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Abstract

A challenge of systems biology is to integrate incomplete knowledge on pathways with existing experimental data sets and
relate these to measured phenotypes. Research on ageing often generates such incomplete data, creating difficulties in
integrating RNA expression with information about biological processes and the phenotypes of ageing, including longevity.
Here, we develop a logic-based method that employs Answer Set Programming, and use it to infer signalling effects of
genetic perturbations, based on a model of the insulin signalling pathway. We apply our method to RNA expression data
from Drosophila mutants in the insulin pathway that alter lifespan, in a foxo dependent fashion. We use this information to
deduce how the pathway influences lifespan in the mutant animals. We also develop a method for inferring the largest
common sub-paths within each of our signalling predictions. Our comparisons reveal consistent homeostatic mechanisms
across both long- and short-lived mutants. The transcriptional changes observed in each mutation usually provide negative
feedback to signalling predicted for that mutation. We also identify an S6K-mediated feedback in two long-lived mutants
that suggests a crosstalk between these pathways in mutants of the insulin pathway, in vivo. By formulating the problem as
a logic-based theory in a qualitative fashion, we are able to use the efficient search facilities of Answer Set Programming,
allowing us to explore larger pathways, combine molecular changes with pathways and phenotype and infer effects on
signalling in in vivo, whole-organism, mutants, where direct signalling stimulation assays are difficult to perform. Our
methods are available in the web-service NetEffects: http://www.ebi.ac.uk/thornton-srv/software/NetEffects.
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Introduction

A major challenge in systems biology is the integration of

different types of knowledge about biological processes in order to

gain insight into the functioning of the organism as a whole system.

Experimental data can include detailed molecular quantification

experiments and records of phenotypic traits. Much of the time,

knowledge such as pathway information is incomplete and is

described at varying levels of detail in published records.

Experimental data are usually specific to the question they were

designed to address, limiting their power to shed light on more

general properties of the system or to address different questions.

In many cases the choice of the biological system, limits the type of

experiments that can be performed, therefore relying on

computational methods to make additional inferences. As we

accumulate more knowledge about biological processes, it is

important to review past experiments in the light of new

knowledge, in order to extract further understanding of the

system. An additional challenge is to bridge the gap between

knowledge of biological pathways, genetic perturbations with their

effects on gene expression and the resulting phenotypes, in order

to gain a more thorough understanding of biological mechanisms.

In this study, we developed a method for integrating pathway with

gene expression and phenotypic data sets, making inferences from

them and checking their consistency. These include information

on changes in gene expression resulting from different gene

mutants, biological signalling pathway information at the protein

level in the form of activation and inhibition between proteins, and

results of phenotypic analyses of the mutant animals.

Ageing is the process of decline in organismal fitness over time.

This process differs significantly across species, as well as between

individuals of the same species, leading to a variety of different

age-related phenotypes and lifespans. The molecular basis of

lifespan has been under intense investigation in recent years, using

laboratory model organisms such as yeast, the nematode worm

Caenorhabditis elegans, the fruit fly Drosophila melanogaster and the

mouse Mus musculus. The insulin/insulin-like growth factor

signalling (IIS) pathway and the target of rapamycin (TOR)

pathway have been found to be major determinants of lifespan in

these organisms. Importantly, as well as extending lifespan
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through the forkhead transcription factor foxo, reduction of IIS

activity increases health during ageing. Initial experimental work

showed that worm mutants for daf-2, the single worm IIS receptor,

live twice as long as controls [1,2]. Similar results from various

components of the IIS pathway have been observed in flies [3,4]

and mice [5–8]. These findings have emerged from genetic

manipulations of the ageing process, by targeting specific

components of the IIS signalling network and measuring the

responses of lifespan and, in some cases, genome wide patterns of

gene expression. For a review of experiment types in ageing and

computational methods available for their analysis, see [9]. Given

the complexity and incomplete knowledge of the signalling

pathways involved, it is often difficult to examine the transcrip-

tional changes in the context of the signalling pathway architec-

ture.

Protein abundance is predominantly controlled at the level of

translation [10]. A recent study by Schwanhäusser et al [11] found

that about 40% of variance in protein abundance is explained by

mRNA levels in mammalian cells. This study showed that

transcription factors and signalling molecules, in particular, have

short mRNA and protein half-lives possibly because these are

information carrying molecules, whose levels must be rapidly

adjusted in response to environmental changes. Moreover,

Nagaraj et al [12] report a good correlation of protein abundance

with transcript abundance in cancer cell lines. It is therefore

possible to make some, qualitative inferences about signalling

pathways from mRNA levels in gene expression studies. In

addition, genetic manipulations of the IIS pathway cause FOXO-

mediated transcriptional responses in downstream pathways, as

well as transcriptional feedback on upstream components of the

IIS pathway [13,14]. Previous studies (e.g. [15,16]) report

feedback at the transcriptional level, but this has not been

examined across different mutants, longevity phenotypes and

within the framework of the IIS and its neighbouring signalling

pathways.

