTH and temporal

molecular response were calculated in Microsoft Excel 2010.

GraphPad Prism version 5 for Windows was used to generate

graphs and determine simple linear regression. Linear mixed

models, fixed effects, were used to determine p-values associated

with MDTH and temporal molecular response graphs, using SAS/

STATHsoftware (SAS Institute Inc., USA). Pathway analyses were

performed using Ingenuity Pathway Analysis (Ingenuity Systems,

Inc., Redwood, CA). Canonical pathways analysis identified the

most significantly represented pathways in the datasets (Fisher’s

exact Benjamini Hochberg p,0.05).

Results

Participants Demographics and Characteristics
Participant numbers in the 2011 cohorts are described in

Figure 1; 29 South African and 8 UK active TB patients were

recruited and sampled for transcriptomic analysis. All treated

active TB patients had fully sensitive Mtb, took all treatment

prescribed, showed successful clinical/radiological response to

standard therapy (rifampin, pyrazinamide, isoniazid and etham-

butol for 2 months followed by rifampin and isoniazid for 4

months), did not relapse within 1 year and were discharged from

the program as cured. The 29 South African patients were

sampled at: pre-treatment (29/29 patients), 2 weeks (25/29

patients), 2 months (24/29 patients), 6 months (25/29 patients)

and 12 months (29/29 patients) after initiation of treatment.

Thirty-eight South African latent individuals were sampled as

asymptomatic controls. Only five latent individuals were aware of

prolonged contact with another individual with active TB.

Participant characteristics are reported in Table S1 in the online

data supplement.

A Change in Transcriptional Response is Readily
Detectable after 2 Weeks of Treatment

To determine whether an active TB blood transcriptional

signature was perturbed upon treatment, gene expression profiles

of significantly detectable genes without further filtering (detected

p,0.01 from background, 15,837 transcripts), were examined

in the 29 active TB patients before, during (2 weeks and 2

months), at the end of (6 months), and after treatment (12 months).

By plotting the expression profiles of the 15,837 transcripts along a

time scaled x-axis, a marked change was readily observed after 2

weeks of anti-TB treatment (Figure 2A).

Next an active TB 664-transcript signature (Table S2) was

derived from differentially expressed genes in the pre-treatment

active TB patients compared to the latent TB patients in the South

Africa 2011 cohort. First, all transcripts were normalised to the

median of the latent TB patients, then only transcripts with $

twofold change from the median were selected, before applying a

statistical filter. When this signature was applied to the South

Africa 2011 Cohort, during and after treatment, a marked and

rapid change in the transcriptional response was observed as early

as 2 weeks, which then continued through 2 and 6 months, after

treatment initiation (Figure 2B). In agreement with our previous

study, Ingenuity Pathway Analysis (IPA) of the active TB 664-

transcript signature demonstrated a highly significant over-

representation of Interferon (IFN)-signaling genes including Type

I and Type II IFN (Figure 2C and D, p,0.001, Table 1).

The Transcriptional Response Changes Significantly at 2
Weeks after Treatment Initiation

Since it was observed that the South Africa active TB 664-

transcript signature diminished in response to treatment we wished

to determine if this was a statistically significant change. To assess

this we employed the previously described weighted molecular

distance to health (MDTH) algorithm as this generates a

quantitative score for the degree of transcriptional perturbation

in a disease cohort relative to the controls [16]. Moreover we have

already demonstrated that MDTH positively correlates with the

severity of active pulmonary TB, as defined by the radiological

extent of disease [11]. We found that the median MDTH of the

South African untreated active TB 664-transcript signature

decreased significantly at 2 weeks onwards, compared to the

median pre-treatment MDTH (Figure 2E).

Early Detection of Tuberculosis Treatment Response

PLOS ONE | www.plosone.org 4 October 2012 | Volume 7 | Issue 10 | e46191



Figure 2. A blood transcriptional response is detectable after only 2 weeks of treatment. (A) Profile plot of all detectable transcripts
(15837) obtained without any filtering, in the treated active TB patients in the South Africa 2011 cohort. It can be seen that gene expression changes
after just 2 weeks of treatment. (B) 664 differentially expressed transcripts between untreated active and latent TB patients in the untreated South
Africa 2011 cohort, were obtained by twofold change from the median and stringent statistical filtering (Mann Whitney, Bonferroni p,0.01). The
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We then developed a novel metric that provides a quantitative

measure of an individual’s temporal change in gene expression.

