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Abstract

Reciprocating exchange with other humans requires individuals to infer the intentions of their partners. Despite the
importance of this ability in healthy cognition and its impact in disease, the dimensions employed and computations
involved in such inferences are not clear. We used a computational theory-of-mind model to classify styles of interaction in
195 pairs of subjects playing a multi-round economic exchange game. This classification produces an estimate of a subject’s
depth-of-thought in the game (low, medium, high), a parameter that governs the richness of the models they build of their
partner. Subjects in each category showed distinct neural correlates of learning signals associated with different depths-of-
thought. The model also detected differences in depth-of-thought between two groups of healthy subjects: one playing
patients with psychiatric disease and the other playing healthy controls. The neural response categories identified by this
computational characterization of theory-of-mind may yield objective biomarkers useful in the identification and
characterization of pathologies that perturb the capacity to model and interact with other humans.
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Introduction

Many of the inferences that we make about others, or about

their models of us, are silent and subtle [1,2]. One route for

understanding the neural basis of such inferences comes from

building computational models of social exchange that quantify

their nature and evolution over the course of interactions.

Recent behavioral and neuroimaging work in this area has

employed interactive economic games that required subjects to

model their partners’ strategies [3–6]. This work focused on

relatively small cohorts of subjects, or on subjects knowingly

playing a computer partner. Therefore, questions about individ-

ual differences in styles of play, and whether or not the partner

was treated by the brain like a human partner remain largely

open (but see 6).

Figure 1 outlines the strategy of the approach. We used a multi-

round reciprocation game (the multi-round trust game, Figure 1A),

classifying the play of a large (n = 195) number of pairs of players

(dyads) [7–9] via a computational realization of the models of each

other that they build [10]. This classification used the observed

patterns of monetary exchange to infer two parameters important

for all such exchanges: (1) the sensitivity of a subject to deviations

from fair splits of money across the two players (called inequality

aversion) [11]; and (2) the subject’s depth-of-thought or cognitive

level in the game, that is, the depth to which they modeled their

interaction with their partner [12]. After classification along these

two dimensions, we sought neural correlates of learning signals

(interpersonal error signals) inferred by the model that are

important for playing the game successfully (Figure 1B and 1C).

We describe the model below.

A player’s type is represented by her degree of inequality

aversion. Players value immediate payoffs, but to a lesser degree if

the split of money between them is inequitable [13]:

Ui(xi,xj ; ai,bi)~xi{ai max(xj{xi,0){bi max(xi{xj ,0) ð1aÞ

where xi is the money obtained by player i and xj is the amount

obtained by player j. Two sorts of inequity are potentially

important: envy (partner j gets more than subject i ; ai in eqn 1a)

and guilt (subject i gets more than partner j; bi in eqn 1a). The

envy and guilt parameters comprise what we consider as the type

of a player. Empirically, the majority of investors invest more than

half of the endowment and the modal behavior of trustees is to

split the sum of money evenly. Hence, the influence of ‘‘envy’’ on

subjects’ choices was minimal. For simplicity, we assume ai~0
and consider only ‘‘guilt’’ - the aversion to inequity favorable to

the subject – as the way to type a player. Therefore, player i’s type

is fully described by bi[½0,1�, the ‘‘guilt’’ parameter. The utility

function becomes:
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Ui(xi,xj ; ai,bi)~xi{bi max(xi{xj ,0) ð1bÞ

The second important feature of the model is depth-of-thought

in the game [12], which derives from the estimates that each

player maintains about the type of their partner. To maximize

long-run utility, a player must estimate this type, and update the

estimate when observing their partner’s actions. Of course, I may

estimate your type, your estimate of my type, your estimate of my

estimate of your type, and so forth [14]. Thus we define deeper

thinkers in the game as those who use more sophisticated

simulations of play of this sort to update these estimates.

