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Abstract

This thesis concerns the analysis and processing of sea clutter from a Multiband Pulsed Radar -
a land based research system operated by the British Defence Evaluation and Research Agency.
This radar serves as a model for a class of Multi Function Radars (MFR) that offer extensive
computer controlled adaptive operation.

A fast Sequential Edge Detector (SED) is formulated which, accounting for locally exponential
speckle, allows the spatial inhomogeneity within a scene to be segmented. This simultaneously
identifies high intensity areas and the noise dominated shadowed regions of the scene using an
adaptively sized analysis window. The high resolution data is thus shown to contain discrete
scatterers which exist in addition to the compound modulation from the wave surface.

The discrete component means the measured statistics cannot be considered homogenous or sta-
tionary. This is crucial for high resolution MFR as a priori information can no longer be relied
upon when viewing a scene for the first time in order to make a detection decision.

Considering the returns to be discrete in nature leads to a potential Doppler detection scheme op-
erable at low velocities within the clutter spectrum. A physically motivated test statistic, termed
persistence, is demonstrated based upon the lifetime of scattering events determined via the Con-
tinuous Wavelet Transform.

When operated in coastal regions at low resolution, strong returns from the land-sea interface
(edges) are expected which will seriously degrade the performance of radar detection models
tuned to homogenous scenes. Explicit operational bounds are determined for the strength of these
edges which show that simultaneous operation of an edge detector is required when assessing
compound statistics such as the K-distribution using typical texture estimators.

Additionally a method for accurately determining the N-sum PDF of K-distributed statistics within
noise is constructed using a numerical inverse Laplace transform. The SED is also applied to
Synthetic Aperture Sonar data to detect the large shadows cast by targets rather than their point

intensity.
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Chapter 1

Introduction

1.1 History

Radar (Radio Detection And Ranging) equipment transmits radio waves and receives the backs-
cattered radiation to allow detection and analysis of distant targets. In 1886 Hertz demonstrated
that radio waves are reflected from both metallic and dielectric objects. The field of naval radar
could be said to have begun in 1939 when prototype equipment was fitted to the battleship Rodney
and the cruiser Sheffield; however as early as 1904 a patent was filed by the German engineer
Christian Hiilsmeyer for detection of radio waves reflected from ships.

In 1922 Marconi made a speech urging the use of short radio waves for detection of objects at
the Institute of Radio Engineers (now the Institute of Electrical and Electronics Engineers) whilst
in the same year A.H. Taylor and L.C. Young experimentally demonstrated detection of wooden
ships at the Naval Research Laboratory using Continuous Waveform (CW) radar. In 1930 L.A.
Hyland at NRL discovered that a moving aircraft could be detected due to ‘wave-interference’
between the transmit and receive signals.

The limitation of CW radar was that the range of the reflecting target is difficult to determine,
this was solved by transmitting radar signals as a series of short pulses. Successful demonstration
of a pulse radar was achieved first in Britain by Sir Robert Watson-Watt in June 1935 which by
September that year could detect bomber aircraft at ranges greater than 40 miles. The onset of the
Second World War led to an urgency to develop methods of detecting low-flying aircraft and small

surface targets. Accuracy demands that the wavelength employed is as short as possible to enable

22



1.2. Previous Work INTRODUCTION

a concentrated beam to remain close to the sea surface, when the wavelength reached the physical
dimensions of the conventional valves then used, progress in radar was temporarily halted.

The work of Randall and Boot at Birmingham University in 1940 led to the development of the
cavity magnetron which operated with a power output 100 times that previously achievable at a
wavelength of 10cm. By 1943 the detection of U-boat periscopes was a reality which in combat
could prove effective at a range of 6 miles (Wylie 1978). In the radar field counter-measures
were established that adopted chaff, jamming and stealth so as to mask a target behind noise and
because of this signal processing has evolved into an esoteric mixture of tools for the radar designer

to employ.

1.2 Previous Work

Detection of ‘small’ targets close to the sea surface is complicated by background environmental
noise or ‘sea clutter’. Gaussian statistics naturally arise from the central limit theorem to give an
expected Rayleigh amplitude and exponential intensity clutter distribution - observed as ‘speckle’
in coherent imaging systems. The statistics of radar backscatter from the ocean surface is known
to deviate significantly from Gaussian, prompting strong debate in the literature upon the form
that deviation takes. An obvious problem from an experimental point of view is the range of
environmental parameters that may have an effect, countered by the theoretical desire to form
physical theories that lead to optimum target detection schemes. This Section gives a brief history

of this field, and is by no means exhaustive.

Intensity Distribution of Sea Clutter

The early history of sea clutter observation can be found in Long (1983). By the late 1960s a num-
ber of studies had established general dependencies such as an increase in expected signal strength
with increasing grazing angle, increased wind strength, vertical polarisation and in upwind direc-
tions (Skolnik 1981). Ship-borne maritime surveillance radar generally transmits and receives
from the ship’s mast and is necessarily operated at a low grazing angle; this in particular has
shown wide variation in reported statistics. A particular problem in target detection is predicting
the probability of high intensity returns from a limited number of samples; many researchers have

reported on the nature of the high intensity tails from sea clutter returns with varying conclusions.
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Trunk and George (1970) showed that a lognormal distribution could approximate the clutter at a
grazing angle of 4.7° in sea state 2-3 when a 200ns pulse was used. Whilst lognormal provided
better fits to some data, it does not reduce to Gaussian statistics and consequently overestimates
the low probability returns in some cases (Skolnik 1981).

Fay et al. (1977) operated an X-band radar at grazing incidence which could transmit or receive
in horizontal or vertical polarisation (HH and VV), using a 70-270 ns pulse, in a wind of 10-15
knots and found the Weibull distribution to be an excellent fit. Both lognormal and Rayleigh were
dismissed. The Weibull distribution is a model that can handle the long low probability tails of
sea clutter and also includes the exponential distribution as a special case. The model is versatile
enough to fit both long tailed data and noise dominated data which consequently led to wide
application within detection theory; covered by Sekine and Mao (1990)

The Weibull model has no strong physical justification and as early as 1957 high magnitude re-
turns were associated with steep and breaking waves (Katzin 1957); these intermittent returns are
generally termed ‘sea spikes’. Using simultaneous video Lewis and Olin (1980) confirmed the
link to breaking waves. They also showed a polarisation dependence that sea spikes occurred less
frequently within horizontally polarised observations - giving greater variance to the distribution
when compared with vertical polarisation.

A composite surface model (Wright 1968) was one of the first attempts to relate the observations
of sea spikes with theory. It suggested that a Bragg backscattering resonance condition was re-
sponsible for the spikes; caused by enhanced backscatter from surface waves with a wavelength
equal to half that of the radar transmission. If Bragg resonance is present, a physically large sea
swell may only give a large backscatter if wind-formed capillary waves are present upon its sur-
face (Skolnik 1981). With the capillary surface waves suitably modulated by the tilting surface, a
complex interdependency upon environment is present which could account for some of the trends
seen in data (Wright 1966).

In the light of the composite surface model, Hansen and Cavaleri (1982) analysed low grazing
angle X band data and found that HH polarised data showed an abrupt deviation from an over-
all Weibull distribution for large intensities, no such effect was present in VV polarisation. Olin
(1982) found that whilst the VV polarised data could be fitted by a single Weibull distribution,
the HH polarisation conformed to a different Weibull shape at low intensities than at high. The

suggestion that a different scattering mechanism was responsible for the extremely high mag-
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nitude returns was further explored by Trizna (1991). Quantifying the dependence upon grazing
angle and wind speed, Trizna suggested the Weibull fit to high backscatter regions was associated
with discrete scatters linked to whitecap coverage; while that fitting low regions was caused by
distributed roughness accounted by the composite scatter model.

Whilst associating individual spikes with surface features can provide some explanation of the
observed backscatter, a typical detection scenario may be based upon observation of such a large
range extent or resolution cell that many spiking events are included. A large enough number of
discrete scatterers is ultimately generalised to a continuous overall backscatter distribution; how-
ever the coherent imaging effects resulting from interference between scatterers (speckle) must
still be considered. This ‘compound formulation’ has gained significant popularity recently, due
in part to its physical justification.

Jakeman, Pusey and Tough (Jakeman and Pusey 1976, Jakeman and Tough 1981) considered op-
tical scattering from a random media when the population of scatterers fluctuates according to a
negative binomial distribution and showed that this resulted in a K-distribution. The K-distribution
has, in the limit of infinite scatterer population, the exponential distribution as a special case. The
negative binomial distribution arises from consideration of birth-death-(im)migration population
statistics (Jakeman 1980) and is a discretised form of the gamma distribution.

Ward (1981) gave the K-distribution firm experimental justification by operating an airborne X-
band radar, using a 30ns pulselength with 1.2° beamwidth at a grazing angle of 0.75° observed in
sea state 3. Summing 36 consecutive range samples and utilising frequency agility, the speckle was
averaged and after output to a TV recording was suitably characterised by a gamma distribution.
This was said to be acceptable over sea states 1-5 and varying swell directions. The physical com-
pound mode! proposed by Ward is that the underlying mean backscatter is slowly varying gamma
distributed - this backscatter is sampled subject to speckle with a correlation time of the order of
10ms. The underlying correlation is particularly useful in modelling clutter; Watts (Watts 1996)
in particular has quantified the performance gain available through knowledge of the correlation
structure.

The gamma distribution also arises from general statistical consideration of a family of infinitely
divisible distributions (Ward et al. 1990) as it is well known to be closed under convolution such
that the sum of N similar gamma variates will itself be gamma distributed. If the mean backscatter

from a (large) low resolution imaged area arises from a summation of several (smaller) high resol-
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ution imaged patches then observation of both resolutions, subject to speckle, will be K distributed
with a shape parameter related to resolution.

Ward, Baker and Watts (1990) using X-band equipment operating at 4m range resolution with
1.2° azimuth at various range and grazing angles, gave examples where 250ms time sequences are
locally Rayleigh but the mean value was gamma distributed confirming an overall K-distribution.
Analysis of coherent returns demonstrated a fast speckle component at 5-10ms with a slower,
presumably physical, periodic modulation of the order of seconds. It was reported that the distri-
bution of Doppler returns was dependent upon velocity, but that their correlation properties were
similar. The form of range-time images was shown to depend on resolution and look angle and an
empirical K-distribution fit was shown to relate the radar parameters to the distribution shape. A
large number of analysed data sets showed horizontal polarisation was significantly spikier than
vertical. From a moment based analysis the vertical polarisation showed a good fit to the K distri-
bution but the horizontal polarisation also showed some deviation. No significant statistical trend
was established for variations with sea state, wind speed or aspect angle relative to wind although
complex interdependencies were not dismissed.

Any ‘diversity’ between polarisation channels offers further methods for target discrimination.
Farina et al. (1997) operating an X band radar with 30m range resolution and 0.9° beam width
using data from sea state 3 at 0.645° grazing angle operating in coastal waters of significant wave
height 1.42m found that only the vertical polarisation (VV) was fit by a K-distribution and that
even accounting for thermal noise, horizontal (HH) and cross polarised channels (HV or VH where
the received pulse is at a different polarisation to transmit) fell somewhere between K and lognor-
mal.

Whilst two parameter distributions are naturally easier to analyse, thus preferable for establish-
ing environmental relations, a number of higher parameterisations have been suggested. Azzarelli
(1995) suggests a general class of models that have a fluctuating number of non-Gaussian scatter-
ers in the presence of Gaussian noise; resulting in a four parameter distribution that is shown to
fit a wide range of observed data distributions, with the K distribution as a limiting case. Further
suggestions have been the generalised gamma (Anastassopoulos et al. 1999) and the generalised

K, applied to sonar (di Bisceglie et al. 1999).
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Velocity Distribution of Sea Clutter

The surface backscatter often has a spatially wave-like form, with a period linked to that of the
ocean waves causing variation in range and time. This is not always the case, HH polarisation in
particular can show far less periodicity than VV when simultaneously observed (Ward et al. 1990);
however it is reasonable to assume that the observed scatterer motion has a strong dependence
on the physical ocean wave motion. Determination of velocity requires the phase relationship
between transmit and received waveforms and is commonplace for detecting high velocity airborne
targets. The added complexity means that high resolution coherent radars are not common despite
the potential for improved detection of slow moving targets.

A range of velocities is expected from the surface due to the finite (observed) lifetime of scattering
events (Lee et al. 1995), commonly assessed by a Doppler spectrum. Differences in the spectra
of HH and VV were analysed over 30 years ago (Pidgeon 1968, Valenzuela and Laing 1970),
reporting that HH has a higher spectral peak than VV. Whilst literature is available from large
grazing angle observation (Duncan et al. 1974), Lee and his colleagues (Lee et al. 1995, Lee et al.
1996, Lee et al. 1998) have dominated the research for typical marine surveillance grazing angles.
Lee et al. report that the peak separation of the Doppler spectrum is a result of ‘fast scatterers’. The
existence of non-Bragg scattering is postulated as ‘super events’ where HH backscatter dominates
VYV, the number of super events reportedly increases with wind speed (Lee et al. 1996). Lee et al.
(1998) verifies with laboratory wave tank experiments that the fast scatterers are due to breaking-
wave backscatter.

The intensity distribution of individual velocity components of sea clutter is more complex than
that of incoherent intensity measurements. Ward et al. (1990) reported that the low intensity tails
of the Doppler spectrum, an obvious area for target detection, consisted of the spikiest intensity
distribution which is difficult to characterise. The peak of the Doppler spectrum is also reported
to be a function of wind direction with HH consistently having a larger Doppler offset than VV
(Ward et al. 1990).

Posner (1998) utilised a high resolution 0.3m polarimetric radar with a pulse repetition frequency
of 2000Hz at a grazing angle of 0.2°. Individually observed scattering events showed large vari-
ation in magnitude but had a constant velocity over their lifetime, suggesting that relative oscilla-
tions of a few strong scatterers or whitecap formation was responsible. Posner (1998) also reported

large scale wave phenomena travelled at the predicted phase speed of the ocean waves with smaller
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Figure 1.1: In a Multi-Function Radar, surface target detection is a small proportion of the re-

quired tasks, (after Butler, 1998)

scale wave phenomena at the group speed, observed in upwind HH and VV.

1.3 Motivation

The Multiband Pulsed Radar (MBPR) is a land based radar operated by the British Defence Eval-
uation and Research Agency (DERA). Whilst still a research tool, it serves as a model for a class
of Multi Function Radars (MFR) which offer extensive computer controlled adaptive operation;

including:
e A phased array antenna can form a beam at a variable resolution and dwell time.
¢ A number of pulse frequencies and polarisations can be chosen.

e Priority tasks can reduce the available number or frequency of pulses available to a particular

process.

e Processing is achieved using high performance microprocessors.

Figure 1.1 shows the wide range of tasks required of an MFR. It is evident that surface target
detection covers only a small proportion of the radar workload.
To detect targets, normally a deviation is identified in the intensity or velocity statistics due to

the observed target radar returns. Usually a threshold is set from information about the target-free
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environment which requires prior knowledge from analysis of large amounts of data. Returns from
a scene contain clutter - defined as any unwanted backscatter. For sea clutter in particular, a large
amount of effort has been made by researchers to characterise the cause and effect of ‘sea spike’
features which cause the clutter returns to deviate from the basic scattering theory with a resultant
loss in efficiency.

This thesis concerns the analysis and processing of sea clutter from the MBPR. It covers the phys-
ical aspects of the radar operation and discusses the mathematical tools necessary to analyse the
clutter statistics. After analysis of real data, various methods of detection are discussed followed
by simulation and use of actual targets in order to test these methods. When operated in coastal re-
gions, strong returns from the land-sea interface are expected which will seriously degrade the per-
formance of radar detection models tuned to homogenous scenes. Whilst this work only presents
results from pure ocean scenes, the presence of discontinuities is considered throughout; although

physical observation was not possible due to the land based radar employed.

1.4 Contributions Made by this Thesis

This work comes to the conclusion that at high resolution the wide variability of sea clutter is
caused by inhomogeneous nonstationary clutter statistics due to the presence of discrete scatterers.
This is crucial for MFR as we can no longer use a priori information to such an extent when
viewing a scene for the first time in order to make a detection decision. Considering the returns
to be discrete in nature leads to a potential Doppler detection scheme operable at low velocities
within the clutter based upon the lifetime of the discrete scattering events.

The following aspects represent an addition to the body of knowledge about characterisation of

radar clutter observed at low grazing angles and the detection problems that arise:

e A simple texture estimate U, already proposed in the literature as the approximate MLE
solution to the K distribution shape estimate, is insufficient to characterise all aspects of
backscatter fluctuation; however it is a useful tool to analyse events as it is Gaussian when
operated at small sample population, within noise and for censored samples. Explicit de-
termination of edge effects upon U allows correction of the determined statistics for in-

homogeneous scenes.

e The potential contribution by Gaussian statistics due to system noise over a significant spa-
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tial proportion of the high resolution images and time proportion of the Doppler spectra is

not appreciated in the literature.

e A Sequential Edge Detector is proposed as a means of simultaneously detecting edges and
targets in many models of clutter. This can additionally identify the shadowed regions in

high resolution data and determine the noise component of time varying Doppler bins.

e Whilst modulation is present within sea clutter as in the compound formulation, discrete
scatterers can be present whose magnitude is not related to the underlying compound distri-

bution.

e The lifetime of the individual discrete scattering events contributing to the Doppler spectrum

can be measured in the Wavelet domain yielding an expected exponential distribution.

e Target detection based on the lifetime of events is shown to be possible which leads to a
scheme suited for relatively long observation times of slow moving targets at clutter velocit-
ies. Validation is performed in real clutter for both real and simulated targets which suggests

the method is complementary to simple Radar Cross Section (RCS) based thresholding.

e Assuming that a low resolution is used so the RCS statistics can be described by a con-
tinuous distribution, explicit determination of the stability and sample size required for op-
erational accuracy within arbitrary K-distributed clutter is performed. This shows that the
region of weakly spiky data is the most susceptible to edges when determining the shape
parameter. Thus concurrent edge detection is shown to be necessary before target detection

is performed when operating in real environments.

e The distribution of an arbitrary sum of K-distributed clutter within noise is shown to be
obtainable via a fast numerical inverse Laplace transform method which is accurate to false

alarm probabilities down to 1077,

Additionally, in Appendix A, the Sequential Edge Detector is applied to Synthetic Aperture Sonar
data. This leads to a proposed detection scheme where the shadows arising from targets are detec-
ted rather than the targets themselves. A single scene is tested which shows an apparent improve-

ment in detection rate.

30



Chapter 2

Physical Aspects

2.1 The Generalised Radar Model

Before a detailed analysis of the data is presented, the physical aspects of the radar must be ex-
plored. This Section covers properties common to pulsed radar systems where a pulse at radar
frequencies is emitted and its interaction with the environment is assessed from analysis of the

echo.

2.1.1 The Rayleigh Scattering Model

When a radar pulse impinges upon a surface, it is assumed that the reflected pulse is contributed by
N multiple scattering centres, each of which can be viewed as giving an amplitude ¢ with a phase
¢ distributed uniformly 0 < ¢ < 2x. Due to the wave nature of the pulse these add vectorially,

shown in Figure 2.1, such that the resultant signal Z is

N
Z=> anexp(jdn) @.1)
n=1

which can be viewed as a random walk upon the complex plane. The amplitude distribution P (a)

is unknown, however assuming [V is large and invoking the Central Limit Theorem means both
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Figure 2.1: Received signal formed by a random walk in the complex plane

the real and imaginary parts of Z will conform to a Gaussian distribution

2

P(Re(2)) = \/%exp (_‘P(”Zz(f)l ) , —00 <Re(Z) < > (2.2)
2

P(Im(Z2)) = \/%exp ('_ IIZ;()Z)I ) , —00<Im(Z) < o0 (2.3)

where (a?) is the expected mean square amplitude.

Assuming independent components

P(Re(Z),Im(Z)) = P(Re(2)) x P(Im(2)) 2.4)
0Re 6Im = z 6z ¢

shows the envelope z of the received radar echo | Z| is Rayleigh distributed

2 2

Prayleigh (z) = % exp (—(15—2) ,0£z < 0 2.5)

this is seen as multiplicative noise in coherent imaging systems such as radar, and is usually termed
speckle in reference to the grainy appearance of images.

Several assumptions are made in the above argument which may be violated in high resolution

systems:

e The number of scattering centres N is large.

e Scattering centres are such that the phase ¢ is spread uniformly.
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e « is constant and statistically independent from ¢ over the imaging time.

e The radar pulse is narrow bandwidth such that the physical interaction with respect to chan-

ging frequency is not discontinuous.

2.1.2 The Radar Equation

A simple equation can be derived to give the relationship between the received signal strength and
the radar characteristics. Due to the military origins of radar it is common to talk of a ‘target’

irrespective of the type of imaged scene. Making the assumptions (Skolnik 1981):
1. An antenna transmission of beam power P, reaching range Ry is achieved.
2. Directionally dependent gain G from a directive transmitting antenna is employed.

3. The target interacts with the beam, re-radiating an amount equivalent to that which would

be seen from a perfectly reflecting cross sectional area o.

4. A proportion of the reflected signal is intercepted dependent upon the receiving antenna’s

area A, at a distance R, from the target.

Thus the received power P, can be determined as

Pt g
= XxGx —xA 2.6
" 4rR? 4nRp2 T (2.6)
which in the case of a monostatic radar utilising a single antenna for transmit and receive reduces
to
P,GoA
p=72 Q2.7
(4m)° R4
Since the gain G and the effective area A, of an antenna are related by
4T A,
G = 2 (2.8)
then the monostatic radar equation can be expressed as
P,G?0\?
= ‘—3 2.9
(47)° R4

Additionally the surface radar footprint (the area illuminated in range and azimuth) is linearly
proportional to R. When viewing a distributed scene, rather than a point target, this causes an R™3
dependence upon range. The radar equation only gives a first approximation to the performance

of the radar due to variation in ¢, the concemn of the next Section.
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2.1.3 Cross Section Fluctuation

The cross section ¢ is accurately termed the Radar Cross Section (RCS) as it is the target cross
section as viewed by the radar. A target detection strategy is usually based upon the determined

statistics of o; measurement difficulties arise from factors including:

e Material properties of the target such as absorption and reflection characteristics varying
with frequency. There are three scattering regions dependent upon wavelength A and target

dimension d (Rees 1990):

— 2md/\ < 1 is the Rayleigh region where 0 oc A™4
- 2md/\ ~ 1is the Mie region where the ¢ is oscillatory or erratic

- 2md/A > 1is the optical region where o approaches the optical area of the object

Analysis of complex targets is difficult but analytic results can be determined for simple

shapes such as a sphere (Rheinstein 1968).

e Propagation effects due to the atmosphere consist of (Skolnik 1981):

— Attenuation (Rees 1990):

* A < 0.4pm dominated by Rayleigh scattering by molecules
¥ 0.8um < A < 15mm dominated by molecular absorption

* A 2 10m dominated by ionosphere

— Refraction due to atmospheric density gradients

Refraction is largely responsible for anomalous propagation due to a phenomenon known
as ducting. This can cause significant interference as antenna sidelobes in elevation are
channeled, potentially giving a second propagation route to the imaged target, however it
can be advantageous in determining the elevation of the imaged scene as explored by Money
et al. (1997a). Intentional Over The Horizon (OTH) effects can occur from ionospheric

reflection.

e Aspect ratio has a significant effect (Dunn and Howard 1970) since most targets consist of
multiple scattering centres, all of which interact to modulate the RCS between total rein-

forcement or total cancellation dependent upon their relative positions.

34



2.1. The Generalised Radar Model PHYSICAL ASPECTS

Image removed due to third party copyright

Figure 2.2: RCS fluctuation models by Swerling with Ricean for comparison

Whilst not affecting the statistics of RCS, the following can affect the recorded signal:

e The antenna beam shape has a lobed structure which causes external targets to be visible
within the central beam.

e Receiver noise due to Johnson noise within the circuits (Johnson 1928). This gives an
available thermal noise power Py in terms of Boltzmann’s constant k, ohmic component

temperature T' and bandwidth A f

P; =kTAf (2.10)

As received power is proportional to RCS (Equation 2.7), the instantaneous recorded intensity is

used to record variation in RCS over time; discussed next.

2.14 Fading Models

If the imaged scene is stationary with respect to the radar then the received signal will be constant.
In a typical scene the effects of the previous Section will have an unknown overall effect and so
several case models have been proposed by Swerling (1960) to account for the RCS variation seen
over time. Taken literally from Skolnik (1981) the four types of fading are:

1. The echo pulses received from a target on any one scan are of constant amplitude throughout
the entire scan but are independent (uncorrelated) from scan to scan. This assumption
ignores the effect of the antenna beam shape on the echo amplitude. An echo fluctuation of
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this type will be referred to as scan-to-scan fluctuation. The probability density function for
the cross section o is given by the density function
P(o) = — ( Z ) >0 @.11)
o)=—exp|—) ,02> .
Oav Oav

where 04,y is the average cross section over all target fluctuations.

2. The probability density function for the target cross section is also given by Equation 2.11
but the fluctuations are more rapid than in case 1 and are taken to be independent from

pulse to pulse instead of from scan to scan.

3. In this case, the fluctuation is assumed to be independent from scan to scan as in case 1, but

the probability density function is given by

4 2
P(0) = — exp (——") ,o>0 2.12)
4. The fluctuation is pulse to pulse according to Equation 2.12.

In addition a notional ‘Case 0’ can be defined to represent a non-fluctuating signal of constant
strength. Cases 1 and 2 consider the target as a collection of many independent scatterers of
approximately equal echoing areas and is just the power equivalent of Equation 2.5. Case 3 and
4 are said to represent one large target with other small reflectors (Skolnik 1981); however this
assumption leads to a Ricean distribution (Jao and Elbaum 1978)

_1+s

Oav

P (o) exp|:—s—i(1+s)]10(2 T s(1+s)),0>0 (213

av av
where s is the ratio of dominant scatterer RCS to the total of the small scatterers and Ij is the
modified Bessel function of zero order. Equations 2.11 to 2.13 are shown in Figure 2.2.

A fixed length scan time is not applicable to MFR - only in rotating systems are the durations
clearly defined. The observed cross section fluctuations from clutter rarely correspond to one of
the above physical models and so a number of empirical solutions have been put forward, dealt
with in Section 3.1. The motivation for using the above is that it provides standard target models
with which to compare detection strategies.

The fading models make no attempt to characterise the second order statistics - the variation in
the instantaneous statistics with time; but allow the two extremes of pulse and scan correlation. If

a single target is being imaged, neglecting the effects mentioned in Section 2.1.3, it is reasonable

36



2.2. Specifics of the Multi-Function Radar PHYSICAL ASPECTS

Table 2.1: Specifications of the DERA MPR radar

Transmit Frequency - f; 2.9-3.1 GHz (S), 8-18 GHz (X-K,), 33-37 GHz (K,)
Respective Beamwidth 1.5°,2°, 3°,

Transmit Pulse Width - 7 1us

Polarisation Horizontal, Vertical, Co-polar. Alternationin S & X-K,,
Pulse Repetition Frequency - f, 5, 10, 20, 25, 30, 40 & 50 KHz

Stepped Frequency Bandwidth - Af 0, 100, 200, 400 & 800 MHz

Frequency Step Size - Af, 0.39,0.78, 1.56 & 3.13 MHz

Calibration 0.3m aluminium sphere flown in free space by kite or balloon

to assume that the decorrelation time is primarily related to the relative position of the scatterers
contributing to a target return. Whilst they are stationary the resultant backscatter will remain
constant; simplistically a A/2 resultant movement will cause fading due to cancellation between
scatterers introducing a dependence upon the surface velocity of the target. Sea clutter is often
quoted to have a decorrelation length of order 10ms at X band (Croney 1970) which can be ap-
proximately derived from the width of the Doppler spectrum. This makes an important assumption
that the Doppler spectrum is stationary; if not then there will be a spectrum of correlation lengths

in addition to the velocity dependence.

