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Abstract Focal lesions and brain atrophy are the most

extensively studied aspects of multiple sclerosis (MS), but

the image acquisition and analysis techniques used can be

further improved, especially those for studying within-

patient changes of lesion load and atrophy longitudinally.

Improved accuracy and sensitivity will reduce the numbers

of patients required to detect a given treatment effect in a

trial, and ultimately, will allow reliable characterization of

individual patients for personalized treatment. Based on

open issues in the field of MS research, and the current

state of the art in magnetic resonance image analysis

methods for assessing brain lesion load and atrophy, this

paper makes recommendations to improve these measures

for longitudinal studies of MS. Briefly, they are (1) images

should be acquired using 3D pulse sequences, with near-

isotropic spatial resolution and multiple image contrasts to

allow more comprehensive analyses of lesion load and

atrophy, across timepoints. Image artifacts need special

attention given their effects on image analysis results. (2)

Automated image segmentation methods integrating the

assessment of lesion load and atrophy are desirable. (3) A

standard dataset with benchmark results should be set up to

facilitate development, calibration, and objective evalua-

tion of image analysis methods for MS.
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Introduction

Longitudinal magnetic resonance imaging (MRI) studies of

focal brain lesions and brain atrophy play an important role

in the study of multiple sclerosis (MS) in that they help to

improve understanding of disease pathobiology [1] and its

clinical and cognitive effects [2], and to investigate the

effect of therapeutic strategies [3, 4]. MRI assessment of

lesion burden and of volumetric changes in the brain cover

both the focal and diffuse aspects of the underlying path-

ological processes and can be achieved using standard

structural imaging pulse sequences. There are, however,

several limitations in their application to the study of MS.

In the brain, while white matter (WM) lesions can easily be

detected using standard proton density (PD)/T2-weighted

or FLAIR imaging, the detection of focal gray matter (GM)

lesions by standard sequences is much less reliable [5], due

to the different tissue composition and pathological sub-

strates [1]. Regarding brain atrophy, volumetric measures

are sensitive to MS-related changes due to neuroaxonal

loss, gliosis, demyelination, and possibly remyelination,

but are also influenced by many other biological factors

such as the degree of edema and hydration status of the

tissues (e.g., [6–8]). In addition, while image acquisition

techniques have already been standardized to a large

degree, the image analysis methods needed to obtain reli-

able measures are not yet standardized and yield variable

results [6, 9]. A recent review of the literature on correla-

tive studies between MRI and histopathology in MS [10]

recommended improvement of imaging specificity, high-

resolution image acquisition, and use of combination of

imaging methods in longitudinal studies to gain a deeper

understanding of the disease processes in MS.

Against this background, this paper focuses on what we

consider desirable future developments in image acquisi-

tion and analysis for the longitudinal assessment of brain

lesions and brain atrophy in MS. Previous guidelines for-

mulated in 1998 [11] regarding quantitative MR image

analysis in MS served as the background against which we

examined the current state of the art to derive recommen-

dations on the development and application of image

analysis methods for optimal assessment of brain lesions

and atrophy in MS. Other important issues, such as the

assessment of lesions and atrophy in the spinal cord and

optic nerve, as well as the heterogeneity of focal lesions

and the patterns of tissue changes in the normal-appearing

brain, were excluded from this paper since, with the pos-

sible exception of spinal cord abnormalities, all these

investigations require more advanced imaging techniques,

hampering large-scale implementation. In the following

sections, for each topic we will first present a brief position

statement followed by the reasoning behind it.

Image acquisition

Position statement

Image acquisition should use isotropic 3D pulse sequences

with multiple image contrasts to improve and extend

analyses of lesions and atrophy, across timepoints. Image

artifacts need special attention since they have significant

effects on image analysis results.

Reasoning

Increasing sensitivity for detecting and quantifying lesion

and atrophy changes

While 2D (i.e., multislice) imaging has certainly proven its

value in diagnosis and research, it is equally clear that with

through-plane spatial resolutions on the order of 3 mm, the

sensitivity for detecting localized subtle tissue changes

over time is limited. One problem that may occur is subject

motion between the acquisition of two interleaved sets of

slices, which can introduce substantial errors in lesion load

measurement as recently described [12]. However, even

when interleaved scanning-related problems are absent or

can be resolved, 2D imaging introduces severe limitations.