Here we develop a qualitative method that enables us to infer

the impact of differential gene expression on signalling pathways

and attempts to distinguish the effects of the primary experimental

intervention from those caused by feedback. We achieve this by

developing a comprehensive model of the pathways involved and a

rule-based logical theory that integrates results from high-

throughput gene expression assays with previous knowledge of

the pathway. In this study we have used such data sets from in vivo

experiments on ageing of the fruit fly Drosophila melanogaster, where

direct experimental measurements of signal transduction by means

of ligand stimulations are difficult to perform. Previous work on

the inference of signalling pathway components from gene

expression data sets has focused on inferring modulators of

specific transcription factors by correlating mRNA expression

profiles across large sets of microarray experiments [17,18]. These

methods rely on the availability of large sets of expression data and

do not make use of any prior knowledge of the signalling pathway

that modulates the transcription factor. In contrast, our approach

combines previous knowledge of the pathway architecture and

limited data on gene expression with logic, to obtain additional

insights.

The modulation of small scale signalling pathways has

previously been modelled by Ordinary Differential Equations

(ODEs) that can represent chemical reactions. Networks of these

equations can model biochemical processes in detail, provided

there are appropriate experimental data sets to estimate the

parameters of the model. This approach requires proteomic and

phosphorylation experiments assessing the abundance of the

different forms of the molecules so that the reaction parameters

can be quantified. Although these models are very useful in

describing specific reactions and small pathways [19], it is not very

often that such experimental data sets are available for larger

pathways with many nodes. Such ODE modelling is computa-

tionally intensive, so that simulations using networks larger than a

few nodes are limited.

Methods using boolean logic and fuzzy logic have been

successfully applied to simulate signalling pathways and study

their activity under different conditions, such as targeted gene

mutations or ligand stimulations. Calzone et al [20] use the

software GinSim, [21], to model the regulation of cell-fate decision

and identify conditions under which a cell decides to proceed with

apoptosis, survival or non-apoptotic cell death using a network of

14 nodes, reduced from a literature-derived network of 28 nodes.

These methods are based on the development of transition graphs,

synchronous or asynchronous, although asynchronous transition

graphs resemble more closely the signalling pathway mode of

action. Although powerful for solving highly connected small

networks with loops, the time required for analysis of these graphs

is exponential, leading to computational difficulties when dealing

with pathways containing larger numbers of nodes. Saez-

Rodriguez et al [22] developed CellNetOpt to successfully optimise

pathway models against high-throughput biochemical measure-

ments of phosphorylation states. For a more comprehensive review

on logic-based models, see [23].

Our approach uses Answer Set Programming (ASP), a

methodology for declarative programming that supports logic-

based inference, [24]. ASP provides a flexible and expressive

framework for describing theories, and benefits from the

development of efficient solvers, such as the Potsdam answer set

solving collection [25]. ASP has been used to model the sulfur

starvation-response pathway of Arabidopsis thaliana using action

languages on ASP [26] and model cell cycle networks in yeast [27].

Later, Fayruzov et al, [28], adapted their ASP framework to

behave as a boolean network. They conclude that their approach

is more expressive than boolean networks, due to the flexibility of

representing implicit assumptions and background knowledge, as

well as the scalability for expressing special cases with the ASP

framework. Recently, it was applied to the development of BioASP

[29], a python library that provides tools for checking the

consistency between experimental data and pathways and suggest

new pathway links that could improve the fit between experiments

and pathways. BioASP expresses and extends, with use of ASP, the

Sign Consistency Model (SCM) that is employed by the cytoscape

plug-in BioQuali [30]. Finally, Videla et al, [31], have recently

compared the training of logic models of signalling networks using

optimisation heuristics with a new implementation based of

Answer Set Programming. Their assays showed significant

improvements on computation time by the use of ASP. In

addition, their ASP implementation was able to identify all

possible solutions as opposed to the stochastic optimisation

method.

In this study we constructed a model of the IIS signalling

pathway including its interactions with the TOR pathway and

developed a novel method for inferring the modulation of the

pathways from large-scale gene expression data sets using data

from different mutants affecting longevity. Our resulting rule-

based theory enables the inference of effects in a large and

complex pathway, implicitly checking experimental consistency,

by using a single expression data set at a time. It is also possible to

make a custom query of the pathway components the user wishes

to perturb and predict the effects on signalling and the phenotype.

By using qualitative data sets and an ASP solver, we avoid the

computational limitations faced by other methods, and we are

Using ASP to Infer How Mutations Affect Ageing
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hence able to work with larger complex pathways that include

feedback loops and make the methods available as a web-service.

By using prior knowledge of the pathway connections, we

overcome the requirement for a large number of experimental

data sets for our inferences. Our analyses focus on experimental

data sets from Drosophila melanogaster that manipulated the genes

chico, Lnk, foxo and InR to produce a significant difference in

lifespan between mutant and wild type strains. We analyse one

experiment at a time and we also provide new methods for the

comparisons of our inferences across experiments. The methods

are implemented in a web-service, NetEffects, http://www.ebi.ac.

uk/thornton-srv/software/NetEffects, allowing users to analyse their

expression and longevity data using this approach, or to predict

probable effects on longevity for mutations to any components of

the pathway.

Methods

A model of the Drosophila insulin pathway and its
interaction with the TOR pathway

The IIS signalling pathway and its interactions with the TOR

pathway are shown in Figure 1. The IIS pathway is a

neuroendocrine pathway, whose single receptor, INR, can be

activated by seven different insulin-like peptides (ILPs) present in

Drosophila. INR activation leads to the recruitment of the single

Drosophila insulin receptor substrate CHICO and of the Drosophila

homologue of human SH2B, called LNK. These proteins act in

parallel and activate the phosphotidylinositol-3-kinase (PI3K)

complex formed by proteins P60 and P110 [32]. The PI3K

activates the phosphoinositide-dependent kinase-1 PDK1, leading

to the activation of the protein kinase B, AKT1, which inhibits the

activity of the forkhead transcription factor FOXO. This core

signal transduction pathway is modulated by numerous other

proteins, such as the cytohesin, STEP, [33], B4/SUSI [34],

PHLPP [35], or the IGFBP7 homologue imaginal morphogenesis

protein-late-2 (IMP-L2) [36].