A range of behavioral data suggests one strong constraint on

how subjects model their partners, that is, they assume that their

partners play one level less sophisticated than themselves [15]. We

assume that all players plan ahead and choose actions that have

beneficial consequences, but differ in how they interpret the signals

from their partners to update their beliefs, and how they expect

their partners perceive them through their actions. To estimate

one’s partner’s type, a level 0 subject does not simulate his

partner’s play, but assumes his partner is level 0 i.e. also has a

naı̈ve model of them. A level 1 subject assumes his partner is a

level 0 player and simulates how a level 0 partner makes choices. A

level 2 subject assumes his partner is level 1 and simulates how a

level 1 player interacts throughout the game. This kind of

recursion lies at the heart of mentalizing (simulating) other

autonomous agents who concurrently generate models of us – it

also lies at the heart of many models of predator-prey interactions

[16].

The computational model of behavior – simulating
interactions with one’s partner

Here we write the model for how player i forms an estimate of

optimal play at each round t by calculating the values Qt
i of their

possible actions at
i . The actions are the amounts to invest or to

return. The Q values are the expected summed utilities over the

next two rounds (as a simplification, players are assumed to look at

the current round and the round after). The utility for player i

depends on the actions of player j, which in turn depends on the

type of player j, and the reasoning that player j does about player i.

Player i does not know player j’s type, but can learn about it from

the history of their interactions, which, up to round t, is

Dt~f(a1
i ,a1

j ), � � � ,(at{1
i ,at{1

j )g. Formally, player i maintains

beliefs Bt
i , in the form of a probability distribution over the type

of player j, and computes expected utilities by averaging over these

beliefs. Bayes theorem is used to update the beliefs based on

evidence.

The Qt
i value on round t is a sum of two expectations:

Qt
i(a

t
i ,B

t
i )~SUt

i TBt
i
z
X

at
j

P(at
j jfat

i ,D
tg)

X

atz1
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The first is the utility of the exchange on that round. This is

SUt
i TBt

i
~
X

at
j

P(at
j Dfat

i ,D
tg)Ui(a

t
i ,a

t
j ; bi)

where, for convenience, we write Ui(a
t
i ,a; bi) as a function of the

possible actions a of player j rather than the money this player

earns. The second term in equation (2) concerns the value of future

2 rounds in the exchange (except in the last round, where this term

is 0). This is thus an average over Q values Qtz1
i (atz1

i ,Btz1
i ) on

round t+1, where the new beliefs Btz1
i take account of the action

at
i being considered by player i, and all the possible actions at

j of

player j. Equation (2) is a form of Bellman evaluation equation.

The players can calculate the Q values, including updating the

beliefs, by simulating the course of play with their partners. This

simulation is a central feature of the model with players adopting

higher levels of depth-of-thought requiring more simulation (see

belief updates in Supporting Information).

Results

Classification of interpersonal interaction
The model described above constitutes a full generative account

of a subject playing the multi-round trust game, and incorporates

several key cognitive mechanisms engaged by such a staged

interpersonal interaction. Player i is characterized by their private

type bi, their depth-of-thought level ki, and the prior beliefs B0
i .

Player j is characterized in just the same way. We estimated the

parameters of both players in each dyad by maximizing the log

likelihood of their choices over the 10 rounds of the game. The

averaged maximal log likelihood of all 195 investors was

211.9260.27. In our model, we assume that players take one of

five possible actions. If all the five possible actions were chosen

with equal probability, the log likelihood would take the value

10:log(
1

5
)~{16:1. Our computational theory-of-mind model

fitted the behavior significantly better than assuming that players

act randomly (one-sample test, P = 1.51610235). For the purposes

of comparison, we also built a reinforcement learning (RL) model

incorporating inequality aversion (details in Supporting Informa-

tion). We found that the RL model performed poorly; when we

optimized the learning rate in the model, the optimum was

Author Summary

Human social interactions are extraordinarily rich and
complex. The ability to infer the intentions of others is
essential for successful social interactions. Although most
of our inferences about others are silent and subtle, traces
of their effects can be found in the behavior we exhibit in
various tasks, notably repeated economic exchange
games. In this study, we use a computational model that
uses an explicit form of other-modeling to classify styles of
play in a large cohort of subjects engaging in such a game.
We classify players according to their depth of recursive
reasoning (depth-of-thought), finding three groups whose
performance throughout the task differed according to
several measures. Neuroimaging results based on the
model classification show a differential neural response to
depth-of-thought. The model also detected differences in
depth-of-thought between two groups of healthy sub-
jects: one playing patients with psychiatric disease and the
other playing healthy controls. These results demonstrate
the power of a quantitative approach to examining
behavioral heterogeneity during social exchange, and
may provide useful biomarkers to characterize mental
disorders when the capacity to make inferences about
others is impaired.