Not only do images with anisotropic spatial resolution

contain no information about the spatial distribution of

signal through the slice, but any co-registration between
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images from different timepoints will inevitably introduce

interpolation artifacts. This is not only the case if reposi-

tioning is poor, but even when previously published repo-

sitioning guidelines [11] are followed. For example, in

cases where there is substantial atrophy between scans,

good repositioning of the MR slices cannot circumvent the

need to deform the image in the through-plane direction to

match the brain, which introduces interpolation errors.

Conversely, 3D acquisition schemes offer the advantage of

allowing improved through-plane spatial resolution. This

leads to improved image registration, and also to smaller

interpolation-induced resampling errors, compared to 2D

images with thick slices. It is now feasible on most scan-

ners to acquire 3D image datasets with (near) isotropic

resolution in clinically acceptable scan times [13].

It is more practical to acquire images using 3D pulse

sequences with T1 weighting than with T2 weighting, and

T1-weighted 3D images have become the standard imaging

method for the study of brain atrophy. The application of

other contrasts with 3D imaging in practical scan times is

being made possible through recent efforts combining 3

Tesla scanners, with phased-array receiver coils, parallel

acquisition, and a variable flip angle scheme [14]. Such

developments are crucial to the study of focal WM and GM

lesions with resolution comparable to that achievable in T1-

weighted imaging. It is likely that the assessment of T2

lesion volume change, which is now an outcome measure in

many clinical trials of new putative treatments for MS (e.g.,

[15, 16]), will be more accurate when this improved spatial

resolution is employed. In addition, several techniques can

be tailored to the imaging of GM lesions (DIR, MP-RAGE,

SPGR, PSIR) and can be implemented with 3D acquisition;

these are being systematically evaluated [5, 13, 17–23].

Longitudinal group studies looking for subtle, localized

changes in lesions would also benefit from high-resolution

3D acquisition. One example application is the group-level

lesion probability mapping (LPM) approach, which several

studies have used cross-sectionally [24–29], but few so far

have used to investigate longitudinal changes [30, 31].

Another example is the assessment of localized lesional

change in individual patients through subtraction imaging,

which has been shown to be improved when using near-

isotropic spatial-resolution 3D imaging compared to 2D

imaging. Using 3D images, more active lesions were

detected, and inter-rater reliability was greater than for 2D

images [32]. It should be expected that detecting within-

patient changes and establishing relations at a group level

would be more sensitive to minor differences if better

spatial resolution is employed. Finally, the spatial, tem-

poral, and possibly causal relations between brain lesions

and brain atrophy [30, 33, 34], could be studied better if

both the atrophy and the lesions were imaged with (near)

isotropic spatial resolution of the order of 1 mm.

It would clearly be advantageous to define a set of 3D

imaging techniques with multiple contrasts that capture as

many of the known aspects of brain changes in MS as

possible in both the GM and WM, with optimized image

contrast and good spatial resolution.

Image artifacts

Care must be taken to minimize image artifacts, which can

have a large influence on the results from image analysis.

Common artifacts include radiofrequency (RF) intensity

non-uniformity, phase-encode ghosting, signal wrap, and

geometric distortion due to gradient non-uniformity, and

B0 inhomogeneity. A relevant review can be found here

[35].

Radiofrequency non-uniformity, which results in slow

spatial variations of signal intensity known as the bias field,

is usually partially corrected during image acquisition,

although the increasingly common use of coil arrays and

very high field scanners has led to an increase in the

prevalence, severity, and variability of bias field in most

images. Image analysis methods should include a bias field

correction if necessary, as is commonly done in tissue-type

segmentation methods [36, 37] or using stand-alone cor-

rection methods such as N3 [38].

Phase-encode ghosting artifacts are due to a mismatch

between the true phase of spins and the phase corre-

sponding to their spatial position; the signal from these

spins can then erroneously appear elsewhere in the image.