This ‘temporal molecular response’ offers a potential advantage in

the clinical setting, allowing assessment of each patient’s expres-

sion change without reference to a control group. For a given

signature the temporal molecular response was determined by

measuring the transcriptional perturbation between two time

points, and expressing this value as a percentage of the total

number of transcripts constituting the signature. The mean

temporal molecular response calculated for the active TB 664-

transcript signature revealed a statistically significant change in the

transcriptional response at 2 weeks after treatment initiation

(Figure 2F). This continued to change between 2 weeks and 2

months, and between 2 weeks and 6 months, after treatment

initiation (Figure 2F). The magnitude of the patient’s temporal

molecular response during treatment (at 2 weeks and 2 months)

did not correlate with the magnitude of their untreated

transcriptional signature, as measured by MDTH (p,0.01) (Figure

S1). This suggests a patient’s untreated transcriptional signature is

not predictive of the patient’s treatment response.

In summary we show that this active TB 664-transcript

signature (derived from untreated active and latent TB patients)

significantly and rapidly changed after 2 weeks of initiating

treatment (Figure 2B, E and F).

A Specific TB Treatment Response Signature Also
Significantly Diminishes At 2 Weeks Post Treatment

We next sought to define a transcriptional signature that

specifically reflected the patients’ response to clinically successful

anti-TB treatment (comparing time points 0 and 6 months). To

determine this treatment specific signature we first used a

computer algorithm to randomise the South Africa 2011 cohort

into two groups of patients [12] (Figure 1A). This allowed us to

derive the signature from one group of patients (active TB

Training Set) and then validate our findings in another

independent group of patients (active TB Test Set). 320 transcripts

(Table S3) were found to be significantly differentially expressed

between the pre-treatment active TB Training Set samples and

their paired 6-month treated samples (Figure 3A). The treatment

specific 320-transcript signature was shown to rapidly and

significantly change at 2 weeks onwards after treatment initiation,

in the active TB Training set (Figure 3A and B). This was

validated in the active TB Test Set (Figure 3C and D). In both

cohorts the change in the temporal molecular response was

significant at 2 weeks post-treatment (Figure 3B and D). Analysis of

the 320 transcripts by IPA indicated the most significantly

represented pathways were related to the innate immune

pathways, encompassing genes related to complement and Toll-

like receptors (Figure 3E). The treatment specific 320-transcript

signature also contained 74% of genes present in the active TB

664-transcript signature (Figure 3F).

Although by applying the temporal molecular response it was

observed that the treatment specific 320-transcript signature

changed significantly between 2 weeks and 6 months post

treatment initiation, this was no longer apparent between 2

months and 6 months post treatment initiation (Figure 3B and D).

This could suggest that the transcriptional response reaches a

plateau at 2 months and therefore the 2 month gene expression

profiles would not be significantly different from the latent TB

expression profiles. To establish whether any significant changes

occurred between 2 months and the latent TB patients, we

compared each of the time points: 2, 6 and 12 months to the latent

TB profiles. We determined that 96 transcripts were significantly

differentially expressed between 2 months and latent TB (Mann

Whitney paired Benjamini Hochberg p,0.01, data not shown).

Ingenuity Pathway Analysis demonstrated the top three significant

pathways associated with the 96 transcripts were ‘role of NFAT in

regulation of the immune response’, ‘integrin signalling’ and

‘primary immunodeficiency signalling’ (data not shown). However

no genes were significantly differentially expressed between 6 & 12

months, 6 months & latent TB, and 12 months & latent TB (Mann

Whitney paired Benjamini Hochberg p.0.01).

Measuring an Individual Patient’s Transcriptional
Response to anti-TB Treatment

Each patient’s discrete treatment specific response (320 tran-

scripts) is shown in the heatmaps and using the temporal molecular

response in Figure 4 and Figure S2. All 29 patients in the active

TB treated cohort had a rapid and early positive temporal

response after 2 weeks of treatment. Interestingly, not all the

individual transcriptional responses were identical (Figure 4A,

Figure S2A) as demonstrated by the quantitative scoring provided

by the temporal molecular responses (Figure 4B, Figure S2B).

Validation of the 2 Week Treatment Transcriptional
Response

To determine whether the significant change in the treatment

specific 320-transcript signature that we had demonstrated in a

South African cohort was also applicable to patients in an

intermediate burden setting, we tested the signature in a UK

cohort. As observed in the South African cohort the signature was

rapidly and significantly diminished from 2 weeks post-treatment

initiation (Figure 5A and B). The changes in the blood

transcriptional response could be clearly quantified in individual

patients as shown by the temporal molecular response (Figure 5C).

The significant transcriptional blood change correlated with

successful treatment of patients as assessed after 6 months by

radiographic and clinical parameters (data not shown).