The insulin pathway interacts with other signalling pathways,

such as the JNK kinase, SOS signalling and Wnt pathways. It is

also highly interconnected with the target-of-rapamycin (TOR)

pathway, mainly mediated through CHICO, PI3K and AKT1 in

the IIS and the TSC-complex, L (LOBE), TOR-C2 and S6K in

the TOR pathway. The core TOR pathway is triggered by low

intracellular AMP levels, which activate the AMP kinase SNF1A,

which in turn activates the TSC-complex. The complex inhibits

RHEB, which then no longer activates the TOR-C1 complex.

The TOR-C1 complex is a major signalling complex integrating

various signals and activating and inactivating numerous proteins

amongst which are transcription factors such as the Drosophila

MYC/DM, as well as signalling proteins, such as S6K.

The complex network of these interactions has been manually

compiled from pathway diagrams of the KEGG database [37,38]

and an extensive literature review based on review articles [39,40],

as well as the primary literature, e.g. [41,42]. In cases of doubt or

incomplete information, interactions and the logical connections

have been cross checked for experimental evidence in Drosophila

melanogaster. While we have tried to cover the two pathways and

their interactions as completely as possible, the diagram is

undoubtedly incomplete because of the limits of biological

knowledge.

The diagram has been created in GraphML using the program

yEd (http://www.yworks.com). This is an XML based format,

which allows a formal interpretation, while at the same time

defining a graphical layout. It thus enables a graphical

representation, which is immediately understandable to biological

readers and at the same time allows computational use of the same

file. The diagram shows activation and inhibition relationships of

the protein components of the signalling network, thus represent-

ing the activity wiring. Metabolic, transcriptional or translational

influences are not considered. For tractability, we do not include

any kinetic data or location-specific information in the pathway.

These compromises in complexity are essential to allow the

examination of such a large and complex signalling network.

However, our approach is far more detailed than pure protein-

protein-interaction studies, which lack directionality and connec-

tion types (i.e. induces/inhibits).

Finding signals from expression data sets
We applied our methods to microarray gene expression studies

of three different genetic null mutants (chico1/+, LnkDel29=Del29,

dfoxoD=D) and one loss of protein function (daGAL4wUAS-dInRDN )

in components of the IIS pathway. Three of those conditions, chico

(chico1/+), Lnk (LnkDel29=Del29) and InR (daGAL4wUAS-dInRDN ),

result in lifespan-extension of Drosophila melanogaster. The fourth

condition, foxo, (dfoxoD=D) results in lifespan-reduction and is a

homozygous deletion of the forkhead box O transcription factor,

whose function is inhibited by the activation of insulin signalling.

The Lnk experiment generated homozygous mutants null for the

gene Lnk, whereas the chico experiment generated a heterozygous

mutant of the gene chico. The InR experiment involved an over-

expression of a dominant negative form of the gene InR. RNA

expression microarray assays were performed on whole flies for all

experiments, except for Lnk, where the assays where performed on

fly heads only. These studies are publicly available in [15,16,43].

Each microarray data set was analysed, to identify the set of

differentially expressed genes. Raw data sets were summarised and

normalised using RMA [44–46] and quantile normalisation as

implemented in the LIMMA package. Differential expression

between mutants and wild-type controls was assessed using linear

models and the empirical Bayes moderated t-statistic implemented

in LIMMA [47]. Highly differentially expressed genes were

selected by applying a 0.005 cutoff on the adjusted P-value for

each experiment. The analysed data sets are available in

supplementary file S4. In Figure 2 we show which genes, in the

IIS and TOR pathways, are differentially expressed in each

experiment.

Then we used the workflow summarised in Figure 3, in order to

infer possible signalling paths within each experiment. We used as

inputs the pathway and the microarray results, together with

information on the experimental perturbation to build a knowl-

edge base of facts for each experiment. Using the general logic

program that links those facts with potential outcomes for the

signalling of the proteins involved, we inferred how the

perturbation and subsequent differential expression could influ-

ence the activation of the different pathway components at the

signalling level. Figure 4 illustrates this process by use of a small

example. This step uses ASP and consists of the two steps of

‘grounding’, augmenting the facts by use of the logic program, as

described in Supplementary Files S2 and S5, that in essence

assigns values to the variables according to the facts and rules, and

‘solving’, filtering the ground sets using the rules and integrity

constraints to find consistent answer sets. We used the publicly

available grounder ‘gringo’ and solver ‘clasp’, as described in the

Supplementary File S5, to output sets of ‘activates’ and

‘inactivates’ relations. Each one of the experiments yielded one

answer set.

The final step involved the inference of paths using each

differentially expressed or perturbed pathway component as a

Using ASP to Infer How Mutations Affect Ageing
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starting point and longevity as an endpoint. For most differentially

expressed or perturbed components, there is a large number of

paths leading to the phenotype. This is due to the several

connections between the IIS and the TOR pathways that lead to

the generation of loops. We use the shortest paths in some of the

analyses to show the direct effects of the perturbation or

differential expression to the phenotype. We also use all the paths

generated in order to derive feedback routes that could play a role

in the signalling pathway modulation within each mutant (analyses

shown in later sections). All paths are available in Supplementary

File S1 and the shortest paths per experiment are shown in

Table 1.