2.2 Specifics of the Multi-Function Radar

Whilst the previous Section dealt with issues common to the majority of pulsed radars, details
specific to the DERA Multi-Band Pulsed Radar (MBPR) are now covered. Designed as a research
radar to investigate aspects of Multi Function Radar (MFR) processing, it can operate in many
different configurations - detailed in Table 2.1. The transmit frequencies are labelled by the letter
band system adopted since World War II; accepted by the IEEE as a standard although British
band designations may differ slightly.

All imaging involves the sequential transmission of 7 = 1us duration pulses forming a range gate
of extent ¢7/2. These pulses are emitted at a rate f, per second - the Pulse Repetition Frequency
(PRF). The radar is coherent so the phase ¢ of both the transmit and receive pulse is known, this
allows two distinct methods of imaging - Doppler and Hi-resolution (Hi-res). Doppler imaging

uses a single transmit frequency f; to record the wideband response of the sea surface, primarily
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to identify the velocity spectrum of the scene. Hi-res modes utilise a set of pulses swept over a
range of frequencies centred at f; with a bandwidth A f via a sequential linear frequency step A fs.
After frequency transformation this yields an interpretation of the range profile within the range
gate; for this reason the mode is often called range resolution.

The pulse can be polarised Horizontal or Vertical on transmit or receive - usually labelled as co-
polar HH or VYV, cross-polar HV or VH. The co-polar returns can be simply referred to as H and
V. Considerable differences can be seen between H and V polarised data however co-polar returns
HV and VH should theoretically give the same returns since they must follow the same paths upon
time reversal. The radar is capable of switching polarisations pulse to pulse but was operationally

switched every 256 pulses.

2.2.1 Doppler Operation

This is the simplest mode of operation where the radar emits a set of single frequency pulses. By
time gating the returns a specific range of observation can be selected. There is the possibility of
‘multiple-time-around’ echoes which arrive after the second pulse has been emitted. These will
generally be of lower intensity due to their originating from beyond the imaged range - dropping
off as R~*. The maximum range that can be imaged is c/2 fp which corresponds to 3000m for the
highest operable PRF.

If the received signal is assumed to have been scattered from a moving target then, provided
the distance moved in time 1/f, is less than a wavelength, the phase change A¢ of the received
signal can be determined unambiguously. Assuming a constant single target velocity (narrowband)
the rate of change of phase 9¢/0t is proportional to the target’s radial velocity vg,p,, with the

convention that positive v4,, corresponds to an inbound target, such that

= %/\E Jaop¢

Vdop = 5, 7, (2.14)

where c is the speed of propagation.

Using a single detector the tangential velocity is unknown. In general there will be more than
one scatterer, with a range of velocities (wideband) within the range gate. Frequency analysis of
the data, commonly achieved by an FFT upon a number of received pulses, will yield a Doppler
spectrum of velocities with an associated frequency width A fy,p,.

When analysing the clutter intensity distribution, where the phase (and hence velocity information)
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is discarded, the data can show considerable correlation due to the component scatters moving little
in time 1/ f,, such that even the Rayleigh speckle is correlated. To obtain independent samples,
only pulses separated by approximately the inverse of the Doppler frequency linewidth can be
used. The residual correlation, usually determined by the Auto-Correlation Function (ACF), is the
expected physical correlation within the scene.

As a moving target will produce an oscillation in the sequentially measured relative phase of the
received signal it is common to talk of an associated (Doppler) frequency which simplifies dis-
cussion when treating the returns as a complex signal to be analysed. It is perhaps more correctly
the phase Doppler frequency that arises from a moving scatterer; similarly the Power Spectrum or

Power Spectral Density (PSD) of a signal is equivalent to the Doppler velocity spectrum.

2.2.2 High Resolution Operation

Emitting pulses similarly to Doppler operation but using N sequentially stepped transmit pulse
frequencies, a linear ‘chirp’ is formed. Assuming that the range scene has not moved in the time
taken to emit N pulses then the wideband frequency response of the range gate is recorded. The
transmitted pulse is effectively ‘compressed’ to subdivide the range gate into N compressed range
gates. A range profile, giving both the amplitude and phase of the compressed range gates, is
formed by taking the FFT of the recorded chirp pulses. This can be viewed as the ‘beating’ of
N frequencies to form as many nodes defining the compressed range gate spacing. Repeating the
process at a rate f,/IN gives identical ‘pulse trains’, shown in Figure 2.3, allowing a Range-Time-
Intensity (RTI) image to display the movement of the scene over time.

The variation in the range profile depends only on the relative phasors present within the received
pulses and is circularly symmetric due to the Fourier transform method used. It is possible to
obtain a reference phase with which to centre the image with respect to the transmitted pulse by
measuring the delay within the system - this is termed a ‘loopback frame’. The high intensity
central region of the range compressed pulse is now always presented in the middle of the range
profile.

Nathanson (1991) covers the mathematical proof and shows that if a rectangular pulse is utilised
TAfs = 1is desirable. Forming a range gate of extent ¢7/2; by emitting N pulses over bandwidth
A f a compressed resolution of ¢/2N A f; is realised. If 7A f; = 1 the range gate is resolved into

N subdivisions giving no redundancy to the output of the FFT. In general the MBPR does not
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Figure 2.3: The stepped frequency pulse train used to form range profiles

maintain this constraint, usually 7TAfs < 1. This is primarily to allow a wide window to be
applied to the data prior to the FFT to prevent aliasing in range, and also to account for the pulse
shape not being rectangular.

In analysis of the high resolution intensity distribution, decorrelation of the data is not so critical.
After the FFT the range gates are separated in time by N/ f, which is enough to decorrelate the
speckle. If the operation has been carried out correctly, each point on the resultant range profile
will have a physically meaningful phase. Using consecutive range profiles it is now possible to

build up a Doppler spectrum for a particular compressed range gate.

2.2.3 Improving Accuracy and Reducing Noise

To improve the data quality obtained by the MBPR, processing is done before and after pulse
recording. To reduce the effect of system noise, 6x oversampling is made on receive by a 12 bit
A/D converter. After filtering at 10MHz and combining signals 15m apart this gives a simulated
16 bit output with reduced noise. The final pulseshape has a plateau +37.5m and a curved fall off
to the 3dB point at £75m reaching zero at £112.5m (Branson 1999).

In addition, the operation of an FFT to obtain either the Doppler spectrum or the range profile
must be modified to account for windowing effects. This is a standard signal processing technique
necessary with a finite data set of length NV - corresponding to a rectangularly windowed infinite
set. After an FFT the transform of the window is convolved over every FFT output, but the

transform of a rectangular window w has the undesirable property of very large oscillations beyond
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Figure 2.4: A Kaiser window lowers sidelobe levels at the expense of the mainlobe point re-

sponse

the mainlobe called sidelobes.
WReet (M) =1,0<n <N (2.15)

Sidelobes mean that a high valued FFT output bin can raise the other output bins even though no
frequency is present there. For example in Doppler mode a high amplitude low velocity target
can still raise the value of the high velocity FFT output giving an inaccurate Doppler spectrum; in
Hi-res mode a single high intensity compressed range gate would cause the sidelobe structure to
be visible in neighbouring range gates.

The level and shape of the sidelobes can be controlled by choosing to further window the data. The
total intensity of the resultant FFT must remain constant and so reducing the sidelobe levels must
broaden the mainlobe. The Kaiser window was chosen, used in both DERA software (ARCANE)
and in a report by TWR (TW Research Ltd. 1999). The Kaiser window is an approximation to the
prolate spheroidal window for which the ratio of the mainlobe to sidelobe energy is maximised

fo [ﬂV - 4(71:?—11)242
: ,0<n<N 2.16
I (B) =" e

where 3 is a parameter determining sidelobes, N is the size of the weighting array and I is a

WK aiser (n) =

Bessel function. The windows and point response functions of the rectangular, Kaiser(3 = 4)
and Kaiser(3 = 8) are shown in Figure 2.4 which give —13, —30 and —60dB sidelobe levels
respectively.
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2.3 Summary

Theory has been presented to give the expected returns from a general radar system showing
the returns to depend considerably upon the environment. However there are a many sources of
variation in propagation, target aspect ratio, relative motion and overall scene movement which
cannot be easily accounted for. The mathematical tools necessary to analyse these variations are

the concern of the next Chapter.

42



Chapter 3

Mathematical Aspects

3.1 Intensity Probability Distributions

The increased probability of high intensity returns obtained in comparison to the expected expo-
nential distribution described in Section 2.1.1 has prompted various other RCS distributions to be
suggested.
Parameter estimation of an expected probability distribution is usually made by a Maximum Like-
lihood Estimate (MLE) which gives the estimate of the m parameter vector §™ that maximises the
joint probability of the length n Independent Identically Distributed (IID) vector xy., occurring.
Thus
n
gm :max{HP(x,-;é’m)} 3.D
i=1

The distributions considered here are two parameter distributions, defined by a scale and shape
parameter. The scale estimate is largely a function of the first moment of the distribution and
can be determined relatively accurately from the sample mean. The shape cannot be determined
independently since it inherently measures a deviation from the mean. A moment based estimate

where shape is some function of variance or second moment
Var [z] = E [2*] — (E[2])? (3.2)

shows that the relative uncertainty must be at least as great as that in the mean - the problem in the

use of higher order statistics for finite sample sizes.
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3.1.1 The Weibull Distribution

The Weibull distribution, with intensity I is a two parameter distribution dependent upon a shape
a and a scale parameter o (defined independently of RCS).
a

I
I lexp [_ﬁ] ,0<I<o0;a>0 3.3)

a

Pweivur (I) = 53

First used to model breaking strengths of materials (Weibull 1939) by setting the hazard rate H to
vary as a power of the probability variable; it was first empirically applied to sea clutter data by

Fay et al. (1977), where

P(t)
Hi)= —~— .
thus
a Ia—l S bid
HI(I) _ 307 eXPIE W] — %Ia_l (35)
exp [~ g57] 20

Equation 3.3 shows the Weibull reduces to the Exponential distribution when a = 1, the Rayleigh
distribution is obtained when a = 2. A Rayleigh distributed amplitude is exponentially distributed
in power, a result of the Weibull distribution’s invariance under an exponent transformation.

The Weibull MLE estimate is in closed form (Harter and Moore 1965, Cohen 1965), more recently

a thorough analysis was made by Oliver (1993) who gave the iterative solutions as

—~ Ia

2 —_ 3.6
o 5 (3.6)

-9 a —

. 3.7

@ ' pa

Sekine and Mao (1990) state from a review of several papers that a is expected to lie in the region
0.5 — 2 for a variety of land or sea conditions. A non-iterative procedure is demonstrated by Oliver
(1993) in a normalised log estimator which gives similar performance to the MLE solution for
a > 0.5 with acceptable performance down to @ = 0.1. This method is covered in the Section

concerning the K-distribution.
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3.1.2 Log Normal

The log normal distribution is a two parameter distribution dependent upon the mean y and vari-

ance o of a log transformed Gaussian distribution to yield

1 —log (I — p)?
PLogN (I) = IO’\/% exp [%} (3.8)

Applied by Trunk and George(1970) to model sea clutter it is still often used to provide a compar-

ative fit to data (Farina et al. 1997). The parameter estimates are usually made by transformation

to the normal distribution and using the sample values for x and o2.

3.1.3 The K Distribution

The K Distribution, with amplitude z is a two parameter distribution dependent upon a shape v
and a scale b
4b(u+1)/2

Pic (Jal) = = Kot (2:m/13) ,0< |z < 005b,v>0 (3.9)

where K, is the modified Bessel function of order n. A compound form exists where the under-

lying cross section A varies according to a gamma distribution. A large number of scatterers are

assumed to be present in each resolution cell so the gamma distribution modulates the Rayleigh

speckle.
2x z2
Prayteigh (z|4) = —exp|{——],0<z< 00 (3.10)
A A
Poamma (4) = (V)A”‘1 exp (—bA) ,0< A < o0;b,0 >0 3.11)

It was initially applied in the field of lasers (Jakeman and Pusey 1976) and applied to sea clutter by
Ward (1981). If the gamma distributed cross section is assumed to vary slowly in comparison to
the speckle, this gives some physical justification for the K distribution. Both IID and compound
realisations of a K(v = 1) variate are shown in Figure 3.1.

The K distribution does not have an analytic MLE, which has caused several estimators to be
proposed. Using the intensity domain I, Blacknell (1994) compares the numerical solution of the

MLE with three schemes:

1. E(IM;1 (2)) - first and second order moments, the contrast estimate.
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K Distribution has Compound and IID Representations
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Figure 3.1: The K distribution has some physical justification as a modulating gamma variate
subject to Rayleigh speckle

2. E (log (I )(1) ;log (I )(2)) - first and second order moments of the log data, the normalised
log estimate.

3. E (f ;log (1 )) - sample mean and sample mean of the log data, the variance of the log

estimate.

Parameter fitting for E (I(1); I(?)

Using the first two moments of the K distribution and solving for v gives the simplest estimate
available

r
V=r—1=1+i 3.12)
I? vy
The direct solution of the above has an associated bias and variance (Oliver 1993) to order 1/n
Ay v (1 + 1) (1 + 9) (3.13)
v n v v

2 2
<":2>V ~ ”7 (1 + é) (1 + é) (1+ g) (3.14)

Equation 3.12 is commonly termed the contrast estimate.
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Parameter fitting for F (I_ ;log (1 ))

The derivation of E (f ;log (1 )) by Oliver (1993) uses the Mellin transform as an approximation
in the limit of many looks to derive an approximation to the MLE,

e —

U =log (1) - log (I) = 4 (%) — log (7) ~ (3.15)

where y ~ 0.577 is the Euler-Gamma number and 1(°) (e) is the polygamma function of order 0.

The iterative solution of the above has an associated bias and variance (Oliver 1993) to order 1/n

{2)
(Av)y ~ [(” 1] (3.16)
v 2n (1 — vy (v)) '

(o2), T (%; — TRl 4 <(10g (I))2> — (log (1))* + 1)
(1= vy (v))*

Equation 3.15 is commonly termed the normalised log estimate.

(3.17)

Q

Parameter fitting for £ (log (I )(1) ;log (I )(2))

The compound K distribution arises from a product of two components; this motivates taking the

logarithm to form additive components to give an estimate
T 2 Dy T2
W =log?I —logl = ol )(uw)+? (3.18)

The iterative solution of the above has an associated bias and variance (Oliver 1993) to order 1/n

Av)y PO+ %
4 N T() (3.19)
(Dw ¥ @)+ 2002 () + Lt 4 20 (o) (3:20)

v n (1@ (v))?

Equation 3.18 is commonly termed the variance of log estimate.

Inversion Problems

Whilst the variance of the estimators leads to the variance in v, some values of the estimator
cannot be inverted. As an example Figure 3.2 demonstrates hard limiting in the contrast estimate

for V' < 1 where vy takes on an unphysical negative value. Due to minimisation routines used
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Figure 3.2: An inversion limit exists for each K distribution estimator

for U and W the exact hard limited v values are determined by machine accuracy but a similar
case arises. Discarding hard limited values will obviously affect the bias and variance of the
estimators; possibly more importantly a discontinuit‘y will be seen in the sample distribution of the
shape parameter v. It seems unnecessary to calculate this effect probabilistically as it is easier to
record how many values were discarded and then directly handle the effect.

To gain an estimate of the probability of inversion failing, the estimator E is modelled (Oliver
1993) as a Gaussian distribution based upon the bias AE and variance 0% given above. Tests of
this hypothesis were made and show that it is not completely accurate (see later Sections), but

applicable for reasonably large sample populations.

1 |={E-(E)+AE)
UE\/2_7r P 20'2E

OF, —0o< E< (3.21)

P(E)JE ~

enables numeric calculation through a change of variable noting the conditions for inversion:

U+AU < —v (3.22)
V+AV > 1 (3:23)
W+AW > =2/6 (3.24)
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Failure Aate 0.1 Failure Rate 0.0001

Figure 3.3: Expected minimum samples necessary to sucessfully invert contrast estimators

Figure 3.3 shows the expected minimum samples necessary to maintain a failure rate of 0.1 and
0.0001 (a similar graph is found in Lombardo and Oliver (1994)), the variance of log estimator
W is inferior over the considered range of v. For low values of v the normalised log estimate U
is superior but an upper limit exists where the contrast V' achieves the failure rate with a lower

sample population.

Best Performance Under Ideal Conditions

From analysis of a large amount of recorded data, Ward et al. (1990) published a graph suggesting
that v can vary between 0.1 and 10 with a modal value of about 1; under ideal conditions the choice
of estimator must be based on its accuracy in determining the correct shape parameter over this
range. Several papers have investigated this and confirm that for typical conditions the normalised
log estimator U is the best overall choice as it approaches the numerical MLE solution for v.
Blacknell (1994) found that for N = 256 samples U performed best in the region 0.1 < v < 8 but
interestingly V' performed better for higher order parameters, the relevant figure from this paper
is reproduced in Figure 3.4 and it is obvious that the contrast estimator V is very poor overall.
This range of performance was similarly observed in the conditions for inversion in the previous
Section; this is expected since both criteria are largely determined by the sample variance in the

estimator - U usually having the lowest.sample variance.
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Figure 3.4: Error in v order parameter estimate for 256 samples. a - Maximum Likelihood

Estimate, b - U estimate, ¢ - W estimate, d - V estimate (after Blacknell, 1994)

3.1.4 Deviation from the Ideal

In this subsection the effects of non-ideal observed data are considered. Problems may arise from
(but not limited to) additive thermal noise, small sample sizes, censoring and inhomogeneity. No
further consideration is made of V due to its poor performance and, although not shown, it is

extremely sensitive to censoring with a long tailed distribution over some of the region of interest.

Censored Samples

In some target detection schemes it is necessary to censor the higher valued data, under the hy-
pothesis that this is a target, and then form a decision based upon the remaining data assuming
this to be background clutter. The effect of progressive censoring is tested upon the estimators
U and W based upon an initial sample size of 256 with ten thousand repetitions. A histogram is
calculated for U and W for the uncensored case and then the highest sample is removed and the
tests re-applied. This was repeated until the largest 16 samples were censored from the population

or equivalently ‘censored at the 6% level’.
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The plots shown in Figure 3.5 cover v = 0.1, v = 1 and v = 10 and are plotted with their
natural abscissa (U or W - not converted to a shape parameter such as v) this allows the effect
of censorship to be compared with respect to the estimator’s intrinsic variance. These plots have

been overlaid with a Gaussian fit and show:

e The sample distribution of U is very close to Gaussian regardless of censorship.
e W deviates from Gaussian at low values of v towards a longer tailed distribution.

e In comparison to their sample variance, especially at low v, W is less sensitive to censorship.

This provides some justification for using the estimator W in a censored situation but the stable

sample distribution of U is extremely useful for accurately calculating performance figures.

Limited Sample Sizes

The previous Section showed that U has a more stable sample distribution with respect to shape
parameter alone. When comparing shape estimates from different sample sizes the resultant dis-
tribution change must be known. Additionally censoring is performed at the 3% and 6% level in
each case and sample populations of N = 32 and 64 were chosen at a shape parameter of v = 0.1

shown in Figure 3.6. Again the plots have been overlaid with a Gaussian fit and show

e The distribution of W is far from Gaussian at low sample numbers and low v - moving

towards a long tailed distribution.

e U conforms to a Gaussian distribution even under censorship at low sample numbers and

low v.

Obtaining confidence levels for the estimator U is greatly simplified as the sample distribution is

stable Gaussian; the instability towards a longer tail in the distribution of W presents difficulty.

Presence of Noise

The radar receiver will in general add a component of thermal noise to any measured signal. The
exact amount of additive noise is system dependent and could in theory be calculated, but a sig-

nificant component could also arise from the environment itself to contribute and overall SNR. A
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Figure 3.5: Sample distribution of the U and W estimates for varying shape parameter and cen-
sorship (N = 256)
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Figure 3.6: Sample distribution of the U and W estimates for varying sample number at v = 0.1
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traditional view of scattering is that one mechanism is responsible for the observed statistics; how-
ever it may be that the emitted pulse samples a mixture of scattering sources - of which a compon-
ent originates from multiplicative Rayleigh noise (Section 2.1.1). A Rayleigh scattered component

is statistically indistinguishable from thermal noise unless discrimination is based upon:

e Forming the Doppler spectrum of the signal, thermal noise is white (it has a flat frequency
spectrum). It can be isolated from Rayleigh scattering with a presumed physical origin

confined within the observed Doppler spectrum.

e Observing the long term high resolution range profile, the mean noise level is determined by
measuring the mean of the recorded signal outside the pulse shape. This relies on thermal

noise being white.

Both the above assume well formed data without aliasing from the Fourier transform operation.
In principal the magnitude of an assumed Rayleigh scattering component can be calculated even
when combined with another non-Gaussian distribution. This is made through cumulant analysis
which is dependent on the noise being completely described by its variance (Swami et al. 1999);
the probability distribution of the non-Gaussian component distribution must be known to within
a scale factor.

The distribution of U when contaminated by noise was investigated by Lombardo et al. (1995)
who tested for SNR of 5, 10, 20 and 30dB. The effect is to add a significant bias to the determined
U value with slight change to the variance; however the sample distribution remains suitably

Gaussian (Appendix B.2).

Inhomogeneity

In this Section the effect upon the parameter estimator when an edge is present in otherwise ho-
mogenous statistics is derived, this has not been discussed in the literature.

An edge is defined to be a discontinuity from a single abrupt change in:

1. Intensity alone.
2. Distribution shape alone.

3. A simultaneous change of both intensity and distribution shape.
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Figure 3.7: The texture estimator U < O from consideration of the Pythagorean triangle as
U =log(uc/im4)

The normalised log estimate U is used to determine the edge effects as it is the most accurate of

the considered estimators. A data series of length N has a shape parameter U defined as

U = logl-logi (3.25)
N \IN 1N
E . — — - 026
log (g I,) log N ; I; (3.26)
= logpuc —logpua (3.27)

where ¢ is the geometric mean and u4 is the conventional arithmetic mean. The well known
arithmetic-geometric means inequality, demonstrated in Figure 3.7, proves that U < 0 by using
the two data values a and b with means p.; and 114 applied using Pythagoras® Theorem - the proof
is extended to N data by induction.

The task is to determine (Ua ), the expected change in U arising from a step in otherwise homo-

genous statistics.
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Intensity Change An intensity edge is present from point k& < N of relative scale s with no

change in the distribution shape defined as

1
(lik-1) = 5 {(Ie:N) (3.28)

(Ulh#-1)) = U IeN)) (3.29)
where I refers to the intensity of individual samples, and (-) is the expectation over an ensemble

average. Explicitly including this scale change, with the notation changed to reflect an assumed

underlying IID variable X, the means are formed as

pe (s,k) = (X1 X Xo X ... X 8Xg X Xpp1 X ... % sXp)YN (3.30)
(X1 +Xo+ ... +sXp+sXky1+ ...+ sXnN)
;U’A(S,k) = N

causing the expectation of both i and 4 to change by

Apc = pe(s k) —pe = (X)s*N (3.31)

sk —k
pa (s, k) = pa = (X) —

Apa

Forming the normalised log estimator U and redefining the quantities such that p refers to the
proportion k/N over which a relative intensity scale change of s gives the change Uaj,
sP
(Uar) = log pre—1 (3.32)

this is plotted in Figure 3.8 and indicates:

o The effect of an intensity scale change, regardless of sign, is to decrease measured U - this
is intuitive but can be proven from an extension of Figure 3.7 where equality is expected iff

a=nb.

e A point-like target (low p) will have little effect on the assessment of U even at a relatively

high dB - thus ‘self masking’ is not a strong effect in shape estimation.

Distribution Shape Change A distribution edge is present from point & < N such that the

distribution changes from an underlying Uy to one of shape Ur with no change in the mean
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Figure 3.8: The effect an intensity step has upon determined normalised log estimator U

{Ulha-]) = o (3.33)
(Ulle:n]) = Ur (3.34)
(k1) = (IeN) (3.35)

With no change in the arithmetic mean, the change in U will be from the geometric mean change
alone and the measured U will be

_ kUr + (N - kK)o

v N

(3.36)

upon redefining the quantities as before, where p refers to the proportion k/N over which a distri-
bution shape change from Uy to U, gives the change Uay

(Uav) = p(Ur — Vo) (3.37)
o The effect of a distribution shape change is a simple linear dependency upon the contamin-

ating edge distribution.

57



3.1. Intensity Probability Distributions MATHEMATICAL ASPECTS

Simultaneous Change in Intensity and Distribution Shape In reality a change in conditions

would probably cause a discontinuity in both mean and distribution shape, in summary:

e The magnitude of Ua is independent of an assumed underlying distribution and the number

of samples.
e The magnitude of Uay is proportional to the change in Uy at the step.

e Recasting in terms of v is less tractable and will cause v to be a function of v.

The changes can be combined to give the overall effect on a measured U such that

sP

Ur - U 3.38
Sp_p+1+P(T 0) (3.38)

(Uar.av) = log

gives the expected change in a measured U from an underlying homogenous distribution of shape
Up subject to a simultaneous edge over a proportion p which consists of a distribution U of

relative scale s.

e If Ur > Uy the effect upon measured U will be lessened and for suitable values a simultan-

eous step change in mean and distribution will leave measured U unaffected.

Modulation of Intensity By Another Distribution The K-distribution has been physically jus-
tified by casting it in a compound form (Ward 1981) in Section 3.1.3. This links the exponential
speckle expected from the imaging process to the physical modulation from ocean waves. To

generalise this compound form to other distributions, define:

¢ A local intensity ‘speckle’ distribution fy (1) with zero correlation between samples defined

by a local mean g, with an individually measured Uj.

o A global modulating distribution f, which has some correlation over a number of samples

p, defining zi, with an individually measured U,,.

e The resultant global distribution measured over N >> p samples f; = fo (1), giving meas-

ure Uy.
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The expected value of Uy is determined from the means

(nc lfgl) = nclfo] x ucfy (3.39)
(palfyl) = npalfo] x palfy (3.40)
such that
AR ralfel\\ _ o kG [fo] X pa [f,]
) = (s (551)) (oo (e fiensitl) (41
= Up+U, (3.42)

thus the effect of a modulation upon the local measure Uy causes a bias of Ua
(Unp) =U, (3.43)
where the expectation is taken over an ensemble of sample numbers N > p.

e A modulation can only serve to decrease measured U it is the continuous analogue of a

large number of abrupt intensity changes.

3.1.5 Measuring Distribution Parameters

In the literature there is no strong consensus on the distribution to which radar clutter conforms.
Weibull and K are popular choices but each has its own texture parameter with associated estimat-
ors. As shown, the K distribution can be characterised well by the normalised log estimate in the
expected region of interest; the previous tests were repeated using Weibull statistics and showed

similar effects and so it is reasonable to assess U only. This can be justified by:

e The arithmetic and geometric means are simple to calculate and therefore very fast in oper-

ation.

e The normalised log estimate is near optimal for Weibull and K in the parameter regions and
sample sizes of interest; if the true distribution is between the two then it will be applicable

also.

e It is only for convenience that the one-to-one mapping is performed from any texture estim-
ator to the shape parameter used in the distribution. A simple conversion graph can be used

when this is necessary.
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e The mapping may not be invertible as shown in Section 3.1.3. This causes a discontinuity

in the sample distribution of the determined shape parameter.

e This mapping is non-linear and can be shown to cause significant errors in estimating the
bias and error in the determined shape parameter. This is explored by Lombardo and Oliver

(1994) and an example is given in Appendix B.1.

e Uniquely the distribution of U is suitably Gaussian for varying sample sizes, under cen-
soring, at low sample numbers and in the presence of thermal noise. This allows accurate

prediction of associated uncertainty in the estimate and is crucial in later sections.

o The expected effect upon U of any step or modulation in the data is explicitly calculable,
does not depend on the sample size and is derived to be simple equations (3.32, 3.37 & 3.43).
This gives a tool for extending the analysis to non-stationary data - covered in subsequent

Chapters.

