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Abstract

This thesis concerns the analysis and processing of sea clutter from a Multiband Pulsed Radar -

a land based research system operated by the British Defence Evaluation and Research Agency.

This radar serves as a model for a class of Multi Function Radars (MFR) that offer extensive

computer controlled adaptive operation.

A fast Sequential Edge Detector (SED) is formulated which, accounting for locally exponential

speckle, allows the spatial inhomogeneity within a scene to be segmented. This simultaneously

identifies high intensity areas and the noise dominated shadowed regions of the scene using an

adaptively sized analysis window. The high resolution data is thus shown to contain discrete

scatterers which exist in addition to the compound modulation from the wave surface.

The discrete component means the measured statistics cannot be considered homogenous or sta-

tionary. This is crucial for high resolution MFR as a priori information can no longer be relied

upon when viewing a scene for the first time in order to make a detection decision.

Considering the returns to be discrete in nature leads to a potential Doppler detection scheme op-

erable at low velocities within the clutter spectrum. A physically motivated test statistic, termed

persistence, is demonstrated based upon the lifetime of scattering events determined via the Con-

tinuous Wavelet Transform.

When operated in coastal regions at low resolution, strong returns from the land-sea interface

(edges) are expected which will seriously degrade the performance of radar detection models

tuned to homogenous scenes. Explicit operational bounds are determined for the strength of these

edges which show that simultaneous operation of an edge detector is required when assessing

compound statistics such as the K-distribution using typical texture estimators.

Additionally a method for accurately determining the N-sum PDF of K-distributed statistics within

noise is constructed using a numerical inverse Laplace transform. The SED is also applied to

Synthetic Aperture Sonar data to detect the large shadows cast by targets rather than their point

intensity.
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Chapter 1

Introduction

1.1 History

Radar (Radio Detection And Ranging) equipment transmits radio waves and receives the backs-

cattered radiation to allow detection and analysis of distant targets. In 1886 Hertz demonstrated

that radio waves are reflected from both metallic and dielectric objects. The field of naval radar

could be said to have begun in 1939 when prototype equipment was fitted to the battleship Rodney

and the cruiser Sheffield; however as early as 1904 a patent was filed by the German engineer

Christian HUlsmeyer for detection of radio waves reflected from ships.

In 1922 Marconi made a speech urging the use of short radio waves for detection of objects at

the Institute of Radio Engineers (now the Institute of Electrical and Electronics Engineers) whilst

in the same year A.H. Taylor and L.C. Young experimentally demonstrated detection of wooden

ships at the Naval Research Laboratory using Continuous Waveform (CW) radar. In 1930 L.A.

Hyland at NRL discovered that a moving aircraft could be detected due to 'wave-interference'

between the transmit and receive signals.

The limitation of CW radar was that the range of the reflecting target is difficult to determine,

this was solved by transmitting radar signals as a series of short pulses. Successful demonstration

of a pulse radar was achieved first in Britain by Sir Robert Watson-Watt in June 1935 which by

September that year could detect bomber aircraft at ranges greater than 40 miles. The onset of the

Second World War led to an urgency to develop methods of detecting low-flying aircraft and small

surface targets. Accuracy demands that the wavelength employed is as short as possible to enable
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1.2. Previous Work 	 INTRODUCTION

a concentrated beam to remain close to the sea surface, when the wavelength reached the physical

dimensions of the conventional valves then used, progress in radar was temporarily halted.

The work of Randall and Boot at Birmingham University in 1940 led to the development of the

cavity magnetron which operated with a power output 100 times that previously achievable at a

wavelength of 10cm. By 1943 the detection of U-boat periscopes was a reality which in combat

could prove effective at a range of 6 miles (Wylie 1978). In the radar field counter-measures

were established that adopted chaff, jamming and stealth so as to mask a target behind noise and

because of this signal processing has evolved into an esoteric mixture of tools for the radar designer

to employ.

1.2 Previous Work

Detection of 'small' targets close to the sea surface is complicated by background environmental

noise or 'sea clutter'. Gaussian statistics naturally arise from the central limit theorem to give an

expected Rayleigh amplitude and exponential intensity clutter distribution - observed as 'speckle'

in coherent imaging systems. The statistics of radar backscatter from the ocean surface is known

to deviate significantly from Gaussian, prompting strong debate in the literature upon the form

that deviation takes. An obvious problem from an experimental point of view is the range of

environmental parameters that may have an effect, countered by the theoretical desire to form

physical theories that lead to optimum target detection schemes. This Section gives a brief history

of this field, and is by no means exhaustive.

Intensity Distribution of Sea Clutter

The early history of sea clutter observation can be found in Long (1983). By the late 1960s a num-

ber of studies had established general dependencies such as an increase in expected signal strength

with increasing grazing angle, increased wind strength, vertical polarisation and in upwind direc-

tions (Skolnik 1981). Ship-borne maritime surveillance radar generally transmits and receives

from the ship's mast and is necessarily operated at a low grazing angle; this in particular has

shown wide variation in reported statistics. A particular problem in target detection is predicting

the probability of high intensity returns from a limited number of samples; many researchers have

reported on the nature of the high intensity tails from sea clutter returns with varying conclusions.
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Trunk and George (1970) showed that a lognormal distribution could approximate the clutter at a

grazing angle of 4•70 in sea state 2-3 when a 200ns pulse was used. Whilst lognormal provided

better fits to some data, it does not reduce to Gaussian statistics and consequently overestimates

the low probability returns in some cases (Skolnik 1981).

Fay et at. (1977) operated an X-band radar at grazing incidence which could transmit or receive

in horizontal or vertical polarisation (HH and VV), using a 70-270 ns pulse, in a wind of 10-15

knots and found the Weibull distribution to be an excellent fit. Both lognormal and Rayleigh were

dismissed. The Weibull distribution is a model that can handle the long low probability tails of

sea clutter and also includes the exponential distribution as a special case. The model is versatile

enough to fit both long tailed data and noise dominated data which consequently led to wide

application within detection theory; covered by Sekine and Mao (1990)

The Weibull model has no strong physical justification and as early as 1957 high magnitude re-

turns were associated with steep and breaking waves (Katzin 1957); these intermittent returns are

generally termed 'sea spikes'. Using simultaneous video Lewis and Olin (1980) confirmed the

link to breaking waves. They also showed a polarisation dependence that sea spikes occurred less

frequently within horizontally polarised observations - giving greater variance to the distribution

when compared with vertical polarisation.

A composite surface model (Wright 1968) was one of the first attempts to relate the observations

of sea spikes with theory. It suggested that a Bragg backscattering resonance condition was re-

sponsible for the spikes; caused by enhanced backscatter from surface waves with a wavelength

equal to half that of the radar transmission. If Bragg resonance is present, a physically large sea

swell may only give a large backscatter if wind-formed capillary waves are present upon its sur-

face (Skolnik 1981). With the capillary surface waves suitably modulated by the tilting surface, a

complex interdependency upon environment is present which could account for some of the trends

seen in data (Wright 1966).

In the light of the composite surface model, Hansen and Cavaleri (1982) analysed low grazing

angle X band data and found that HH polarised data showed an abrupt deviation from an over-

all Weibull distribution for large intensities, no such effect was present in VV polarisation. Olin

(1982) found that whilst the VV polarised data could be fitted by a single Weibull distribution,

the HH polarisation conformed to a different Weibull shape at low intensities than at high. The

suggestion that a different scattering mechanism was responsible for the extremely high mag-
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nitude returns was further explored by Trizna (1991). Quantifying the dependence upon grazing

angle and wind speed, Trizna suggested the Weibull fit to high backscatter regions was associated

with discrete scatters linked to whitecap coverage; while that fitting low regions was caused by

distributed roughness accounted by the composite scatter model.

Whilst associating individual spikes with surface features can provide some explanation of the

observed backscatter, a typical detection scenario may be based upon observation of such a large

range extent or resolution cell that many spiking events are included. A large enough number of

discrete scatterers is ultimately generalised to a continuous overall backscatter distribution; how-

ever the coherent imaging effects resulting from interference between scatterers (speckle) must

still be considered. This 'compound formulation' has gained significant popularity recently, due

in part to its physical justification.

Jakeman, Pusey and Tough (Jakeman and Pusey 1976, Jakeman and Tough 1981) considered op-

tical scattering from a random media when the population of scatterers fluctuates according to a

negative binomial distribution and showed that this resulted in a K-distribution. The K-distribution

has, in the limit of infinite scatterer population, the exponential distribution as a special case. The

negative binomial distribution arises from consideration of birth-death-(im)migration population

statistics (Jakeman 1980) and is a discretised form of the gamma distribution.

Ward (1981) gave the K-distribution firm experimental justification by operating an airborne X-

band radar, using a 3Ons pulselength with 1.2° beamwidth at a grazing angle of 0.75° observed in

sea state 3. Summing 36 consecutive range samples and utilising frequency agility, the speckle was

averaged and after output to a TV recording was suitably characterised by a gamma distribution.

This was said to be acceptable over sea states 1-5 and varying swell directions. The physical com-

pound model proposed by Ward is that the underlying mean backscatter is slowly varying gamma

distributed - this backscatter is sampled subject to speckle with a correlation time of the order of

lOms. The underlying correlation is particularly useful in modelling clutter; Watts (Watts 1996)

in particular has quantified the performance gain available through knowledge of the correlation

structure.

The gamma distribution also arises from general statistical consideration of a family of infinitely

divisible distributions (Ward et al. 1990) as it is well known to be closed under convolution such

that the sum of N similar gamma variates will itself be gamma distributed. If the mean backscatter

from a (large) low resolution imaged area arises from a summation of several (smaller) high resol-
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ution imaged patches then observation of both resolutions, subject to speckle, will be K distributed

with a shape parameter related to resolution.

Ward, Baker and Watts (1990) using X-band equipment operating at 4m range resolution with

1 .2° azimuth at various range and grazing angles, gave examples where 250ms time sequences are

locally Rayleigh but the mean value was gamma distributed confirming an overall K-distribution.

Analysis of coherent returns demonstrated a fast speckle component at 5-lOms with a slower,

presumably physical, periodic modulation of the order of seconds. It was reported that the distri-

bution of Doppler returns was dependent upon velocity, but that their correlation properties were

similar. The form of range-time images was shown to depend on resolution and look angle and an

empirical K-distribution fit was shown to relate the radar parameters to the distribution shape. A

large number of analysed data sets showed horizontal polarisation was significantly spikier than

vertical. From a moment based analysis the vertical polarisation showed a good fit to the K distri-

bution but the horizontal polarisation also showed some deviation. No significant statistical trend

was established for variations with sea state, wind speed or aspect angle relative to wind although

complex interdependencies were not dismissed.

Any 'diversity' between polarisation channels offers further methods for target discrimination.

Farina et al. (1997) operating an X band radar with 30m range resolution and 0.9° beam width

using data from sea state 3 at 0.645° grazing angle operating in coastal waters of significant wave

height 1 ,42m found that only the vertical polarisation (VV) was fit by a K-distribution and that

even accounting for thermal noise, horizontal (HH) and cross polarised channels (HV or VH where

the received pulse is at a different polarisation to transmit) fell somewhere between K and lognor-

mal.

Whilst two parameter distributions are naturally easier to analyse, thus preferable for establish-

ing environmental relations, a number of higher parameterisations have been suggested. Azzarelli

(1995) suggests a general class of models that have a fluctuating number of non-Gaussian scatter-

ers in the presence of Gaussian noise; resulting in a four parameter distribution that is shown to

fit a wide range of observed data distributions, with the K distribution as a limiting case. Further

suggestions have been the generalised gamma (Anastassopoulos et al. 1999) and the generalised

K, applied to sonar (di Bisceglie et al. 1999).
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Velocity Distribution of Sea Clutter

The surface backscatter often has a spatially wave-like form, with a period linked to that of the

ocean waves causing variation in range and time. This is not always the case, HH polarisation in

particular can show far less periodicity than VV when simultaneously observed (Ward et al. 1990);

however it is reasonable to assume that the observed scatterer motion has a strong dependence

on the physical ocean wave motion. Determination of velocity requires the phase relationship

between transmit and received waveforms and is commonplace for detecting high velocity airborne

targets. The added complexity means that high resolution coherent radars are not common despite

the potential for improved detection of slow moving targets.

A range of velocities is expected from the surface due to the finite (observed) lifetime of scattering

events (Lee et a!. 1995), commonly assessed by a Doppler spectrum. Differences in the spectra

of HH and VV were analysed over 30 years ago (Pidgeon 1968, Valenzuela and Laing 1970),

reporting that HH has a higher spectral peak than VV. Whilst literature is available from large

grazing angle observation (Duncan et al. 1974), Lee and his colleagues (Lee et al. 1995, Lee et al.

1996, Lee et al. 1998) have dominated the research for typical marine surveillance grazing angles.

Lee et al. report that the peak separation of the Doppler spectrum is a result of 'fast scatterers'. The

existence of non-Bragg scattering is postulated as 'super events' where HH backscatter dominates

VV, the number of super events reportedly increases with wind speed (Lee et al. 1996). Lee et al.

(1998) verifies with laboratory wave tank experiments that the fast scatterers are due to breaking-

wave backscatter.

The intensity distribution of individual velocity components of sea clutter is more complex than

that of incoherent intensity measurements. Ward et al. (1990) reported that the low intensity tails

of the Doppler spectrum, an obvious area for target detection, consisted of the spikiest intensity

distribution which is difficult to characterise. The peak of the Doppler spectrum is also reported

to be a function of wind direction with HH consistently having a larger Doppler offset than VV

(Ward et al. 1990).

Posner (1998) utilised a high resolution 0.3m polarimetric radar with a pulse repetition frequency

of 2000Hz at a grazing angle of 0.2°. Individually observed scattering events showed large vari-

ation in magnitude but had a constant velocity over their lifetime, suggesting that relative oscilla-

tions of a few strong scatterers or whitecap formation was responsible. Posner(1998) also reported

large scale wave phenomena travelled at the predicted phase speed of the ocean waves with smaller
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Figure 1.1: In a Multi-Function Radar, surface target detection is a small proportion of the re-

quired tasks, (after Butler, 1998)

scale wave phenomena at the group speed, observed in upwind HH and VV.

1.3 Motivation

The Multiband Pulsed Radar (MBPR) is a land based radar operated by the British Defence Eval-

uation and Research Agency (DERA). Whilst still a research tool, it serves as a model for a class

of Multi Function Radars (MFR) which offer extensive computer controlled adaptive operation;

including:

A phased array antenna can form a beam at a variable resolution and dwell time.

. A number of pulse frequencies and polarisations can be chosen.

• Priority tasks can reduce the available number or frequency of pulses available to a particular

process.

• Processing is achieved using high performance microprocessors.

Figure 1.1 shows the wide range of tasks required of an MFR. It is evident that surface target

detection covers only a small proportion of the radar workload.

To detect targets, normally a deviation is identified in the intensity or velocity statistics due to

the observed target radar returns. Usually a threshold is set from information about the target-free
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environment which requires prior knowledge from analysis of large amounts of data. Returns from

a scene contain clutter - defined as any unwanted backscatter. For sea clutter in particular, a large

amount of effort has been made by researchers to characterise the cause and effect of 'sea spike'

features which cause the clutter returns to deviate from the basic scattering theory with a resultant

loss in efficiency.

This thesis concerns the analysis and processing of sea clutter from the MBPR. It covers the phys-

ical aspects of the radar operation and discusses the mathematical tools necessary to analyse the

clutter statistics. After analysis of real data, various methods of detection are discussed followed

by simulation and use of actual targets in order to test these methods. When operated in coastal re-

gions, strong returns from the land-sea interface are expected which will seriously degrade the per-

formance of radar detection models tuned to homogenous scenes. Whilst this work only presents

results from pure ocean scenes, the presence of discontinuities is considered throughout; although

physical observation was not possible due to the land based radar employed.

1.4 Contributions Made by this Thesis

This work comes to the conclusion that at high resolution the wide variability of sea clutter is

caused by inhomogeneous nonstationary clutter statistics due to the presence of discrete scatterers.

This is crucial for MFR as we can no longer use a priori information to such an extent when

viewing a scene for the first time in order to make a detection decision. Considering the returns

to be discrete in nature leads to a potential Doppler detection scheme operable at low velocities

within the clutter based upon the lifetime of the discrete scattering events.

The following aspects represent an addition to the body of knowledge about charactensation of

radar clutter observed at low grazing angles and the detection problems that arise:

• A simple texture estimate U, already proposed in the literature as the approximate MLE

solution to the K distribution shape estimate, is insufficient to characterise all aspects of

backscatter fluctuation; however it is a useful tool to analyse events as it is Gaussian when

operated at small sample population, within noise and for censored samples. Explicit de-

termination of edge effects upon U allows correction of the determined statistics for in-

homogeneous scenes.

• The potential contribution by Gaussian statistics due to system noise over a significant spa-
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tial proportion of the high resolution images and time proportion of the Doppler spectra is

not appreciated in the literature.

• A Sequential Edge Detector is proposed as a means of simultaneously detecting edges and

targets in many models of clutter. This can additionally identify the shadowed regions in

high resolution data and determine the noise component of time varying Doppler bins.

. Whilst modulation is present within sea clutter as in the compound formulation, discrete

scatterers can be present whose magnitude is not related to the underlying compound distri-

bution.

. The lifetime of the individual discrete scattering events contributing to the Doppler spectrum

can be measured in the Wavelet domain yielding an expected exponential distribution.

• Target detection based on the lifetime of events is shown to be possible which leads to a

scheme suited for relatively long observation times of slow moving targets at clutter velocit-

ies. Validation is performed in real clutter for both real and simulated targets which suggests

the method is complementary to simple Radar Cross Section (RCS) based thresholding.

• Assuming that a low resolution is used so the RCS statistics can be described by a con-

tinuous distribution, explicit determination of the stability and sample size required for op-

erational accuracy within arbitrary K-distributed clutter is performed. This shows that the

region of weakly spiky data is the most susceptible to edges when determining the shape

parameter. Thus concurrent edge detection is shown to be necessary before target detection

is performed when operating in real environments.

• The distribution of an arbitrary sum of K-distributed clutter within noise is shown to be

obtainable via a fast numerical inverse Laplace transform method which is accurate to false

alarm probabilities down to iO.

Additionally, in Appendix A, the Sequential Edge Detector is applied to Synthetic Aperture Sonar

data. This leads to a proposed detection scheme where the shadows arising from targets are detec-

ted rather than the targets themselves. A single scene is tested which shows an apparent improve-

ment in detection rate.
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Chapter 2

Physical Aspects

2.1 The Generalised Radar Model

Before a detailed analysis of the data is presented, the physical aspects of the radar must be ex-

plored. This Section covers properties common to pulsed radar systems where a pulse at radar

frequencies is emitted and its interaction with the environment is assessed from analysis of the

echo.

2.1.1 The Rayleigh Scattering Model

When a radar pulse impinges upon a surface, it is assumed that the reflected pulse is contributed by

N multiple scattering centres, each of which can be viewed as giving an amplitude a with a phase

distributed uniformly 0 < 	 < 2ir. Due to the wave nature of the pulse these add vectorially,

shown in Figure 2.1, such that the resultant signal Z is

Z =	 aexp(j)
	

(2.1)

which can be viewed as a random walk upon the complex plane. The amplitude distribution P (a)

is unknown, however assuming N is large and invoking the Central Limit Theorem means both
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Figure 2.1: Received signal formed by a random walk in the complex plane

the real and imaginary parts of Z will conform to a Gaussian distribution

1	 f_IRe(Z)i2\
P(Re(Z)) = ____ exp

/7r (a2)	 (a) ) , 
—00 <Re (Z) <00	 (2.2)

1	 f_IIm(Z)12\
P(Im(Z)) = ____ exp

/ir (a2)	 (a2)	
) , 

—00 <Tm (Z) <00	 (2.3)

where (a2 ) is the expected mean square amplitude.

Assuming independent components

P(Re(Z) ,Im(Z))	 P(Re(Z)) x P(Im(Z))	 (2.4)

5ReöIm	 x6x8çb

shows the envelope x of the received radar echo ZI is Rayleigh distributed

2x	 / x2
Ppyzejgh (x) = .—yexp (__y) 0 ^ x < 00	 (2.5)

this is seen as multiplicative noise in coherent imaging systems such as radar, and is usually termed

speckle in reference to the grainy appearance of images.

Several assumptions are made in the above argument which may be violated in high resolution

systems:

. The number of scattering centres N is large.

. Scattering centres are such that the phase is spread uniformly.
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• (I is constant and statistically independent from over the imaging time.

The radar pulse is narrow bandwidth such that the physical interaction with respect to chan-

ging frequency is not discontinuous.

2.1.2 The Radar Equation

A simple equation can be derived to give the relationship between the received signal strength and

the radar characteristics. Due to the military origins of radar it is common to talk of a 'target'

irrespective of the type of imaged scene. Making the assumptions (Skolnik 1981):

I. An antenna transmission of beam power Pt reaching range R is achieved.

2. Directionally dependent gain C from a directive transmitting antenna is employed.

3. The target interacts with the beam, re-radiating an amount equivalent to that which would

be seen from a perfectly reflecting cross sectional area a.

4. A proportion of the reflected signal is intercepted dependent upon the receiving antenna's

area Ar at a distance R7 from the target.

Thus the received power Pr can be determined as

Pr	 X C X	 X Ar	 (2.6)

which in the case of a monostatic radar utilising a single antenna for transmit and receive reduces

to

PCaA

r - (4ir)2R4

Since the gain C and the effective area Ar of an antenna are related by

4lTAe	
(2.8)

then the monostatic radar equation can be expressed as

Pr = PtC2aA2	 (2.9)
(4ir) 3 R4

Additionally the surface radar footprint (the area illuminated in range and azimuth) is linearly

proportional to R. When viewing a distributed scene, rather than a point target, this causes an R3

dependence upon range. The radar equation only gives a first approximation to the performance

of the radar due to variation in a, the concern of the next Section.

(2.7)
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2.1.3 Cross Section Fluctuation

The cross section o is accurately termed the Radar Cross Section (RCS) as it is the target cross

section as viewed by the radar. A target detection strategy is usually based upon the determined

statistics of a; measurement difficulties arise from factors including:

. Material properties of the target such as absorption and reflection characteristics varying

with frequency. There are three scattering regions dependent upon wavelength A and target

dimension d (Rees 1990):

- 27rd/A << 1 is the Rayleigh region where a- cx

- 2ird/A -' 1 is the Mie region where the a is oscillatory or erratic

- 2ird/A >> 1 is the optical region where a approaches the optical area of the object

Analysis of complex targets is difficult but analytic results can be determined for simple

shapes such as a sphere (Rheinstein 1968).

• Propagation effects due to the atmosphere consist of(Skolnik 1981):

- Attenuation (Rees 1990):

* A 0.4am dominated by Rayleigh scattering by molecules

* 0.8tm A 15mm dominated by molecular absorption

* A lOm dominated by ionosphere

- Refraction due to atmospheric density gradients

Refraction is largely responsible for anomalous propagation due to a phenomenon known

as ducting. This can cause significant interference as antenna sidelobes in elevation are

channeled, potentially giving a second propagation route to the imaged target, however it

can be advantageous in determining the elevation of the imaged scene as explored by Money

et al. (I 997a). Intentional Over The Horizon (0TH) effects can occur from ionospheric

reflection.

• Aspect ratio has a significant effect (Dunn and Howard 1970) since most targets consist of

multiple scattering centres, all of which interact to modulate the RCS between total rein-

forcement or total cancellation dependent upon their relative positions.

34



	

2.1. The Generalised Radar Model
	

PHYSICAL ASPECTS

	
	

Figure 2.2: RCS fluctuation models by Swerling with Ricean for comparison

Whilst not affecting the statistics of RCS, the following can affect the recorded signal:

. The antenna beam shape has a lobed stmcture which causes external targets to be visible

within the central beam.

. Receiver noise due to Johnson noise within the circuits (Johnson 1928). This gives an

available thermal noise power P., in terms of Boltzniann's constant k, ohmic component

temperature T and bandwidth Lf

Pj = kTLf	 (2.10)

As received power is proportional to RCS (Equation 2.7), the instantaneous recorded intensity is

used to record variation in RCS over time; discussed next.

2.1.4 Fading Models

If the imaged scene is stationaiy with respect to the radar then the received signal will be constant.

In a typical scene the effects of the previous Section will have an unknown overall effect and so

several case models have been proposed by Swerling (1960) to account for the RCS variation seen

over time. Taken literally from Skolnik (1981) the four types of fading are:

1. The echo pulses receivedfivm a target on any one scan are of constant amplitude thmughout

the entire scan but are independent (uncorrelated) ftvm scan to scan. This assumption

ignores the effect of the antenna beam shape on the echo amplitude. An echo fluctuation of
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this type will be referred to as scan-to-scan fluctuation. The probability density function for

the cross section a is given by the density function

P(a)=_—exP(_---) , a>O	 (2.11)
Uav	 cray

where 0av is the average cross section over all target fluctuations.

2. The probability density function for the target cross section is also given by Equation 2.1]

hut the fluctuations are more rapid than in case I and are taken to be independent from

pulse to pulse instead offrom scan to scan.

3. In this case, the fluctuation is assumed to be independent from scan to scan as in case 1, but

the probability density function is given by

4cr	 / 2cr"
P(a)=---exP(\___) a>O	 (2.12)

av

4. The fluctuation is pulse to pulse according to Equation 2.12.

In addition a notional 'Case 0' can be defined to represent a non-fluctuating signal of constant

strength. Cases 1 and 2 consider the target as a collection of many independent scatterers of

approximately equal echoing areas and is just the power equivalent of Equation 2.5. Case 3 and

4 are said to represent one large target with other small reflectors (Skolnik 1981); however this

assumption leads to a Ricean distribution (Jao and Elbaum 1978)

P(a)= expl—s----(1+s) 10 2	 s(1+s)
1+s	 r	 a	 -f--	

, a>O	 (2.13)
cray	 [	 cray	 ] ( \/aa

where s is the ratio of dominant scatterer RCS to the total of the small scatterers and jo is the

modified Bessel function of zero order. Equations 2.11 to 2.13 are shown in Figure 2.2.

A fixed length scan time is not applicable to MFR - only in rotating systems are the durations

clearly defined. The observed cross section fluctuations from clutter rarely correspond to one of

the above physical models and so a number of empirical solutions have been put forward, dealt

with in Section 3.1. The motivation for using the above is that it provides standard target models

with which to compare detection strategies.

The fading models make no attempt to characterise the second order statistics - the variation in

the instantaneous statistics with time; but allow the two extremes of pulse and scan correlation. If

a single target is being imaged, neglecting the effects mentioned in Section 2.1.3, it is reasonable
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Table 2.1: Specifications of the DERA MPR radar

Transmit Frequency - ft

Respective Beamwidth

Transmit Pulse Width - r

Polarisation

Pulse Repetition Frequency - f,

2.9-3.1 GHz (5), 8-18 GHz (X-K), 33-37 GHz (K0)
1 . 5 0 , 20, 30,

1 [LS

Horizontal, Vertical, Co-polar. Alternation in S & X-K

5, 10, 20, 25, 30, 40 & 50 KHz

Stepped Frequency Bandwidth - .if 0, 100, 200, 400 & 800 MHz

Frequency Step Size - Lf8 	 0.39, 0.78, 1.56 & 3.13 MHz

Calibration	 0.3m aluminium sphere flown in free space by kite or balloon

to assume that the decorrelation time is primarily related to the relative position of the scatterers

contributing to a target return. Whilst they are stationary the resultant backscatter will remain

constant; simplistically a .X/2 resultant movement will cause fading due to cancellation between

scatterers introducing a dependence upon the surface velocity of the target. Sea clutter is often

quoted to have a decorrelation length of order lOms at X band (Croney 1970) which can be ap-

proximately derived from the width of the Doppler spectrum. This makes an important assumption

that the Doppler spectrum is stationary; if not then there will be a spectrum of correlation lengths

in addition to the velocity dependence.