At this stage we used the phenotype recorded by the survival

analyses that accompanied each experiment, in order to classify

the inferred paths into ‘primary’ or ‘secondary’ effects. We call

primary effects those paths that support the observed longevity

phenotype and involve the primary experimental mutation.

Secondary effects refer to paths that are triggered by differential

expression of genes, other than the primary mutant. These are

further classified into negative and positive feedback, where effects

of negative feedback contradict the observed longevity phenotype,

whereas positive feedback effects support the observed phenotype.

Searching for longest common sub-paths
By comparing the different paths produced within and across

the different experiments, we observed that many non-identical

signals contained similar ‘‘segments’’ of paths that could poten-

tially reveal important recurrent routes of activity in the signalling

pathway. For example, each one of the long-lived mutants up-

regulates different insulin-like peptides (ILPs) that in turn can lead

to changes in longevity as mediated by FOXO (Table 2). When

comparing whole paths between experiments, these similarities are

missed, since the starting point (the ILP molecule) differs between

paths, even though the rest of the path is the same. Moreover, by

looking only at the shortest paths in an experiment, the

information that can be derived from the rest of the paths is

missed. We therefore developed a method to extract common sub-

paths (routes) from all the paths per experiment and then compare

these across experiments. These sub-paths highlight the routes that

are accessible in a mutant, given the architecture of the pathway,

the mutations and differentially expressed components.

In order to be able to identify the most common sub-paths

within or across experiments, we developed a ‘‘longest common

sub-path finder’’. A sub-path is defined as a sequence of

‘activates’/‘inactivates’ relations that is part of a path that has a

differentially expressed or perturbed component as a starting point

and longevity as an end point. The longest common sub-path

Figure 1. The insulin pathway in Drosophila. Insulin signalling pathway and its interconnections with the TOR pathway. The insulin pathway
appears on the left-hand side towards the centre of the image, while the TOR pathway appears on the right-hand side. There are many connections
facilitating cross-talk between the two pathways. Black arrows represent activating connections, while red-T-lines represent inhibitions. Green
rectangular boxes represent proteins, while trapezoid boxes represent processes or pathways. We use the Flybase gene symbols as names but also
include other commonly used names, in cases where these are appear more frequently in the literature. Protein-complexes are represented by boxes
whose name always begins with ‘‘c_’’. Transcription factors are shown by octagons, but only some examples are shown. The FM-longevity (FOXO-
mediated longevity) phenotype is represented by a hexagon.
doi:10.1371/journal.pone.0050881.g001
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finder takes as input all the different paths produced by the

analysis of the results from ASP and outputs a list of common sub-

paths, together with their frequency in the data set. The algorithm

uses an existing solution of the ‘longest common string’ program,

implemented in the Perl package (String-LCSS-0.12, available

from the Comprehensive Pearl Archive Network, www.cpan.org).

Every path is compared to each other and the longest common

sub-string is found for each comparison. The occurrences of each

sub-string (sub-path) are counted and returned. The algorithm

takes into account the sequence of nodes (pathway components), as

well as their status (activated or inactivated). The longest common

sub-path finder program is available for download from http://code.

google.com/p/longest-common-sub-path.

Results

Identifying general trends between experiments
We observed that in all cases, the shortest paths starting from

the mutated component support the observed phenotype, as

expected, whilst most of the shortest paths starting from the

differentially expressed components predict the opposite pheno-

type, suggesting negative feedback responses to the genetic

perturbation, triggered at the transcriptional level.

We first compared the whole paths inferred by our methods

across experiments. Only the experiments that mutated the chico

and Lnk genes had some paths in common. This is not surprising,

since these experiments mutate genes whose products function in a

parallel fashion, by transmitting a signal from the receptor INR to

the PI3K complex.

Then, we produced the most common sub-paths for each

experiment (available in supplementary file S3). These reveal the

routes which most commonly occur in the response paths per

experiment. Then, we compared the sub-paths across experi-

ments, by asking three different questions. First, we looked for the

most common sub-path in all long-lived mutants, which was the

link from AKT1 to FOXO and longevity. The sub-paths of the

Lnk and InR experiments were generally more similar than those in

chico, although we did not observe any similarities between whole

paths of InR and Lnk. The sub-path that exists in Lnk and InR but

not in chico, corresponds to the secondary effect that reduces

longevity through FOXO inhibititon via inactivation of S6K and

subsequent activation of CHICO (Figure 5A). We looked into the

common links between other sub-paths that we could detect in

long-lived mutants, especially in Lnk and InR. These were various

links that could lead to secondary effects, involving AKT1

activation by the TOR-C2 complex (Figure 5B), in some cases

triggered by the inhibition of RHEB and subsequently TOR-C1

by the complex of TSC1 and TSC2 (Figure 5D), whereas in others

by the inhibition of L on TOR-C1 (Figure 5C). All these effects are

also detected within the paths inferred in chico, although they do

not appear as longest common sub-paths. Gene L appears to be

up-regulated in the InR mutant, where we infer a shortest path

Figure 2. Differentially expressed components of the insulin pathway for each experiment. Down-regulated genes appear in blue,
whereas up-regulated genes appear in red. Circled nodes represent the genetically manipulated components. Image (A) corresponds to the
experiment that mutated chico, (B) to Lnk, (C) to InR and (D) to foxo.
doi:10.1371/journal.pone.0050881.g002
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starting with L inhibition on TOR-C1, followed by TOR-C2 and

AKT1 activation, leading to lifespan reduction by FOXO

inactivation.