Appendix B.2 discusses a further estimator - the amplitude contrast V, proposed by Lombardo,
Oliver and Tough (1995) which is designed to offer resistance to thermal noise whilst maintaining
the accuracy of determining the shape parameter. If the K-distribution represents the absolute un-
derlying statistics, Lombardo et al. showed that for estimation of v from clutter data contaminated

by noise, V; would be a good overall choice. Several points are suggested concerning this:

e It is arguable whether noise-free statistics from the surface are ever observed; if so, the
commonly applied K or Weibull distribution may be an accurate approximation to the dis-

tribution of ‘clutter plus noise’.

e As mentioned previously, some of the Rayleigh noise could be from the surface itself and
indistinguishable from the thermal noise; sensitivity to this noise would be desirable for

improved segmentation of scenes.

o The comparison between estimators is made assuming a linear dependence between the
estimator and the reciprocal of the shape parameter v. According to Lombardo and Oliver
(1994) whilst this is true for all V, only in the limit of large v can it be applied for U
and W. As shown above, the distribution of the estimators is not identical with the result
that discrimination on the basis of minor changes in the relative biases and variances is

complicated.
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e The sample distribution of V, is not normal for low sample numbers and low v as shown in

Appendix B.2.

The decision is made to retain U as the preferred estimator; its consistent Gaussian distribution is
a strong reason as the method of determining an associated confidence in the value will be more

robust and this is relied upon in Chapter 8.

3.1.6 Additional Properties of U

It remains only to relate the chosen estimate U to the shape parameter used in the distributions.
Equation 3.15 obtains the K shape parameter v, equivalent Weibull shape parameter a is determ-

ined in a similar manner (Oliver 1993).

Uw) = O (@g) —log (5) — (3.44)

= log (r (1 + 1)) (3.45)
a a

Equations 3.44 and 3.45 are plotted in Figure 3.9. It is possible to define a Weibull distribution that

~

D

Nt
I

equates to U > —+ in the case of the Weibull distribution; this is because the limiting distribution
of a — oo is not exponential as in the K-distribution. Realistically it is expected that the shape
parameter a < 1.

For v = a = 0.5 the Weibull and K distributions coincide (U =~ —1.85) as the Bessel function can
be simplified for half-integer orders (Armstrong 1992); thus any practical fit to real data near this
parameter will be unable to distinguish between a Weibull and K distribution.

If locally stationary K distributed statistics are assumed, the primary cause of uncertainty in U
will be finite sample size. From Section 3.1.4 the sample distribution of U is known to be suitably

Gaussian

f(U) = Nip,0% =

exp 252

1
aVvar

and using the results of Lombardo and Oliver (1994) who derive the bias and variance in terms of

-(U—W]

v as

[ﬁ(l-{-)%)-l-—/bz(l_%-%)]_l_(] (3.46)

ol = v it (3.47)
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Conversion between U and Shape Parameter
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Figure 3.9: How the U estimator relates to Weibull and K distribution shape parameters

the sample distribution parameters are determined and verified through simulation - shown in

Figure 3.10.

3.2 Physical Doppler Spectra

3.2.1 Origin

The Doppler spectrum from the sea surface, @ (¢) where ( is the Doppler frequency, can be ration-
alised as coming from three physical processes (Lee et al. 1995): Doppler broadening, damping
dominated broadening and a mixture of the two.

Doppler broadening results from a fixed population of scatterers with a Gaussian distribution of

speeds yielding

1 P
®¢ () = o/ SP [—«Tg(c)-] (3.48)

where (¢ is the modal frequency and (. is the Doppler width. Assuming a fast moving varying
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Figure 3.10: The bias and standard deviation in the sample distribution of U for varying sample

number. Monte Carlo simulation shown as symbols upon a theoretical line

population with an exponentially distributed lifetime yields the Lorentzian distribution

_ I /2n2
(¢ —¢L)? + (T/27)?

where (1, is the modal frequency and I'! is the characteristic scatterer lifetime giving a full width

21 () (3.49)

at half maximum (FWHM) of I'/x. It is reasonable to assume that the true form of the spectrum
will be a combination of the above effects and so the overall effect will be a convolution of the
two, yielding the Voigtian spectrum
+00 =

By (a,u) = % /— . mdy (3.50)
where u = (¢ — {v) /(. is the normalised frequency, (v is the modal value and ¢ = I'/2n{ is
the Voigt parameter which represents the ratio of the Lorentzian FWHM to the full-width at one
e-folding of the Gaussian (Lee et al. 1995).
An extensive approximation suitable for curve fitting can be found in Lee et al. (1995) who further
suggest using a Levenberg-Marquardt algorithm to fit spectral data via a linear mixture of the three
components. One criticism which may be levelled is that a wide range of spectra could fit to a
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distribution modelled by 3 separate parameterised components without necessarily conforming to
the physical models they represent.

Work by Walker (2000), again using wavetank data, has led to a 3 component Doppler model to
include Bragg, whitecap and spiking events. Each component is assumed to contribute a Gaussian
spectrum but the parameterisation is reduced by including a composite surface Bragg scattering

model.

3.2.2 Analysis using the Windowed Fourier Transform

A coherent pulsed radar is capable of recording the phases of individual reflected pulses. At high
transmit frequencies and natural environments the motion of the illuminated area has little effect
on the received frequency. A Doppler spectrum of the scene is built up from analysing the phase
evolution of the signal over time. Typically this is achieved using the Fast Fourier Transform
(FFT) which in its standard form requires a complex data length of N € {2%;i € R}, resulting
in the discrete frequency space representation. The resolution of the FFT is determined by the
sampling frequency ws which, via the Nyquist sampling criterion, can only resolve N evenly
spaced frequencies < w,/2.

In a stationary environment with well defined periodic content the FFT gives an acceptable method
of analysis; increasing the data length increases the number of distinct frequencies analysed. In a
non-stationary environment the spectral content may change in time; windowing the data in order
to localise the frequency content in time produces the Windowed Fourier Transform (WFT) in the
left of Figure 3.11.

The window size is chosen to match the radar environment and is usually fixed for a given sampling
frequency ws. It can be matched to the decorrelation time of the scene, the scan time or as a
function of radar processing power since the FFT algorithm is order N log N. This imposes a scale
of analysis on the scene where all events are deemed to occur over the length of these windows.
Any change in spectral content over the window is smeared into a single FFT; if the original
periodic signal is not a pure sinusoid then incidental frequencies are introduced.

Windowing causes the measurement of frequencies which may not be of interest, accompanied
by the masking of events with duration shorter or longer than the window size. In general signals
are not composed of well defined frequencies and the resultant FFT needs smoothing in order

to distinguish the shape of the Doppler spectrum. A common method is to simply use a boxcar
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At

Kouanbouy
Kouanbasy

Figure 3.11: In the FFT sinusoidal basis functions are arranged at fixed intervals in frequency de-

termined by the fixed window in time. The Continuous Wavelet Transform maintains a constant

uncertainty in frequency and time

average, motivated by any frequency lying between two adjacent discrete FFT bins being spread
into each. The averaging is often extended until the spectrum looks smooth, then consecutive

windows are compared to view changes in the environment.

3.2.3 Analysis using the Wavelet Transform

The problem with the Windowed Fourier Transform is that fixed uncertainty in frequency is im-
posed by using a discrete algorithm and smoothing. This is accompanied by fixed uncertainty in
time by windowing - yielding little scope for adaptivity to a changing environment. An alternate
method of handling the uncertainty is from the classical form of the Heisenberg uncertainty prin-
ciple which is not unique to quantum mechanics but a general property of functions (Kaiser 1994).
If a function g(¢) is small outside a time localised to At and the Fourier transform g(w) is small

outside a frequency bandwidth Aw then (Sarakar and Su 1998):
AwAt > constant ~ 1 3.51)

By normalising the function g(t), hence g(w), and identifying it with a probability function then

the most probable values in time and frequency can be found from

to = /'00 tlg(t)|*dt , wo = /00 w|§(w)|?dw (3.52)

—o0 —00
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Looking at the variances from ¢y and wy

@v2= [~ -l (uf= [ @-wliiePe 659

—o0 -0

it can be shown (Sarakar and Su 1998) that the limiting uncertainty product is
AwAt = constant > 0.5 (3.549)

where the exact value can be calculated from the specific window shape.

As frequency cannot be measured instantaneously then Equation 3.54 gives the degree of certainty
in a local estimate. The subtlety is that when looking at a range of frequencies it would be conveni-
ent to have the same overall uncertainty for each; Equation 3.54 gives the window size necessary
as a function of frequency. This defines the Wavelet Transform (WT) of a signal, where a signal
is analysed by scale to maintain constant uncertainty product shown in the right of Figure 3.11.
Choosing a ‘mother’ wavelet and using scaled versions as basis functions not only allows a choice
of frequencies to analyse, but also the shape of the periodic components to look for. To efficiently
look for these frequencies at all window positions the convolution is implemented with the FFT.
The Wavelet Transform thus expands the Doppler spectrum as an instantaneous evaluation of fre-
quencies present within a sample length. As an aside the self similarity of the basis functions
could reveal fractal nature in any signal (Wornell 1996)

The wavelet transform used is a discretised form of the Continuous Wavelet Transform (CWT)
which introduces redundancy and is not orthogonal. A non-redundant transform exists in the form
of the Discrete Wavelet Transform (DWT) which operates on a dyadic grid. The motivation for
using a DWT is that the basis functions are truly localised, orthogonal and can be discontinuous.
In addition frameworks are present to adapt the basis functions in response to the input signals for
matched filtering. A major failing of the DWT is that it is not time-invariant; a single time shift in
the input signal can produce a vastly different transform (see Daubechies (1993) for more detail
on the DWT).

The standard FFT algorithm has computational complexity of
O[FFT] = Nwindmnyreq log Nfreq (355)

where Ny,ndow refers to the number of windows used to analyse a data sequence. Consecutive

windows can be overlapped or computed at every time step. Ny.e, refers to the size of that
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window, determined by the desired time localisation but incidentally determining the frequency
components calculated..

The WT has complexity of
O[WT] = nfreqNiotal 10g Niotal (3.56)

by analysing a chosen subset of frequencies 7)¢,, the cost of increasing the transform length to

the sample length Ny is offset; although in general the WT is more expensive.

Implementation

A possible input to a detector based on the wavelet transform is constructed in Chapter 7. The
redundancy in the transform is accounted for, and is indeed a necessary result, from the uncertainty
principle in Equation 3.54.
The choice of mother wavelet is a Morlet (Grossmann and Morlet 1985) because of the simple
symmetric form. A further reason is that events of similar shape were observed in the data and
have been demonstrated previously in the returns from a Loch (Werle 1995). The normalised
form of the Morlet wavelet is shown in Figure 3.12; mathematically in time (f) and frequency (w)
(Torrence and Compo 1998) as

£2

Wo(t) = M4 explunt — ), Fofw) = n /4 exp[ L)

Where U (w) indicates the Fourier transform of ¥ (t). Strictly speaking the Morlet wavelet is not

2
] (3.57)

admissible since it extends to negative infinity and has non-zero mean (Farge 1992); however by
choosing wg > 5 then the negative frequencies are small and the mean is negligible. The value
chosen is that which made the first oscillation of the real component touch the envelope at half
height (wp = 5.336) which also gives time-reversal symmetry.

Particular frequencies within a signal are analysed by dilating the mother wavelet by a scale s and

shifting to a position 3 such that

_ Ly (t=8
.= L, (122) o5

If z(t) is the signal then the wavelet coefficient of z at scale s and time ¢ is defined from the

Continuous Wavelet Transform shown in Figure 3.11 and defined as
1 T —
Wt,s = /IE(T)ﬁ‘I’(}( s IB
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Figure 3.12: The Morlet mother wavelet in time and frequency (with respect to the Fourier fre-

quency)

normalised to unit energy for each scale. Discretising this to N data with a signal z () = z1.n
and using the convolution theory, the coefficients over the entire signal at a particular scale are

calculated (Torrence and Compo 1998) via

N-1
W, (n) = Z Tk U* (swi) exp(iwgn) (3.60)
k=0
2k
L. k< N/2
wp = v ks N/ (3.61)

—ZE k> N/2

where ¥ is now taken to be normalised.

Essentially a basis function defined by a particularly scaled mother wavelet is being applied at
every time point n, this is done by convolution using Equation 3.60 where the FFT is used incid-
entally for speed. Upon inversion the complex value of the component W represents the certainty
of a particular phase frequency being present at that time in the signal and so the modulus of this
is taken as relative phase is unimportant (similarly, only the magnitude of the Doppler spectrum is
useful). This is plotted as a 2 dimensional shaded image to reflect the magnitude of W along the

dimensions of time and scale.
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Figure 3.13: The Wavelet transform (bottom) identifies the best windowing in time and frequency
which is difficult to obtain in the Windowed Fourier for nonstationary Doppler and power
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Figure 3.13 demonstrates the Continuous Wavelet Transform in comparison to the Windowed
Fourier Transform to illustrate the presence of a simulated target within system noise. Without
knowing the velocity of the target, optimum windowing is unknown; the upper three plots show
the result obtained from a WFT with time windows of 16, 32 and 64 samples from a simulated
512 samples. The lower plot shows the CWT which, whilst computationally more involved, seems
to convey the information of varying velocity and intensity much better - this particular analysed

signal is discussed in the next subsection.

3.2.4 Application

The choice of wavelet scale s is in some ways arbitrary but justification for using a logarithmic
spacing is given in Chapter 7 as the width of the wavelet in frequency space is a linear function of
its central frequency. This defines the natural scale of the CWT to be the logarithm of the velocity,
unlike the linear relationship of the FFT.

A real target will have varying velocity and intensity, an accurate simulation (Chapter 7) of a typ-
ical target presented in Figure 3.14 is that analysed in the previous Section. The overall Doppler
obtained using the FFT does not convey the situation well as there appear to be three targets at
different velocities; taking the largest instantaneous CWT coefficient obtains an accurate repres-
entation.

There seems to be an advantage in performing the CWT for analysing the time varying Doppler
of the sea surface as it removes the need to arbitrarily choose the size of analysis window. By
minimising the uncertainty in declaring a velocity component to be present over time, the time-

varying Doppler statistics of a signal are well represented - discussed further in Chapter 7.

3.3 Assessing Applicability of Statistical Models

Before any detection scheme can be developed based upon a statistical model for the data it is
important that the degree of conformity to that model is assessed. In real world situations, noise
(either statistical, system or environmental) usually causes some departure from the theoretical
predictions which can mask the true model. Alternate models may be so similar that it is difficult
to distinguish which is better, additionally the stability of the model should be assessed - any

nonstationary departure from the assumed model may have considerable effects.
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Figure 3.14: Wavelet analysis conveys information better than Fourier for nonstationary Doppler

and power
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3.3.1 Distribution Theory

Determining if two distributions are the same requires a search for some significance level p with
which to discriminate between various parametrically known hypotheses H; (PDFs) based upon
the data . The Maximum Likelihood Estimate (MLE) for the parameter vector 8; of H; is usually
employed. Neglecting quantisation, a continuous distribution is tested to determine the signific-
ance of any departure of the data from that of the hypothesis.

The MLE is based upon maximising the probability of x by varying € within a single H. As such
this has no mathematical basis, being based on ‘intuition’(Press et al. 1992). As the MLE is based
upon H being true then any deviation from this will give an invalid estimate for 6.

The Kolmogorov-Smirnov (K-S) test (Press et al. 1992) measures the absolute difference D between

the data CDF C; and the hypothesis H CDF Cy
D = max|Cq — Cy| (3.62)

To determine a significance level p requires a property of the K-S test - that its distribution in the
case of H being true is invariant under a transformation of x and can be approximated for N > 4

samples (Press et al. 1992) as

Q

pD Qks [(x/ﬁ +0.12+ ﬂ) D] (3.63)

vN

~2)\2

Qrs(\) = 2) (-1)/le™ (3.64)
=1

However, an important point is that Equation 3.63 is only valid if 8 is not estimated from the data.
Whilst this is embodied in the statement ‘H being true’, often the assumption is taken that it is
true based upon an MLE estimate of the data which has an associated variance.

The test is insufficiently sensitive to departures from the tails (Cox and Hinkley 1974) which is
the particular region of interest. The reason is that in the case of H being true then the probability
distribution of D is not independent of z. The variance of D is proportional to P (z) [1 — P (z)]
and thus a deviation that may be significant at its own value of z is compared to the expected
chance deviation at the maximum variance P = 0.5 (Press et al. 1992).

A way of overcoming the insensitivity to the tails of the distribution is to use a distance measure

which has a constant variance over . A simple choice is the Kuiper (KP) statistic (Press et
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Figure 3.15: Weibull and K distributions show similar behaviour in the presence of thermal noise

al. 1992) defined as K
K =D, +D_=max[Cy — C;] + max [C; — CH]| (3.65)

with an associated significance level

0.24
Pk = QK'u.iper [(\/I_V-F 0.155 + W) K] (366)

(o <]
Qxuiper (N) = 2 Z (4j2 A2 — 1) e~ U\
J=1

3.3.2 Alternate Methods
Weibull Analysis

So called “Weibull paper’ can be used to plot and analyse long tailed distributions. Weibull statist-
ics are transformed to yield a straight line with a slope defined by the shape parameter, achieved
via Equation 3.69 where F is the complementary CDE.

Ia
Pweiur (I) = %I“ ~Lexp —ﬁ] (3.67)
I I
Fweana (1) = 1= [ Prana(Ddr=exp|-35] 669
log [~ log [Fweisut (1)]] = alog(I) - log (20°) (3.69)

The appearances of Weibull and K distributed statistics plotted in this way are shown for shape
parameters of a = 0.25 and v = 0.1 respectively in Figure 3.15, which include the expected
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Weibull Plots of Potential Clutter Forms
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Figure 3.16: The data plotted on Weibull paper resembles extremely spiky data in noise or a
mixture distribution of less spiky data

effects of thermal noise. This is included in a coherent manner and shows that even at a fairly
good SNR of 30dB there is an obvious elbow in the plots where the lower magnitude has the
expected slope of an exponential distribution but the higher values approach the noise free case.
The plots show that in the presence of noise it is extremely difficult to distinguish K and Weibull
statistics even at parameter values far from where they coincide (a = v = 0.5).

The Weibull plots of 3.15 shows shape parameters that are extremely spiky and on the limit of the
expected values according to both the DERA clutter model (@ = 0.25) and Ward et al. (v = 0.1)
however these parameters are necessary to achieve an elbow in the Weibull plot that resembles the
real data from Chapter 4; if a spatial mixture of distributions is formed then similar piots can be
generated with much less spiky parameter values (v = 1).

3.3.3 Testing for Stationarity

The underlying statistics are assumed to be stationary in most detection schemes. The large body
of literature on sea clutter shows that the statistics can vary considerably upon factors including
grazing angle, frequency, polarisation, wind speed, sea state and radar type. Treating each data set
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as being a time series individually representative of a particular environment, temporal stationarity
over the order of seconds should be tested as this is a possible detection scenario.
According to Harvey (1993), for a stochastic process X to be stationary several criteria must be

satisfied at all time ¢ by the discrete values z;:

() = p (3.70)
(@—-w) = o2=¢(0) (3.71)
((It - ,U:) (xt—r - H‘)) = f(T) y T = 1127 v (372)

where (-) is the expectation. The above equations are recognised as mean, variance and autoco-
variance respectively. Harvey further notes that to test for stationarity in this way the time series
must be ‘ergodic’ such that observations sufficiently apart should be almost uncorrelated; not the
case in a cyclic time series for example.

Equations 3.70 - 3.72 define ‘weak’ stationarity. A further constraint defining ‘strict’ stationarity
is that the joint probability distribution of the observations is constant, i.e. a multivariate condition.
Using stationarity to test the applicability of a PDF only requires univariate observations and so
this is too strong a constraint.

A problem in applying the stationary criteria to a single set of data is how to window the data in
order to assess a change in statistics. This is normally determined by practical means, in a rotating
radar the number of data points will be determined by the antenna angular velocity and PREF, but
in MFR there is no restriction in stare mode and the PRF can be adaptively changed.

In real data even the weak stationary criteria are often too strict and so it is normal to apply a
transformation to render the data stationary. Commonly a windowed processor defines a local
region of the data and the data is normalised with respect to its local mean, this forces Equation
3.70. Similarly, dividing Equation 3.72 by the local variance yields the autocorrelation function
which measures the form of the correlation decay rather than the magnitude.

Further transformations can be used to obtain stationarity, these include ‘differencing’ to remove
linear trends by using the transformed variable Az; = z: — x:—1 and also a log transformation
which is applicable when the standard deviation is proportional to the mean (Cromwell et al. 1994).
Some mathematical tests for stationarity, discussed by Cromwell et al. using the Dickey-Fuller test
(Dickey and Fuller 1979), rely on assuming an autoregressive model a priori and testing for the

null hypothesis of a random walk. Priestly (1988) discusses others that compare two sections of a

75



3.4. Further Possibilities MATHEMATICAL ASPECTS

series’ covariance or spectral properties, making the comment that these sections must be locally
stationary for this to work. A test to assess the overall stationarity of the time series is required
and is given by Priestly via an estimate of the ‘evolutionary’ spectrum over time. However, this
evolutionary spectrum is determined using a window and is thus subject to the problems discussed
in Section 3.2.3.

If a change or evolution in the statistics are possible then one must carefully choose detection

schemes with respect to their a priori assumptions and robustness.

3.4 Further Possibilities

Two proposals concemning chaotic and fractal properties of sea clutter have been made in the
literature. A brief introduction is necessary to make them accessible but no further consideration
has been made in this thesis, the somewhat esoteric maths and inability to relate directly to the
physical process does not justify it (although significant progress in applying fractal modelling to

sea clutter has been made recently by Berizzi et al. (2000)).

3.4.1 Chaotic Model

A chaotic system can satisfy all tests for randomness and yet be entirely based on deterministic

nonlinear dynamics. Haykin (1997) has advocated that sea clutter is a chaotic process.

The Logistic Equation

The logistic equation demonstrates some simple properties of chaos:
Tiyp] = k.ﬁL‘t(l — Zlft) ,0<k<4 3.73)

Using the same initial = value of 0.5, graphs are shown for various parameter k in Figure 3.17.
For k < 1 the graph tends to zero, i.e. zero is the fixed point attractor for the system. Increasing
k towards 4 shows various trends, the fixed point attractor for £ > 1 is non-zero. When k& > 3
a bifurcation takes place whereby there are now 2 attractors, i.e. a two point attractor. Putting
k > 3.4494 ... shows periodic doubling with a 4 point attractor. Increasing k beyond this shows
8,16.32,64 ... point attractors until arriving at a state which can show correlation and periodicity

on many scales - generally referred to as chaotic.
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Figure 3.17: Evolution of the logistic equation dependent upon control parameter

The simple one dimensional equation shows a range of differing behaviour controlled by a single
parameter. Periodic doubling is not immediately obvious from the equation, and is often an indic-
ation of the onset of chaos in simulated systems. Additional concepts in chaos are discussed in

Appendix B.3.

3.4.2 Fractal Modelling

Fractals are systems whose invariance lies not with time but scale. A classic example is found in
the bronchi of the human lung where the same branching structure is seen at every scale. Typically,
analysis of structure is limited at large scales by the sample length and at small scales by the
sampling rate. If the spatial statistics of the system are similar over this range this is termed
‘statistical self similarity’. One such family is the 1/ f process generally defined (Wornell 1996)

as processes having a measured power spectrum obeying

o2
O(f)~—= (3.74)
which gives a correlation structure via Fourier transform (Champeney 1987)
2 21171
i o Il (3.75)

W’ ~ 2T (7) cos (v7/2)
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3.5 Summary

Probability distributions commonly applied to sea clutter have been covered, accompanied by their
parameter estimators. The popularity of the K-distribution arises from its physically attractive
compound representation which defines the statistics as coming from the speckle of an underlying
power modulation. A commonly applied alternative is the Weibull distribution, despite it lacking
a strong physical justification.

Both the Weibull and K shape parameters have iterative and non-analytic maximum likelihood
estimators respectively and so an estimator suitable for real time processing is identified in the
normalised log estimator U. Importantly this is known to be accurate for both distributions and
has a simple interpretation related to the geometric and arithmetic mean.

Justification has been given for the subsequent use of a single texture measure U. A novel contribu-
tion was made investigating the sample distribution of the texture estimators subject to progressive
censoring, thermal noise and low sample numbers. Uniquely U has been shown to be Gaussian
distributed for all considered cases, this allows robust statistics to be used for determining the con-
fidence in a particular measured value. The effect of edges and modulation upon the measurement
of U was explicitly determined to allow further investigation of non-stationary data.

The physical origin of the Doppler spectrum was considered but it is suggested that except under
the controlled conditions of a wave tank, a three component mixture could reasonably fit a wide
range of measured spectra without necessarily confirming their physical nature. Explicit problems
have been stated in the usual analysis of Doppler by fast Fourier transform methods. Analysis via
the wavelet transform has been suggested as a way of overcoming the simultaneous uncertainty in
frequency and time of a signal by achieving a lower bound to their uncertainty product. This gives
an elegant way of analysing non-stationary signals without the arbitrary windowing and smoothing
commonly associated with Fourier methods.

Whilst chaotic and fractal analysis offer appealing sources of novel research, they are still a new
science and do not have the robustness of established mathematics, and so no further consideration
will be made.

Simple methods of identifying an applicable statistical distribution have been shown with caution-

ary advice, and the definitions of stationarity have been stated.
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Chapter 4

Assessment of Real Data

This Chapter covers the analysis of real data recorded in varying ocean conditions. It must be
borne in mind that the results are an interpretation of the scene by the radar and whilst strong
mathematical models are desirable, the experimental and environmental conditions are critical.

The environment is illustrated by two digitised stills from the continuous video recordings in
Figure 4.1 which show typical surfaces from a 4.3m and 6.1m significant wave height (the mean
height of the upper third vertical displacement as measured with a waverider buoy). It is difficult
to spatially compare (register) these optical frequency images with those derived from the radar

data without a visible distance scale in the images, but some general points can be made:

e The 4.3m scenes show the presence of numerous abrupt small-scale whitecaps. Although
their effect at operable radar frequencies is presumably different it indicates a change in the

underlying physical processes responsible for scattering.

¢ Modulation can be seen in both images due to the swell present, but further wave structure

is apparent without breaking.

e Within the 6.1m scene significant areas are hidden from view by the much larger breaking

structure, hence the modulation is partly in ‘shadow’ as viewed by the radar.

e Larger scale wave events can be seen towards the horizon which are explained in part by
the popular belief that the seventh ocean wave is the largest. It is not clear how this arises

but fully developed waves can be calculated to break when their height is approximately
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Figure 4.1: Simultaneous video still from a) sen3287 - sen3294 with significant wave height of
4.3m and b) sen3537 - sen3542 with significant wave height of 6.1m
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Figure 4.2: Raw data histograms showing A/D problems

one seventh of their wavelength (Komen et al. 1994) which, if any resonance is present, is a

possible explanation.

e The majority of data is from high sea states which are at the extreme of usual operating
parameters for practical radars.

4.1 Data Integrity

The data is output digitally by the radar in real time to Exabyte tapes. A large amount of data taken
in varying operating conditions between 1994 and 1996 is available at the DERA Portsdown site of
which several gigabytes were transferred to a PC for analysis using MATLAB (Mathworks 1999).
User friendly software was provided by DERA in the form of Matlab programs to format, display
and process the data. These were not suitable for fast development, being based upon a Graphical
User Interface (GUI), so a parallel set of command line procedures were written.

The raw coherent data is stored as a complex integer defined in the complex plane of in-phase
(D) and out-of-phase (Q) components. Each component is obtained from a separate Analogue to
Digital (A/D) converter. By histogramming the I and Q values separately it is possible to check
the operation of the A/D. In addition this checks to see whether the correct attenuation has been
used on the radar to give the data a reasonable dynamic range without introducing spurious A/D
noise. In a large number of cases the data was degraded by the absence of certain values, this is
indicative of a ‘sticky bit’ where the binary representation of the integer consistently has one or

more bits at the same value. In addition some integers were of lower than expected occurrence,
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indicative of an intermittent or partial sticky bit. The shape of the histogram was also variable,
obviously some dependence on environment is expected but some were severely deformed with
no obvious explanation.