Computational Phenotyping of Social Interactions
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degenerate in the sense that no learning occurred, and all actions

were selected with equal probability (random choices).

Figure 2A shows the frequency histogram of depth-of-thought

classification achieved by inverting the generative model described

above. About half of all the 195 investors are classified as strategic

level 0. The remaining investors are almost equally divided into

level 1 and level 2 players. There are significant dynamic behavioral

features that correlate with the depth-of-thought levels that we

estimate using our model. The style of play across rounds of the

game is different and correlates well with the intuition that players

with higher depths-of-thought are sensitive to richer features of the

game than those possessing lower levels. In Figure 2B, of all 195

investors, levels 1 and 2 start the game with high offers and maintain

throughout the game, except that the highest depth-of-thought

players decrease their offers towards the end of the game (which is

strategic). Moreover, level 0 investors open low and stay low

throughout the game, a strategy that tends to break cooperation

with the trustee. Lastly, level 1 and 2 players make significantly

more money overall than level 0 players (Figure 2C).

Neural representations
According to the generative model, players make predictions

about the likely course of events through the game. These

predictions lead naturally to prediction errors, which can be used

Figure 1. Classification of investors. A) One player (‘‘investor’’) is endowed with $20 at the beginning of each round. The investor chooses any
fraction I of the $20 to send to the other player (‘‘trustee’’). The investment is tripled to 3I en-route to the trustee. The trustee chooses a fraction R of
the tripled amount (3I) to repay. Subjects play the same partner for ten consecutive rounds. B) Using the observed exchanges between the players,
investors are classified according to their estimated inequality aversion and their depth-of-thought (strategic level) in the game (see main text for a
description of the generative model). All 195 pairs included in this classification; this included 55 pairs where the trustee was diagnosed with
Borderline Personality Disorder. C) First and second order interpersonal prediction errors are sought in the investors’ brain responses separately for
each depth-of-though category. The 1st order interpersonal prediction error is taken as the difference between actual repayment ratio R and
expected amount due to the investor’s model of the trustee’s repayment. The 2nd order prediction error is taken as the difference between the
investment ratio I and the investor’s model of the trustee’s model of what the investor will send; hence, the term second order error.
doi:10.1371/journal.pcbi.1002841.g001

Computational Phenotyping of Social Interactions
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to generate control signals to guide choices. In games against

nature, prediction errors associated with rewarding outcomes have

frequently been observed in the BOLD signal measured in striatal

regions [17–19]. Games against other players offer much richer

possibilities for neural responses since players have a range of

interpersonal signals that they can model (e.g. Figure 1C). We here

focus on the investor side of the interaction because this role has

proved to be particularly sensitive for classifying styles of play in

prior work [20].

Two types of interpersonal prediction errors emerge naturally in

the reciprocating interactions of the multi-round trust game. The

first order prediction error in the investor is a comparison between

the investor’s current model of what the trustee will return and the

amount actually returned. This error is computed at the time that

the repayment from the trustee is revealed to the investor. This

error requires information sent back from the trustee.

By contrast, the second order prediction error in the investor

requires a comparison between the investor’s offer and the investor’s

internal model of what the trustee expects from the investor, that is,

information that is exclusively internal to the investor. This

information is available to the investor before any immediate feedback

from the trustee, and is potentially available during the entire epoch,

starting from the time of the cue and up until the time when the actual

investment is made. In this paper, we choose the time the investor

submits as a natural trigger for this signal, but with the understanding

that it might have been computed and thus available earlier.

Thus, the first order error can be evaluated at the time the

repayment from the trustee is revealed. In a similar spirit, the second

order error is defined at the time the investor’s offer is submitted

since it is at this time that the investor brain can compare their

actual offer to their (internal) model of what the trustee expects.

Our hypothesis for the first order inter-personal prediction error

was that players classified as level 0 would display a large response

to this error, while the higher levels would not, since this signal is

not a critical component of the high level players’ planning.