The current experiments and the connections on the pathway

map are too few to identify striking differences across experiments.

However, we do identify responses shared across all and one

response shared by two out of three long-lived experiments. These

routes could be of significance as they form part of the feedback

mechanism that might be similar across experiments but triggered

by different components. Specific examples are described in the

next sections.

Identification of opposite transcriptional feedback to
insulin signalling in short- and long-lived mutants

We initially looked at the shortest paths from each mutant or

differentially expressed component in the pathway to FOXO and

longevity. Looking at the shortest active paths only, as shown in

Table 1, we observe that primary effects in long-lived mutants

suppress insulin signalling whilst secondary effects tend to

stimulate the IIS pathway.

In contrast, in the foxo short-lived mutant we observe that the

primary effect is reduction of lifespan, as foxo has been directly

mutated. Therefore, no negative feedback can be inferred using

the default settings of our method, since it would require FOXO

being able to get activated. We do, however, observe differential

expression on other components of the signalling pathways that

would be consistent with suppressing insulin signalling by, for

example, down-regulating Ilp molecules. We call these ‘‘impaired

effects’’, since one or more components of the path are mutated or

differentially expressed in such a way that the signal is disrupted.

In the case of the down-regulation of the insulin-like peptides that

would normally suppress insulin signalling and activate FOXO,

the signal is disrupted by the experimental knocking out of foxo.

Moreover, in the foxo mutant we only infer positive feedback

secondary effects that suppress FOXO.

In all three long-lived mutants some of the Ilp molecules are up-

regulated, leading to FOXO inactivation, by retention in the

Figure 3. Flow chart of methods and data types. For the ‘grounding’ stage of ASP, with the tool ‘gringo’, we use our rule based representation
(logic program), the pathway relations and the appropriately encoded gene expression data sets (facts). Gringo, then produces all possible ground
facts, which are then handled by the solver, ‘clasp’, which uses the logic program with the integrity constraints to find consistent ‘answer sets’. Finally,
using our own custom made program for path searches, we process the answer sets to identify affected paths in the experiment using each
differentially expressed or mutant gene as a starting point and longevity as the end point. These paths are split into primary or secondary effects
using the information on the longevity phenotype, acquired by survival assays, complementary to each experiment.
doi:10.1371/journal.pone.0050881.g003

Figure 4. Example of applying the ASP methods on a short
pathway. This example pathway consists of three components which
are linked with two signalling interactions, where A induces B and B
inhibits C. If A is knocked out in an experiment, as shown by the symbol
‘X’, then the expression of the transcript of A will decrease (dark blue).
The effect of this decrease in expression, at the protein level of this
pathway, is that B (light blue) will remain inactivated by A and C (light
red) activated as a result of lack of inactivation by B.
doi:10.1371/journal.pone.0050881.g004
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cytoplasm and potentially a reverse effect to the observed lifespan-

extension. For instance, Ilp2, Ilp3 and Ilp5 are up-regulated in the

chico knock out, Ilp2, Ilp3, Ilp5 and Ilp6 appear up-regulated in the

Lnk mutant and Ilp6 is up in the InR mutant. In contrast, we

observed Ilp3 to be down-regulated in the short-lived foxo mutant,

leading to an ‘‘impaired’’ path that aims to activate FOXO by

suppressing insulin signalling.

Similarly, ImpL2, which inhibits ILP2 and ILP5 [36], appears to

be down-regulated in the long lived Lnk mutant, while it is up-

regulated in the short-lived foxo mutant. The aim, in this case too,

appears to be the reduction of the inhibition of insulin signalling in

the long-lived mutant, so that normal FOXO activity levels are

restored, while in the short-lived mutant, the insulin signalling is

reduced by inhibition of the ILPs. Hence, feedback in vivo involves

extracellular components, such as one or more of the ILPs or

IMPL2.

Looking at the signalling sub-paths we inferred for each

experiment, we also observed that the TOR-C2 inhibition by

the down-regulation of Tor and Sin1 in the foxo mutant could lead

to inactivation of AKT1 and consequent FOXO activation,

provided foxo was not knocked out, and lifespan extension. This

effect is not observed at all in the Lnk mutant, where we only

observe the opposite, TOR-C2 and AKT1 activation. In the chico

mutant we observe no sub-paths containing the link between

TOR-C2 and AKT1 and in the InR mutant we observe many

occurrences of activation of TOR-C2 and AKT1 and a few cases

of inactivation of TOR-C2 and AKT1, in long sub-paths that

contain loops through the IIS pathway (AKT1) and various

players of the TOR pathway (L, TSC1, TSC2, TOR-C2 and

TOR-C1).

Overall, these effects show a strong negative feedback that is

consistent amongst long-lived mutants and opposite between

short- and long-lived mutants. This type of negative feedback leads

to homeostasis, in an attempt to reverse the effects of the primary

mutations.

An S6K-CHICO mediated feedback is identified in the
long-lived fly mutants in vivo

Looking at the shortest paths derived from the Lnk mutant, we

identified a novel hypothesis that involves a possible feedback

(secondary effect) route from the up-regulation of Atg1 to lifespan

reduction via S6K inactivation and CHICO activation, uncover-

ing a possible cross-talk between IIS and TOR signalling (Table 1).