2.2 Specifics of the Multi-Function Radar

Whilst the previous Section dealt with issues common to the majority of pulsed radars, details

specific to the DERA Multi-Band Pulsed Radar (MBPR) are now covered. Designed as a research

radar to investigate aspects of Multi Function Radar (MFR) processing, it can operate in many

different configurations - detailed in Table 2.1. The transmit frequencies are labelled by the letter

band system adopted since World War II; accepted by the IEEE as a standard although British

band designations may differ slightly.

All imaging involves the sequential transmission of T = ljis duration pulses forming a range gate

of extent cT/2. These pulses are emitted at a rate f per second - the Pulse Repetition Frequency

(PRF). The radar is coherent so the phase of both the transmit and receive pulse is known, this

allows two distinct methods of imaging - Doppler and Hi-resolution (Hi-res). Doppler imaging

uses a single transmit frequency ft to record the wideband response of the sea surface, primarily
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to identify the velocity spectrum of the scene. Hi-res modes utilise a set of pulses swept over a

range of frequencies centred at ft with a bandwidth Lf via a sequential linear frequency step zf8.

After frequency transformation this yields an interpretation of the range profile within the range

gate; for this reason the mode is often called range resolution.

The pulse can be polarised Horizontal or Vertical on transmit or receive - usually labelled as co-

polar HH or VV, cross-polar HV or VH. The co-polar returns can be simply referred to as H and

V. Considerable differences can be seen between H and V polarised data however co-polar returns

HV and VH should theoretically give the same returns since they must follow the same paths upon

time reversal. The radar is capable of switching polarisations pulse to pulse but was operationally

switched every 256 pulses.

2.2.1 Doppler Operation

This is the simplest mode of operation where the radar emits a set of single frequency pulses. By

time gating the returns a specific range of observation can be selected. There is the possibility of

'multiple-time-around' echoes which arrive after the second pulse has been emitted. These will

generally be of lower intensity due to their originating from beyond the imaged range - dropping

off as R 4 . The maximum range that can be imaged is c/2f which corresponds to 3000m for the

highest operable PRF.

If the received signal is assumed to have been scattered from a moving target then, provided

the distance moved in time 1/fr is less than a wavelength, the phase change of the received

signal can be determined unambiguously. Assuming a constant single target velocity (narrowband)

the rate of change of phase D/at is proportional to the target's radial velocity vd, with the

convention that positive Vdop corresponds to an inbound target, such that

- fdopG
Vdop =	

= ft	
(2.14)

where c is the speed of propagation.

Using a single detector the tangential velocity is unknown. In general there will be more than

one scatterer, with a range of velocities (wideband) within the range gate. Frequency analysis of

the data, commonly achieved by an FFT upon a number of received pulses, will yield a Doppler

spectrum of velocities with an associated frequency width

When analysing the clutter intensity distribution, where the phase (and hence velocity information)
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is discarded, the data can show considerable correlation due to the component scatters moving little

in time 1/fr such that even the Rayleigh speckle is correlated. To obtain independent samples,

only pulses separated by approximately the inverse of the Doppler frequency Iinewidth can be

used. The residual correlation, usually determined by the Auto-Correlation Function (ACF), is the

expected physical correlation within the scene.

As a moving target will produce an oscillation in the sequentially measured relative phase of the

received signal it is common to talk of an associated (Doppler) frequency which simplifies dis-

cussion when treating the returns as a complex signal to be analysed. It is perhaps more correctly

the phase Doppler frequency that arises from a moving scatterer; similarly the Power Spectrum or

Power Spectral Density (PSD) of a signal is equivalent to the Doppler velocity spectrum.

2.2.2 High Resolution Operation

Emitting pulses similarly to Doppler operation but using N sequentially stepped transmit pulse

frequencies, a linear 'chirp' is formed. Assuming that the range scene has not moved in the time

taken to emit N pulses then the wideband frequency response of the range gate is recorded. The

transmitted pulse is effectively 'compressed' to subdivide the range gate into N compressed range

gates. A range profile, giving both the amplitude and phase of the compressed range gates, is

formed by taking the FFT of the recorded chirp pulses. This can be viewed as the 'beating' of

N frequencies to form as many nodes defining the compressed range gate spacing. Repeating the

process at a rate fr /N gives identical 'pulse trains', shown in Figure 2.3, allowing a Range-Time-

Intensity (RTI) image to display the movement of the scene over time.

The variation in the range profile depends only on the relative phasors present within the received

pulses and is circularly symmetric due to the Fourier transform method used. It is possible to

obtain a reference phase with which to centre the image with respect to the transmitted pulse by

measuring the delay within the system - this is termed a 'loopback frame'. The high intensity

central region of the range compressed pulse is now always presented in the middle of the range

profile.

Nathanson (1991) covers the mathematical proof and shows that if a rectangular pulse is utilised

rLf3 = 1 is desirable. Forming a range gate of extent cr12; by emitting N pulses over bandwidth

Lf a compressed resolution of c/2Nf3 is realised. If rf3 = 1 the range gate is resolved into

N subdivisions giving no redundancy to the output of the FF1'. In general the MBPR does not
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Figure 2.3: The stepped frequency pulse train used to form range profiles

maintain this constraint, usually TLf8 1. This is primarily to allow a wide window to be

applied to the data prior to the FFT to prevent aliasing in range, and also to account for the pulse

shape not being rectangular.

In analysis of the high resolution intensity distribution, decorrelation of the data is not so critical.

After the FFT the range gates are separated in time by N/fr which is enough to decorrelate the

speckle. If the operation has been carried out correctly, each point on the resultant range profile

will have a physically meaningful phase. Using consecutive range profiles it is now possible to

build up a Doppler spectrum for a particular compressed range gate.

2.2.3 Improving Accuracy and Reducing Noise

To improve the data quality obtained by the MBPR, processing is done before and after pulse

recording. To reduce the effect of system noise, 6x oversampling is made on receive by a 12 bit

A/D converter. After filtering at 10MHz and combining signals 15m apart this gives a simulated

16 bit output with reduced noise. The final pulseshape has a plateau ±37.5m and a curved fall off

to the 3dB point at ±75m reaching zero at ±112.5m (Branson 1999).

In addition, the operation of an FFT to obtain either the Doppler spectrum or the range profile

must be modified to account for windowing effects. This is a standard signal processing technique

necessary with a finite data set of length N - corresponding to a rectangularly windowed infinite

set. After an FF1' the transform of the window is convolved over every FF1' output, but the

transform of a rectangular window w has the undesirable property of very large oscillations beyond
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Figure 2.4: A Kaiser window lowers sidelobe levels at the expense of the inainlobe point re-

sponse

the mainlobe called sidelobes.

wjt(n) = 1,O<n^N	 (2.15)

Sidelobes mean that a high valued FFT output bin can raise the other output bins even though no

frequency is present there. For example in Doppler mode a high amplitude low velocity target

can still raise the value of the high velocity FFT output giving an inaccurate Doppler spectrum; in

Hi-res mode a single high intensity compressed range gate would cause the sidelobe structure to

be visible in neighbouring range gates.

The level and shape of the sidelobes can be controlled by choosing to further window the data. The

total intensity of the resultant FFF must remain constant and so reducing the sidelobe levels must

broaden the mainlobe. The Kaiser window was chosen, used in both DERA software (ARCANE)

and in a report by TWR (TW Research Ltd. 1999). The Kaiser window is an approximation to the

prolate spheroidal window for which the ratio of the mainlobe to sidelobe energy is maximised

.T [Ji - 4(n+1/2f 1

	

WKoj8er (n) -	
(N—i) j

O<n^N	 (2.16)

	

-	 Io(13)

where /3 is a parameter determining sidelobes, N is the size of the weighting array and 10 is a

Bessel function. The windows and point response functions of the rectangular, Kaiser(J3 = 4)

and Kaiser(j3 = 8) are shown in Figure 2.4 which give —13, —30 and —60dB sidelobe levels

respectively.
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2.3 Summary

Theory has been presented to give the expected returns from a general radar system showing

the returns to depend considerably upon the environment. However there are a many sources of

variation in propagation, target aspect ratio, relative motion and overall scene movement which

cannot be easily accounted for. The mathematical tools necessary to analyse these variations are

the concern of the next Chapter.
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Chapter 3

Mathematical Aspects

3.1 Intensity Probability Distributions

The increased probability of high intensity returns obtained in comparison to the expected expo-

nential distribution described in Section 2.1.1 has prompted various other RCS distributions to be

suggested.

Parameter estimation of an expected probability distribution is usually made by a Maximum Like-

lihood Estimate (MLE) which gives the estimate of the rn parameter vector 0m that maximises the

joint probability of the length ri Independent Identically Distributed (lID) vector Xl:n occurring.

Thus

em=max{P(xi;om)}	 (31)

The distributions considered here are two parameter distributions, defined by a scale and shape

parameter. The scale estimate is largely a function of the first moment of the distribution and

can be determined relatively accurately from the sample mean. The shape cannot be determined

independently since it inherently measures a deviation from the mean. A moment based estimate

where shape is some function of variance or second moment

Var [x] = E [x2] - (E [x])2	 (3.2)

shows that the relative uncertainty must be at least as great as that in the mean - the problem in the

use of higher order statistics for finite sample sizes.
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3.1.1 The Weibull Distribution

The Weibull distribution, with intensity I is a two parameter distribution dependent upon a shape

a and a scale parameter a (defined independently of RCS).

PWejbull (I) = 
a1a_l exp r ia 1

2a2	
,0<I<oo;a>O	 (3.3)

First used to model breaking strengths of materials (Weibull 1939) by setting the hazard rate H to

vary as a power of the probability variable; it was first empirically applied to sea clutter data by

Fay et al. (1977), where

H(t) = fP(t)dt

-	 P(t)	
(3.4)

thus

a ra-1	 r Ja151	 exp L-] - a	
(3.5)Hj(I) =	 r i	 -exp L—i

Equation 3.3 shows the Weibull reduces to the Exponential distribution when a = 1, the Rayleigh

distribution is obtained when a = 2. A Rayleigh distributed amplitude is exponentially distributed

in power, a result of the Weibull distribution's invariance under an exponent transformation.

The Weibull MLE estimate is in closed form (Harter and Moore 1965, Cohen 1965), more recently

a thorough analysis was made by Oliver (1993) who gave the iterative solutions as

Ia
a2 = --	 (3.6)

+ logP 
= 2logI	 (3.7)

a

Sekine and Mao (1990) state from a review of several papers that a is expected to lie in the region

0.5-2 for a variety of land or sea conditions. A non-iterative procedure is demonstrated by Oliver

(1993) in a normalised log estimator which gives similar performance to the MLE solution for

a > 0.5 with acceptable performance down to a = 0.1. This method is covered in the Section

concerning the K-distribution.
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3.1.2 Log Normal

The log normal distribution is a two parameter distribution dependent upon the mean i and van-

ance a 2 of a log transformed Gaussian distribution to yield

	

1	 Ilog (I_p)21
PL0gN (I) =	 exp

	

Iov1	 L	
2a2	

]	
(3.8)

Applied by Trunk and George( 1970) to model sea clutter it is still often used to provide a compar-

ative fIt to data (Farina et al. 1997). The parameter estimates are usually made by transformation

to the normal distribution and using the sample values for and a2.

3.1.3 The K Distribution

The K Distribution, with amplitude x is a two parameter distribution dependent upon a shape ii

and a scale b

4b"112
PK(l x l) =	 x'K_1 (2xv') , 0 <lxi <oo;b,v> 0	 (3.9)

F (ii)

where K is the modified Bessel function of order n. A compound form exists where the under-

lying cross section A varies according to a gamma distribution. A large number of scatterers are

assumed to be present in each resolution cell so the gamma distribution modulates the Rayleigh

speckle.

2x	 /

	

PRayleigh (x i A) =	 exp	 , 0 x 00	 (3.10)

	

Pamma(A) =	 A''exp(—bA),0<A^oo;b,v>0	 (3.11)

It was initially applied in the field of lasers (Jakeman and Pusey 1976) and applied to sea clutter by

Ward (1981). If the gamma distributed cross section is assumed to vary slowly in comparison to

the speckle, this gives some physical justification for the K distribution. Both lID and compound

realisations of a K(v = 1) variate are shown in Figure 3.1.

The K distribution does not have an analytic MLE, which has caused several estimators to be

proposed. Using the intensity domain I, Blacknell (1994) compares the numerical solution of the

MLE with three schemes:

I. E (1( 1 ); 1( 2)) - first and second order moments, the contrast estimate.
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K Distribution has Compound and lID Representations

Figure 3.1: The K distribution has some physical justification as a modulating gamma variate

subject to Rayleigh speckle

2. E (log (f)( 1); log (I) 2)) - first and second order moments of the log data, the

log estimate.

3. E (I; log (I)) - sample mean and sample mean of the log data, the variance of the log

estimate.

Parameter fitting for E (1( 1); 1(2))

Using the first two moments of the K distribution and solving for v gives the simplest estimate

available

P	 2
V=--l=1+	 (3.12)

12

The direct solution of the above has an associated bias and variance (Oliver 1993) to order 1/n

(v	 (i +!) (i +
	

(3.13)

(a2 )	 i.'2 /	 i\ f	 4\ (	 5\j'V	 —(1+–)(1+–)(1+–)	 (3.14)
V	 fl\	 VJ\	 1I/	 VJ

Equation 3.12 is commonly termed the contrast estimate.
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Parameter fitting for E (I; log (I))

The derivation of E (I; log (I)) by Oliver (1993) uses the Mellin transform as an approximation

in the limit of many looks to derive an approximation to the MLE,

U = log(I) - log (1) = 0) (I) - log (17j) -	 (3.15)

where 'y 0.577 is the Euler-Gamma number and '(0) (.) is the polygamma function of order 0.

The iterative solution of the above has an associated bias and variance (Oliver 1993) to order 1/n

1(12)
11

(V)U	 [U	 j
ii	 2n (1 -	 ( ii))

1	 - 2(Ilog(I)) + (log (I))2) - (
log (J))2 

+ 1::i	 (1)

(1	 ,(1)	 2
(v))

Equation 3.15 is commonly termed the normalised log estimate.

Parameter fitting for E (log (I)' ; log (I)(2))

(3.16)

(3.17)

The compound K distribution arises from a product of two components; this motivates taking the

logarithm to form additive components to give an estimate

(3.18)

The iterative solution of the above has an associated bias and variance (Oliver 1993) to order 1/n

____	 ,(1) (v) + --
ii	 nvI'(2) (v)

llir4	 2ir2
______	

i/'() (v) + 2O(1)2 (v) + — j— 
+ __)( 1) (v)

n (v(2) (v))2

Equation 3.18 is commonly termed the variance of log estimate.

Inversion Problems

Whilst the variance of the estimators leads to the variance in v, some values of the estimator

cannot be inverted. As an example Figure 3.2 demonstrates hard limiting in the contrast estimate

for V < 1 where vv takes on an unphysical negative value. Due to minimisation routines used
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Figure 3.2: An inversion limit exiits for each K distribution estimator

for U and W the exact hard limited ii values are determined by machine accuracy but a similar

case arises. Discarding hard limited values will obviously affect the bias and variance of the

estimators; possibly more importantly a discontinuity will be seen in the sample distribution of the

shape parameter ii. It seems unnecessary to calculate this effect probabilistically as it is easier to

record how many values were discarded and then directly handle the effect.

To gain an estimate of the probability of inversion failing, the estimator E is modelled (Oliver

1993) as a Gaussian distribution based upon the bias AE and variance 4 given above. Tests of

this hypothesis were made and show that it is not completely accurate (see later Sections), but

applicable for reasonably large sample populations.

	

1	
[- {E - ((E) +P(E)0E	 exp

	

OEV	 L	
24	

] 
ÔE, —oc < E <cc	 (3.21)

enables numeric calculation through a change of variable noting the conditions for inversion:

U+LW ^ _7	 (3.22)

V-i-zW ^ 1
	

(3.23)

W+A	 (3.24)
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Figure 3.3: Expected minimum samples necessary to sucessfully invert contrast estimators

Figure 3.3 shows the expected minimum samples necessary to maintain a failure rate of 0.1 and

0.0001 (a similar graph is found in Lombardo and Oliver (1994)), the variance of log estimator

W is inferior over the considered range of ii. For low values of ii the normalised log estimate U

is superior but an upper limit exists where the contrast V achieves the failure rate with a lower

sample population.

Best Performance Under Ideal Conditions

From analysis of a large amount of recorded data, Ward et al. (1990) published a graph suggesting

that v can vary between 0.1 and 10 with a modal value of about 1; under ideal conditions the choice

of estimator must be based on its accuracy in determining the correct shape parameter over this

range. Several papers have investigated this and confirm that for typical conditions the normalised

log estimator U is the best overall choice as it approaches the numerical MLE solution for v.

Blacknell (1994) found that for N = 256 samples U performed best in the region 0.1 <ii 8 but

interestingly V performed better for higher order parameters, the relevant figure from this paper

is reproduced in Figure 3.4 and it is obvious that the contrast estimator V is very poor overall.

This range of performance was similarly observed in the conditions for inversion in the previous

Section; this is expected since both criteria are largely determined by the sample variance in the

estimator - U usually having the lowest, sample variance.
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Figure 3.4: Error in ii order parameter estimate for 256 samples. a - Maximum Likelihood

Estimate, b - U estimate, c - W estimate, d - V estimate (after Blacknell, 1994)

3.1.4 Deviation from the Ideal

In this subsection the effects of non-ideal observed data are considered. Problems may arise from

(but not limited to) additive thermal noise, small sample sizes, censoring and inhomogeneity. No

further consideration is made of V due to its poor performance and, although not shown, it is

extremely sensitive to censoring with a long tailed distribution over some of the region of interest.

Censored Samples

In some target detection schemes it is necessary to censor the higher valued data, under the hy-

pothesis that this is a target, and then form a decision based upon the remaining data assuming

this to be background clutter. The effect of progressive censoring is tested upon the estimators

U and W based upon an initial sample size of 256 with ten thousand repetitions. A histogram is

calculated for U and W for the uncensored case and then the highest sample is removed and the

tests re-applied. This was repeated until the largest 16 samples were censored from the population

or equivalently 'censored at the 6% level'.

E

a

I
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The plots shown in Figure 3.5 cover v 0.1, v = 1 and v = 10 and are plotted with their

natural abscissa (U or W - not converted to a shape parameter such as v) this allows the effect

of censorship to be compared with respect to the estimator's intrinsic variance. These plots have

been overlaid with a Gaussian fit and show:

The sample distribution of U is very close to Gaussian regardless of censorship.

. W deviates from Gaussian at low values of v towards a longer tailed distribution.

In comparison to their sample variance, especially at low v, W is less sensitive to censorship.

This provides some justification for using the estimator W in a censored situation but the stable

sample distribution of U is extremely useful for accurately calculating performance figures.

Limited Sample Sizes

The previous Section showed that U has a more stable sample distribution with respect to shape

parameter alone. When comparing shape estimates from different sample sizes the resultant dis-

tribution change must be known. Additionally censoring is performed at the 3% and 6% level in

each case and sample populations of N = 32 and 64 were chosen at a shape parameter of v = 0.1

shown in Figure 3.6. Again the plots have been overlaid with a Gaussian fit and show

. The distribution of W is far from Gaussian at low sample numbers and low ii - moving

towards a long tailed distribution.

• U conforms to a Gaussian distribution even under censorship at low sample numbers and

low v.

Obtaining confidence levels for the estimator U is greatly simplified as the sample distribution is

stable Gaussian; the instability towards a longer tail in the distribution of W presents difficulty.

Presence of Noise

The radar receiver will in general add a component of thermal noise to any measured signal. The

exact amount of additive noise is system dependent and could in theory be calculated, but a sig-

nificant component could also arise from the environment itself to contribute and overall SNR. A
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Figure 3.5: Sample distribution of the U and W estimates for varying shape parameter and cen-

sorship (N = 256)
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Figure 3.6: Sample distribution of the U and W estimates for varying sample number at v = 0.1
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traditional view of scattering is that one mechanism is responsible for the observed statistics; how-

ever it may be that the emitted pulse samples a mixture of scattering sources - of which a compon-

ent originates from multiplicative Rayleigh noise (Section 2.1.1). A Rayleigh scattered component

is statistically indistinguishable from thermal noise unless discrimination is based upon:

• Forming the Doppler spectrum of the signal, thermal noise is white (it has a flat frequency

spectrum). It can be isolated from Rayleigh scattering with a presumed physical origin

confined within the observed Doppler spectrum.

• Observing the long term high resolution range profile, the mean noise level is determined by

measuring the mean of the recorded signal outside the pulse shape. This relies on thermal

noise being white.

Both the above assume well formed data without aliasing from the Fourier transform operation.

In principal the magnitude of an assumed Rayleigh scattering component can be calculated even

when combined with another non-Gaussian distribution. This is made through cumulant analysis

which is dependent on the noise being completely described by its variance (Swami et al. 1999);

the probability distribution of the non-Gaussian component distribution must be known to within

a scale factor.

The distribution of U when contaminated by noise was investigated by Lombardo et al. (1995)

who tested for SNR of 5, 10, 20 and 30dB. The effect is to add a significant bias to the determined

U value with slight change to the variance; however the sample distribution remains suitably

Gaussian (Appendix B.2).

Inhomogeneity

In this Section the effect upon the parameter estimator when an edge is present in otherwise ho-

mogenous statistics is derived, this has not been discussed in the literature.

An edge is defined to be a discontinuity from a single abrupt change in:

1. Intensity alone.

2. Distribution shape alone.

3. A simultaneous change of both intensity and distribution shape.
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Figure 3.7: The texture estimator U	 0 from consideration of the Pythagorean triangle as

U =log(pc/tA)

The norinalised log estimate U is used to determine the edge effects as it is the most accurate of

the considered estimators. A data series of length N has a shape parameter U defined as

U = l-1ogI
	

(3.25)
10g(fljj)l/N 

—log
	

(3.26)

= logpc—logpA	 (3.27)

where is the geometric mean and /1A is the conventional arithmetic mean. The well known

arithmetic-geometric means inequality, demonstrated in Figure 3.7, proves that U ^ 0 by using

the two data values a and b with means ji( and ILA applied using Pythagoras' Theorem - the proof

is extended to N data by induction.

The task is to determine (Us), the expected change in U arising from a step in otherwise homo-

genous statistics.
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Intensity Change An intensity edge is present from point k	 N of relative scale s with no

change in the distribution shape defined as

( -t1:k-1) =

(U[I1:k_1]) =

1
H1k:N)

(U [1k:N1)

(3.28)

(3.29)

where I refers to the intensity of individual samples, and () is the expectation over an ensemble

average. Explicitly including this scale change, with the notation changed to reflect an assumed

underlying lID variable X, the means are formed as

G (s, k) = (X 1 x X2 x ... x SXk x SXk+ l X ... X SXN)1

(X1+X2+...+sXk+sXk+l+...+sXN)
/2A(S,k) =

N

causing the expectation of both UG and tiA to change by

IG(s,k)_,jG=(X)Sk/N

A (s, k) -	 = (X) 
sk— k

(3.30)

(3.31)

Forming the normalised log estimator U and redefining the quantities such that p refers to the

proportion k/N over which a relative intensity scale change of s gives the change U1,

sp
(U j ) = log

sp - p + 1

this is plotted in Figure 3.8 and indicates:

(3.32)

• The effect of an intensity scale change, regardless of sign, is to decrease measured U - this

is intuitive but can be proven from an extension of Figure 3.7 where equality is expected if

a==b.

• A point-like target (low p) will have little effect on the assessment of U even at a relatively

high dB - thus 'self masking' is not a strong effect in shape estimation.

Distribution Shape Change A distribution edge is present from point k	 N such that the

distribution changes from an underlying U0 to one of shape UT with no change in the mean
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Single Step Effect on U
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Figure 3.8: The effect an intensity step has upon determined nonnalised log estimator U

	

(U[I1 : k_ 1J) = U0
	 (3.33)

	

<U[Ik:N]) = UT
	 (3.34)

('l:k-l) = (Ik:N)
	

(3.35)

With no change in the arithmetic mean, the change in U will be from the geometric mean change

alone and the measured U will be

upon redefining the quantities as before, where p refers to the proportion k/N over which a distri-

bution shape change from Uo to UT, gives the change

(U U)=p(UT —UO)
	

(3.37)

• The effect of a distribution shape change is a simple linear dependency upon the contamin-

ating edge distribution.
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Simultaneous Change in Intensity and Distribution Shape In reality a change in conditions

would probably cause a discontinuity in both mean and distribution shape, in summary:

The magnitude of U 1 is independent of an assumed underlying distribution and the number

of samples.

The magnitude of Uu is proportional to the change in Uo at the step.

• Recasting in tenns of v is less tractable and will cause v to be a function of ii.

The changes can be combined to give the overall effect on a measured U such that

sp
(U j, ) = log	 + p (UT - U0 )	 (3.38)

sp - p + 1

gives the expected change in a measured U from an underlying homogenous distribution of shape

(J0 subject to a simultaneous edge over a proportion p which consists of a distribution UT of

relative scale s.

. If UT > Uo the effect upon measured U will be lessened and for suitable values a simultan-

eous step change in mean and distribution will leave measured U unaffected.

Modulation of Intensity By Another Distribution The K-distribution has been physically jus-

tified by casting it in a compound form (Ward 1981) in Section 3.1.3. This links the exponential

speckle expected from the imaging process to the physical modulation from ocean waves. To

generalise this compound form to other distributions, define:

• A local intensity 'speckle' distribution fo (ji) with zero correlation between samples defined

by a local mean , with an individually measured U0.

• A global modulating distribution f,, which has some correlation over a number of samples

p. defining , with an individually measured U.

• The resultant global distribution measured over N >> p samples fg = Jo (ji), giving meas-

ure Ug.
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The expected value of U9 is determined from the means

(/IG [19])	 ILG [fo] X hG [fp]

(p A [fg]) = IA [fo] x ji [fp]

such that

/	 I/is [fg])) = /	 luG [fo] x it [fp] \ \(U9 ) = ( log (	 ç log
\	 \ hA	 \	 hA [fo] x	 [fp]))

= Uo+Up

thus the effect of a modulation upon the local measure Uo causes a bias of U,,,

(U) = U

where the expectation is taken over an ensemble of sample numbers N >> p.

(3.43)

• A modulation can only serve to decrease measured U; it is the continuous analogue of a

large number of abrupt intensity changes.

3.1.5 Measuring Distribution Parameters

In the literature there is no strong consensus on the distribution to which radar clutter conforms.

Weibull and K are popular choices but each has its own texture parameter with associated estimat-

ors. As shown, the K distribution can be characterised well by the normalised log estimate in the

expected region of interest; the previous tests were repeated using Weibull statistics and showed

similar effects and so it is reasonable to assess U only. This can be justified by:

• The arithmetic and geometric means are simple to calculate and therefore very fast in oper-

ation.

• The normalised log estimate is near optimal for Weibull and K in the parameter regions and

sample sizes of interest; if the true distribution is between the two then it will be applicable

also.

• It is only for convenience that the one-to-one mapping is performed from any texture estim-

ator to the shape parameter used in the distribution. A simple conversion graph can be used

when this is necessary.
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The mapping may not be invertible as shown in Section 3.1.3. This causes a discontinuity

in the sample distribution of the determined shape parameter.

. This mapping is non-linear and can be shown to cause significant errors in estimating the

bias and error in the determined shape parameter. This is explored by Lombardo and Oliver

(1994) and an example is given in Appendix B.1.

• Uniquely the distribution of U is suitably Gaussian for varying sample sizes, under cen-

soring, at low sample numbers and in the presence of thermal noise. This allows accurate

prediction of associated uncertainty in the estimate and is crucial in later sections.

• The expected effect upon U of any step or modulation in the data is explicitly calculable,

does not depend on the sample size and is derived to be simple equations (3.32, 3.37 & 3.43).

This gives a tool for extending the analysis to non-stationary data - covered in subsequent

Chapters.

Appendix B.2 discusses a further estimator - the amplitude contrast Va proposed by Lombardo,

Oliver and Tough (1995) which is designed to offer resistance to thermal noise whilst maintaining

the accuracy of determining the shape parameter. If the K-distribution represents the absolute un-

derlying statistics, Lombardo et al. showed that for estimation of ji from clutter data contaminated

by noise, Va would be a good overall choice. Several points are suggested concerning this:

It is arguable whether noise-free statistics from the surface are ever observed; if so, the

commonly applied K or Weibull distribution may be an accurate approximation to the dis-

tribution of 'clutter plus noise'.