We divided the first order interpersonal prediction error of all

195 healthy investors classified within a certain cognitive level into

quintiles, performed separate GLM analysis at individual rounds,

and then generated contrasts between rounds with high 1st order

prediction errors (.60%) and rounds with low 1st order prediction

errors (#40%) on the beta images of the events of interest. The

contrast analysis at the revelation of the trustee’s repayment

showed that level 0 investors (n = 102) had robust activations in

bilateral striatal regions (Figure 3A, whole-brain FDR corrected at

P,0.05; peak MNI coordinates: right caudate (8, 12, 0), t = 4.49,

57 voxels; left caudate (212, 12, 4), t = 3.74, 73 voxels; right

putamen (24, 4, 0),t = 4.02, 88 voxels; left putamen (224, 4, 4),

t = 4.10, 72 voxels). These striatal activations were not observed in

investors with level 1 (n = 49) or level 2 (n = 44) depth-of-thought.

We also performed a direct comparison among investors with

different depth-of-thought levels on the 1st order interpersonal

prediction errors using ANOVA. The group contrast results

Figure 2. Investor depth-of-thought classification separates distinct behavioral trajectories through the game. A) The distribution of
depth-of-thought levels in all 195 investors. About half of the investors are classified as having depth-of-thought level 0. The remaining half is almost
equally divided into having depth-of-thought level 1 and 2. B) Investment ratios by rounds from all three levels of depth-of-thought investors, level 0
(n = 102), level 1 (n = 49), level 2 (n = 44). C) Total monetary points earned at the end of the game in all three levels of investors. Both level 1 and level
2 investors made significantly more points than level 0 investors (Tukey HSD test, P,1026 and P,1025, respectively). No significant difference in total
earnings was found between level 1 and level 2 investors (P.0.1). Error bars represent standard errors (SE).
doi:10.1371/journal.pcbi.1002841.g002
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showed that the level 0 investors had higher caudate activation

than level 1 investors (Figure 3B left, P,0.001, uncorrected; peak

MNI coordinates: (4, 16, 0), t = 4.04, FWE corrected at P,0.05

with small volume correction applying the anatomical mask of

bilateral caudate). We also found that level 2 investors had higher

right temporal-parietal junction (TPJ) activation than level 0

investors associated with the 1st order interpersonal prediction

errors (Figure 3B right, whole-brain FDR corrected at P,0.05;

peak MNI coordinates: (52, 248, 28), t = 4.70, 7 voxels).

Our hypothesis for the second order inter-personal prediction

error was that players classified as level 0 would display no

response to this higher order interpersonal error (since their model

of the other’s model of themselves is impoverished), whereas

players classified as higher level would.

We divided the second order inter-personal prediction error of

all 195 healthy investors classified within a certain cognitive level

into quintiles, performed separate GLM analysis at individual

rounds, and then generated contrasts between rounds with high

2nd order prediction errors (.60%) and rounds with low 2nd order

prediction errors (#40%) on the beta images of the events of

interest. The contrast at the submission of the investor’s decisions

revealed that level 2 investors had significant activations in

bilateral putamen (Figure 3C, whole-brain FDR corrected at

P,0.05; peak MNI coordinates: right putamen (24, 8, 24),

t = 3.79, 23 voxels; left putamen (220, 8, 24), t = 3.11, 7 voxels).

We did not observe any striatal activations in level 0 and level 1

investors for the 2nd order prediction errors. We also performed an

ANOVA analysis on the three depth-of-thought levels of investors.

The group contrast analysis found that level 2 investors had higher

ventral striatal activation than level 0 investors when computing

the 2nd order interpersonal prediction errors (Figure 3D, P,0.005

uncorrected; peak MNI coordinates (12, 8, 212), t = 3.41, FWE

corrected at P,0.05 with small volume correction applying the

anatomical mask of bilateral caudate).

It is possible that when grouping the rounds according to the

high or low quintiles of prediction errors, some subjects might be

exclusively included in the high group, or in the low group. This

raised the concern that the contrast results above might be biased

by those distinct subjects. We therefore counted the number of

subjects only present in the high group, or in the low group for the

1st and 2nd interpersonal prediction errors, respectively. We

showed that the vast majority of subjects made contributions to all

quintiles of prediction errors, with only an extremely small number

of subjects contributing to just the high or low quintiles (Table S1).