Although none of the genes whose proteins take part in this signal

are differentially expressed in the InR mutant, we observed sub-

paths containing the S6K signal (Figure 5), suggesting that it could

play a role in this mutant too. This signal was absent from our

third long-lived mutant, chico, since it requires that chico is

activated, impossible in the chico knock out.

Table 1. Shortest paths of potentially active primary and secondary effects inferred per experiment.

chico Primary Effects chico; Pi3K; Akt1; foxo: longevity:

Negative Feedback Ilp2: InR: Lnk: Pi3K: Akt1: foxo; longevity;

Ilp3: InR: Lnk: Pi3K: Akt1: foxo; longevity;

Ilp5: InR: Lnk: Pi3K: Akt1: foxo; longevity;

Lnk Primary Effects Lnk; Pi3K; Akt1; foxo: longevity:

Negative Feedback Ilp2: InR: chico: Pi3K: Akt1: foxo; longevity;

Ilp3: InR: chico: Pi3K: Akt1: foxo; longevity;

Ilp5: InR: chico: Pi3K: Akt1: foxo; longevity;

Ilp6: InR: chico: Pi3K: Akt1: foxo; longevity;

ImpL2: Ilp2: InR: chico: Pi3K: Akt1: foxo; longevity;

ImpL2: Ilp5: InR: chico: Pi3K: Akt1: foxo; longevity;

wdb; Akt1: foxo; longevity;

chico: Pi3K: Akt1: foxo; longevity;

Atg1: S6k; chico: Pi3K: Akt1: foxo; longevity;

InR Primary Effects InR; chico; Pi3K; Akt1; foxo: longevity:

InR; Lnk; Pi3K; Akt1; foxo: longevity:

Positive Feedback Tak1: hep: bsk: foxo: longevity:

Negative Feedback L: TOR-C1; TOR-C2: Akt1: foxo; longevity;

foxo Primary Effects foxo; longevity;

Positive Feedback Pk61C: Akt1: foxo ; longevity;

hpo; foxo; longevity;

Pten; Akt1: foxo; longevity;

doi:10.1371/journal.pone.0050881.t001

Table 2. Signalling sub-path example.

Ilp2: InR: Lnk: Pi3K: Akt1: foxo; longevity;

Ilp3: InR: Lnk: Pi3K: Akt1: foxo; longevity;

Ilp5: InR: Lnk: Pi3K: Akt1: foxo; longevity;

In this example there are three different signals that only differ by the type of
ILPs that trigger INR and the rest of the IIS pathway via LNK. When comparing
these, it is often useful to ignore the ILPs and use for our analyses the longest
common string, which in this case is the signalling cascade downstream of each
ILP.
doi:10.1371/journal.pone.0050881.t002
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Partial support for this hypothesis comes from a study in [48],

who demonstrated that when Tsc1 and Tsc2 are knocked out, there

is a negative feedback to CHICO and ultimately AKT1 via S6K.

In the case of the Lnk mutant we do not observe a down-regulation

of Tsc1 or Tsc2, but we observe an up-regulation of Atg1, which

acts downstream of TSC1/TSC2. It would be interesting to

investigate whether this negative feedback via S6K is indeed active

in the Lnk mutant. Finally, it has been shown that the ribosomal S6

kinase 1 deletion causes lifespan extension in mice [8]. Although

S6K1 inhibits the insulin pathway in mice [49], lifespan-extension

most likely occurs by a different route rather than by interference

with the insulin pathway and FOXO given that there are no

known outgoing connections from the S6K or any downstream

connections towards the IIS, except for the inhibition of CHICO

by S6K. It would be interesting to compare the IIS and TOR

pathways and equivalent experiments between the two species, in

order to understand in depth the mechanisms under which S6K

contributes to lifespan and where these intersect across species.

Identifying contradictions and targets for further work
We observed that Thor and myc, both targets of the TOR

pathway, but also targets of other pathways, appear to be up-

regulated both in the short-lived foxo flies, as well as in one of the

long-lived mutants (InR). A possible hypothesis is that they do not

Figure 5. Links derived by sub-path comparisons and their suggested impact on longevity. (A) The link between the inactivated S6K and
activated CHICO is found in several sub-paths in the lnK and the InR mutant and is suggested to act as a secondary effect, reducing lifespan by FOXO
inhibition. (B) Another commonly found link in several sub-paths of Lnk and InR and some paths of chico is the activation of AKT1 by TOR-C2,
suggesting a secondary effect and a crosstalk between TOR and IIS pathways. (C) The link of L inactivating TOR-C1 by inhibition is found in both Lnk
and InR, as well some paths of chico. In the InR experiment L appears to be up-regulated, further supporting a possible secondary effect on longevity
through TOR-C2 and AKT1. (D) Another route to AKT1 activation by TOR-C2 activation, also found in both InR and Lnk sub-paths, as well as some
paths of chico, involved the inactivation of RHEB by the TSC1 and TSC2 complex.
doi:10.1371/journal.pone.0050881.g005
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play a primary role in lifespan and there is another process

regulating them that is currently not included in our pathway

model. Another example of missing information is gene L, also

known as lobe, which is involved in a cross-talk between AKT1 in

the IIS pathway and the TOR pathway, TOR-C1 complex. In our

examples, we observed L to be up-regulated in the InR mutant,

where it is suggested to be involved in a secondary effect by

providing feedback to AKT1 through the TOR complex.