For additional validation that active-TB transcriptional signa-

tures show significant changes as early as 2 weeks after treatment

initiation, we demonstrated that the active TB signatures (393- and

86-transcript signatures) from our earlier study [11], also

significantly diminished after 2 weeks treatment, in the South

Africa 2011 treated cohort (Figure S3A–D).

Discussion

We derived a whole blood active-TB transcriptional signature

consisting of 664 transcripts capable of distinguishing untreated

South African active TB patients from South African latent TB

patients. We demonstrate that this active-TB transcriptional

signature significantly diminishes in active TB patients after just

2 weeks of initiation of clinically successful anti-TB treatment. In

addition we demonstrate that a treatment-specific transcriptional

heatmap shows the dynamic change of gene expression in response to treatment in the treated South Africa 2011 cohort normalised to the median
of all transcripts. (C) Ingenuity Pathway Analysis (IPA) of the 664 transcripts shows the top significant pathways. (D) Interferon signaling pathway
from the 664 list in IPA. (E) Weighted molecular distance to health (MDTH) of the treated South Africa 2011 cohort shows the signature significantly
diminishes over time (linear mixed models, bars represent median & IQR, *** = p,0.001, ** = p,0.01, * = p,0.05). (F) Temporal molecular response
further shows significant and early changes in response to anti-TB treatment (linear mixed models, bars represent mean & 95% confidence intervals).
doi:10.1371/journal.pone.0046191.g002
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Figure 3. Specific treatment response signature significantly diminishes at 2 weeks onwards. A specific TB treatment response signature
was derived from significantly differentially expressed genes between untreated samples in the South Africa Active TB Training Set and their
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signature, consisting of 320 transcripts, derived from comparing a

cohort of South African untreated active TB samples to their

paired 6-month end of treatment samples, also significantly

diminishes after just 2 weeks of anti-TB treatment. Furthermore

the significant change in the treatment-specific signature was

validated in two more clinically successfully treated cohorts, from

the high TB-burden setting of South Africa and from the

intermediate TB-burden setting of London, UK. Both the

active-TB and treatment-specific transcriptional signatures were

dominated by IFN signaling and innate immune response genes.

The transcriptional response to anti-TB treatment could also be

individually quantified for each patient. Together, these findings

suggest that blood transcriptional signatures could be used as early

surrogate biomarkers of a successful treatment response, in both

the clinical setting and in drug development.

TB treatment monitoring is a major challenge for attempts to

eradicate Mtb infection. In April 2010 the Centers for Disease

Control and National Institutes of Health brought together experts

in the field and research scientists with the sole purpose of

addressing this problem [17]. Poor treatment monitoring, and

hence inadequate treatment, leads to worsening of a patient’s

disease, increasing the potential for disease spread and the risk of

developing drug resistant mycobacteria. Currently the 2-month

sputum culture conversion is the only biomarker of successful TB

treatment [6]. However it is time consuming, taking several weeks

to grow the bacilli and results can be compromised by

contamination. Moreover patients who have clinically improved

may be unable to expectorate sputum at 2 months and potentially

incorrectly labelled as having a negative culture [18]. Further-

more, although sputum conversion is commonly used as a

surrogate end point for treatment response in clinical trials

evaluating new drugs, a systematic review and meta-analysis to

assess its accuracy in predicting an individual’s treatment failure

revealed low sensitivity and only modest specificity [7,19]. While

other biomarkers have also been trialled, including C-reactive

protein, IFN-cand neopterin, all have similarly shown poor

sensitivity and specificity [20]. Chest X-rays are commonly used

in the clinical setting as a marker of treatment response but they

generally improve slower than the clinical response and lack

specificity as interpretation can be confounded by previous lung

damage [18]. Moreover interpretation of radiographic changes in

response to treatment has not yet been standardised, and the

facilities are not always available in developing countries [8].

Therefore there is clearly a need for early and easily detectable

biomarkers for treatment monitoring, capable of potentially

identifying poor responses due to drug resistance or lack of

treatment adherence, and available for patients unable to produce

sputum.

In our earlier study we demonstrated in a small number of

patients that blood transcriptional signatures in UK active TB

patients diminished after 2 months of anti-TB treatment [11]. In

our current study we have shown a significant blood transcrip-

tional response to anti-TB treatment occurs rapidly, as early as 2

weeks (Figures 2–5, E2–3). This early transcriptional response

could be as a consequence of the observed rapid and high killing

capacity of antimycobacterial antibiotics leading to a substantial

reduction in mycobacterial load [21,22,23]. Although the signa-

tures we have derived may not be completely specific for active

TB, since clinically similar diseases such as sarcoidosis show

common transcripts [24], demonstration of a response to

antimycobacterial therapy as we show here, could help resolve

this overlap and so improve diagnostic specificity.