• As mentioned previously, some of the Rayleigh noise could be from the surface itself and

indistinguishable from the thermal noise; sensitivity to this noise would be desirable for

improved segmentation of scenes.

• The comparison between estimators is made assuming a linear dependence between the

estimator and the reciprocal of the shape parameter ii . According to Lombardo and Oliver

(1994) whilst this is true for all V, only in the limit of large v can it be applied for U

and W. As shown above, the distribution of the estimators is not identical with the result

that discrimination on the basis of minor changes in the relative biases and variances is

complicated.
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The sample distribution of Va is not normal for low sample numbers and low ii as shown in

Appendix B.2.

The decision is made to retain U as the preferred estimator; its consistent Gaussian distribution is

a strong reason as the method of determining an associated confidence in the value will be more

robust and this is relied upon in Chapter 8.

3.1.6 Additional Properties of U

It remains only to relate the chosen estimate U to the shape parameter used in the distributions.

Equation 3.15 obtains the K shape parameter i', equivalent Weibull shape parameter a is determ-

med in a similar manner (Oliver 1993).

U(u) =	 (3.44)

U(a) = 1-_iog(r(i+))
	

(3.45)

Equations 3.44 and 3.45 are plotted in Figure 3.9. It is possible to define a Weibull distribution that

equates to U > — 'y in the case of the Weibull distribution; this is because the limiting distribution

of a -f 00 is not exponential as in the K-distribution. Realistically it is expected that the shape

parameter a 1.

Fort' = a = 0.5 the Weibull and K distributions coincide (U —1.85) as the Bessel function can

be simplified for half-integer orders (Armstrong 1992); thus any practical fit to real data near this

parameter will be unable to distinguish between a Weibull and K distribution.

If locally stationary K distributed statistics are assumed, the primary cause of uncertainty in U

will be finite sample size. From Section 3.1.4 the sample distribution of U is known to be suitably

Gaussian

1	 I_(U_)2l
1(U) = N[z, 2 J 	 ,exp

av27r	 L	
2a2	

]

and using the results of Lombardo and Oliver (1994) who derive the bias and variance in terms of

v as

=

[,(o) ( v ) —ln(v) —y]

4	 2
[*('v+c—i) + . (1_2(1+) (i+—T

[(0) ( v) —ln(v) —'y]
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101
	 Conversion between U and Shape Parameter

- K distribution - V ..........................
- Weibull - a

.................................

E

J10o

.

10_il
-10	 -8	 -6	 -4	 -2	 0

U = Iog(I3/lLA)

Figure 3.9: How the U estimator relates to Weibull and K distribution shape parameters

the sample distribution parameters are determined and verified through simulation - shown in

Figure 3.10.

3.2 Physical Doppler Spectra

3.2.1 Origin

The Doppler spectrum from the sea surface, 4 () where ( is the Doppler frequency, can be ration-

alised as coming from three physical processes (Lee et al. 1995): Doppler broadening, damping

dominated broadening and a mixture of the two.

Doppler broadening results from a fixed population of scatterers with a Gaussian distribution of

speeds yielding

/1
exp -	 (3.48)

where (G is the modal frequency and is the Doppler width. Assuming a fast moving varying
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—10	 _100	 _10-t

Norrnalised Log Estimator U

Figure 3.10: The bias and standard deviation in the sample distribution of U for varying sample

number. Monte Carlo simulation shown as symbols upon a theoretical line

population with an exponentially thstributed lifetime yields the Lorentzian distribution

L 
(C) = (C - CL)2 

+ (I/21r)2
	 (3.49)

where CL is the modal frequency and r — ' is the characteristic scatterer lifetime giving a full width

at half maximum (FWHM) of 17w. It is reasonable to assume that the true form of the spectrum

will be a combination of the above effects and so the overall effect will be a convolution of the

two, yielding the Voigtian spectrum

where tt = ( - Cv) ICe is the normalised frequency, Cv is the modal value and a = r/2wCe is

the Voigt parameter which represents the ratio of the Lorentzian FWHM to the full-width at one

e-folding of the Gaussian (Lee et al. 1995).

An extensive approximation suitable for curve fitting can be found in Lee et al. (1995) who further

suggest using a Levenberg-Marquardt algorithm to fit spectral data via a linear mixture of the three

components. One criticism which may be levelled is that a wide range of spectra could fit to a
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distribution modelled by 3 separate parametensed components without necessarily conforming to

the physical models they represent.

Work by Walker (2000), again using wavetank data, has led to a 3 component Doppler model to

include Bragg, whitecap and spiking events. Each component is assumed to contribute a Gaussian

spectrum but the parameterisation is reduced by including a composite surface Bragg scattering

model.

3.2.2 Analysis using the Windowed Fourier Transform

A coherent pulsed radar is capable of recording the phases of individual reflected pulses. At high

transmit frequencies and natural environments the motion of the illuminated area has little effect

on the received frequency. A Doppler spectrum of the scene is built up from analysing the phase

evolution of the signal over time. Typically this is achieved using the Fast Fourier Transform

(FFT) which in its standard form requires a complex data length of N {2; i E l'}, resulting

in the discrete frequency space representation. The resolution of the FFF is determined by the

sampling frequency w5 which, via the Nyquist sampling criterion, can only resolve N evenly

spaced frequencies <w3/2.

In a stationary environment with well defined periodic content the FFT gives an acceptable method

of analysis; increasing the data length increases the number of distinct frequencies analysed. In a

non-stationary environment the spectral content may change in time; windowing the data in order

to localise the frequency content in time produces the Windowed Fourier Transform (WFT) in the

left of Figure 3.11.

The window size is chosen to match the radar environment and is usually fixed for a given sampling

frequency w. It can be matched to the decorrelation time of the scene, the scan time or as a

function of radar processing power since the FFT algorithm is order N log N. This imposes a scale

of analysis on the scene where all events are deemed to occur over the length of these windows.

Any change in spectral content over the window is smeared into a single FFT; if the original

periodic signal is not a pure sinusoid then incidental frequencies are introduced.

Windowing causes the measurement of frequencies which may not be of interest, accompanied

by the masking of events with duration shorter or longer than the window size. In general signals

are not composed of well defined frequencies and the resultant FF1' needs smoothing in order

to distinguish the shape of the Doppler spectrum. A common method is to simply use a boxcar
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(mm	 time

Figure 3.11: In the FFT sinusoidal basis functions are arranged at fixed intervals in frequency de-

termined by the fixed window in time. The Continuous Wavelet Transform maintains a constant

uncertainty in frequency and time

average, motivated by any frequency lying between two adjacent discrete FFT bins being spread

into each. The averaging is often extended until the spectrum looks smooth, then consecutive

windows are compared to view changes in the environment.

3.2.3 Analysis using the Wavelet Transform

The problem with the Windowed Fourier Transform is that fixed uncertainty in frequency is im-

posed by using a discrete algorithm and smoothing. This is accompanied by fixed uncertainty in

time by windowing - yielding little scope for adaptivity to a changing environment. An alternate

method of handling the uncertainty is from the classical form of the Heisenberg uncertainty prin-

ciple which is not unique to quantum mechanics but a general property of functions (Kaiser 1994).

If a function g(t) is small outside a time localised to t and the Fourier transform (w) is small

outside a frequency bandwidth /w then (Sarakar and Su 1998):

> constant	 1	 (3.51)

By normalising the function g(t), hence (w), and identifying it with a probability function then

the most probable values in time and frequency can be found from

to	 [tlgtI2dt, 
WD f:w1)12	 (3.52)
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Looking at the variances from t0 and io

(zt) 2 	- to) 2 Ig(t)I 2 dt, (w)2
	

f:w - wo) 2 I(w )I 2dw
	

(3.53)

it can be shown (Sarakar and Su 1998) that the limiting uncertainty product is

= constant ^ 0.5
	

(3.54)

where the exact value can be calculated from the specific window shape.

As frequency cannot be measured instantaneously then Equation 3.54 gives the degree of certainty

in a local estimate. The subtlety is that when looking at a range of frequencies it would be conveni-

ent to have the same overall uncertainty for each; Equation 3.54 gives the window size necessary

as a function of frequency. This defines the Wavelet Transform (WT) of a signal, where a signal

is analysed by scale to maintain constant uncertainty product shown in the right of Figure 3.11.

Choosing a 'mother' wavelet and using scaled versions as basis functions not only allows a choice

of frequencies to analyse, but also the shape of the periodic components to look for. To efficiently

look for these frequencies at all window positions the convolution is implemented with the FFT.

The Wavelet Transform thus expands the Doppler spectrum as an instantaneous evaluation of fre-

quencies present within a sample length. As an aside the self similarity of the basis functions

could reveal fractal nature in any signal (Wornell 1996)

The wavelet transform used is a discretised form of the Continuous Wavelet Transform (CWT)

which introduces redundancy and is not orthogonal. A non-redundant transform exists in the form

of the Discrete Wavelet Transform (DWT) which operates on a dyadic grid. The motivation for

using a DWT is that the basis functions are truly localised, orthogonal and can be discontinuous.

In addition frameworks are present to adapt the basis functions in response to the input signals for

matched filtering. A major failing of the DWT is that it is not time-invariant; a single time shift in

the input signal can produce a vastly different transform (see Daubechies (1993) for more detail

on the DWT).

The standard FF1' algorithm has computational complexity of

O[FFT] = NwindowNfreq log Njreq
	 (3.55)

where	 refers to the number of windows used to analyse a data sequence. Consecutive

windows can be overlapped or computed at every time step. Nreq refers to the size of that

66



3.2. Physical Doppler Spectra 	 MATHEMATICAL ASPECTS

window, determined by the desired time localisation but incidentally determining the frequency

components calculated..

The WT has complexity of

O[WT] = 'I]freqNtotal log Ntotai	 (3.56)

by analysing a chosen subset of frequencies Tlfreq the cost of increasing the transform length to

the sample length Ntotaj is offset; although in general the WT is more expensive.

Implementation

A possible input to a detector based on the wavelet transform is constructed in Chapter 7. The

redundancy in the transform is accounted for, and is indeed a necessary result, from the uncertainty

principle in Equation 3.54.

The choice of mother wavelet is a Monet (Grossmann and Morlet 1985) because of the simple

symmetric form. A further reason is that events of similar shape were observed in the data and

have been demonstrated previously in the returns from a Loch (Werle 1995). The normalised

form of the Morlet wavelet is shown in Figure 3.12; mathematically in time (t) and frequency (w)

(Torrence and Compo 1998) as

= "4exp(jwot - ), (w) = _1/4 exp[_(w - (3.57)

Where 'I' (w) indicates the Fourier transform of ill (t). Strictly speaking the Monet wavelet is not

admissible since it extends to negative infinity and has non-zero mean (Farge 1992); however by

choosing w0 ^ 5 then the negative frequencies are small and the mean is negligible. The value

chosen is that which made the first oscillation of the real component touch the envelope at half

height (w0 = 5.336) which also gives time-reversal symmetry.

Particular frequencies within a signal are analysed by dilating the mother wavelet by a scale s and

shifting to a position i such that

= __ 

(t_—	
(3.58)

\ S J
If x(t) is the signal then the wavelet coefficient of x at scale s and time t is defined from the

Continuous Wavelet Transform shown in Figure 3.11 and defined as

= Jx(r)Wo(T	 )dr	 (3.59)
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Psi(tla)	 Psihat(aw)

Figure 3.12: The Morlet mother wavelet in time and frequency (with respect to the Fourier fre-

quency)

normalised to unit energy for each scale. Discretising this to N data with a signal x (t) = x1:N

and using the convolution theory, the coefficients over the entire signal at a particular scale are

calculated (Torrence and Compo 1998) via

N—i

	

Xs (n) =	 xjW (swk) exp(iwkn)	 (3.60)
k=O

{ 2irk.

	

Wk =
	 2irk	

(3.61)
---:k>N/2

where 'I' is now taken to be normalised.

Essentially a basis function defined by a particularly scaled mother wavelet is being applied at

every time point n, this is done by convolution using Equation 3.60 where the FF1' is used incid-

entally for speed. Upon inversion the complex value of the component W represents the certainty

of a particular phase frequency being present at that time in the signal and so the modulus of this

is taken as relative phase is unimportant (similarly, only the magnitude of the Doppler spectrum is

useful). This is plotted as a 2 dimensional shaded image to reflect the magnitude of W along the

dimensions of time and scale.
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Figure 3.13: The Wavelet transform (bottom) identifies the best windowing in time and frequency

which is difficult to obtain in the Windowed Fourier for nonstationary Doppler and power
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Figure 3.13 demonstrates the Continuous Wavelet Transform in comparison to the Windowed

Fourier Transform to illustrate the presence of a simulated target within system noise. Without

knowing the velocity of the target, optimum windowing is unknown; the upper three plots show

the result obtained from a WFT with time windows of 16, 32 and 64 samples from a simulated

512 samples. The lower plot shows the CWT which, whilst computationally more involved, seems

to convey the information of varying velocity and intensity much better - this particular analysed

signal is discussed in the next subsection.

3.2.4 Application

The choice of wavelet scale s is in some ways arbitrary but justification for using a logarithmic

spacing is given in Chapter 7 as the width of the wavelet in frequency space is a linear function of

its central frequency. This defines the natural scale of the CWT to be the logarithm of the velocity,

unlike the linear relationship of the FFT.

A real target will have varying velocity and intensity, an accurate simulation (Chapter 7) of a typ-

ical target presented in Figure 3.14 is that analysed in the previous Section. The overall Doppler

obtained using the FFT does not convey the situation well as there appear to be three targets at

different velocities; taking the largest instantaneous CWT coefficient obtains an accurate repres-

entation.

There seems to be an advantage in performing the CWT for analysing the time varying Doppler

of the sea surface as it removes the need to arbitrarily choose the size of analysis window. By

minimising the uncertainty in declaring a velocity component to be present over time, the time-

varying Doppler statistics of a signal are well represented - discussed further in Chapter 7.

3.3 Assessing Applicability of Statistical Models

Before any detection scheme can be developed based upon a statistical model for the data it is

important that the degree of conformity to that model is assessed. In real world situations, noise

(either statistical, system or environmental) usually causes some departure from the theoretical

predictions which can mask the true model. Alternate models may be so similar that it is difficult

to distinguish which is better, additionally the stability of the model should be assessed - any

nonstationary departure from the assumed model may have considerable effects.
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Figure 3.14: Wavelet analysis conveys information better than Fourier for nonstationary Doppler

and power
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3.3.1 Distribution Theory

Determining if two distributions are the same requires a search for some significance level p with

which to discriminate between various parametrically known hypotheses H (PDFs) based upon

the data x. The Maximum Likelihood Estimate (MLE) for the parameter vector O of H is usually

employed. Neglecting quantisation, a continuous distribution is tested to determine the signific-

ance of any departure of the data from that of the hypothesis.

The MLE is based upon maximising the probability of x by varying 0 within a single H. As such

this has no mathematical basis, being based on 'intuition' (Press et al. 1992). As the MLE is based

upon H being true then any deviation from this will give an invalid estimate for 0.

The Kolmogorov-Smimov (K-S) test (Press et al. 1992) measures the absolute difference D between

the data CDF C and the hypothesis H CDF CH

D = max I CH -
	 (3.62)

To determine a significance level p requires a property of the K-S test - that its distribution in the

case of H being true is invariant under a transformation of x and can be approximated for N> 4

samples (Press et al. 1992) as

0.11"
+012+—DI	 (3.63)PD	 QKs[(v	

.
00

QKS (A) = 2	 (_i)i_' e_2j2)2	 (3.64)

j=1

However, an important point is that Equation 3.63 is only valid if 0 is not estimated from the data.

Whilst this is embodied in the statement 'H being true', often the assumption is taken that it is

true based upon an MLE estimate of the data which has an associated variance.

The test is insufficiently sensitive to departures from the tails (Cox and Hinkley 1974) which is

the particular region of interest. The reason is that in the case of H being true then the probability

distribution of D is not independent of x. The variance of D is proportional to P (x) [1 - P (x)]

and thus a deviation that may be significant at its own value of x is compared to the expected

chance deviation at the maximum variance P = 0.5 (Press et al. 1992).

A way of overcoming the insensitivity to the tails of the distribution is to use a distance measure

which has a constant variance over x. A simple choice is the Kuiper (KP) statistic (Press et
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Figure 3.15: Weibull and K distributions show similar behaviour in the presence of thermal noise

al. 1992) defined as K

K=D+D = max [Cn—C1+max [C —CH]	 (3.65)

with an associated significance level

PK	 QKtiiper	 0.155 +	 ' K'	 (3.66)

00

QKuiper()i) = 2(4j2X2_1)e_2i22

j=1

3.3.2 Alternate Methods

Weibull Analysis

So called 'Weibull paper' can be used to plot and analyse long tailed distributions. Weibull statist-

ics are transformed to yield a straight line with a slope defined by the shape parameter, achieved

via Equation 3.69 where F is the complementary CDF.

WeiJl (I) = _jal	 1 1 1
exp 

L	 ]	
(3.67)

FWeibuli (I)	 1 [ WeibuU (I) dl exp (3.68)

log [- log [Feji (I)]] = a log (I) - log (2)	 (3.69)

The appearances of Weibull and K distributed statistics plotted in this way are shown for shape

parameters of a = 0.25 and v = 0.1 respectively in Figure 3.15, which include the expected

73



3.3. Assessing Applicability of Statistical Models	 MATHEMATICAL ASPECTS

Weibull Plots of Potential Clutter Forms...............................
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Figure 3.16: The data plotted on Weibull paper resembles extremely spiky data in noise or a

mixture distribution of less spiky data

effects of thermal noise. This is included in a coherent manner and shows that even at a fairly

good SNR of 30dB there is an obvious elbow in the plots where the lower magnitude has the

expected slope of an exponential distribution but the higher values approach the noise free case.

The plots show that in the presence of noise it is extremely difficult to distinguish K and Weibull

statistics even at parameter values far from where they coincide (a = ii = 0.5).

The Weibull plots of 3.15 shows shape parameters that are extremely spiky and on the limit of the

expected values according to both the DERA clutter model (a = 0.25) and Ward et al. (v = 0.1)

however these parameters are necessaiy to achieve an elbow in the Weibull plot that resembles the

real data from Chapter 4; if a spatial mixture of distributions is formed then similar plots can be

generated with much less spiky parameter values (11 = 1).

33.3 Testing for Stationarity

The underlying statistics are assumed to be stationary in most detection schemes. The large body

of literature on sea clutter shows that the statistics can vary considerably upon factors including

grazing angle, frequency, polarisation, wind speed, sea state and radar type. Treating each data set
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as being a time series individually representative of a particular environment, temporal stationarity

over the order of seconds should be tested as this is a possible detection scenario.

According to Harvey (1993), for a stochastic process X to be stationary several criteria must be

satisfied at all time t by the discrete values xt:

(Xt)
	

(3.70)

((Xi - )2) 
= iT0)
	

(3.71)

= eei-) , T1,2,...	 (3.72)

where (•) is the expectation. The above equations are recognised as mean, variance and autoco-

variance respectively. Harvey further notes that to test for stationarity in this way the time series

must be 'ergodic' such that observations sufficiently apart should be almost uncorrelated; not the

case in a cyclic time series for example.

Equations 3.70 - 3.72 define 'weak' stationarity. A further constraint defining 'strict' stationarity

is that the joint probability distribution of the observations is constant, i.e. a multivariate condition.

Using stationarity to test the applicability of a PDF only requires univariate observations and so

this is too strong a constraint.

A problem in applying the stationary criteria to a single set of data is how to window the data in

order to assess a change in statistics. This is normally determined by practical means, in a rotating

radar the number of data points will be determined by the antenna angular velocity and PRF, but

in MFR there is no restriction in stare mode and the PRF can be adaptively changed.

In real data even the weak stationary criteria are often too strict and so it is normal to apply a

transformation to render the data stationary. Commonly a windowed processor defines a local

region of the data and the data is normalised with respect to its local mean, this forces Equation

3.70. Similarly, dividing Equation 3.72 by the local variance yields the autocorrelation function

which measures the form of the correlation decay rather than the magnitude.

Further transformations can be used to obtain stationarity, these include 'differencing' to remove

linear trends by using the transformed variable LXt = Xt - Xt_1 and also a log transformation

which is applicable when the standard deviation is proportional to the mean (Cromwell et al. 1994).

Some mathematical tests for stationarity, discussed by Cromwell et al. using the Dickey-Fuller test

(Dickey and Fuller 1979), rely on assuming an autoregressive model a priori and testing for the

null hypothesis of a random walk. Priestly (1988) discusses others that compare two sections of a
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series' covariance or spectral properties, making the comment that these sections must be locally

stationary for this to work. A test to assess the overall stationarity of the time series is required

and is given by Priestly via an estimate of the 'evolutionary' spectrum over time. However, this

evolutionary spectrum is determined using a window and is thus subject to the problems discussed

in Section 3.2.3.

If a change or evolution in the statistics are possible then one must carefully choose detection

schemes with respect to their a priori assumptions and robustness.

3.4 Further Possibilities

Two proposals concerning chaotic and fractal properties of sea clutter have been made in the

literature. A brief introduction is necessary to make them accessible but no further consideration

has been made in this thesis, the somewhat esoteric maths and inability to relate directly to the

physical process does not justify it (although significant progress in applying fractal modelling to

sea clutter has been made recently by Berizzi et al. (2000)).

3.4.1 Chaotic Model

A chaotic system can satisfy all tests for randomness and yet be entirely based on deterministic

nonlinear dynamics. Haykin (1997) has advocated that sea clutter is a chaotic process.

The Logistic Equation

The logistic equation demonstrates some simple properties of chaos:

xt+i=kxt(1—xt),0<k<4	 (3.73)

Using the same initial x value of 0.5, graphs are shown for various parameter k in Figure 3.17.

For k < 1 the graph tends to zero, i.e. zero is the fixed point attractor for the system. Increasing

k towards 4 shows various trends, the fixed point attractor for k > 1 is non-zero. When k > 3

a bifurcation takes place whereby there are now 2 attractors, i.e. a two point attractor. Putting

k > 3.4494... shows periodic doubling with a 4 point attractor. Increasing k beyond this shows

8, 16. 32, 64... point attractors until arriving at a state which can show correlation and periodicity

on many scales - generally referred to as chaotic.
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Figure 3.17: Evolution of the logistic equation dependent upon control parameter

The simple one dimensional equation shows a range of differing behaviour controlled by a single

parameter. Periodic doubling is not immediately obvious from the equation, and is often an indic-

ation of the onset of chaos in simulated systems. Additional concepts in chaos are discussed in

Appendix B.3.

3.4.2 Fractal Modelling

Fractals are systems whose invariance lies not with time but scale. A classic example is found in

the bronchi of the human lung where the same branching structure is seen at every scale. Typically,

analysis of structure is limited at large scales by the sample length and at small scales by the

sampling rate. If the spatial statistics of the system are similar over this range this is termed

'statistical self similarity'. One such family is the 1/f process generally defined (Wornell 1996)

as processes having a measured power spectrum obeying

(3.74)

which gives a correlation structure via Fourier transform (Champeney 1987)

	

2	 2	 7-1
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3.5 Summary

Probability distributions commonly applied to sea clutter have been covered, accompanied by their

parameter estimators. The popularity of the K-distribution arises from its physically attractive

compound representation which defines the statistics as coming from the speckle of an underlying

power modulation. A commonly applied alternative is the Weibull distribution, despite it lacking

a strong physical justification.

Both the Weibull and K shape parameters have iterative and non-analytic maximum likelihood

estimators respectively and so an estimator suitable for real time processing is identified in the

normalised log estimator U. Importantly this is known to be accurate for both distributions and

has a simple interpretation related to the geometric and arithmetic mean.

Justification has been given for the subsequent use of a single texture measure U. A novel contribu-

tion was made investigating the sample distribution of the texture estimators subject to progressive

censoring, thermal noise and low sample numbers. Uniquely U has been shown to be Gaussian

distributed for all considered cases, this allows robust statistics to be used for determining the con-

fidence in a particular measured value. The effect of edges and modulation upon the measurement

of U was explicitly determined to allow further investigation of non-stationary data.

The physical origin of the Doppler spectrum was considered but it is suggested that except under

the controlled conditions of a wave tank, a three component mixture could reasonably fit a wide

range of measured spectra without necessarily confirming their physical nature. Explicit problems

have been stated in the usual analysis of Doppler by fast Fourier transform methods. Analysis via

the wavelet transform has been suggested as a way of overcoming the simultaneous uncertainty in

frequency and time of a signal by achieving a lower bound to their uncertainty product. This gives

an elegant way of analysing non-stationary signals without the arbitrary windowing and smoothing

commonly associated with Fourier methods.

Whilst chaotic and fractal analysis offer appealing sources of novel research, they are still a new

science and do not have the robustness of established mathematics, and so no further consideration

will be made.

Simple methods of identifying an applicable statistical distribution have been shown with caution-

ary advice, and the definitions of stationarity have been stated.
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Chapter 4

Assessment of Real Data

This Chapter covers the analysis of real data recorded in varying ocean conditions. It must be

borne in mind that the results are an interpretation of the scene by the radar and whilst strong

mathematical models are desirable, the experimental and environmental conditions are critical.

The environment is illustrated by two digitised stills from the continuous video recordings in

Figure 4.1 which show typical surfaces from a 4.3m and 6.lm significant wave height (the mean

height of the upper third vertical displacement as measured with a waverider buoy). It is difficult

to spatially compare (register) these optical frequency images with those derived from the radar

data without a visible distance scale in the images, but some general points can be made:

• The 4.3m scenes show the presence of numerous abrupt small-scale whitecaps. Although

their effect at operable radar frequencies is presumably different it indicates a change in the

underlying physical processes responsible for scattering.

• Modulation can be seen in both images due to the swell present, but further wave structure

is apparent without breaking.

• Within the 6.1 m scene significant areas are hidden from view by the much larger breaking

structure, hence the modulation is partly in 'shadow' as viewed by the radar.

• Larger scale wave events can be seen towards the horizon which are explained in part by

the popular belief that the seventh ocean wave is the largest. It is not clear how this arises

but fully developed waves can be calculated to break when their height is approximately
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SEN287	 09:02:21
Sin.n 87-3294, 4000rn, 284 degrees

Sennen Cove d	 1996

0087d

Significant Wave Height = 4.3ni

SEN537	 11:1044
Sennen 3537-3542 4500m, 331 degrees 3 &

Sennen Cove dutL	 1996

I

OO613.

Significant ave Height = 6.lm

Figure 4.1: Simultaneous video still from a) sen3287 - sen3294 with significant wave height of

4.3m and b) sen3537 - sen3542 with significant wave height of 6.lm
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Figure 4.2: Raw data histograms showing A/D problems

one seventh of their wavelength (Komen et al. 1994) which, if any resonance is present, is a

possible explanation.

The majority of data is from high sea states which are at the extreme of usual operating

parameters for practical radars.

4.1 Data Integrity

The data is output digitally by the radar in real time to Exabyte tapes. A large amount of data taken

in varying operating conditions between 1994 and 1996 is available at the DERA Portsdown site of

which several gigabytes were transferred to a PC for analysis using MATLAB (Mathworks 1999).

User friendly software was provided by DERA in the form of Matlab programs to format, display

and process the data. These were not suitable for fast development, being based upon a Graphical

User Interface (GUI), so a parallel set of command line pmcedures were written.

The raw coherent data is stored as a complex integer defined in the complex plane of in-phase

(I) and out-of-phase (Q) components. Each component is obtained from a separate Analogue to

Digital (AID) converter. By histograniming the I and Q values separately it is possible to check

the operation of the AID. In addition this checks to see whether the correct attenuation has been

used on the radar to give the data a reasonable dynamic range without introducing spurious A/D

noise. In a large number of cases the data was degraded by the absence of certain values, this is

indicative of a 'sticky bit' where the binary representation of the integer consistently has one or

more bits at the same value. In addition some integers were of lower than expected occurrence,

81



4.2. High Resolution Range Profile Data 	 ASSESSMENT OF REAL DATA

indicative of an intermittent or partial sticky bit. The shape of the histogram was also variable,

obviously some dependence on environment is expected but some were severely deformed with

no obvious explanation.