According to its functional description in Flybase (ID:

FBgn0001332), it also appears to be implicated in the regulation

of the Wnt signalling and of the JNK cascade, although there is no

evidence of the underlying mechanism.

In the InR experiment we also observed up-regulation of Tak1, a

component of the JNK pathway. This pathway is ubiquitous, in

being involved in many different biological processes. It has been

implicated in lifespan through FOXO activation [50]. The

mechanism under which the JNK signals integrate with the IIS

signals is unclear, but the JNK pathway is known to antagonise the

IIS. In our example, TAK1 leads to a positive feedback effect by

activating FOXO. Other examples of such positive feedback

effects are Pk61C up-regulation and the hpo and Pten down-

regulations in the foxo knock-out experiment. All three of them

lead to an inactivation of FOXO according to our current

pathway knowledge, indicating possible points for further research.

We could not identify any direct paths to FOXO and longevity

from p110, the kinase subunit of the PI3K complex, but we noticed

that it is over-expressed in two different lifespan-extending

experiments. We believe that this highlights the need for further

investigations on this kinase and its role in ageing via insulin

pathway perturbations.

Discussion

Our method successfully combines knowledge of the IIS and

TOR pathways with gene expression data sets and longevity

assays, to make inferences about the modulation of the signals in

different mutants of the IIS pathway and explain the observed

phenotypes. Such insight in the modulation of signal transduction

cannot routinely be gained experimentally from such in vivo

experiments, although it is important in order to be able to

uncover the complexities of ageing. A strength of our approach is

that it enables us to investigate data sets from many experiments in

a fast, simple and rigorous way, uncover detailed paths per

experiment, as well as consistent biological trends across exper-

iments, such as the homeostatic behaviour observed across the

different mutants. Such insights cannot be produced by standard

functional analysis methods for gene expression data sets.

Moreover, the application of a computationally efficient and

scalable method such as ASP enables the development of web-

services, making such complex analyses easier to perform and

accessible to experimental scientists.

An assumption that our pathway model makes is that longevity

is solely a result of FOXO activation via the insulin pathway,

which is primarily a nutrient sensing pathway coordinating

appropriate responses to nutrient availability. Although extensive,

our pathway model ignores further complexities of the interactions

with other pathways or other determinants of lifespan. By

including components of the TOR pathway in our model,

especially where this cross-talks with the IIS pathway, we were

able to identify how TOR could provide feedback into the IIS

pathway under the conditions of certain IIS perturbations.

However, the TOR pathway has also been implicated in lifespan

possibly through different routes, as demonstrated in other

organisms [8]. Moreover, it is unknown how the gene targets of

FOXO affect lifespan in the fly. Such information would enable a

more complete analysis and a better interpretation of the results on

the foxo mutant. Although the majority of our results are consistent

with previous knowledge and we are still able to generate

interesting hypotheses for further investigations, we can not assign

roles or causes for the differential expression of genes that trigger

positive feedback with respect to FOXO-mediated longevity.

By formulating our problem as a logic-based theory, we are able

to use the efficient search facilities of Answer Set Programming

and can therefore explore larger pathways. Secondly, we take

advantage of the rich and expressive language of formal logic to

combine different types of data sets and reason about them in a

biologically meaningful way, by formalising in a rule-based

representation the implicit reasoning of biologists, when consid-

ering such data sets. This largely qualitative method is very useful

for combining different, large data sets, testing their consistency

with known phenotypes, predicting phenotypes according to the

pathway model and generating hypotheses that could be

investigated further by more detailed experimental and quantita-

tive computational approaches. Moreover, the ASP framework

and the available solvers generate all possible solutions (answer

sets) to a problem, given the input data at hand. Specific signals

involving smaller segments of the pathway, such as the feedback

mediated by ATG1, S6K and CHICO in the Lnk mutant, can be

investigated by further experiments. For example, western-blot

analysis can be performed in time-series experiments after

pathway induction by ligand stimulation and their impact on

longevity can then be studied by dynamic simulations. However,

such experiments, validating our hypotheses, would benefit from

the use of different biological systems, such as cell line models,

instead of in vivo whole-organism models that have been used for

the gene expression and lifespan assays.

In the majority of cases, primary effects reflect the impact of the

perturbation on lifespan, whereas secondary effects seem to be

parts of feedback mechanisms that lead to homeostasis, attempting

to ‘‘correct’’ the effect of the experimental perturbation. When

comparing the long-lived mutants against the foxo knock out, the

only short-lived mutant, we generally observe opposite effects on

differential expression of the insulin pathway components. For

example, in all long-lived mutants we observe at least one Ilp per

experiment being up-regulated, in order to stimulate the pathway

and lead to FOXO inactivation by facilitating its retention in the

nucleus. Conversely, in the short-lived experiment we observe

down-regulation of Ilps. Similarly, the inhibitor of ILP2 and ILP5,

IMPL2, is down-regulated in the Lnk mutant and up-regulated in

the foxo mutant.

