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Abstract

One of the most important features of nonlinear dynamical systems is that, as system
parameters are varied, qualitative changes in the overall behaviour of the system can
occur at a bifurcation. For smooth systems, the local bifurcations which occur under
the change of one parameter are well understood. Non-smooth dynamical systems,
which frequently arise due to the way certain physical processes are modelled, undergo
bifurcations which have not been widely studied. We examine a particular type of
bifurcation arising in a commonly occurring class of non-smooth dynamical system,

combining theoretical and experimental results.

In this thesis we are concerned with the study of the important class of dynamical
system we call impact oscillarors, which undergo oscillations under the influence of
some forcing, and additionally can undergo impacts at rigid stops. Such systems are
of interest because a large number of physical and engineering systems display
behaviour which can be classified as impacting, where it is important to use a
dynamical analysis to identify and thus avoid the noise, wear or failure which could be
caused by repeated impacts producing unacceptably large loads. Recent interest in such
systems has concentrated on the unusual bifurcational behaviour which occurs when part
of an orbit begins to undergo low velocity impacts. Using analytical methods to locate
particular simple steady state solutions of an impact oscillator these grazing bifurcations
are investigated. Comparisons are made between the behaviour of these special
bifurcations, which arise because of the instantaneous reversal of velocity in the
mathematical mode! of the impact process, and the standard bifurcations of smooth

dynamical systems.

An experimental study of an electromagnetically forced metal beam impacting against
a stop is used to show that the overall qualitative behaviour displayed by a simple
theoretical model is also displayed in a physical impact oscillator. Finally the
theoretical studies are related to a particular problem of offshore engineering and it is
shown how a very simple model can be used to explain some unusual observed

behaviour.
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1. Preliminaries

1.1 Introduction to Impact Oscillators

Physical applications which undergo impacts against some kind of stop to limit the
motion of a system are very common and arise in many different areas of engineering.
The very fact that the impact process exists and is very different from the "free”
motions away from impact make such impacting systems nonlinear, and if there is an
external driving function then these impacting systems form an important class of forced
dynamical system. We shall call this class impact oscillators. We now give a brief
survey of the literature which exists concerning systems in this general class : first,
some of the theoretical studies, then some practical applications and finally some

experimental studies.

1.1.1 Theoretical studies

Early work by Shaw and co-workers concentrated on one sided impact oscillators
modelled by sinusoidally forced, second order ordinary differential equations with either
a piecewise linear stiffness function or a linear stiffness function and a coefficient of
restitution (COR) rule. For both of these cases some particular analytical solutions can
be located for the model of an impact oscillator [Shaw & Holmes, 1983c]. The stability
of these analytical solutions can also be found allowing loci of saddle-node and flip
bifurcations to be located. The discontinuous nature of maps obtained from impact
oscillators was noted in this work. A similar analysis was performed by Whiston
[1979]. Further studies by the same authors [Shaw & Holmes, 1983a, 1983b] analysed
the special case of a linear oscillator with a COR rule where the coefficient is small
(zero or near zero). In the case of zero coefficient of restitution, the whole system can
be reduced to a one dimensional map (on a circle) which is discontinuous and regions
of stable orbits of low period are shown, and also transient nonperiodic motions. The
same technique as used by Shaw & Holmes for obtaining analytical solutions of the
COR rule impact oscillator was also used by Hindmarsh & Jefferies [1984]. Using both
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analytical calculations and numerical simulations, this work identified regions of
stability for low period solutions and also identified apparently chaotic solutions. The
discontinuities and discontinuities in gradient inherent in the system were identified as
being of interest. Shaw [1985a, 1985b] again studied the simple COR rule model, this
time with two stops, and showed local and global bifurcations.

Whiston [1987a] studied local bifurcations in an impact oscillator with COR rule and
preload (i.e. the equilibrium position with no forcing is at a stop), again using the same
kinds of analytical techniques as many previous authors described above, whereas
Whiston [1987b] studied in some detail the global dynamics of the same system.
Again, it was noted that the discontinuities in the dynamics could lead to "non-
differentiable" bifurcations which merited further study. Shaw & Rand [1989] find
analytical solutions for the system consisting of an inverted pendulum with a COR rule
applied at two stops, and again find local and global bifurcations, and the same ideas
are extended to a two degree of freedom COR impact oscillator [Shaw & Shaw, 1989].
The analysis for the single degree of freedom, two sided COR rule impact oscillator
system is generalised by Natsiavas [1990] to general n-periodic steady state solutions

with arbitrary numbers of impacts.

Nordmark [1991] developed further some of the observations made in the work
discussed above that discontinuities and discontinuities in gradient exist in impact
oscillators which use an instantaneous impact rule (such as the COR rule). Orbits
which just "graze" a stop (i.e. start to impact with zero velocity) were shown in this
paper to cause a loss of stability at a grazing bifurcation. These bifurcations due to low
velocity impacts have been the subject of much interest from several authors in recent
years. Chillingworth [1989] has studied the geometry of the sets in phase and
parameter space which lead to orbits which graze the stop, and this work is continued
by Whiston [1992] in which homoclinic bifurcations due to the non-differentiable nature
of impact oscillators are studied in some depth. Nordmark [1992a & 1992b]
investigates these grazing phenomena further. One interesting development by
Nordmark is the approximation of the instantaneous impact rule by a continuous

function (with nonlinear stiffness which rises rapidly after impact). Here, a chaotic
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attractor with a typical "fingered” shape for COR impact oscillators, is more and more
closely approached as the stiffness at impact in the equivalent continuous model rises
more steeply. Budd et al [1993] also investigate grazing bifurcations for a one sided
COR impact oscillator as the position of the stop is varied.

1.1.2 Physical and Engineering Systems with Impacts

As well as the theoretical developments discussed above, many studies have highlighted
the practical physical and engineering problems which can be studied as impact
oscillators. Mechanical engineering provides many examples of systems with impacts
such as rattling gears [Karagiannis & Pfeiffer, 1991, Kahraman and Singh, 1990,
Pfeiffer & Kunert, 1990, Reithmeier, 1990], vibration absorbers [Sharif-Bakhtiar &
Shaw, 1988], car suspensions [Stennson et al 1992] and impact print hammers [Tung
& Shaw, 1988a, 1988b]. In these mechanical engineering examples of impact
oscillators, the primary problems caused by the successive impacts are noise and wear.
Another rich source of impact oscillator problems is the offshore engineering
environment. Work by Thompson and co-workers on the problem of a ship moored to
an articulated mooring tower, essentially an inverted pendulum with buoyancy,
undergoing wave driven oscillations was extensively studied [Thompson, 1983,
Thompson & Ghaffari, 1983, Thompson & Elvey, 1984, Thompson, Bokaian &
Ghaffari, 1984]. A similar problem, that of a ship moored against a fender, was
studied by Lean [1971], and more recently by Sterndorff er al [1992]. Other offshore
impacting problems arise in the installation of a structure over a guiding “indexing"
system, discussed in more detail in chapter 5. Indexing systems can comprise of
bumper piles, which guide the structure into position [Nelson et al, 1983, Stahl et al,
1983] or pile/sleeve arrangements [Robinson & Ramzan, 1988]. The effect of
earthquakes on various structures has motivated other studies of dynamical impact type
problems, for example, the responses of a slender block which rocks under external
excitation [Hogan, 1989, 1992a & 1992b, Tso & Wong, 1989]. Hogan uses similar
ideas to those of Shaw and others to obtain analytical solutions for an idealized
piecewise linear model of a slender rocking block, along with the stability of these

solutions, and extends these ideas in order to obtain expressions for the invariant
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manifolds of unstable solutions in order to find heteroclinic bifurcations. The
"pounding” (i.e. collision) of nearby buildings under earthquake excitation is another
example [Jing & Young, 1990, 1991]. The electricity generating industry has also
produced impact oscillator problems, such as the cross flow induced impacting of heat

exchanger tubes [Paidoussis & Li, 1992].
1.1.3 Experimental impact oscillators

Several experimental studies of impact oscillators have been undertaken, designed to
show different aspects of the response of these systems. Again, Shaw and co-workers
have been active in this area [Moon & Shaw, 1983, Shaw, 1985, Moore & Shaw, 1990]
using a vibrating beam in the first two papers and a normal and inverted pendulum for
the third. In each case particular bifurcations were matched between theory and
experiment. Bayly and Virgin [1992] also found good agreement between experimental
results using a "rollercoaster” arrangement with a collision at a stop and a piecewise
linear impact oscillator model. Nordmark & Stennson [1992] used a sinusoidally
shaken mass/spring system with one sided impact and compared the results to a simple
linear COR model with very good agreement. Even experimentally obtained apparently
chaotic Poincaré maps were closely matched to numerical simulations of the theoretical

model in this study.
1.1.4 Outline of the thesis

It is apparent from the brief review of the literature concerning impact oscillators given
above that one of the interesting features of these systems is that they can undergo
"unusual” bifurcations. These grazing bifurcations cannot be understood using the
conventional theory of smooth bifurcations. The problem arises due to the idealised
rule which is often used to model the impact process, namely the coefficient of
restitution rule v=-rv where v is the velocity at impact. The instantaneous nature of the
reversal of velocity leads to discontinuities and discontinuities in gradient in mappings

arising from the dynamical system.
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This thesis is largely concerned with the study of these grazing bifurcations. Other
work in similar subject areas has been taking place independently by Budd and co-
workers [Budd es al, 1993], Nordmark [1991] and Whiston [1992]. The analytical
solutions which are developed in chapter 3 for simple orbits of an impact (i.e. those
orbits with low numbers of impacts) can be used to examine in detail grazing
bifurcation events. Both stable and unstable paths of steady state solutions can be
located analytically. We find that there can be two distinct types of "first grazing"
bifurcation, and there is a simple criterion for distinguishing between them. These first
grazing bifurcations in impact oscillators using the coefficient of restitution rule are
compared to the conventional bifurcations undergone by an impact oscillator where the

impact process is modelled with a continuous and differentiable function.

A particular problem of marine engineering which involves impacts in the installation
of a jacket structure over pre-installed piles is examined in chapter 5 in the light of the
ideas developed in earlier chapters concerning grazing bifurcations. It is found that
these bifurcations play an important part in the overall behaviour of the simple model
of the physical system. Experimental verification of grazing bifurcation events is
obtained in chapter 6. The experimental apparatus consists of an electromagnetically

forced steel beam with a one sided amplitude constraint imposed by a metal stop.
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1.2 Smooth dynamical systems

1.2.1 The Poincaré Section

Continuous time dynamical systems commonly arise from models of physical systems,
for example as the time evolution of a set of ordinary differential equations. The
simplest kind of limit set for this class of dynamical system is a fixed point, i.e. if we
start with initial conditions at a fixed point we will stay there for all time. In later
chapters we concentrate on forced dynamical systems, in which the time variable is
explicitly included in the right hand side of the set of differential equations which define
the dynamical system. In this case, we always have an equation, “t=1", which
immediately excludes the possibility of a fixed point (since one of the variables is
always increasing), and so other types of limit sets exist, for example a periodic orbit.
This is a solution which repeats exactly after some time T, the period of the limit cycle.
It is often convenient to reduce the continuous time problem to one of discrete time, and
also to reduce the dimension of the problem by one, using the method of Poincaré

sections.

Given a continuous time dynamical system X=f{x), x€ R", we define a Poincaré section
LER" as a local n-1 dimensional surface which is everywhere transverse to the flow.
Figure 1.1 shows such a surface in a three dimensional space. The heavy line in this
figure represents a periodic orbit of the flow, which intersects the surface T atx". The
other, thinner line represents a transient orbit which first intersects T at x; and then at
x,. Itis clear that the device of a Poincaré section has given a mapping from I to L,
P say. So we have that P(x’)=x" and P(x;)=x,. We can see that any closed orbit of
the flow arising from the original set of differential equations will be a fixed point of
some degree of the map. It is also straightforward to show that there is a simple
relationship between the characteristic exponents of the closed orbit and the eigenvalues
of the fixed point of the map. The eigenvalues of the map are just the exponentials of

the characteristic exponents.

We exclude here the zero characterstic exponent in the flow direction.
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A frequently encountered class of continuous time dynamical system which can always
be reduced to a discrete time system with a "natural” Poincaré section is the
periodically forced oscillator. This is a set of differential equations of the form
x=fix,t), where fix,t)=f(x,t+T) for all x, and T is the period of the forcing. We can
see that a Poincaré section defined by {(x,y,0) - 8=t,} where =t mod T and ,€ [0,T]
will always be transverse to the flow (since #=17). The map which takes points on the
section 8=t¢, back on to this section is often called the stroboscopic Poincaré map since
it is using a time periodic sampling of the state of the dynamical system. In later
chapters we will always use this stroboscopic map in preference to other candidates.
The reason for this is that it is guaranteed to be transverse to the flow everywhere.
Other "natural” choices are often not everywhere transverse, and this can lead to some
confusing results. For example, Kleckza et al [1992] analyse an oscillator with a
piecewise linear stiffness function and choose a section along one of the "switching
planes", i.e. at the displacement where one of the changes in stiffness occurs. They
observe a "period 3 to period 4" bifurcation in the switching plane map. There is no
corresponding bifurcation in the flow : the apparent bifurcation is due only to the "bad”

section (not everywhere transverse to the flow).
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1.2.2 Structural stability and co-dimension one bifurcations

Typically a dynamical system will have parameters which, when varied, can change the
overall dynamical behaviour of that system. At certain values of these parameters,
changes in the qualitative structure of the solutions can change, and these changes are
called bifurcations. The definition of a bifurcation value (see for example
Guckenheimer & Holmes [1990]) is a parameter value p, at which the dynamical system
is not structurally stable (this can apply both to maps and flows). A precise definition
of structural stability can be found in Guckenheimer and Holmes section 1.7.4, but
essentially a structurally stable system is one that retains its qualitative properties under
small perturbations. Restricting this definition to smooth maps, we can see that a fixed
point of a map will undergo a bifurcation when there is a direction just poised between
contraction and expansion, i.e. when one of the eigenvalues of the map linearised
around the fixed point is of unit modulus. An arbitrary perturbation to the map will
then have two possible outcomes. Examples of this in one dimensional maps are shown
in figures 1.2 and 1.3. The line x,=x,,; (where x,,,=f(x,) ) is shown dotted in both
cases along with three slightly different curves which represent the mapping from x, to
X,.;, With the parameters u <0, p=0 and p>0. The middle line in these diagrams,
with u=0 represents a bifurcating curve, i.e. one which has a fixed point at which the

slope of the curve has modulus one.

In figure 1.2 the slope of the bifurcating curve at the fixed point B is +1. The other
two curves represent perturbations of this bifurcating one, and it is seen that, depending
on the particular type of perturbation there are two distinct qualitative structures. The
lower curve has two more intersections with the line x, =x,,, than the higher curve, i.e.
the mapping represented by the higher curve has two more fixed points (the lower one
stable, with slope less than the x,=x,,, line, and the upper one unstable, with slope

greater than this line) than the mapping represented by the lower curve.

In figure 1.3a the slope of the bifurcating curve at the fixed point is -1. Again, the
other two curves represent perturbations of this bifurcating one and here it is seen that,
although the number of intersections with the line x,=x,,, is the same for all three

curves. In fact there is only one intersection which is forced to be at the same point
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in each case. The fixed point in the higher curve (1> 0) is unstable (the slope of the
curve at the fixed point is greater than one in modulus) and the fixed point in the lower
curve (u<0) is stable (the slope of the curve at the fixed point is less than one in
modulus). Figure 1.3b shows the second iterate of the same map f3(x,) against x,,
again for the three cases u <0, u=0 and p>0. In this case we can see that there is
only one (stable) fixed point for 4 <0, but there are three fixed points of f2 for u >0,
two stable and one unstable. These two bifurcations are the saddle node or fold

bifurcation and flip bifurcation which we will go on to discuss in a following section.