We also plotted the magnitudes of the interpersonal prediction

errors divided into high or low quintiles across the depth-of-thought

Figure 3. Inter-personal prediction errors: differential neural response as a function of investor depth-of-thought. A) Contrast analysis
between rounds with high (.60%) and low (#40%) 1st order interpersonal prediction errors when repayments were revealed. Level 0 investors
(n = 102) had robust activations in bilateral striatal regions (whole-brain FDR corrected at P,0.05; peak MNI coordinates: caudate (8, 12, 0), t = 4.49;
putamen (24, 4, 0),t = 4.02). These striatal activations were not observed in investors with level 1 (n = 49) or level 2 (n = 44) depth-of-thought. B) Group
contrast analysis on the 1st order interpersonal prediction errors. Left, level 0 investors had higher caudate activation than level 1 investors (P,0.001,
uncorrected; peak MNI coordinates: (4, 16, 0), t = 4.04, FWE corrected at P,0.05 with small volume correction applying the anatomical mask of
bilateral caudate). Right, level 2 investors had higher right temporal-parietal junction (TPJ) activation than level 0 investors associated with the 1st

order interpersonal prediction errors (whole-brain FDR corrected at P,0.05; peak MNI coordinates: (52, 248, 28), t = 4.70, 7 voxels). C) Contrast
analysis between rounds with high (.60%) and low (#40%) 2nd order interpersonal prediction errors when investments were submitted. Level 2
investors had significant activations in bilateral putamen (whole-brain FDR corrected at P,0.05; peak MNI coordinates: putamen (24, 8, 24), t = 3.79).
We did not observe any striatal activations in level 0 and level 1 investors for the 2nd order prediction errors. D) Group contrast analysis on the 2nd

order interpersonal prediction errors. Level 2 investors had higher ventral striatal activation than level 0 investors when computing the 2nd order
interpersonal prediction errors (P,0.005 uncorrected; peak MNI coordinates (12, 8, 212), t = 3.41, FWE corrected at P,0.05 with small volume
correction applying the anatomical mask of bilateral caudate). Color bars display t scores.
doi:10.1371/journal.pcbi.1002841.g003
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levels. We did this to rule out the possibility that a few subjects were

dominating the observed results. The differences between the high

and low quintiles were comparable across all the three levels of

investors for both the 1st and 2nd order interpersonal prediction

errors (Figure 4). Thus, the differential neural activations to the

prediction errors observed here cannot be attributed to the

differences in the magnitudes of prediction errors per se.

Biosensor manipulation: Trustee ‘types’ induce depth-of-
thought distributions in healthy investors

Earlier work [9] found that trustees diagnosed with Borderline

Personality Disorder (BPD) played uncooperatively to an extent that

they could not maintain the cooperation of their partner investor. In

that work, the impact of the trustee behavior was ‘read out’ through

the willingness of the investor to sustain high offer levels throughout

the rounds of the game. Figure 5 shows two distributions of estimated

investor depth-of-thought levels as a function of distinct trustee types.

Panel A shows the distribution when healthy investors play

anonymous healthy trustees (n = 48 pairs). In this exchange,

healthy subjects never meet their partner before the game and do

not see or meet them after the game. They arrive at the lab and

are randomly assigned roles in separate rooms. Panel B shows the

distribution when healthy investors play subjects diagnosed with

borderline personality disorder. There is a more dramatic shift

toward lower depth-of-thought levels despite the fact that these

subjects play the healthy investor anonymously. The distributions

in panels A and B are statistically different (see legend Figure 5).

We also recruited 38 trustee matched for lower socio-economic

scale (SES) as a SES match for the Borderline personality disorder

trustees. These trustees also played anonymously and induced a

similar lower depth-of-mind distribution in the investors (Figure

S2) suggesting that lower SES may be one source of influence for

the incapacity of the Borderline subjects to sustain cooperation

with their investor partners.