They arise when a collection of spins moves between phase

encoding and read-out, either through motion of the entire

head (motion artifacts) or flow of blood or CSF (flow

artifacts). Motion of the head should obviously be restric-

ted as much as possible. Blood flow artifacts may yield

substantial distortions of the signal along the phase-encode

direction(s), hampering analysis of those regions. Flow

artifacts due to blood may be diminished by using a pre-

saturation slab on the neck to minimize signal emanating

from the blood entering the head. Flow artifacts, which

increase with gadolinium injection particularly at the pos-

terior fossa, can also be minimized by reduction of phase

shifts with flow compensation or gradient moment nulling,

but with the penalty of increasing the echo time.

The wrap-around artifact is most frequently observed in

a sagittally or coronally oriented 3D acquisition with tight

planning of the volume in the anterior–posterior direction,

where the nose wraps into the occipital lobe or cerebellum.

However, for multiarray coils with parallel imaging, such

artifacts can also occur within the brain. To allow whole-

brain analyses, wrap-around artifacts, if unavoidable,

should be kept outside brain voxels. For methods requiring

information outside the brain, such as SPM-VBM, it may

also be necessary for the subcutaneous fat and skin to be
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kept clear of such artifacts. This can be achieved by proper

choice of the read-out direction and field-of-view, albeit

probably sometimes at the cost of increased scan time.

Non-uniformity of imaging gradients gives rise to geo-

metric distortion, due to a violation of the assumption of a

linear relation between field strength and true spatial

position. When uncorrected, this has been shown to sub-

stantially affect whole-brain and local atrophy rate mea-

surement [39, 40]. The correction to remove the geometric

distortion [41] does come at the cost of an additional image

interpolation step which affects all subsequent analyses

(although some recent, so far unpublished work has been

done to combine this with other interpolations into a single

step), but even so, for some analysis software (e.g., SIENA

[42]) the beneficial effects of removing the distortion are

greater than the potential loss of accuracy due to this

additional interpolation [40].

B0 inhomogeneities also give rise to geometric distor-

tion, but additionally cause signal intensity loss due to

more rapid dephasing. Signal loss can be minimized by

using spin–echo pulse sequences with high receiver band-

widths (high gradient strength); by acquiring for each slice

a pair of images with opposite polarity gradients; or by

applying a post hoc correction based on direct measure-

ment of a B0 map. However, it is worth noting that B0

inhomogeneities are not normally significant for the type of

images under consideration here, except in very high field

strength scanners or with pulse sequences with long gra-

dient echo train lengths.

For completeness, we should also consider poor SNR

and tissue contrast as obvious factors influencing poor

image analysis outcomes. Optimizing SNR and tissue

contrast through choice of field strength, pulse sequence

design, and optimization of sequence parameters prior to

initiation of a study is imperative. Table 1 lists these arti-

facts and possible solutions.

Image analysis

Position statement

Improved automated image segmentation is needed to

overcome the limitations of existing methods. They should

be directed toward providing an integrated assessment of

lesions and atrophy.

Reasoning

Standardizing lesions and atrophy measurement

Volumetric quantification of the changes in lesion load and

cerebral atrophy depends crucially on tissue-type segmen-

tation, which is influenced by both acquisition- and dis-

ease-related factors. Focusing on the disease-related

factors, several recent studies have shown that the extent of

WM lesions can influence GM atrophy measurements

because WM lesions have MR properties similar to those

of GM [43–48]. An interesting approach that has been

proposed to counter this problem is lesion inpainting,

whereby signal intensities of lesion voxels are substituted

with those observed in normal-appearing WM, prior to

further analysis [43, 45, 48]. Although this appears to be a

Table 1 Image artifacts and possible solutions

Image artifact Possible solution Limitation or

negative effect of

proposed solution

Spatial signal

intensity variation

due to RF field

inhomogeneity

(bias field)

Measure RF bias

field at acquisition

Parallel transmission

becoming

available on latest

generation of

scanners

Correct using bias

field correction

algorithm

–

Wrap-around artifacts Change read-out

direction and field-

of-view

Probable increase in

acquisition duration

Ghosting artifacts

(motion)