We have shown here that the whole blood active-TB

transcriptional signature is dominated by IFN signaling and innate

immune response genes. These findings are in agreement with our

previous work [11], and with other gene expression studies in TB

[25,26]. This robust correlation occurring between different host

populations, likely different Mtb strains, diverse environments and

microarray analysis strategies indicates that blood transcriptomics

have great potential to be developed into robust novel diagnostic

tools. Furthermore we demonstrate here that the derived

treatment specific 320-transcript signature also had many genes

in common with the active TB 664-transcript signature (Figure 3F).

This overlap of genes is highly suggestive that this study will help

guide future development of a subset of genes that most accurately

correlates with a patient’s response to anti-TB treatment, acting as

a surrogate marker of treatment failure or success.

Due to the ethical design of this study we do not present active

TB patients who did not respond to TB treatment. Our study has

demonstrated a very important proof-of-principle that active TB

patients who are successfully treated have a dramatic measurable

change in their blood gene expression profiles as early as 2 weeks.

The use of a commercially available whole genome microarray

platform together with broadly available bioinformatics analyses

programmes will easily allow rapid validation in subsequent TB

treatment studies, including a comparison with patients with

MDR-TB and HIV/TB co-infected cohorts. This study focussed

on TB patients who are not co-infected with HIV, as they

represent the majority of patients infected with Mtb. WHO 2010

reports that of the 1.4 million deaths, three-quarters were not

known to be co-infected with HIV [2].

To the best of our knowledge no other studies have specifically

derived transcriptional signatures of response to TB treatment.

However two other studies have described relevant treatment

related transcriptional differences. Mistry et al found that patients

who had completed a course of anti-TB treatment displayed

similar expression profiles to a latent TB group, but they did not

examine any patients during their anti-TB treatment course, and

used custom arrays [27], therefore more difficult for others to

validate. Joosten et al showed in a small number of samples that

their active TB gene set diminished after 2 months of anti-TB

treatment, however they did not examine any patients at earlier

timepoints [28]. Our early TB treatment blood transcriptional

signature has great potential for development as blood biomarkers

for clinical use and could be measured in the field using a

polymerase chain reaction assay, similar to the WHO endorsed

GeneXpert MTB/RIF test already in use for TB diagnostics in

both developing and developed countries. However a blood host

biomarker, based on our transcriptional signature, would have

advantages over the GeneXpert test since it would not require

sputum.

corresponding 6 month samples, 320 transcripts. (A) Heatmap of South Africa 2011 Active TB Training Set, normalised to the median of all transcripts,
shows transcripts differentiating over time in response to treatment. (B) Temporal molecular response further shows significant and early changes in
response to TB treatment in the Active TB Training Set (linear mixed models, bars represent mean & 95% confidence intervals, *** = p,0.001,
** = p,0.01, * = p,0.05). (C) Heatmap of South Africa 2011 Active TB Test Set, normalised to the median of all transcripts, shows transcripts
differentiating over time in response to treatment. (D) Temporal molecular response also shows in the Active TB Test Set significant and early
changes in response to TB treatment. (E) IPA of the 320 transcripts showing the most significant pathways. (F) Venn diagram shows many
overlapping genes between the active TB 664-transcript signature and the treatment specific 320-signature.
doi:10.1371/journal.pone.0046191.g003
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Figure 4. Individual patient’s transcriptional response occurred at a variable rate. 320 gene list, differentially expressed genes derived
from comparing the untreated expression profiles and their corresponding end of treatment (6 months) expression profiles in the South Africa 2011
Active TB Training Set. (A) Heatmap of South Africa 2011 cohort Active TB Training Set, normalised to the median of all transcripts, shows hierarchical
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A further problem in the management of TB is the extended

length of treatment, requiring a minimum duration of 6 months.

However the treatment duration required for maximum efficacy

and preventing resistance, has not been fully established. The

ability therefore to stratify patients into groups requiring shorter or

longer treatment durations, particularly in resource limited

settings, could be of value in improving patient compliance and

reducing treatment related side effects. We demonstrate here that

some patient’s transcriptional response appeared to plateau before

6 months (Figure 4 and Figure S2) suggesting blood transcriptional

signatures may help develop personalized treatment regimes.