In later chapters we will be concentrating on "unusual” bifurcations of maps derived by
taking Poincaré sections through the vector field of a sinusoidally forced impact
oscillator. The essential feature which is the cause of the unusual bifurcational
behaviour of these maps is that they are non-smooth. Not only are there lines of
discontinuity of gradient, but along these lines there is a square root type singularity in
the derivative of the map (see section 3.6). From the definition given above, a
bifurcation can occur at parameter values at which a fixed point lies on a line of

discontinuity of gradient since the map can be structurally unstable along this line.

Before discussing the unusual bifurcations which occur in continuous but non-
differentiable mappings, we briefly discuss the generic bifurcations a one dimensional
mapping under the change of one parameter. We consider the smooth, one parameter
family of diffeomorphisms f{r,x) (u,x € R) for which f{0,x)=0 has a non-hyperbolic
fixed point at the origin, i.e. f(0,0)=0, |Dxf(0,0)| =1 (a linear mapping is said to be
hyperbolic if it has no eigenvalues with modulus equal to unity). Taylor expanding
about (u,x)=(0,0)
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Sw.x) = D f(0,00x + D f(0,0)p +

1.1
S D0 + 2D, f(0,00ux + D, fO0] + OUu,xT)
This can be written as a series expansion in x
fu,x) =a, + ax + a,x* + ax® + ...
+ ub, + bx + bx? + ) 1.2
+u3(C, + € X + L)+ .
where
a, = f0.0) , 4, = D,f00) , & = 3D, f00) , ..
b, = D,f(0,0) , b, = D,.f(0,0) 1.3

¢ = 3D, 0.0 , ...

In order to find fixed points of f{u,x) we can look for g(u,x)=f(u,x)-x=0. There are
two ways in which the mapping f can satisfy the condition that it be non-hyperbolic at
the origin, either by having an eigenvalue of +1 or -1. A higher dimensional map can
also lose hyperbolicity with a pair of complex conjugate eigenvalues with modulus one,

but we will not consider this case here.
1.2.3 The Saddle Node Bifurcation

Taking the first case, in which the eigenvalue D.f{0,0)=+1, we have the case shown
in figure 1.1 of a fold or saddle node bifurcation. The condition for a fixed point is

g(u,x)=0, which gives

gux) = a, + pby + plcy + ... + 14

(@ +pby + ... -Dx+(@+pb,+. . )x*+...=0
Since we have that f{0,0)=0 and assuming that D f{0,0) # 0 then the Implicit Function
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Theorem implies the existence of a function u(x) such that

gu(x),x) =0 L5
over an interval x€E (-¢,¢), € > 0. Differentiating 1.5 with respect to x gives

D.¢(0,0)
Du =2 _"_=90 1.6
O = 5200

and differentiating with respect to x a second time gives

D_2(0,0) _ D,f(©0,0)

- 1.7
D,g0,0)  D,f(0,0)

D, u(0) =

Xx

Further assuming that

D f0,00 >0 , D,f(0,0) >0 1.8

then equation 1.6 gives that the function u(x) has a turning point at x=0, and 1.7 with
1.8 gives the further information that this turning point is a maximum. The function
S(n,x) therefore has two fixed points for u <0, one with x>0 and one with x<0.

Taylor expanding again

D.f(x,p) = D,f(0,0) + xD_f(0,0) + pD,f(0,0) + ...

1 +xD_f(0,0) + ...

1.9

using the fact that p=0(x’) for -e<x<e. The fixed points with x>0 are therefore
unstable and those with x <0 are stable, using 1.8, as illustrated in figure 1.1,

1.2.4 The Flip Bifurcation

The other way in which the map f can become non-hyperbolic is for the eigenvalue of
the fixed point at the origin D.f{0,0)=-1. In this case we simplify the analysis of the
bifurcation by assuming that a further transformation has been performed so that the
fixed point is always at zero, i.e. f{u,0)=0 for all u. So we again have the Taylor
series expansion equation 1.2 where the terms a,=b,=c,=... =0. We consider the case
where the change of stability of the period one path f{u,0)=0 at u=0is from stable
with u <0 to unstable with x> 0. This means that b,<0. Since, with x>0, the period

-20 -



one path is unstable, we look for further solutions in the mapping f2(u,x). The leading

terms of the Taylor expansion for f? are
Fp,x) =x(1 - 2pb) - 2(a, + a)x® + ... 1.10

and so the condition for a period two fixed point is that the function h(u,x)=f?(u,x)-
x=0. That is,

x[-2ud, - 2(a? + a)x?] =0 1.11

So we see that we recover the path x=0 (which we already know to be an unstable
period one fixed point of £, and is therefore also a fixed point of f?), and another two

solutions

1b,

> 1.12
a, + a,

xt=-

Since we have already assumed that b,<0, the sign of a,>+a, controls the type of
bifurcation at p=0. If a,7+a,>0 then there are two fixed points of fZ for >0, and
if a,?4+a;<0 there are two fixed points of fZ for p<0. These are the supercritical and
subcritical flip bifurcations respectively. Examining the stability of the period two
solutions arising from these two types of flip bifurcation we see that the first differential
with respect to x of the Taylor series expansion of f? is given by D.f(u,x)=1+4ub,.
The supercritical bifurcation gives rise to a period two solution for 4> 0, and so this
solution is stable. The subcritical bifurcation gives rise to a period two solution for

1 <0, and so this is unstable.

1.3.1 Non-smooth dynamical systems

Although some of the "classical" chaotic mappings which have been studied are non-
differentiable, for example the tent map and the Lozi map, the bifurcations which occur
in these maps have not been widely studied. Nusse & Yorke [1992] did investigate
some of the types of bifurcation which can arise in piecewise smooth maps, and called
them border collision bifurcations. In order to demonstrate the kinds of unusual
bifurcational behaviour which can occur when a mapping is continuous but not

differentiable some examples from Nusse & Yorke are given below. The general form
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of the mapping studied is

X, =ax, + by, +p
x, <0
a =X,
Y 1.13
X, =dx, + by, +p
x. =0

Yoeg = €X

Nusse and Yorke derive this form from any general piecewise smooth nonlinear
mapping. The map is smooth in each of the half planes x, <0, x, =0 and is continuous
along the line x,=0. The types of bifurcation which can occur in this class of
dynamical system are very unusual when compared to the bifurcations of smooth maps
of the plane onto itself (such as those discussed above). For example, if a=-1.4, b=1,
c=-0.1, d=-3, e=-4 then a numerical investigation shows that there is a bifurcation
when =0 in which a stable periodic orbit of period 2 disappears and a stable period
3 orbit appears (figure 1.4). Using simple linear algebra it is easy to find the steady
state solutions of this system. A systematic procedure can be used to test any possible
steady state solutions of the mapping. We start off with the possible period 1 fixed

points. These are solutions of the equations

r 3 r 1
x; 1 Jc,'1 (a b
ol P ”(0) I S P
Uy 7t ] ‘ ’ 1.14
(W) [ o) rd b”
X X
ofi] - [2] -
Y2 L)’zJ (e 0

Solving these equations we get that (x,",y, )= (2u/5,-u/25), (x5 .y, )= (1/8,-u/2). Since,
for the solutions to be valid, x,” must be less than zero and x,” must be greater than zero
then the solution (x,",y,") is a period one solution only for x <0 and the solution (x;,y,)
is a period one solution only for x> 0. The eigenvalues of the matrices A and B give
the stability characteristics of these period one solutions. The matrix A has eigenvalues
(-7+V39)/10 and so is a saddle type solution and the matrix B has eigenvalues
(-3+iV'7)/2 and so is a repellor. A similar process can be used to find a period two
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solution by solving

B |4

JRUIEUR

to give (x;°,y;7)=(76u/65,3u/130), and by noting also that
B(x;',ys)+p=(-3u/13,-2u/13) we see that this period two solution is only valid for
p<0. The stability characteristics of this period two fixed point can be found by
computing the eigenvalues of the matrix AB. In this case the eigenvalues are
(1+iv'159)/20, both less than one in modulus, and so the period two fixed point is
stable (figure 1.4). There are two possibilities for period three fixed points which can
be found by solving

( r r 3 3 3 r

Xy 1 1 1 Xy
{ Ya 0 0 ) 0 L)’4 )
\ . P P 1.16

1 1
¥s 0 J 0 J of  |ys

The solutions to these two equations are (x,,y,)=(133u/88,u/88) and
(xs,ys)=(-70u/27,-124u/27). Full investigation shows that both are true solutions as
long as u>0. The eigenvalues of the matrix AAB, which give the stability
characteristics of the period three fixed point (x,’,y,’) are (2+iv21)/25, i.e. it is a stable
fixed point since both eigenvalues are less than one in modulus. The eigenvalues of
BBA, which give the stability characteristics of the other period three fixed point
(xs,ys ) are (534+3V241)/20. In this case, one eigenvalue is greater and one less than
one in modulus, so the fixed point is a saddle. We now have a fairly comprehensive
picture of what is going on in the apparent "period two to period three” bifurcation.
When the parameter u <O there are two fixed points, one stable period two and one
period one saddle. At the critical, bifurcation value u=0 both of these solutions
disappear, and three new solutions valid for u > 0 are created. Two of these are period
three solutions, one stable and one saddle type, and there is also a period one repellor.
Nusse and Yorke in their paper did not find the unstable periodic solutions as well as

the stable ones. We have given here a complete picture including all periodic orbits up
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to period three, and make the point that if we have a map which is continuous but not
differentiable then we are no longer limited to the familiar bifurcations of smooth maps.
The next example shows a bifurcation from a stable period one solution to an apparently

chaotic solution as the fixed point crosses the discontinuity in gradient.

Consider again equation 1.13, this time with a=1/2, b=1/2, c=1/2, d=-3, e=1/4.
In this case, numerical investigation shows that for u <O there is a stable period one
fixed point of the map. As u increases through O a chaotic solution is created which
grows out from the bifurcation point with no period doubling sequence of bifurcations,
see figure 1.4. Again, we can use the systematic procedure described above to look for
periodic solutions of the piecewise linear map. One period one solution is given by
(x,y)=(4u,2y), valid when u<O. The stability of this fixed point is given by the
eigenvalues of A, i.e. (1£V/5)/4, so the fixed point is stable. Another period one fixed
point is given by (x,y)=(8/31,2/31), valid when x> 0. The stability of this fixed point
is given by the eigenvalues of B, i.e. (-6+V'38)/4, so the fixed point is of saddle type,
with one stable and one unstable direction. If we look for further periodic fixed points,
we find one of order two, none of order three, and one of order four. Both of these
are valid only for u>0 and are of saddle type, and both only visit the left hand side of
the plane once. The positions of these fixed points in the left hand plane are
(-681/69,10u/69), with eigenvalues (-9+V'73)/16, for the period two and
(-14892u/7819,1894,/7819), with eigenvalues (-669+V/447553)/128, for the period
four fixed point. Of course there will be many more, higher periodic orbits, which

could be found in the same systematic way.

If we change the linear map for the right hand half plane in the example above such that
d=-1, then the period one fixed point for u <0 is clearly identical. For u> 0, there is
still a period one saddle, (x,y)=(8u/15,2u/15) with eigenvalues (-2+V/6)/4, but there
is a stable period two orbit valid for u > 0 (see figure 1.6). This orbit visits both sides
once (as it must). Its position in the left half plane is (x,y)=(-4u/37,10u/37) and in the
right hand half plane (x,y)=(40u/37,-24/37). The eigenvalues of this period two fixed
point are (-1£iV/7)/16, both less than one in modulus, so this is a stable orbit. So we
have what appears to be a similar event to the supercritical flip bifurcation described
above. A stable period one fixed point disappears at a critical parameter with the
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formation of a saddle type period one fixed point and a stable period two fixed point
growing out of the bifurcation point. The characteristic shape of the stable period two
orbit growing out from a supercritical flip bifurcation (the shape is a quadratic with
respect to the parameter) is clearly not replicated in this piecewise linear example
though. The only possibility here is that the period two orbit grows out at a constant
angle, dependent on the precise linear mappings in the left and right hand half planes.
All of these examples serve to show that we should not be too surprised in the later
work on bifurcations in impact oscillators when bifurcations occur in continuous, non-
differentiable maps, which cannot be classified using bifurcation theory for smooth
maps. The bifurcations which occur in this special class of map have not been very
deeply investigated. Nusse and Yorke did demonstrate a whole variety of the kinds of
bifurcations which can occur, but they did not present anything like the simple,

systematic procedure for finding orbits of a particular period described above.

1.3.2 Piecewise linear maps with a large direction of expansion

In this section we will look at a particular case of a border collision bifurcation in
which the linear map in the right half plane has a large direction of expansion. This
will be seen to be of relevance later on when we look at grazing bifurcations in impact

oscillators, where there is a square root singularity in gradient.

Period one solutions of the piecewise linear mapping, equation 1.13, are found by
solving equation 1.14, where A is the linear map in the left hand side of the plane
(x,<0) and B is the linear map in the right hand side of the plane (x,>0). Assume that
the mappings in both the right and left hand sides of the plane are orientation preserving
and dissipative, i.e. the determinants of A and B are between zero and one. Further
assume that A is such that both eigenvalues are less than one in modulus and the
resulting stable, period one fixed point exists for < 0. If we put d=1/e, where |e|«1,
and det(B)=8 then we have that be=-8, and the eigenvalues of B are 1/e+0(&),
Be+O(€)). Solving equation 1.14 for x,” and y,” we obtain x,"=-p/e+0(e), y, =ex, .
This period one fixed point can only exist if x,"> 0. Therefore, if >0 we must have
that u <O and if <O then > 0. In other words, if € > 0 then an orientation preserving
period one saddle exists for u <0 along with the stable period one fixed point which we
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assume to exist from the outset. Both stable and unstable fixed period one fixed points
disappear at u=0, (x,y)=(0,0). Otherwise, if e<0 then an orientation reversing (flip)
period one saddle exists for > 0. In this case, the stable fixed point which we have
assumed to exist for u <0 disappears at u=0, (x,y)=(0,0) and a saddle is "created" at
this point.
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Figure 1.3 The flip bifurcation. The first and second iterates of
three maps are shown in figures (a) and (b) respectively. In
each case there is a fixed point of f at x=0, stable for p<0,

neutrally stable for p=0 and unstable for p>0.
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2. Numerical Methods

2.1 Path following methods

One of the most common numerical procedures which is used in the analysis of
nonlinear dynamical systems is the location and continuation of an asymptotic solution
of a system as a parameter varies. Some of the numerical examples in later chapters
use these techniques, generally known as continuation methods or path following

methods. The general problem can be stated as solving

Jo;p) =0, iR""SR* , xER",uER"
cixr;u) =0, c:R*"">R!

2.1

where x is some set of state variables, u is a set of parameters and c(x, ) is an optional
extra set of constraint equations (which could be used for example to find the location
of a bifurcation), and both f and ¢ are smooth functions (i.e. differentiable as many
times as we will need in the following). If there are no constraints and no parameters,
i.e. m=0, then the problem is just one of conventional root finding. The Newton
method for determining roots can be derived by a Taylor expansion of the function and

its derivative about a root, x*

Sfat+ax) = f(x*) + D fx*)dx + O(&x?)
D,fx"+&) = D, f(x") + O(ax)

2.2

Given a guess x,=x"+4&x then the next guess x,,, is given by correcting x; by & where

dx is given by solving the set of linear equations
f&x) =f(x*) + D f(x*)ox + O(&x?) = D f(x)éx + ... 2.3

The n-dimensional Newton root finding algorithm is then given by the iterative

procedure

=X - & 24

For a unique solution to the linear set of equations given by 2.3 the matrix of first

derivatives at x; must be of full rank. If this matrix is rank deficient by
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one then the correction &x is not unique. In the linearized system there is a line of

solutions along the direction of the eigenvector corresponding to the zero eigenvalue.