Make patient as

comfortable as

possible

Limit duration of

acquisition

Too short an

acquisition will lead

to unacceptably low

signal-to-noise ratio

Ghosting artifacts

(blood and CSF

flow)

Apply pre-saturation

slab on neck, or

perform flow-

compensated

acquisition

Effects on acquisition

duration and

outcome measures

to be evaluated

Geometric distortion

due to gradient non-

uniformity

Correct using

existing algorithms

Additional

interpolation; for

SIENA analysis,

any negative effects

seem to be

outweighed by

benefits

B0 inhomogeneity

(usually limited)

Shorten TE and use

higher strength

imaging gradients

Apply post hoc

correction

Not always possible;

can compromise

signal-to-noise ratio

Additional

measurement of B0

required

Poor SNR and/or

tissue contrast

Optimize pulse

sequence design

and parameter

values

SNR increase at

unchanged

resolution may lead

to increased

acquisition

duration; trade-off

to be made
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promising approach yielding seemingly improved atrophy

measurements [44, 46], the effect of the correction may

change with the lesion load and the specific algorithms

used for correction and segmentation. For the FAST seg-

mentation software from FSL [37], the choice of partial

volume modeling algorithm utilized by the segmentation

method was shown to exert a clear influence [43]. An

obvious limitation of the lesion inpainting approach is that

the lesion voxels still have to be identified and correctly

segmented before new intensities can be assigned to them

prior to GM segmentation.

Ideally, however, tissue segmentation methods for lon-

gitudinal studies of MS should tackle these issues auto-

matically, and we recommend that this should be done by

concurrently analyzing all tissue classes. Indeed, an

attempt at integrated segmentation including both lesion

and atrophy assessments for a single timepoint has already

been reported [47, 49]. The inclusion of all timepoints

available for a patient in a single segmentation process is

another step that might improve quantification. Such con-

current analysis of multiple timepoints for one patient has

been implemented in the CLADA software for longitudinal

cortical atrophy measurement [50] and in the FreeSurfer

software package for cortical thickness measurement and

deep GM volumetry [51], while another paper demon-

strated how difference images, obtained by subtracting co-

registered images from two timepoints, may be used in the

automated quantification of lesion volume change [52].

Development of this type of integrated analysis may

take substantial amounts of time, and not all issues may be

solvable. It would therefore be prudent to investigate

alternative approaches; such approaches could be informed

by a detailed analysis of the errors that occur when

applying current methods to data already collected in

longitudinal studies of MS. While the ‘‘holy grail’’ of a

comprehensive segmentation method accessible by all

researchers in the field should still be pursued, improve-

ment of existing techniques may be a useful alternative

approach.

Most frequent sources of errors

Errors in image analysis in MS studies can be grouped into

two main categories: poor registration quality, and poor

tissue segmentation. In many analyses, the final tissue

segmentation is preceded by an algorithm to (approxi-

mately) find the intracranial cavity [53, 54]; in that case, a

third category is the incorrect inclusion of extracranial

tissue in the final segmentation. Errors in each of these

categories are often the result of one of a few main causes:

• pathological changes, such as severe atrophy or large

WM lesion load;

• image acquisition-related factors, such as incomplete

head coverage, inadequate spatial resolution (leading to

substantial partial volume effects), poor tissue contrast,

limited SNR, and artifacts;

• inherent limitations of the algorithm, possibly aggra-

vated by image acquisition-related factors.

Beyond the obvious (partial) solutions of both optimiz-

ing the image acquisition for the desired analysis (e.g.,

using full-head coverage whenever possible), and opti-

mizing the analysis algorithms, there are several additional

steps that allow relatively easy correction or prevention of

such errors, which give substantial improvements to the

quality of the analyses. For group studies, registration

errors due to the presence of severe pathology may be

limited by using disease group-specific templates rather

than standard healthy control templates, together with

appropriate regularization of the registration [55]. How-

ever, when there are large pathological changes within a

single patient, adequate non-linear matching between

timepoints remains challenging. Errors in segmentation

may be limited by using information from more than one

image type, ideally in an integrated segmentation approach

as recommended above. For both these issues, challenges

remain, and solving both might be facilitated by the stan-

dardized test dataset discussed under recommendation (3).