Occasionally I and Q were not centred at zero, this is due to a bias voltage entering the system
which can be corrected in pre-processing. Voltage spikes also contributed to data ‘glitches’ where
a single data point would be far greater than expected. In all other reasonable cases the I and
Q were balanced and had the same dynamic range. Two particularly bad examples are shown
in Figure 4.2 but all files were screened by hand before use in this work. A further observation,
presumably due to stray AC voltages, is frequency contamination of the data appearing as small
spikes in the Doppler spectra. Another complication is the presence of birds in the data, this has
been confirmed from simultaneous video capture for some runs.

A problem unique to the formation of a high resolution image is that the set of individual pulse
frequencies necessary to form the chirp (Section 2.2.2) was often not sequentially transmitted
quickly enough (cycled) to form an accurate range profile. Determining when this happened is
made by examining the Doppler of a single chirp frequency or that of the imaged high resolution
range cell. A suitably formed Doppler spectrum will be seen only if the scene has not moved
significantly over the imaging time. Unfortunately, this fact, compounded with the other problems
meant that no ‘perfect’” 8GHz high resolution data is available and very few perfect 3GHz files;
however if the data is viewed as being representative of the output from an operational radar then
it cannot be ignored. Indeed this situation may frequently arise if a fast moving ship is moving
in the opposite direction to the waves and so it is still instructive to analyse, although a simple

interpretation of the received statistics is lost.

4.2 High Resolution Range Profile Data

The high resolution scenes were formed by stepped frequency chirp imaging as discussed in Sec-
tion 2.2.2. The 1.5m resolution scenes were achieved over a bandwidth of 100Hz with 256 fre-
quency steps, the 19cm resolution data utilised 800Hz bandwidth with 512 frequency steps. Pulse

repetition frequency, centre frequency and polarisation are detailed in Tables 4.1 and 4.2.
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Table 4.1: High Res Range-Time files used at 8GHz. H,, is Significant Wave Height, V,, is Wind
Velocity, Az refers to Azimuth Angle

Run F/GHz PRF Res Pol Hy/m Vy/ms™!  AZying  AZwave AZiook Rng/m
sen3363 8.4 20k 1.5m HH/VV 4.08 12 250 273 284 4005
sen3464 8.4 20k 1.5m HH/VV 4.17 21 230 257 331 5010
sen3502 8.4 20k 1.5m HH/VV 446 22 230 260 284 5010
sen3470 8.4 20k 19cm HH/VV 440 28 240 241 331 5010
sen3508 8.4 20k 19cm HH/VV 4.46 22 230 260 284 5010

4.2.1 8 GHz Scenes

Five range time files in horizontal and vertical polarisations are used as an example. It must be
stressed that the derived Doppler spectrum is nearly flat due to excessive aliasing of the spectrum,
this implies the chirp frequencies were not cycled fast enough to form an entirely valid image.
Figure 4.3 shows scenes at 1.5m resolution and Figure 4.4 shows scenes at 19cm resolution, each
with 26 seconds of data. The data has been range calibrated and the RCS obtained from reference
to a calibration sphere. Environmental and system parameters are given in Table 4.1.

Suitably comparable images were obtained by using calibrated RCS images and displaying them
with a dB scale. Physically interpretable scenes are still produced indicating that the chirp cyc-
ling is not critical in obtaining an image. Only those low velocity scatterers whose phase can be
measured unambiguously for the entire chirp will be imaged correctly. High velocity scatterers
which move a distance greater than the transmit wavelength are ‘smeared’ into neighbouring range
cells; this environmental dependence may have a complicated time varying effect upon the statist-
ics. In particular the 19cm resolution data used a longer chirp length of 512 pulses which further

increased the minimum chirp cycle time.

4.2.2 3 GHz Scenes

The larger wavelength of the 3GHz scene means that the frequency cycling is less of a problem.
The stepped frequency chirp will image correctly if it can be formed whilst the scene is relatively
stationary, this usually means movement of less than about /2. Large files whose Doppler spectra
were not completely flat are detailed in Table 4.2. The conditions of sen3287 were shown in the

video still of Figure 4.1.
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Figure 4.3: Calibrated dB RCS range-time plots for 8GHz 1.5m resolution (simultaneous H & V
polarisation)
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Figure 4.4: Calibrated db RCS range-time plots for GHz 19cm resolution (simultaneous H & V

polarisation)

Table 4.2: High Res Range-Time files used at 3GHz. H,, is Significant Wave Height, V,, is Wind

Velocity, Az refers to Azimuth Angle

Run

sen3277
sen3287
sen3352
sen3353
sen3613
sen3734

F/IGHz PRF Res

3.0
3.0
3.0
3.0
3.0
3.0

20k
20k
40k
40k
20k
20k

1.5m
1.5m
1.5m
1.5m
1.5m
1.5m

o)

ol

SSSEEE

H,/m
394
4.25
3.95
3.95
2.56
1.37

Vy/ms™1

15
30
16
16
13
9

&5

AZyind AZyave AZiook

210
330
350
340
50

320

232
276
266
266
267
280

331
284
285
285
284
284

Rng/m
1995
4005
2010
2010
2505
2505
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All files are singly polarised as no alternately polarised data was acceptable, however several
consecutive files are available which should allow long term comparison. Each file is about 20
minutes long, coupled with their high PRF this gives a reasonably large measured data set which
accounting for pulse shape gives over 107 samples of data per run, of which some is shown in

Figure 4.5.

4.2.3 Discussion of Observed Scenes
Initial Impressions

Common to each frequency, three separable areas of homogeneity seem to be present in the scenes:

e Areas of near constant low RCS at the edges of the range gate. These are attributed to the

received pulse being of constant high power over the central area of the range gate only.

e Wave fronts of high RCS with obvious correlation in range and time. The correlation varies

between scenes and perhaps within a single scene.

e Areas with variable correlation and abrupt RCS changes.

The presence of separable regions of varying correlation suggest that it may not be possible to
treat the scene as a single process. In particular the application of any estimator suited to a simple
PDF with an associated measure of fit may be inappropriate if applied to the scene globally.
There is obviously a problem with sen3613 and sen3734 as they appear particularly noisy and their
RCS scale is about 20dB below the other images. This suggests excessive attenuation was used
however nothing in their notes supports this.

Figure 4.6 shows the RCS probability distribution from all scenes using Weibull paper as detailed
in Section 3.3.2. The resultant plots have a definite elbow which separates two approximately
straight lines. This is an important result as it indicates a change in distribution for large RCS
returns; the straight lines show that a distribution similar to Weibull is applicable in two separate
regions.

Crucially any estimator based upon a single global PDF is likely to result in a value midway
between that of the two areas. To illustrate the relevance of this, the Weibull MLE estimator was
applied to data from H-Pol Sennen3363. Figure 4.7 shows the MLE obtained PDF overlaid on that

of the histogrammed data. Amplitude is used for effect, it shows a vast difference and the form
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Time /s

Figure 4.5: Calibrated dB RCS range-time plots for 3GHz 1.5m resolution (singly polarised H
or V)
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Figure 4.6: Weibull plots of RCS distributions from high resolution scenes

is not correct - the KP statistic is, unsurprisingly, zero. The problem is that the distribution is not
Weibull and thus the Weibull MLE is not applicable.

Polarisation Differences

Using the 8GHz alternating polarisation scenes it is interesting to see if H and V have similar
distributions. Although not shown explicitly, separating the H and V plots in Figure 4.6 shows the
horizontally polarised data to have a much higher probability of large returns, as observed in many
papers on sea clutter. The extent of this is variable, but without any perfect 3GHz alternate data
further analysis is not performed.

Noise Component

The noise figure can be estimated by plotting the mean returns from the range swath over a long
time. This has been performed in Figure 4.8 and the relative noise level can be determined from the
edge regions. The axis shows the range bins averaged over time; the overall extent should be about
384 metres with a centred, approximately Gaussian, pulse shape corrected for range differences
(discussed in Section 2.1.2) but:

e The edges are not equal; this could indicate range correction is not perfect due to poor
mechanical calibration of the radar.

e The pulse is not always exactly centred; there gould be a slight problem with the loopback
(Section 2.2.2).
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Figure 4.7: A Weibull MLE fit to H-Pol Sennen3363

o The pulse is suitably Gaussian over the central region and further analysis accounts for this.

e The SNRis variable but indeed sen3734 and sen3613 show the lowest SNR at about 10 and
15dB respectively, with other scenes better than 20dB.

As discussed in Section 3.1.4, in addition the noise component can be estimated from forming the
Doppler spectrum. This is only possible if the chirp was cycled fast enough and Figure 4.9 shows
that sen3277 and sen3287 are very poor. For the remaining files, the SNR calculated from the
spectrum agrees with that calculated from the derived range profile above.

Comparing Figure 4.9 with the previous plot of Figure 4.5 shows that modulated wave-like images
are obtained only when the chirp has been cycled fast enough and that the SNR has an obvious
effect upon the image quality.

4.2.4 Further Corruption of the Data

Problems arising from analysis of the high resolution data are:

e Quantisation errors, presumably due to faulty A/D.
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Pulse Shape Derived from 1.5m Files
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Figure 4.8: The mean intensity from high resolution range swath over 20 minutes, arbitrary dB

scale

Table 4.3: The two selected High res files for ovérall analysis. H,, is Significant Wave Height,
V. is Wind Velocity, Az refers to Azimuth Angle

Run F/GHz PRF Res Pol Hy/m V,/ms™! AZyind AZwave AZioox Rng/m
sen3352 3.0 40k 15m HH 395 16 350 266 285 2010
sen3353 3.0 40k 15m VV 395 16 340 266 285 2010

¢ Mismatched I & Q channels.

¢ Excessive system noise, which the calibrated RCS suggests could be due to an attenuation
of 20dB.

e Chirp cycling was not performed fast enough, especially in the 8GHz files, smearing high

velocity components into neighbouring range cells.

Extensive checks leave only two acceptable files and two more with significant noise contamina-
tion. This is really not enough to discriminate between existing clutter models, and the decision is

taken to concentrate on files sen3352 and sen3353. Their parameters are repeated in Table 4.3.
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Upon examination of these two files, intermittent high intensity range profiles were noticed termed
‘clicks’. These did not seem to be random with some periodicity present, examining the raw
data showed these to arise from a single high intensity value in the received chirp. If the returns
are accepted to be random on a pulse to pulse basis (since sweeping the frequency effectively
decorrelates the scene) then this is perfectly possible in spiky clutter, but one further test was

carried out:

1. Obtain the raw I & Q values of the 256 pulse chirp.
2. Locate the frequency number (1 - 256) of the maximum absolute value within the chirp.

3. Calculate the normalised maximum value as a ratio with respect to the mean amplitude of

the chirp.

4. Plot the frequency number versus the normalised value as a scatter plot.

Note that step 4 is preferred rather than a histogram or an averaging method as the clicks are so
intermittent they may not show up. Some modulation is expected, the chirp return does form a
range profile FFT after all, and so the overall mean maximum frequency number value is calcu-
lated. The results from V polarisation are presented in Figure 4.10 where an obvious discontinuous
area around frequency numbers 50-60 is present; single frequency bins show more than two or-
ders of magnitude excess over the mean chirp level. The overall mean values are continuous
and show that the chirp is usually well formed which could indicate that the A/D converters in
frequency numbers 50-60 are intermittently contaminated with voltage glitches. It has been sug-
gested (Branson 2000a) that these are due to intermittent interference from another 3GHz rotating
system which could explain their slight time periodicity (not shown).

Without knowing the exact cause of the problem, the data has been processed by removing any
chirp which has a single maximum frequency value with an RCS ten times that of the chirp aver-
age. This should not have a significant effect on the post-FFT range profile statistics as it removed
only 2.5% of samples which were otherwise distributed evenly across the chirp (Figure 4.10 is

clipped to show this).
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Figure 4.10: Chirp frequency bins 50-60 show erroneous intermittent large values
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Figure 4.11: Consecutive 6.6s (displaced by 10dB) of Hi-res data shows the high intensity RCS

distribution is variable

4.2.5 Determining the PDF of the RCS
Stability of the PDF for the Perfect Data

Large variations in the distribution are seen over time. One minute of consecutive 6.6s blocks
of data are shown in Figure 4.11 which, when plotted on Weibull paper, demonstrates the high
intensity RCS distribution fluctuates considerably whereas the low intensity is relatively stable.
The low intensity returns are presumably dominated by thermal noise which explains the stability,
but the high intensity backscatter is variable in its extent (from the position of the elbow on the
plot) and its distribution (the gradient of the upper tail).

An exact fit to a simple distribution is unlikely based upon the Weibull plots of Figure 4.11.

Distributions previously considered (Section 3.1) would appear as a continuous curve without the
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Figure 4.12: Various MLE fits for 6.6 seconds of 1.5m Hi-res data

distinct elbow, however their MLE solutions when applied to this data may be more robust and
could fit the data reasonably well. By using the MLE for Weibull and Gamma with the normalised
log estimate for K (Equation 3.15) the results of processing a randomly chosen 6.6 seconds of HH
sen3352 and VV sen3508 are shown in Figures 4.12. The complementary CDF is plotted since it
is the high RCS tail of the distribution that is crucial for setting a target detection threshold. None
of the distributions have characterised the data over the RCS range with order of magnitude errors
at typical threshold points, this was generally the case when processed over the entire data set.

It is clear that ocean wave events are present to such a degree as to render a 6.6 second duration
distribution unstable. If the observation window is increased a stable distribution may eventually
be reached however this was still not obvious over data blocks of 1 minute (not shown) which is
unlikely to be obtainable in an operational radar. The intrinsic cause is that the high intensity wave

events seen in Figure 4.5 are dominating the determined statistics.

The Extent of Thermal Noise

By determining the local mean (see Figure 4.14 in later sections) the events have a peak mean
RCS of about 20dB above the low RCS regions. From the typical SNR of the files (10dB - 30dB)
this would suggest that the low regions are dominated by thermal noise. This is confirmed by the
slope of the low RCS part of the Weibull plots indicating an exponential distribution. Segmenting
the images by hand showed low RCS areas to have a flat Doppler spectrum, this indicates that
uncorrelated thermal noise is present over a considerable range extent of the image. This observa-

tion is discussed in depth in Chapter 6 where a statistical method of segmentation is suggested for
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individual range profiles.

Mixture Analysis

In the perfect 3GHz data, variation in the high RCS returns is a part of the backscatter statistics. A
single Weibull PDF will be suboptimum at both low and high intensity; it is especially inaccurate
if applied as part of a target detector based solely on magnitude statistics as the predictions for rare
high intensity returns are then orders of magnitude in error.

The Weibull analysis in Figure 4.6 suggested a mixture model of two separate Weibull distribu-
tions could be applied for all the data, including the 8GHz slow cycled data. This is incompatible
with the compound view of sea clutter, which views the underlying RCS as continuously mod-
ulating the speckle, but the unknown statistical effects from slow chirp cycling mean it is still
instructive to see if single wave events can be classed in this way. Statistically this is realised
by two distinct and unequal scattering populations each subject to different Weibull parameters,

forming a parameterised 5 dimensional distribution, whose distribution is

_ B i B2 1p,1 1%
P(I) = p—I"""exp( O[1)+(1 P)a2I exp( a2) (4.1
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The method of moments requires a prohibitively large population for an accurate result. A nu-
merical MLE search is suggested by Oliver (1995) when applied to a K-mixture but this is com-
putationally expensive over 5 dimensions. Jiang and Murthy (1998) explore in detail the Hazard
rate of this distribution (cf Equation 3.5) to show 8 separate cases exist, each of which can be
parametrically described, this may lead to a less general estimator.

A mixed distribution is complicated by the additional number of parameters to be estimated. Nu-
merical searches over the parameter space are required which may be expensive. A Nelder-Mead

simplex search over five dimensions was carried out to fit the data to these mixtures of K and
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Table 4.4: Mixture distribution fit - Kuiper statistics p with the mixing parameter p, hat indicates

log averaging

Fle  E(pww) o(ww) E@ww) opww) E(PRx) o(prx) E(pkk) o (pxk)
sen3363 -0.763 0.973 0.511 0.177 -1.42 2.46 0.543 0.196
sen3464 -0.394 0.886 0.617 0.247 -0.720 1.16 0.574 0.301
sen3502 -0.619 1.09 0.584 0.195 -0.980 1.60 0.576 0.239
sen3470 -3.92 4.03 0.632 0.183 -4.22 3.58 0.548 0.242
sen3508 -6.58 6.22 0.556 0.151 -5.98 5.81 0.568 0.198
Weibull PDFs

Pow = PPSeivun (A)+ (1= p) Plyoipan (A) (4.4)

Pxx = pPg(A)+(1-p)PL(A) (4.5)

Pew = pPg(A)+ (1 —p) Py (A) 4.6)

Various numerical methods exist to find a fit, least squares is a popular choice but does not give
a realistic fit to the tail of the distribution. A numerical MLE failed to converge without careful
choice of starting parameters, the converged result was very poor. As the Kuiper statistic is invari-
ant over the distribution it is reasonable to minimise this and in doing so the significance level py
is maximised (see Section 3.3.1).

Convergence was achieved by making an initial least squares estimate to the data using the 2
parameter distribution(s) and then initialising the 5 parameter estimate using these values and a
mixing parameter p of 0.5. A least squares fit was made to the 5 parameter distribution before
invoking a minimisation routine based upon the Kuiper statistic. Note that no constraints were
used in the routines but an obvious one is that there should only be one root to the differential of
the distribution. Results for V-polarisation Weibull/Weibull and K/K are shown in Table 4.4
Using data blocks of 1.6 seconds and using a sliding 1/4 window approximately 100 seconds
of data was analysed. For every block the mixture parameters were determined and the Kuiper
statistic py calculated. Defining p =logjo (p), the expectation of this £ (p) and the standard
deviation o (p) are determined over the entire set. The mixing parameters are calculated normally
as the expectation E (p) and the standard deviation o (p). An example WW fit for one block
of sen3363 is shown in Figure 4.13 which had an excellent fit to the higher amplitude data with

overall py of 0.7.
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Figure 4.13: A mixed Weibull fit via minimisation of px p for 1 second sen3363

The fit is good for the 1.5m resolution but there is no overall fit to the 19cm data. This may seem
in conflict with the straight lines and elbows seen in Figure 4.6 but it could show that the statistics
vary in time, and over 100 seconds the form of the distribution deviates significantly from what
can be achieved by a numerical search.

Whilst the fit to the data can be very good for the Weibull mixture, one must be cautious in
assigning any significance to this due to the number of free parameters. Attempting to form the fit
upon longer duration windows is less successful, indicating further heterogeneity or an incorrect
probability model for large windows.

The extension from two to five dimensional parameter space is large but the reasonably constant
mixture value over time (o (p) is low) indicates some stability. It would be interesting to see if
greater stability could be attained by constraining p to vary slowly. Justification for this model
could be attempted by partitioning the scenes in accordance with the mixing parameter p based
upon contours set in intensity.

The statistical mixture analysis takes no account of the spatial extent of the mixture, the usual way
of determining this is to use some form of windowed estimate. An arbitrary choice of some power-
2 window is used for this type of analysis and in the subsequently developed detection schemes;
Figure 4.14 shows a 16 by 16 sliding window in range and time (24 metres by 0.1 seconds) from
the first 6 seconds of sen3353V, corrected for pulse shape. Using the expected errors in estimating
U from Section 3.1.4 and assuming that the mean is accurately calculated for this window size,

analysis of sen3352 and sen3353 shows:
e The mean RCS has large areas of homogeneity with definite wave event steps of the order
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sennen3353V windowed 16x16 estimate of db RCS 20nnen335WV windowed 1616 estimate of U

Figure 4.14: Arbitrarily chosen 16 by 16 sliding window estimate of the spatial form of sen3353
in terms of mean RCS and shape estimate U. The lowest value of U is caused by an abrupt edge
in the RCS

of 20dB present.
e A particular wave event appears to have a stable mean RCS over the entire imaged time.

e The areas of low RCS were characterised as exponentially distributed well within error
bounds.

e The areas of high RCS could often be characterised as exponential, but were usually spikier.

e The lowest U values were not from homogenous areas, but due to the wave event causing

an edge effect upon the windowed U estimate (Section 3.1.4).

Overall, a particular range profile is often dominated by a single wave event and any further mod-
ulation is hidden by this. Reducing the window size so as to lessen the edge effects gave similar
results but with increased uncertainty in the distribution of the high RCS areas.

4.2.6 Conclusions from High Resolution Analysis

Preliminary high resolution analysis has shown:

e Numerous problems with the data have been demonstrated, which without careful analysis

and rejection could give spurious results:

- The slow chirp cycling in the 8GHz data will smear any fast moving scatterer, but this

could occur operationally for fast moving observer or target.
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— The intermittent voltage ‘glitches’ do not cause a major problem after careful filtering
to remove them from the frequency domain before the image is formed, but they could
give hugely erroneous results for the Doppler statistics in the next Section. If they
are from another 3GHz radar then this may occur operationally and could even arise
purposefully in a jamming situation.

— General bit errors and poorly chosen attenuation are present in many data sets which

would not occur operationally.

e Ocean wavefronts are present in those scenes with acceptable chirp cycling, producing sep-

arable areas of varying correlation in both range and time.

e As observed in many papers, horizontally polarised returns have a greater probability of
high intensity returns. Commonly HH is found to be spikier than VV but without perfect

alternately polarised data detailed analysis has not been performed.

e The commonly chosen Weibull and K distributions are unstable and offer a poor fit both
locally and globally regardless of the observation time. Using observation windows of 1.6s,
6.6s and one minute upon the high quality sen3352 and sen3353 gave highly unstable fitted

distribution parameters over the 20 minute files.

o A statistical search for a binary mixture of Weibull distributions fits the 1.5m resolution data
extremely well on 1.6s observation windows; the 19cm data is not fitted well but the greater
number of pulses in the chirp caused an especially slow chirp cycle time with expected

image degradation.

e The proposed binary mixture is reinforced by the large homogenous areas seen in the win-
dowed analysis. Although edge effects from the 20dB step are considerable, a large low

RCS spatial area of the data is thermal noise whereas the higher RCS area is spikier.

Although results are based upon relatively few acceptable data sets, they indicate that the high
resolution statistics cannot be characterised locally or globally by a simple distribution. Statistical
analysis assuming a time varying binary mixture of heterogenous distributions, assessed on the
order of 1 second was the only method that gave acceptable fits. Forming the binary mixture

needed computationally expensive minimisation routines but segmentation ‘by eye’ suggested that
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Table 4.5: Low res Doppler files used to assess RCS PDE. H,, is Significant Wave Height, Az

refers to Azimuth Angle

Run F/GHz PRF Pol Hy/m  AzZyove AZigor Rng/m
sen2029 8.0 10k HH/VV 330 310 284 1005
sen2030 8.0 10k HH/VV 330 310 331 1500
sen2035 8.0 10k HH/VV 369 319 284 1005
sen2036 8.0 10k  HH/VV 369 319 284 1500

a large extent of the scene consists of system noise. Later Chapters of this thesis will implement a
fast method of determining the boundaries of the mixture that confirms this Section’s results.

The conclusion is that increased observation time does not help in determining the local distribu-
tion when the presumed application will be to assess small areas of the RCS data for the presence
of targets. Indeed, this is present in the compound theory of sea clutter where the description of
the local distribution is exponential but the global distribution is K. A method of determining the
local distribution is required that specifically includes the effects of the high intensity edges from

the wave events.

4.3 Low Resolution Doppler Data

The raw intensity returns from the Doppler data are received from a larger range cell - 150m in
range extent, two orders of magnitude larger than the high resolution data. From the scattering
theory of Section 2.1.1 this will contain more scatterers and thus the PDF might be expected to
be closer to exponential. The Doppler returns do not have the constraint of a minimum chirp
cycling time as in Hi-res and consequently a greater number of acceptable files are available.
Upon forming the Doppler spectrum it is possible not only to examine the form with respect to
the theory of Section 3.2.1, but also to determine how the RCS distribution varies with respect to

velocity.

4.3.1 8GHz Files

Four alternately polarised and two VV polarised 8GHz Doppler files are used as an initial example,
environmental and system parameters are given in Table 4.5; wind data was not recorded.

Plots of both HH and VV intensity are given in Figure 4.15, both polarisations seem to be recording
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Figure 4.15: RCS magnitude plots (m?/m? of 8GHz Doppler data (HH polarisation in red, VV

polarisation in green - inverted for clarity so please ignore sign)

the same intensity structure. There are discemible areas of differing intensity over the order of
seconds; from the Hi-res analysis these are probably due to the ocean wave events. Additionally
there are shorter instances of high intensity returns commonly termed ‘spikes’ and file sen2030
shows a distinct step in the long term RCS at about 45 seconds. The large individual return in
sen2036 VYV polarisation is most probably due to faulty A/D conversion, analysis at such a high
PRF means that the speckle is correlated to some extent and this return was too abrupt.

Similar to the Hi-Res analysis, Weibull plots of the data are used and consecutive 6.6s of alternate
8GHz data is shown on Figure 4.16. Compared to the high resolution plots of Figure 4.6 the elbow
is immediately less obvious in the low resolution files and there is much less variation over time
and between polarisations. Testing many data sets confirmed that, in general, the Weibull plots of
the Doppler data gave less justification to attempt a mixed Weibull fit.

Some papers have found the Doppler spectra to show significant variation between polarisations.
In particular, Ward et al. (1990) reported that HH mean Doppler was always larger than VV re-
gardless of wind direction in high resolution. For a large number of low resolution data files

this was found not to be the case; the upper plots of Figure 4.17 show not only the changing
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Figure 4.16: Weibull plots of consecutive 6.6 seconds of 8GHz low resolution data displaced by
10db (HH - Red, VV - Green)

PO S

Figure 4.17: Low resolution 8GHz sen2035 file. Upper plots show HH and VV have similar
Doppler spectra. Lower plots show U estimate vs velocity with normalised mean linear RCS
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Table 4.6: Low res Doppler files used to test variability. H,, is Significant Wave Height, V,, is
Wind Velocity, Az refers to Azimuth Angle

Run F/GHz PRF Pol Hy/m Vu/ms ! AzZymd AZweve AZioor Rng/m Notes
sen3537 3.0 10k VV 6.09 32 290 284 331 4515 Events
sen3558 3.0 10k VV 6.08 31 320 286 284 4515 Normal

sen2035 Doppler spectrum over time (1 minute) but also that the HH and VV polarisations give
near identical spectra. The normalised log estimator was applied in each velocity bin and shows a
strong dependence upon velocity, this is plotted simultaneously with normalised linear RCS in the
lower plots of Figure 4.17 using a 1 second sliding window analysis. It would appear from this
that the tails of the Doppler spectra have a spikier distribution; however from the upper Doppler
image an approximately 40dB instantaneous SNR can be seen, the shape of the Doppler spectrum
is not stable over time and so in effect a 40dB step is seen intermittently. Section 3.1.4 shows that
in locally exponential noise this intensity of step only needs to be present for less than 1% of the

scan time to cause a measured U as low as that seen here which explains some of the results.

e A simple stationary distribution shape estimate such as U may not be applicable upon indi-
vidual Doppler velocity bins since the presence of the such velocities is intermittent and the

samples are far from being Independent Identically Distributed (IID).

4.3.2 3GHz Files

Files sen3537 and 3558 were as similar as possible, taken on the same day 3 hours apart. File
sen3537 has identifiable intermittent Doppler events attributed to birds (TW Research Ltd. 1999)
or wind ‘whipping off wave crests’ (Money et al. 1997b) the sea state of these files is shown in
the video still of Figure 4.1. Usually birds can be distinguished because they tend to change their
direction and have a preference for flying against wind when feeding upon the surface.