Having discussed the familiar Newton method we now go on to extend it to not only
find solutions of f{x;u)=0 (possibly with further constraints c(x,u)=0), but also to
follow solutions as system parameters are varied. The standard Newton method locates
zero dimensional (isolated point) solutions of f{x)=0 as long as the matrix of first
derivatives is of full rank (and the initial guess is close enough to a root). If we form

a new function g

then the matrix of first differentials of g at a point v" where g(v')=0 generically has
rank n+k if m=k (i.e. maximum rank). If m-k=0 the problem is just the one of root
finding discussed above, but if m-k=1 then the implicit function theorem gives us that
there exists an open interval / around zero such that for o€/ there is a function
A(a):R>R'*™such that A\(0)=V", g(\(a)) =0, \’(a) # 0. Differentiating g(\(a))=0gives
2’ (\(a))\’(a)=0, so the tangent to the curve A spans the one dimensional kernel of g.
Figure 2.1 illustrates a simple case where g:R°—R, vy is an arbitrary line passing through
v and both A=g”(0) and v are parameterised by « in such a way that A\(0)=y(0)=V".
This line A is precisely the path which we want to find with a path following algorithm.
The use we will have for these techniques is to locate the solution of a set of equations
and then to follow it as a single parameter varies, or to follow a bifurcation as two

parameters vary.

Given a function g as defined in equation 2.5 with m-k=1, and a root of g, V', then the
aim of a path following algorithm is to continue this solution, i.e. find another nearby
point along the one dimensional path of solutions for g(v)=0. First, a step in a
direction tangent to the path at a known root v (or some approximation to that tangent)
gives an initial guess for the next point on the path of solutions g(v)=0. There are
several ways in which, given a guess for a new point on the solution path we can
develop an iterative procedure based on Newton’s method to locate a nearby solution,
see figure 2.2. Perhaps the simplest is to simply "ignore" one of the directions

altogether, i.e. choose an n+k dimensional set of basis vectors along coordinate
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directions, and use a standard Newton root finding algorithm. In general, nearby there
will be a unique isolated point solution to g(v)=0 in this n+k dimensional space, see
figure 2.2a. A problem arises with this method if the same coordinate direction is
always ignored. If the solution curve has a turning point in this direction then at some
point a step will take the hypersurface past the turning point and there will be no roots
in the n+k dimensional space for the Newton method to find. This problem can be
overcome by varying the direction to ignore, for example, choose the ignored direction

to be the one which was changing most at the previous step.

A similar idea is again to restrict the Newton algorithm to an n+k dimensional space,
but this time to use a set of basis vectors which span the space which is perpendicular
to the direction tangent to the path at the last found point, see figure 2.2b. In this case,
for small enough step sizes, there will in general be a unique root of g(v) nearby.

Both of the above approaches are based on a similar idea : the overdetermined problem
is reduced to conventional Newton Raphson (with as many equations as unknowns) by
restricting the Newton search to a co-dimension one subspace. A different approach
which can be used is to solve the overdetermined set of equations at each step to give
a line of (approximate) roots and then to make some necessarily arbitrary choice of a
point on this line as the next guess. The derivation of the conventional Newton method
given above still holds even if there are more unknowns than equations, e.g. if m-k=1.

In exactly the same way we can write

14

+]

=y - ov 2.6

where

gv) =D, g()dv + ... 2.7

The solution of this set of linear equations is easily obtained using the singular value
decomposition technique (SVD) [Golub & Van Loan 1989, Press et al 1988], which
decomposes any matrix 4 into U,S,V where U,V are orthonormal matrices and S is
diagonal such that A=USV7”. The positive real values s; on the diagonal of § are called
the singular values. SVD explicitly constructs an orthonormal basis for the range and

nullspace of A. The columns of U which are associated with non-zero singular values
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form a basis for the range of 4. The columns of V which are associated with zero
singular values form a basis for the null space of A. We can use these ideas to solve
the overdetermined set of equations, 2.8. If we pad the matrix of first differentials
D, g(v) with a row of zeros to make it square and pad the corresponding row of the right
hand side of the equation also with zeros then we have a square matrix (with no more
or less information than before), i.e. as many equations as unknowns. The trivial
equation which has been added will inevitably lead to a zero (or in practice very close
to zero) singular value. We want to single out a solution from the one dimensional set
of general solutions given by a particular solution vector plus any vector in the (one
dimensional) null space. The "best" solution is the one of shortest length, i.e. the
correction vector we want to choose is the one which drops a perpendicular line onto
the approximation to the path (see figure 2.2¢). This is achieved using the usual "trick"

for inverting singular matrices with SVD : we replace 1/s; by zero if 5;=0. Then the

v =V [diag [si ] [UT [s(g>” 2.8

where the matrix D g(v), padded with a row of zeros in the (n+1)th row has been

solution is given by

decomposed into USV7 using SVD. To show that the solution given by equation 2.8
has the shortest length |8v|, we consider the vector 6v+z, where z is in the nullspace
of the padded matrix of first differentials. Then

|6v + 2| = I vs! UT[g(;")) +2

Pt o] o

g1 Ur(g(;.)) + Vg

using the orthonormality of V for the second and third equalities. Now looking at the
two terms on the right hand side, the first one is a vector with non-zero components in
the i’th position only when 5,70 and the second is a vector with non-zero components
in the i’th position only when 5;=0. Any non-zero vector z can only therefore increase

the length of the vector |év+z|.
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Further information is yielded by SVD concerning the tangent to the path at the
particular solution : this is just the column of V corresponding to the zero singular
value. Other path following methods will typically use a finite difference approximation
for the tangent of the path, but using SVD we actually compute a tangent as a by
product of solving the set of linear equations given by the Newton algorithm 2.7.

2.1.1 Fixed points of autonomous vector fields

A direct application of the above techniques can be used to find fixed points of
autonomous vector fields x=F(x,u) where xER*, uER, F:R"*'->R". Since fixed
points of a vector field are given by X=F(x,u)=0, we can just use F as the equivalent
of g in equation 2.7 above. If we have F explicitly we can also explicitly calculate the

matrix of first differentials necessary for the Newton root finding algorithm.

2.1.2 Fixed points of maps

In order to locate fixed points of a mapping x,,,=P(x, 'u) we reformulate the problem
to reduce it to one of root finding by defining a residual map R(x;u)=P(x;p)-x. If x°
is a fixed point of the mapping P at a parameter set u°, then clearly R(x";u")=0. The
path following techniques described above can then be used directly on R (R is directly

equivalent to the g used in equation 2.7).

2.1.3 The variational method

So far the path following methods discussed have been presented in theoretical terms
with no discussion of their practical implementation. An essential requirement of any
Newton type root finding algorithm is the first differential matrix of the function whose
roots are to be found. In the common case where we are trying to follow the path of
a fixed point of the mapping P, where P is not explicitly available because it arises
from taking a Poincaré section of a vector field, then we need some way of
approximating the matrix of first differentials. In particular we will consider the case
of a periodically forced set of o.d.e.’s with our map P defined by taking the

stroboscopic Poincaré section £ mod 7=0, where T is the period of the forcing and ¢
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the time variable. The elements of the matrix of first differentials could be computed
easily by simple finite difference approximations. A more accurate and efficient way
is to use the variational method to compute the matrix of first differentials directly.

Using the notation introduced above where v=(x,u) we have
v = f(v;0) 2.10
Differentiating with respect to a set of initial conditions v, we have

D,v =D, f(v;)
2.11

j.e. —D v =Df(v;)D, v
ie. =D.v=Dfi)D,

Then setting

V=Dyv 2.12

Ye

we have a set of equations for the elements of the first differential matrix with respect

to a set of initial conditions
V=DfvV 2.13

This set of equations can be numerically integrated along with the original set of first
order o.d.e.’s . Starting with initial conditions =0, v=v, and integrating the equations
given by 2.10 and 2.13 for one period until =T we obtain the image under the

stroboscopic Poincaré map from 2.10 and the matrix of first differentials from 2.13.

V1s an (n-!-{c)x(n+m) matrix of the first differentials of v at time ¢ with respect to
1;11t1al conditions v,. To integrate 2.13 we use initial conditions Vi=0if i#j, V=1
if i=j.

2.1.4 Following bifurcations

The path following methods described above can be used directly to locate fixed points
of a map (and by finding the eigenvalues of the matrix of first differentials, the stability
of the fixed points) and following them under the variation of one system parameter.
By adding an extra constraint to the set of equations, it is possible for the parameter
value at which a bifurcation occurs to be located, and followed. Since we have had to
add one constraint, a one dimensional path can be found by allowing an extra parameter

to vary. For example, we might follow a period one solution of a map as a parameter
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corresponding to the frequency is varied and find that at a particular frequency w, there
is a saddle node bifurcation. We could then follow the path of that bifurcation as both
frequency and another parameter, corresponding say to the amplitude of forcing, are
varied. All that is required is to add a suitable constraint equation, for example, for

the saddle node bifurcation

cx,p) = det(Dx.P(x) -1

which is zero when the matrix of first differentials of the map P, D _P(x), has an

eigenvalue of +1.
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2.2 Location of basins of attraction

In this section we discuss ways in which we can locate the basins of attraction for the
various asymptotic steady state solutions of a dynamical system. Recently there has
been much interest in the concept of “safe basins” of attraction. In real world
dynamical systems, where a physical system is operating in a noisy environment, the
classical notions of stability are insufficient to guarantee that the operating conditions
are safe. For example, Thompson et al [1990] propose a criterion for ship stability
based on the size of the basin area which does not lead to eventual failure. This safe
area can be rapidly eroded by incursive fractal "fingers", leading eventually to a
situation in which, although there is a stable solution for the system to settle onto,

almost any initial condition will lead to failure (i.e. capsize of the ship).

We will restrict ourselves to the discussion of the location of the basins of attraction of
a two dimensional map P, for example a Poincaré section through a three dimensional
flow. A robust approach to locating the basins and their boundaries is to take a grid
of starts and iterate each forwards until a steady state behaviour is approximately
realised. As the number of points is increased the location of the basin boundaries
become better approximated. The computational effort required can soon become
restrictive though, especially if working on a microcomputer. The method of cell to cell
mapping [Hsu, 1987] for the location of attractors and their basins is ideally suited to
the microcomputing environment, and gives a large improvement in efficiency over the

’integration of a grid of points’ method.

An area of the Poincaré section is divided into small cells. The essential assumption
made is that whole cells map to whole cells. Thus given a starting cell C,, the centre
of which maps under P to somewhere in C,, we assume that we can continue by
mapping the centre of C, to a point in a cell C,, where we again re-centre before
continuing. We proceed in this way until the string of cells settles on to ’an attractor’,
that is until a sequence of cells is visited repeatedly in order. The underlying
assumption that all points within one cell map to one other cell then implies that all
points in all cells in the string settling onto the attractor will themselves converge to that

same attractor.
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Initially all of the cells are labelled [E] for ’empty’. A starting cell is chosen and
labelled [U] for *under process’. A string of cells is generated as described above by
mapping forward the centres of the cells encountered. Each time a new cell labelled [E]
is encountered it is re-labelled [U]. When the string lands on a cell already labelled [U]
then a limit cycle has been reached. The number of steps taken for this cell to be
reached again determines the order of the attractor. Each of the cells in this attracting
cycle are labelled as [A1] for ’attractor 1’ and the labels of the remaining cells in the
string are changed from [U] to [B1] for ’basin 1°. This finishes the processing of this
string (see figure 2.3). Now a new cell labelled [E] is chosen and the process continues
as before. Any string which now lands on a cell labelled [A1] or [B1] is labelled [B1]
since it will eventually map onto the attracting cycle [A1]. New attractors are labelled
[A2], [A3],... and their basins labelled [B2] , [B3] ,... . This process is continued

until there are no more cells labelled [U].

This algorithm can be seen to be very efficient as compared to a grid of starts by noting
that each cell need only be mapped forwards once. With a grid of starts each point
might be mapped forwards a large number of times, N say. The computational effort
required for cell to cell mapping is decreased by a factor of N. Furthermore, there is

no guarantee that even after N iterations convergence will have been reached.

The cell to cell mapping method is particularly well suited to a microcomputing
environment where it is possible to use the screen graphics as memory storage. A cell
is identified with a single screen pixel, with the labelling achieved by using different

screen colours.

Several problems can arise using this algorithm. If the convergence to an attractor is
slow it is possible for two or more labels to be assigned to the same underlying
attractor. Repellors and saddles may also be labelled as attractors if the divergence is
low or if the fixed point lies near the centre of the cell. If there is a chaotic attractor
it will be labelled as a high order attracting cycle, since eventually some cell will be
revisited. These problems can be avoided by modifying the algorithm slightly. Once an
attracting cell cycle is located, processing is continued without re-centring. In this way

the true nature of the underlying attractor, if any, can be deduced.
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i |

(a) Search performed in subspace
perpendicular to a coordinate direction

(b) Search performed in subspace
perpendicular to “tangent” direction
from last two points

P,
2 )

(c) SVD used to approximate tangent to
path. Next guess is obtained by finding
shortest distance from previous guess to
this tangent.

Figure 2.2 Three strategies for path following. In each case p,and p,are
previously located points on the path and g is the linear extrapolation “next guess”.
In (a) and (b) the Newton search is restricted to a two dimensional subspace
ndicular to a coordinate direction or the tangent direction respectively.
ﬁ?:) SVD is used to locate an approximate tangent to the path onto which a
perpendicular from g is dropped. The new point on the path is P,-
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3. Impact Oscillators

3.1 Introduction

The mathematical modelling of dynamical systems involving impacts comprises of two
parts : the modelling of the system away from the impact and the modelling of the
impact process itself. In this chapter, we will concentrate on the second part, the
impact process. Between impacts we will use a simple linear stiffness and damping
model since this is sufficient to give all of the interesting behaviour which is found to
occur in impact oscillators, described in this chapter and the next. Any system which
undergoes sudden impacts at rigid stops will however clearly have two distinct regimes,
one between impacts and one during impact. Nonlinearities are therefore inherent in
models of impact oscillators. In this chapter we first examine some ways of modelling
the impact process. We then go on to investigate one particular model in more detail,
using the coefficient of restitution rule which is the simplest and most easy to apply
impact model. Technical difficulties with this model involving discontinuities caused
by it are highlighted and their consequences to the overall dynamical behaviour of the
impacting system discussed. One of the advantages of using such a simple model is that
much of the dynamical behaviour can be deduced analytically, and these techniques are

shown.
3.2 Impact models

In the sections which follow, we describe three different ways in which the impact
process can be modelled in an impact oscillator. The emphasis here is on modelling
the impact process itself so away from impact, in each case, the dynamical system
comprises of just the linearly damped, linear stiffness, sinusoidally forced oscillator

described by the second order ordinary differential equation

X +dx +x=acos(wt) ,x<a 3.1

which is valid when the displacement x <a, where x=a is the position of the stop. In
equation 3.1 an overdot represents differentiation with respect to the time ¢, d is the

linear damping coefficient, a the amplitude of the forcing function and w the forcing
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frequency. In almost all cases, one more system parameter can be eliminated from the
above by rescaling the displacement, x, so as the stop is at x=1. This does rule out the
special case of x=0, so we will use the above form. In equation 3.1 we assume that
time and displacement have been rescaled in order to scale to one any mass or stiffness
terms. We also note that variation of the forcing amplitude o is directly equivalent
(after rescaling) to adjusting the position of the stop. A further rescaling of x by
putting x—>ax in equation 3.1 gives the exactly the same linear oscillator with the stop
at a/a, i.e. increasing the amplitude of the forcing by some factor is equivalent to
moving the stop closer to the equilibrium position by the same factor. For x=aq one
of the following impact models is applied, giving overall a model of a one sided impact

oscillator with a stop at x=a.
3.21 Coefficient of restitution (COR) impact model