Progress has recently been made in the initial segmen-

tation of the intracranial cavity, often referred to as ‘‘brain

extraction’’. Brain extraction is often imperfect, leaving

tissue around the eyes and optic nerves, or removing part of

the brain tissue, thus potentially introducing large errors in

atrophy measurements by tools that rely on the brain

extraction accuracy. A previous study showed that for 2D

images, manual correction of the brain extraction used by

SIENA (BET) increases sensitivity to disease effects in MS

[56], but this solution is not feasible for high-resolution 3D

images due to the high workload that would be generated.

In this case, the brain extraction option settings should be

optimized until the best compromise in brain extraction is

obtained across all the images to be analyzed. However, a

recent paper showed that a single combination of option

settings yielded quantitatively very good results across a

range of 3D T1-weighted image types in MS patients [57],

obviating the need for further adjustment.

Lesions

Many lesion segmentation algorithms have been proposed,

and a useful recent review is given in [58]. We restrict the

scope here to fully automated methods and those that

require minimal user intervention. The methods are based

on several different principles such as intensity threshold-

ing (e.g., [59, 60]), intensity gradient features (e.g., [61]),
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intensity histogram modeling of the expected tissue classes

(e.g., [49, 62, 63]), identification of nearest neighbors (from

a training data set) in a feature space (e.g., [64–66]), or

fuzzy connectedness (e.g., [67, 68]), often using several of

these in combination. In some cases spatial (anatomical)

information is included in addition to intensities (e.g., [49,

67, 69]). Algorithmic approaches to segmentation optimi-

zation include methods such as Bayesian, expectation

maximization, support vector machines (e.g., [70]),

k-nearest neighbor majority voting (e.g., [64, 65], and

artificial neural networks (e.g., [71].

Although promising results are often reported for ima-

ges from a single scanner, performance on diverse datasets

can be poor due to the different tissue contrasts that may be

unknown to the algorithm. This can result in large fractions

of both false-positives and -negatives; these misclassifica-

tions have proved to be a barrier to widespread adoption,

especially in longitudinal studies if image quality varies

over time and the level of these misclassifications is

inconsistent. Incorporation of ‘‘domain knowledge’’, i.e.,

prior knowledge of the distribution of MS lesions in the

brain, improves the segmentation of lesions [67], but, in

our experience still does not deliver segmentations that are

acceptable to researchers in the field. Because of this

unreliability, practical lesion segmentation methods are

generally not fully automated, and operator intervention is

still needed at the level of individual lesions, usually by

some form feature selection based on the local maximum

intensity gradient, followed by contour following, e.g.,

[72–75]. Intra- and inter-observer reproducibilities of

contouring are better than for manual outlining [76, 77],

but the method is still labor-intensive. In order to be able to

handle the large volumes of imaging data emanating from

large therapeutic trials, it would seem appropriate to strive

for further, if not complete, automation.

Regarding automated quantification of lesion load

change, a recent review by Lladó et al. [78] highlights the

state of the art and remaining challenges for application in a

clinical or clinical trial setting. This review includes a table

that clearly shows the lack of consistency in quantitative

performance metrics used in the literature, clearly illus-

trating the need for standardized reporting methods. Lladó

et al. classify methods for change quantification as inten-

sity-based analysis, temporal analysis, and deformation-

based analysis. An intensity-based approach to the detection

of change in lesions over time could exploit a combination

of registration and subtraction as used by Moraal et al. [32,

79, 80]. If an expert reviewer is available, the registration–

subtraction approach allows easy identification of change,

provided that the changes between timepoints due to atro-

phy are not too large, or a registration method is used that

can deal with the resulting brain shape deformations. It was

shown for 2D images that the number of changing T2

lesions observed from the beginning to the end of a trial is

statistically more powerful than the number of gadolinium-

enhancing lesions from monthly scans [80]. Duan et al. [52]

showed the feasibility of automatically quantifying these

changes in lesions from the difference images.