TW Research reported that whilst sen3537 showed spiky character attributed to birds, sen3558
had a K-distribution parameter v which was ‘surprisingly low (i.e. the clutter is spiky) and needs
further investigation’ calculated using shape estimator V' or U. This is performed in Figures 4.18
and 4.19 where, as in the previous Section, the U value is calculated for each Doppler velocity bin.
Additionally the proportion of the signal above system noise is plotted, calculated via a Sequential

Edge Detector algorithm discussed in the next Chapter.
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Figure 4.18: Wind caused events are probably responsible for the discrete fast scatterers seen in
sen3537
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Figure 4.19: The non-stationary Doppler spectra is the primary cause of low U in sen3558 not
homogenous spiky statistics
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Figure 4.20: sen3546 shows extremely low U. This is due to the intermittent rolling of the waves
rarely above system noise

From analysis of this data, it is suggested that the excessive spikiness in the tails of the Doppler
spectra as observed by TWR and Baker (1991) are not due to homogenous statistics but by a
modulation so slow that it appears as intermittent discrete intensity steps in a particular Doppler
bin. This is known because the Doppler bin with the lowest U has a signal above the system noise
for only about a fifth of the analysis time - from Section 3.1.4 this was the proportion required to
cause maximum effect upon U when a single intensity edge was present in exponential noise.

To further emphasise this, Figure 4.20 shows the spikiest file encountered (i.e. lowest determined
U) is just rolling waves of high RCS relative to system noise.

4.3.3 RCS PDF Analysis

Out of the few files analysed, Figures 4.16 & 4.15 shows that sen2036 has the least variation in
form over time. Fits are performed to a Weibull, K, exponential and gamma using the normalised
log estimator for K, and the MLE otherwise, upon 100 seconds of data. The complementary CDF
for both H and V is shown in Figure 4.21. The K distribution shows a closer fit than any other but
is still two orders of magnitude in error at typical threshold levels.
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Figure 4.21: Various MLE fits to 8GHz sen2036 low resolution data

In a final effort, a statistical spatial mixture of exponential and K-distributed clutter subject to
coherent noise was used to fit the data

P() = p-exp(~3) + (1= 9) P (1) @

where Py n was calculated using a numerical inverse Laplace method covered in Section 5.4.
The obtained fit could often fit the distribution well (expected due to the number of free paramet-

ers) but was not a consistently reliable estimate of the critical tail regions.

4.4 Summary

This Section has provided evidence that the statistics of backscatter returns are nonstationary in
many ways. The Hi-res range profiles of Figure 4.5 immediately suggest at least a 2 compon-
ent scene present, strengthened by the elbows seen in the Weibull plots of the data. The poor
robustness of MLE methods has been shown in cases where the a priori model is not met. The
discontinuity in the Weibull plot motivates mixture analysis which obtained an effectively exact fit
to the distribution, however with 5 variable parameters this is not surprising and could be achieved
by many such distributions.

System noise is present over a significant spatial portion of the range-time scenes, which is pre-
sumably due to large waves shadowing this region. The effect of system noise is also seen in the
Doppler data where the varying proportion with respect to velocity affects the determined statistics
considerably.
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Doppler analysis provides further evidence of the nonstationary hypothesis. Whilst H and V are
more similar than expected, the RCS statistics are shown to vary in magnitude and distribution not
only between data sets but also over a timescale of the order of seconds.

The observation that commonly applied distributions were in error by up to 5 orders of magnitude
in the tails of the RCS distribution casts serious doubt upon the use of a single a priori distribution
to describe clutter. This is in stark contrast to the literature which seems obsessed in basing its
detector performances upon known, fully specified stationary clutter statistics. Fast adaptation to
the data is necessary so as to avoid excessive false alarms or missed detections.

Inhomogeneous nonstationary statistics require a different analysis method. After discussion of
statistical detection schemes in the next Chapter, explicit nonstationary detection schemes are
suggested for real data in Chapters 6 and 7.

As a final note to this Chapter, it is worth quoting Kazakos and Kazakos (1990) from their defini-

tion of the rules of statistical decision theory:

Careful experimental control to assure that the total observed outcome [from a
realisation of an underlying stochastic process over some time T'| represents a real-
isation from the same physical phenomenon or stochastic process, rather than a mix-

ture of partial outcomes from different processes.
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Chapter 5

Statistical Detection Schemes

Analysis of data in order to detect a deviation from the assumed statistics is a common task within
radar. By rigorously defining the probability distribution it is possible to give a detection scheme
robustness and accurately determine its efficiency. This Chapter explores previously applied point
target detectors and an attempt is made to generalise this to a Sequential Edge Detector which
simultaneously flags point targets and edges within exponential speckle.

A numerical inverse Laplace transform is demonstrated to accurately determine the arbitrary V-

fold sum of a K-distributed variate embedded in noise.

5.1 Assets Available

Assuming a number of samples beginning at time m and ending at time 7, the following assets are

available upon which to base a detection scheme:

1. A realisation Z,., = {Zsn. Tm41, .- - , Zn} from the radar output.

2. A null hypothesis Hj indicative of the expected target free environment.

3. M parametrically known hypotheses H; ; ¢ = 1, ..., M chosen from theory or observation.
4. A set p; of a priori probabilities on the M hypotheses determined from previous observation.

5. Asetcy,; k,i = 1,..., M of penalty coefficients to inhibit incorrect decisions.
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6. A measure of performance based on probability of detection (F;), probability of false alarm

(Pf4), a response or efficiency measure, and time to false alarm 7¢,,.

5.2 Constant False Alarm Rate Processors

Limiting the number of false alarms that occur gives robustness to any detection scheme. Com-
monly a Constant False Alarm Rate (CFAR) Processor is achieved by defining a fixed probability
of miss-classification in homogeneous statistics. Any deviation from homogeneity over the obser-
vation time will severely decrease the effectiveness of these schemes. An edge, where both the
power and type of statistics can vary abruptly, results in a finite response time during which the
detector is lowered in performance.

A common performance measure is CFAR loss - the increase in target SNR required to maintain
P, and Py,; the reduction in Py in comparison to that achieved from complete knowledge of the
statistics is another possible measure. This takes no account of inhomogeneity and the loss can be
negative when the correlation is known. With reference to the previous Chapter more appealing

measures are:

1. Sensitivity of the processor to errors in determining the clutter characteristics.
2. Response of the processor to abrupt variation in clutter characteristics (edges).

3. Occurrence of target masking due to edges or multiple targets.

Historically CFAR processors are of low complexity, their origins lying in acoustic delay lines.
Emphasis is placed on keeping these processors simple despite computational power rising by
orders of magnitude since their conception. The CFAR processor should be at least as complex
as the method of determining clutter characteristics when this is being calculated concurrently.
Commonly the CFAR is applied to the raw data but if the PDF from a filter output is known the
CFAR can be applied to this.

5.2.1 Neyman-Pearson Tests

Utilising the following assets:
o A realisation x1., from the radar output with fixed n.
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e Hypothesis Hy indicative of no target

versus hypothesis H; indicative of target present.

¢ A measure of performance based on Py, and Py.

If the H; hypothesis is fully specified and selected in advance as the most important criterion,
maximisation of Py for fixed Py, yields the Neyman-Pearson (NP) detection scheme (Kazakos
and Kazakos 1990). When H is not fully specified (unknown target strength or distribution) then
the NP scheme cannot in general be realised (Kazakos and Kazakos 1990). Assuming a class of
PDF for Hy defines a parametric detector that given x;., has to decide on parameters such as
variance or scale. Estimating the PDF from ., or using a technique independent of PDF defines
a non-parametric class of detector. Increased performance is achieved by the parametric detector
as more prior information is included.

Usually a CFAR processor is parametric, formed by setting a threshold A upon a test sample « so

as to maintain a constant Py,, the detection rule being

x > A H; Declared ;.1
x < X HyDeclared

Whilst one could set a fixed threshold from full knowledge of Hy, Finn and Johnson (1968) pro-
posed an adaptive threshold that can follow a slowly varying change in the background mean
which can dramatically improve P;. Commonly a threshold is set in signal magnitude based upon
a number of reference cells surrounding a test cell, this defines an analysis with window size W
(the previously, similarly defined, shape estimator of Chapter 3 is no longer considered). F; is
improved with increasing W under homogenous conditions but consequently the response time
of the detector to inhomogeneity is lengthened. Specifying W defines a correlation length for the
statistics of which no a priori knowledge is usually available.

A target is determined when the test cell exceeds the threshold derived from the reference cells.

The false alarm rate is found from

Pfa = /Ooo (1 - Cx(aw))pz|x(z)dx (52)

where C'x (ax) is the CDF of the probability distribution X at the point ax and pz|x(z) is the
PDF of the test statistic Z given X. The threshold is the value A\ = aZ(x;.,). The type of CFAR
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Figure 5.1: Generalised CFAR Process

is determined by the test statistic, a reference window of size W is assumed to lie either side of

the test cell in these examples:

Cell Average (CA)
L ¥
Zca= W ;-’Ei (5.3)
Cell Average Greatest Of (CAGO)
1 -w/2 w/2
ZcAGo = 77 max Z z;, Z ; (5.4)
i=—1  i=1
Order Statistic (OS) of order k
Z0Sk = T(Wk) (5.5)

{owy < <eww)}
Thus the windowed CFAR uses a detection rule

z > «Z Target Declared (5.6)

x < «aZ Target Absent

where the threshold multiplier « is a constant for a particular test and distribution, chosen so as to
achieve a fixed Py, in homogenous conditions.

Numerous modifications of these forms exist to counter mixtures of clutter edges, multiple targets
and heterogenous environments some of which are discussed in Section 5.5. Calculations neces-

sary to formulate CFAR upon various IID statistics are given in (Minkler and Minkler 1990) and
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Figure 5.2: Example of NP windowed CFAR; after Armstrong(1992)

particular emphasis is placed upon the K distribution by Armstrong (1992). The CA detector is
optimum in Rayleigh clutter for the detection of Swerling I targets (Gandhi and Kassam 1994).
Whilst CAGO is often said to offer resistance to edges, a large edge ratio will cause a significant
target loss over W /2 samples before the edge occurs as even one sample from the higher side
will dominate the statistics. In the literature CFAR is usually taken to mean fixed window CFAR;
however a constant false alarm rate can be achieved by several types of processors detailed in

Appendix C.

5.3 Application of CFAR

5.3.1 Fixed Window CFAR

The commonly applied detection test is fixed window Neyman Pearson (FWNP) CFAR. A simu-
lation of 1ID K-distributed data of shape v = 0.5 is used to test CA, CAGO and OS for a window
size of 32, shape parameter is assumed known a priori. Using 300 samples, multiple 16dB point
targets have been added at samples 70-95, isolated target at 150 and a potentially masked target at
230 by the 14dB edge at 240 onwards. WIth reference to Figure 5.2:
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e CA has the lowest threshold, therefore greatest P; in homogeneous clutter. Multiple targets
cause masking with some going undetected. The target near the clutter edge is only just

detected and abrupt changes in the threshold are seen.

e CAGO has the greatest threshold in homogeneous areas so lowest Py, It is extremely sens-
itive to multiple targets - none of which are detected as the detector views them as an edge.
The target near the clutter edge is completely masked and very abrupt changes are seen in

the threshold.

e OS has a threshold midway between CA and CAGO, no target masking is seen - however
this is due to judicious choice of settings and more multiple targets or an extended target

would cause problems. Threshold changes are gradual.

Common to all algorithms is an initialisation time equal to that of the window size, edge effects
will be apparent at the end of the data since we only have a one sided window to compare.
To specifically overcome some of the missed targets it is necessary to identify the causes, these

are deemed to be:

Self masking - a large persistent target is present for more than one sample.

Edge masking - an edge is close to the cell under test and pollutes the window.

Multiple target masking - targets artificially raise the mean value of the window.

Edge - when a true edge is seen in the data a response time is seen, or the abrupt change is

at the wrong point.

5.3.2 Choice of Window Size

The justification for choosing a particular window size W does not seem to be emphasised in the
literature, obviously a power of 2 is preferable for fixed memory storage and one would like W to
be short enough to be homogenous, whilst long enough to give a reliable estimation of the mean.
In exponential noise one can easily compare the required threshold multiplier & normalised to the
mean for varying window sizes at constant Py, since the distribution of the sum of NV exponential
variates is easily calculable. In general this is not the case in the K and Weibull distributions but a

numerical solution is proposed in the next Section.
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STATISTICAL DETECTION SCHEMES
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Figure 5.3: A factor determining the size of fixed window CFAR is the threshold multiplier

required for a constant false alarm

Figure 5.3 shows why in exponential noise a window size of 32 is usually chosen - little benefit
is seen above this due to the shallow curve. The greater variance of spiky clutter means that the
window size required to reach this point (on a presumably similar shaped curve) will be much

greater suggesting that the window size should be a function of the observed statistics for similar

performance under variable clutter distribution.

Intuitively one would like to match the window size to the largest homogenous region local to the
test cell - which is some function of the correlation length of the statistics. An exponential decay
autocorrelation function (ACF) is often assumed for simplicity and has been observed in SAR
clutter (Lombardo and Oliver 1995) who also show the effect of the distribution upon the ACE. A
large discontinuity in the data and the presence of targets could easily pollute the ACF.
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5.4 Clutter Plus Noise Distributions

The intensity PDF of K-distributed noise in the presence of zero-mean Gaussian noise has been

shown (Watts 1987) to be given by

© 1 y/ve\¥!
oty = 2Lt ()
cen (1) o TWp\ p ©-7)
X ex _w 1 exp | — I d
p w|lo+a P g+ta 7

where v and p are the shape and mean of the K distribution, with the noise having a variance of a.

It may be that the extent of thermal noise is known, or that a Swerling II target model is to be
evaluated but the primary task is to evaluate the CDF at a particular value of intensity. In addition,
for an ordinary CFAR the output is required from /V fold convolution of this PDF for arbitrary
parameters.

Numerical evaluation of Equation 5.7 will require very small integration steps if a Pfa threshold is
to be set, it will become progressively more difficult to maintain accuracy against processing time
considerations for N fold numerical convolution. Monte-Carlo simulation is a viable option when
numerical accuracy is a problem but it is time consuming for reasonable values of N.
Convolution by FFT can be implemented, but as the mean of an N fold convolved PDF will be N
times the original, one must start with an array much longer than required to satisfy the accuracy
of the original PDF. For reasonable values of N and Pfa of the order of 107 there is little or no
benefit over Monte-Carlo simulation due to the number of times Equation 5.7 must be evaluated
in conjunction with an unreasonably large FFT.

Performing the analytic transform of Equation 5.7 to the frequency domain reduces some of the
FFT processing constraints but accuracy may be a problem when raising to large powers of N in
performing the convolution.

This Section investigates the possibilities offered by numerical Laplace transforms. This has not
been considered in the radar literature and is rarely applied in the general literature due to its

reputation for being unstable - largely undeserved as shown by d’ Amore et al. (1999).
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5.4.1 Frequency Domain Representation

Equation 5.7 for P (I) requires numerical evaluation in o, however performing the frequency

transform
IBC+N (s) = / exp (—sI) P (I)dI (5.8)
0

and reversing the order of the integration it can be shown using Mathematica (Wolfram 1996)

Poyn (s) = /°° eXP(_F) (7) do (5.9)
o o(l+as+so)T(v)
1
Re [s—l— ] > 0,Re [— - % ]<O
a+o a+o0c a+o a+o

where, accepting the constraints, the integration with respect to o can now be performed, and

using Abramowitz & Stegun 6.1.17 (1972) is simplified to

~ YT(1-v,Y
Poan(s) = &2 )1+a(s »Y) (5.10)
(14+as)v

sp
Re[v] > O,arg[

Y =

1+as
s

B

The transform in Equation 5.8 is recognised as the Laplace transform and the conditions are all
met when the inverse is evaluated using the Bromwich integral
1 c+100
P(I):—,/ P(s)exp(sl)ds (5.11)
27 Joroo
Standard textbooks (Boas 1983) show how to evaluate this integral in terms of residues of the
poles. In general this is only possible for simple transforms with finite partial fraction expan-

sions and so a method due to de Hoog (1982) was implemented that takes a minimum amount of

information about the form of P (s) and is relatively fast:

1. Equation 5.11 is discretised using a trapezoidal rule.
2. An analytic Fourier expansion is performed upon the approximation.

3. Successive Padé approximations are evaluated using a modified quotient-difference algorithm

to improve convergence and speed.
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Existing implemented algorithms (Hollenbeck 1998) attempt to invert the entire CDF at once for
speed, however this degrades accuracy at low Pfa and so the intensity values are inverted indi-
vidually. Further improvements with numerical tests on a variety of functions have been presented
recently (d’Amore et al. 1999) which allow lower Pfa to be evaluated.

The frequency domain is particularly advantageous. Prior to the inversion, the PDF of the sum of
N pulses is achieved by raising P (s) to the power N and the CDF of the distribution is obtained
through division by s. Obviously some computational numerical limit is present when raising to
large powers and in the necessary evaluation of limiting large and small numbers using standard
arithmetic on a 32 bit system.

Typically evaluating the Laplace inversion for a single intensity at any value of N for a Pfa of
10 required O(10%) floating point operations (flops), a Pfa of 10 requires a minimum of about
N x 10® flops for the Monte Carlo samples to be generated (with substantial statistical noise
present). This is a huge time saving.

Evaluation of the CDF for v = 0.1,0.2 and 0.5 is performed as lower values represent the distri-
butions that are difficult to approximate; additionally performed in the presence of 0dB, 10dB and
20dB noise for N = 1,10 and 100 pulses in Figure 5.4 where the distribution is normalised to unit
mean intensity. Each plot takes about a second to evaluate on a desktop PC.

This algorithm is stable up to a numerical Pfa limit of about 10”7. The accuracy was confirmed
through Monte Carlo simulation and some improvement may be available through an optimised
algorithm or the use of variable precision arithmetic - however this will cause a substantial speed
penalty. Alternatively an intrinsic 64 bit system such as a DEC Alpha or a modern Sun system
could be used.

A particular filter output may be the result of a number of weighted inputs (incoherently summed)
drawn from different K + noise distributions which can be easily incorporated into the above
scheme by multiplying their respective transforms prior to inversion.

The benefit of using this method is that generation of arbitrary output PDFs is significantly quicker
compared to Monte Carlo when NV is large. In cases where the Laplace transform is not analytically
available it can be evaluated as a series expansion, this is perfectly adequate since in practice all
special functions are evaluated in a similar manner.

Although not shown, the sum of N Weibull distributed variates can be calculated although conver-

gence problems are more difficult for certain shape parameters. The coherent inclusion of noise is

117



5.4. Clutter Plus Noise Distributions STATISTICAL DETECTION SCHEMES
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Figure 5.4: The numerical Laplace transform is accurate to a Pfa of 10~7 for N < 100 pulses of
a K distribution in varying SNR. The abrupt discontinuity indicates the numerical accuracy limit.
Each curve took the order of seconds to evaluate
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not as simple as the K distribution and is the subject of an ongoing DERA contract. The numer-
ical inverse Laplace transform is certainly applicable to many statistical problems encountered in

radar.

5.5 The Problem of Simultaneous Target and Edge Detection

All fixed window algorithms use the a priori assumption that the window size is a function of
the ‘coherence length’ of the data. For target detection the target test sample is almost always
compared with respect to the samples either side of it. The expected environment of an MFR in
littoral (coastal) regions will include the land-sea interface. A generic case is a single high intensity
edge present within the scene similar to that shown previously in Figure 5.2. The magnitude
of expected edges can be determined from experimental observations resulting in specification
documents such as the Naval Environmental Clutter Attenuation and Propagation Specification
(NECAPS) available at DERA Portsdown (Branson 2000b). Although mean RCS for land and sea
can be determined from reports such as NECAPS, geographical effects from areas such as cliffs
are not accounted for. These would give a large planar reflecting area over some range cells which
could cause 20dB edges.

In an environment expected to contain edges then the CA architecture would not be used and
some form of edge resistant CFAR would be necessary such as CAGO; as shown above they suffer
heavily in the presence of interfering or extended targets. To compensate for this to varying degrees
a large number of CFARs have been proposed whose operation include censoring, averaging and

ranking of the samples. In addition to CAGO and OS are:

e CMLD - Censored Mean Level Detector: The samples are ranked and the upper k removed.
The test statistic is the mean of the remaining samples, encompasses CA as special case.

Analysis by Rickard and Dillard (1977).

e GCMLD - Generalised Censored Mean Level Detector: as CMLD but & is chosen adapt-
ively. Analysis by Himonas and Barkat (1992).

e TM - Trimmed Mean: The samples are ranked and the upper N; and lower N, removed.
The test statistic is the mean of the remaining samples, encompasses CA, OS and CMLD as

special cases. Analysis by Mashade (1996).
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e OSGO, OSSO - Order Statistics Greatest Of, Order Statistics Smallest Of: Only one side of
the window is ordered and the test statistic is the kth ranked sample. Analysis by Elias-Fuste

et al. (1990).

e GOSGO, GOSSO - Generalised Order Statistics Greatest Of, Generalised Order Statistics
Smallest Of: As OSGO, OSSO but k is chosen adaptively.

e GOSCA - Generalised Order Statistics Cell Averaging: Both the leading half of the window
and the lagging half of the window are ordered separately, the test statistic is the kth ranked
sample of the leading plus the Ith ranked sample of the lagging window. Analysis by He
(1994).

e LCOS - Linearly Combined Order Statistics: 7 ranked samples are chosen, the test statistic is
then a weighted sum of the 7 samples. Analysis by Nagle and Saniie(1995) where weighting
parameters are chosen using Censored Maximum Likelihood and Best Linear Unbiased

estimates.

e EXGO, EXCA - Excision Greatest Of, Excision Cell Average - All samples above a fixed
threshold A x are discarded before GO and CA operations are applied. Analysis by Han and
Kim (1996).

In addition most can be enhanced by multiple looks, storage of a clutter map and estimation of
the correlation between samples. It is rare that these CFAR are tested in anything but simulated
exponential clutter or when the shape parameter is unknown. The analysis of these processors is
laborious and it is not clear in the literature how many have been implemented on real radars or
real data although Farina and Studer (1986) comprehensively cover their general implementation.
To simplify discussion a general case is given in the left plot of Figure 5.5 - a CFAR of window size
W = 2M centred at the target z7 with an edge from position . onwards which is coincidentally
located at the censoring point of the CFAR zj. Capital letters A, B, C, D and E are marked for
reference to avoid confusing use of subscripts; however any fixed window CFAR will apply a test
based upon z7_ar.7—1 and T741.74 s using some derived test statistic based on partitioning the
data window (via censoring, weighted mean, ranking) related to some fraction & in magnitude or
position with respect to the test sample.

The decision to be made will include some of these hypotheses:
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Figure 5.5: Generic cases for CFAR processing of littoral regions a) Point Target b) Extended
Target

e 7 is within the low region z7_ pr.74 p—k (Region A-C) thus a threshold Azqy is defined

from these samples:

— z7 will be flagged as a target if 27 > ALo.-

— z7 is amember of region A-Cif 27 < Apow.

e z7 belongs to the high region z7 k.74 s (Region E) thus a threshold A righ (Where Agrign >>

ALow) is defined from these samples:

— z7 will be flagged as a target if zp > AHigh-

— z7 is a member of region E if z7 < Agigh.

The censoring point k will usually be a fixed choice of the designer, chosen from the contending
factors of:

e Pfaincrease at the edge due to falsely declaring z7 as a target, when it is in fact part of the
high edge (Region E).

¢ Pd decrease due to falsely declaring zr as part of the high edge, when it is in fact a target
within low clutter (Region C & D).

The various CFARSs show interplay between their performance, where they will excel in one par-

ticular environment (tuned to their assumptions) but necessarily suffer some loss elsewhere. Note
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that in all algorithms the existence of an edge, whilst inferred from the statistics, is never flagged

to the operator.

e Flagging a potential edge, regardless of form is desirable as it could enable a clutter map to

be built up that informs the operator of the expected form of an edge for future trials.

It is interesting that even though an edge may be expected, CFAR algorithms are optimised to
maintain the Pfa in homogenous clutter which in littoral regions will be rare.
The right plot of Figure 5.5 shows a similar scenario but where the ‘target’ 7" can no longer be

considered as a single sample. This would arise from at least 4 distinct cases:
1. The target is spread over a number of samples.
2. Multiple close targets are present.
3. Multiple edges are present (in fact the ‘target’ is an island of high level clutter).

4. The target is a point target but the imaging chirp was of necessarily finite bandwidth giving

a finite width point target response.

Point 4 can be handled by conventional CFAR via the use of guard cells surrounding the test
sample, chosen to match the calculated response. This then gives reduced sample numbers and
slower response to an edge but a range of possible situations will confuse any particular CFAR

configuration for some scenes.

5.6 Generalising CFAR to Variable Window Size

It is clear that without exact knowledge of the expected size, magnitude and occurrence of edges
then different scenarios could be envisaged where any of the discussed CFAR could either excel
or perform poorly. Additionally, if an edge is present in the data then the estimated statistics
whether it be mean, shape parameter or ACF will be some average of the distinct distributions and
so it is interesting to investigate detectors that maximise the number of test samples used whilst

simultaneously testing for homogenous conditions.

e [t is believed that a good indicator for deviations present within locally homogenous regions
is the ratio between the means of all regions deemed suitably homogenous to have a well

defined mean.
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This problem is probably ill posed. Even if a modulated exponential distribution is present, it is
difficult to envisage simple tests that can maintain a fixed probability of false alarm for all edge

configurations. The remainder of this Chapter details a novel attempt to apply this test.

5.6.1 Sequential Edge Detector

In formulating a detector for inhomogeneous environments:

¢ Fixed window CA-CFAR represents a simple way of detecting targets in homogenous clutter

without the presence of edges.

e Simple floating point operations limited to 4, —, x, < and comparison operators will give

the greatest operational speed.

e Multiple targets are not a primary concern of this thesis and are unlikely in a low observable

detection scenario.

e Dead time must be handled correctly, present in most fixed window CFARs at the beginning

and end of sample sequences.

From current literature and analysis of real data the clutter distribution is often considered as ex-
ponential, Weibull or slowly modulated exponential as in the K-distribution. As Weibull clutter
can be transformed to an exponential distributed variable via a simple power transformation, de-
tecting a change in the mean of a locally exponential variable offers a convenient starting point to
characterise inhomogeneous environments.

An analysis by Oliver et al. (1996) covers optimum edge detection for a fixed window case with
comparison of several edge detectors including the Maximum Likelihood Estimator (MLE) for
a SAR application. Their concemn is in accurately detecting the presence of single edges and
their position; they consider two approaches - a Fixed Window with Scanning Edge (FWSE) and
a Scanning Window with Central Edge (SWCE). In segmenting a scene, a step-up is of equal
value to a step-down and so the MLE estimate is shown to perform best for each approach. They
suggest a scheme to simultaneously maximise the probability of edge detection and edge position
accuracy via a SWCE followed by a FWSE respectively. It is noted by Oliver et al. (1996) that

‘In any application it is important that the window size should be sufficiently small that only a
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single edge would, in general, be expected’ and if this is not the case then an adaptive approach is
required.

Greatest flexibility would be to allow for any number of changes in the mean either up or down
with simultaneous target detection. In the preceding discussion the ‘target’ could easily be a point-
like edge to be detected. In a multifunction radar there is no fixed resolution and thus no consensus
upon the range extent of the target that poses a threat. If the resolution of the system is sufficient,
even the aspect angle of the target will affect its range extent. Allowing for detection of extended
targets (spanning multiple samples) means that the distinction between what is an ‘edge’ and
what is a ‘target’ is dependent upon the operator. One can no longer define the expected number
of samples within which a single edge is to be detected and so an adaptively windowed approach
must be considered whereby both the tested target region window and homogenous region window
are varied.

Adaptive windowing could be achieved through several methods:

e Run increasingly larger windowed CFAR in succession, starting at the smallest possible
using a rule based system to progressively remove targets, this will be severely affected by

false alarms at a strong clutter edge.

e Run decreasingly smaller windowed CFAR in succession, starting at the largest possible us-

ing a system to progressively remove edges, this will be severely affected by strong targets.

e Convolve a range profile with the expected edges to determine approximate positions of
problem areas, probably affected by a combination of edges and targets and difficult to

analyse.

A solution is to start at one end of the sample vector and use a post comparison window which
progressively enlarges but every combination of samples that could contribute to a single edge
are tested statistically. This will encompass any number of edges and any size of target; the only

assumption being that speckle is decorrelated between samples.