Occasionally I and Q were not centred at zero, this is due to a bias voltage entering the system

which can be corrected in pre-processing. Voltage spikes also contributed to data 'glitches' where

a single data point would be far greater than expected. In all other reasonable cases the I and

Q were balanced and had the same dynamic range. Two particularly bad examples are shown

in Figure 4.2 but all files were screened by hand before use in this work. A further observation,

presumably due to stray AC voltages, is frequency contamination of the data appearing as small

spikes in the Doppler spectra. Another complication is the presence of birds in the data, this has

been confirmed from simultaneous video capture for some runs.

A problem unique to the formation of a high resolution image is that the set of individual pulse

frequencies necessary to form the chirp (Section 2.2.2) was often not sequentially transmitted

quickly enough (cycled) to form an accurate range profile. Determining when this happened is

made by examining the Doppler of a single chirp frequency or that of the imaged high resolution

range cell. A suitably formed Doppler spectrum will be seen only if the scene has not moved

significantly over the imaging time. Unfortunately, this fact, compounded with the other problems

meant that no 'perfect' 8GHz high resolution data is available and very few perfect 3GHz files;

however if the data is viewed as being representative of the output from an operational radar then

it cannot be ignored. Indeed this situation may frequently arise if a fast moving ship is moving

in the opposite direction to the waves and so it is still instructive to analyse, although a simple

interpretation of the received statistics is lost.

4.2 High Resolution Range Profile Data

The high resolution scenes were formed by stepped frequency chirp imaging as discussed in Sec-

tion 2.2.2. The 1.5m resolution scenes were achieved over a bandwidth of 100Hz with 256 fre-

quency steps, the 19cm resolution data utilised 800Hz bandwidth with 512 frequency steps. Pulse

repetition frequency, centre frequency and polarisation are detailed in Tables 4.1 and 4.2.
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Table 4.1: High Res Range-Time files used at 8GHz. H is Significant Wave Height, V,, is Wind

Velocity, Az refers to Azimuth Angle

Run	 F/GHz PRF Res	 Pol	 H/m V/ms 1 Az d AZwave Azlook Rng/m

sen3363 8.4	 20k 1.5m HH/VV 4.08	 12	 250	 273	 284
	

4005

sen3464 8.4	 20k 1.5m HHIVV 4.17	 21	 230	 257	 331
	

5010

sen3502 8.4	 20k l.5m HH/VV 4.46	 22	 230	 260	 284
	

5010

sen3470 8.4	 20k 19cm HH/VV 4.40	 28	 240	 241	 331
	

5010

sen3508 8.4	 20k 19cm HH/VV 4.46	 22	 230	 260	 284
	

5010

4.2.1 8 GHz Scenes

Five range time files in horizontal and vertical polarisations are used as an example. It must be

stressed that the derived Doppler spectrum is nearly flat due to excessive aliasing of the spectrum,

this implies the chirp frequencies were not cycled fast enough to form an entirely valid image.

Figure 4.3 shows scenes at 1.5m resolution and Figure 4.4 shows scenes at 19cm resolution, each

with 26 seconds of data. The data has been range calibrated and the RCS obtained from reference

to a calibration sphere. Environmental and system parameters are given in Table 4.1.

Suitably comparable images were obtained by using calibrated RCS images and displaying them

with a dB scale. Physically interpretable scenes are still produced indicating that the chirp cyc-

ling is not critical in obtaining an image. Only those low velocity scatterers whose phase can be

measured unambiguously for the entire chirp will be imaged correctly. High velocity scatterers

which move a distance greater than the transmit wavelength are 'smeared' into neighbouring range

cells; this environmental dependence may have a complicated time varying effect upon the statist-

ics. In particular the 19cm resolution data used a longer chirp length of 512 pulses which further

increased the minimum chirp cycle time.

4.2.2 3 GHz Scenes

The larger wavelength of the 3GHz scene means that the frequency cycling is less of a problem.

The stepped frequency chirp will image correctly if it can be formed whilst the scene is relatively

stationary, this usually means movement of less than about A/2. Large files whose Doppler spectra

were not completely flat are detailed in Table 4.2. The conditions of sen3287 were shown in the

video still of Figure 4.1.
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H-Pd	 iannan3363 V-Pol

4550	 •
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Figure 4.3: Calibrated dB RCS range-time plots for 8GHz 1 .5m resolution (simultaneous H & V

polarisation)
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Figure 4.4: Calibrated db RCS range-time piots for 8GHz 19cm resolution (simultaneous H & V

polarisation)

Table 4.2: High Res Range-Time files used at 3GHz. H is Significant Wave Height, V 1, is Wind

Velocity, Az refers to Azimuth Angle

Run	 F/GHz PRF Res Pol H,.L,Im V30/ms' AZwj70tj AZwave Azi 1,k Rag/rn

sen3277 3.0	 20k 1.5ni HR 3.94	 15	 210	 232	 331	 1995

sen3287 3.0	 20k 1.5m RH 4.25	 30	 330	 276	 284	 4005

sen3352 3.0	 40k 1.5zn HR 3.95	 16	 350	 266	 285	 2010

sen3353 3.0	 40k 15m VV 3.95	 16	 340	 266	 285	 2010

sen3613 3.0	 20k 1.5m VV 2.56	 13	 50	 267	 284	 2505

sen3734 3.0	 20k 1.5ni VV 1.37	 9	 320	 280	 284	 2505
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All files are singly polarised as no alternately polarised data was acceptable, however several

consecutive files are available which should allow long term comparison. Each file is about 20

minutes long, coupled with their high PRF this gives a reasonably large measured data set which

accounting for pulse shape gives over samples of data per run, of which some is shown in

Figure 4.5.

4.2.3 Discussion of Observed Scenes

Initial Impressions

Common to each frequency, three separable areas of homogeneity seem to be present in the scenes:

• Areas of near constant low RCS at the edges of the range gate. These are attributed to the

received pulse being of constant high power over the central area of the range gate only.

• Wave fronts of high RCS with obvious correlation in range and time. The correlation varies

between scenes and perhaps within a single scene.

• Areas with variable correlation and abrupt RCS changes.

The presence of separable regions of varying correlation suggest that it may not be possible to

treat the scene as a single process. In particular the application of any estimator suited to a simple

PDF with an associated measure of fit may be inappropriate if applied to the scene globally.

There is obviously a problem with sen36 13 and sen3734 as they appear particularly noisy and their

RCS scale is about 20dB below the other images. This suggests excessive attenuation was used

however nothing in their notes supports this.

Figure 4.6 shows the RCS probability distribution from all scenes using Weibull paper as detailed

in Section 3.3.2. The resultant plots have a definite elbow which separates two approximately

straight lines. This is an important result as it indicates a change in distribution for large RCS

returns; the straight lines show that a distribution similar to Weibull is applicable in two separate

regions.

Crucially any estimator based upon a single global PDF is likely to result in a value midway

between that of the two areas. To illustrate the relevance of this, the Weibull MLE estimator was

applied to data from H-Pol Sennen3363. Figure 4.7 shows the MLE obtained PDF overlaid on that

of the histogrammed data. Amplitude is used for effect, it shows a vast difference and the form
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Figure 4.5: Calibrated dB RCS range-time plots for 3GHz urn resolution (singly polarised H

or V)

87



RCS

4.2. high Resolution Range Profile Data 	 ASSESSMENT OF REAL DATA

IGIz i R.Webi PIGS
	

3GHZ * Res Wi PIGS

Figure 4.6: Weibull plots of RCS distributions from high resolution scenes

is not correct - the KP statistic is, unsurprisingly, zero. The problem is that the distribution is not

Weibull and thus the Weibull MLE is not applicable.

Polarisation Differences

Using the 8GHz alternating polarisation scenes it is interesting to see if H and V have similar

distributions. Although not shown explicitly, separating the H and V plots in Figure 4.6 shows the

horizontally polarised data to have a much higher probability of large returns, as observed in many

papers on sea clutter. The extent of this is variable, but without any perfect 3GHz alternate data

further analysis is not performed.

Noise Component

The noise figure can be estimated by plotting the mean returns from the range swath over a long

time. This has been performed in Figure 4.8 and the relative noise level can be determined from the

edge regions. The axis shows the range bins averaged over time; the overall extent should be about

384 metres with a centred, approximately Gaussian, pulse shape corrected for range differences

(discussed in Section 2.1.2) but:

The edges are not equal; this could indicate range correction is not perfect due to poor

mechanical calibration of the radar.

The pulse is not always exactly centred; there could be a slight problem with the loopback

(Section 2.2.2).
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-	 Weiciji MLE Fit

Amplitude

Figure 4.7: A Weibull MLE fit to H-Pol Sennen3363

The pulse is suitably Gaussian over the central region and further analysis accounts for this.

. The SNR is variable but indeed sen3734 and sen3613 show the lowest SNR at about 10 and

15dB respectively, with other scenes better than 20dB.

As discussed in Section 3.1.4, in addition the noise component can be estimated from forming the

Doppler spectrum. This is only possible if the chirp was cycled fast enough and Figure 4.9 shows

that sen3277 and sen3287 are vety poor. For the remaining files, the SNR calculated from the

spectrum agrees with that calculated from the derived range profile above.

Comparing Figure 4.9 with the previous plot of Figure 4.5 shows that modulated wave-like images

are obtained only when the chirp has been cycled fast enough and that the SNR has an obvious

effect upon the image quality.

4.2.4 Further Corruption of the Data

Problems arising from analysis of the high resolution data are:

Quantisation errors, presumably due to faulty A/D.
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Pulse Shape Derived from 1 .5m Files
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sen3287
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Figure 4.8: The mean intensity from high resolution range swath over 20 minutes, arbitrary dB

scale

Table 4.3: The two selected High res files for overall analysis. H is Significant Wave Height,

V,,, is Wind Velocity, Az refers to Azimuth Angle

Run	 F/GHz PRE Res Pol H/m VIms' Azwd AZwave Micok Rng/m

sen3352 3.0	 40k 1.5m HFI 3.95	 16	 350	 266	 285	 2010

sen3353 3.0	 40k l.5m VV 3.95	 16	 340	 266	 285	 2010

. Mismatched I & Q channels.

. Excessive system noise, which the calibrated RCS suggests could be due to an attenuation

of 20dB.

• Chirp cycling was not performed fast enough, especially in the 8GHz fIles, smearing high

velocity components into neighbouring range cells.

Extensive checks leave only two acceptable files and two more with significant noise contamina-

tion. This is really not enough to discriminate between existing clutter models, and the decision is

taken to concentrate on files sen3352 and sen3353. Their parameters are repeated in Table 4.3.
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Figure 4.9: Doppler plots for 3GHz 1.5m resolution (singly polarised H or V)
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Upon examination of these two files, intermittent high intensity range profiles were noticed termed

'clicks'. These did not seem to be random with some periodicity present, examining the raw

data showed these to arise from a single high intensity value in the received chirp. If the returns

are accepted to be random on a pulse to pulse basis (since sweeping the frequency effectively

decorrelates the scene) then this is perfectly possible in spiky clutter, but one further test was

carried out:

1. Obtain the raw I & Q values of the 256 pulse chirp.

2. Locate the frequency number (1 - 256) of the maximum absolute value within the chirp.

3. Calculate the normalised maximum value as a ratio with respect to the mean amplitude of

the chirp.

4. Plot the frequency number versus the normalised value as a scatter plot.

Note that step 4 is preferred rather than a histogram or an averaging method as the clicks are so

intermittent they may not show up. Some modulation is expected, the chirp return does form a

range profile FFT after all, and so the overall mean maximum frequency number value is calcu-

lated. The results from V polarisation are presented in Figure 4.10 where an obvious discontinuous

area around frequency numbers 50-60 is present; single frequency bins show more than two or-

ders of magnitude excess over the mean chirp level. The overall mean values are continuous

and show that the chirp is usually well formed which could indicate that the AJD converters in

frequency numbers 50-60 are intermittently contaminated with voltage glitches. It has been sug-

gested (Branson 2000a) that these are due to intermittent interference from another 3GHz rotating

system which could explain their slight time periodicity (not shown).

Without knowing the exact cause of the problem, the data has been processed by removing any

chirp which has a single maximum frequency value with an RCS ten times that of the chirp aver-

age. This should not have a significant effect on the post-FFT range profile statistics as it removed

only 2.5% of samples which were otherwise distributed evenly across the chirp (Figure 4.10 is

clipped to show this).
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ND test sen3353

Figure 4.10: Chirp frequency bins 50-60 show erroneous intermittent large values

Consecutive 6.6s Weibull Plots of VV sen3353

vii

10_s	io°	 io'°	 io	 io'°
RCS	 RCS

Figure 4.11: Consecutive 6.6s (displaced by 10dB) of Hi-res data shows the high intensity RCS

distribution is variable

4.2.5 Determining the PDF of the RCS

Stability of the PDF for the Perfect Data

Large variations in the distribution are seen over time. One minute of consecutive 6.6s blocks

of data are shown in Figure 4.11 which, when plotted on Weibull paper, demonstrates the high

intensity RCS distribution fluctuates considerably whereas the low intensity is relatively stable.

The low intensity returns are presumably dominated by thermal noise which explains the stability,

but the high intensity backscatter is variable in its extent (from the position of the elbow on the

plot) and its distribution (the gradient of the upper tail).

An exact fit to a simple distribution is unlikely based upon the Weibull plots of Figure 4.11.

Distributions previously considered (Section 3.1) would appear as a continuous curve without the
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Figure 4.12: Various MLE fits for 6.6 seconds of 1.5m Hi-res data

distinct elbow, however their MLE solutions when applied to this data may be more robust and

could fit the data reasonably well. By using the MLE for Weibull and Gamma with the normalised

log estimate for K (Equation 3.15) the results of processing a randomly chosen 6.6 seconds of HF!

sen3352 and VV sen3508 are shown in Figures 4.12. The complementary CDF is piotted since it

is the high RCS tail of the distribution that is crucial for setting a target detection threshold. None

of the distributions have characterised the data over the RCS range with order of magnitude errors

at typical threshold points, this was generally the case when processed over the entire data set.

It is clear that ocean wave events are present to such a degree as to render a 6.6 second duration

distribution unstable. If the observation window is increased a stable distribution may eventually

be reached however this was still not obvious over data blocks of 1 minute (not shown) which is

unlikely to be obtainable in an operational radar. The intrinsic cause is that the high intensity wave

events seen in Figure 4.5 are dominating the determined statistics.

The Extent of Thermal Noise

By determining the local mean (see Figure 4.14 in later sections) the events have a peak mean

RCS of about 20dB above the low RCS regions. From the typical SNR of the files (10dB - 30dB)

this would suggest that the low regions are dominated by thermal noise. This is confirmed by the

slope of the low RCS part of the Weibull plots indicating an exponential distribution. Segmenting

the images by hand showed low RCS areas to have a flat Doppler spectrum, this indicates that

uncorrelated thermal noise is present over a considerable range extent of the image. This observa-

tion is discussed in depth in Chapter 6 where a statistical method of segmentation is suggested for
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individual range profiles.

Mixture Analysis

In the perfect 3GHz data, variation in the high RCS returns is a part of the backscatter statistics. A

single Weibull PDF will be suboptimum at both low and high intensity; it is especially inaccurate

if applied as part of a target detector based solely on magnitude statistics as the predictions for rare

high intensity returns are then orders of magnitude in error.

The Weibull analysis in Figure 4.6 suggested a mixture model of two separate Weibull distribu-

tions could be applied for all the data, including the 8GHz slow cycled data. This is incompatible

with the compound view of sea clutter, which views the underlying RCS as continuously mod-

ulating the speckle, but the unknown statistical effects from slow chirp cycling mean it is still

instructive to see if single wave events can be classed in this way. Statistically this is realised

by two distinct and unequal scattering populations each subject to different Weibull parameters,

forming a parameterised 5 dimensional distribution, whose distribution is

1131
pI' exp(— ) + (1 - p) I132_1	

I
exp( -

al	 a2

F1 _ ( 1 — ( 1 — p)exp Fi_ (1
L	 'i ]	 L	 \a2) ]

Graphical methods have been suggested to solve this (Kao 1959), and Falls (1970) give the neces-

sary moments as

	

(r	

\
r pa /131 F(+1 +(1_p)a132F —+1 , r= 1,... ,5	 (4.3)

\j3i	 I	 /2	 I

The method of moments requires a prohibitively large population for an accurate result. A nu-

merical MLE search is suggested by Oliver (1995) when applied to a K-mixture but this is corn-

putationally expensive over 5 dimensions. Jiang and Murthy (1998) explore in detail the Hazard

rate of this distribution (cf Equation 3.5) to show 8 separate cases exist, each of which can be

parametrically described, this may lead to a less general estimator.

A mixed distribution is complicated by the additional number of parameters to be estimated. Nu-

merical searches over the parameter space are required which may be expensive. A Nelder-Mead

simplex search over five dimensions was carried out to fit the data to these mixtures of K and
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ThbIe 4.4: Mixture distribution fit - Kuiper statistics p with the mixing parameter p, hat indicates

log averaging

File	 E (,7) a	 E (pww) a (pww) E () a () E (PKK) a (pKK)

sen3363 -0.763	 0.973	 0.511	 0.177	 -1.42	 2.46	 0.543
	

0.196

sen3464 -0.394	 0.886	 0.617	 0.247	 -0.720	 1.16	 0.574
	

0.301

sen3SO2 -0.619	 1.09	 0.584	 0.195	 -0.980	 1.60	 0.576
	

0.239

sen3470 -3.92	 4.03	 0.632	 0.183	 -4.22	 3.58	 0.548
	

0.242

sen3508 -6.58	 6.22	 0.556	 0.151	 -5.98	 5.81	 0.568
	

0.198

Weibull PDFs

P/eib11 (A) + (1 - p) ' Weibuil (A)
	

(4.4)

PKK = pP(A)+(1—p).z(A)
	

(4.5)

PKW = pP (A) + (1 - p) '3Weibull (A)
	

(4.6)

Various numerical methods exist to find a fit, least squares is a popular choice but does not give

a realistic fit to the tail of the distribution. A numerical MLE failed to converge without careful

choice of starting parameters, the converged result was very poor. As the Kuiper statistic is invari-

ant over the distribution it is reasonable to minimise this and in doing so the significance level pi

is maximised (see Section 3.3.1).

Convergence was achieved by making an initial least squares estimate to the data using the 2

parameter distribution(s) and then initialising the 5 parameter estimate using these values and a

mixing parameter p of 0.5. A least squares fit was made to the 5 parameter distribution before

invoking a minimisation routine based upon the Kuiper statistic. Note that no constraints were

used in the routines but an obvious one is that there should only be one root to the differential of

the distribution. Results for V-polarisation Weibull/Weibull and K/K are shown in Table 4.4

Using data blocks of 1.6 seconds and using a sliding 1/4 window approximately 100 seconds

of data was analysed. For every block the mixture parameters were determined and the Kuiper

statistic pv calculated. Defining =log io (p), the expectation of this E (p) and the standard

deviation a (p) are determined over the entire set. The mixing parameters are calculated normally

as the expectation E (p) and the standard deviation a (p). An example WW fit for one block

of sen3363 is shown in Figure 4.13 which had an excellent fit to the higher amplitude data with

overall pv of 0.7.
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Figure 4.13: A mixed Weibull fit via minimisation of PKP for 1 second sen3363

The fit is good for the l.5m resolution but there is no overall fit to the 19cm data. This may seem

in conflict with the straight lines and elbows seen in Figure 4.6 but it could show that the statistics

vary in time, and over 100 seconds the form of the distribution deviates significantly from what

can be achieved by a numerical search.

Whilst the fit to the data can be very good for the Weibull mixture, one must be cautious in

assigning any significance to this due to the number of free parameters. Attempting to form the fit

upon longer duration windows is less successful, indicating further heterogeneity or an incorrect

probability model for large windows.

The extension from two to five dimensional parameter space is large but the reasonably constant

mixture value over time (a (p) is low) indicates some stability. It would be interesting to see if

greater stability could be attained by constraining p to vary slowly. Justification for this model

could be attempted by partitioning the scenes in accordance with the mixing parameter p based

upon contours set in intensity.

The statistical mixture analysis takes no account of the spatial extent of the mixture, the usual way

of determining this is to use some form of windowed estimate. An arbitrary choice of some power-

2 window is used for this type of analysis and in the subsequently developed detection schemes;

Figure 4.14 shows a 16 by 16 sliding window in range and time (24 metres by 0.1 seconds) from

the first 6 seconds of sen3353V, corrected for pulse shape. Using the expected errors in estimating

U from Section 3.1.4 and assuming that the mean is accurately calculated for this window size,

analysis of sen3352 and sen3353 shows:

. The mean RCS has large areas of homogeneity with definite wave event steps of the order
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Figure 4.14: Arbitrarily chosen 16 by 16 sliding window estimate of the spatial form of sen3353

in terms of mean RCS and shape estimate U. The lowest value of U is caused by an abrupt edge

in the RCS

of 20dB present

. A particular wave event appears to have a stable mean RCS over the entire imaged time.

• The areas of low RCS were characterised as exponentially distributed well within error

bounds.

. The areas of high RCS could often be characterised as exponential, but were usually spikier.

. The lowest U values were not from homogenous areas, but due to the wave event causing

an edge effect upon the windowed U estimate (Section 3.1.4).

Overall, a particular range profile is often dominated by a single wave event and any further mod-

ulation is hidden by this. Reducing the window size so as to lessen the edge effects gave similar

results but with increased uncertainty in the distribution of the high RCS areas.

4.2.6 Conclusions from High Resolution Analysis

Preliminary high resolution analysis has shown:

Numerous problems with the data have been demonstrated, which without careful analysis

and rejection could give spurious results:

- The slow chirp cycling in the 8GHz data will smear any fast moving scatterer, but this

could occur operationally for fast moving observer or target
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- The intermittent voltage 'glitches' do not cause a major problem after careful filtering

to remove them from the frequency domain before the image is formed, but they could

give hugely erroneous results for the Doppler statistics in the next Section. If they

are from another 3GHz radar then this may occur operationally and could even arise

purposefully in a jamming situation.

- General bit errors and poorly chosen attenuation are present in many data sets which

would not occur operationally.

. Ocean wavefronts are present in those scenes with acceptable chirp cycling, producing sep-

arable areas of varying correlation in both range and time.

. As observed in many papers, horizontally polarised returns have a greater probability of

high intensity returns. Commonly HH is found to be spikier than VV but without perfect

alternately polarised data detailed analysis has not been performed.

• The commonly chosen Weibull and K distributions are unstable and offer a poor fit both

locally and globally regardless of the observation time. Using observation windows of 1 .6s,

6.6s and one minute upon the high quality sen3352 and sen3353 gave highly unstable fitted

distribution parameters over the 20 minute files.

• A statistical search for a binary mixture of Weibull distributions fits the 1 .5m resolution data

extremely well on 1.6s observation windows; the 19cm data is not fitted well but the greater

number of pulses in the chirp caused an especially slow chirp cycle time with expected

image degradation.

• The proposed binary mixture is reinforced by the large homogenous areas seen in the win-

dowed analysis. Although edge effects from the 20dB step are considerable, a large low

RCS spatial area of the data is thermal noise whereas the higher RCS area is spikier.

Although results are based upon relatively few acceptable data sets, they indicate that the high

resolution statistics cannot be characterised locally or globally by a simple distribution. Statistical

analysis assuming a time varying binary mixture of heterogenous distributions, assessed on the

order of 1 second was the only method that gave acceptable fits. Forming the binary mixture

needed computationally expensive minimisation routines but segmentation 'by eye' suggested that
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Table 4.5: Low res Doppler files used to assess RCS PDF. H is Significant Wave Height, Az

refers to Azimuth Angle

Run	 F/GHz PRF Pol	 H/m Azwave Az100k Rng/m

sen2029 8.0	 10k HH/VV 3.30	 310	 284	 1005

sen2O3O 8.0	 10k HHIVV 3.30	 310	 331	 1500

sen2035 8.0	 10k HH/VV 3.69	 319	 284	 1005

sen2036 8.0	 10k HHIVV 3.69	 319	 284	 1500

a large extent of the scene consists of system noise. Later Chapters of this thesis will implement a

fast method of determining the boundaries of the mixture that confirms this Section's results.

The conclusion is that increased observation time does not help in determining the local distribu-

tion when the presumed application will be to assess small areas of the RCS data for the presence

of targets. Indeed, this is present in the compound theory of sea clutter where the description of

the local distribution is exponential but the global distribution is K. A method of determining the

local distribution is required that specifically includes the effects of the high intensity edges from

the wave events.

4.3 Low Resolution Doppler Data

The raw intensity returns from the Doppler data are received from a larger range cell - 1 50m in

range extent, two orders of magnitude larger than the high resolution data. From the scattering

theory of Section 2.1.1 this will contain more scatterers and thus the PDF might be expected to

be closer to exponential. The Doppler returns do not have the constraint of a minimum chirp

cycling time as in Hi-res and consequently a greater number of acceptable files are available.

Upon forming the Doppler spectrum it is possible not only to examine the form with respect to

the theory of Section 3.2.1, but also to determine how the RCS distribution varies with respect to

velocity.

4.3.1 8GHz Files

Four alternately polarised and two VV polarised 8GHz Doppler files are used as an initial example,

environmental and system parameters are given in Table 4.5; wind data was not recorded.

Plots of both HH and VV intensity are given in Figure 4.15, both polarisations seem to be recording
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---	 _

Figure 4.15: RCS magnitude plots (m2/m2 of 8GHz Doppler data (HH polarisation in red, VV

polarisation in green - inverted for clarity so please ignore sign)

the same intensity structure. There are discernible areas of differing intensity over the order of

seconds; from the Hi-res analysis these are probably due to the ocean wave events. Additionally

there are shorter instances of high intensity returns commonly termed 'spikes' and file sen2O3O

shows a distinct step in the long term RCS at about 45 seconds. The large individual return in

sen2036 VV polarisation is most probably due to faulty A/D conversion, analysis at such a high

PRF means that the speckle is correlated to some extent and this return was too abrupt.

Similar to the Hi-Res analysis, Weibull plots of the data are used and consecutive 6.6s of alternate

8GHz data is shown on Figure 4.16. Compared to the high resolution plots of Figure 4.6 the elbow

is immediately less obvious in the low resolution files and there is much less variation over time

and between polarisations. Testing many data sets confirmed that, in general, the Weibull plots of

the Doppler data gave less justification to attempt a mixed Weibull fit.

Some papers have found the Doppler spectra to show significant variation between polarisations.

In particular, Ward et al. (1990) reported that HH mean Doppler was always larger than VV re-

gardless of wind direction in high resolution. For a large number of low resolution data files

this was found not to be the case; the upper plots of Figure 4.17 show not only the changing
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Figure 4.16: Weibull plots of consecutive 6.6 seconds of 8GHz low resolution data displaced by

10db (HH - Red, VV - Green)
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Figure 4.17: Low resolution 8GHz sen2035 file. Upper plots show HF! and VV have similar

Doppler speca. Lower plots show U estimate vs velocity with normalised mean linear RCS
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Table 4.6: Low res Doppler files used to test variability. H is Significant Wave Height, V, is

Wind Velocity, Az refers to Azimuth Angle

Run	 FIGHz PRF Pol H/m V/ms' Az2a AZwave Az100k Rng/m Notes

sen3537 3.0	 10k VV 6.09	 32	 290	 284	 331	 4515	 Events

sen3558 3.0	 10k VV 6.08	 31	 320	 286	 284	 4515	 Normal

sen2035 Doppler spectrum over time (1 minute) but also that the HH and VV polarisations give

near identical spectra. The normalised log estimator was applied in each velocity bin and shows a

strong dependence upon velocity, this is plotted simultaneously with normalised linear RCS in the

lower plots of Figure 4.17 using a 1 second sliding window analysis. It would appear from this

that the tails of the Doppler spectra have a spikier distribution; however from the upper Doppler

image an approximately 40dB instantaneous SNR can be seen, the shape of the Doppler spectrum

is not stable over time and so in effect a 40dB step is seen intermittently. Section 3.1.4 shows that

in locally exponential noise this intensity of step only needs to be present for less than 1% of the

scan time to cause a measured U as low as that seen here which explains some of the results.