The methods that Lladó et al. refer to as temporal

methods typically handle image series with a large number

of timepoints, which is an advantage over subtraction

image analysis which can only handle two timepoints at

once. The method proposed by Ait-Ali et al. [81] uses

expectation maximization to first estimate non-lesion tis-

sues and then adds lesions to the model. Gerig and col-

leagues [82] first perform segmentation of GM and WM,

and then identify active lesions based on voxel mean and

variance over the course of the timepoints. Although the

method by Gerig et al. leaves room for improvement, most

clearly regarding between-timepoint registration (assumed

to be perfect) and the model for temporal signal evolution

of MS lesions (assumed to be highly similar between

lesions), it does present a feasible approach to the multiple-

timepoint analysis of lesions.

Deformation-based methods for lesion change quantifica-

tion use the local volume change as calculated through

deformable registration methods to quantify the lesion volume

change. Two viable methods for lesion change quantification

have been presented, i.e., that by Rey et al. [83], which is based

on Thirion and Calmon [84], and that by Pieperhoff et al. [85],

but both require additional modeling or operator intervention

to indicate which are the lesion areas whose volume change

should be quantified. The lesion segmentation problem

therefore still needs to be solved in these approaches.

Three-dimensional imaging with isotropic resolution

and multiple image contrasts can be expected to further

increase the specificity with which change in lesions can be

characterized, both in terms of their spatial location and for

distinguishing and interrelating changes in different lesion

types. For all these methods, there are several choices to be

made on issues such as the type of registration, whether and

how to include prior information on expected lesion and

atrophy-related change, among others; these choices should

be informed in part by comparing results against expert

manual analysis.

Atrophy

Just as analysis of MS lesions in longitudinal studies is

affected by concomitant atrophy, so too does atrophy quan-

tification deteriorate when there are large changes in the

lesion load. For example, large changes in atrophy or in lesion

volumes may disrupt the accuracy of registration, which is

used by many atrophy measurement methods [86, 87].

In normal aging and Alzheimer’s disease (AD), Smith

et al. compared two whole-brain atrophy measurement
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techniques, i.e., (brain) boundary shift integral (BSI [88]) and

SIENA directly and showed that the methods gave very

comparable results [89]. Sample size calculations in RRMS

showed similar sample sizes were required for BSI and SI-

ENA [90]. Using images with simulated atrophy in AD,

Camara et al. [91] confirmed the good agreement between

BSI and SIENA. More recently, Durand-Dubief et al. [6]

selected seven methods for measuring whole-brain atrophy

and assessed their reproducibility across different MRI plat-

forms. This study on nine patients scanned on three occasions

over 1 year, each time on two MRI scanners, showed that

registration-based methods, i.e., where the registration is

performed within-subject between timepoints, particularly an

optimized BSI method using k-mean clustering (KNBSI) and

Jacobian integration, gave the best agreement of whole-brain

atrophy measures between the two different MRI scanners.

Also in MS, but focusing on local change instead, Bat-

taglini et al. [92] performed a qualitative comparison

between two different methods for measuring local chan-

ges in atrophy over time. By comparing longitudinal VBM

(using FSL) and the voxelwise SIENA-R method directly,

in the same longitudinal image set from MS patients who

were scanned twice, with a 3-year interval between the two

scans, they showed that the cortical regions in which sig-

nificant atrophy was observed were roughly similar, but the

extent was very different. This result was perhaps to be

expected based on the different mechanisms of the two

methods, with VBM quantifying local GM density and its

change over time, while SIENA-R measures displacement

of the local brain-non-brain boundary. Nevertheless, this

study demonstrates the influence that choice of analysis

method has on the results. Both this difference between

SIENA-R and longitudinal VBM, and the superiority of

(within-subject) registration-based techniques may be

explained by the design of the methods: analysis methods

that analyze within-subject change over time directly, by

concurrently analyzing multiple timepoints, make use of

the fact that intra-subject variability is generally smaller

than inter-subject variability. These inherently longitudinal

methods may therefore be better at quantifying this change

than methods that treat each timepoint separately.