The coefficient of restitution impact rule (COR) is the simplest to apply in practice and
for impacts between hard surfaces, where the impact process takes a small amount of
time compared with the time between impacts, can prove effective. In addition to

equation 3.1, when the displacement x reaches the position of the stop x=a the rule
X - -rx , X=a 3.2

is applied, where the coefficient of restitution, r lies in the range O0<r<1. This
coefficient, r, is determined empirically for the impact between two surfaces of
different material properties. After the rule 3.2 has been applied then the linear
oscillator 3.1 takes over again. This rule models two aspects of the impact process.
Firstly, the direction of the velocity X is reversed and secondly some (kinetic) energy
is lost in the process since if r<1I the size of the velocity is reduced at impact. The
impact process is modelled here as taking place instantaneously. Whilst this is clearly
never going to be completely true of any physical impact process, if the time between
impacts is long with respect to the time taken for the impact process to occur then the
coefficient of restitution rule acts as a reasonable model. Goldsmith [1960] gives some
typical values for r for various materials. For example for a baseball against wood
r=(.43 ; for an one inch steel sphere against a cast iron plate r varies between 0.7 and

0.9 depending on the velocity of impact. We will always assume however that r is
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independent of the velocity at impact. The instantaneous reversal of velocity can cause
problems when it comes to the more detailed study of the dynamical behaviour of the
impact oscillator with a coefficient of restitution impact rule. Clearly this rule is
discontinuous in velocity, whereas many of the tools of dynamical systems theory [e.g.
Guckenheimer & Holmes, 1990, Thompson & Stewart, 1986] require continuity, and
often differentiability to some degree in order to be applied. The consequences of these
discontinuities, and further discontinuities in gradient which are caused by this
instantaneous impact rule are discussed in subsequent sections. One of the advantages
of having such a simple instantaneous impact rule is that, when used in conjunction with
a simple linear oscillator away from impacts, much analysis can be performed on the
system. Methods for locating simple steady state periodic orbits, their stability

characteristics and some bifurcations will be described in later sections.
3.2.2 Hertz impact law

The Hertz impact law [Goldsmith, 1960], which describes the force/deformation
relationship between two locally spherical bodies is given by f=k(x-a)*”, where fis the
force between the two bodies which are impacting at displacement x=a. This impact
rule has been used in several structural dynamics problems as a reasonable model for
the impact process [Jing & Young, 1990,1991, Tso & Wong, 1989, Davis 1992].
Combining this impact law with equation 3.1 in such a way as to retain continuity we

obtain
X +di+x + k(x-0)*? = acos(wt) ,x=a 3.3

where all parameters are as before, and k relates to the particular material properties
of the impacting surfaces. Equations 3.1 and 3.3 then make up a one sided Hertz law
impact oscillator. The stiffness function in equation 3.3, s, is shown in figure 3.1(a)
and the integral with respect to x of this stiffness function, p, which represents the
potential energy function of this system is shown in figure 3.1(b).

s = x+k(x-a)’? 3.4

It can be seen that the force exerted after impact rapidly grows to oppose the motion.

In contrast to the coefficient of restitution rule, the impact process in this case will not
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p = Is dx = % + %(x-a)s"2 35

be instantaneous : the time spent in the impact regime will depend on the size of the
parameter k and the velocity at which the impact process takes place. There is however
no specific energy loss mechanism included in this impact law. The only way that
energy will be lost during impact is through the usual linear damping. The equation
3.3 does however describe a continuous and differentiable vector field, which means
that the tools of dynamical systems theory can far more readily be applied to this
model. The main use we will have for this model later on will be as a ‘close’ (in some
sense), continuous and differentiable system with which to compare the bifurcational
behaviour of the COR model.

3.2.3 Piecewise linear stiffness

After the COR model, perhaps the simplest way of modelling the impact process is to
regard the stop at which the impact takes place as a very stiff spring. In this case,
when equation 3.1 describes the behaviour away from impact, the complete system is

described by the equation

X +dx + x(x) = acos(w?)

[x , x<a
x(x) = a+k,(x-a) , x2a

3.6

where £, is the stiffness after impact. The stiffness function x(x) is shown in figure
3.2(a) and the integral with respect to the displacement, x, of this function which
represents the potential energy function of this system is shown in figure 3.2(b). As
with the Hertz law model, the force exerted during the impact process grows rapidly
to oppose the motion. Also, as with the Hertz law model, the linear damping is the
only mechanism for energy loss. Although this impact model has a continuous vector
field, it is not differentiable along the line x=a. The piecewise linear stiffness model
is included here for completeness and since many case studies of systems with impacts
have used it. Shaw and Holmes [1983] showed that as k;~oco the time taken in the

impact region x> a tends to zero and, if the velocity immediately before impact is y,
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then the velocity immediately after impact tends to -y,, i.e. as the stiffness after impact
tends to infinity the piecewise linear impact rule behaves like the COR rule with

coefficient of restitution 1.

Bt
UKy
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3.3 Numerical solution of the COR model

The COR model comprising equations 3.1 and 3.2 is governed by the simple linear
o.d.e. with sinusoidal forcing 3.1. The numerical solution of this system away from
the stop could be achieved by simple numerical integration, for example a variable step
size Runge Kutta routine [Press ef al, 1991]. The impact rule must be applied when
an orbit reaches the stop x=a, so an additional check must be made at each step of the
time integration to inspect the value of x. If this value is greater than g, then either the
method of Hénon [1982] , or a root finding method must be used in order to evaluate
the time and velocity at which the impact occurs. The coefficient of restitution rule,
equation 3.2, can then be applied and the integration continued. However, due to its
linear nature, the general solution to equation 3.1 is available (see equations 3.21 &
3.22). A set of initial conditions (x,%,£) = (x,,y,,¢,) define the two constants of integration
which then completely define the evolution of the system in time. The solution
obtained in this way, valid only until an impact occurs, is allowed to evolve in time by
stepping gradually until it is detected that an impact has occurred, x>a. A root finding
routine is then used to locate the time at which the displacement x=a. A good root
finding algorithm to use here is Newton-Raphson, which can be applied without any
need for further differentiation since expressions for x(z) and xX(¢) are already available.
The Newton algorithm requires iteration of ¢,,,=¢,-(x(t,)-a)/x(t,). This scheme has
quadratic convergence, and so we have an efficient method for very accurately locating
the time, and through this the velocity, of the impact. After the impact rule is applied
there are a new set of initial conditions which define two new constants of integration.
This new solution can again be stepped through gradually until another impact is
detected, where the process is repeated. Since no errors accumulate in the time
stepping part of this numerical scheme, the only place where errors can occur are in the
root finding routine, and this quickly converges to any desired accuracy. There are two
additional sources of possible error in this scheme. If the time step is too large to
capture a low velocity impact then the important bifurcational events which will be
shown to result from low velocity impacts will be missed. This is not too much of a
problem since the if a parameter of the system is changed slightly the numerical scheme
will detect a low velocity impact, so the bifurcation will just have been slightly shifted

in parameter space. The other source of error in this numerical scheme is the
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possibility that there can be an infinite number of impacts with decreasing velocity in
a finite period of time leading to a "sticking" condition, where the displacement is
constant (at the stop) for some time before falling off again. As long as neither of these
events happen then this gives a very simple to implement and accurate scheme for the
numerical evaluation of the COR model.
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3.4 Numerical observations of grazing bifurcations

In this section a simple two sided COR impact oscillator is investigated numerically.
The numerical observations indicate that there is some "unusual” behaviour associated
with low velocity impacts, and it is this behaviour which will be studied at greater
length in the following work. Later on, the system which is used in order to try to
understand these "unusual” events is the even simpler, one sided COR impact oscillator.
Here we are considering the specific two sided coefficient of restitution law impact

oscillator

X +0.1% + x = acos(1.92) , -1<x <1 3.7

X = -rx , x| =1
where there is only one free parameter «, the amplitude of the forcing. On inspection,
it is clear that for small values of « there will be a simple, non-impacting stable period

one solution which is just the solution to the linear o.d.e. as +>o (see section 3.7.1),

X =- @ cos(1.9t+¢) , tan(¢)=1'—9>:ﬂ 3.8
V(1.9%0.1)2+(1.92 - 1) 1.92-1
Such solutions will be valid if the forcing amplitude o obeys
a < JIOX0.1P+(1.92-1)2 = 2.617 3.5

, i.e. the maximum displacement x<1 in size. To see numerically how the transition
takes place from non-impacting solutions to impacting ones we slowly increase the
parameter « in small steps from below this value where the stable non-impacting
solution is known to exist. At each new value of a the numerical procedure is allowed
to converge on to a fixed point (or series of fixed points), using as an initial condition
the final point calculated at the previous parameter value. The newly computed solution
will be a continuation of a solution path (as long as the parameter step is small enough),
unless a bifurcation has occurred. After a bifurcation, the system will stabilize onto a

different, possibly remote attracting solution which in turn is followed.

The attracting non-impacting solution existing at «=2.0 was numerically followed in

-52-



this way until «=5.0. At a sequence of points A-E at a=2.6, 2.65, 3.0, 3.5 and 4.25,
the attracting orbits onto which the system converged are shown in figure 3.3 in the
phase plane projection, where time is projected out and x is plotted against x. The
position of the x coordinate of the stroboscopic Poincaré map obtained by sampling the
system at phase 6=t mod (2x/w)=0 is plotted against the parameter « in the bifurcation
diagram, figure 3.4. This bifurcation diagram shows that as « is increased through
a=2.617, the value at which the non-impacting orbit just starts to touch the stops on
either side, there is a sudden jump to a distant solution. The orbits just before this
jump at A and just after at B show that there is a sudden jump from a non-impacting
solution to a symmetric impacting solution. As « is further increased the symmetry of
the impacting solution breaks just before a=3.0, which can be seen from orbit at C.
At around a=3.5 a loop develops on the symmetry broken orbit (the orbit at D), which
moves towards the right hand stop at x=1, until the loop touches the stop just after E
at a=4.3. At this point, the asymmetric period one impacting solution disappears and

the system restabilises onto an apparently chaotic solution.

The numerical observations described above seem to indicate that some kind of
bifurcation occurs each time part of an orbit just touches a stop under the change of a
parameter. However, if the stability of the fixed point in the stroboscopic Poincaré map
is computed as the parameter changes, we do not see any of the usual indications that
a bifurcation is about to occur. The standard, smooth bifurcations encountered in
nonlinear maps occur when an eigenvalue of the first differential matrix of the map at
a fixed point passes through the unit circle on the complex plane, i.e. one direction of
the map linearised about the fixed point passes from stable to unstable. Up to the
parameter value at which the first transition from non-impacting to impacting solutions
occurs, a=2.617, the stability characteristics of the stable orbit are constant : the
eigenvalues of the fixed point of the stroboscopic Poincaré map depend only on the
forcing frequency and linear damping coefficients, not on the forcing amplitude. There
is clearly some kind of bifurcational event occurring as the stable orbit just touches both
stops since there is a large jump in the response (as measured by the position of the
Poincaré point), but it cannot be classified as one of the standard bifurcations of smooth

dynamical systems. As we will go on to show, these grazing bifurcations occur when
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a part of an orbit just touches a stop with zero velocity. Another way of looking at this
bifurcation is that a fixed point of a map from an impact oscillator crosses a line of
discontinuity of gradient of the map. This discontinuity in gradient prevents the fixed
point being linearised at bifurcation. Grazing bifurcations then are comparable to the
"border collision" bifurcations described by Nusse & Yorke [1992].

A further, more detailed investigation of the second grazing bifurcation shown in
figures 3.3 and 3.4, just after E shows that the apparent chaotic attractor which results
from this bifurcation already "existed", i.e. a different path is followed if the direction
of change of parameter is reversed. If we start with initial conditions on the period 4
attractor at «=4.4 (just after the chaotic attractor at « =4.3) and decrease the parameter
a slowly then the complicated response is replicated and then continues below a=4.3,
as shown in the bifurcation diagram figure 3.5. This chaotic attractor disappears at
a=4.28, where there is a transition to a period 3 attracting solution which continues
to a=4.15 and beyond. The sequence of bifurcations shown in figure 3.5 is reversible,
i.e. the same picture is obtained whether the parameter is increased from a«=4.15 to
a=4.4 or decreased. Figure 3.6 shows the period 3 orbit in the phase plane projection
at «=4.28, just before the complicated, apparently chaotic region appears. Again, we
observe that part of a loop is very close to the right hand stop and is just about to

graze.

In the bifurcation diagrams 3.4 and 3.5 and the phase plane projections of orbits 3.3
and 3.6, totally "unexpected" bifurcations associated with part of an orbit just grazing
a stop have been observed. They are unexpected in the sense that there is no indication
that a bifurcation is about to occur from the eigenvalues of the first differential matrix
of the stable fixed point which is about to bifurcate. Three grazing events have been
shown in these figures. The first, just after A, where the stable non-impacting orbit
grazes the stop for the first time, leads to a jump to a distant attracting solution which
already "exists”. In this case, if the parameter « is decreased from above a=2.617 to
a=2 there is no bifurcation : the system here is said to be hysteretic since a different
path is followed on increasing the parameter to that followed decreasing the parameter.

The second grazing event, just after E, where part of a loop on an asymmetric period
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one impacting orbit just touches a stop, is similar. Again there is hysteresis : a
different path is followed increasing the parameter to that followed decreasing the
parameter. The chaotic attractor onto which the system stabilises after the orbit grazes
at the stop already "existed" and so cannot be said to have been "created” at the grazing
bifurcation. The third grazing event, where part of a period three impacting orbit just
touches a stop differs from the previous two. There is no hysteresis in this case. The
same path is followed whichever way the parameter is changed. In this case the chaotic
solution which occurs directly after the grazing event can be said to have been "created"

at the grazing since it did not exist before.

An analogy can be made between the two types of grazing bifurcation described above
and conventional saddle-node and flip bifurcations which occur in smooth maps. Ata
saddle-node bifurcation (where an eigenvalue of the first differential matrix of a map
passes through +1) a stable and unstable fixed point come together and annihilate one
another under the change of a parameter. After a saddle-node bifurcation there will be
a jump to a distant attracting solution, but in general, if the parameter is then reversed,
no bifurcation will occur in the opposite direction. This is qualitatively similar to the
first two grazing events described above. After a supercritical flip bifurcation in a
smooth map, a stable period n solution will period double : a stable period 2n fixed
point solution will have been "created" at the bifurcation along with an unstable period
n solution. This appears similar to the third grazing event described above. This

apparent similarity will be expanded upon further in later sections.
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3.5 Continuity considerations in the COR model

As discussed above in the section describing the COR model, the instantaneous reversal
of velocity in the COR rule causes a discontinuity in the vector field described by the
equations 3.1 and 3.2 together. We can define a three dimensional vector field from

this second order o.d.e. by rewriting 3.1 as

2

=
R &

cos(wb) - dx, - x, 3.10

2

=1

Dde

where the displacement x=x,, velocity X=x, and time, ¢ has been replaced by 8 =¢ mod
2x/w, since the only place where time appears is in the periodic cosine function. Thus
the vector field defined by 3.1 occupies the three dimensional space R’xS illustrated in
figure 3.7, and a three dimensional subspace of this when the constraint 3.2 is imposed.
In section 1.2.1 the technique was described for reducing the dimension of a continuous
time dynamical system by defining a surface of section transversal to the flow on a
vector field, and then a Poincaré mapping which takes this surface back onto itself. In
order to study the dynamics of the COR impact oscillator model it is convenient to
define such a discrete time mapping. The discontinuities in the flow lead to problems
in defining a surface of section which is valid everywhere. Two ‘natural’ surfaces of
section are discussed below, and their advantages and disadvantages are considered.