• A simple stationary distribution shape estimate such as U may not be applicable upon indi-

vidual Doppler velocity bins since the presence of the such velocities is intermittent and the

samples are far from being Independent Identically Distributed (lID).

4.3.2 3GHz Files

Files sen3537 and 3558 were as similar as possible, taken on the same day 3 hours apart. File

sen3537 has identifiable intermittent Doppler events attributed to birds (TW Research Ltd. 1999)

or wind 'whipping off wave crests' (Money et al. 1997b) the sea state of these files is shown in

the video still of Figure 4.1. Usually birds can be distinguished because they tend to change their

direction and have a preference for flying against wind when feeding upon the surface.

TW Research reported that whilst sen3537 showed spiky character attributed to birds, sen3558

had a K-distribution parameter xi which was 'surprisingly low (i.e. the clutter is spiky) and needs

further investigation' calculated using shape estimator V or U. This is performed in Figures 4.18

and 4.19 where, as in the previous Section, the U value is calculated for each Doppler velocity bin.

Additionally the proportion of the signal above system noise is plotted, calculated via a Sequential

Edge Detector algorithm discussed in the next Chapter.
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Figure 4.18: Wind caused events are probably responsible for the discrete fast scatterers seen in

sen3537
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Figure 4.19: The non-stationaiy Doppler spectra is the primary cause of low U in sen3558 not

homogenous spiky statistics
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Figure 4.20: sen3546 shows extremely low U. This is due to the intermittent rolling of the waves

rarely above system noise

From analysis of this data, it is suggested that the excessive spikiness in the tails of the Doppler

spectra as observed by TWR and Baker (1991) are not due to homogenous statistics but by a

modulation so slow that it appears as intermittent discrete intensity steps in a particular Doppler

bin. This is known because the Doppler bin with the lowest U has a signal above the system noise

for only about a fifth of the analysis time - from Section 3.1.4 this was the proportion required to

cause maximum effect upon U when a single intensity edge was present in exponential noise.

To further emphasise this, Figure 4.20 shows the spikiest file encountered (i.e. lowest determined

U) is just rolling waves of high RCS relative to system noise.

4.3.3 RCS PDF Analysis

Out of the few files analysed, Figures 4.16 & 4.15 shows that sen2036 has the least variation in

form over time. Fits are performed to a Weibull, K, exponential and gamma using the normalised

log estimator for K, and the MLE otherwise, upon 100 seconds of data. The complementary CDF

for both H and V is shown in Figure 4.21. The K distribution shows a closer fit than any other but

is still two orders of magnitude in error at typical threshold levels.
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Figure 4.21: Various MLE fits to 8GHz sen2036 low resolution data

In a final effort, a statistical spatial mixture of exponential and K-distributed clutter subject to

coherent noise was used to fit the data

1
P(I) = p— exp(---) + (1 - p) PK+N (I)	 (4.7)

01

where PK+N was calculated using a numerical inverse Laplace method covered in Section 5.4.

The obtained fit could often fit the distribution well (expected due to the number of free paramet-

ers) but was not a consistently reliable estimate of the critical tail regions.

4.4 Summary

This Section has provided evidence that the statistics of backscatter returns are nonstationary in

many ways. The Hi-res range profiles of Figure 4.5 immediately suggest at least a 2 compon-

ent scene present, strengthened by the elbows seen in the Weibull plots of the data. The poor

robustness of MLE methods has been shown in cases where the a priori model is not met. The

discontinuity in the Weibull plot motivates mixture analysis which obtained an effectively exact fit

to the distribution, however with 5 variable parameters this is not surprising and could be achieved

by many such distributions.

System noise is present over a significant spatial portion of the range-time scenes, which is pre-

sumably due to large waves shadowing this region. The effect of system noise is also seen in the

Doppler data where the varying proportion with respect to velocity affects the determined statistics

considerably.
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Doppler analysis provides further evidence of the nonstationary hypothesis. Whilst H and V are

more similar than expected, the RCS statistics are shown to vary in magnitude and distribution not

only between data sets but also over a timescale of the order of seconds.

The observation that commonly applied distributions were in error by up to 5 orders of magnitude

in the tails of the RCS distribution casts serious doubt upon the use of a single a priori distribution

to describe clutter. This is in stark contrast to the literature which seems obsessed in basing its

detector performances upon known, fully specified stationary clutter statistics. Fast adaptation to

the data is necessary so as to avoid excessive false alarms or missed detections.

Inhomogeneous nonstationary statistics require a different analysis method. After discussion of

statistical detection schemes in the next Chapter, explicit nonstationary detection schemes are

suggested for real data in Chapters 6 and 7.

As a final note to this Chapter, it is worth quoting Kazakos and Kazakos (1990) from their defini-

tion of the rules of statistical decision theory:

Careful experimental control to assure that the total observed outcome [from a

realisation of an underlying stochastic process over some time TI represents a real-

isation from the same physical phenomenon or stochastic process, rather than a mix-

ture of partial outcomes from different processes.
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Chapter 5

Statistical Detection Schemes

Analysis of data in order to detect a deviation from the assumed statistics is a common task within

radar. By rigorously defining the probability distribution it is possible to give a detection scheme

robustness and accurately determine its efficiency. This Chapter explores previously applied point

target detectors and an attempt is made to generalise this to a Sequential Edge Detector which

simultaneously flags point targets and edges within exponential speckle.

A numerical inverse Laplace transform is demonstrated to accurately determine the arbitrary N-

fold sum of a K-distributed variate embedded in noise.

5.1 Assets Available

Assuming a number of samples beginning at time rn and ending at time n, the following assets are

available upon which to base a detection scheme:

I. A realisation Xm:n = {irn, Xm+1,... , x} from the radar output.

2. A null hypothesis H0 indicative of the expected target free environment.

3. M parametrically known hypotheses H2 ; i = 1, ..., M chosen from theory or observation.

4. A set pj of a priori probabilities on the M hypotheses determined from previous observation.

5. A set Ckz ; k, i = 1, ..., Al of penalty coefficients to inhibit incorrect decisions.
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6. A measure of performance based on probability of detection (Pd), probability of false alarm

(P1 a), a response or efficiency measure, and time to false alarm T1

5.2 Constant False Alarm Rate Processors

Limiting the number of false alarms that occur gives robustness to any detection scheme. Com-

monly a Constant False Alarm Rate (CFAR) Processor is achieved by defining a fixed probability

of miss-classification in homogeneous statistics. Any deviation from homogeneity over the obser-

vation time will severely decrease the effectiveness of these schemes. An edge, where both the

power and type of statistics can vary abruptly, results in a finite response time during which the

detector is lowered in performance.

A common performance measure is CFAR loss - the increase in target SNR required to maintain

P(J and P1 a; the reduction in Pd in comparison to that achieved from complete knowledge of the

statistics is another possible measure. This takes no account of inhomogeneity and the loss can be

negative when the correlation is known. With reference to the previous Chapter more appealing

measures are:

I. Sensitivity of the processor to errors in determining the clutter characteristics.

2. Response of the processor to abrupt variation in clutter characteristics (edges).

3. Occurrence of target masking due to edges or multiple targets.

Historically CFAR processors are of low complexity, their origins lying in acoustic delay lines.

Emphasis is placed on keeping these processors simple despite computational power rising by

orders of magnitude since their conception. The CFAR processor should be at least as complex

as the method of determining clutter characteristics when this is being calculated concurrently.

Commonly the CFAR is applied to the raw data but if the PDF from a filter output is known the

CFAR can be applied to this.

5.2.1 Neyman-Pearson Tests

Utilising the following assets:

. A realisation X1:n from the radar output with fixed n.
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• Hypothesis H0 indicative of no target

versus hypothesis H1 indicative of target present.

• A measure of performance based on Pf a and Pd.

If the H1 hypothesis is fully specified and selected in advance as the most important criterion,

maximisation of Pd for fixed Pf a yields the Neyman-Pearson (NP) detection scheme (Kazakos

and Kazakos 1990). When H1 is not fully specified (unknown target strength or distribution) then

the NP scheme cannot in general be realised (Kazakos and Kazakos 1990). Assuming a class of

PDF for H0 defines a parametric detector that given X1n has to decide on parameters such as

variance or scale. Estimating the PDF from X1:n or using a technique independent of PDF defines

a non-parametric class of detector. Increased performance is achieved by the parametric detector

as more prior information is included.

Usually a CFAR processor is parametric, formed by setting a threshold A upon a test sample x so

as to maintain a constant Pfa the detection rule being

x > A H1 Declared	 (5.1)

x < A H0 Declared

Whilst one could set a fixed threshold from full knowledge of H0 , Finn and Johnson (1968) pro-

posed an adaptive threshold that can follow a slowly varying change in the background mean

which can dramatically improve Pd. Commonly a threshold is set in signal magnitude based upon

a number of reference cells surrounding a test cell, this defines an analysis with window size W

(the previously, similarly defined, shape estimator of Chapter 3 is no longer considered). Pd is

improved with increasing W under homogenous conditions but consequently the response time

of the detector to inhomogeneity is lengthened. Specifying W defines a correlation length for the

statistics of which no a priori knowledge is usually available.

A target is determined when the test cell exceeds the threshold derived from the reference cells.

The false alarm rate is found from

Pfa = f (1— Cx(x))pzix(x)dx	 (5.2)

where Cx(cx) is the CDF of the probability distribution X at the point cx and pzIx(x) is the

PDF of the test statistic Z given X. The threshold is the value A = aZ(xi n). The type of CFAR
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Figure 5.1: Generalised CFAR Process

is determined by the test statistic, a reference window of size W is assumed to lie either side of

the test cell in these examples:

Cell Average (CA)

ZCA =	 Xi
	 (5.3)

Cell Average Greatest Of (CAGO)

(-w/2 W/2 '

ZCAGO = max	 (5.4)
i=-1	 i=1	 J

Order Statistic (OS) of order k

Zos,k = X(Wk)	 (5.5)

{X(Wl)	 ...	 X(ww)}

Thus the windowed CFAR uses a detection rule

x ^ cZ Target Declared	 (5.6)

x < aZ Target Absent

where the threshold multiplier a is a constant for a particular test and distribution, chosen so as to

achieve a fixed Pf a in homogenous conditions.

Numerous modifications of these forms exist to counter mixtures of clutter edges, multiple targets

and heterogenous environments some of which are discussed in Section 5.5. Calculations neces-

sary to formulate CFAR upon various Ill) statistics are given in (Minkler and Minkler 1990) and
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Figure 5.2: Example of NP windowed CFAR; after Armstrong(1992)

particular emphasis is placed upon the K distribution by Armstrong (1992). The CA detector is

optimum in Rayleigh clutter for the detection of Swerling I targets (Gandhi and Kassam 1994).

Whilst CAGO is often said to offer resistance to edges, a large edge ratio will cause a significant

target loss over W/2 samples before the edge occurs as even one sample from the higher side

will dominate the statistics. In the literature CFAR is usually taken to mean fixed window CFAR;

however a constant false alarm rate can be achieved by several types of processors detailed in

Appendix C.

5.3 Application of CFAR

5.3.1 Fixed Window CFAR

The commonly applied detection test is fixed window Neyman Pearson (FWNP) CFAR. A simu-

lation of IID K-distributed data of shape v = 0.5 is used to test CA, CAGO and OS for a window

size of 32, shape parameter is assumed known a priori. Using 300 samples, multiple 16dB point

targets have been added at samples 70-95, isolated target at 150 and a potentially masked target at

230 by the 14dB edge at 240 onwards. WIth reference to Figure 5.2:
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. CA has the lowest threshold, therefore greatest Pd in homogeneous clutter. Multiple targets

cause masking with some going undetected. The target near the clutter edge is only just

detected and abrupt changes in the threshold are seen.

• CAGO has the greatest threshold in homogeneous areas so lowest Pd. It is extremely sens-

itive to multiple targets - none of which are detected as the detector views them as an edge.

The target near the clutter edge is completely masked and very abrupt changes are seen in

the threshold.

. OS has a threshold midway between CA and CAGO, no target masking is seen - however

this is due to judicious choice of settings and more multiple targets or an extended target

would cause problems. Threshold changes are gradual.

Common to all algorithms is an initialisation time equal to that of the window size, edge effects

will be apparent at the end of the data since we only have a one sided window to compare.

To specifically overcome some of the missed targets it is necessary to identify the causes, these

are deemed to be:

• Self masking - a large persistent target is present for more than one sample.

• Edge masking - an edge is close to the cell under test and pollutes the window.

• Multiple target masking - targets artificially raise the mean value of the window.

• Edge - when a true edge is seen in the data a response time is seen, or the abrupt change is

at the wrong point.

5.3.2 Choice of Window Size

The justification for choosing a particular window size W does not seem to be emphasised in the

literature, obviously a power of 2 is preferable for fixed memory storage and one would like W to

be short enough to be homogenous, whilst long enough to give a reliable estimation of the mean.

In exponential noise one can easily compare the required threshold multiplier normalised to the

mean for varying window sizes at constant Pf a since the distribution of the sum of N exponential

variates is easily calculable. In general this is not the case in the K and Weibull distributions but a

numerical solution is proposed in the next Section.
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Figure 5.3: A factor determining the size of fixed window CFAR is the threshold multiplier

required for a constant false alarm

Figure 5.3 shows why in exponential noise a window size of 32 is usually chosen - little benefit

is seen above this due to the shallow curve. The greater variance of spiky clutter means that the

window size required to reach this point (on a presumably similar shaped curve) will be much

greater suggesting that the window size should be a function of the observed statistics for similar

performance under variable clutter distribution.

Intuitively one would like to match the window size to the largest homogenous region local to the

test cell - which is some function of the correlation length of the statistics. An exponential decay

autocorrelation function (ACF) is often assumed for simplicity and has been observed in SAR

clutter (Lombaitlo and Oliver 1995) who also show the effect of the distribution upon the ACE A

large discontinuity in the data and the presence of targets could easily pollute the ACE

114



5.4. Clutter Plus Noise Distributions 	 STATISTICAL DETECTION SCHEMES

5.4 Clutter Plus Noise Distributions

The intensity PDF of K-distributed noise in the presence of zero-mean Gaussian noise has been

shown (Watts 1987) to be given by

1 v	
ti-i

PC+N (I) = J 
p--	 (5.7)

(v)

ri	 1	 I
xexpl--I	 exp -	 da

[	 j+a	 [	 +a]

where ii and are the shape and mean of the K distribution, with the noise having a variance of a.

It may be that the extent of thermal noise is known, or that a Swerling II target model is to be

evaluated but the primary task is to evaluate the CDF at a particular value of intensity. In addition,

for an ordinary CFAR the output is required from N fold convolution of this PDF for arbitrary

parameters.

Numerical evaluation of Equation 5.7 will require very small integration steps if a Pfa threshold is

to be set, it will become progressively more difficult to maintain accuracy against processing time

considerations for N fold numerical convolution. Monte-Carlo simulation is a viable option when

numerical accuracy is a problem but it is time consuming for reasonable values of N.

Convolution by FFT can be implemented, but as the mean of an N fold convolved PDF will be N

times the original, one must start with an anay much longer than required to satisfy the accuracy

of the original PDF. For reasonable values of N and Pfa of the order of lO there is little or no

benefit over Monte-Carlo simulation due to the number of times Equation 5.7 must be evaluated

in conjunction with an unreasonably large FFT.

Performing the analytic transform of Equation 5.7 to the frequency domain reduces some of the

FFT processing constraints but accuracy may be a problem when raising to large powers of N in

performing the convolution.

This Section investigates the possibilities offered by numerical Laplace transforms. This has not

been considered in the radar literature and is rarely applied in the general literature due to its

reputation for being unstable - largely undeserved as shown by d'Amore et a!. (1999).
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5.4.1 Frequency Domain Representation

Equation 5.7 for P (I) requires numerical evaluation in ci, however performing the frequency

transform

PC+N (s) 
= J exp (—sI) P (I) dl

	
(5.8)

and reversing the order of the integration it can be shown using Mathematica (Wolfram 1996)

V

exp (-) () dciL
O,Re	

1	 as	 so- 1
[ a+o- a+ci

(5.9)

where, accepting the constraints, the integration with respect to ci can now be performed, and

using Abramowitz & Stegun 6.1.17 (1972) is simplified to

exp(Y)YT(1 —v,Y)

1+as
(1+ as) v

S/LL

o,arg[1s]

(5.10)

The transform in Equation 5.8 is recognised as the Laplace transform and the conditions are all

met when the inverse is evaluated using the Bromwich integral

C+ioo
P(I)=- L I	 P(s)exp(sI)ds

27ri J_00

(5.11)

Standard textbooks (Boas 1983) show how to evaluate this integral in terms of residues of the

poles. In general this is only possible for simple transforms with finite partial fraction expan-

sions and so a method due to de Hoog (1982) was implemented that takes a minimum amount of

information about the form of P (s) and is relatively fast:

I. Equation 5.11 is discretised using a trapezoidal rule.

2. An analytic Fourier expansion is performed upon the approximation.

3. Successive Padé approximations are evaluated using a modified quotient-difference algorithm

to improve convergence and speed.
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Existing implemented algorithms (Hollenbeck 1998) attempt to invert the entire CDF at once for

speed, however this degrades accuracy at low Pfa and so the intensity values are inverted indi-

vidually. Further improvements with numerical tests on a variety of functions have been presented

recently (d'Amore et al. 1999) which allow lower Pfa to be evaluated.

The frequency domain is particularly advantageous. Prior to the inversion, the PDF of the sum of

N pulses is achieved by raising P (s) to the power N and the CDF of the distribution is obtained

through division by s. Obviously some computational numerical limit is present when raising to

large powers and in the necessary evaluation of limiting large and small numbers using standard

arithmetic on a 32 bit system.

Typically evaluating the Laplace inversion for a single intensity at any value of N for a Pfa of

10-6 required O(10) floating point operations (flops), a Pfa of 10-6 requires a minimum of about

N x 108 flops for the Monte Carlo samples to be generated (with substantial statistical noise

present). This is a huge time saving.

Evaluation of the CDF for v = 0.1,0.2 and 0.5 is performed as lower values represent the distri-

butions that are difficult to approximate; additionally performed in the presence of 0dB, 10dB and

20dB noise for N = 1, 10 and 100 pulses in Figure 5.4 where the distribution is normalised to unit

mean intensity. Each plot takes about a second to evaluate on a desktop PC.

This algorithm is stable up to a numerical Pfa limit of about l0. The accuracy was confirmed

through Monte Carlo simulation and some improvement may be available through an optimised

algorithm or the use of variable precision arithmetic - however this will cause a substantial speed

penalty. Alternatively an intrinsic 64 bit system such as a DEC Alpha or a modem Sun system

could be used.

A particular filter output may be the result of a number of weighted inputs (incoherently summed)

drawn from different K + noise distributions which can be easily incorporated into the above

scheme by multiplying their respective transforms prior to inversion.

The benefit of using this method is that generation of arbitrary output PDFs is significantly quicker

compared to Monte Carlo when N is large. In cases where the Laplace transform is not analytically

available it can be evaluated as a series expansion; this is perfectly adequate since in practice all

special functions are evaluated in a similar manner.

Although not shown, the sum of N Weibull distributed variates can be calculated although conver-

gence problems are more difficult for certain shape parameters. The coherent inclusion of noise is
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Figure 5.4: The numerical Laplace transform is accurate to a Pfa of i0 for N < 100 pulses of

a K distribution in varying SNR The abrupt discontinuity indicates the numerical accuracy limit.

Each curve took the order of seconds to evaluate
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not as simple as the K distribution and is the subject of an ongoing DERA contract. The numer-

ical inverse Laplace transform is certainly applicable to many statistical problems encountered in

radar.

5.5 The Problem of Simultaneous Target and Edge Detection

All fixed window algorithms use the a priori assumption that the window size is a function of

the 'coherence length' of the data. For target detection the target test sample is almost always

compared with respect to the samples either side of it. The expected environment of an MFR in

littoral (coastal) regions will include the land-sea interface. A generic case is a single high intensity

edge present within the scene similar to that shown previously in Figure 5.2. The magnitude

of expected edges can be determined from experimental observations resulting in specification

documents such as the Naval Environmental Clutter Attenuation and Propagation Specification

(NECAPS) available at DERA Portsdown (Branson 2000b). Although mean RCS for land and sea

can be determined from reports such as NECAPS, geographical effects from areas such as cliffs

are not accounted for. These would give a large planar reflecting area over some range cells which

could cause 20dB edges.

In an environment expected to contain edges then the CA architecture would not be used and

some form of edge resistant CFAR would be necessary such as CAGO; as shown above they suffer

heavily in the presence of interfering or extended targets. To compensate for this to varying degrees

a large number of CFARs have been proposed whose operation include censoring, averaging and

ranking of the samples. In addition to CAGO and OS are:

• CMLD - Censored Mean Level Detector: The samples are ranked and the upper k removed.

The test statistic is the mean of the remaining samples, encompasses CA as special case.

Analysis by Rickard and Dillard (1977).

• GCMLD - Generalised Censored Mean Level Detector: as CMLD but k is chosen adapt-

ively. Analysis by Himonas and Barkat (1992).

• TM - Trimmed Mean: The samples are ranked and the upper N1 and lower N2 removed.

The test statistic is the mean of the remaining samples, encompasses CA, OS and CMLD as

special cases. Analysis by Mashade (1996).
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• OSGO, OSSO - Order Statistics Greatest Of, Order Statistics Smallest Of: Only one side of

the window is ordered and the test statistic is the kth ranked sample. Analysis by Elias-Fuste

et al. (1990).

• GOSGO, GOSSO - Generalised Order Statistics Greatest Of, Generalised Order Statistics

Smallest Of: As OSGO, OSSO but k is chosen adaptively.

. GOSCA - Generalised Order Statistics Cell Averaging: Both the leading half of the window

and the lagging half of the window are ordered separately, the test statistic is the kth ranked

sample of the leading plus the lth ranked sample of the lagging window. Analysis by He

(1994).

LCOS - Linearly Combined Order Statistics: r ranked samples are chosen, the test statistic is

then a weighted sum of the r samples. Analysis by Nagle and Saniie(1995) where weighting

parameters are chosen using Censored Maximum Likelihood and Best Linear Unbiased

estimates.

• EXGO, EXCA - Excision Greatest Of, Excision Cell Average - All samples above a fixed

threshold A are discarded before GO and CA operations are applied. Analysis by Han and

Kim (1996).

In addition most can be enhanced by multiple looks, storage of a clutter map and estimation of

the correlation between samples. It is rare that these CFAR are tested in anything but simulated

exponential clutter or when the shape parameter is unknown. The analysis of these processors is

laborious and it is not clear in the literature how many have been implemented on real radars or

real data although Farina and Studer (1986) comprehensively cover their general implementation.

To simplify discussion a general case is given in the left plot of Figure 5.5 - a CFAR of window size

W = 2M centred at the target XT with an edge from position Xe onwards which is coincidentally

located at the censoring point of the CFAR xk. Capital letters A, B, C, D and E are marked for

reference to avoid confusing use of subscripts; however any fixed window CFAR will apply a test

based upon XT_M:T_1 and 1T+1:T+M using some derived test statistic based on partitioning the

data window (via censoring, weighted mean, ranking) related to some fraction k in magnitude or

position with respect to the test sample.

The decision to be made will include some of these hypotheses:
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Figure 5.5: Generic cases for CFAR processing of littoral regions a) Point Target b) Extended

Target

• XT i within the low region XT_M:T+M_k (Region A-C) thus a threshold )i is defined

from these samples:

- xTw11lbeflaggedasatargetifxT^)L,.

- xT lsamemberof region A-C if XT <ALO,.L,.

• XT belongs to the high region XT+k:T+M (Region E) thus a threshold AH29h (where AH29h>>

AL,) is defined from these samples:

- XT will be flagged as a target if XT ^ A High-

- XT is a member of region E if XT <AH9h.

The censoring point k will usually be a fixed choice of the designer, chosen from the contending

factors of:

• Pfa increase at the edge due to falsely declaring XT as a target, when it is in fact part of the

high edge (Region E).

• Pd decrease due to falsely declaring XT as part of the high edge, when it is in fact a target

within low clutter (Region C & D).

The various CFARs show interplay between their performance, where they will excel in one par-

ticular environment (tuned to their assumptions) but necessarily suffer some loss elsewhere. Note
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that in all algorithms the existence of an edge, whilst inferred from the statistics, is never flagged

to the operator.

Flagging a potential edge, regardless of form is desirable as it could enable a clutter map to

be built up that informs the operator of the expected form of an edge for future trials.

It is interesting that even though an edge may be expected, CFAR algorithms are optimised to

maintain the Pfa in homogenous clutter which in littoral regions will be rare.

The right plot of Figure 5.5 shows a similar scenario but where the 'target' T can no longer be

considered as a single sample. This would arise from at least 4 distinct cases:

I. The target is spread over a number of samples.

2. Multiple close targets are present.

3. Multiple edges are present (in fact the 'target' is an island of high level clutter).

4. The target is a point target but the imaging chirp was of necessarily finite bandwidth giving

a finite width point target response.

Point 4 can be handled by conventional CFAR via the use of guard cells surrounding the test

sample, chosen to match the calculated response. This then gives reduced sample numbers and

slower response to an edge but a range of possible situations will confuse any particular CFAR

configuration for some scenes.

5.6 Generalising CFAR to Variable Window Size

It is clear that without exact knowledge of the expected size, magnitude and occurrence of edges

then different scenarios could be envisaged where any of the discussed CFAR could either excel

or perform poorly. Additionally, if an edge is present in the data then the estimated statistics

whether it be mean, shape parameter or ACF will be some average of the distinct distributions and

so it is interesting to investigate detectors that maximise the number of test samples used whilst

simultaneously testing for homogenous conditions.

. It is believed that a good indicator for deviations present within locally homogenous regions

is the ratio beiween the means of all regions deemed suitably homogenous to have a well

defined mean.
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This problem is probably ill posed. Even if a modulated exponential distribution is present, it is

difficult to envisage simple tests that can maintain a fixed probability of false alarm for all edge

configurations. The remainder of this Chapter details a novel attempt to apply this test.

5.6.1 Sequential Edge Detector

In formulating a detector for inhomogeneous environments:

. Fixed window CA-CFAR represents a simple way of detecting targets in homogenous clutter

without the presence of edges.

• Simple floating point operations limited to +, -, x, ^ and comparison operators will give

the greatest operational speed.

• Multiple targets are not a primary concern of this thesis and are unlikely in a low observable

detection scenario.

. Dead time must be handled correctly, present in most fixed window CFARs at the beginning

and end of sample sequences.

From current literature and analysis of real data the clutter distribution is often considered as ex-

ponential, Weibull or slowly modulated exponential as in the K-distribution. As Weibull clutter

can be transformed to an exponential distributed variable via a simple power transformation, de-

tecting a change in the mean of a locally exponential variable offers a convenient starting point to

characterise inhomogeneous environments.

An analysis by Oliver et al. (1996) covers optimum edge detection for a fixed window case with

comparison of several edge detectors including the Maximum Likelihood Estimator (MLE) for

a SAR application. Their concern is in accurately detecting the presence of single edges and

their position; they consider two approaches - a Fixed Window with Scanning Edge (FWSE) and

a Scanning Window with Central Edge (SWCE). In segmenting a scene, a step-up is of equal

value to a step-down and so the MLE estimate is shown to perform best for each approach. They

suggest a scheme to simultaneously maximise the probability of edge detection and edge position

accuracy via a SWCE followed by a FWSE respectively. It is noted by Oliver et al. (1996) that

'In any application it is important that the window size should be sufficiently small that only a
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single edge would, in general, be expected' and if this is not the case then an adaptive approach is

required.