As indicated in the section on image acquisition, results

are also influenced by the choice of imaging parameters,

and so tissue contrast and spatial resolution should be

optimized. Nevertheless, the CLADA method proposed by

Nakamura et al. [50] did achieve both accurate measure-

ment of cortical thickness, and reliable measurement of

cortical thickness change, in low-resolution 2D images that

are (still) typical for clinical trials. Accuracy may also differ

between local atrophy measurement techniques, as shown

quantitatively by the simulated AD atrophy study by

Camara et al. [91]: deviations from ground truth atrophy

differed between two Jacobian integration methods.

Moreover, the mean absolute deviation was up to 93 % of

the ground truth volume change for hippocampus, indicat-

ing the need for further method improvement. Partly sim-

ulated image data in which the true change is known, as

used in their study, may also facilitate such developments in

MS, especially when based on representative images from

MS patients and made widely available as recommended

below.

In healthy subjects with a mean age of 56.5 years, Takao

et al. [93] investigated the effect of scanner performance on

whole-brain and local volume change measurement. They

showed that scanner drift and inter-scanner variability can

produce large apparent volumetric changes in VBM (using

SPM), including both increases and decreases. In contrast,

a recent paper on MS demonstrated that, following a

standardized imaging protocol and identical longitudinal

VBM analysis methods, the differences between centers in

the longitudinal VBM changes observed in MS patients are

much smaller than the disease-related changes, indicating

that pooling of data from different centers may be feasible

for longitudinal VBM analysis in MS [94]. These scanner

effects are important issues in most large-scale studies in

MS, and this discrepancy merits further investigation.

Available methods and proposed direction

Table 2 lists the currently available methods for lesion load

and atrophy measurement. The list is restricted to those

methods that are available for installing locally on the

researchers’ own systems (not necessarily without charge).

The merits and limitations of each method are briefly

indicated. It is clear from the discussion of published

methods above that far more methods have been developed

than just the selection listed in Table 2 that are available for

installing locally. This suggests that further improvement of

MS research may be achieved by wider distribution of some

of these methods. An objective evaluation of the perfor-

mance of those methods should then be a first step. In order

to distinguish between disease-related effects (different

disease types, patient selection, follow-up durations, etc.)

and method-related effects, such comparisons between

analysis methods should be performed using the same

common dataset(s). A database such as that proposed under

recommendation (3) would facilitate such a comparison.

Standard test dataset

Position statement

A standard dataset with benchmark results should be set up

to facilitate development, calibration, and objective eval-

uation of image analysis methods for MS.
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Reasoning

Comparing the performance of one method for lesion load

or atrophy measurement to another is difficult due to the

lack of standardized representative data. Papers describing

new methods do not always compare the new method to

current ones, and even if they do, the test image dataset is

rarely made available to the larger research community.

Finally, different papers use different metrics to report

performance of their algorithms. Hence, the results cannot

be reproduced in detail, nor can they realistically be

compared between methods.

In order to allow investigators to select an analysis

method, based on an unbiased assessment of various

alternatives, one possible approach is to create annotated

longitudinal MR image datasets from carefully selected

and representative MS patients from multiple scanners/

centers. This database would consist of different subsets of

images for addressing specific questions. The database

should be accompanied by the framework necessary for

carrying out objective and quantitative evaluation of dif-

ferent methods against ‘‘gold standard’’ expert annotations,

including standards for reporting the results of those

comparisons, and thereby facilitate an unbiased and

transparent assessment of image analysis methods.

Several databases are available that meet some of these

requirements. First, BrainWeb (http://www.bic.mni.mcgill.

ca/brainweb/) [95] offers a simulated dataset in which, for

a limited number of cases with MS lesions, image char-

acteristics such as intensity spatial inhomogeneity and

noise can be varied. Such data could be expanded by

including a larger range of lesion volumes and degrees of

atrophy in the simulated images. Inserting artificial lesions

into images obtained from healthy controls is an approach

followed in several papers assessing lesion segmentation or

the effect of lesions on atrophy measurement. The advan-

tages of this approach are that the effects of lesions can be

studied in isolation, and that the ground truth is known. The

main disadvantage is that healthy control images may not

be similar to MS patients’ images in all respects; for

example, the degree of brain atrophy may differ, or ‘‘dirty’’

WM may be present in MS patients while it is generally

absent in healthy controls. Therefore, a test dataset should

not be restricted to simulated images based on healthy

control data, but should also include real patient data.