Moreover, studying the predicted signals in the different

mutants associated with differences in longevity, we are able to

generate hypotheses on how lifespan could be modulated within

the pathway framework, not only per mutant, but also across

mutants. Interesting questions for further investigations are (1)

whether the primary and secondary effects, as presented here,

represent opposing contributions to the overall longevity pheno-

type we observe in the survival studies and (2) whether it would be

possible to quantify these effects and identify a relationship

between each signal and difference in lifespan. Moreover, our

current pathway model ignores the contribution of other pathways

and processes, e.g. growth/autophagy, to lifespan by solely

examining lifespan as a result of FOXO activation. It could be

possible, in the future, to integrate methods that employ dynamic

simulations, such as the one used by Dalle Pezze et al [51], in order

to delineate the complex effects of the different signals on FOXO

for each mutant.
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Our application is limited by the lack of kinetic information on

the pathways and also by the experimental data sets, which

contain mRNA levels, making the quantitative analyses of

signalling pathways impossible. Moreover, we integrate pathway

connections derived by different experimental methodologies,

while the accuracies of these connections are ignored by the

analyses, because they are sometimes unavailable or unsuitable for

simulations. However, since we have been strict in only selecting

connections that have been experimentally verified, our method

gains in strength by the use of larger but qualitative pathway

diagrams thus making their analysis possible in a qualitative

fashion, as opposed to the computational difficulties faced by

quantitative methods and discrete logic-based methods, to

simulate larger pathways.

It would be an interesting exercise to test on a smaller example

the performance of tools implementing Markov Logic Networks,

e.g. Alchemy by Domingos et al [52], which combine statistical

relational learning with knowledge-based model construction. We

believe that the improvement of the formal logic-based reasoning

methods and their integration with statistical methods will lead to

the development of hybrid approaches that can leverage

quantitative information where available, but also take advantage

of the rich representational language to combine disparate and

qualitative data sets in order to generate more accurate and

meaningful biological hypotheses.

The rule-based model itself is general and can be used to reason

about different types of pathways, other than the IIS and TOR

pathway and relate these to phenotypes other than longevity. In

the future, we will enable the import of user-defined pathways to

the web-service, so that users could relate their molecular data sets

to their pathways of interest. It is important that for the inclusion

of different types of pathway models we develop further the web-

service, so that it is compatible with standard pathway formats,

such as BioPAX and SBML.

Our current pathway model aims to represent the topology of

the interactions without including constraints on the conditions or

tissues, where these interactions take place. Such information,

once available in sufficient detail to have an impact on the

analyses, could potentially be collected and included in the rule-

based logic program. We anticipate that the modular nature of our

model will enable it to expand and combine pathway processes at

different levels of detail (e.g. undirected Protein-Protein Interac-

tion Networks), as new information on tissues, granularity of

pathway interactions becomes available. Currently, the longevity

phenotype is considered in a discrete fashion as ‘‘long-lived’’,

‘‘unchanged’’, or ‘‘short-lived’’. In the future, we aim to integrate

the methods implemented in the web-service SurvCurv (manu-

script in preparation) with the methods in NetEffects in order to

achieve a more quantitative and full representation of longevity

phenotypes.

As it stands, the pathway model and the ASP methods can be

used to investigate the signalling effects on the IIS pathway by

longevity experiments that involve exposure to environmental

stress conditions or perturbations of other genes, not included in

the IIS pathway. A requirement is that some of the components in

the pathway model must be differentially expressed in these

experiments, therefore implicating the IIS pathway in the response

to the experimental condition. For example, these could include

dietary restriction experiments or perturbation of other transcrip-

tion factors that have also been shown to alter ageing. In the future

we also aim to generalise the web-service to include the longevity-

related pathways of other model organisms used in ageing

research, such as C.elegans and M.musculus, with the aim of

performing cross-species data analyses to investigate how the

predicted signals in equivalent mutants differ across species.
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21. Naldi A, Berenguier D, Fauré A, Lopez F, Thieffry D, et al. (2009) Logical

modelling of regulatory networks with GINsim 2.3. Bio Systems 97: 134–139.

22. Saez-Rodriguez J, Alexopoulos LG, Epperlein J, Samaga R, Lauffenburger DA,

et al. (2009) Discrete logic modelling as a means to link protein signalling

networks with functional analysis of mammalian signal transduction. Molecular

Systems Biology 5: 331.

23. Morris MK, Saez-Rodriguez J, Sorger PK, Lauffenburger DA (2010) Logic-

based models for the analysis of cell signaling networks. Biochemistry 49: 3216–

3224.

24. Baral C (2003) Knowledge representation, reasoning and declarative problem

solving. Cambridge: Cambridge University Press.

25. Gebser M, Kaminski R, Kaufmann B, Ostrowski M, Schaub T, et al. (2011)

Potassco: The Potsdam Answer Set Solving Collection. AI Communications 24:

105–124.

26. Dworschak S, Grell S, Nikiforova VJ, Schaub T, Selbig J (2008) Modeling

Biological Networks by Action Languages via Answer Set Programming.

Constraints 13: 21–65.

27. Fayruzov T, De Cock M, Cornelis C, Vermeir D (2009) Modelling Gene and

Protein Networks with Answer Set Programming. In: 2009 IEEE International

Conference on Bioinformatics and Biomedicine (BIBM). IEEE, pp. 99–104.

28. Fayruzov T, Janssen J, Vermeir D, Cornelis C, Cock MD (2011) Modelling gene

and protein regulatory networks with answer set programming. IJDMB 5: 209–

229.

29. Gebser M, König A, Schaub T, Thiele S, Veber P (2010) The BioASP Library:

ASP Solutions for Systems Biology. In: ICTAI 2010, 22nd IEEE International

Conference on Tools with Artificial Intelligence. pp. 383–389.
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