Greatest flexibility would be to allow for any number of changes in the mean either up or down

with simultaneous target detection. In the preceding discussion the 'target' could easily be a point-

like edge to be detected. In a multifunction radar there is no fixed resolution and thus no consensus

upon the range extent of the target that poses a threat. If the resolution of the system is sufficient,

even the aspect angle of the target will affect its range extent. Allowing for detection of extended

targets (spanning multiple samples) means that the distinction between what is an 'edge' and

what is a 'target' is dependent upon the operator. One can no longer define the expected number

of samples within which a single edge is to be detected and so an adaptively windowed approach

must be considered whereby both the tested target region window and homogenous region window

are varied.

Adaptive windowing could be achieved through several methods:

• Run increasingly larger windowed CFAR in succession, starting at the smallest possible

using a rule based system to progressively remove targets, this will be severely affected by

false alarms at a strong clutter edge.

• Run decreasingly smaller windowed CFAR in succession, starting at the largest possible us-

ing a system to progressively remove edges, this will be severely affected by strong targets.

• Convolve a range profile with the expected edges to determine approximate positions of

problem areas, probably affected by a combination of edges and targets and difficult to

analyse.

A solution is to start at one end of the sample vector and use a post comparison window which

progressively enlarges but every combination of samples that could contribute to a single edge

are tested statistically. This will encompass any number of edges and any size of target; the only

assumption being that speckle is decorrelated between samples.

5.6.2 SED Algorithm

The algorithm is shown graphically in Figure 5.6, based on the following available assets:
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Diagram of SED Agonthri
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Figure 5.6: The Sequential Edge Detection algorithm: From an initial vector (A) the smallest

subsample of n = 2 is chosen (B) to form the test between I . and '2. As n increases the number

of tests increases (C and D). When a significant ratio 11/12 is declared (E) the test algorithm

restarts (F)
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. A realisation x = {Xin,fl -p N} from the radar output, where N is bounded due to a

limited look time or a single range profile.

• Hypothesis H0 indicative of no target, represented by PDF 10

versus hypotheses H indicative of edge present represented by a single change point in the

mean level after some point 1 <k < n.

. A measure of performance based on Pta.

The proposed algorithm is below; note that an edge is defined as an increase or decrease in the

local mean level.

I. Obtain a realisation X1 , n = 2 initially (the minimum test region possible)

2. Test hypotheses H()

Ho,(2) indicative of homogenous statistics such that f (Xi:2) = fo

versus

H1,(2) indicative of edge after sample xi.

3. If any H () , 0 < i < ii are valid then flag edge and restart at Stage 1 with realisation

4. is valid, assert homogenous and increase test region via n = max{n + 1, N} and

obtain realisation X1.n.

5. Test multiple hypotheses H()

Ho,(11) indicative of homogenous statistics such that f (xin) = fo

versus

Hk , ( fl ) , 1 < k < ii indicative of an edge after sample x.

6. Goto Stage 3 until n = N.

The algorithm has several drawbacks, the foremost is one of speed due to an order N2 method;

this has proved not to be a problem for typical sample lengths of N = 256 (in comparison to the

fixed window NP-CFAR to be of order W x N). The algorithm completion time is not constant
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as it can restart from a position k < n; although it is bounded for every possibility and fixed

for homogeneous clutter. There is also a significant mathematical problem such that the non-null

hypotheses are independent of the null hypothesis but not of each other.

The loss of independent sampling is unavoidable, at every point ii a hypothesis of every change

point is tested and thus the n - 1 tests within X1n are made using a varying proportion of identical

samples. It is not clear how to handle this loss of independence mathematically, but it is actually

present within fixed window CFAR when the windows overlap; as W << N usually the effect is

not significant. The only way to guarantee some stability is to ensure that every hypothesis test is

made such that if it were an independent test then it would have the desired property of fixed Pf a

(the implicit case of fixed window). Obviously the more tests made, the greater chance the false

alarm rate, but due to loss of independence this increase may be slight, and easily warranted if one

can detect edges or extended targets with greater accuracy.

5.6.3 Hypothesis Tests Used in SED

Whilst an MLE approach is optimum when all hypotheses are equally important (as in segment-

ation) for target detection the test is necessarily biased towards the non-null hypothesis of point

target detection (as in the NP formulation). As the CA-CFAR is known to achieve optimum point

target detection in locally homogenous clutter (Gandhi and Kassam 1994) then the generalised

SED test must reduce to this in some form so as to maximise Pd. The ratio measure, closely

related to a test proposed by Touzi et al. (1988) has such a form, although it has previously only

been applied for fixed windows:

From a realisation X1:n, define an edge position k such that region 1 is defined as samples X1:k with

region 2 defined as Xk+1fl, from this, form the ratio r of the mean intensity within each region I

and 12

r

	

	 (5.12)
12

r ^	 Declare Edge Present with I > 12	 (5.13)

r	 A2 Declare Edge Present with '2 > I	 (5.14)

it can be seen that for k = 1, the test is equivalent to a one sided CA-CFAR test with a threshold

multiplier c	 r and window size W n - 1.

127



5.6. Generalising CFAR to Variable Window Size 	 STATISTICAL DETECTION SCHEMES

In homogenous exponential statistics, the PDF of the sample ratio r with knowledge of the true

mean ratio R and the region sizes k and N - k can be shown to be (Oliver et al. 1996)

F (N)
Pr(r I R , k , Nk) = rF(k)F(N—k)

r	 rk	
k 1

I	 R(N-k)	 I

I{1+	

NI
I	 rk	 I

[	 R(N-k) J

(5.15)

which has edge detection probability, when carried out at the correct position,

fAi

P 1 = 1_ j P(r)dr (5.16)

= 1	
F(N)

k(N—k)F(k)F(N—k) 
[Yk x 2F1{k,k—N+l;k+l;Y}1I

kA
Ym

R(N—k)+kA

where 2F1 { } is the hypergeornetric function, and the integration is to be evaluated between the

limits A 1 and A2.

Typical sample lengths are not expected to exceed 1024 and so Equation 5.16 is numerically inver-

ted to obtain A for 2 < N 1024 with 1 < k N and the results stored in a triangular matrix.

This operation was not trivial, problems with numerical accuracy arose which depended on the

particular case of the hypergeometric function; standard code such as that in Numerical Recipes

(Press et al. 1992) could not handle every case. Using the linear transformation formulae of the

hypergeometric function in Abramowitz & Stegun 15.3 (1972) and observing their convergence

criteria a suitable evaluation method can be applied for all cases but took the order of hours to

evaluate the entire matrix. Figure 5.7 shows how the ratio threshold changes for geometry and

Pfa.

When the ratio test is included in the SED algorithm, only the threshold matrix is necessary and

so the algorithm is suitably efficient when implemented with a lookup table. An example of its

operation is shown in Figure 5.8 for an exponential scene with multiple change points processed

at individual test Pja = iO 3 and 10-6. A gradual mean change is determined as a discrete step

but this is unavoidable without specifying an expected sample correlation, the important point is

that the variable correlation across the scene is determined.

To demonstrate the difficulties caused by the loss of independence, the simplest SED case of

N = 3 is examined in detail. The six edge hypotheses applied upon these samples are below (The

capital letter subscripts do not refer to the labelling in Figure 5.6 - although the second, third and
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Figure 5.8: The SED test with Touzi ratio hypotheses segments a non-stationary scene reasonably

well assuming locally exponential speckle
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Table 5.1: Proportion of those sample failures common to two of the six edge hypotheses in a 3

sample SED, Pfa=10 3 in homogenous exponential noise

HA HB H	 HD HE HF

HA

HB

H

HD

HE

Hp

0

<0.01

0.75

<0.01

0

0

<0.01

0

<0.01

0.06

<0.01

<0.01

0.03

0

0

0.75

0

0.03

<0.01

0

<0.01

<0.01

0

<0.01

0.03

0

0.06

0

0

0.03

fourth subfigures are relevant); note the first two hypotheses are tested without knowledge of the

third sample.

Step Up : HA = low high

Step Down : HB = high low

Step Up : H = low low high

Step Up : HD = low high high

Step Down : HE high high low

Step Down	 Hp high low low

One would expect there to be strong positive correlation between HA and HD independent tests.

The overall degree of correlation is presented by means of a comparison of those sample failures

common to two hypotheses in Tables 5.1. Results were initially obtained based upon 108 runs at a

single independent hypothesis P1 a = iO 3 , this produced the expected number of false alarms on

the order of their statistical error (100, 000 ± /I0U, 000). All the expected correlations are there -

almost negligible except for the strong correlation present between HA and HD. A Pfa of iO 3 is

not particularly low, and so Table 5.2 shows that for F1 a = i0 the strong correlation effectively

vanishes for all except HA and HD.

What is not shown is the existence of negative correlation, this will be most obvious between

HA HB, H HD, HE : HF but also extends between tests carried out at different sample

populations. The overall effect of the correlation between tests will require complicated analysis

and so a simulation of3.6x106 of a length 128 vector was performed to determine the probability of

declaring any type of edge. A simplified SED algorithm was used where upon declaring an edge,
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Table 5.2: As the Pfa decreases (here 10- s), the dominant correlation between edge tests is fairly

stable whilst others disappear

____ HA HB H	 HD HE HF

HA 1	 0	 0	 0.75	 0	 0

HB 0	 1	 0	 0	 0	 <0.01

H	 0	 0	 1	 <0.01 0	 0

HD 0.75 0	 <0.01 1	 0	 0

HE 0	 0	 0	 0	 1	 <0.01

HF 0	 <0.01 0	 0	 <0.01 1

the position of this edge was stored and a new vector was tested; in reality the SED algorithm

would restart upon the remaining samples of the vector after the declared edge.

The results of this simulation are shown in Figure 5.9 for a Pfa of iO 3 . Neglecting edge effects,

the overall form of the Pfa is linear with respect to the sample number. The probability of falsely

declaring a step down is significantly greater than that of a step up, this is a direct result of the

strong correlation between the tests for steps up shown in the previous tables. Note that the tests

on the final few samples actually give a Pfa less than that of the independent hypothesis, this is

because there is a reduced probability of even reaching the final sample numbers and less 'look

back' where a sample is tested repeatedly once it has been passed.

The Pfa values are most importantly stable and of similar order of magnitude to the design based

upon independent hypothesis tests. Several points with regard to this can be made:

• The performance in homogenous statistics does not need to be rigorously calculated since

in practice one would never operate the SED in homogenous conditions.

• The robustness to edges of any length and configuration is most important which is hopefully

what has been achieved.

• If an edge is declared it would always have been declared had we decided to choose to test

for that particular edge at a fixed Pfa level, thus one can consider the SED as performing

many tests in parallel.

• It is not clear from the literature whether the mathematics are available to handle the loss

of independence, when Oliver (1996) encountered this using a fixed length sliding window,

the required thresholds were calculated by Monte Carlo simulation.
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O Algonthm Pta Test, Individual Hypotheses @ Pfa=1 cJ3

20	 40	 60	 80	 100	 120
Sample after which any edge was declared

Figure 5.9: Edge detection using the SED algorithm with ratio hypotheses

In the next Chapter the SED is used to suggest that the high resolution images have discrete events

which are not drawn from the underlying modulation responsible for the compound description of

sea clutter, this causes the data to be nonstationary. It is very difficult to fully specify a stationary

null hypothesis, due to the uncertainty of the actual sea clutter distribution and the presence of

large edges from system noise (see next Chapter).

For some comparison with the tests performed in the next Chapter, exponential speckle is applied

to a slowly modulated underlying exponential variate to give a simulated compound K distribution

of shape parameter u = 1. The modulation was generated via two realisations of an Omstein-

Uhlenbeck process with an associated correlation length r. Discussion of this process can be

found in Section 7.1 where it is used to generate realistic time-varying target returns.

An equivalent of 12 seconds of high resolution scene samples were simulated to determine the

length distribution of up and down steps when a continuous modulation is present, this is shown

in Figure 5.10 for a correlation length of r = 32. The important point is that the SED produces

a unimodal distribution of positive (step up) and negative (step down) lengths, the positive steps

presumably being detected in greater numbers due to the form of individual hypotheses used.

The histogram of step lengths gives an indication of the correlation present within a sample

132



§

5.7. Summary
	

STATISTICAL DETECFION SCHEMES

Histo9ram of Step Length in Simulated v=1 , t=32 Clutter
80.

Range Cell Extent -i-ye Step Up, -ye Step Down

Figure 5.10: Whilst far from providing an ideal null hypothesis, the SED measured step length

up and down is unimodal in simulated clutter of ii = 0.1

vector which treats any modulation as a discrete number of individual steps without assum-

ing stationary statistics over the vector.

This is far from an ideal null hypothesis with which to compare the real data results, one of

the problems is that it is difficult to specify both the overall PDF (first order statistics) and the

autocorrelation function (second order). This has been solved recently by Tough and Ward (1999)

but has not been implemented here. The effectiveness of the SED is empirically justified in the

next Chapter for further evaluation of the high resolution data - not as a target detector, but for

evaluating the locally stable exponential regions.

5.7 Summary

As the data is usually subject to a point response function then a target is equivalent to consecutive

finite length edges. The specification of a hypothesis to determine an edge is dependent upon

the distribution of the underlying noise. As shown in Section 3.1.4, one cannot simply estimate

this underlying noise when edges are present and so a fixed length CFAR is difficult to specify,

133



5.7. Summary
	

STATISTICAL DETECTION SCHEMES

especially when the correlation length is unknown. An attempt to overcome these problems is

developed by a Sequential Edge Detection which assumes locally stationary exponential statistics

and declares both positions and values of locally mean intensity. In addition no a priori decision is

made upon the analysis length which, whilst ultimately suboptimum in perfectly specified clutter,

should give a robust method for further analysis of the data.

The SED is difficult to analyse for the homogenous case as the repeated statistical tests carried out

are not independent of each other, only the null hypothesis. Use of SED is justified by:

• One would not operate the SED in homogeneous clutter so its performance there is not a

factor.

• Whilst the analysis is intractable, it is similar to testing for every possible edge through fixed

window cell averaging type tests. An edge declaration would always arise had we decided

to choose to test for that particular edge at a fixed Pfa level.

• The maximum likelihood hypotheses were not used in SED as a biased test towards point

targets is preferable and the resulting cell averaging tests are far quicker in operation.

• Something which is never mentioned in the literature, but is applicable in this data, is that

the probability of having a true edge within the data is far greater than typical false alarm

rates and so the exact behaviour of the low false alarms will be swamped by this.

Classical CFAR statistical schemes have been discussed but robustness to their strong a priori as-

sumptions is rarely tested. In particular a point target is always assumed. If an MFR can adaptively

change its resolution then point targets are no longer always expected. If the SED can be viewed

as a target (finite length edge) detector then it has the appealing property of being able to adapt to

a potential target size even in the presence of strong edges. No claim to optimality is made (the

hypothesis tests were chosen for processing speed) but the algorithm does have some interesting

uses which are applied in the next Chapter.
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Chapter 6

Further Analysis of the Data

The range profile was suggested to be a heterogeneous mixture of distributions in the preliminary

analysis of the data. Large blocks of data were analysed which would be unavailable in an opera-

tional radar. Typical operating conditions for an MFR would be to sample an entire range profile

from an area once every second (Webb 1999). As the high resolution scenes showed, movement

of the wave events through the range extent caused the distribution to be unstable over this time

period. Prior information on the observed distribution is of limited use and would not even be

available if one is taking a first look at a particular area. If the ship is moving then it may not

be possible to view the same area more than once and difficulty in aligning range cells causes

problems when forming a clutter map.

6.1 Analysis using the SED

The previous Chapter described a Sequential Edge Detector which was implemented to avoid any

dependence upon a chosen window size for analysis of the data and to simultaneously indicate

areas that would flag as a point target and as edges. The 'perfect' high resolution data can now

be re-evaluated to separate the regions. Note that although images are shown in this Section all

processing is performed on a single range profile basis as this is how the radar would analyse

a scene - probably at intervals of a second. All SED processing was made using mean ratio

hypotheses at an independent Pfa of 10-6 assuming locally exponential noise.
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Figure 6.1: A bird in the VV data served as a point target (calibrated dB RCS)

6.1.1 Scene With a Bird Present

The radar operated in a littoral region, and so it is not surprising that a number of birds are some-

times present. These are obvious from inspection of the Hi-res scenes, as they are effectively point

scatterers. Figure 6.1 shows part of sen3353 with a bird track present; both the raw RCS scene and

the SED processed version are shown. The range profile has not been normalised with respect to

the pulse shape, this is to illustrate the level of system noise at the edges of the range swath.

Several points can be made from Figure 6.1:

• The SED has made a good attempt at identifying the regions with constant local mean. The

edges are accurately determined over time with 256 samples per time slice.

• Although the wave event moves through the range cells, as the SED operates on a single

time slice, the correlation within the underlying wave events is accurately shown.

• Variable correlation is seen across a single range cell however this is stable over the order

of a second.

• As the underlying wave event is so stable, obvious edges between this and the system noise

of the order of 20dB are inferred.

• From Section 4.2.2 the noise level was determined as an equivalent RCS of -40dB, it is now

obvious that a large spatial extent of the scene is around this level and the SED highlights

this.
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Figure 6.2: Histogram of the extent of locally stable mean regions suggests a useable fixed 16

sample half window CAGO-CFAR could be used. Resultant calibrated dB RCS image is shown

on the right

. Striations are present upon the wave event from 8 seconds onwards between 1975m and

2050rn in range. These seem to move at a lower speed than the wave event itself.

. The bird is easily observable in the low RCS areas which are dominated by system noise.

'Within the high RCS areas, the bird is indistinguishable from the striations over the order of

a second.

From the SED analysis, one can form a histogram from the lengths of the locally stable mean

regions which indicates a possible fixed window length to perform a CAGO comparison. The

SED edge positions are stored and the measured lengths of the segmented regions regarded as

either a step up or a step down relative to the locally determined mean.

Figure 6.2 illustrates this histogram which shows the effect of the target in the scene as numerous

short high intensity steps. The modal step length is the width of the point target response determ-

ined by the Kaiser window applied prior to range compression. Other than the point scatterer peak,

the histogram indicates that a reasonable size of CAGC) half window would be 16- with 2 adjacent

guard cells to account for the point response of the test sample. Figure 6.2 shows the results of

this CAGO:

The local mean is severely in error when the bird is near the wave event - the classic problem

with fixed window CFAR.
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• The correlation effects are no longer visually apparent.

• A dead area is present at the start and end of the CAGO run.

So the standard method of identifying point targets does not perform well here, primarily because

of the large edges determined by the SED. If one has a 20dB edge present over a significant part

of the window then severe errors in identifying point scatterers will occur.

If there are spatially large noise dominated areas then the use of a single threshold multiplier ap-

plied with fixed window CFAR will not give a constant Pfa over the whole scene. If the high RCS

regions are drawn from a different (spikier) distribution then the concept of a variable threshold

multiplier a (Section 5.2.1) could be of use. Within the low RCS noise dominated areas one would

use a significantly lower a than in the (presumably spikier) high RCS areas; exact a values to use

could be calculated based on 'knowledge' of the local mean and distribution shapes (for CA and

CAGO achieved relatively easily using numerical inverse Laplace methods of Section 5.4). This

knowledge could never be achieved in practice, especially due to the large (20dB) edges present

in the scene which would corrupt the local mean estimate of a fixed window.

If a target is present over the order of seconds, and the noise dominates a significant spatial area

of the scene, a target detection method could be envisaged where only the system noise areas

are tested since the statistics are fully known. Sampling a range profile at a frequency related to

the swell movement would ensure that at some point a target would be revealed in locally noise

dominated clutter.

6.1.2 Target Free Scene

The first target free region subsequent to the bird scene was chosen to illustrate the low velocity

striations or 'slow events' as marked in Figure 6.3. This is typical of the VV scenes and again

large areas of system noise are present in the central region of the scene - the striations can now

be seen to extend into this area.

Figure 6.4 shows the scene segmented into point scatterers via SED (accounting for the point

response) and standard CAGO (10dB above the local mean) both showing approximately 1% of

the scene. This demonstrates that the majority of the false alarms are caused by the striations.

In particular the SED is now seen to show many point scatterers which are distributed across the

ocean wave event - this highlights the effect that the striations have. Initially the SED was designed
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cremez.m Designed 16 Tap Filter
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Figure 6.5: The 16 tap Matlab designed filter was operated on 10% of the Doppler spectrum in

an attempt to remove the striations

to detect locally high intensity areas accounting for speckle without them necessarily being a point

target; with the stnations present it precludes the use of the SED as a target detector because at

this resolution the returns cannot be completely described as locally exponential. There appears

to be an additional component upon the overall wave modulation in the scene that is responsible

for the point scattering - the stnations are a major contributor to this.

6.1.3 The Striations

As this file was recorded so late in the day, the accompanying video recording was not taken due

to poor light conditions. For this reason, the physical cause of the striations is unknown but as it

is moving slower than the swell, it could be due to the foam left from a breaking wave or a wind

generated wave.

To determine if any particular velocity component of the clutter caused the striations a suitable

16 tap filter was designed (cremez .m in Matlab, a complex equiripple FIR designer) which can

operate on a 10% fraction of the Doppler spectrum with approximately 20dB suppression shown

in Figure 6.5. This method, if proven useful, would remove any targets present in that fraction of
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Doppler space - it did not remove the striation point scatterers. This suggests that the striations do

not have a well defined constant Doppler velocity or that they scatter diffusely.

From observing the 20 minute VV run the striations are usually seen behind a wave front; in

conjunction with their lower velocity this suggests they are flotsam. If this is the case then it casts

doubt upon the ability to accurately predict performance figures for this type of data. Whilst the

flotsam is probably associated with a breaking wave, its physical nature means that it may still be

upon the surface a large distance from that wave, such that existing locally windowed detection

methods will not be reliable.

6.1.4 Correlation Due to Striations

Figure 6.6 gives a histogram of the extent of the constant intensity regions from the high intensity

central region of the scene, determined by SED, and it suggests two components of correlation

even when the speckle is accounted for. The SED process assuming locally exponential clutter

was ran at an individual Pfa of 10-6, the segmented regions were then recorded as being a step

up or down and their size (range cell extent) was histogrammed. Figure 6.6 demonstrates stat-

istically significant evidence of there being discrete scatters upon a modulating correlation length

because this individual Pfa would produce an expected maximum 2 false alarms per range cell

extent in locally exponential speckle. The usual method of viewing correlation is via the autocor-

relation function, also shown in Figure 6.6, which gives uncertain information since it is primarily

describing the correlation of the speckle - of course the SED inherently accounts for this.

As highlighted in Figure 6.3 some AC frequency contamination is present; files showed this around

100Hz which suggests it is from some rectified 50Hz mains source. As it enters the signal prior

to the FF1' for range compression a particular range cell is corrupted, in this case around 2050m

by a small amount. Although the effect of the apparent RCS is of the order of 5dB and does not

affect the previous CAGO or SED analysis, in conjunction with the intermittent corrupted range

profiles it could have serious effects upon any complex test (such as chaos or fractal) based upon

data from this radar. This effectively precludes performance tests using this data as a background.

6.1.5 Scene Probability Distributions

If the scenes consist in general of a finite number of events then it is difficult to obtain a PDF

that fits the overall statistics even for an observation time far greater than would be possible in
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Figure 6.6: The existence of point scatterers in the nonstationary target free scenes and the spatial

extent of the correlation is clearly shown by the SED. The ACF gives an uncertain picture as it

views the scene as stationary

an operational scenario. The sample PDF is usually a smooth function especially if some form

of windowing is used to average out the speckle, prompting attempts to fit the whole of its extent

which are ultimately unreliable as shown in Chapter 4. If the SED is used to segment the scene

then this averaging is performed in a more intuitive way that avoids the problems of large edges

'smearing' the resultant histogram and thus reveals the discrete nature of the scene. Figure 6.7

shows this graphically where the SED implies a multimodal distribution subject to speckle; such

that the potential false alarms are from a discrete component of the scene that has no obvious

relation to parameters such as mean and variance of the overall PDF determined on a pointwise

basis.

The high intensity tails are determined by a discrete component of the scene which is only

obvious after initial segmenting based upon the mean RCS and assuming locally exponential

speckle.

This SED analysis was extended over the entire 20 minute dataset to determine if a stable mul-

timodal distribution was apparent. The peak positions and their form varied such that the swell

events could eventually be considered as coming from a continuous distribution; this masked any

obvious spiking events over this time.

As the large scale swell events appear to be relatively stable over the scene it is interesting to see

if they can be analysed individually by spatially removing the areas of pure system noise. This

is possible through segmenting by hand, but by thresholding the scene based upon the SED the
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Figure 6.7: Obtaining the PDF of the SED segmented scene reveals the discrete nature of scenes.
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Figure 6.8: Thresholding the inixed VV scene at -30dB allows separation of the large scale RCS

events from the system noise

spatial area to be sampled can be determined automatically. A simple intensity threshold does not

provide well defined areas due to the effects of speckle shown in Figure 6.8.

This segmentation method was applied on a large number of scenes to look at individual swell

areas and gave unstable results; while the K distribution could often be adjusted to fit the tail

regions well it could not characterise the whole RCS range and the shape estimator U underestim-

ated the tails even though the rest of the distribution was fitted well - this is a direct consequence

of the presence of discrete events within each wave swell.

• The presence of discrete intermittent events means that statistical comparison of individual

swell waves is difficult. Whilst they are correlated in underlying mean RCS on the order
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of several seconds their probability distributions are variable and their returns cannot be

viewed as being from a single class of continuous unimodal distributions such as K.

Accepting that at a high enough resolution the backscatter is discrete in nature motivates a de-

tection scheme based upon the lifetime of individual events, determined in the Doppler domain,

presented in the next Chapter.

6.2 Summary

Chapter 4 showed that previously considered distributions could not fully account for the sea

clutter RCS distribution. Every scene had large spatial areas of system noise presumably due

to geometric shadowing effects from the low grazing angle and high sea state. By operating an

adaptively windowed edge detector which assumed locally exponential noise these areas could be

segmented and further revealed that the scenes consist of two forms of spatial correlation. The

large correlation extent is the ocean wave modulation which is included in the compound model

of clutter but upon this discrete point scatterers are present in the form of striations. The RCS

distribution of the point events is not obviously related to the underlying swell, can appear away

from breaking waves and does not have a fixed velocity which suggests that flotsam is a possible

cause.
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Chapter 7

Wavelet Detection Methods

The previous Chapter dealt with incoherent detection within a range profile, this Chapter considers

a novel coherent detection technique based upon the lifetime of the events responsible for the

Doppler spectrum. Classical techniques, such as acoustic delay Moving Target Indication (MTI)

formed detection, are based upon identifying a target from the amplitude difference between suc-

cessive pulses (Shrader and Gregers-Hansen 1990). In coherent digital systems this has evolved

into Moving Target Detection (MTD) where successive Doppler spectra are processed by a filter

bank, Figure 7.1 demonstrates this where filter number 4 is relatively clutter free.

If the desired target lies within the clutter and the Doppler spectrum remains constant it should still

be possible to identify it, however the Doppler spectrum is not necessarily stable and so thresholds

must be high to avoid excessive false alarms. The events responsible for the high resolution false

alarms were close to the clutter peak and so it is interesting to see if a coherent target detection

method can be operated within this constraint. To distinguish these from targets it is deemed

necessary to observe the time evolution of these events with respect to their Doppler velocity.

As discussed in Section 3.2.3 this can be achieved by the Continuous Wavelet Transform which

adaptively changes the analysis window with which to form a Doppler spectrum.

The literature commonly refers to a correlation length as an average measure of coherence estim-

ated from the autocorrelation function. A single correlation length is especially inappropriate for

sea clutter when it is obvious that the sea has many components based on tide, swell, wave and

ripples each varying individually in time.
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MID Filter Bank

Norrnalised Frequency

Figure 7.1: An MTD Filter bank can be used to detect fast moving targets outside the clutter.

Filter 4 could be the input to a CFAR

7.1 Target Model Formulation

A method is required that can model a slow moving target effectively hidden within the Doppler

spectnim of the sea suiface to determine an effective detection technique. A paper by Tonkin and

Dolman (1990) explored the RCS PDF of a periscope subject to:

Shadowing by the sea surface.