Discussion

In this paper, we used a Bayesian computational model that

involves an explicit representation of theory of mind to classify a

large number of subjects playing an economic exchange game. We

Figure 4. Magnitude of interpersonal prediction errors as a function of estimated depth-of-thought for investors. Average 1st order
A) and 2nd order B) inter-personal prediction errors: low (bottom two quintiles), high (top two quintiles). The differences between the high and low
1st order interpersonal prediction errors were as follows: level 0 investors (mean = 10.05, SE = 0.38), level 1 investors (mean = 15.97, SE = 0.55), level 2
investors (mean = 14.30, SE = 0.58). The differences between the high and low 2nd order interpersonal prediction errors were: level 0 investors
(mean = 9.76, SE = 0.22), level 1 investors (mean = 10.62, SE = 0.31), level 2 investors (mean = 11.72, SE = 0.33).
doi:10.1371/journal.pcbi.1002841.g004
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used the model to assess their level of depth-of-thought. Our

classification produces three levels of players whose behaviour

correlates with important measures of performance through the

task. Neuroimaging results based on the model classification

showed a differential response to depth-of-thought. Additionally

we found a significant difference for investor depth-of-thought

distributions when comparing play with healthy trustees to play

with subjects diagnosed with borderline personality disorder

(BPD), a disorder known to disrupt inter-personal interactions.

BPD subjects are characterized by their unstable relationships, and

when they have played this game, they have tended to break

cooperation. Indeed, it has been shown that, for this group, the

anterior insula failed to sense the opponent’s low offers [8].

The striatum has long been shown to encode reward prediction

error signals in both passive and instrumental conditioning tasks

[17,21–23]. Recently striatal activation has also been observed in

social learning tasks [24] and tasks requiring mentalizing a

partner’s intention [3]. Here we found that striatum activity

correlated with two types of interpersonal prediction errors

evoked in a repeated social exchange game, and that these signals

were modulated by players’ depth-of-thought levels. Level 0

players, but not level 2 players, had robust activations in the

striatum to high 1st order interpersonal prediction errors

suggesting the naı̈ve players were particularly sensitive to

opponent’s actions and mainly used this type of errors to adjust

their own action policy. However, the striatum in level 2 players

responded only to the 2nd order interpersonal errors suggesting

that these relatively sophisticated players discounted the direct

influence of opponent’s actions and rather put more emphasis on

simulating and manipulating opponent’s beliefs and actions.

Other imaging experiments requiring subjects to model others’

intentions have also reported activations in frontoparietal regions

[3,5,24]. It is not clear why frontoparietal regions were not

observed in our paradigm. However, there is a clear path from

known error signaling in the striatum to our observations here of

2nd order inter-personal prediction errors, since a 2nd order

prediction error can be seen as a direct proxy for future returns to

the investor. In this reciprocation game, we have previously

reported that deviations from neutral reciprocity or tit-for-tat

behavior cause players to change their behavior [7,9]. Therefore,

an investment that deviates positively from what the trustee

expects (based on their model of the investor) should generate a

positive error signal in the trustee’s brain, which would itself lead

to the investor expecting an increased return. Under this

interpretation, the signal is exactly analogous to the range of

prediction error signals that show up encoded in BOLD

responses in the striatum. These neural results are congruent

with our behavioral observations. The most sophisticated level 2

investors invested high at the beginning to cultivate trust and

promote cooperation with their partners. But towards the end of

the exchange, they responded to the horizon of the game and

risked less money, reflecting their manipulative maneuver in the

beginning. Furthermore, we found that the sophisticated level 2

investors had higher activations in the right TPJ in response to

the 1st and 2nd order interpersonal prediction errors than the

naı̈ve level 0 investors. Right TPJ has been demonstrated to play

a critical role in belief reasoning tasks involving ‘‘theory of mind’’

[25,26]. Right TPJ has also been found to be specifically

modulated in people with higher strategic levels [27]. Further-

more the coordinates of the peak voxel of this activation place it

in a recently designated posterior region of the TPJ (TPJp) that is

well-connected to ‘‘areas identified with social cognition’’ [28].

The TPJ activation and its specific location within TPJ is

consistent with the idea that level 2 investors build more

sophisticated models of their opponents.