Whilst neither section is globally valid, in that both lead to maps which are
discontinuous, there are only one dimensional sets of "bad points" and so, if used

carefully, the reduction to a mapping is still possible and useful.

3.5.1 The impact map

One of the most natural surfaces of section which we can choose to reduce the
dimension in the COR model is the stop itself. We define the impact section I,
={t=(%,8,):(x,%x,0)=(a,,£,),£,>0}, the positive half plane at the stop, and the
impact map P:L,—~L_. The restriction to the positive half plane is possible since any
orbit which impacts at the stop must do so with positive velocity. The condition which
must be satisfied for a section to define a globally valid Poincaré map is that all orbits

must be transverse to the section Z,. It is immediately obvious from the definition of

- 56 -



the section that there is a line of points in L., £=(0,0), along which the flow is
tangential to I, (inspection of equation 3.10 shows that the flow is always tangential to
the velocity axis when the velocity is zero). Itis also important to note that due to the
linear damping in the o.d.e. describing the flow away from the stops, not all points in
the section I, necessarily map back to this section : some orbits starting in the section
could fall asymptotically on to a non-impacting periodic solution so the mapping is not

surjective.

3.5.2 The stroboscopic section

A mapping can be obtained from any periodically forced dynamical system by sampling
at a constant phase of the forcing. We define the stroboscopic section for 3.10,
sampling at phase zero, T,= {¢ =(%,,£,):(x,X,0)=(%,,£,0)}, and the stroboscopic map
P,:X~L,. Inany continuous periodically forced system the stroboscopic section is valid
since §=1 so the flow is perpendicular to the section. In the case of the COR impact
oscillator, the impact rule is discontinuous at the stop, x=a. Although the flow is
transverse to the section both before the impact rule is applied and afterwards, there is

a discontinuous jump in velocity at the stop.

3.5.3 Discontinuities in P, and P,

Define the preimage under the impact map of the line of zero velocity at the stop in the
COR model \ ;=P (\,) where \y;=(0,0,)EL,, \,=(y.,,0,)EL,. In this section it is
shown that on either side of this line A, the mapping P, will behave in two distinct
ways. The orbit starting from a point on one side (the impact side) of A, will undergo
a low velocity impact in time close to the time 6=6,-0,. On the other side of A, the
orbit will just miss the stop in a time close to # and the next impact (if any) will not
necessarily be close to the line A,. The mapping P, is therefore discontinuous along the
line A ;. This is numerically demonstrated in figure 3.8, where a rectangular area over
the line A, for a particular one sided impact oscillator is mapped forwards once under
the impact map P.. The image of the rectangular area consists of two distinct
disconnected areas. This discontinuity of the impact map comes directly from the

observation discussed in the previous section that the flow is not transverse to the
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surface of section along the zero velocity line. Any surface of section which has such
properties will have similar kinds of discontinuity. This discontinuity is thus essentially
artificial : it comes from a ‘bad’ choice of section. It has been discussed at some length
here since the many papers in the literature have been concerned with the discontinuity
of the impact map. As will be shown later, along the line of discontinuity in the impact
map, the map is also discontinuous in gradient, and it is this property which causes

much of the interesting bifurcational behaviour of COR impact oscillators.

Define the preimage under the stroboscopic map of a line along the stop in the COR
model A,;=P,(A) where Ay=(a,y)€EEL,, A,=(x,y,)EL, This line is a line of
discontinuity of the map P,. On one side of the line A, points are mapped near to the
stop with positive velocity (just before impact) and on the other side points are mapped
near to the stop with negative velocity (just after the impact rule has been applied).
This is numerically demonstrated in figure 3.9, where a rectangular area over the line
A for a particular impact oscillator is mapped forwards once under the stroboscopic
map P,. The image of the rectangular area consists of two distinct disconnected areas
bordered by the stop, one with positive and one with negative velocity. Here the
discontinuity is a direct result of the discontinuous COR rule, and not just a result of
a bad choice of surface of section. However, both parts of the image border the stop
and the relationship between points at the stop with positive velocity and points at the
stop with negative velocity is simply given by the impact rule. This is a very ‘simple’
form of discontinuity : if a fixed point of P; exists with positive velocity near to the
stop, and under a smooth change of parameter moves towards the stop, reaching the
stop at positive velocity v, a fixed point will ‘emerge’ with negative velocity -rva By
. sampling at a different phase, this particular discontinuous jump would not occur,

although any stroboscopic map will have its own one dimensional discontinuous set.
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3.6 Discontinuities in gradient from the COR model

We have seen in section 3.4 that numerical observations indicate that some sort of
bifurcation occurs in a COR impact oscillator when part of an orbit just touches a stop
with zero velocity. This bifurcational event occurs when a stable fixed point of the map
crosses a line of discontinuity in gradient (in fact a square root singularity in the
derivative of the map). It is possible to show how this square root singularity in the
derivative arises by expanding for a small time backwards and forwards in time from
a low velocity impact. Let us take a dynamical system which is governed by a smooth
second order ordinary differential equation with periodic forcing away from the impact,
with the coefficient of restitution rule x—rx applied at impact. Suppose that a low
velocity impact occurs with velocity x=0<1 at time 7, We will try to obtain the
mapping from the plane defined by ¢=¢, to the plane t=t¢, (see figure 3.10) where
L<t,<t, , Ay =t <1, At,=t,-1,<<1 , by expanding in the small variables defined
above. The mapping takes the point (£,,1,,,) to (§,7,t,) undergoing a low velocity

impact at (a,0,t,) in the process. Expanding backwards from the impact we have
£, = a-0Ar+A AL +... 3.11
N, = 0-AnLA +... 3.12

and expanding forwards from the impact, after the application of the impact rule we

have
£, = a-rfAn+A,AL+... 3.13
n, = -r@+A,Ar +... 3.14

where A, and A4, are the accelerations at the impact with positive and negative velocities
respectively.
Now 3.12 gives
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6 =9,+ALA,+... 3.15

and substituting 3.15 into 3.11 gives an expression for At

N +Jn?-2Al(£l-a) 3.16

At = -
1

where we take the positive root since when Az,=0 we must have that §,-a=0. Now we

define the total time between the initial and final times

At = A +Ar 3.17

Then, using 3.15, 3.16 and 3.17 in 3.13 and 3.14 we obtain expressions for ¢, and 7,

A
£, = (a—fl) [2r+i] +a-ry, 3.18
A A
7, = —Jnf-2Al(El—a) [T2 +r] +7’lr2+A2At 3.19
1 1
We note that
6 = |mi-2A(t-a) *+ ... 3.20

so that, as the velocity of the impact tends to zero the expression under the square root
tends to zero. The mapping from ¢, to £, given by equations 3.18 and 3.19 is only valid
where §>0. If 8<0 there is no impact between ¢, and ¢, and so a simple linear
mapping which is such that the whole mapping is continuous takes a point (§,,%,,7;) to
(£,,m,.1,) if At is small enough. The further mapping from ¢, back to ¢, +T (assuming
that the oscillator is periodically forced with period T this forms the stroboscopic
Poincaré map sampled at phase ¢)), if it has no further low velocity impacts, will also
be a simple linear mapping locally. The total map, composed of the mapping around
the low velocity impact and the further mapping back onto the plane £=¢, has two
distinct regions separated by the line §=0. When 6 <0 both parts of the total mapping
behave in a simple locally linear manner, and so the resulting total mapping will also

behave in a simple, locally linear manner. When 6> 0 there is a square root term in
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the mapping around the low velocity impact, and thus in the total mapping. As 6’0
from above this square root term goes to zero, and the first differential of this mapping
with respect to ¢, and #, will have terms involving 1/0. There will therefore be a
square root singularity in the derivative of the mapping on the impact side of the line
6=0, although continuity will still be preserved. This discontinuity in gradient is very
important to the dynamical behaviour of the impact oscillator.

Figure 3.11 shows a numerically calculated illustration of such a square root
singularity. A rectangular area lying over a discontinuity in gradient of a stroboscopic
Poincaré map from a one sided COR impact oscillator was mapped forwards one
iteration and here x,,, is plotted vertically against x,,X,. The square root singularity is
clearly evident. The effect of this form of discontinuity in gradient on an area which
lies over the discontinuity in gradient is shown in figure 3.12. Figure 3.12a shows a
small rectangle lying over part of the line of discontinuity of gradient in a stroboscopic
map from a one sided impact oscillator. Figure 3.12b shows its image under one
iteration of the map. Orbits which pass through the rectangle on one side of the line
of discontinuity in gradient go on to just hit the stop with low velocity, while orbits
which pass through the rectangle on the other side just miss the stop. On the low
velocity impact side, there is a large degree of stretching and so the image is long, thin,
almost one dimensional. On the other side, where orbits just fail to impact, there is no
significant stretching. In the next chapter, the effect of a fixed point crossing this line
of discontinuity under the change of a parameter is investigated through analytical
steady state solutions to the one sided COR impact oscillator. The methods for locating

such solutions are developed in the following sections.
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3.7 Locating steady state periodic solutions of the COR model
3.7.1 General solution away from impacts

The strategy for the location of particular steady state periodic solutions of COR impact
oscillators which behave linearly between impacts has been widely used, for example
[Shaw, 1985, Shaw & Holmes, 1983c, Whiston, 1987b]. The general idea is that the
solution of the linear oscillator away from impacts is known, and so conditions for
simple steady state solutions with low period and low numbers of impacts can often be
written down and solved analytically. The derivation is repeated here since the
expressions obtained will be used later to analyse the behaviour of a COR impact
oscillator when part of an orbit just touches a stop with zero velocity at a grazing
bifurcation. First, we solve the second order linear o.d.e. 3.1 to find the general
solutions away from impact. In subsequent sections, the matching conditions for
particular steady state solutions are imposed and expressions for points on these

solutions are obtained.

Away from any impacts, 3.1 has general solution

x = e PlAcosQ(t-t) + BsinQ(-1)] - Zcos(wr+¢) 3.21
4

Differentiating this with respect to ¢ gives

% = -Be™[AcosQ(t-t) + BsinQ(e-t)] +
e P P[-AQsinQ(e-1) + BQcosQ(t-t)] 3.22

+ ﬂsin(wtﬂﬁ)
Y
where

A=x + 3COS(wtl+¢) 3.23
L

B = %D’, + Bx, + a—Bcos(wrﬁda)-‘—xfsin(wf,*@] 3.24
Y 4
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tang = =2 ; y = (dw) + (P-1F ; 28=d ; Q= 1-§. 3.25
3.7.2 Period one, one impact solutions

The simplest steady state solutions with impacts of the system defined by 3.11 are of
period one (i.e. they repeat once in a complete forcing cycle) and undergo only one
impact per period. In order to locate such solutions we impose these conditions on the
general solution for 3.1 given above. We take initial conditions at the stop
(x.x,t)=(a,y,t) before imposing the coefficient of restitution rule. After applying the
impact rule we have (x,%,¢)=(a,-ry,t;) which defines the constants A and B in terms of
the unknowns y, and ¢. Then 3.21 and 3.22 are equations for x and X as functions of
¥, ¢ and time . By adding the matching conditions which need to be satisfied at a
steady state period one, one impact per period, periodic orbit we have the conditions
that x(t,+27/w,y,t)=a , X(t;+27/wy;,t)=y; Using these conditions, 3.21 and 3.22 can
be rewritten by collecting together terms in ¢=cos(wt;+¢), s;=sin(wt;+¢), and

constants depending only on the parameters to give:

-ry; = he v bs v 3.26

0 =mc, + ms, + m, 3.27

where the coefficients /,,1,,1;,m,,m,,m; are given by the expressions below which are

functions only of the system parameters
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L, = pw 3.28
a
l Qc
m =21+ "[1-cw] -st-é
r s, | v v
3.29
m, = pw [1 + _]
a
m, = —m,
u
“=3 s y=e P . c,=cosQ(t,~t) ; s,=sinQ(,-1) ; tj—t,=& 3.30
Y w

Now if we treat 3.26 and 3.27 as simultaneous equations in c¢; and s; we can obtain

§ =

3.31

And we can eliminate time completely by noting that ¢?+s2=1 , ie

[_,, ,] SEIRE ]_ 7] - e

This is a quadratic equation in y, which we can easily solve, then by substituting this
into one of 3.31 we have an expression for the other unknown quantity ¢. Therefore,

at a given set of parameters we have possible solutions for y; and ¢, which define a point
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on a steady state, period one, one impact per period orbit of the system defined by 3.1
and 3.2 together. It is only a possible solution : we must ensure that x=a at times ¢,
and #,+2x/w but at no time in between, since this would correspond to a non-physical
orbit, as shown in figure 3.13. Any possible solution must be numerically verified to
ensure that it is a true, physical solution. Since very accurate numerical schemes can
be used to calculate the time evolution of this COR impact oscillator (see section 3.3),
using this analytical technique with numerical checks is a very accurate way of finding

period one, one impact solutions.

3.7.3 Extension to symmetric, period one two sided impact solutions

A simple extension of the method for obtaining analytical period one, one impact,
steady state solutions for the one sided one impact oscillator 3.1 & 3.2 allows period
one symmetric steady state solutions of the two sided impact oscillator 3.33 to be

found.

£ +di +x=oacos(wt) , -a<x<a 3.33

X - -rx s, |x] =a
A symmetric period one impacting solution with one impact at either stop can be found
by considering only the first half of the period. Starting with initial conditions at the
left stop (x,x,t)=(a,y,t), reflected immediately to (x,X,t)=(a,-ry,t), we impose the
matching conditions that the impact at the right stop after half of a forcing period are
(x,x,t)=(-a,-y,t;+x/w). If we put x->-x in the differential equation 3.33 and shift the
phase of the forcing function by half a period then we see that the equation controlling
the flow in the second half of a forcing period is the same as that controlling the flow
in the first half, with x—=x (and therefore x=-x). Thus once this matching condition has
been reached, the orbit in the next half period must reach the original initial condition
at the end of the second half period. This technique does not ensure that analytical
solutions can be found for all period one solutions which impact once at either stop, but
only those with the symmetry described above. Using almost exactly the same strategy
as used in section 3.72 we impose the matching conditions (x,x,t)=(-a,-y,,t,+*/w) onto
the solutions 3.21 and 3.22 for the differential equation 3.1 where the constants of
integration 4 and B are defined by the initial conditions just after impact (x,%,t)=(a,-
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ry,t). Again, terms in c,s; and y; can be collected together to give

Ty, = P,C, ¥ DS, * Dy

0 =q,c +q,s +q,

where

]
'
—
hlb

L S
r—
w | —
+
a

t 4
N—

-
>

pl =
P, = pw
Py = EPI
m
pws, vBs, 1
ql == Q —pl k Q -ycw+7
q, = ~pw 1+=
q; = £(Il
m

p==; v=ePC" ;¢ =cosQt,-1) ; 5,=sin(Q(,-1) ;

o
L4

3.34

3.35

3.36

3.37

3.38

So by replacing 1,,1,,l; with p,,p,,p; and m,,m,,m; with q,,4,,q; in 3.31 and 3.32 we

obtain expressions for y; and ¢; in exactly the same way as for the analytical one sided

period one steady state solutions. Again, the solutions obtained in this way are only

possible solutions. Non-physical orbits will occur exactly as for the one sided impact

oscillator and numerical checks must be made to ensure that the analytical solution

found is a true, physical one.