Specular multipath.

. Lobed backscatter stmcture from a cylinder.

. Corner reflector effects between vertical periscope and sea surface.

A combination of analytic and Monte Carlo methods determined the overall RCS PDF to be largely

Swerling I with occasional periods of very high return. Whilst the returns were said to be 'pulse to

pulse correlated' and an oscillating motion is to be inferred from the diagrams, the explicit form

of the correlation over time is not explored. Incidental effects such as reflected waves or wake

production were not included.
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A generic time varying target is proposed:

I. The RCS is modelled as Swerling I generated via Ornstein-Uhlenbeck processes with a

correlation time r determined from

Xt+1 = Ax+ Ji- A2 N(O,1) , A2 <1	 (7.1)

A = exp (-k) St (xtxt+1) = exp (---)

where N (0, 1) (and strictly x i ) is a Gaussian random number of zero mean, unit variance.

Squaring and adding two independent realisations of Equation 7.1 gives an exponentially

distributed variable whose correlation length is related to T.

2. The Velocity is modelled by lowpass filtered Gaussian noise of cutoff frequency f which

gives an expected Gaussian shaped Doppler spectrum of central velocity vO with associated

width v, a 5th order Butterworth filter was suitable.

One can model different targets by varying r and f, but for slowly varying targets a time constant

of order 1 second for both correlation parameters is physically reasonable, e.g. r is set to 1 second

and f is 1Hz. To emphasise the intended use of the Wavelet analysis v0 and v are always

chosen to be within the clutter spectrum, thus detection based on estimation of the background

clutter shape would be of limited value since to a first approximation this is Gaussian itself.

It is this type of surface target that would be difficult to detect using a standard windowed CFAR

operating on the FF1 Doppler bins or in Range resolution since it is expected to emerge and

fade slowly without causing a discernible high magnitude return. Additionally, associated surface

effects such as a wake could be present which would corrupt any necessary local estimate of the

statistics.

7.1.1 Targets Within the Doppler Spectra

Figure 7.2 shows the Doppler spectrum assessed from the centre of the Hi-res VV target free scene;

the simulated target RCS and velocity are alongside. Based on the Doppler shape alone there is

no obvious target present. The RCS variation means that the varying velocity is not apparent.

Classical target injection of a single velocity with a well defined FF1' peak will never be realised

since both target and observer will have varying relative motion over the time necessary to discern

a small target against the clutter background.
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Figure 7.2: Slowly varying target model within high resolution clutter

The first assumption one makes is that the FFT window is simply too long and so shorter duration

windows should be used to observe the varying velocity. This is the motivation behind using the

Wavelet Transform described in Section 3.2.3 since a priori one cannot know the correlation time

of the expected target; if detection is to be made upon differences in the correlation structure over

time then a chosen fixed window will have a dramatic effect upon the determined spectra.

Low resolution sen3558 and sen3537 VV data is used for illustration. Taking a random 0.4 seconds

of data, a plot is made such that Doppler velocity is along the abscissa with multiple ordinates

showing the effect of window size from 1024, 512, 256 and 128 sample windows i.e. 'dyadic'.

Subsequent Doppler plots can be seen in time on the lower plots, as 8 of the lowest resolution FFTs

can be carried out in the time of the largest A synthetic stationary 0dB target has been introduced

into the central 0.2 seconds in the right hand plots of Figure 7.3. Additionally, Figures 7.4 show

similar plots for a scene with birds present - a real target not unlike the model. Confusing spectra

are observed where it is difficult to imagine a target detection scheme if this is a 'first look' at a

potential hostile scene.

A potential solution is to use a clutter 'map' based upon a priori knowledge of the Doppler spec-

trum. This requires long look times and is unsuitable for a fast detection decision on a new scene.

Sixty seconds of data was used to determine the 'complete' (but effectively unavailable) know-

ledge of the clutter Doppler spectmm. This was overplotted with its standard deviation to give an

indication of a possible threshold in Figures 7.3 and 7.4.

From these figures it is obvious that conventional processing biased towards identifying high ye-

locity targets away from the clutter is not suited to detection within clutter due to:
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Figure 7.3: A dyadic plot of sen3558 Doppler. Right plot has an unlikely 0dB constant velocity

target added

Figure 7.4: A dyadic plot of sen3537 Doppler with a single bird present. Right plot has an

unlikely 0dB constant velocity target added
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• Doppler variation over time will cause MTD to exceed the low threshold required to detect

the target.

• Variation between window sizes means selection of the optimum is difficult.

• Objects such as birds could pollute a clutter map easily.

An accelerating target such as the bird is seen as several discrete targets of highly variable

amplitude due to fading.

Such that detection of targets, whether of unlikely constant velocity or those accelerating, is diffi-

cult within the clutter based on the instantaneous Doppler spectrum.

7.2 Application of the Wavelet Filters

Accepting that the return from the sea surface is as a result of several variably interacting compon-

ents means that the traditional view of a Doppler 'spectrum' when analysed over short time frames

is a misnomer when we are looking at a finite collection of individual scattering events. Isolating

these events is naturally performed in the Wavelet domain since this considers localisation in time

and frequency to be equally important in choosing window functions to minimise the combined

uncertainty.

7.2.1 Frequency Response of the Wavelet Transform

Recall (Section 3.2.3) that the normalised form of the Morlet wavelet is defined (Torrence and

Compo 1998) with a parameter w0 that determines the number of oscillations in the time domain

(chosen as w0 = 5.336)

=	 1/4 exp(jwot -	 (7.2)

which is then dilated in time by a scale factor s, represented in frequency where 'I' (.) is the Fourier

transform of 'I.' (.) as

—(sw —wo)21 w 
>0	 (7.3)W(sw) = 1r 1 exp[	

2

This defines a flexible time-frequency window which automatically scales to observe approxim-

ately wo cycles of a particular frequency whilst still being localised in time. As the effective

150



NI
-S

>
C.,
C
0

g
U.

7.2. Application of the Wavelet Filters	 WAVELET DETECTION METHODS

The Major Diatonic Music Scale is Logarithmic

1	 2	 3	 4	 5	 6	 7	 8
Octave (Middle C is 4)

Figure 7.5: The Western diatonic music scale is spaced logarithmically, the wavelet filters mirror

this to give a flat frequency response

bandwidth of the wavelet filter is a linear function of its central frequency, a logarithmic subset

of frequencies is required to give a flat frequency response. This has similarities with the major

diatonic pitch scale of Western music where octaves are spaced logarithmically, shown in Figure

7.5.

The scales are chosen so that the mth scale sm is defined as

- 4-)mIm
-	 , 1 <m < M	 (7.4)

where o samples close to Nyquist (half the sampling frequency) and determines the spacing

between scales 8m and 8m+1 The parameter Lm is chosen to minimise the number of wavelets

used, whilst being small enough to give a reasonably ripple free central frequency response, set

as = 0.25. Also note that in this form the transform is only defined for positive frequencies;

negative frequencies are obtained by operation upon the conjugate of the original time series or

equivalently the conjugate of the filter.

The algorithm to compute the Wavelet Transform can be summarised as:

1. Obtain time series x1:N and transform to frequency domain via FFT to yield .
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Wavelet Filter Frequency Response for N=512
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Figure 7.6: The frequency response of the Morlet CWT viewed as a filter bank is flat when

operated correctly but several artefacts can arise

2. Calculate wavelet filter ' (sw) in frequency domain for a particular scale m•

3. Convolve the filter over all time positions to operate the wavelet filter in the frequency

domain

W=Ix 'I'
	

(7.5)

4. Calculate the inverse FFF of W to obtain the length N, scale s component of the wavelet

transform Wm.

5. Repeat from Stage 3 until all M scales are calculated.

The set of all M wavelets can now be viewed as a filter bank, from which a frequency response

curve can be derived. As the filters are only implemented digitally via an FFT the response from

white Gaussian noise is averaged for a typical sample length of N = 512 using the wavelet

transform routines.

Care must be taken in choosing M and so:
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• The wavelet has a variable duration in the time domain so edge effects are important as the

scale s approaches that of the sample length N.

• One cannot measure frequencies faster than Nyquist or slower than the duration of the

sample.

• Meyers et al. (1993) show that the peak response frequency Jr is not simply the inverse of

the scale but

0.864
fr =	 (w0 = 5.336)	 (7.6)

4irs	 s

and so the derived Doppler spectrum must be scaled accordingly to correctly determine

velocities.

These effects are summarised in the frequency response curve of Figure 7.6 which shows the

normalised response to white noise and a tone at the Nyquist frequency embedded in noise.

7.2.2 Wavelet Transform Input to a Detector

From a time series X1:N the wavelet transform separately determines both the positive and negative

Doppler velocities present. As the observed clutter spectra are all one sided this means only

one transform need be operated but otherwise this would raise the question of how to handle

events whose velocity changes sign (although a similar problem arises at the DC component of the

standard FFT).

The resultant WT is now recognised as providing an instantaneous Doppler spectrum which has

been ideally smoothed in the time-frequency plane.

• The instantaneous Doppler spectrum, as determined by the CWT is not some arbitrarily

smoothed average of multiple FFTs but an explicit method of weighting the filters that bal-

ances the equally important criteria of localising an intermittent event in both frequency and

time.

The global wavelet spectrum when averaged from the instantaneous wavelet spectrum is an un-

biased estimation of the true power spectrum of the signal (Percival 1995). Figure 7.7 shows

the mean WT compared to the mean FFT spectrum (calculated with a Kaiser-4 window) for 60
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Figure 7.7: The mean wavelet spectrum represents the Doppler spectrum as well as the FFT but

the filter bins show less variance

seconds of sen3558 and sen3537 and additionally shows the variability of the filter bins (standard

deviation divided by mean). The variability is considerably smoother for the WT of sen3537 even

though it contains intermittent events discussed in Section 4.3.2.

It is the smoothness of the WT that allows analysis of the instantaneous events causing the overall

Doppler spectrum over time. Figure 7.8 gives a cartoon view of how these events may appear:

• The left of Figure 7.8 demonstrates the appearance of two separate scattering events at dif-

ferent velocities which are unlikely to be targets, many of these short events will contribute

to form an overall Doppler spectrum.

The right of Figure 7.8 shows a single event changing velocity but dominating the spectrum.

This is a potential 'persistent' target which is present within the clutter spectrum.

By following the largest maxima within the instantaneous WT derived Doppler spectrum the stat-

istical distribution of each WT bin is not required. Measuring the length of time these events

are continuous (the length of the blue arrows in Figure 7.8) gives a physically motivated threshold

with which to form a detection criterion that will hopefully be more stable than the RCS fluctuation

within the clutter. It may be argued that selecting only the maxima is throwing away information

but a detectable target will necessarily add to the magnitude of the Doppler bins within the clutter,

thus identifying the largest maxima gives a simple initial threshold.

Obviously detection of small targets outside the clutter spectrum using this method is not viable

but this area is dominated by system noise (and sidelobes from the clutter due to filtering) which
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Figure 7.8: Cartoon showing the instantaneous WT velocity bins (Red) at 3 distinct times for

two different scenario. Tracking the maxima (Blue) will measure the physical time that an event

dominates the spectra

is not as variable as the clutter. Additionally this area represents the fast velocity targets whose

'lifetime' is determined not by any physical properties but the time they are within the sampled

range cell. Over a certain velocity there is no use for the Wavelet Transform since an upper bound

exists on the duration of a Doppler frequency.

• A detection statistic termed the 'persistence' is proposed that is detennined by measuring

the length of time the largest WT Doppler component is continuous with respect to velocity.

This is a physical parameter with units of time that is biased towards detection of slow

moving targets at velocities within the long term clutter spectrum.

• The persistence is not related to any measure based on the autocorrelation length. The ACF

can be determined from the FFT of the entire windowed sample and is thus subject to all
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the practical difficulties of the FF1' for nonstationary signals discussed in Sections 3.2 and

7.1.1.

One caveat must be stated; as the time extent of each WT filter is a function of its matched ve-

locity then the defined persistence measurement will not be completely independent of velocity.

Torrence and Compo (1998) consider this in terms of the decorrelation time a particular wavelet

has in response to a point discontinuity in the time series (such as random impulsive noise or edge

effects). This 'cone of influence', defined as the time taken for the filter intensity to drop by a factor

e 2 discriminates between random noise and a true frequency being present. This effectively puts

a lower bound upon the measured persistence times of (Torrence and Compo 1998), as it

turns out a usable target threshold is much larger than this value for typical well sampled time

series and so the effect is minimal.

7.3 Observation of Real Data

To determine the statistical distribution of the Doppler event persistence, a large data file is ne-

cessary. Recall that the high resolution files are constructed from 256 individual frequency pulses

swept through a chirp. By extracting a particular frequency from the chirp then an apparent 256

individual low resolution observations are made of the same scene. Long observations can not

be made at a high PRF since this would dominate a multifunction radar processor, but this PRF

of 40000/256 = 156.25 represents an operational use of this detection method which addition-

ally ensures the speckle is decorrelated. The 20 minute high resolution files in V(sen3353) &

H(sen3352) now offer a large statistical population albeit covering slightly different transmission

frequencies.

Figures 7.9 illustrates a short (3s) observation of sen3353 processed by the maximised wavelet

method in low resolution with a 0dB time varying synthetic target introduced, several points can

be made:

. For this particular data the clutter only Doppler spectrum resembles a 'traditional' point

target more than the target plus clutter.

• The wavelet spectrum confirms the smoothness suggested in the cartoon Figure 7.8. The

scale is defined in Equation 7.4, which for 512 samples bounds the Doppler spectrum well
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Figure 7.9: Wavelet processed low resolution VV data at PRF 156Hz demonstrates discrete

nature of the clutter returns and detectability of a synthetic target based on the persistence of

Doppler components
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Figure 7.10: The persistence of events determined from raw VV sen3353 with addition of a 0dB

synthetic target

without explicit edge effects.

• This smoothness allows the maxima to be extracted well and their continuity can be meas-

ured quickly with fast array operations (the entire processing takes the order of lOOms).

. The mean persistence of the clutter events is the order of 0. is which is physically reasonable.

The target plus clutter has far longer persistence events as expected.

The measured persistence lengths are drawn from a statistical distribution. As the persistence

is presumably measuring some form of physical clutter event lifetime then one would expect a

classical exponential distribution. This is exactly the assumption made by Lee et al. (1995) who

assumed a fast moving varying scatterer population with an exponentially distributed lifetime to

yield a Lorentzian distributed component within the long term Doppler spectrum.

Processing of the VV 20 minute data of sen3353 in 3 second blocks confirms that the distribution

of the persistence is exponential and, whilst not shown, the form was stable overtime. Figure 7.10

shows this graphically and also demonstrates the distribution obtained when the largest persistence

value is taken as a detection statistic - additionally the effect of a simulated 0dB target is shown,

detailed analysis is performed in the next Section.

Note that HH was not processed in this manner since the Doppler spectrum was not single sided

due to the undersampling discussed previously.

Whilst it is tempting to conclude that the exponential observed distribution confirms the physical

lifetime of events in the data, white (or bandlimited to the wavelet filter bank) noise would produce
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Table 7.1: Specifications of the High Bandwidth Malvern Data

Run	 F/GHz PRF	 Pol Hwave/m V 2d/ms1 Rng/m Resolution

3092257 '.'9GHz 1000Hz All 1.2-2.4	 8	 1578	 0.3mx 1024

an exponential persistence distribution since in this case the probability of any particular filter

being a maximum is the same. If the probability of a particular maxima's presence is constant

then the classical exponential decay distribution arises.

7.3.1 Processing a Real Target

The MBPR high resolution data is not reliable enough to give accurate performance figures for

low Pfa. Whilst 20 minute runs were taken in high resolution mode, the low resolution runs were

usually less than a minute long. This causes the sample size to be insufficient; the lowest Pfa will

be the reciprocal of the sample size but significant statistical noise will be present.

It is regrettably accepted that different data must be sourced to experimentally demonstrate the use

of this method. This was kindly provided by DERA Malvern and has properties detailed in Table

7.1.

Exact details cannot be quoted but the radar is operated from a clifftop at a low grazing angle

- about 1.5°, which is significantly larger than the DERA Portsdown data. A major difference

between this and the DERA Portsdown MBPR is that the high resolution is achieved by a single

high bandwidth chirp (500MHz) which avoids the synthetic chirp cycling problems of the MBPR.

Crucially a real target is present within this data - an oil drum floating upon the sea surface at the

edge of the range profile. This gives an immediately applicable test for the persistence algorithm

upon a typical target.

The oil drum is floating on its side which would suggest VV target returns would be very dif-

ferent to the HH since the latter is exposing more cross section in the direction of the radar. In

practice there was significant movement of the drum and over 30 seconds one cannot make firm

conclusions.

The Doppler spectra from 1 second of the VV and HH are shown in Figure 7.11 which demon-

strates that the mean Doppler velocity of the VV returns is about 2ms 1 whilst that of HH is

lms'. This is in contrast with the literature, but both raw and processed files from DERA were

checked and confirmed the labelling. There has been a suggestion (Lycett 2000) that the radar

159



I

.

-I.

a

-a

a

a

-n

a

.Ie

a

-a

a

a

.11

-a

7.3. Observation of Real Data
	

WAVELET DETECFION METHODS

VV DogØs Eetmple (Target at -166cm)
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Figure 7.11: The Doppler spectra from 1 second of VV and HH Malvern data. Scale is arbitrary

dB Intensity

channels were swapped in hardware but without firm evidence the file labels are retained.

A ship-borne radar may be unable to achieve range gate accuracy of 0.3m over 1 second due to

platform motion as inertial sensors used for motion compensation are less sensitive to low fre-

quency movements. At these Doppler velocities the persistence method cannot be expected to

work since any potential target will have left the imaged rangecell before its lifetime can be as-

sessed. Reprocessing the raw data to obtain 6m range cells (using DERA programs) means that

any event lifetime can be measured reliably without excessively decreasing the sample size. The

persistence method was then implemented at a PRF of 500Hz (the minimum necessary to resolve

the Doppler spectrum) in I second blocks of data operating on a single range cell. The intensity

was incoherently averaged on those same blocks to provide a comparison to ideal RCS threshold-

ing (RCS calibration data was not available but the scenes were corrected for range dependence).

Figure 7.12 and 7.13 presents processed images of the data showing arbitrary integrated intensity

and the measured persistence values for the 1 second blocks. This Figure crucially demonstrates

that for these conditions the persistence method is in some ways complementary to that of intensity

thresholding. This scene is substantially more homogenous than previously analysed using the

MBPR due to the lower wave height and higher grazing angle. A physical threshold has now

been realised for target detection which will hopefully be more stable than that of RCS for low

observable targets in sea clutter.

The persistence threshold has been shown to work effectively in real data with a real target

The low intensity target areas are revealed which is the intended operation of this novel
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Figure 7.12: Malvern VV data. Using real data with a real target in the lower range cells the

persistence method is complementary to Intensity and has the advantage of thresholding based

upon a physical measure of time
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Real Target HH - Intensity Arbitrary
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Figure 7.13: Malvern RH data. Using real data with a real target in the lower range cells the

persistence method is complementary to Intensity and has the advantage of thresholding based

upon a physical measure of time
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method.

Although only a single real target scene is available, the persistence method is complement-

ary to intensity thresholding which gives strong justification for further testing.

In Figures 7.12 and 7.13 in the areas of low intensity from 5 - 20 seconds the persistence is large,

however there is some indication that it is at a different angle to the intensity. This could indicate

that the persistence algorithm is actually picking up a different velocity disturbance due to the

target rather than the target itself, such as the wake.

• Identifying an effect due to a target presence may be just as effective as detecting the target

itself but will be difficult to simulate.

7.3.2 Detection Performance of Simulated Target in Real Clutter

Radar Operating Characteristic (ROC) curves showing Pd versus Pfa are difficult to construct for

real targets as the population of target samples is too low. Operating the detection method within

the target free portion of the real data upon simulated targets injected into the clutter spectrum

gives a suitable statistical population. The upper half of the scenes was chosen as the target free

portion to avoid any residual range sidelobes from the target and for every second of each rangecell

a random simulated target was injected at 0dB and 3dB relative power (determined individually

and repeated 100 times). As described in Section 7.1, HH targets were injected at 1ms 1 with a

width of 0.25ms' whilst VV targets were injected at 2ms' with a width of 0.5ms 1 each with a

velocity time constant of I second. The RCS correlation time was matched to that of the observed

target as 0.4s - a reasonable test since this is well below the 1 second observation time. The sample

Pd and Pfa were then calculated by varying the ideal threshold for the entire scene to produce the

ROC curves in Figure 7.14, note that the Pfa is calculated per burst (512 samples) to reflect the

method.

• The persistence method is shown to significantly improve upon simple intensity threshold-

ing for simulated targets in real VV data, an order of magnitude improvement is seen in Pfa

over most of the ROC curve.

The performance curve for the HH is seemingly worse, however this is entirely in keeping with

the existing theories - HH is spikier and so one could assume it has relatively more discrete events.
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Figure 7.14: ROC curves for simulated target in real 9.75GHz data (1 second look time)

The straight addition of a target is perhaps not the correct way to analyse the performance. The

striking point is the complementary performance shown by Figures 7.12 and 7.13 where the low

intensity areas of the real target are revealed well by the persistence detector in both HH and VV

polarisations.

7.4 Summary

This Chapter has implemented an entirely novel detection algorithm based upon the observed

lifetime of discrete scatterer events, performance has been demonstrated on a real target in real

clutter which is rarely shown in the literature. It is suggested that detection is not necessarily

being performed on the target, but rather a surface disturbance relating to the target's presence.

The complementary detection performance when compared with intensity alone is striking and

the simulated ROC curves may not be applicable to performance calculations for this reason.

• It is a possibility that the radar files were incorrectly labelled and that VV and HH should

be swapped. In any case conclusions cannot be drawn from a single file and the benefit of a

persistence thresholding method, if any, requires further analysis of high quality data.
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Chapter 8

CFAR Performance Limits in Littoral

Clutter

Evidence has been provided that the observed high resolution sea clutter is not stationary with

respect to its shape parameter and intensity. The operating conditions specify that a land edge

may be present at an unknown position. It is necessary to determine when to adapt the processor

to inhomogeneous statistics via the use of change point detection. This Section assumes that the

resolution cell is large enough so that the discrete events are drawn from a continuous distribution

such that the observed backscatter conforms to a K-distribution.

8.1 Operating Conditions

This Section outlines the conditions for which this analysis is applicable. A detection algorithm

based on an uncertain distribution shape for is determined via:

I. Sweep for shape estimation for certain length of time, then global process.

2. Alternate sweep and process.

3. Concurrent estimation through censored statistics.

All at an operating throughput of order:

1. Desired Probability of False Alarm= i05.
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2. Desired Probability of Detection= 0.5.

3. 4OkHzPRF.

The significant difference of MFR is that it can operate in 'stare mode' so there is no physical limit

on the number of samples available from a particular area such as in a rotating radar. Adaptive

processing may include binary ('N from M' type detection), coherent (FF1' bins) or incoherent

(RCS summation) integration over time which could be applied to outputs such as:

• Single Hi-res Range-Intensity over a fixed 256 samples.

Hi-res Range-Time-Intensity concerning time evolution of the above.

• Hi-res Range-Doppler possible from FFT of the above giving individual Doppler recordings

from each range cell.

Low res Intensity-Time.

• Low res instantaneous Doppler.

Low res Doppler-Time such as FF1' or WT.

In each case a priori knowledge of the distribution shape is unlikely and so this must be incorpor-

ated into the processing as a pre-detection stage. There is no reason not to simultaneously check

for a target during this pre-detection stage but without accurate knowledge of the current statistics

this will be sub-optimum.

The likely statistics from any of the environmental modes will be subject to:

• Abrupt edges due to land, birds, changing sea conditions, filter noise or extended targets

• Modulation from ocean waves, undulating land or slowly fluctuating targets

• A combination of the above from a discontinuous land-sea interface for example

The task is to determine the distribution shape reliably whilst these effects are occurring
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8.2 Estimating the Distribution Shape

If clutter can be represented as locally stable Weibull or K-distributed, it must be known when

adaptation to any deviation from these statistics is necessary. Chapter 3 concluded that the shape

estimator U was of use in estimating the underlying statistics, and explicitly determined the effect

of edges within the statistics.

U = iTt—iogI
	

(8.1)
10g(fl1j)l/N —log 

(i)

	
(8.2)

= log/IG—log/IA	 (8.3)

Whilst the fractional accuracy of the U parameter estimator can be calculated with respect to

the underlying distribution, an accuracy relating to the performance of the detection algorithm

is preferable - two bounds must be set for this. After discussion with DERA (Branson 1999),

adaptation is defined to be necessary when:

• Probability of False Alarm is increased by an order of magnitude from the design as the

spikiness has been underestimated. In an MFR this represents the level where an automated

processor would be overloaded.

• Detection threshold is increased causing the required target SNR for detection to be 3dB

greater than necessary as the spikiness has been overestimated. This would represent a

significant stealth capability and is broadly equivalent to raising the CFAR threshold by

3dB i.e. a CFAR loss.

8.2.1 Performance Limits

As each of the bounds will have a dependence on the exact form of CFAR processor used, a

simplification assumes that absolute knowledge of the local mean is available. This can never

be true but the uncertainty in the shape parameter will always be greater than the local mean if

estimated concurrently. This Chapter indicates the loss from poor knowledge of the distribution

shape and would apply in estimating U from a finite number of samples and then processing with

a relatively large CFAR window in homogenous clutter.
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Figure 8.1: Threshold multiplier for Pfa= i0 and SNR required for Swerling II Pd= 0.5 with

respect to U

Assume testing for a point-like target in K clutter, the clutter will have a CDF of

_ 2 vI'2 	vi
C (I; ii, p) -
	 () 

K (2 /1i	 (8.4)r(v) p	 vj
from which inversion gives the threshold multiplier c that sets the critical threshold I = ap for a

specific Pft.

Further assuming a Swerling II target model (Section 2.1.4) of cross section r, the target plus

clutter distribution can be shown to be (Watts 1987)

foo 1 v I vo\'	 —va	 1	 1 —I 1PT^C (I;a, ii, = J r (v)	 —) 
exp -
	 + 

r ec 
La + ] 

dci	 (8.5)

redefining to normalise target SNR R = r/p and in the operating conditions of large Pd and low

Pft the above is adequately approximated by

Pr+c(1;a,v,/L)	
R1 [1-'RJ	

(8.6)

Figure 8.1 shows the required threshold I,, and target strength R with respect to U.
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Before setting this threshold the degree of uncertainty must be known in the estimate of U and

furthermore it is better to relate that degree of uncertainty to the chance that the processor is

outside the operational bounds of U defined from the previous Section.

To calculate the positions of the bounds, notation is defined:

U' : The estimated value of the normalised log measure, subject to variation from

finite sample numbers or inhomogeneity

U0 : The actual normalised log measure of the underlying statistics

ii': The estimated shape parameter determined from U', for this exercise K distributed

statistics are assumed

The actual shape parameter of the K distributed statistics

cr': The threshold multiplier applied from the estimated statistics such that the threshold

used is I =

o The threshold multiplier required such that a threshold at I = ci0j0 would give

aPfa= l0

The operational bounds of U are calculated from the high and low limits where U' causes either

Pfa to increase by a factor of 10 (U' = UH) or required target SNR is increased by 3dB (U' = UL)

when the true statistics are U0.

I. U'> UosuchthatPfa(U = U 1 ) = lOXPfa (U = Uo). Ujjiscalculatedfromanumerical

search by inverting Equation 8.4 to find which U' will give an c' that in statistics of u0

produces Pfa = 10.

2. U' < U0 such that R (U = Ui, ) = 3dB + R (U = Uo) is calculated from a numerical

search by inverting Equation 8.6 to find which U' sets a threshold I that requires R to be

3dB greater than necessary to be detected when embedded in statistics of vo

Figure 8.2 shows the above graphically for the case of spiky and exponential clutter. Figure 8.3

plots the upper and lower bounds to U' over —10 < U —y (including the exponential case).