5.6.2 SED Algorithm

The algorithm is shown graphically in Figure 5.6, based on the following available assets:
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Figure 5.6: The Sequential Edge Detection algorithm: From an initial vector (A) the smallest
subsample of n = 2 is chosen (B) to form the test between I; and I>. As n increases the number

of tests increases (C and D). When a significant ratio I, /I5 is declared (E) the test algorithm
restarts (F)
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e A realisation £ = {z;.,,n — N} from the radar output, where N is bounded due to a

limited look time or a single range profile.

e Hypothesis Hy indicative of no target, represented by PDF f;
versus hypotheses H; indicative of edge present represented by a single change point in the

mean level after some point 1 < k < n.

e A measure of performance based on Py,.

The proposed algorithm is below; note that an edge is defined as an increase or decrease in the

local mean level.

1. Obtain a realisation x1., , n = 2 initially (the minimum test region possible)

2. Test hypotheses H;(y,)
Hy (9) indicative of homogenous statistics such that f (z1:2) = fo
versus
H; () indicative of edge after sample z;.
3. If any H; (), 0 < i < n are valid then flag edge and restart at Stage 1 with realisation
Lig+1-
4. Hyy, is valid, assert homogenous and increase test region via n = max{n + 1, N} and
obtain realisation xj.,.
5. Test multiple hypotheses H;y)
Hy () indicative of homogenous statistics such that f (z1.0) = fo
versus

Hy (n) » 1 < k < nindicative of an edge after sample z,.

6. Goto Stage 3 untiln = N.

The algorithm has several drawbacks, the foremost is one of speed due to an order N? method;
this has proved not to be a problem for typical sample lengths of N = 256 (in comparison to the

fixed window NP-CFAR to be of order W x N). The algorithm completion time is not constant
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as it can restart from a position k < n; although it is bounded for every possibility and fixed
for homogeneous clutter. There is also a significant mathematical problem such that the non-null
hypotheses are independent of the null hypothesis but not of each other.

The loss of independent sampling is unavoidable, at every point n a hypothesis of every change
point is tested and thus the n — 1 tests within z;.,, are made using a varying proportion of identical
samples. It is not clear how to handle this loss of independence mathematically, but it is actually
present within fixed window CFAR when the windows overlap; as W < N usually the effect is
not significant. The only way to guarantee some stability is to ensure that every hypothesis test is
made such that if it were an independent test then it would have the desired property of fixed Py,
(the implicit case of fixed window). Obviously the more tests made, the greater chance the false
alarm rate, but due to loss of independence this increase may be slight, and easily warranted if one

can detect edges or extended targets with greater accuracy.

5.6.3 Hypothesis Tests Used in SED

Whilst an MLE approach is optimum when all hypotheses are equally important (as in segment-
ation) for target detection the test is necessarily biased towards the non-null hypothesis of point
target detection (as in the NP formulation). As the CA-CFAR is known to achieve optimum point
target detection in locally homogenous clutter (Gandhi and Kassam 1994) then the generalised
SED test must reduce to this in some form so as to maximise P;. The ratio measure, closely
related to a test proposed by Touzi et al. (1988) has such a form, although it has previously only
been applied for fixed windows:

From a realisation z,.y, define an edge position & such that region 1 is defined as samples z,.; with
region 2 defined as x4 ).n, from this, form the ratio r of the mean intensity within each region I

and IAz

I
r = = (5.12)
I,
r > A1 Declare Edge Present with I; > I (5.13)
r < Ao Declare Edge Present with Iy > I; (5.14)

it can be seen that for k = 1, the test is equivalent to a one sided CA-CFAR test with a threshold

multiplier « = r and window size W =n — 1.
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In homogenous exponential statistics, the PDF of the sample ratio 7 with knowledge of the true

mean ratio R and the region sizes k and N — k can be shown to be (Oliver et al. 1996)

I'(N) {mitm)

P. (r|R,k,N —k) = 5.15
ol =D (1t i) 19
R(N-K)
which has edge detection probability, when carried out at the correct position,
M
Py =1 —/ P(r)dr (5.16)
A2
I'(N) k A=
= 1- Y k,k— N+ 1, ;
F T @y xR N k]|
kX
Y =
R(N —k)+ kA

where o F7 {-} is the hypergeometric function, and the integration is to be evaluated between the
limits A, and As.

Typical sample lengths are not expected to exceed 1024 and so Equation 5.16 is numerically inver-
ted to obtain A for 2 < N < 1024 with 1 < k£ < N and the results stored in a triangular matrix.
This operation was not trivial, problems with numerical accuracy arose which depended on the
particular case of the hypergeometric function; standard code such as that in Numerical Recipes
(Press et al. 1992) could not handle every case. Using the linear transformation formulae of the
hypergeometric function in Abramowitz & Stegun 15.3 (1972) and observing their convergence
criteria a suitable evaluation method can be applied for all cases but took the order of hours to
evaluate the entire matrix. Figure 5.7 shows how the ratio threshold changes for geometry and
Pfa.

When the ratio test is included in the SED algorithm, only the threshold matrix is necessary and
so the algorithm is suitably efficient when implemented with a lookup table. An example of its
operation is shown in Figure 5.8 for an exponential scene with multiple change points processed
at individual test Py, = 1073 and 1078. A gradual mean change is determined as a discrete step
but this is unavoidable without specifying an expected sample correlation, the important point is
that the variable correlation across the scene is determined.

To demonstrate the difficulties caused by the loss of independence, the simplest SED case of
N = 3 is examined in detail. The six edge hypotheses applied upon these samples are below (The

capital letter subscripts do not refer to the labelling in Figure 5.6 - although the second, third and
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Figure 5.7: Sample ratio threshold as a function of geometry and Pfa
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Figure 5.8: The SED test with Touzi ratio hypotheses segments a non-stationary scene reasonably
well assuming locally exponential speckle
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Table 5.1: Proportion of those sample failures common to two of the six edge hypotheses in a 3

sample SED, Pfa=1073 in homogenous exponential noise

Hy Hp He Hp Hg Hp
Hy | 1 0 <0.01 0.75 <0.01 O
Hg | O 1 <001 O <0.01 0.06
He | <001 <001 1 0.03 0 0
Hp | 0.75 0 0.03 1 <001 O
Hg | <001 <0.01 O <0.01 1 0.03
Hr | O 0.06 0 0 0.03 1

fourth subfigures are relevant); note the first two hypotheses are tested without knowledge of the

third sample.

StepUp : Hj = low high
Step Down : Hpg = high low
StepUp : H¢ = low low high
StepUp : Hp = low high high
Step Down : Hpg = high high low

Step Down : Hp = high low low

One would expect there to be strong positive correlation between H 4 and Hp independent tests.
The overall degree of correlation is presented by means of a comparison of those sample failures
common to two hypotheses in Tables 5.1. Results were initially obtained based upon 108 runs at a
single independent hypothesis Py, = 103, this produced the expected number of false alarms on
the order of their statistical error (100, 000 £ /100, 000). All the expected correlations are there -
almost negligible except for the strong correlation present between H 4 and Hp. A Pfa of 10~3is
not particularly low, and so Table 5.2 shows that for Py, = 1073 the strong correlation effectively
vanishes for all except H4 and Hp.

What is not shown is the existence of negative correlation, this will be most obvious between
Hj : Hg, Hc : Hp, Hg : HF but also extends between tests carried out at different sample
populations. The overall effect of the correlation between tests will require complicated analysis
and so a simulation of 3.6x10° of a length 128 vector was performed to determine the probability of

declaring any type of edge. A simplified SED algorithm was used where upon declaring an edge,
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Table 5.2: As the Pfa decreases (here 10~%), the dominant correlation between edge tests is fairly

stable whilst others disappear

Hyi Hg He Hp Hg  Hp
Ha |l 0 075 0 0
Hs 1 0 0 <0.01
He 0 1 <001 0 0
Hp | 075 0 <0.01 1 0 0
Hg 0 0 0 1 <0.01
He |0 <001 © 0 <001 1

the position of this edge was stored and a new vector was tested; in reality the SED algorithm
would restart upon the remaining samples of the vector after the declared edge.

The results of this simulation are shown in Figure 5.9 for a Pfa of 103, Neglecting edge effects,
the overall form of the Pfa is linear with respect to the sample number. The probability of falsely
declaring a step down is significantly greater than that of a step up, this is a direct result of the
strong correlation between the tests for steps up shown in the previous tables. Note that the tests
on the final few samples actually give a Pfa less than that of the independent hypothesis, this is
because there is a reduced probability of even reaching the final sample numbers and less ‘look
back’ where a sample is tested repeatedly once it has been passed.

The Pfa values are most importantly stable and of similar order of magnitude to the design based

upon independent hypothesis tests. Several points with regard to this can be made:

e The performance in homogenous statistics does not need to be rigorously calculated since

in practice one would never operate the SED in homogenous conditions.

e The robustness to edges of any length and configuration is most important which is hopefully

what has been achieved.

e If an edge is declared it would always have been declared had we decided to choose to test
for that particular edge at a fixed Pfa level, thus one can consider the SED as performing

many tests in parallel.

e It is not clear from the literature whether the mathematics are available to handle the loss
of independence, when Oliver (1996) encountered this using a fixed length sliding window,

the required thresholds were calculated by Monte Carlo simulation.
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Figure 5.9: Edge detection using the SED algorithm with ratio hypotheses

In the next Chapter the SED is used to suggest that the high resolution images have discrete events
which are not drawn from the underlying modulation responsible for the compound description of
sea clutter, this causes the data to be nonstationary. It is very difficult to fully specify a stationary
null hypothesis, due to the uncertainty of the actual sea clutter distribution and the presence of
large edges from system noise (see next Chapter).

For some comparison with the tests performed in the next Chapter, exponential speckle is applied
to a slowly modulated underlying exponential variate to give a simulated compound K distribution
of shape parameter v = 1. The modulation was generated via two realisations of an Omstein-
Uhlenbeck process with an associated correlation length 7. Discussion of this process can be
found in Section 7.1 where it is used to generate realistic time-varying target retumns.

An equivalent of 12 seconds of high resolution scene samples were simulated to determine the
length distribution of up and down steps when a continuous modulation is present, this is shown
in Figure 5.10 for a correlation length of 7 = 32. The important point is that the SED produces
a unimodal distribution of positive (step up) and negative (step down) lengths, the positive steps
presumably being detected in greater numbers due to the form of individual hypotheses used.

o The histogram of step lengths gives an indication of the correlation present within a sample
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Histogram of Step Length in Simulated v=1, T=32 Clutter
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Figure 5.10: Whilst far from providing an ideal null hypothesis, the SED measured step length

up and down is unimodal in simulated clutter of v = 0.1

vector which treats any modulation as a discrete number of individual steps without assum-

ing stationary statistics over the vector.

This is far from an ideal null hypothesis with which to compare the real data results, one of
the problems is that it is difficult to specify both the overall PDF (first order statistics) and the
autocorrelation function (second order). This has been solved recently by Tough and Ward (1999)
but has not been implemented here. The effectiveness of the SED is empirically justified in the
next Chapter for further evaluation of the high resolution data - not as a target detector, but for
evaluating the locally stable exponential regions.

5.7 Summary

As the data is usually subject to a point response function then a target is equivalent to consecutive
finite length edges. The specification of a hypothesis to determine an edge is dependent upon
the distribution of the underlying noise. As shown in Section 3.1.4, one cannot simply estimate

this underlying noise when edges are present and so a fixed length CFAR is difficult to specify,
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especially when the correlation length is unknown. An attempt to overcome these problems is
developed by a Sequential Edge Detection which assumes locally stationary exponential statistics
and declares both positions and values of locally mean intensity. In addition no a priori decision is
made upon the analysis length which, whilst ultimately suboptimum in perfectly specified clutter,
should give a robust method for further analysis of the data.

The SED is difficult to analyse for the homogenous case as the repeated statistical tests carried out

are not independent of each other, only the null hypothesis. Use of SED is justified by:

e One would not operate the SED in homogeneous clutter so its performance there is not a

factor.

e Whilst the analysis is intractable, it is similar to testing for every possible edge through fixed
window cell averaging type tests. An edge declaration would always arise had we decided

to choose to test for that particular edge at a fixed Pfa level.

e The maximum likelihood hypotheses were not used in SED as a biased test towards point

targets is preferable and the resulting cell averaging tests are far quicker in operation.

e Something which is never mentioned in the literature, but is applicable in this data, is that
the probability of having a true edge within the data is far greater than typical false alarm

rates and so the exact behaviour of the low false alarms will be swamped by this.

Classical CFAR statistical schemes have been discussed but robustness to their strong a priori as-
sumptions is rarely tested. In particular a point target is always assumed. If an MFR can adaptively
change its resolution then point targets are no longer always expected. If the SED can be viewed
as a target (finite length edge) detector then it has the appealing property of being able to adapt to
a potential target size even in the presence of strong edges. No claim to optimality is made (the
hypothesis tests were chosen for processing speed) but the algorithm does have some interesting

uses which are applied in the next Chapter.
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Chapter 6

Further Analysis of the Data

The range profile was suggested to be a heterogeneous mixture of distributions in the preliminary
analysis of the data. Large blocks of data were analysed which would be unavailable in an opera-
tional radar. Typical operating conditions for an MFR would be to sample an entire range profile
from an area once every second (Webb 1999). As the high resolution scenes showed, movement
of the wave events through the range extent caused the distribution to be unstable over this time
period. Prior information on the observed distribution is of limited use and would not even be
available if one is taking a first look at a particular area. If the ship is moving then it may not
be possible to view the same area more than once and difficulty in aligning range cells causes

problems when forming a clutter map.

6.1 Analysis using the SED

The previous Chapter described a Sequential Edge Detector which was implemented to avoid any
dependence upon a chosen window size for analysis of the data and to simultaneously indicate
areas that would flag as a point target and as edges. The ‘perfect’ high resolution data can now
be re-evaluated to separate the regions. Note that although images are shown in this Section all
processing is performed on a single range profile basis as this is how the radar would analyse
a scene - probably at intervals of a second. All SED processing was made using mean ratio

hypotheses at an independent Pfa of 10 assuming locally exponential noise.
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Figure 6.1: A bird in the V'V data served as a point target (calibrated dB RCS)

6.1.1 Scene With a Bird Present

The radar operated in a littoral region, and so it is not surprising that a number of birds are some-
times present. These are obvious from inspection of the Hi-res scenes, as they are effectively point
scatterers. Figure 6.1 shows part of sen3353 with a bird track present; both the raw RCS scene and
the SED processed version are shown. The range profile has not been normalised with respect to
the pulse shape, this is to illustrate the level of system noise at the edges of the range swath.
Several points can be made from Figure 6.1:

e The SED has made a good attempt at identifying the regions with constant local mean. The

edges are accurately determined over time with 256 samples per time slice.

e Although the wave event moves through the range cells, as the SED operates on a single

time slice, the correlation within the underlying wave events is accurately shown.

e Variable correlation is seen across a single range cell however this is stable over the order

of a second.

e As the underlying wave event is so stable, obvious edges between this and the system noise
of the order of 20dB are inferred.

o From Section 4.2.2 the noise level was determined as an equivalent RCS of -40dB, it is now
obvious that a large spatial extent of the scene is around this level and the SED highlights
this.
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Figure 6.2: Histogram of the extent of locally stable mean regions suggests a useable fixed 16
sample half window CAGO-CFAR could be used. Resultant calibrated dB RCS image is shown
on the right

e Striations are present upon the wave event from 8 seconds onwards between 1975m and

2050m in range. These seem to move at a lower speed than the wave event itself.
e The bird is easily observable in the low RCS areas which are dominated by system noise.

e Within the high RCS areas, the bird is indistinguishable from the striations over the order of
asecond.

From the SED analysis, one can form a histogram from the lengths of the locally stable mean
regions which indicates a possible fixed window length to perform a CAGO comparison. The
SED edge positions are stored and the measured lengths of the segmented regions regarded as
either a step up or a step down relative to the locally determined mean.

Figure 6.2 illustrates this histogram which shows the effect of the target in the scene as numerous
short high intensity steps. The modal step length is the width of the point target response determ-
ined by the Kaiser window applied prior to range compression. Other than the point scatterer peak,
the histogram indicates that a reasonable size of CAGO half window would be 16 - with 2 adjacent

guard cells to account for the point response of the test sample. Figure 6.2 shows the results of
this CAGO:

e The local mean is severely in error when the bird is near the wave event - the classic problem
with fixed window CFAR.
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e The correlation effects are no longer visually apparent.

e A dead area is present at the start and end of the CAGO run.

So the standard method of identifying point targets does not perform well here, primarily because
of the large edges determined by the SED. If one has a 20dB edge present over a significant part
of the window then severe errors in identifying point scatterers will occur.

If there are spatially large noise dominated areas then the use of a single threshold multiplier ap-
plied with fixed window CFAR will not give a constant Pfa over the whole scene. If the high RCS
regions are drawn from a different (spikier) distribution then the concept of a variable threshold
multiplier « (Section 5.2.1) could be of use. Within the low RCS noise dominated areas one would
use a significantly lower « than in the (presumably spikier) high RCS areas; exact « values to use
could be calculated based on ‘knowledge’ of the local mean and distribution shapes (for CA and
CAGO achieved relatively easily using numerical inverse Laplace methods of Section 5.4). This
knowledge could never be achieved in practice, especially due to the large (20dB) edges present
in the scene which would corrupt the local mean estimate of a fixed window.

If a target is present over the order of seconds, and the noise dominates a significant spatial area
of the scene, a target detection method could be envisaged where only the system noise areas
are tested since the statistics are fully known. Sampling a range profile at a frequency related to
the swell movement would ensure that at some point a target would be revealed in locally noise

dominated clutter.

6.1.2 Target Free Scene

The first target free region subsequent to the bird scene was chosen to illustrate the low velocity
striations or ‘slow events’ as marked in Figure 6.3. This is typical of the VV scenes and again
large areas of system noise are present in the central region of the scene - the striations can now
be seen to extend into this area.

Figure 6.4 shows the scene segmented into point scatterers via SED (accounting for the point
response) and standard CAGO (10dB above the local mean) both showing approximately 1% of
the scene. This demonstrates that the majority of the false alarms are caused by the striations.

In particular the SED is now seen to show many point scatterers which are distributed across the

ocean wave event - this highlights the effect that the striations have. Initially the SED was designed
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Figure 6.3: An illustration of a typical calibrated dB VV scene. The slow events can extend into
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Figure 6.4: Segmenting the scene to observe point scatterers is possible by SED and standard
CAGO
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Figure 6.5: The 16 tap Matlab designed filter was operated on 10% of the Doppler spectrum in

an attempt to remove the striations

to detect locally high intensity areas accounting for speckle without them necessarily being a point
target; with the striations present it precludes the use of the SED as a target detector because at
this resolution the returns cannot be completely described as locally exponential. There appears
to be an additional component upon the overall wave modulation in the scene that is responsible

for the point scattering - the striations are a major contributor to this.

6.1.3 The Striations

As this file was recorded so late in the day, the accompanying video recording was not taken due
to poor light conditions. For this reason, the physical cause of the striations is unknown but as it
is moving slower than the swell, it could be due to the foam left from a breaking wave or a wind
generated wave.

To determine if any particular velocity component of the clutter caused the striations a suitable
16 tap filter was designed (cremez .m in Matlab, a complex equiripple FIR designer) which can
operate on a 10% fraction of the Doppler spectrum with approximately 20dB suppression shown

in Figure 6.5. This method, if proven useful, would remove any targets present in that fraction of
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Doppler space - it did not remove the striation point scatterers. This suggests that the striations do
not have a well defined constant Doppler velocity or that they scatter diffusely.

From observing the 20 minute VV run the striations are usually seen behind a wave front; in
conjunction with their lower velocity this suggests they are flotsam. If this is the case then it casts
doubt upon the ability to accurately predict performance figures for this type of data. Whilst the
flotsam is probably associated with a breaking wave, its physical nature means that it may still be
upon the surface a large distance from that wave, such that existing locally windowed detection

methods will not be reliable.

6.1.4 Correlation Due to Striations

Figure 6.6 gives a histogram of the extent of the constant intensity regions from the high intensity
central region of the scene, determined by SED, and it suggests two components of correlation
even when the speckle is accounted for. The SED process assuming locally exponential clutter
was ran at an individual Pfa of 10~¢, the segmented regions were then recorded as being a step
up or down and their size (range cell extent) was histogrammed. Figure 6.6 demonstrates stat-
istically significant evidence of there being discrete scatters upon a modulating correlation length
because this individual Pfa would produce an expected maximum 2 false alarms per range cell
extent in locally exponential speckle. The usual method of viewing correlation is via the autocor-
relation function, also shown in Figure 6.6, which gives uncertain information since it is primarily
describing the correlation of the speckle - of course the SED inherently accounts for this.

As highlighted in Figure 6.3 some AC frequency contamination is present; files showed this around
100Hz which suggests it is from some rectified S0Hz mains source. As it enters the signal prior
to the FFT for range compression a particular range cell is corrupted, in this case around 2050m
by a small amount. Although the effect of the apparent RCS is of the order of 5dB and does not
affect the previous CAGO or SED analysis, in conjunction with the intermittent corrupted range
profiles it could have serious effects upon any complex test (such as chaos or fractal) based upon

data from this radar. This effectively precludes performance tests using this data as a background.

6.1.5 Scene Probability Distributions

If the scenes consist in general of a finite number of events then it is difficult to obtain a PDF

that fits the overall statistics even for an observation time far greater than would be possible in
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Histogram of Step Length in Target Free VV image ACF of Target Free Scene
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Figure 6.6: The existence of point scatterers in the nonstationary target free scenes and the spatial
extent of the correlation is clearly shown by the SED. The ACF gives an uncertain picture as it

views the scene as stationary

an operational scenario. The sample PDF is usually a smooth function especially if some form
of windowing is used to average out the speckle, prompting attempts to fit the whole of its extent
which are ultimately unreliable as shown in Chapter 4. If the SED is used to segment the scene
then this averaging is performed in a more intuitive way that avoids the problems of large edges
‘smearing’ the resultant histogram and thus reveals the discrete nature of the scene. Figure 6.7
shows this graphically where the SED implies a multimodal distribution subject to speckle; such
that the potential false alarms are from a discrete component of the scene that has no obvious
relation to parameters such as mean and variance of the overall PDF determined on a pointwise

basis.

o The high intensity tails are determined by a discrete component of the scene which is only

obvious after initial segmenting based upon the mean RCS and assuming locally exponential

speckle.

This SED analysis was extended over the entire 20 minute dataset to determine if a stable mul-
timodal distribution was apparent. The peak positions and their form varied such that the swell
events could eventually be considered as coming from a continuous distribution; this masked any
obvious spiking events over this time.

As the large scale swell events appear to be relatively stable over the scene it is interesting to see
if they can be analysed individually by spatially removing the areas of pure system noise. This
is possible through segmenting by hand, but by thresholding the scene based upon the SED the
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Figure 6.7: Obtaining the PDF of the SED segmented scene reveals the discrete nature of scenes.
Without the SED, well defined areas are not apparent

Figure 6.8: Thresholding the mixed VV scene at -30dB allows separation of the large scale RCS

events from the system noise

spatial area to be sampled can be determined automatically. A simple intensity threshold does not
provide well defined areas due to the effects of speckle shown in Figure 6.8.

This segmentation method was applied on a large number of scenes to look at individual swell
areas and gave unstable results; while the K distribution could often be adjusted to fit the tail
regions well it could not characterise the whole RCS range and the shape estimator U underestim-
ated the tails even though the rest of the distribution was fitted well - this is a direct consequence

of the presence of discrete events within each wave swell.

o The presence of discrete intermittent events means that statistical comparison of individual
swell waves is difficult. Whilst they are correlated in underlying mean RCS on the order
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of several seconds their probability distributions are variable and their returns cannot be

viewed as being from a single class of continuous unimodal distributions such as K.

Accepting that at a high enough resolution the backscatter is discrete in nature motivates a de-
tection scheme based upon the lifetime of individual events, determined in the Doppler domain,

presented in the next Chapter.

6.2 Summary

Chapter 4 showed that previously considered distributions could not fully account for the sea
clutter RCS distribution. Every scene had large spatial areas of system noise presumably due
to geometric shadowing effects from the low grazing angle and high sea state. By operating an
adaptively windowed edge detector which assumed locally exponential noise these areas could be
segmented and further revealed that the scenes consist of two forms of spatial correlation. The
large correlation extent is the ocean wave modulation which is included in the compound model
of clutter but upon this discrete point scatterers are present in the form of striations. The RCS
distribution of the point events is not obviously related to the underlying swell, can appear away
from breaking waves and does not have a fixed velocity which suggests that flotsam is a possible

cause.
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Chapter 7

Wavelet Detection Methods

The previous Chapter dealt with incoherent detection within a range profile, this Chapter considers
a novel coherent detection technique based upon the lifetime of the events responsible for the
Doppler spectrum. Classical techniques, such as acoustic delay Moving Target Indication (MTI)
formed detection, are based upon identifying a target from the amplitude difference between suc-
cessive pulses (Shrader and Gregers-Hansen 1990). In coherent digital systems this has evolved
into Moving Target Detection (MTD) where successive Doppler spectra are processed by a filter
bank, Figure 7.1 demonstrates this where filter number 4 is relatively clutter free.

If the desired target lies within the clutter and the Doppler spectrum remains constant it should still
be possible to identify it, however the Doppler spectrum is not necessarily stable and so thresholds
must be high to avoid excessive false alarms. The events responsible for the high resolution false
alarms were close to the clutter peak and so it is interesting to see if a coherent target detection
method can be operated within this constraint. To distinguish these from targets it is deemed
necessary to observe the time evolution of these events with respect to their Doppler velocity.
As discussed in Section 3.2.3 this can be achieved by the Continuous Wavelet Transform which
adaptively changes the analysis window with which to form a Doppler spectrum.

The literature commonly refers to a correlation length as an average measure of coherence estim-
ated from the autocorrelation function. A single correlation length is especially inappropriate for
sea clutter when it is obvious that the sea has many components based on tide, swell, wave and

ripples each varying individually in time.
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Figure 7.1: An MTD Filter bank can be used to detect fast moving targets outside the clutter.
Filter 4 could be the input to a CFAR

7.1 Target Model Formulation

A method is required that can model a slow moving target effectively hidden within the Doppler
spectrum of the sea surface to determine an effective detection technique. A paper by Tonkin and
Dolman (1990) explored the RCS PDF of a periscope subject to:

e Shadowing by the sea surface.

e Specular multipath.

o Lobed backscatter structure from a cylinder.

o Comer reflector effects between vertical periscope and sea surface.

A combination of analytic and Monte Carlo methods determined the overall RCS PDF to be largely
Swerling I with occasional periods of very high return. Whilst the returns were said to be ‘pulse to
pulse correlated’ and an oscillating motion is to be inferred from the diagrams, the explicit form
of the correlation over time is not explored. Incidental effects such as reflected waves or wake

production were not included.
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A generic time varying target is proposed:

1. The RCS is modelled as Swerling I generated via Omstein-Uhlenbeck processes with a

correlation time 7 determined from

Tee1 =M+ V1= AN (0,1), M2 < 1 (7.1

1 t
A = exp (—;) st (T¢Te41) = exp (—;)

where N (0,1) (and strictly z1) is a Gaussian random number of zero mean, unit variance.
Squaring and adding two independent realisations of Equation 7.1 gives an exponentially

distributed variable whose correlation length is related to 7.

2. The Velocity is modelled by lowpass filtered Gaussian noise of cutoff frequency f. which
gives an expected Gaussian shaped Doppler spectrum of central velocity vg with associated

width Av, a 5th order Butterworth filter was suitable.

One can model different targets by varying 7 and f, but for slowly varying targets a time constant
of order 1 second for both correlation parameters is physically reasonable, e.g. 7 is set to 1 second
and f. is 1Hz. To emphasise the intended use of the Wavelet analysis vy and Av are always
chosen to be within the clutter spectrum, thus detection based on estimation of the background
clutter shape would be of limited value since to a first approximation this is Gaussian itself.

It is this type of surface target that would be difficult to detect using a standard windowed CFAR
operating on the FFT Doppler bins or in Range resolution since it is expected to emerge and
fade slowly without causing a discernible high magnitude return. Additionally, associated surface
effects such as a wake could be present which would corrupt any necessary local estimate of the

statistics.