The image data for the MICCAI 2008 ‘‘MS lesion

segmentation challenge’’ do consist of real patient data,

derived from a relatively large set of patients; these data

are still available online (http://www.ia.unc.edu/MSseg/).

The website provides a test-set of images along with expert

annotations, so that results of a segmentation method can

be compared to the ‘‘gold standard’’ segmentation. The

scores obtained using the different methods that have beenT
a
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tested are listed on the website, and new entries are still

being frequently added. This is a good example of the kind

of standardized test dataset that is needed for optimizing

analysis methods in MS. However, some characteristics of

the imaging data, such as the spatial resolution of the

images, are different from those typically used in a clinical

trial setting. Furthermore, in addition to the 2D-FLAIR

images that form the dataset, different pulse sequence types

such as 3D-FLAIR or 2D dual-echo PD/T2 are also needed

to test the robustness of lesion segmentation methods, as

well as images such as DIR for GM lesion segmentation.

For developing and optimizing atrophy measurement

methods, 3D T1-weighted anatomical images using a pulse

sequence such as MP-RAGE are required. The ADNI

database for AD, mild cognitive impairment and healthy

aging may serve as a good example here (http://

adni.loni.ucla.edu/) [96]; it allows researchers to down-

load and use image data, under certain conditions. ADNI

has boosted the development of brain image analysis

methods [97], thereby also improving MS research. The

availability of two consecutively acquired MP-RAGE

scans provides an opportunity to study the reproducibility

of methods [98], and including similar scan-rescan data in

an MS test dataset would be highly desirable. Another

example is the OASIS project, which allows researchers to

freely download a dataset that contains images of adults

across a large age range, including demented and non-

demented elderly (http://www.oasis-brains.org/, [99]). The

OASIS dataset also contains short-term rescan images for

reliability analyses.

Objectively quantifying the performance of lesion seg-

mentation techniques is particularly challenging, since

experts do not generally agree completely on which voxels

should be considered as part of a lesion [100, 101]. Seg-

mentation of cortical and subcortical GM presents similar

problems. Derakshan et al. [9] performed an elegant

comparison between six automated methods and six expert

segmentations. Their study showed not only how well the

automated methods performed compared to the average

expert segmentations, but importantly it also highlighted

the variability between experts, which should be taken into

account in setting up a database. One of the first uses of the

proposed database could be to investigate inter-expert

variability, and possibly standardize manual outlining

methods in order to improve the validation of automated

methods for quantifying lesion volume change and atrophy

rates in MS.

Finally, beyond providing test datasets, the utility could

serve the analysis method development community even

better by providing training data sets. The MICCAI MS

lesion challenge has been mentioned above, and the sus-

tained availability of those data allows further development

of MS lesion segmentation methods. However, there is a

real danger that without independent training data, further

apparent improvements may not generalize when the

methods are applied in new image datasets with different

imaging characteristics. Therefore, it seems imperative that

to make real progress, training data should be made

available that captures the variability that is encountered in

a real clinical or trial setting, not only the variability due to

inter-patient differences, but also that due to the hetero-

geneity of scanners and imaging protocols.

Conclusions

Data collection and analysis methods for longitudinal MR

imaging studies of brain lesion load and brain atrophy in

MS have proved to be of great value, but can be improved.

We propose to (1) acquire images using 3D acquisition

techniques with multiple contrasts and near isotropic spa-

tial resolution; (2) integrate the segmentation of lesions and

atrophy measurement; and (3) provide a standard test

dataset containing both images and expert annotations for

objective testing and evaluation of analysis methods. These

points should prove complementary: the standard test

dataset may facilitate development and improvement of the

integrated segmentation techniques, which in turn would

benefit from the isotropic spatial resolution of the

acquisition.
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