UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Cryogenic Solar Absolute Radiometer - a potential SI Standard for Solar Irradiance

Winkler, R; (2013) Cryogenic Solar Absolute Radiometer - a potential SI Standard for Solar Irradiance. Doctoral thesis , UCL (University College London). Green open access

[thumbnail of Rainer Winkler PhD thesis  2013 FINAL ELECTRONIC VERSION some material removed due to copyright issues.pdf]
Preview
PDF
Rainer Winkler PhD thesis 2013 FINAL ELECTRONIC VERSION some material removed due to copyright issues.pdf
Available under License : See the attached licence file.

Download (9MB)

Abstract

This thesis reports the development of an instrument which could act as a future standard for Solar Irradiance. The instrument is called Cryogenic Solar Absolute Radiometer (CSAR), and it exploits the advances made in the field of cryogenic radiometry in the last few decades. The aim is to significantly reduce the measurement uncertainty as compared to the current standard (the World Radiometric Reference) and to guarantee the long-term stability of the measurement record. Several tests were carried out in order to verify the performance of CSAR. In a first test, CSAR was found to agree within 0.01% with the National Physical Laboratory’s SI standard for radiant power. In a second test, CSAR and the World Radiometric Reference were compared on the World Radiation Center’s solar tracker in Davos/Switzerland. In this comparison, the World Radiometric Reference measured 0.309% higher than CSAR; the relative standard uncertainty of the comparison was 0.028%. This difference between the current Solar Irradiance standard and CSAR is able to explain the offset between the two space experiments VIRGO/SOHO and TIM/SORCE. The CSAR result is further confirmed by the fact that a similar offset between the World Radiometric Reference and the SI-scale has been determined through experiments independently performed at the Laboratory for Atmospheric and Space Physics (University of Colorado Boulder). CSAR has also been designed with space flight in mind. Although no full evaluation of the space-worthiness has been carried out, thermal tests indicate that CSAR could cope with the limited cooling power provided by readily available space coolers. The relative standard uncertainty of space-based Total Solar Irradiance measurements by CSAR is estimated to be 0.011%.

Type: Thesis (Doctoral)
Title: Cryogenic Solar Absolute Radiometer - a potential SI Standard for Solar Irradiance
Open access status: An open access version is available from UCL Discovery
Language: English
Additional information: Copyright restricted material has been removed from the e-thesis.
UCL classification: UCL > Provost and Vice Provost Offices
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Space and Climate Physics
URI: https://discovery.ucl.ac.uk/id/eprint/1381929
Downloads since deposit
308Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item