7.1.1 Targets Within the Doppler Spectra

Figure 7.2 shows the Doppler spectrum assessed from the centre of the Hi-res VV target free scene;
the simulated target RCS and velocity are alongside. Based on the Doppler shape alone there is
no obvious target present. The RCS variation means that the varying velocity is not apparent.
Classical target injection of a single velocity with a well defined FFT peak will never be realised
since both target and observer will have varying relative motion over the time necessary to discern

a small target against the clutter background.

147



7.1. Target Model Formulation WAVELET DETECTION METHODS

Doppler Spectra of Target Fres VV with Synthetic Target Simulated Siowly Varying Target
- Target + Clutter 3 A
EE=a~] 52[ i "
5 X LA \ \f
§‘- ) n.'f A 'lJ T\ I\ ['H
b N““x_ﬂ‘" ' .‘nn\u‘ v W v a ‘"‘-'.A}ﬂ
05 1 15 2 25 3

Time/s

T ™ '

Time/s

Figure 7.2: Slowly varying target model within high resolution clutter

The first assumption one makes is that the FFT window is simply too long and so shorter duration
windows should be used to observe the varying velocity. This is the motivation behind using the
Wavelet Transform described in Section 3.2.3 since a priori one cannot know the correlation time
of the expected target; if detection is to be made upon differences in the correlation structure over
time then a chosen fixed window will have a dramatic effect upon the determined spectra.

Low resolution sen3558 and sen3537 VV data is used for illustration. Taking a random 0.4 seconds
of data, a plot is made such that Doppler velocity is along the abscissa with multiple ordinates
showing the effect of window size from 1024, 512, 256 and 128 sample windows i.e. ‘dyadic’.
Subsequent Doppler plots can be seen in time on the lower plots, as 8 of the lowest resolution FFT's
can be carried out in the time of the largest. A synthetic stationary OdB target has been introduced
into the central 0.2 seconds in the right hand plots of Figure 7.3. Additionally, Figures 7.4 show
similar plots for a scene with birds present - a real target not unlike the model. Confusing spectra
are observed where it is difficult to imagine a target detection scheme if this is a ‘first look” at a
potential hostile scene.

A potential solution is to use a clutter ‘map’ based upon a priori knowledge of the Doppler spec-
trum. This requires long look times and is unsuitable for a fast detection decision on a new scene.
Sixty seconds of data was used to determine the ‘complete’ (but effectively unavailable) know-
ledge of the clutter Doppler spectrum. This was overplotted with its standard deviation to give an
indication of a possible threshold in Figures 7.3 and 7.4.

From these figures it is obvious that conventional processing biased towards identifying high ve-
locity targets away from the clutter is not suited to detection within clutter due to:
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Figure 7.3: A dyadic plot of sen3558 Doppler. Right plot has an unlikely OdB constant velocity
target added
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Figure 7.4: A dyadic plot of sen3537 Doppler with a single bird present. Right plot has an
unlikely 0dB constant velocity target added
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Doppler variation over time will cause MTD to exceed the low threshold required to detect

the target.
e Variation between window sizes means selection of the optimum is difficult.
e Objects such as birds could pollute a clutter map easily.

An accelerating target such as the bird is seen as several discrete targets of highly variable

amplitude due to fading.

Such that detection of targets, whether of unlikely constant velocity or those accelerating, is diffi-

cult within the clutter based on the instantaneous Doppler spectrum.

7.2 Application of the Wavelet Filters

Accepting that the return from the sea surface is as a result of several variably interacting compon-
ents means that the traditional view of a Doppler ‘spectrum’ when analysed over short time frames
is a misnomer when we are looking at a finite collection of individual scattering events. Isolating
these events is naturally performed in the Wavelet domain since this considers localisation in time
and frequency to be equally important in choosing window functions to minimise the combined

uncertainty.

7.2.1 Frequency Response of the Wavelet Transform

Recall (Section 3.2.3) that the normalised form of the Morlet wavelet is defined (Torrence and
Compo 1998) with a parameter wy that determines the number of oscillations in the time domain

(chosen as wy = 5.336)
t2
Uo(t) = r1/4 exp(jwot — 5) 7.2)

which is then dilated in time by a scale factor s, represented in frequency where 7 (+) is the Fourier

transform of ¥ (-), as

—(sw —wp

R 2
U(sw) =7~ dexp] 2 ) ], w>0 (7.3)

This defines a flexible time-frequency window which automatically scales to observe approxim-

ately wp cycles of a particular frequency whilst still being localised in time. As the effective
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Figure 7.5: The Western diatonic music scale is spaced logarithmically, the wavelet filters mirror
this to give a flat frequency response

bandwidth of the wavelet filter is a linear function of its central frequency, a logarithmic subset
of frequencies is required to give a flat frequency response. This has similarities with the major
diatonic pitch scale of Western music where octaves are spaced logarithmically, shown in Figure
73

The scales are chosen so that the mth scale s, is defined as

Sm=52"0" 1<m<M (7.4)

where so samples close to Nyquist (half the sampling frequency) and Am determines the spacing
between scales sy, and s;;,4). The parameter Am is chosen to minimise the number of wavelets
used, whilst being small enough to give a reasonably ripple free central frequency response, set
as Am = 0.25. Also note that in this form the transform is only defined for positive frequencies;
negative frequencies are obtained by operation upon the conjugate of the original time series or
equivalently the conjugate of the filter.

The algorithm to compute the Wavelet Transform can be summarised as:

1. Obtain time series .y and transform to frequency domain via FFT to yield Z.
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Wavelet Filter Frequency Response for N=512
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Figure 7.6: The frequency response of the Morlet CWT viewed as a filter bank is flat when

operated correctly but several artefacts can arise

2. Calculate wavelet filter ¥ (sw) in frequency domain for a particular scale sp,.

3. Convolve the filter over all time positions to operate the wavelet filter in the frequency

domain

—

W=7x

7 (7.5)

4. Calculate the inverse FFT of W to obtain the lengthy NV, scale s cormponent of the wavelet

transform W,,.

5. Repeat from Stage 3 until all M scales are calculated.

The set of all M wavelets can now be viewed as a filter bank, from which a frequency response

curve can be derived. As the filters are only implemented digitally via an FFT the response from

white Gaussian noise is averaged for a typical sample length of N = 512 using the wavelet

transform routines.

Care must be taken in choosing M and sq:
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e The wavelet has a variable duration in the time domain so edge effects are important as the

scale s approaches that of the sample length N.

e One cannot measure frequencies faster than Nyquist or slower than the duration of the

sample.

e Meyers et al. (1993) show that the peak response frequency f,. is not simply the inverse of

the scale but

V2+w2 0864
fo= ot — Yo 83 (wo = 5.336) (7.6)

and so the derived Doppler spectrum must be scaled accordingly to correctly determine

velocities.

These effects are summarised in the frequency response curve of Figure 7.6 which shows the

normalised response to white noise and a tone at the Nyquist frequency embedded in noise.

7.2.2 Wavelet Transform Input to a Detector

From atime series x.y the wavelet transform separately determines both the positive and negative
Doppler velocities present. As the observed clutter spectra are all one sided this means only
one transform need be operated but otherwise this would raise the question of how to handle
events whose velocity changes sign (although a similar problem arises at the DC component of the
standard FFT).

The resultant WT is now recognised as providing an instantaneous Doppler spectrum which has

been ideally smoothed in the time-frequency plane.

e The instantaneous Doppler spectrum, as determined by the CWT is not some arbitrarily
smoothed average of multiple FFTs but an explicit method of weighting the filters that bal-
ances the equally important criteria of localising an intermittent event in both frequency and

time.

The global wavelet spectrum when averaged from the instantaneous wavelet spectrum is an un-
biased estimation of the true power spectrum of the signal (Percival 1995). Figure 7.7 shows

the mean WT compared to the mean FFT spectrum (calculated with a Kaiser-4 window) for 60
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Figure 7.7: The mean wavelet spectrum represents the Doppler spectrum as well as the FFT but
the filter bins show less variance

seconds of sen3558 and sen3537 and additionally shows the variability of the filter bins (standard
deviation divided by mean). The variability is considerably smoother for the WT of sen3537 even
though it contains intermittent events discussed in Section 4.3.2.

It is the smoothness of the WT that allows analysis of the instantaneous events causing the overall

Doppler spectrum 6ver time. Figure 7.8 gives a cartoon view of how these events may appear:

e The left of Figure 7.8 demonstrates the appearance of two separate scattering events at dif-
ferent velocities which are unlikely to be targets, many of these short events will contribute

to form an overall Doppler spectrum.

e The right of Figure 7.8 shows a single event changing velocity but dominating the spectrum.
This is a potential ‘persistent’ target which is present within the clutter spectrum.

By following the largest maxima within the instantaneous WT derived Doppler spectrum the stat-
istical distribution of each WT bin is not required. Measuring the length of time these events
are continuous (the length of the blue arrows in Figure 7.8) gives a physically motivated threshold
with which to form a detection criterion that will hopefully be more stable than the RCS fluctuation
within the clutter. It may be argued that selecting only the maxima is throwing away information
but a detectable target will necessarily add to the magnitude of the Doppler bins within the clutter,
thus identifying the largest maxima gives a simple initial threshold.

Obviously detection of small targets outside the clutter spectrum using this method is not viable
but this area is dominated by system noise (and sidelobes from the clutter due to filtering) which
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Figure 7.8: Cartoon showing the instantaneous WT velocity bins (Red) at 3 distinct times for
two different scenario. Tracking the maxima (Blue) will measure the physical time that an event

dominates the spectra

is not as variable as the clutter. Additionally this area represents the fast velocity targets whose
‘lifetime’ is determined not by any physical properties but the time they are within the sampled
range cell. Over a certain velocity there is no use for the Wavelet Transform since an upper bound

exists on the duration of a Doppler frequency.

e A detection statistic termed the ‘persistence’ is proposed that is determined by measuring
the length of time the largest WT Doppler component is continuous with respect to velocity.
This is a physical parameter with units of time that is biased towards detection of slow

moving targets at velocities within the long term clutter spectrum.

e The persistence is not related to any measure based on the autocorrelation length. The ACF

can be determined from the FFT of the entire windowed sample and is thus subject to all
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the practical difficulties of the FFT for nonstationary signals discussed in Sections 3.2 and

7.1.1.

One caveat must be stated; as the time extent of each WT filter is a function of its matched ve-
locity then the defined persistence measurement will not be completely independent of velocity.
Torrence and Compo (1998) consider this in terms of the decorrelation time a particular wavelet
has in response to a point discontinuity in the time series (such as random impulsive noise or edge
effects). This ‘cone of influence’, defined as the time taken for the filter intensity to drop by a factor
e~ 2, discriminates between random noise and a true frequency being present. This effectively puts
a lower bound upon the measured persistence times of v/2s (Torrence and Compo 1998), as it
turns out a usable target threshold is much larger than this value for typical well sampled time

series and so the effect is minimal.

7.3 Observation of Real Data

To determine the statistical distribution of the Doppler event persistence, a large data file is ne-
cessary. Recall that the high resolution files are constructed from 256 individual frequency pulses
swept through a chirp. By extracting a particular frequency from the chirp then an apparent 256
individual low resolution observations are made of the same scene. Long observations can not
be made at a high PRF since this would dominate a multifunction radar processor, but this PRF
of 40000/256 = 156.25 represents an operational use of this detection method which addition-
ally ensures the speckle is decorrelated. The 20 minute high resolution files in V(sen3353) &
H(sen3352) now offer a large statistical population albeit covering slightly different transmission
frequencies.

Figures 7.9 illustrates a short (3s) observation of sen3353 processed by the maximised wavelet
method in low resolution with a 0dB time varying synthetic target introduced, several points can

be made:

e For this particular data the clutter only Doppler spectrum resembles a ‘traditional’ point

target more than the target plus clutter.

e The wavelet spectrum confirms the smoothness suggested in the cartoon Figure 7.8. The

scale is defined in Equation 7.4, which for 512 samples bounds the Doppler spectrum well
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Figure 7.9: Wavelet processed low resolution VV data at PRF 156Hz demonstrates discrete
nature of the clutter returns and detectability of a synthetic target based on the persistence of

Doppler components
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Figure 7.10: The persistence of events determined from raw VV sen3353 with addition of a 0dB
synthetic target

without explicit edge effects.

e This smoothness allows the maxima to be extracted well and their continuity can be meas-

ured quickly with fast array operations (the entire processing takes the order of 100ms).

e The mean persistence of the clutter events is the order of 0.1s which is physically reasonable.

The target plus clutter has far longer persistence events as expected.

The measured persistence lengths are drawn from a statistical distribution. As the persistence
is presumably measuring some form of physical clutter event lifetime then one would expect a
classical exponential distribution. This is exactly the assumption made by Lee et al. (1995) who
assumed a fast moving varying scatterer population with an exponentially distributed lifetime to
yield a Lorentzian distributed component within the long term Doppler spectrum.

Processing of the VV 20 minute data of sen3353 in 3 second blocks confirms that the distribution
of the persistence is exponential and, whilst not shown, the form was stable over time. Figure 7.10
shows this graphically and also demonstrates the distribution obtained when the largest persistence
value is taken as a detection statistic - additionally the effect of a simulated 0dB target is shown,
detailed analysis is performed in the next Section.

Note that HH was not processed in this manner since the Doppler spectrum was not single sided
due to the undersampling discussed previously.

Whilst it is tempting to conclude that the exponential observed distribution confirms the physical
lifetime of events in the data, white (or bandlimited to the wavelet filter bank) noise would produce
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Table 7.1: Specifications of the High Bandwidth Malvern Data

Run F/GHz PRF Pol Hygue/m Vyma/ms™'  Rng/m  Resolution
3092257 ~9GHz 1000Hz All 12-24 8 1578 0.3m x 1024

an exponential persistence distribution since in this case the probability of any particular filter
being a maximum is the same. If the probability of a particular maxima’s presence is constant

then the classical exponential decay distribution arises.

7.3.1 Processing a Real Target

The MBPR high resolution data is not reliable enough to give accurate performance figures for
low Pfa. Whilst 20 minute runs were taken in high resolution mode, the low resolution runs were
usually less than a minute long. This causes the sample size to be insufficient; the lowest Pfa will
be the reciprocal of the sample size but significant statistical noise will be present.

It is regrettably accepted that different data must be sourced to experimentally demonstrate the use
of this method. This was kindly provided by DERA Malvern and has properties detailed in Table
7.1.

Exact details cannot be quoted but the radar is operated from a clifftop at a low grazing angle
- about 1.5°, which is significantly larger than the DERA Portsdown data. A major difference
between this and the DERA Portsdown MBPR is that the high resolution is achieved by a single
high bandwidth chirp (S00MHz) which avoids the synthetic chirp cycling problems of the MBPR.
Crucially a real target is present within this data - an oil drum floating upon the sea surface at the
edge of the range profile. This gives an immediately applicable test for the persistence algorithm
upon a typical target.

The oil drum is floating on its side which would suggest VV target returns would be very dif-
ferent to the HH since the latter is exposing more cross section in the direction of the radar. In
practice there was significant movement of the drum and over 30 seconds one cannot make firm
conclusions.

The Doppler spectra from 1 second of the VV and HH are shown in Figure 7.11 which demon-
strates that the mean Doppler velocity of the VV returns is about 2ms~! whilst that of HH is
Ims~!. This is in contrast with the literature, but both raw and processed files from DERA were

checked and confirmed the labelling. There has been a suggestion (Lycett 2000) that the radar
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Figure 7.11: The Doppler spectra from 1 second of VV and HH Malvern data. Scale is arbitrary
dB Intensity

channels were swapped in hardware but without firm evidence the file labels are retained.

A ship-borne radar may be unable to achieve range gate accuracy of 0.3m over 1 second due to
platform motion as inertial sensors used for motion compensation are less sensitive to low fre-
quency movements. At these Doppler velocities the persistence method cannot be expected to
work since any potential target will have left the imaged rangecell before its lifetime can be as-
sessed. Reprocessing the raw data to obtain 6m range cells (using DERA programs) means that
any event lifetime can be measured reliably without excessively decreasing the sample size. The
persistence method was then implemented at a PRF of S00Hz (the minimum necessary to resolve
the Doppler spectrum) in 1 second blocks of data operating on a single range cell. The intensity
was incoherently averaged on those same blocks to provide a comparison to ideal RCS threshold-
ing (RCS calibration data was not available but the scenes were corrected for range dependence).
Figure 7.12 and 7.13 presents processed images of the data showing arbitrary integrated intensity
and the measured persistence values for the 1 second blocks. This Figure crucially demonstrates
that for these conditions the persistence method is in some ways complementary to that of intensity
thresholding. This scene is substantially more homogenous than previously analysed using the
MBPR due to the lower wave height and higher grazing angle. A physical threshold has now
been realised for target detection which will hopefully be more stable than that of RCS for low

observable targets in sea clutter.

o The persistence threshold has been shown to work effectively in real data with a real target.
The low intensity target areas are revealed which is the intended operation of this novel
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Figure 7.12: Malvern VV data. Using real data with a real target in the lower range cells the
persistence method is complementary to Intensity and has the advantage of thresholding based

upon a physical measure of time
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Figure 7.13: Malvern HH data. Using real data with a real target in the lower range cells the
persistence method is complementary to Intensity and has the advantage of thresholding based

upon a physical measure of time
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method.

e Although only a single real target scene is available, the persistence method is complement-

ary to intensity thresholding which gives strong justification for further testing.

In Figures 7.12 and 7.13 in the areas of low intensity from 5 - 20 seconds the persistence is large,
however there is some indication that it is at a different angle to the intensity. This could indicate
that the persistence algorithm is actually picking up a different velocity disturbance due to the

target rather than the target itself, such as the wake.

e Identifying an effect due to a target presence may be just as effective as detecting the target

itself but will be difficult to simulate.

7.3.2 Detection Performance of Simulated Target in Real Clutter

Radar Operating Characteristic (ROC) curves showing Pd versus Pfa are difficult to construct for
real targets as the population of target samples is too low. Operating the detection method within
the target free portion of the real data upon simulated targets injected into the clutter spectrum
gives a suitable statistical population. The upper half of the scenes was chosen as the target free
portion to avoid any residual range sidelobes from the target and for every second of each rangecell
a random simulated target was injected at 0dB and 3dB relative power (determined individually
and repeated 100 times). As described in Section 7.1, HH targets were injected at Ims~! with a
width of 0.25ms™! whilst VV targets were injected at 2ms~! with a width of 0.5ms~! each with a
velocity time constant of 1 second. The RCS correlation time was matched to that of the observed
target as 0.4s - a reasonable test since this is well below the 1 second observation time. The sample
Pd and Pfa were then calculated by varying the ideal threshold for the entire scene to produce the
ROC curves in Figure 7.14, note that the Pfa is calculated per burst (512 samples) to reflect the

method.

e The persistence method is shown to significantly improve upon simple intensity threshold-
ing for simulated targets in real VV data, an order of magnitude improvement is seen in Pfa

over most of the ROC curve.

The performance curve for the HH is seemingly worse, however this is entirely in keeping with

the existing theories - HH is spikier and so one could assume it has relatively more discrete events.
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Figure 7.14: ROC curves for simulated target in real 9.75GHz data (1 second look time)

The straight addition of a target is perhaps not the correct way to analyse the performance. The
striking point is the complementary performance shown by Figures 7.12 and 7.13 where the low
intensity areas of the real target are revealed well by the persistence detector in both HH and VV

polarisations.

74 Summary

This Chapter has implemented an entirely novel detection algorithm based upon the observed
lifetime of discrete scatterer events, performance has been demonstrated on a real target in real
clutter which is rarely shown in the literature. It is suggested that detection is not necessarily
being performed on the target, but rather a surface disturbance relating to the target’s presence.
The complementary detection performance when compared with intensity alone is striking and

the simulated ROC curves may not be applicable to performance calculations for this reason.

e It is a possibility that the radar files were incorrectly labelled and that VV and HH should
be swapped. In any case conclusions cannot be drawn from a single file and the benefit of a
persistence thresholding method, if any, requires further analysis of high quality data.
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Chapter 8

CFAR Performance Limits in Littoral
Clutter

Evidence has been provided that the observed high resolution sea clutter is not stationary with
respect to its shape parameter and intensity. The operating conditions specify that a land edge
may be present at an unknown position. It is necessary to determine when to adapt the processor
to inhomogeneous statistics via the use of change point detection. This Section assumes that the
resolution cell is large enough so that the discrete events are drawn from a continuous distribution

such that the observed backscatter conforms to a K-distribution.

8.1 Operating Conditions

This Section outlines the conditions for which this analysis is applicable. A detection algorithm

based on an uncertain distribution shape for is determined via:

1. Sweep for shape estimation for certain length of time, then global process.
2. Alternate sweep and process.
3. Concurrent estimation through censored statistics.
All at an operating throughput of order:
1. Desired Probability of False Alarm= 1073,
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2. Desired Probability of Detection= 0.5.

3. 40 kHz PRE.

The significant difference of MFR is that it can operate in ‘stare mode’ so there is no physical limit
on the number of samples available from a particular area such as in a rotating radar. Adaptive
processing may include binary (‘N from M’ type detection), coherent (FFT bins) or incoherent

(RCS summation) integration over time which could be applied to outputs such as:

e Single Hi-res Range-Intensity over a fixed 256 samples.
e Hi-res Range-Time-Intensity concerning time evolution of the above.

Hi-res Range-Doppler possible from FFT of the above giving individual Doppler recordings

from each range cell.

Low res Intensity-Time.

Low res instantaneous Doppler.

Low res Doppler-Time such as FFT or WT.

In each case a priori knowledge of the distribution shape is unlikely and so this must be incorpor-
ated into the processing as a pre-detection stage. There is no reason not to simultaneously check
for a target during this pre-detection stage but without accurate knowledge of the current statistics
this will be sub-optimum.

The likely statistics from any of the environmental modes will be subject to:

e Abrupt edges due to land, birds, changing sea conditions, filter noise or extended targets
e Modulation from ocean waves, undulating land or slowly fluctuating targets

e A combination of the above from a discontinuous land-sea interface for example

The task is to determine the distribution shape reliably whilst these effects are occurring
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8.2 [Estimating the Distribution Shape

If clutter can be represented as locally stable Weibull or K-distributed, it must be known when
adaptation to any deviation from these statistics is necessary. Chapter 3 concluded that the shape
estimator U was of use in estimating the underlying statistics, and explicitly determined the effect

of edges within the statistics.

U = logl—logi (8.1)
N \WUN | X

= log (H Ii> — log N le (8.2)
i=1 7j=1

= loguc —logpa (8.3)

Whilst the fractional accuracy of the U parameter estimator can be calculated with respect to
the underlying distribution, an accuracy relating to the performance of the detection algorithm
is preferable - two bounds must be set for this. After discussion with DERA (Branson 1999),

adaptation is defined to be necessary when:

e Probability of False Alarm is increased by an order of magnitude from the design as the
spikiness has been underestimated. In an MFR this represents the level where an automated

processor would be overloaded.

e Detection threshold is increased causing the required target SNR for detection to be 3dB
greater than necessary as the spikiness has been overestimated. This would represent a
significant stealth capability and is broadly equivalent to raising the CFAR threshold by
3dB i.e. a CFAR loss.

8.2.1 Performance Limits

As each of the bounds will have a dependence on the exact form of CFAR processor used, a
simplification assumes that absolute knowledge of the local mean py is available. This can never
be true but the uncertainty in the shape parameter will always be greater than the local mean if
estimated concurrently. This Chapter indicates the loss from poor knowledge of the distribution
shape and would apply in estimating U from a finite number of samples and then processing with

a relatively large CFAR window in homogenous clutter.
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Clutter Ratio dB

Figure 8.1: Threshold multiplier for Pfa= 10~° and SNR required for Swerling Il Pd= 0.5 with
respect to U

Assume testing for a point-like target in K clutter, the clutter will have a CDF of

v/2
Co (I;v,) = % ("f) K, (2\/% ®.4)

from which inversion gives the threshold multiplier o that sets the critical threshold I, = apu for a
specific Pg,.

Further assuming a Swerling II target model (Section 2.1.4) of cross section 7, the target plus
clutter distribution can be shown to be (Watts 1987)

S 1 e T RS e

redefining to normalise target SNR R = r/u and in the operating conditions of large P4 and low

Ps, the above is adequately approximated by

Prec (o ~ 1w |15 -] 36)

Figure 8.1 shows the required threshold I, and target strength R with respect to U.
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Before setting this threshold the degree of uncertainty must be known in the estimate of U and
furthermore it is better to relate that degree of uncertainty to the chance that the processor is
outside the operational bounds of U defined from the previous Section.

To calculate the positions of the bounds, notation is defined:

U’ . The estimated value of the normalised log measure, subject to variation from

finite sample numbers or inhomogeneity
Uy : The actual normalised log measure of the underlying statistics

V' : The estimated shape parameter determined from U’, for this exercise K distributed

statistics are assumed
g : The actual shape parameter of the K distributed statistics

«' : The threshold multiplier applied from the estimated statistics such that the threshold
used is I, = o’ po
«xg : The threshold multiplier required such that a threshold at I, = oo would give

a Pfa=107

The operational bounds of U are calculated from the high and low limits where U’ causes either
Pfa to increase by a factor of 10 (U’ = Up) or required target SNR is increased by 3dB (U’ = UL)

when the true statistics are Uj.

1. U' > Upsuchthat Py, (U = Uy) = 10x Py, (U = Up). U is calculated from a numerical
search by inverting Equation 8.4 to find which U’ will give an o that in statistics of v

produces Py, = 104,

2. U’ < U such that R(U =U;) = 3dB + R(U = Uyp) is calculated from a numerical
search by inverting Equation 8.6 to find which U’ sets a threshold I that requires R to be

3dB greater than necessary to be detected when embedded in statistics of v

Figure 8.2 shows the above graphically for the case of spiky and exponential clutter. Figure 8.3
plots the upper and lower bounds to U’ over —10 < U < —7 (including the exponential case).
Remarkably these bounds are a near linear function of U for these values and presumably could be

calculated by finding some linear approximation of the above procedures. Where U’ is evaluated
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Figure 8.2: Upper plot: Maintaining Pfa by estimating the distribution from finite sample number
is most difficult. Lower plot: In exponential clutter intensity edges cause major Pd loss

at the upper or lower bound this suggests
oU' _ au’ 8’ dv
U = WEW = constant 8.7
Equation 8.7 is difficult to prove but is not necessary since the calculation takes less than a second;
it only needs to be performed once to determine just how accurate U’ need be. Operating at
U’ = —v (i.e. estimate is of exponential clutter) the limit where excessive false alarms occur is
Up =~ —0.62 (1p ~ 12.5)
From Figure 8.3, the Pfa bound Uy is much closer to Uj than that of probability of detection U}.
Knowing that the sample estimate of U is Gaussian (Section 3.1.4), it is reliably concluded that
the major problem of using finite sample number is maintaining the Pfa bound over all considered
regions. In fact the necessary accuracy required to maintain the Pfa bound gives an expected target
SNR loss of about 1dB, which is relatively small.
The major contribution to target loss is not from the finite sample number, but rather from the pres-
ence of intensity edges in a scene which cause U’ < Uj in an otherwise stable local distribution

with a single change in underlying mean. The effect was explicitly determined in Section 3.1.4 to

170



8.2. Estimating the Distribution Shape CFAR PERFORMANCE LIMITS IN LITTORAL CLUTTER

0 0
o | -05 amaece
_10 L
5 5 -1
-15}
1.5}
-20+ —=— U_=Pd Crit
" . U, =PlaCrit |
20 -8 -6 vo -4 -2 0 -1 -09 -%8 -07 -0

Figure 8.3: The critical values of estimated U for reduced Pfa and increased Target SNR are

linear in U

cause a change in U whose expected value is

sP
= ln—m 8.8
(Uar) =In pre—— (8.8)

where a step of magnitude s is present over a proportion p of the scene.