3.7.4 Stability analysis of period one, one impact solutions

We have given above a method for locating a point on a steady state, period one, one

impact per period orbit of the system defined by equations 3.1 & 3.2. Since this point

is always on the plane x=a (the stop) we can regard it as a fixed point of the mapping
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which takes this plane onto itself. This impact map , P.;L,—~L, where I,
={t=%,8):(xx,t)=(a,8,,§,),§,> 0} is one of the ‘natural’ Poincaré maps which can
be defined by taking a section almost everywhere transverse to the flow defined by 3.1,
as discussed in section 3.7. It is only almost everywhere transverse to the flow since
along the zero velocity line X=0 the flow is always tangential to the plane x=a. We
can similarly define L, ={¢ =(§,,£,):(x,%,t)=(a,£,,£,),£,<0). Then the total mapping
P.L,~Z, is made up of two parts : the instantaneous reversal of velocity by the impact
rule P.L,~L,,, and the rest of the mapping P,-L;,~L,. Now we differentiate 3.21 and
3.22 with respect to the initial time and velocity 4 and y; and evaluate at £,=¢,+2x/w to
give the elements of the first differential matrix of the mapping from §,,=(-ry,t) to §,
=(ypt) and we set y,=y, since we are at a fixed point of the map P,

& - - 3.39
7 Qy,
dt
_f = l-& s‘_—ysicw—&(ﬁsiq.wc“) 3.40
a, Y Q
i)if = _'aﬁxf.py [cw__ﬁ_s‘l’] 341
dy, 0y,
d ot
a_);if = laé-lli’!ﬂ;wv [%(S,‘*ch,-)-wc‘cw:' rpale, 3.42

The acceleration at impact is denoted by £, . The mapping PL,~L;, which takes the

initial point &, =(y,t) with positive velocity to the point &, =(-ry,t,) also contributes
to the total first differential matrix D of the impact map, which by the chain rule is
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given by

r A

-r 0] |9 9
dy,

DP, = DP,DP, = i at‘ 3.43
s 7
0 1)]ay o,

p

From 3.43 we have the trace and determinant of D, tr(D) and det(D) respectively

det(D) = /r?
. s
tr(D) = l-rycw—BV(:s‘"+s';fw [B;"(l +2r)+vcw-1:| + 3.44
ve,s
“pw?-pr+pa’r-ar
e, 1

The eigenvalues of the first differential matrix of the impact mapping are given then by

N . = D) £ Vir(D} -4deyD) 3.45
1,2 2

and so it is clear that as y~0 one of the eigenvalues will tend to either positive or
negative infinity (and since the map is dissipative overall and the product of the
eigenvalues equals the determinant, the other eigenvalue must tend to zero with the
same sign). Steady state solutions with very low velocity impacts will therefore be
saddle solutions with one direction of large expansion and one of large contraction.
This observation ties in with the previous observations of a square root singularity in
a Poincaré mapping from an impact oscillator. We see again that a grazing bifurcation
occurs at parameter values where the velocity at impact of a steady state periodic orbit

equals zero.
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Figure 3.1 (a) Stiffness and (b) potential energy functions for the Hertz law
model, equations 3.1 and 3.3, k=2000.
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Figure 3.2 (a) Stiffness and (b) potential energy functions for the
piecewise linear model, equation 3.6, k; =100.
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Figure 3.12 (a) The small rectangle from figure 3.11 lying over a line of
discontinuity of gradient in the stroboscoopic section and (b) its image
under one iteration of the map P, .
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(a) Physical orbit

(b) Non-physical orbit

X

Figure 3.13 Physical and non-physical orbits. The non-physical orbit shown
in (b) to penetrates the stop before repeating.
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4. Bifurcations in impact oscillators
4.1 Bifurcations in the COR model

4.1.1 Bifurcations of period one, one impact solutions

The one sided COR impact oscillator given by equations 3.1 & 3.2 together, as well
as undergoing conventional, smooth bifurcations (flips and saddle nodes), see for
example Shaw & Holmes [1983], can undergo bifurcations due to low velocity impacts,
called grazing bifurcations. We also note here that equation 3.1 is dissipative (if the
damping, d> 0), as is the impact rule equation 3.2, and so any Poincaré map which we
obtain from the COR impact oscillator will have an overall area contraction. This
implies that no Neimark bifurcation can occur, since this would require both
eigenvalues of the two dimensional map to lie on the unit circle at bifurcation, which
would require there to be no area contraction. Nordmark [1991], Whiston [1992],
Foale & Bishop [1992] and Budd et al [1993] have all investigated various aspects of
the effect of low velocity impacts on COR impact oscillators. In this chapter the
analytical solutions available (see chapter 3) are used to try to relate grazing
bifurcations to conventional, smooth bifurcations. As discussed in section 3.6 there are
discontinuities in gradient in any Poincaré map from an impact oscillator along lines of
grazing points. When a fixed point crosses a line of grazing points under the change
of a system parameter then a grazing bifurcation occurs. In this section we look at the
simplest case of a grazing bifurcation in the one sided, linear COR impact oscillator 3.1
& 3.2, where a non-impacting period one stable steady state solution, under a change

in parameter just starts to hit the stop with low velocity.
4.1.2 Locus of first grazing bifurcations

Non-impacting steady state solutions of 3.1, where they exist, just consist of the
‘particular integral’ part of the general solution 3.21 and 3.22, after the transients have
exponentially decayed away. We form a discrete time dynamical system from the
continuous time one in the usual way, by taking a surface of section ¥ and defining the
Poincaré map P which takes points in I back onto itself. In this case it is most
convenient to use the stroboscopic Poincaré section where x and X are sampled at a

given phase of the forcing function, ¢ =t mod 2x/w=0. Fixed points of this map
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corresponding to non-impacting periodic steady state solutions are easily seen from 3.21
and 3.22 to be given by x,=-a cos(¢)/y, X,=aw sin(¢)/y and the first differential
matrix of this mapping is obtained by differentiating the equations 3.21 and 3.22 with
respect to x; and X; and evaluating at time f=2%/w giving

[c +BS., Vs,

4 wt — —

DP = 0 a 4.1
Vs, c Bs,
T |

The eigenvalues of the mapping P can then be calculated to be A, ,=»(-c,ts,). We can
see that the maximum displacement x of the non impacting solution is a/7y, so at when
a/y < a the steady state, non-impacting orbit does exist. At a critical, grazing value of
a, a,=ay, the non-impacting orbit will just graze the stop at x=a with zero velocity.
As « is increased past o, this stable orbit, or the stable fixed point of the stroboscopic
map, can no longer exist. It disappears at a grazing bifurcation. The locus of these

grazing bifurcations is given then by

a, =ay = ay(dw)? +(w? - 1)? 4.2

4.1.3 Types of grazing bifurcation

In section 1.3.2 we looked at the behaviour of a continuous, piecewise linear map
consisting of two 2-dimensional linear maps, one with a large direction of expansion.
We assumed that the coordinates had been transformed so that the line of discontinuity
of gradient, where the two linear maps join, lies along the coordinate direction
separating the left and right half planes. This piecewise linear map was parameterised
by u in such a way that a stable period one fixed point exists in the left hand half plane
when <0, and lies along the line of discontinuity in gradient when u=0. The
mapping in the right hand half plane has one large direction of expansion, i.e. one
eigenvalue with a large absolute value, A, say. We required that both linear mappings
were orientation preserving and dissipative, so that there is a corresponding small
eigenvalue, A, of the same sign such that 0<\\,< 1. It was shown that if A,> 0 then
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another (unstable) period one solution exists for u<0. If A\, <O then an unstable period

one orbit was shown to exist for u=>0.

A stroboscopic Poincaré map from a one degree of freedom COR impact oscillator was
shown in section 3.6 to have lines along which the map is continuous but discontinuous
in gradient, with a square root singularity on one side of the line. We again assume
that we have transformed coordinates such that the line of discontinuity of gradient lies
along the coordinate direction separating the left and right half planes and that the
system is parameterised by u such that for u <0 there is a stable, period one fixed point
in the left hand half plane. For any particular parameter u close to zero, we can
replace the map on the right hand side with an equivalent linear map. By this we mean
that there is a linear map with an identical period one fixed point, if any, as the map
with square root singularity, i.e. the fixed point has the same position, same
eigenvalues. We then have an equivalent piecewise linear system which has one large
direction of expansion, and the result described above shows the bifurcational behaviour
we can expect from such a system. If the eigenvalue corresponding to the direction of
large expansion is positive, there will be two period one fixed points (stable and
unstable) for u <0. If the eigenvalue corresponding to the direction of large expansion
is negative, there will be a stable fixed point for <0 and an unstable fixed point for
u>0.

In summary, we expect to find two distinct types of grazing bifurcation in a two degree
of freedom COR impact oscillator. In both cases an unstable periodic orbit of the same
period continues on from the stable periodic orbit after grazing, either from below or
above. In the next section we use analytical solutions to show that this is the case for

the most simple grazing bifurcations.
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4.1.3.1 One sided impact oscillator

We have discussed above how the simple, non-impacting stable solution reaches a
critical point at which the amplitude of the solution is such that part of the orbit is just
grazing the stop with zero velocity. In order to form a continuous solution path, a
period one solution with one low amplitude impact per period must continue on from
the end of this stable path. In order to see that this is so we look again at the analytical

solutions for period one, one impact per period solutions of 3.1.

Take equation 3.32, and by further noting that the parameter a only occurs in
l,,1,,1;,m;,m,,m, linearly (if at all) we can define new quantities L,,L,,L;,M;,M,,M; all

independent of «.

al, =l , al,=l, , Ly=I; , aM,=m, , aM,=m, , My=m, 4.3

3.32 can then be rearranged to give

M,

2
M 2 M
o =l + 2acry,.M_'__ + r? Vi {1+ [ﬁjl 4.4

2L -L M
M, —Z2L,-L
M

From equation 4.4 we can see that near grazing, when 0<y,< I then a—>«, from above
or below depending on the sign of the coefficient of the linear term of this quadratic in

y,. Since r,y,a, >0 we have that the sign of z where

M2
—L,-L,

Ml
controls the type of grazing bifurcation. There are two distinct types of grazing
bifurcation depending on whether z is positive or negative : the two cases are sketched
in figure 4.1, where the maximum amplitude of the period one solutions are plotted

against the forcing amplitude o with all other parameters fixed. In both cases when

a<a, there is a stable non-impacting period one solution whose amplitude grows
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linearly with a (the solid lines). The stability characteristics of this non-impacting
solution do not change as o changes as can be seen from equation 4.1 (c, and s,, are
functions of w and d and the other terms in 4.1 are functions only of d). In figure 4.1a,
with z2<0, as the velocity of the period one, one impact solution y~0, a—*a, from
below, with a=a, when y,=0. Since the velocity at impact, y,, is very small then we
can see from 3.44 and 3.45 that this solution is very unstable, with one eigenvalue
tending to infinity as a—a,. In figure 4.1b, with >0, as the velocity of the period
one, one impact solution y~0, a—~»«a, from above, with a=«_, when y,=0. Again the
velocity at impact, y;, is very small and so this solution is very unstable, with one
eigenvalue tending to infinity as a—»«,. These unstable solutions are represented by
dotted lines in figure 4.1.

On examining the expression for z (using the parameters d=0.1, r=0.7, a=1.0 in
equations 3.1 and 3.2) we see that z=0 when §,=sin(27(/w)=0, i.e. when w=2Q0/n
for n=1,2,... These are the values of w where the function z changes sign, see figure
4.2,

4.1.3.2 Two sided symmetric impact oscillator

A similar analysis can be carried out for bifurcations from the non-impacting stable
steady state solutions of the two sided impact oscillator, equation 3.33, to symmetric,
period one steady state solutions with one impact at each stop in one period. We note
that we can rewrite p,=aP,,p,=aP,p;=P; and q,=a0,,q,=a0,,q;=0;, where
P,,P,,P,,0,,0,,0; are all independent of «. Then equations 3.31, 3.32 and thus 4.4
can be rewritten by changing L, L, L;,M,,M, M, to P,,P,,P;,Q,,0, Q; respectively,

giving
L]
o = ol + 2ozcry,.—Ql S A — [ ] 4.6
Zr-r, [0
1 Ql

Since the expression 4.2 for the critical first grazing value a=a, is the same as for the

one sided case we can interpret the quadratic equation 4.6 in the same way as before.
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The coefficient of the linear term in y; again controls the type of grazing bifurcation,
this time between stable non-impacting period one solutions and unstable period one

symmetric, one impact per stop solutions. We have that the sign of z’ where

0,

Z = l 4.7
%Rl -R,

controls the type of grazing bifurcation. When z’<0 then a—«, from above and when
2’>0 then a—~a, from below. On examining the expression 4.7 for z° we see that z’=0
when s,=sin(7Q/w)=0, i.e. when w=Q/n for n=1,2,... These are the values of w
where the function of z’ changes sign, and therefore where the type of grazing
bifurcation changes, see figure 4.3 (the parameters used here are d=0.1, r=0.7,

a=1.0).
4.1.4 Illustrations of grazing bifurcations

Using the methods described in sections 3.71 and 3.72 we are able to analytically locate
steady state period one solutions of the system given by equations 3.1 & 3.2, both for
the case of non-impacting and one impact per period solutions. We must always
numerically ensure that the one impact per period orbits are physically possible (see
section 3.72 and figure 3.13). The stability analyses in sections 3.74 and 4.1.2 allow
us to monitor the stability of the periodic orbits found analytically in this way. Using
these methods we semi-analytically, semi-numerically obtain the amplitude-response
figures 4.4 & 4.5, where the maximum absolute displacement max(x) is plotted against
a. Here, all parameters are kept fixed (d=0.1, r=0.7, a=1.0, v=1.8 & 2.2)) except
the amplitude of the forcing o : solid lines denote stable solutions and dotted lines
unstable solutions. The two cases are taken at constant values of the forcing frequency,
w, either side of the largest value of w at which the function z (equation 4.5) changes
sign, w=201=1.9975, and illustrate the two types of grazing bifurcation described in

section 4.1.3.
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Case 1 : w=1.8, figure 4.4

As a is increased up to the critical, first grazing value a, = 2.247 there exists a linearly
increasing path of the stable non-impacting period one solution. This solution must
disappear at grazing. Since the function z here is less than zero, it was shown in
section 4.1.3.1 that a period one, one impact per period solution approaches the first
grazing parameter value o, from below, and since the velocity at impact is tending to
zero an eigenvalue of the impacting solution is tending to infinity as grazing is
approached. We see then a grazing bifurcation in figure 4.4 at G where a stable and
unstable solution meet and disappear together. As the path continues there is a saddle-
node bifurcation at SN. Although there are similarities between the two bifurcations
G and SN since in both cases stable and unstable solutions meet and annihilate one
another, they are quite different. At SN the stability characteristics of the two orbits
change smoothly, with an eigenvalue of the jacobian of P, tending to +1 from above
and below. At G the stability characteristics of the stable solution do not change up to
grazing, but an eigenvalue of the unstable solution tends to infinity as grazing is

approached.

Case 2 : w=2.2, figure 4.5

Again, as « is increased up to the critical, first grazing value «, =3.846 there exists a
linearly increasing path of the stable non-impacting period one solution. The function
Z here is greater than zero, so the period one, one impact per period solution
approaches the first grazing parameter value a, from above. Again, since the velocity
at impact is tending to zero as a—>a, from above, an eigenvalue of the impacting period
one solution tends to infinity as the grazing bifurcation G is approached. In this case,

as the path continues, there is a flip bifurcation at F.