Remarkably these bounds are a near linear function of U for these values and presumably could be

calculated by finding some linear approximation of the above procedures. Where U' is evaluated
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Figure 8.2: Upper plot: Maintaining Pfa by estimating the distribution from finite sample number

is most difficult. Lower plot: In exponential clutter intensity edges cause major Pd loss

at the upper or lower bound this suggests

(9U' - 9U' 5v' ôzi
= constant	 (8.7)

Equation 8.7 is difficult to prove but is not necessary since the calculation takes less than a second;

it only needs to be performed once to determine just how accurate U' need be. Operating at

U' = - (i.e. estimate is of exponential clutter) the limit where excessive false alarms occur is

Uo —0.62 (P0 12.5)

From Figure 8.3, the Pfa bound Uff is much closer to U0 than that of probability of detection UL.

Knowing that the sample estimate of U is Gaussian (Section 3.1.4), it is reliably concluded that

the major problem of using finite sample number is maintaining the Pfa bound over all considered

regions. In fact the necessary accuracy required to maintain the Pfa bound gives an expected target

SNR loss of about 1dB, which is relatively small.

The major contribution to target loss is not from the finite sample number, but rather from the pres-

ence of intensity edges in a scene which cause U' < U0 in an otherwise stable local distribution

with a single change in underlying mean. The effect was explicitly determined in Section 3.1.4 to
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-10

-15

:;	 '	
-	 i	 -07-06

Figure 8.3: The critical values of estimated U for reduced Pfa and increased Target SNR are

linear in U

cause a change in U whose expected value is

sp
(U 1) = in	 (8.8)

sp - p + 1

where a step of magnitude s is present over a proportion p of the scene.

Knowing the required accuracy bounds for U derived in the previous Section, the above equation

(previously shown in Figure 3.8) can be inverted for particular step sizes and proportions that

cause the Pd bound to be reached. Figure 8.4 shows that a 5dB step over a significant fraction

of exponential clutter causes a target loss of 3dB (due to erroneously detennining U' —0.72,

v'3.6)

Whilst intensity edges can only cause U0 to be overestimated producing a target loss from the Pd

bound, edges arising from a change in distribution shape are dependent on the direction of change

and so both the Pd and Pfa bound can be met. Section 3.1.4 showed the expected change in U to

be

(U) = p (UT - Uo)	 (8.9)

where a step of distribution shape UT is present over a proportion p of the scene that is of under-

lying distribution If0.

Again this can be inverted to determine when the Pd and Pfa bounds are reached and plotted

in Figure 8.5 which shows that in estimating the distribution of very spiky clutter a corrupting

exponential edge is required over more than half the scan to cause U to be underestimated enough

to reach the Pfa bound. Operating a K estimator in exponential clutter shows that a corrupting
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Figure 8.4: The required intensity and extent of a step to cause a 3dB loss in detection for varying

U

spiky edge is required to be UT —0.85 (ii 2) over about half the scan to cause a critical Pd

loss.

It can be concluded that estimating the distribution shape through U is relatively robust to typical

distribution edges encountered but is fairly sensitive to intensity edges that can only cause the

Pd bound to be reached. The Pfa bound is largely due to the finite number of samples available

causing excessive variance in the estimate of U.

The effect of an edge showing a simultaneous change in both intensity and distribution can be

calculated similarly but this has not been explicitly piotted since the parameter range is difficult to

show. The necessary inversion is the combined effect of both U1 and Ur to give

sp
= log	 +p(UT - Uo)	 (8.10)

sp - p +1

which gives the expected change in the measured U' from an underlying homogenous distribution

of shape U0 'subject to a simultaneous edge over a proportion p which consists of a distribution UT

of relative scale a. If UT < U0 the combined effect is greater than an intensity change alone; if

UT > U0 the effect is lessened. The overall effect is dependent upon the nature of the changing

environment
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Figure 8.5: A contaminating edge of distribution UT within the sample can cause a critical Pfa

and Pd bound dependent upon U0

The simple effect of a global modulation upon the local distribution was also determined in Section

3.1.4. An underlying homogenous distribution of shape U0 modulated by a global distribution U,.,

(which may be correlated over a number of samples p) will give a bias to measured U' of

(U,) = U,,
	 (8.11)

if the expectation is carried out over a number of samples N >> p. The operational bounds can be

easily calculated from previously determined Figure 8.2.

8.2.2 Operating Implications from Shape Estimation

The derivations covered in the previous Section define rules for operating in potentially spiky

clutter. To summarise:

• Required threshold, and thus absolute target detectability, is a function of the distribution

shape.

• A desired Pla of i0 5 is required, the final processor can withstand 1O before being over-

loaded.

• The shape estimator must not cause an additional loss of greater than 3dB in target detect-

ability.

Which shows:
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• Assuming exponential clutter (U' = —'y), an ideal exponential processor can withstand

homogenous Uo —0.62 (v 12.5) without excessive false alarms.

Assuming K distributed clutter (U' = U), an ideal U estimator is susceptible in exponential

clutter with intensity edges greater than about 5dB intensity over a significant proportion

of the scan. This causes the estimator to overestimate spikiness as U —0.72 (v 3.6)

causing a Pd loss in homogenous exponential clutter.

• Assuming K distributed clutter (U' = U), an ideal U estimator is susceptible in spiky

clutter with a contaminating exponential edge over more than half the scan. This causes

the estimator to underestimate the spikiness causing excessive false alarms in homogenous

spiky clutter.

• Assuming K distributed clutter (U' = U), an ideal U estimator is susceptible in exponential

clutter when, for example, the contaminating edge has distribution UT —0.85 (v 2)

over more than half the scan or UT —2 (v 0.5) over 10% of the scan. This causes the

estimator to overestimate spikiness causing excessive Pd loss in homogenous exponential

clutter.

The numerical values are obviously a function of the goal Pfa and the bounds set for robustness,

however due to the inherent uncertainty in estimating the statistics and allowing for the presence

of edges the rule will always be encountered that describes when to operate detectors tailored for

spiky clutter. A decision has to be made that balances the increased false alarm rate with lower

target detection.

The type of edges present will be dependent upon the environment. Their major effect is Pd loss

from intensity edges, these cannot contribute to Pfa loss. Pfa loss can only occur in the unlikely

case of a distribution edge occupying more than half the scan.

The primary contribution to Pfa loss is from estimating U from finite sample number and the

probability of this occurring is shown in Figure 8.6 which additionally shows that the probability of

Pd loss is insignificant in comparison. If U0 —0.7 and an estimate U' is made from 256 samples

there is about a 10% probability of suffering Pfa loss on subsequent processing in homogenous U0

based on this figure.

For comparison, the key result of Figures 8.4 have been repeated for goal Pfa of 102, iO 3 and

i0 in Figures 8.7 to 8.9. This indicates that if steps of order 10dB are expected in the data then a
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Figure 8.6: The probability of critical Pfa varies with U and number of samples N. probability

of critical Pd is negligible in comparison

goal Pfa of 10-2 is more realistic without a form of simultaneous edge detection before any target

detection algorithm based on spiky clutter occurs.

8.3 Summary

From this Chapter conclusions are:

The region most sensitive to operating conditions is the transitional stage where clutter is

expected to be spiky and one must operate an accurate estimator U', but where the true

distribution U0 is unknown due to finite sample numbers - the primary risk is Pfa loss.

. The number of samples observed must be maximised, but in the process the statistics could

change. Small changes in the local mean intensity risk Pd loss.

The optimum estimator with regard to minimising Pd and Pfa loss is one which repeatedly

samples the statistics until a change occurs.

The results demonstrate that a step as small as 5dB can have a dramatic effect in mildly spiky data

and so simultaneous edge detection must be performed in littoral regions before operating target

detection based on a determined background shape parameter otherwise a critical Pd loss of 3dB

will result.

Further decisions must be made based on the resultant local stationarity of the distribution, since a

change in the intensity could be an inherent modulation of the statistics as in the compound formu-
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Figure 8.7: Required step to cause a 3dB loss in detection; goal Pfa= 10-2

Cnticat Edge to Cause Pd Bound at Desired Pfa=1 0

0.2	 0.4	 0.6	 0.8
Proportion of Scan

Figure 8.8: Required step to cause a 3dB loss in detection; goal Pfa= i0
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Figure 8.9: Required step to cause a 3dB loss in detection; goal Pfa= iO4

lation of the K distribution. There is still a requirement to know the extent of the local stationarity,

as this would presumably define a suitable fixed CFAR window to use in target detection.

177



Chapter 9

Final Conclusions and Further Work

9.1 Summary

This thesis was begun with the aim of analysing a large amount of sea clutter taken in varying

conditions to determine the best way of filtering the data for detection of slow moving targets. As

with all experiments, some problems are expected with the data and this reduced the number of

acceptable files considerably so that a large comparative study was not feasible.

It is hoped that the analysis has shown the data to vary considerably over typical detection times.

Throughout this thesis emphasis has been placed on the need to account for this nonstationary

behaviour. Commonly applied probability distributions may apply to radars that observe large

range cells where so many scattering events are occurring that it can be viewed as a continuous

distribution; this assumption breaks down at the high resolution of the MBPR as it is in a position

to observe the individual scattering events. Whilst the compound formulation of the K distribution

gives a way of modelling the underlying swell, any detection scheme relying on explicit knowledge

of such a continuous distribution will not be applicable at this high resolution.

One contribution of this thesis is that the spatial extent of system noise has not been recognised

before, often about a third of a high resolution scene was pure system noise and thus one could

apply standard detection techniques if this area could be detected. A variable threshold multiplier

is suggested if standard CFAR is used, but some form of sequential edge detector is required for

this to be feasible since the large 20dB steps due to sea clutter easily pollute a fixed window

scheme. A method of calculating the distribution of K distributed clutter plus system noise was
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proposed for calculating such thresholds.

Viewing the scene as a finite collection of events means that the traditional method of intensity

thresholding based upon the local mean may not be feasible and additional criteria may be better

at distinguishing a target from the background. Based upon a wavelet analysis, measurement of the

scattering event lifetimes was performed to give a simple physical test statistic - the persistence.

This is far from a final solution, it primarily gave a way of handling a coherent signal that can

not be viewed as stationary over the order of the look time. Critically the wavelet based detector

was complementary to that based upon intensity alone which, in conjunction with the processed

scenes, suggested that a disturbance due to the target was detected.

If a large enough rangecell is used so that the returns are approximated by a K distribution, the

littoral environment presents a particular problem in estimating the shape parameter where a land

edge is present in the data. The performance limits of this were explicitly calculated and demon-

strate the need for care when assessing a region such that edge detectors should always be em-

ployed in conjunction with shape estimators.

Two techniques were proposed to handle nonstationary behaviour in range resolution and Doppler

mode, and they have necessarily been tested on a small amount of acceptable data. This thesis

demonstrates the difficulty in analysing sea clutter when the environment has such a strong impact

upon the observed statistics. For this reason it is sincerely hoped that a large amount of expen-

mental data is released into the community so that hypothesised detection schemes can be assessed

for robustness in achieving their claimed performance in fully specified statistics.

9.2 Further Work

It is suggested that the persistence algorithm is tested on many more real targets to determine if

the performance is always complementary to intensity thresholding. A better time-varying target

model could be adopted to describe the statistics and thus obtain applicable performance curves.

Due to the expected presence of edges in littoral range swaths, an edge detector must be operated

in parallel with any shape estimator and thus a scheme could be derived that balances the risk of an

edge being present with the necessity of using more range samples to improve statistical accuracy.

To maximise accurate sample population used, suggested further research is to formulate a fully

sequential detection scheme which can adapt on a pointwise basis to the environment without
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the notion of a sample window. This would be ideally suited to the MFR since a decision can

be declared at any moment with an associated risk balanced by a known cost of taking another

sample to decide. This is a fruitful area because it links the notion of radar load and scheduling

directly with the detection schemes. If multiple airborne targets are present then it is vital to assess

potential naval targets faster than normal.

For the high resolution scenes, if 1% of the scene is dominated by 'events' which persist of the

order of seconds but are difficult to characterise in RCS, then the Pfa will be discontinuous at the

1% level. If an event based analysis is used rather than a continuous spectrum then time varying

properties of the events may provide better discrimination and the CWT method was presented as

a first attempt. The test statistic (persistence) is a physical time and so it may turn out to be more

stable than intensity based statistics. Further analysis of high quality (target free) data is required

to determine this as the analysis has been based on only one real target scene.

9.3 Endnote

As a final note I believe that this work has achieved my personal objective of 'exploring' a subject.

Far from my expectation that my view of science would narrow - I have been exposed to a much

greater breadth of work than my degree studies and this thesis represents a small fraction of what

I have learned since joining UCL.
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Appendix A

An Appropriate Use for the SED

The original need of the SED was to evaluate whether the returns could be considered locally

exponential but without specifying any a priori knowledge about the correlation or an analysis

window, this was an attempt to process the compound formulation of the statistics. Originally it

was hoped that targets could be identified simply by being short extent steps in the local mean. It

was concluded that the flotsam present upon the waves causes highly variable returns within the

wave region that are locally uncorrelated and spikier than exponential which gave too many false

alarms.

The system noise present in the scenes was however, accurately segmented which leads to a pro-

posed Synthetic Aperture Sonar (SAS) target detection method.

A.1 Brief Outline of SAS

Obviously the primary difference is that acoustic waves are now used to image the scene. Synthetic

Aperture processing, commonly applied in radar, gives improved azimuth resolution by utilising

the motion of the sound emitter (hydrophone) as it passes a stationary target and coherently recon-

structing the effect of a much larger aperture.

The particular SAS configuration was rail mounted to give accurate motion reconstruction and an

array of 32 hydrophones were used with a range-Doppler imaging algorithm to obtain the image

in Figure A. 1 of 2 targets present upon the sea bed. The exact specifications of the SAS cannot be

quoted, but the resolution is of the order of centimetres such that the range and azimuth extent of

the image is about lOm in extent. The image is courtesy of DERA Bincleaves.
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A.2. The SED Applied to Detect Shadows 	 AN APPROPRIATE USE FOR THE SED
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Figure A.1: Synthetic Aperture Sonar scene with 2 targets present; arbitrary dB intensity

A.2 The SED Applied to Detect Shadows

Figure A.1 shows that apart from the slowly modulating seabed texture the targets show as bright

points, but crucially they cast large shadows behind them. The shadows are due to the nature of

the targets, such that sound does not propagate behind them. The SED should be able to detect the

regions if operated horizontally.

The initial detection procedure would be to use some sort of threshold in intensity to detect the

bright targets, the SED however is applied to detect long regions at the system noise level. A

suitable comparison is to threshold so that no false alarms are produced in the azimuth lines where

no target is present. This is illustrated in Figure A.2 which clearly shows that processing the

scene in both ways can detect the targets. The SED method produces a much better detection rate,

especially for the lower target which shows up so clearly that it is complementary to simple high

intensity thresholding.

This is believed to be a novel implementation of SAS target detection and the length of the shadows

may give information about the height of the object.
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Figure A.2: The shadows of a target are detected more efficiently than the target itself using the

SED
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Appendix B

Mathematical Annex

B.1 Nonlinearity in the Normalised Log Estimate of ii

Lombardo and Oliver (1994) show that the first order expansion is insufficient to predict the U

estimator's bias and variance and that a second order correction is only acceptable for ii < 1.

Importantly they identify the nonlinearity in the inversion of Equation 3.15 as causing the predicted

error to deviate from simulation and suggest an improved texture measure of t 1/v which tends

to a linear dependence for large v. Whilst individual assessments of texture are unaffected, the

average bias error is reduced significantly and follows the theoretical prediction closely. The

improved texture measure with associated bias and error is achieved by substitution of t and the

expectation moments into Equation 3.15 - 3.17 (Lombardo and Oliver 1994).

U = 1)—log1 = '(°) (t') +log(t) --y	 (B.1)

(zt)	 1+2t
(B.2)

2n 
(i - _______

	

t	 )

(at2 )	 (') (t') + ç - 1
(B.3)

n.( i	
(1)(t-1)\2

-	 t	 )

Simulation results using iO4 trials based on 0.1 < v 10 are presented for various sample sizes.

Figure B. I shows the rms error in the estimator with the predicted value overlaid using Equation

3.17. Figure B.2 shows the differing behaviour of the bias for v < 1 and ii > 1, with the predicted

value overlaid using Equation 3.16.

An inability to invert some values of the estimator causes spurious results. For large values of z
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Figure B. 1: RMS error in estimation of v from U (Normalised Log Estimator)

Figure B.2: Bias error in estimation of v from U (Normalised Log Estimator)
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B.2. Texture Estimate with Resistance to Additive Thermal Noise 	 MATHEMATICAL ANNEX

Figure B.3: Whilst Va may be resistant to thermal noise, the sample distribution is not Gaussian

-unlike U

the rn error is overestimated, reducing the sample population has the same effect A gradient

sign-change is seen in the bias indicating where the effect occurs.

B.2 Texture Estimate with Resistance to Additive Thermal Noise

Lornbardo, Oliver and Tough (Lombardo et al. 1995) suggest that whilst the normalised log estim-

ate U is an accurate estimator in pure K distributed clutter, it is particularly sensitive to additive

thermal noise. To completely characterise the distribution of K plus noise they introduce the

concept of a 'set of sufficient stitistics' - mean, norinalised log and intensity contrast. They pro-

pose a modified estimator, the amplitude contrast Va, and show it has slightly less accuracy than

U but has improved resistance to noise.

VaE	 21
()

Figure B.3 shows the distribution for 256 samples at ii = 0.1 has a significant deviation from

normal in the sample distribution of V0 in contrast to U. The text of Section 3.1.5 justifies that U

is still the preferred measure.

B.3 Chaos

Section 3.4.1 briefly introduced chaos. This annex discusses some of the concepts applied in the

chaotic analysis of sea clutter. Many of the definitions are taken from Williams (1997).

(13.4)
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B.3.1 Terminology

Extending to two or more dimensions requires the use of phase space to plot each independent fea-

ture recorded. Pseudo phase space is for representing a single feature under different conditions,

for example lag space plots Xt vs x where i represents the lag time. Commonly, embedding

dimension refers to the number of lags compared - for time prediction this is normally the number

of points required before making a prediction.

An attractor is the locus of stability in a system's phase space. As shown in Figure 3.17 though

any small deviation off this attractor may cause the system to flip onto another part of the attractor.

The basin of attraction refers to the volume of phase space in which the attractor has an effect

on the system, this leads to trajectories along which the system moves (asymptotically) onto the

attractor. Multiple attractors can exist with overlapping basins causing complex fluid-like flow of

the system within phase space.

Topology plays a major role in defining attractor shapes, including:

• point attractor: zero dimensions.

• periodic attractor or limit cycle: two or more values that recur in order occupying 2 dimen-

sions in phase space.

• torus: combination of limit cycles. This can be further subdivided into periodic whereby the

trajectories upon the torus exactly repeat themselves, or slightly mismatch as quasi-periodic.

The definitions of chaos are numerous, including:

• Chaos results from a deterministic process.

It happens only in non linear systems.

• It can usually pass all tests for randomness.

• The range of variables have finite bounds restricting the attractor volume.

• Chaotic behaviour is hyper-sensitive to (but has no memory of) the initial conditions.

• Short term prediction is possible.

• Fourier spectrum is broadband but can have significant peaks.
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B.3.2 Trajectories and Simulation

Trajectories in non-chaotic and chaotic systems for non-linear dissipative systems are fixed for

a particular control parameter (k in Equation 3.73). In the non-chaotic regime the trajectories

converge or remain equidistant. In the chaotic domain these trajectories diverge. The particular

trajectory a system takes can be determined by any vanishingly small finite difference in phase

space position, this causes problems in the computer simulation of chaos due to the inherent finite

precision of floating point calculations and cannot be avoided by increasing this computational

precision.

B.3.3 Order Within Chaos

Chaos consists of various regimes of order masked by random-like behaviour. Typical forms of

order within chaos are:

. Windows: Regions of periodicity.

. Routes: Period doubling at the onset of chaos.

. Chaotic or Strange Attractor: complex phase space surface to which the trajectory is asymp-

totic in time.

. Zones of popularity: Regions of high probability density upon the chaotic attractor.

. Fractal structure: the chaotic attractor is a fractal.

. Self organisation: regular patterns emerging in space, time or function.

B.3.4 Reconstruction of Phase Space

This is generally only graphically possible in systems embedded in 3 or less dimensions. When

systems of higher embedding dimension are compacted into lower dimensionality pseudo-phase

space they produce false nearest neighbours. Upon increasing the embedding dimension they will

abruptly move apart when the correct embedding dimension is used. This can be seen by an ana-

logy of a cubic crystal viewed slightly offset in 2D, sites appear closer to each other than one would

intuitively expect from the uniform planar positions. Viewing the crystal in 3D immediately re-

veals the orderly structure. A mathematical way of determining the correct embedding dimension
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is to maximise the mean square distance between points in phase space. This is the essence of the

'singular system analysis', 'singular value decomposition', 'Karhunen-Loeve decomposition' etc.

methods. If an attractor exists then it should appear from the probability density distribution in the

phase space reconstruction, however at erroneously low embedding dimensions spurious attractor

shapes can be revealed. With any reconstruction it is important to provide a control dataset formed

from 'surrogate data', this is non-deterministic artificially generated data that mimics certain fea-

tures of the measured time series. Computer generated randomness is detenninistic and extreme

care must be exercised when generating surrogate data.

B.3.5 Dimensions

Dimensions are central to chaos theory. Authors seem to take various terms to mean different

things; based on definitions in Williams(1997):

. Euclidean: the number of co-ordinates of a body needed to describe its shape.

• Topological: 1+euclidean dimension of simplest shape that can subdivide the body (usually

equal to the euclidean dimension).

• Variable: the degrees of freedom of a system.

• N-d vector: above as applied to pseudo-phase space (i.e. the number of lags used).

• Embedding: the number of lagged values used for the purpose of reconstruction.

• Scaling exponent: not necessarily an integer, used to describe many properties of a system

that conform to a 'simple' power law e.g. the Fractal dimension, Information, Correlation

and Lyapunov.
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Appendix C

Additional Statistical Detectors

In Chapter 5 Neyman Pearson detection schemes were used as Constant False Alarm Rate (CFAR)

processors but several other methods are available.

C.1 Wald Tests

By extension of the Neyman-Pearson formulation the observation interval can be allowed to vary

given the following assets:

. A realisation x = {Xin, n -p cx} from the radar output.

• Hypothesis H0 indicative of no target, represented by PDF Jo

versus hypothesis H1 indicative of target present, represented by PDF fi.

• A measure of performance based on Pd and f a.

In conjunction with a stopping rule	 (x) and a decision rule 5n(Xin)

= Pr{decide to stop 
I 
XJn observed}	 (C.!)

= Pr{Hidecided 
I 

stopped}	 (C.2)

a sequential detection scheme results. The explicit inclusion of Pd implies a lower bound on the

number of samples required for decision, an upper bound is also set dependent on radar load. The

basic Wald CFAR can be extended to detect a change in distribution as well as deciding upon the

class of distribution, and is based a scheme due to Wald (WaId 1947):
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(C.3)

(C.4)

(C.5)

(C.6)

(C.7)

C.!. Wald Tests
	 ADDITIONAL STATISTICAL DETECTORS

Select two thresholds A0 and A 1 such that A0 ^ )i. Start observing data x 1 , x2 ,... ,

sequentially and calculate a measure T based upon the likelihood, stop at the first n

such that

Either T(xi :n) =

Or T(x 1.) =

fi (un)
log	 ^Ao

fo (un)

fi (un)
log	 ^Ai

fo (un)

where the subscripts on A refer to the chosen hypothesis H.

The logarithm in Equations C.3 and C.4 allow a sequential updating step

fi (XnIXi:n_i)
T (un) = T (X1:n_1) + log

10 (inlxi:n_i)

As detailed in Kazakos and Kazakos (1990) the A threshold can be calculated as

)o ^ 
iog(11_)

A 1	log ()

where 1 is a power level related to Pd. This provides an interesting comparison to NP where only

.P1a is specified. Obviously increasing Pd will necessitate longer observation before deciding upon

H. Additionally in sequential detection theory the probability of false alarm defines the average

run length (ARL or TFA), giving the expected number of observations before a false alarm is

observed.

The difficulty lies in determining T easily since it is not independent of un_i. Complications

arise from:

. the class of the background PDF fo may be complicated.

• fo may be known only up to a nuisance parameter such as scale or shape.

• the test may be sub-optimal when H is estimated from the first observations.

• T may not be invariant to the parameters defining H.

• The target may only be present for a limited or variable number of samples.
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C.2 Change Point Tests

As in Wald, a variable observation interval is available. The hypotheses are modified to allow a

change point in the statistics, given the following assets:

. A realisation x = {Xi, n —* oo} from the radar output.

• Hypothesis H0 indicative of no target, represented by PDF fo

versus hypothesis H1 indicative of target present from time k onwards, represented by PDF

fo(x1:k_1) and fi (Xk:n) (1 < k < n).

A measure of performance based on Pd , Tf a and response time for detection of change.

Observations are assumed to be taken sequentially xl, x2,... , x with the requirement of detect-

ing a change in distribution at a point k. Page (1955) initially proposed a form based on maximum

likelihood termed the CUSUM procedure, an alternate form based on a Bayesian argument was

presented by Shiryayev (1963) and Roberts (1966). Both suggest computing a sum of likelihood

ratios based on the measure P00	 10 (Xi:n) and Pk	 fo (X1:k_l) fi (Xk:n) with completely

specified 10 and fi such that

IF,,
Max Likelihood	 L	 max <	 (xin)j>	 (C.8)

k<n	 oo

Bayesian :	 =	 (Xi:n)	 (C.9)

and asserting a change in distribution when L or R first exceed a threshold level A.

Difficulties highlighted in the previous Section can be partially overcome by the use of scale

invariant statistics (SIS) that can identify a change point in the mean of a known class of PDFs

without having complete knowledge of the initial mean. Assuming a known class of PDF fo

one can form a statistic based upon the likelihood of there being a transition from the pre-change

distribution Jo (iix) to post-change distribution Ii = fo (ijax) with unknown nuisance parameter

ij > 0 and specified c	 1. The invariance refers to the statistic being independent of the unknown

parameter r.

The Gamma distribution is of particular interest, recall

fGainrna (x) = F' (j3) x_le_X	 (C.10)
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with shape parameter /3 and scale 1. Gordon and Pollak (1997) give a method of determining R

with an associated ARL using a scale invariant Shiryayev-Roberts procedure. If fo and Ii are

known to be Gamma distributed with known 3, differing in scale with both pre and post-change

values unknown and relative scale change a specified, then

where T1 =

14=

Afl — -	 a+(1-a)H7Iaa(n k+1) [

	

1

j=k ]

xi
11>10 and T 

=

Change point tests could be useful if the relative magnitude of change to be detected is known, but

this is often not the case.

C.3 Target Presence Tests

The above can be further modified to allow the detection of not only a target's appearance but its

anticipated subsequent disappearance. A variable observation interval is available. Introducing an

additional hypothesis to allow two change points in the statistics, given the following assets:

. A realisation x = {Xi, n —* oo} from the radar output.

• Hypothesis H0 indicative of no target, represented by PDF fo

versus hypothesis H1 indicative of target present from time k onwards, represented by PDF

fo(X1:k_1) and fi (Xk:n) (1 < k < ri)

versus H2 indicative of target present from time k until 1, represented by fo (x 1:k- 1)

fi (xk:1) and fo ('L+ln) (1 <k < I <n).

• A measure of performance based on Pd ,Tf a and response time for detection of change.

This test has been analysed by Tartakovsky et al. (1999) within a CUSUM framework applied to

Gaussian noise.

The added complication seems unnecessary as it should be possible to achieve equivalent results by

simultaneously running two change point tests to detect both increase and decrease in a parameter.
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This would have the added benefit of allowing simultaneous multiple targets to be recognised such

as

• Hypothesis 113 indicative of target present from time k onwards, further target present from

I onwards represented by fo(x1kl) , fi (xk:1) and 12 (i+i:n) (1 <k <I < n).

A further problem with this type of test is the event of not detecting the targets disappearance. This

can cause the test to 'lock' in the target present state unless explicit knowledge of the expected

target lifetime is available.
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