Figure 5. Distribution of depth-of-thought in investors as a function of trustee group. A) Anonymous trustees (n = 48) remain anonymous
to their investor partner for the entire game (and visa versa). B) Borderline personality disorder trustees were identified through an extensive set of
formal interview procedures (see King-Casas et al., 2008). On Fisher’s exact test, the borderline personality disorder-induced investor depth-of-though
distribution was significantly different from investors playing anonymous trustees (panel A; p = 1.6861026).
doi:10.1371/journal.pcbi.1002841.g005
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Computational accounts developed in the framework of Markov

Decision Processes (MDP), and in particular reinforcement

learning models [29], have been successful in representing

behavior and illuminating neural substrates in situations where

agents interact with nature, and in which the environmental states

are fully observable. Such models have furthered our understand-

ing of the role of dopamine and related neural structures in reward

learning and decision-making [30,31]. However, those models are

limited in the typical social situations where agents interact and

effectively create an ever-changing, adapting landscape, which are

plausibly a raison d’etre for sophisticated cognition. Recently, some

progress has been made in establishing model-based approaches to

social interaction [3,4,32,33]. Our approach makes a commitment

to an explicit, generative model of higher-order thinking about

other social actors, some aspects of which are in common with the

recent work by Yoshida et al. (who also use their models to

compare autistic and healthy subjects) [4–6]. The space of such

models is vast, and explicit choices must be made at many steps

[4,10]. Nonetheless, our model is able to capture striking

heterogeneity in the behavior which we are then able to connect

to differences in neural activity. Further developments of this

approach also incorporating genetic data promise to help uncover

the genetic underpinnings of social heterogeneity.

Materials and Methods

Ethics statement
Informed consent was obtained for all research involving

human participants, and all clinical investigation was conducted

according to the principles expressed in the Declaration of

Helsinki. All procedures were approved by the Institutional

Review Board of the Baylor College of Medicine.

Subject characteristics
Data from four groups, total 195 pairs of subjects (18–64 yrs)

who played the trust game previously [5–8] were examined,

including an Impersonal group (48 pairs), a Personal group (54

pairs), a BPD group (55 pairs), and a BPD control group (38 pairs).

Subject pairs from the Impersonal, BPD, and BPD control groups

never met each other throughout the experiment. Subject pairs in

the Personal group were introduced to each other before playing

the task. Trustees in the BPD group were diagnosed with

borderline personality disorder (BPD), and were matched to

trustees in the BPD control group on socioeconomic status (SES).

In addition, investors in the BPD and BPD control groups were

recruited with socioeconomic status matched to trustees. Investors

in the Impersonal groups were students from Caltech and Baylor

College of Medicine.

Image acquisition and preprocessing
All scans were carried out on 3.0 Tesla Siemens Allegra

scanners. High-resolution T1-weighted scans

(1.0 mm61.0 mm61.0 mm) were acquired using an MP-RAGE

sequence (Siemens). Subjects then played the iterated trust game

for 10 rounds while undergoing whole-brain functional imaging.

The detailed settings for the functional run were as follows: echo-

planar imaging, gradient recalled echo; repetition time

(TR) = 2000 ms; echo time (TE) = 40 ms; flip angle = 90u; 64664

matrix, 26 4-mm axial slices angled parallel to the anteroposterior

commissural line, yielding functional 3.3 mm63.3 mm64.0 mm

voxels.

Images were analyzed using SPM2 (http://www.fil.ion.ucl.ac.

uk/spm/software/spm2/). Slice timing correction was first applied

to temporally align all the images. Motion correction to the first

functional image was performed using a 6-parameter rigid-body

transformation. The average of the motion-corrected images was

co-registered to each subject’s structural images using a 12-

parameter affine transformation. Images were subsequently

spatially normalized to the Montreal Neurological Institute

(MNI) template by applying a 12-parameter affine transformation,

followed by nonlinear warping using standard basis functions.

Finally, images were smoothed with an 8 mm isotropic Gaussian

kernel and then high-pass filtered (128 s width) in the temporal

domain.