4.1.5 Bifurcation loci of smooth and grazing bifurcations

In section 4.1 equation 4.2 was derived which gives the locus of first grazing
bifurcations in terms of the system parameters. If we fix all parameters as in section
4.1.4 then as the forcing frequency w varies the first grazing occurs at a,, the thick
solid curve in figure 4.6. Using the analytical expression for the eigenvalues of the

period one, one impact solution, equation 3.45, we can numerically compute the loci
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of flip bifurcations, where an eigenvalue equals -1 and saddle-node bifurcations where
an eigenvalue equals +1. Figure 4.6 shows the locus of flip bifurcations as a thin solid
line and the locus of saddle-node bifurcations as a chain dotted line. Below w=0.5
there are further alternating flip and saddle node bifurcations, but the loci of these
bifurcations have not been computed here. It appears that the flip and saddle node loci
meet at the values of w where the function z passes through zero (equation 4.1.6, figure
4.2) and the type of grazing bifurcation changes. Again we show that this is the case

in section 4.1.6.
4.1.6 Co-dimension two bifurcations

It appears in the bifurcation locus diagram 4.6 that when the type of grazing bifurcation
changes, i.e. when the sign of z changes, then a line of saddle node bifurcations and
a line of flip bifurcations meet at this point. We now demonstrate that this is indeed
the case. Let 27Q/w=w+¢. Then s,=-sin(e), c,=-cos(e). If we substitute these
expressions into the equation 3.44, using equations 3.31 for s; and ¢; as well, we have

an expression for ¢r(D) in e. Expanding this in powers of the small variable ¢ we have

2(l+r)£ , 2Bv(1+n@r-1)

= arvw
tr(D) = 2vr + 3 3 Q0+ D) € + 0> 4.8

The small variable ¢ depends on the driving frequency w, not on the amplitude of the
forcing a, and so however small e is, we can choose a close enough to a, such that y,
is as small as we like, and so e/y, is of O(1) or greater. Any term in e can therefore
be ignored as small.
The condition which must be satisfied for a saddle-node bifurcation is

det(D) -tr(D) +1 = 0 4.9
and for a flip bifurcation

der(D) +tr(D) +1 = 0 4.10

so we define sn=det(D)-tr(D)+1 and pd=det(D)+tr(D}+1. Using equation 4.8 for
tr(D) gives .
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sn=(rv-12 - KE + ... 4.11
Yi

pd = (re+1? + KS + .. 4.12
i

where

K = ave*(l+r)

> 4.13
a 0

The condition 4.11 for a saddle-node bifurcation, sn=0, then gives

sn=0 = y = _Ke . 4.14

Yo (rv-1)?

The velocity at impact of the steady state, period one, one impact solution, y, must be
positive, and this can only be so if ¢>0 in 4.14. Thus we conclude that when e is
small and positive (i.e. w<2{}) there is a period one, one impact steady state solution
with velocity at impact given by 4.14 which is undergoing a saddle-node bifurcation.
For a given small positive e the parameter «,, at which this bifurcation occurs can be
obtained from 4.4. Since w<2Q the variable z which controls the type of grazing
bifurcation nearby is negative, so a,, <a, and a,~>a,as >0, i.e. as w—=>2(1 from below.
The amplitude of forcing « at which the saddle-node bifurcation occurs can be seen
from 4.4 to be

2 20.rzK 4.15
[0 = a,. + € + ...

" C (rv-1)?

Similarly, the condition 4.10 for a flip bifurcation, pd=0, gives

Ke
d=0 = = - + .. 4.16
P % (rv+1)?
Again, we must have that y, is positive, and this can only be so if e<0in 4.16. Thus
we conclude that when e is small and negative (i.e. w>2Q) there is a period one, one
impact steady state solution with velocity at impact given by 4.16 which is undergoing
a flip bifurcation. For a given small negative e the parameter o, at which this

bifurcation occurs can be obtained from 4.4. Since w> 2 the variable z which controls
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the type of grazing bifurcation nearby is positive, s0 a,,> . and a,~a, as e>0, i.e.
as «—2Q) from above. The amplitude of forcing o at which the flip bifurcation occurs

can be seen from 4.4 to be

o + 2a,rzK 4.17

—f €+
(rv+1)?

o, =
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4.2 Bifurcations in the Hertz law model

4.2.1 Bifurcations of period one, one impact solutions

In the previous sections the analytical solutions available for the one sided COR impact
oscillator were used to investigate the bifurcational behaviour of this model. An
important set of bifurcational events were found to occur when an orbit undergoes a low
velocity impact at the stop, a grazing bifurcation. In particular, the simplest grazing
bifurcation, the first grazing, when a stable non-impacting orbit just starts to hit the stop
with low velocity, was investigated. It was shown that two types of grazing bifurcation
occurred : as the amplitude of the forcing is increased towards the first grazing, an
unstable solution with low velocity impacts approaches the stable non-impacting solution
either from above or below. Examples of these grazing bifurcations were shown in
figures 4.4 and 4.5. If the Hertz law model (equations 3.1 and 3.3) and the COR
model both model the impact process reasonably well then we should expect the
bifurcational behaviour of the two models to be similar. Since the Hertz law model is
continuous and differentiable it does not suffer the same problems as the COR model
: there is no discontinuity in gradient and therefore grazing bifurcations cannot occur.
Using the same parameters as were used in the illustrations of grazing bifurcations 4.4,
4.5, and k=2000, a path following algorithm (see chapter 2) was used to locate and
follow fixed points of the stroboscopic Poincaré map of the Hertz law model as the
amplitude of the forcing a changes. The eigenvalues of the Jacobian matrix of this map
were also monitored in order to locate changes in stability (bifurcations) along the path.
When a period one fixed point was located, the equations were further integrated over
a period in order to find the maximum absolute displacement max(x) of the periodic

orbit.

Case 1 : w=1.8, figure 4.7 (cf. figure 4.4)

Just after the non-impacting orbit starts to hit the stop at
a.=2.247 we observe a saddle-node bifurcation SN (an eigenvalue of the Jacobian
matrix of the stroboscopic Poincaré map leaves the unit circle at +1). An unstable
impacting orbit meets and annihilates the stable orbit. As the path continues there is

a further saddle-node bifurcation SN. Comparing this figure to the COR model, figure
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4.4, it can be seen that there are great similarities. Although in the COR model, as the
non-impacting orbit just grazes the stop, there is a grazing bifurcation G as opposed to
the conventional saddle-node bifurcation SN in the Hertz law model, an unstable low

velocity impacting orbit meets and annihilates the stable non-impacting orbit.

Case 2 : w=2.2, figure 4.8 (cf. figure 4.5)

In this case, just after the non-impacting orbit starts to hit the stop at o, = 3.846 there
is a flip bifurcation at F (an eigenvalue of the Jacobian matrix of the stroboscopic
Poincaré map leaves the unit circle at -1), with an unstable, impacting period one orbit
continuing on from the stable non-impacting one. As the path continues there is a
further flip bifurcation. Comparing this figure to the COR model, figure 4.5, again
there are great similarities. Instead of a grazing bifurcation G in the COR model just
after the first grazing there is a flip bifurcation F in the Hertz law model, but in both
cases an impacting unstable low velocity orbit continues on from the stable non-

impacting orbit.

4.2.2 Bifurcation loci for the Hertz law model

In figures 4.4 & 4.7 and 4.5 & 4.8 a strong similarity between the paths of solutions
of the Hertz law impact oscillator and the COR model was numerically demonstrated.
For figure 4.9, showing the bifurcation loci for the Hertz law model at the parameter
set used above, we again use numerical path following methods to follow the loci of flip
and saddle-node bifurcations in the space of the two parameters a and w, near to the
largest forcing frequency w=1.9975 at which the grazing bifurcation type in the COR
model changes as the function z (equation 4.2) passes through zero. Figure 4.6 shows
the equivalent bifurcation loci for the COR model, where a saddle-node and flip
bifurcation also meet at this point. In the Hertz law model there are no grazing
bifurcations, but near to where there is a line of grazing bifurcations in the COR model
there is a line of either flip or saddle-node bifurcations in the Hertz law model. Both
the locus of flip bifurcations and saddle-node bifurcations ends at a cusp near to the
location of the codimension two event in the COR model in which a flip and saddle-
node bifurcation loci meet along the grazing bifurcation locus at the same point as the

type of grazing bifurcation changes. The degenerate codimension two event in the COR
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model appears to have split into two generic codimension two events (cusps).

4.2.3 Attractor following through bifurcations

Figures4.5 and 4.8 show the paths of the stable and unstable solutions of the COR and
Hertz law impact oscillators which correspond to the stable non-impacting low
amplitude solution and the unstable low velocity impact solutions which continue on
from it. If instead of trying to locate the unstable solutions we simply allow the system
to evolve slowly as the amplitude increases we will follow the stable non-impacting
solution up to bifurcation, where the system will lose its stability and restabilise onto
a different attracting solution. Figure 4.10 and 4.11 show the comparison between the
two models at the parameter settings used in figures 4.5 and 4.8 (w=2.2). Here there
is a flip bifurcation in the Hertz law model at a forcing amplitude just greater than the
critical amplitude at which the first impacts start to occur. This flip bifurcation is the
start of a period doubling cascade. Figure 4.11 appears to show an immediate jump to
a period 4 solution, but if we look more closely at the region where the period four
solution begins we indeed see a period two solution (see inset, figure 4.11). In figure
4.10 there appears to be an immediate jump to a long period or chaotic solution
immediately after the point at which grazing occurs. No matter how closely we look
at this region we see this same sudden jump. There is a strong similarity between the
overall qualitative behaviour of the two models : in both cases there is a bifurcation

which leads to a large amplitude solution which appears to eventually become chaotic.
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4.3 Analogous bifurcations in one dimensional maps

The numerical observations described in section 4.1 and 4.2 suggest that grazing
bifurcations are in some sense limiting cases of saddle-node and flip bifurcations as the
increase in stiffness at impact becomes large. However, we have presented only
numerical results showing similarities between particular, first grazing bifurcations and
their counterparts in the Hertz law model with a steeply increasing stiffness function at
impact. In order to try to explain how the grazing bifurcation behaviour of a two
dimensional map defined from the COR model could arise, we look at the behaviour
of one dimensional maps of the interval with the same essential characteristics. The
square root singularity in the derivative of a mapping defined by taking a two
dimensional section through the three dimensional phase space of the COR model is
seen to be the cause of the grazing bifurcation. We now examine the effect of
introducing the same kind of square root singularity into the derivative of a one

dimensional map of the interval. We consider two cases

1
b+(h-2b)x. 0 <x <.
. (h=2b)x, =3 4.18
n+l 1
h_2h(, 1)1 1
2 "2 |’ 2 2
1
b+(h-2b)x, , 0 <x.<_—
. (1=20)%, ‘ ) 4.19
w1 | p h 115 1
2.2 1-2 -2 , —<x.<l1
2”/—[ 2]["" 2] 7 X

These one dimensional mappings are illustrated in figures 4.12 and 4.13. We set the
parameter b=0.I1. The particular value of this parameter is not important to the
argument, except that b=0 is avoided so that when h=1 we do not have a line of fixed

points.

The parameter & in equations 4.18 and 4.19 corresponds to twice the height at which

the square root singularity occurs, it can be seen from the equations to always occur at
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x,='%. Both in equations 4.18 and 4.19, as & is increased towards 1 there is a stable
period one fixed point of the one dimensional maps (the points at which the solid curve
crosses the dotted 45° line in figures 4.12 and 4.13, seen in figure 4.14 when h<1.
In the higher line in figure 4.12, A has increased above 1 (h=1.1), and the period one
fixed point has gone highly unstable (the derivative of the mapping is large and
negative). Figure 4.13 shows the bifurcation diagram resulting from equation 4.18.
There is an immediate jump to a long period, complicated, apparently chaotic solution
as soon as h> 1, similar to that seen in figure 4.6. However closely we zoom in on the
bifurcation point at /=1 we never see a period doubling cascade to chaos. We can
prove that equation 4.18 is indeed chaotic as soon as h> /. Rewrite the equation as
X, .1=fx,). Define x,< % where f{x,)=% (i.e., x,=(1-2b)/2(h-2b)) and x,> % where
fix)=% (.e., x,;=1-1/h+1/h%). Then define L=[x,, %], R=[%,x,]. Now f*L)=[f
2015) f1(%)] and fAR)=[f*(%)f(%)]. Then if h=1+¢, e<1, we have f2(%)x,=-
e2+0(e)<0 = f*%)<x, and f(%)x,=eO0( Y)>0 = f(%)>x,. Therefore
[Xox;]J=LUR C fAL)Nf*R) = [f*(%).f(%)], and so fis chaotic as soon as h> I (for
the proof result about one dimensional maps see for example Block and Coppel [1992]).
Furthermore we can define an interval TC [0,1], T=[f*(%4).f(%)]. The interval T can
be decomposed into T,=[f °(%),%) over which f increases monotonically and,
T,=[% f(%)] over which f decreases monotonically. Now f(T,) CAT,)=[f*(%)f(%)].
Therefore f(T)=T = any point t& T is mapped by finto T , i.e., T is a trapping region
for f, f(%)=h/2, f(%)=(1~'h - 1)h/2.

When the parameter £ is less than one in equation 4.19 there are three fixed points, the
points of intersection between the solid curve and the dotted x,=x,,, line, two of which
are stable and one unstable, illustrated by the lower line in figure 4.12 (h=0.9). At
h=1 we can see that a stable and unstable fixed point meet and both disappear. As h
is further increased above 1 as illustrated by the upper line in figure 4.12 (h=1.1), only
one fixed point remains (at x,=1) and this is stable since the slope is less than one so

all initial conditions in the unit interval lead to this solution.
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The relationship between the bifurcational behaviour of the one dimensional maps of
the interval 4.18 and 4.19, and conventional saddle node and flip bifurcations can easily
be seen. If the square root singularities were ‘rounded off” and smooth maps were
considered instead, at approximately h=1 there would clearly be a flip bifurcation in

4.18 and a saddle node bifurcation in 4.19.

The one dimensional maps described above, although displaying similar bifurcational
behaviour to the two dimensional maps arising from the COR impact oscillator model,
have not been derived from this model. Rather, they have been constructed so as to
have the same square root singularity characteristic which causes grazing bifurcations.
In order to analyze codimension one bifurcations of smooth maps it is possible to use
centre manifold theory to reduce the dynamics of the system to a one dimensional
(centre) manifold. A further coordinate transformation in the centre manifold yields the
normal form of a bifurcation, which allows it to be classified, for example as a flip or
saddle-node. Grazing bifurcations cannot be analyzed in this way since a centre
manifold does not exist at a grazing bifurcation. One cannot even linearise the map
around the fixed point at grazing, since the derivative of the map is not unique at this
point. Since the qualitative behaviour of the two dimensional maps arising from COR
impact oscillators seem to be captured by the one dimensional maps, equations 4.18
and 4.19, a similar transformation to reduce the behaviour at bifurcation to a one
dimensional map would be desirable. This is an area which requires further work, as
does the study more generally of maps which are continuous but not differentiable (to

some degree).
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4.4 Bifurcations of subharmonics

In section 3.7.2 and 3.7.4 we derived expressions for possible solutions to the COR
impact oscillator of period one with one impact per period. Almost exactly the same
analysis can be used to locate subharmonics of the same COR model with one impact
in N periods where N=2,3,4,... . The only changes which are required are that instead
of looking for an orbit which repeats after time T (one period) we look for one which
repeats after time NT (N periods). In equation 3.30 the we just put ff;=2xN/w, which
modifies the constants »,c, and s,. The procedure for locating possible steady state
solutions is then identical to that for period one solutions. First, the quadratic 3.32 is
solved for the velocity at impact y, and this is then substituted into one of 3.31 to solve
for the time at impact, 7. The possible solution given by this procedure must be
numerically verified to ensure it is a true, physical solution. The jacobian matrix of the
impact map for period N solutions is obtained by substituting the modified constants
v,c, and s, into equations 3.39 to 3.42 to obtain the elements of the matrix defined in
equation 3.43. Equation 3.45 then gives the eigenvalues of the jacobian exactly as

before.