In summary we have shown that transcriptional signatures,

measured in easily accessible whole blood, showed a significant

response to anti-TB treatment, as early as 2 weeks after initiation

of treatment, far quicker than currently available tests. In addition,

we have demonstrated this early response to anti-TB treatment

occurs in both high- and intermediate-burden settings. The

transcriptional response could be measured for each individual

TB patient, thus providing a potential clinical tool for single

clustered transcripts differentiating over time per individual. (B) Each patient’s temporal molecular response diminishes in the Active TB Training Set
cohort.
doi:10.1371/journal.pone.0046191.g004

Figure 5. Change in treatment specific signature is validated in an independent UK cohort. 320 gene list derived from the differentially
expressed genes between the untreated and 6 month treated samples in the treated South Africa 2011 cohort. (A) Heatmap of the treated UK 2011
Cohort, normalised to the median of all transcripts, shows diminution of the treatment specific transcriptional signature in the UK cohort in response
to successful anti-TB treatment. (B) Temporal molecular response shows significant changes in response at 2 weeks in the UK cohort (linear mixed
models, bars represent mean & 95% confidence intervals, *** = p,0.001, ** = p,0.01, * = p,0.05). (C) A diminished response can be seen in each
patient by their temporal molecular response.
doi:10.1371/journal.pone.0046191.g005
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patient treatment monitoring. Furthermore this could aid in

patient stratification for treatment with differing regimen lengths.

These findings provide a strong foundation for the development of

an early biomarker of successful anti-TB treatment response.

Development will require validation of these findings in larger

cohorts, including a group of patients who fail to respond to anti-

TB treatment. This potential biomarker of early treatment

response could allow rapid detection of inadequate treatment

regimens and poor treatment compliance, therefore ultimately

reducing disease spread and drug resistant Mtb.

Supporting Information

Figure S1 The Changing Transcriptional Response Is
Independent of the Magnitude of the Untreated Tran-
scriptional Signature. Weighted molecular distance to health

(MDTH) has been shown to correlate with radiological extent of

active TB disease [11]. The magnitude of the patient’s temporal

molecular response during treatment, at both 2 weeks and 2

months, did not correlate with the magnitude of their untreated

transcriptional signature, as evidenced measured by MDTH

(linear regression r2,0.25, p.0.01). However, the patient’s

temporal molecular response after treatment, at 6 months and

12 months, did significantly correlate with their untreated MDTH

(linear regression r2 = 0.32, p = 0.003 and r2 = 0.38, p = 0.0004

respectively).

(TIF)

Figure S2 Individual Patient’s Transcriptional Re-
sponse Occurred at a Variable Rate. 320 gene list,

differentially expressed genes derived from comparing the

untreated expression profiles and their corresponding end of

treatment (6 months) expression profiles in the South Africa 2011

Active TB Training Set. (A) Heatmap of South Africa 2011 cohort

Active TB Test Set shows hierarchical clustered transcripts

normalised to the median of all transcripts, differentiating over

time per individual. (B) Each patient’s temporal molecular

response in the South Africa 2011 cohort Active TB Test Set.

(TIF)

Figure S3 The Berry et al Active TB Signatures Also
Significantly Diminish in Response to Successful Treat-
ment. 393 and 86 signatures were defined as described [9]

differentiating active TB patients from latent TB patients/healthy

controls (393 signature), and differentiating active TB patients

from patients with other inflammatory and infectious diseases (86

signature). Both signatures diminished in response to anti-TB

treatment in the treated South Africa 2011 cohort. (A) Heatmap

shows hierarchical clustering of the transcripts, normalised to the

median of all transcripts, with samples grouped into time points.

(B) Heatmap shows hierarchical clustering of the transcripts,

normalised to the median of all transcripts, with samples grouped

per individual. (C) Temporal molecular response further shows

significant and early changes in response to anti-TB treatment

(linear mixed models, bars represent mean & 95% confidence

intervals, *** = p,0.001, ** = p,0.01, * = p,0.05). Summary of

demographics and clinical data. (1A) South Africa 2011 cohort.

Of the 29 untreated active TB patients, 16 were also included in

our previous Berry et al study [11]. Of the 38 untreated latent TB

patients, 17 were also included in our previous Berry et al study

[11]. For this present study all untreated samples were processed

again alongside all the other samples. (1B) UK 2011 cohort.

(TIF)

Table S1 Summary of demographics and clinical data.
(1A) South Africa 2011 cohort. Of the 29 untreated active TB

patients, 16 were also included in our previous Berry et al study

[11]. Of the 38 untreated latent TB patients, 17 were also

included in our previous Berry et al study [11]. For this present

study all untreated samples were processed again alongside all the

other samples. (1B) UK 2011 cohort.

(XLSX)

Table S2 List of the 664 transcripts in the active-TB
transcriptional signature.

(XLSX)

Table S3 List of the 320 transcripts in the treatment-
specific transcriptional signature.

(XLSX)
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