General Linear Model (GLM) analysis
Separate general linear models were specified for individual

rounds of each subject (6). All visual stimuli, motor responses and

motion parameters were entered as separate regressors that were

constructed by convolving each event onset with a canonical

hemodynamic response function in SPM2. Beta maps were

estimated for regressors of interest. The SPM images shown in

Figure 3 was generated as follows: both the first order and second

order interpersonal prediction errors of subjects classified with the

same depth-of-thought were divided into quintiles. For the 1st

order interpersonal prediction errors, beta images associated with

the event when the repayments were revealed were sorted

according to the prediction error quintiles. Contrast analysis

between the beta images from top two quintiles (.60%) and

images from the bottom two quintiles (#40%) were performed.

Similarly, contrasts for the 2nd interpersonal prediction errors were

generated from beta images associated with the event when the

investments were submitted.

Computational theory-of-mind model
See Text S1 for detailed descriptions. We also include a

reinforcement learning model in Text S1 for comparison.

Supporting Information

Figure S1 Depth-of-thought distribution for investors
playing trustee with lower SES. Trustee group was matched

to the SES of the identified BPD trustees, which tended to be

lower than the average healthy trustee. In reciprocation games

(including the multi-round trust game), it is known that lower SES

correlates with lower offers and increased difficulty of sustaining

cooperation. This investor depth-of-thought distribution suggests

that reduced SES that can attend BPD may be one of the causative

factors in their style of play; however, these data are simply

consistent with that hypothesis and do not show causality. The

lower SES trustees induce a depth-of-thought distribution that is

significantly different from investors playing anonymous healthy

trustees using Fisher’s exact test (p = 1.9961028).

(TIF)

Figure S2 Depth-of-thought distribution for investors
playing healthy trustees non-anonymously. Healthy trust-

ees meet their investor partner at the beginning of the game and

are paid in front of their partner at the end of the game. These

subjects are not known to one another at the start of the game and

are randomly assigned the role of trustee or investor. This depth-

of-thought distribution is not statistically different from the

distribution in figure S2 (Fisher’s exact test p = 0.032).

(TIF)

Table S1 Did a small number of subjects drive
differences in the quintiles of inter-personal prediction
errors? The number of distinct subjects in low (bottom two

quintiles only) and high (upper too quintiles only) 1st and 2nd order
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prediction errors, the total subjects in each category, and the

percentage. Extremely few subjects were presented in the low or

high categories only. The majority of investors made contributions

to all the quintiles for both the 1st and 2nd order interpersonal

errors, regardless of their depth-of-thought levels.

(TIF)

Table S2 Parameters for reinforcement learning mod-
els. Estimated parameters k and b for different learning rates e for

reinforcement learning model.

(TIF)

Table S3 Model fit comparison. Comparison of average

negative log-likelihoods for reinforcement learning models using the

estimated parameters, and the computational theory of mind model.

(TIF)

Table S4 Joint classification table. Joint Investor/Trustee

depth-of-thought classification frequency table. Chi-Square test

gives p = 6.4e-05.

(TIF)

Text S1 Supplementary model information.

(DOC)
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28. Mars R, Sallet J, Schüffelgen U, Jbabdi S, Toni I, et al. (2012) Connectivity-

based subdivisions of the human right ‘‘temporoparietal junction area’’: evidence

for different areas participating in different cortical networks. Cereb Cortex

22:1894–903. Epub 2011 Sep 27.

29. Sutton RS, Barto AG (1998) Reinforcement Learning: An Introduction.

Cambridge, Massachusetts: MIT Press.

30. Montague PR, Dayan P, Sejnowski TJ (1996) A framework for mesencephalic

dopamine systems based on predictive Hebbian learning. J Neurosci 16:1936–

1947.

31. Montague PR, King-Casas B, Cohen JD (2006) Imaging valuation models in

human choice. Annu Rev Neurosci 29:417–448.

32. Seo H, Lee D (2008) Cortical mechanisms for reinforcement learning in

competitive games. Phil Trans R Soc B 363:3845–3857.

33. Behrens TEJ, Hunt LT, Rushworth NFS (2009) The computation of social

behavior. Science 324:1160–1164.

Computational Phenotyping of Social Interactions

PLOS Computational Biology | www.ploscompbiol.org 9 December 2012 | Volume 8 | Issue 12 | e1002841