Knowing the required accuracy bounds for U derived in the previous Section, the above equation
(previously shown in Figure 3.8) can be inverted for particular step sizes and proportions that
cause the Pd bound to be reached . Figure 8.4 shows that a 5dB step over a significant fraction
of exponential clutter causes a target loss of 3dB (due to erroneously determining U’ ~ —0.72,
V ~ 3.6) ‘

Whilst intensity edges can only cause Uy to be overestimated producing a target loss from the Pd
bound, edges arising from a change in distribution shape are dependent on the direction of change
and so both the Pd and Pfa bound can be met. Section 3.1.4 showed the expected change in U to
be

(Uav) =pUr - Uo) (8.9)

where a step of distribution shape Uz is present over a proportion p of the scene that is of under-
lying distribution Up.

Again this can be inverted to determine when the Pd and Pfa bounds are reached and plotted
in Figure 8.5 which shows that in estimating the distribution of very spiky clutter a corrupting
exponential edge is required over more than half the scan to cause U to be underestimated enough
to reach the Pfa bound. Operating a K estimator in exponential clutter shows that a corrupting
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Figure 8.4: The required intensity and extent of a step to cause a 3dB loss in detection for varying
U

spiky edge is required to be Ur < —0.85 (v < 2) over about half the scan to cause a critical Pd
loss.

It can be concluded that estimating the distribution shape through U is relatively robust to typical
distribution edges encountered but is fairly sensitive to intensity edges that can only cause the
Pd bound to be reached. The Pfa bound is largely due to the finite number of samples available
causing excessive variance in the estimate of U.

The effect of an edge showing a simultaneous change in both intensity and distribution can be
calculated similarly but this has not been explicitly plotted since the parameter range is difficult to

show. The necessary inversion is the combined effect of both Ua 1 and Uay to give

(Uarav) = log p +p(Ur — Vo) (8.10)

-p+1
which gives the expected change in the measured U’ from an underlying homogenous distribution
of shape Uj 'subject to a simultaneous edge over a proportion p which consists of a distribution Ur
of relative scale s. If Ur < Uj the combined effect is greater than an intensity change alone; if
Ur > Uy the effect is lessened. The overall effect is dependent upon the nature of the changing

environment.

172



8.2. Estimating the Distribution Shape CFAR PERFORMANCE LIMITS IN LITTORAL CLUTTER

Critical Distribution Edgs to Cause Pfa Bound Critical Distribution Edge to Causa Pd Bound
0 — E:% ]
i —————————| — 0§ |
1 /,;::" o7l
-2 / -08
y -09
-3t / 7~ -1 |
~ , —_— 15
3 | —]
-4 —-2 |
i J /
@ .5 ] / 1
g il / /
-7 /
# gy 7
1 -8t/ / /
| /
-1.8 -9 f
. 1l / /
) 02 0.4 06 08 1 =% 02 04 0.6 08 1
Proportion of Scan Proportion of Scan

Figure 8.5: A contaminating edge of distribution Uz within the sample can cause a critical Pfa
and Pd bound dependent upon Up

The simple effect of a global modulation upon the local distribution was also determined in Section
3.1.4. An underlying homogenous distribution of shape Up modulated by a global distribution U,

(which may be correlated over a number of samples p) will give a bias to measured U’ of

(Unp) =T, (8.11)
if the expectation is carried out over a number of samples IV > p. The operational bounds can be
easily calculated from previously determined Figure 8.2.

8.2.2 Operating Implications from Shape Estimation

The derivations covered in the previous Section define rules for operating in potentially spiky

clutter. To summarise:

o Required threshold, and thus absolute target detectability, is a function of the distribution
shape.

o A desired Pfa of 1075 is required, the final processor can withstand 10 before being over-
loaded.

o The shape estimator must not cause an additional loss of greater than 3dB in target detect-
ability.

Which shows:
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e Assuming exponential clutter (U’ = —7), an ideal exponential processor can withstand

homogenous Uy = —0.62 (v 2 12.5) without excessive false alarms.

e Assuming K distributed clutter (U’ = U), an ideal U estimator is susceptible in exponential
clutter with intensity edges greater than about 5dB intensity over a significant proportion
of the scan. This causes the estimator to overestimate spikiness as U < —0.72 (v < 3.6)

causing a Pd loss in homogenous exponential clutter.

e Assuming K distributed clutter (U’ = U), an ideal U estimator is susceptible in spiky
clutter with a contaminating exponential edge over more than half the scan. This causes
the estimator to underestimate the spikiness causing excessive false alarms in homogenous

spiky clutter.

e Assuming K distributed clutter (U’ = U), an ideal U estimator is susceptible in exponential
clutter when, for example, the contaminating edge has distribution Ur < —0.85 (v < 2)
over more than half the scan or Ur < —2 (v < 0.5) over 10% of the scan. This causes the
estimator to overestimate spikiness causing excessive Pd loss in homogenous exponential

clutter.

The numerical values are obviously a function of the goal Pfa and the bounds set for robustness,
however due to the inherent uncertainty in estimating the statistics and allowing for the presence
of edges the rule will always be encountered that describes when to operate detectors tailored for
spiky clutter. A decision has to be made that balances the increased false alarm rate with lower
target detection.

The type of edges present will be dependent upon the environment. Their major effect is Pd loss
from intensity edges, these cannot contribute to Pfa loss. Pfa loss can only occur in the unlikely
case of a distribution edge occupying more than half the scan.

The primary contribution to Pfa loss is from estimating U from finite sample number and the
probability of this occurring is shown in Figure 8.6 which additionally shows that the probability of
Pd loss is insignificant in comparison. If Uy ~ —0.7 and an estimate U’ is made from 256 samples
there is about a 10% probability of suffering Pfa loss on subsequent processing in homogenous Up
based on this figure.

For comparison, the key result of Figures 8.4 have been repeated for goal Pfa of 1072, 103 and
10~4 in Figures 8.7 to 8.9. This indicates that if steps of order 10dB are expected in the data then a
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Figure 8.6: The probability of critical Pfa varies with U and number of samples NN, probability
of critical Pd is negligible in comparison

goal Pfa of 10~2 is more realistic without a form of simultaneous edge detection before any target
detection algorithm based on spiky clutter occurs.

8.3 Summary
From this Chapter conclusions are:

e The region most sensitive to operating conditions is the transitional stage where clutter is
expected to be spiky and one must operate an accurate estimator U’, but where the true
distribution Uy is unknown due to finite sample numbers - the primary risk is Pfa loss.

e The number of samples observed must be maximised, but in the process the statistics could

change. Small changes in the local mean intensity risk Pd loss.

e The optimum estimator with regard to minimising Pd and Pfa loss is one which repeatedly

samples the statistics until a change occurs.

The results demonstrate that a step as small as 5dB can have a dramatic effect in mildly spiky data
and so simultaneous edge detection must be performed in littoral regions before operating target
detection based on a determined background shape parameter otherwise a critical Pd loss of 3dB
will result.

Further decisions must be made based on the resultant local stationarity of the distribution, since a

change in the intensity could be an inherent modulation of the statistics as in the compound formu-
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Figure 8.7: Required step to cause a 3dB loss in detection; goal Pfa= 10~2
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Figure 8.8: Required step to cause a 3dB loss in detection; goal Pfa= 103
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Figure 8.9: Required step to cause a 3dB loss in detection; goal Pfa= 10—*

lation of the K distribution. There is still a requirement to know the extent of the local stationarity,
as this would presumably define a suitable fixed CFAR window to use in target detection.
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Chapter 9

Final Conclusions and Further Work

9.1 Summary

This thesis was begun with the aim of analysing a large amount of sea clutter taken in varying
conditions to determine the best way of filtering the data for detection of slow moving targets. As
with all experiments, some problems are expected with the data and this reduced the number of
acceptable files considerably so that a large comparative study was not feasible.

It is hoped that the analysis has shown the data to vary considerably over typical detection times.
Throughout this thesis emphasis has been placed on the need to account for this nonstationary
behaviour. Commonly applied probability distributions may apply to radars that observe large
range cells where so many scattering events are occurring that it can be viewed as a continuous
distribution; this assumption breaks down at the high resolution of the MBPR as it is in a position
to observe the individual scattering events. Whilst the compound formulation of the K distribution
gives a way of modelling the underlying swell, any detection scheme relying on explicit knowledge
of such a continuous distribution will not be applicable at this high resolution.

One contribution of this thesis is that the spatial extent of system noise has not been recognised
before, often about a third of a high resolution scene was pure system noise and thus one could
apply standard detection techniques if this area could be detected. A variable threshold multiplier
is suggested if standard CFAR is used, but some form of sequential edge detector is required for
this to be feasible since the large 20dB steps due to sea clutter easily pollute a fixed window

scheme. A method of calculating the distribution of K distributed clutter plus system noise was
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proposed for calculating such thresholds.

Viewing the scene as a finite collection of events means that the traditional method of intensity
thresholding based upon the local mean may not be feasible and additional criteria may be better
at distinguishing a target from the background. Based upon a wavelet analysis, measurement of the
scattering event lifetimes was performed to give a simple physical test statistic - the persistence.
This is far from a final solution, it primarily gave a way of handling a coherent signal that can
not be viewed as stationary over the order of the look time. Critically the wavelet based detector
was complementary to that based upon intensity alone which, in conjunction with the processed
scenes, suggested that a disturbance due to the target was detected.

If a large enough rangecell is used so that the returns are approximated by a K distribution, the
littoral environment presents a particular problem in estimating the shape parameter where a land
edge is present in the data. The performance limits of this were explicitly calculated and demon-
strate the need for care when assessing a region such that edge detectors should always be em-
ployed in conjunction with shape estimators.

Two techniques were proposed to handle nonstationary behaviour in range resolution and Doppler
mode, and they have necessarily been tested on a small amount of acceptable data. This thesis
demonstrates the difficulty in analysing sea clutter when the environment has such a strong impact
upon the observed statistics. For this reason it is sincerely hoped that a large amount of experi-
mental data is released into the community so that hypothesised detection schemes can be assessed

for robustness in achieving their claimed performance in fully specified statistics.

9.2 Further Work

It is suggested that the persistence algorithm is tested on many more real targets to determine if
the performance is always complementary to intensity thresholding. A better time-varying target
model could be adopted to describe the statistics and thus obtain applicable performance curves.

Due to the expected presence of edges in littoral range swaths, an edge detector must be operated
in parallel with any shape estimator and thus a scheme could be derived that balances the risk of an
edge being present with the necessity of using more range samples to improve statistical accuracy.
To maximise accurate sample population used, suggested further research is to formulate a fully

sequential detection scheme which can adapt on a pointwise basis to the environment without
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9.3. Endnote FINAL CONCLUSIONS AND FURTHER WORK

the notion of a sample window. This would be ideally suited to the MFR since a decision can
be declared at any moment with an associated risk balanced by a known cost of taking another
sample to decide. This is a fruitful area because it links the notion of radar load and scheduling
directly with the detection schemes. If multiple airborne targets are present then it is vital to assess
potential naval targets faster than normal.

For the high resolution scenes, if 1% of the scene is dominated by ‘events’ which persist of the
order of seconds but are difficult to characterise in RCS, then the Pfa will be discontinuous at the
1% level. If an event based analysis is used rather than a continuous spectrum then time varying
properties of the events may provide better discrimination and the CWT method was presented as
a first attempt. The test statistic (persistence) is a physical time and so it may turn out to be more
stable than intensity based statistics. Further analysis of high quality (target free) data is required

to determine this as the analysis has been based on only one real target scene.

9.3 Endnote

As a final note I believe that this work has achieved my personal objective of ‘exploring’ a subject.
Far from my expectation that my view of science would narrow - I have been exposed to a much
greater breadth of work than my degree studies and this thesis represents a small fraction of what

I have learned since joining UCL.
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Appendix A

An Appropriate Use for the SED

The original need of the SED was to evaluate whether the returns could be considered locally
exponential but without specifying any a priori knowledge about the correlation or an analysis
window, this was an attempt to process the compound formulation of the statistics. Originally it
was hoped that targets could be identified simply by being short extent steps in the local mean. It
was concluded that the flotsam present upon the waves causes highly variable returns within the
wave region that are locally uncorrelated and spikier than exponential which gave too many false
alarms.

The system noise present in the scenes was however, accurately segmented which leads to a pro-

posed Synthetic Aperture Sonar (SAS) target detection method.

A.1 Brief Outline of SAS

Obviously the primary difference is that acoustic waves are now used to image the scene. Synthetic
Aperture processing, commonly applied in radar, gives improved azimuth resolution by utilising
the motion of the sound emitter (hydrophone) as it passes a stationary target and coherently recon-
structing the effect of a much larger aperture.

The particular SAS configuration was rail mounted to give accurate motion reconstruction and an
array of 32 hydrophones were used with a range-Doppler imaging algorithm to obtain the image
in Figure A.1 of 2 targets present upon the sea bed. The exact specifications of the SAS cannot be
quoted, but the resolution is of the order of centimetres such that the range and azimuth extent of

the image is about 10m in extent. The image is courtesy of DERA Bincleaves.
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A.2. The SED Applied to Detect Shadows AN APPROPRIATE USE FOR THE SED

SED of SAS Sonar Image with 2 Targets

400 600 800
Range about 70m — 80m

Figure A.1: Synthetic Aperture Sonar scene with 2 targets present; arbitrary dB intensity

A.2 The SED Applied to Detect Shadows

Figure A.1 shows that apart from the slowly modulating seabed texture the targets show as bright
points, but crucially they cast large shadows behind them. The shadows are due to the nature of
the targets, such that sound does not propagate behind them. The SED should be able to detect the
regions if operated horizontally. '

The initial detection procedure would be to use some sort of threshold in intensity to detect the
bright targets, the SED however is applied to detect long regions at the system noise level. A
suitable comparison is to threshold so that no false alarms are produced in the azimuth lines where
no target is present. This is illustrated in Figure A.2 which clearly shows that processing the
scene in both ways can detect the targets. The SED method produces a much better detection rate,
especially for the lower target which shows up so clearly that it is complementary to simple high
intensity thresholding.

This is believed to be a novel implementation of SAS target detection and the length of the shadows
may give information about the height of the object.
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A.2. The SED Applied to Detect Shadows AN APPROPRIATE USE FOR THE SED

Fixed high threshold for no false alarms

S w N -
o o o o
o o (=} o

N
o
(=}

Azimuth, about 10m in extent

600

200 400 600 800 1000

Ranae about 70m — 80m
SED thresholded shadow regions for no false alarms

-
o
o

N
o
(=}

w
o
o

|

o
o
o

Azimuth, about 10m in extent

600

200 400 600 800 1000
Ranae about 70m — 80m

Figure A.2: The shadows of a target are detected more efficiently than the target itself using the
SED
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Appendix B

Mathematical Annex

B.1 Nonlinearity in the Normalised Log Estimate of v

Lombardo and Oliver (1994) show that the first order expansion is insufficient to predict the U
estimator’s bias and variance and that a second order correction is only acceptable for v < 1.
Importantly they identify the nonlinearity in the inversion of Equation 3.15 as causing the predicted
error to deviate from simulation and suggest an improved texture measure of ¢ = 1/v which tends
to a linear dependence for large v. Whilst individual assessments of texture are unaffected, the
average bias error is reduced significantly and follows the theoretical prediction closely. The
improved texture measure with associated bias and error is achieved by substitution of ¢ and the

expectation moments into Equation 3.15 - 3.17 (Lombardo and Oliver 1994).

U = lo/g-(\I) —logl =¢© (t_l) +log(t) — v (B.1)
(At) 1+2¢

~ B.2

t om (1 _ w(l)tgt-lz) ( )

(o) () + % -

~ (B.3)
t2 (1) t-1) 2
n (1 _¢ E )

Simulation results using 10* trials based on 0.1 < v < 10 are presented for various sample sizes.
Figure B.1 shows the rms error in the estimator with the predicted value overlaid using Equation
3.17. Figure B.2 shows the differing behaviour of the bias for » < 1 and v > 1, with the predicted
value overlaid using Equation 3.16.

An inability to invert some values of the estimator causes spurious results. For large values of v
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Figure B. 1: RMS error in estimation of v from U (Normalised Log Estimator)
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Figure B.2: Bias error in estimation of » from U (Normalised Log Estimator)
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B.2. Texture Estimate with Resistance to Additive Thermal Noise MATHEMATICAL ANNEX
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Figure B.3: Whilst V, may be resistant to thermal noise, the sample distribution is not Gaussian
-unlike U

the rms error is overestimated, reducing the sample population has the same effect. A gradient

sign-change is seen in the bias indicating where the effect occurs.

B.2 Texture Estimate with Resistance to Additive Thermal Noise

Lombardo, Oliver and Tough (Lombardo et al. 1995) suggest that whilst the normalised log estim-
ate U is an accurate estimator in pure K distributed clutter, it is particularly sensitive to additive
thermal noise. To completely characterise the distribution of K plus noise they introduce the
concept of a ‘set of sufficient statistics’ - mean, normalised log and intensity contrast. They pro-
pose a modified estimator, the amplitude contrast V;, and show it has slightly less accuracy than

U but has improved resistance to noise.

V,= (\(/%2 =1 (B.4)

Figure B.3 shows the distribution for 256 samples at v = 0.1 has a significant deviation from

normal in the sample distribution of V, in contrast to U. The text of Section 3.1.5 justifies that U

is still the preferred measure.

B.3 Chaos

Section 3.4.1 briefly introduced chaos. This annex discusses some of the concepts applied in the
chaotic analysis of sea clutter. Many of the definitions are taken from Williams (1997).
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B.3. Chaos MATHEMATICAL ANNEX

B.3.1 Terminology

Extending to two or more dimensions requires the use of phase space to plot each independent fea-
ture recorded. Pseudo phase space is for representing a single feature under different conditions,
for example lag space plots x; vs X;+; where ¢ represents the lag time. Commonly, embedding
dimension refers to the number of lags compared - for time prediction this is normally the number
of points required before making a prediction.

An attractor is the locus of stability in a system’s phase space. As shown in Figure 3.17 though
any small deviation off this attractor may cause the system to flip onto another part of the attractor.
The basin of attraction refers to the volume of phase space in which the attractor has an effect
on the system, this leads to trajectories along which the system moves (asymptotically) onto the
attractor. Multiple attractors can exist with overlapping basins causing complex fluid-like flow of
the system within phase space.

Topology plays a major role in defining attractor shapes, including:

e point attractor: zero dimensions.

e periodic attractor or limit cycle: two or more values that recur in order occupying 2 dimen-

sions in phase space.

e torus: combination of limit cycles. This can be further subdivided into periodic whereby the

trajectories upon the torus exactly repeat themselves, or slightly mismatch as quasi-periodic.
The definitions of chaos are numerous, including:

e Chaos results from a deterministic process.

It happens only in non linear systems.

It can usually pass all tests for randomness.

The range of variables have finite bounds restricting the attractor volume.

Chaotic behaviour is hyper-sensitive to (but has no memory of) the initial conditions.

Short term prediction is possible.

Fourier spectrum is broadband but can have significant peaks.
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B.3.2 Trajectories and Simulation

Trajectories in non-chaotic and chaotic systems for non-linear dissipative systems are fixed for
a particular control parameter (k in Equation 3.73). In the non-chaotic regime the trajectories
converge or remain equidistant. In the chaotic domain these trajectories diverge. The particular
trajectory a system takes can be determined by any vanishingly small finite difference in phase
space position, this causes problems in the computer simulation of chaos due to the inherent finite
precision of floating point calculations and cannot be avoided by increasing this computational

precision.

B.3.3 Order Within Chaos

Chaos consists of various regimes of order masked by random-like behaviour. Typical forms of

order within chaos are:
e Windows: Regions of periodicity.

Routes: Period doubling at the onset of chaos.

Chaotic or Strange Attractor: complex phase space surface to which the trajectory is asymp-

totic in time.

Zones of popularity: Regions of high probability density upon the chaotic attractor.

Fractal structure: the chaotic attractor is a fractal.

Self organisation: regular patterns emerging in space, time or function.

B.3.4 Reconstruction of Phase Space

This is generally only graphically possible in systems embedded in 3 or less dimensions. When
systems of higher embedding dimension are compacted into lower dimensionality pseudo-phase
space they produce false nearest neighbours. Upon increasing the embedding dimension they will
abruptly move apart when the correct embedding dimension is used. This can be seen by an ana-
logy of a cubic crystal viewed slightly offset in 2D, sites appear closer to each other than one would
intuitively expect from the uniform planar positions. Viewing the crystal in 3D immediately re-

veals the orderly structure. A mathematical way of determining the correct embedding dimension
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is to maximise the mean square distance between points in phase space. This is the essence of the
‘singular system analysis’, ‘singular value decomposition’, ‘Karhunen-Loeve decomposition’ etc.
methods. If an attractor exists then it should appear from the probability density distribution in the
phase space reconstruction, however at erroneously low embedding dimensions spurious attractor
shapes can be revealed. With any reconstruction it is important to provide a control dataset formed
from ‘surrogate data’, this is non-deterministic artificially generated data that mimics certain fea-
tures of the measured time series. Computer generated randomness is deterministic and extreme

care must be exercised when generating surrogate data.

B.3.5 Dimensions

Dimensions are central to chaos theory. Authors seem to take various terms to mean different

things; based on definitions in Williams(1997):

e Euclidean: the number of co-ordinates of a body needed to describe its shape.

e Topological: 1+euclidean dimension of simplest shape that can subdivide the body (usually

equal to the euclidean dimension).
e Variable: the degrees of freedom of a system.
e N-d vector: above as applied to pseudo-phase space (i.e. the number of lags used).
e Embedding: the number of lagged values used for the purpose of reconstruction.

e Scaling exponent: not necessarily an integer, used to describe many properties of a system
that conform to a ‘simple’ power law e.g. the Fractal dimension, Information, Correlation

and Lyapunov.
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Appendix C

Additional Statistical Detectors

In Chapter 5 Neyman Pearson detection schemes were used as Constant False Alarm Rate (CFAR)

processors but several other methods are available.

C.1 Wald Tests

By extension of the Neyman-Pearson formulation the observation interval can be allowed to vary

given the following assets:

e A realisation z = {1.,,n — 00} from the radar output.

e Hypothesis Hy indicative of no target, represented by PDF fo

versus hypothesis H; indicative of target present, represented by PDF f7.

e A measure of performance based on Py and 7,.
In conjunction with a stopping rule A, (z) and a decision rule 6,(x1.n)

An(z) = Pr{decide to stop | z1., observed} (C.1)
dn(z") = Pr{Hdecided | stopped} (C2)
a sequential detection scheme results. The explicit inclusion of P implies a lower bound on the
number of samples required for decision, an upper bound is also set dependent on radar load. The

basic Wald CFAR can be extended to detect a change in distribution as well as deciding upon the
class of distribution, and is based a scheme due to Wald (Wald 1947):
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C.1. Wald Tests ADDITIONAL STATISTICAL DETECTORS

Select two thresholds Ag and A such that Ag < A;. Start observingdata z;,z9,... ,Z,

sequentially and calculate a measure T based upon the likelihood, stop at the first n

such that
Either T (z1.,) = lo 2 Exi:; < Xo (C.3)
fl( 1:n)
Or T (xy1.n) = > C.
r T (1) & fo (@1m) = 5

where the subscripts on A refer to the chosen hypothesis H.

The logarithm in Equations C.3 and C.4 allow a sequential updating step

fl (xnlxlz'n.—l)

T(z1n) =T (z1.n-1) + 10 C.S5
(z1n) (z1n-1) +log fo(znl|z1:0-1) €
As detailed in Kazakos and Kazakos (1990) the A threshold can be calculated as
1-p
X > .
¢ = Og(l—Pfa) (€6)
M < log ( b ) )
Py,

where 3 is a power level related to Py. This provides an interesting comparison to NP where only
Py, is specified. Obviously increasing Py will necessitate longer observation before deciding upon
H. Additionally in sequential detection theory the probability of false alarm defines the average
run length (ARL or Tp4), giving the expected number of observations before a false alarm is
observed.

The difficulty lies in determining 7" easily since it is not independent of z;.,_1. Complications

arise from:

e the class of the background PDF f; may be complicated.

fo may be known only up to a nuisance parameter such as scale or shape.

the test may be sub-optimal when H is estimated from the first observations.

T may not be invariant to the parameters defining H.

The target may only be present for a limited or variable number of samples.
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C.2. Change Point Tests ADDITIONAL STATISTICAL DETECTORS

C.2 Change Point Tests

As in Wald, a variable observation interval is available. The hypotheses are modified to allow a

change point in the statistics, given the following assets:

e A realisation z = {z.,,n — 00} from the radar output.

¢ Hypothesis Hy indicative of no target, represented by PDF fj

versus hypothesis H indicative of target present from time k onwards, represented by PDF

fo(z1:k-1) and fi (Zg.n) 1 < k < ).

o A measure of performance based on Py , 7, and response time for detection of change.

Observations are assumed to be taken sequentially =1, z2, ... , z, with the requirement of detect-
ing a change in distribution at a point k. Page (1955) initially proposed a form based on maximum
likelihood termed the CUSUM procedure, an alternate form based on a Bayesian argument was
presented by Shiryayev (1963) and Roberts (1966). Both suggest computing a sum of likelihood
ratios based on the measure Ps, = fo(z1.n) and Py = fo (z1:6-1) f1 (Tk:n) with completely

specified fp and f; such that

o P
Max Likelihood : L, = rilclf;)f {é (xl;n)} (C.8)
n
) dPy
Bayesian : R, = g—l 2P (z1:0) (C.9)

and asserting a change in distribution when L or R first exceed a threshold level A.

Difficulties highlighted in the previous Section can be partially overcome by the use of scale
invariant statistics (SIS) that can identify a change point in the mean of a known class of PDFs
without having complete knowledge of the initial mean. Assuming a known class of PDF fj
one can form a statistic based upon the likelihood of there being a transition from the pre-change
distribution fg (nz) to post-change distribution f; = fo (naz) with unknown nuisance parameter
n > 0 and specified @ # 1. The invariance refers to the statistic being independent of the unknown
parameter 7).

The Gamma distribution is of particular interest, recall

fGamma () =71 (B)zPle™® (C.10)
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C.3. Target Presence Tests ADDITIONAL STATISTICAL DETECTORS

with shape parameter (3 and scale 1. Gordon and Pollak (1997) give a method of determining R,
with an associated ARL using a scale invariant Shiryayev-Roberts procedure. If fy and f; are
known to be Gamma distributed with known g, differing in scale with both pre and post-change

values unknown and relative scale change a specified, then

n
R, = ZkZIA;; (C.11)
n —nf
Ap = PR et - [[ T (C.12)
i=k
n—1
j=1 Tj
where 77 = Oand T, = n>1 (C.13)

Z?:l z;’
Change point tests could be useful if the relative magnitude of change to be detected is known, but

this is often not the case.

C.3 Target Presence Tests

The above can be further modified to allow the detection of not only a target’s appearance but its
anticipated subsequent disappearance. A variable observation interval is available. Introducing an

additional hypothesis to allow two change points in the statistics, given the following assets:

e A realisation z = {x1.,,n — oo} from the radar output.

e Hypothesis Hy indicative of no target, represented by PDF fo

versus hypothesis H; indicative of target present from time k onwards, represented by PDF

fo(z1:k-1) and fi (zen) 1 < k <)

versus Ho indicative of target present from time k until [, represented by fo(zi:x-1) »

fl (-'rk:l) and fO ($l+1:n) 1< k<l < n)

e A measure of performance based on Py, 75, and response time for detection of change.

This test has been analysed by Tartakovsky et al. (1999) within a CUSUM framework applied to
Gaussian noise.
The added complication seems unnecessary as it should be possible to achieve equivalent results by

simultaneously running two change point tests to detect both increase and decrease in a parameter.
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C.3. Target Presence Tests ADDITIONAL STATISTICAL DETECTORS

This would have the added benefit of allowing simuitaneous multiple targets to be recognised such

as

e Hypothesis Hj indicative of target present from time k onwards, further target present from

[ onwards represented by fo(Z1.k—1) , f1 (zk) and fo (Zi41:) (1 < k <1 < n).

A further problem with this type of test is the event of not detecting the targets disappearance. This
can cause the test to ‘lock’ in the target present state unless explicit knowledge of the expected

target lifetime is available.
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