Using the expressions for the eigenvalues of the jacobian we can locate the loci of
saddle-node and flip bifurcations of period N, one impact steady state solutions as in
section 4.1.5. The loci of these bifurcations for steady state, one impact solutions of
periods 2,3 and 4 are shown in figure 4.15 as the two parameters a and w are varied.

Also shown in this figure are the lines of grazing bifurcations.

Frequency response curves for various fixed forcing amplitudes are shown in figures
4.16 t0 4.19. Both the maximum absolute displacement, x,,,, and the maximum velocity
at impact x,,,, over N forcing cycles are shown plotted against the forcing frequency w.
Stable solutions are represented by a solid line whilst unstable solutions are shown with
a dotted line. Only the period N, one impact steady state solutions are shown in these
figures, i.e. those which can be calculated analytically. In figure 4.16 the forcing
parameter is kept fixed at «=0.5. In this case there are two "first grazing® bifurcations
either side of the linear natural frequency w=1. As the forcing frequency is increased

from O only there is a stable non-impacting limit cycle whose amplitude grows as the
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frequency is increased towards 1. First grazing bifurcations occur at w=0.710... and
w=1.218..., of "flip type" and "saddle-node type" respectively. The overall shape of
this frequency response curve is typical for small forcing amplitudes, such as in the
experiment which we describe in chapter 6. All of the solutions shown in figure 4.16
are of period one, and no higher period, one impact solutions exist at this low forcing
amplitude. Figures 4.17 to 4.19 show the response curves up to period four for the
forcing amplitudes a=1.5, 2.5 and 3.5. In each of these figures, there is only one first
grazing bifurcation, at w=1.578..., 1.868... and 2.119... respectively. The higher
period, one impact solutions all disappear as frequency w is increased at a saddle-node
bifurcation, but some appear at saddle-node bifurcations and others are created at

grazing bifurcations.
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() z>0 «

Stable p.1 solution path (non-impacting)

--------- Unstable p.1 solution path (impacting)

Figure 4.1 The two types of first grazing bifurcation for (a) z<0, (b) z>0



*10)e][1950 1oedw

YOO Papis auo 3y) Jo uonednyiq Suizesd 511y Jo adK) ayy sautwRIap 2 Jo udis ayy ‘™ Jsurede (m)2 uonouny YL 7'y uNdtg

<z O

4

o

S't—

- 101 -



*101e[1950 Joedwl
JOD Papis om) ay) Jo uoneainjiq Suizesd 1511 jo 2dK) oy sautwiep ,2 jo udis ayy, "™ isurede (), 2 uonouny YL €'y n31g

- 102 -



‘suoninjos auo pouad 9jqeIsun Saul] panop ‘a|qels 1uasaidal Saul| PI{OS *SPOU-O|PPES [BUOHIUIAUOD B NS ‘UONEBIINjIq
Suizes3 e sqeIIpUL N ‘P [°H UONIAS Ul SB paxyy Siddwered 1aylo fje Yim o apmijdwe Suioioy sutede panold st ‘(x)xow
‘pouad duo JIAO0 JUdWIIEIdSIP 2INjOSqR WNWIXBW Y], 8] =™ Je uoneanjiq Suizeid isay adKy apou-aippes ayl ¢ 2indig

< D oz z St L SO o

O

- 103 -




*suonnjos auo pouad s[qeisun sauij panop ‘v)qers juasaidas saurf pros “diy [euonudAuoco € g
‘uonesinjiq Suizesd e sajedIpul £ “H*['p UONDIS UL SB paxy sidjawered Jayl0 [[B Yim © apmitjdwe 3uidio) isurede panoid st
‘(x)xvw ‘pouad 3u0 J9A0 JuswWadR[dSIP JINjOSqR WNWIXEW YL, 'Z'Z= & uoneanjiq uizeid 151y adKy diy ay, ' 2Ny

0 . ,
y . < Sz z S°t L
S'v v s< : i ; ' z'o
Lo b .v.o
. 19°'0

T
O

1

-
- 104 -

- [) !cop

\m | | (x)xew




*SIQIO
1oedwi duo ‘auo pouad Jo suonedINJIq Spou-dfppeEs JO SNdO| aYi pue s}iqJo Joeduwil uo ‘auo pouad jo suonedinjiq dify Jo SndO|
ay) ‘suonedinjiq Suizedd Is11 JO SNJO] AY) OJB UMOYS "JOJe|[1950 Joedwl YOO PAPIS U0 3y} JOj 100] uonedNjig 9 N3y

n.Na < S'L 3 S°'0O 00

suonedmJiq
dig
Jo snoory

- 105 -

opou-ojpprs
Jo snoor]

srasmcmcimcaratninca,

suonwamjiq
8urzeid
Jo snor]

Koy




*SUONNjos 2uo pouad J[eISuUn SIULf PANOP "I|qelS JUISIIAAL
SUI] PI[OS "UONBIINJIq SPOU-I[ppes € Sjedipul NS ‘P surede panojd s1 ‘(x)xow ‘pouad U0 J3A0 JuSWIdE|dSIP Wnwixew
oyl °g'g uonenba ul 00OZ=Y ‘p'¢ 2103y Joj se siajoweled ‘Ppow me| ZUIH dY) JO suonnjos uo pouad Jo yied L'y 2un31g

0

< Sz z S’ 1 S'O o

L] L} v L | L o

18
(x)xew
6

- 106 -



S’

0
+ c'c <

Sz

*suoinjos 2uo pouad 9[qeisun saul] panop ‘v|qers

Juasadas saulf pijog °uonednjiq dijj e sajediput f ‘o jsurede payojd st ‘(x)xvw ‘pouad duo 1340 Juswade(dsIp wWnwixXew
ayl g ¢ uonenba ul gooz=Y ‘S'p 23y 10} se siajowesed ‘[opow me| ZUSH Y} JO suonnjos duo pouad Jo yied 8’y N3

Z

St

- 107 -

1¥

16°1L
(x)xew




PUB NS SUOHEIMJIq SpOU-S[PPES JO SUI0) O} 218 UMOYS *JOJe[[Ioso 1oeduy Me]

™

$11q10 U0 pouad Jo J suonedNyy uly JU Su vy
ZUSH PAPIS U0 3Y) 10 150] UOREIIJIY 6'p omSt]

YAYS S1'¢ S0°C

S6’1 $8°1

- 108 -



- enewm s cow - comne . E—— e GEm e ® © a0 * =
—————— GG G . un e e 6 ® ® ® 00 Emmeccun owmw o @ o0 e -
cens am 0 an m @ o ¢ ememanitem wwoemem o ace .
e ——— - - $® CGmpevse eBam © ® o ¢ e ams camse @ece o e oo

- o e ® ¢ o e aum eunecoe @mes s o
——————— G GEEERE B W C® © © o commar e oemew cecs @ e

3 . a= @ @eer cmee sPccom ocma S@ o oo
e ¢ CEEAED WD GND GEES @ 2 GhEGBS € e S e GR ¢ CocEme ¢ Ghew -
CHED WB @ ¢ PSS e o Sam o ome e oamce s oo =
cas ®e ® oan ¢ am o ¢ memcoan osam @ wmoes .o
- asroe ¢ cammmane oo * emae o - ecscosm o
S EE—— D O¢ G R G IR © B 0 M@ SEDas B OO ¢ G Ree s s W
- e o= —— .o

aEb s eumn @ EGn P ¢ GP 00 @mesecED o wo o
e ® ®O® oW Goe oo @ o B ® ® -
-— - eoe w» ® oo s acse can o = oevan weo
-— s ® e» oo = ® oap enmm o o cee o o
-—e o - e -y @ o emmc @ e» © cumme emme
e ————— @ IS¢ G2 @ eEmn ¢ed @ ®@ewe - aEmes e oo ¢ aumm
S —— — G @ ¢ @ ¢ G - . e o oo

®comes o 00 cam o
o ame oo ¢ o ® coco ma 0 @ o =

.ool-n...nlo-o.ooctocu

e
bee
-
=3
-
.o

s |-

4.5 |
4
S
3
S5
2|
S5
1}

4.4

4.2

, max(x) is plotted against o for 100 periods.

3.8

max(x)

- 109 -

Figure 4.10 Bifurcation diagram for the COR model, parameters as in figure 4.5, obtained by allowing « to slowly increase.
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.
.
]
.
-
-
-
.
-
L3
-
-
o e
- o
- o oo e ® ocemme ooamer Smmm oo ®e » o e o & we
" e GMme ® © 6 20 EDNE®ES 0 ®o GEEEme ® S0 008 o o . oo o .
- = oo o ¢ ® & wecapan @ee ¢ s ® @ cee @ o ® oo o e
-e om v ® ©® an commm emeo e ®cee ws S - . . ® o0 o oe
- o o eowe ® ® 00 o v Sanes td? GO wome o o o ses @ o e 0o
> we o esce oo ® o000 seomooam Dew GSwmmew O ® ooo [ e e
- me o oo oow ow . ST GAn® ® Wme @B o 0 ® OO - ® @ee
- - EEm em, ¢ ¢ B E® cErER D ¢ - e ® e o © o0 o * e o oo
- e o - ®e 0 & mownmne o evan o e e ® e 0 ® ® o o vs o
e omm ov ® Seommean ¢ + o cuy o cean oo e ®oscee oo L3
- - oo - ® s 2000 Povrhay aup > @ o can @ o . ¢ e
- o wo oo o ® ot ameo e moescas @moeoam o v e emo® . e oo
- oo oas o o ®® s> anmm Owicamm O S S - o e ee eee
oe © o e e o - o0 - ow =3 o -
- o oo ave > o ane Gooves ov Gmme @6 ©6e Grwum— - o e RN
oo -— e e ® cod EDs Eme w wmed Ge® @ 0 & W™ - * o o -
->w o 0 ® S EWEEG GO Ci® wo @ WP emommmEe & S8 o - ee oo
- e e se ™ emes P oEPms EEwmes G Wwe » e oo o o0
-— oo - o @ COME CED @ CVEs WMo P ¢ ¢ EIRIEO® @e o © L] ce @
- eoweowaven oo oo s eomeasman ® @mse ¢ o o ®o oo .o
- emo -—eee PEN IS e e Gv s G eGP cwwoemEun ®ws 08 o
® eve @ w e @er s © oo -— . oen owe ave oo o o ® oo o0
ase e o e® ®e o Deamercrosan 0 eoow o - e o e oo
-— o = ® @ et PO @ cccuncus Bes @ s o o o .
cCar oo @ C @ SO camarct COIBEme e B O e o ¢ o -e o e e @
Gouris ® 06 O @ SO MO Gt WO ©® WD IWE B OO B e oo - .
Secmes ¢ ® e © ot EGBe W WMecoO @M S @O O se &= -

e o8 ® o o

® oo one S S0 el b enmtmc eI wED vEteamn 4 @0 e ® te some
- emm ° o o - aeumee ©e® ¢e s span @ cuns ¢ e e o . -
® EEe G CAN D EPIITOEED 0 BER B W S @ GG S S SO T ® v o
- aese ® GG miom s ues s e O B @ W s o - . @ o > =
LX X - wocomeam « . ¢ e eam oo amw ee» sae os o
Gresan a» ¢ © AP e T seccan MO G W Gams ¢t v O S ve
cur o o= - semewn 00 ¢ Bereams we O Y@ © o s oo - o
® o= o aren mm ® o o cmmmn s epece @ W oo o e -e oo
——— . — e © 9 eceBoEne e amsumem se ame
- osom wme . e ®¢ a» o> ovem oo owm o
-e - o= L XY oy = o sene
L - o o [ L]
- - [ . - L]
L) - L] o . ..
- - . . - .
- - - . . .
L3 L] . . . .

e

-
s

4.6

4.2

- 110 -

2
1

Figure 4.11 Bifurcation diagram for the Hertz law model, parameters as in figure 4.8, obtained by allowing a to slowly

displacement over one period, max(x), is plotted against a for 100 periods. The inset shows a blown

up area around the region where impacts initially occur, showing a period two solution.
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Figure 4.16 Response curves of maximum displacement X,.,and velocity > 8
for period one solutions against forcing frequency, w. Parameters as in
section 4.1.4, a=0.5. Solid lines represent stable solutions, dotted lines
unstable.
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5. Impacting offshore systems

5.1 Introduction

The work in this thesis was originally motivated by a particular problem involving
impacts which arises in offshore engineering. The problem of dangerous resonant
behaviour developing in impacting dynamical systems is not restricted to this problem,
or to offshore engineering. In this section we briefly mention some of the areas in
which such problems do arise, before concentrating on some of the particular problems
which arise in offshore engineering, and finally concentrating on the one which has
motivated this study. The theoretical insights into impacting dynamical systems which
have been discussed in chapters 3 and 4 have mainly concentrated on the qualitative
changes in behaviour which occur when a component just hits a stop with zero velocity.
These grazing bifurcation events can lead to a sudden jump to a different (possibly
"dangerous") solution or to complicated, nonperiodic, chaotic motions, even under
simple sinusoidal forcing. A simple model which is developed in this chapter for the
pile/sleeve interaction problem which motivated this study is shown to have a very
complicated dynamical response, including several grazing bifurcation events, the effect
of which must be fully appreciated in order to understand the overall behaviour of the

nonlinear dynamical system.

Physical and engineering systems which undergo impacts at motion limiting constraints
are encountered in a wide range of situations such as rattling mechanical gears [Pfeiffer
& Kunert, 1990], impact printer heads [Tung & Shaw, 1988a,b], the pounding of
buildings under earthquake excitation [Davis, 1992] and heat exchanger tubes subject
to aerodynamic excitation [Paidoussis & Li, 1992]. Such systems are inherently highly
nonlinear since there are two greatly different "regimes". Any model of a system with
impacts must include a regular, between impact regime and also the completely
different behaviour at an impact. Offshore engineering is a source of several examples
of this type of system. A good understanding of the dynamical responses of offshore
structures subject to impacts is therefore very important. In mechanical systems with
impacts such as gear rattle or impact printers, the main problems are which are caused

by repeated impacts at a stop are noise and wear. In the offshore environment,
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however, a short burst of large impacts could cause great damage or even the complete

failure of a structure.

Early studies by Thompson and co-workers [Thompson, 1982, Thompson & Ghaffari,
1982,1983, Thompson & Elvey, 1984, Thompson, Bokaian & Ghaffari, 1983,1984]
investigated the dynamical behaviour of an articulated mooring tower with an oil tanker
moored to it by a light mooring line. The tanker itself can be regarded as an
immovable fixed object, whilst the articulated mooring tower is essentially an inverted
pendulum pinned to the sea bed. The tower oscillates under wave forcing causing the
mooring lines to repeatedly slacken and then tighten again. This behaviour can be
modelled as a bilinear stiffness (one stiffness regime with the line slack, with the
restoring moment on the tower solely due to buoyancy and the other, much greater
stiffness with the line taut). If the stiffness with the line taut is considerably greater
than with it slack then the system can be reasonably modelled as an impact oscillator.
Numerical investigations by Thompson showed a complex response of a one degree of
freedom model of such a mooring tower, with subharmonic motions of order n at
approximately n times the natural frequency of the structure. Aperiodic, chaotic
solutions were also found to exist for this simple system. A problem similar to that of
the dynamical response of an articulated mooring tower is the response of ships moored
either against stiff fenders in a harbour [Lean, 1971], or moored to a fixed offshore
platform [Sterndorff et al, 1992]. In the case of a ship moored to a small fixed offshore
platform the impact load of the ship can be greater than the expected extreme

environmental loads and so the ship impact can govern the design of the platform.

Another example of an offshore dynamical impacting system arises in the installation
of platforms over pre-installed templates on the sea bed over pre-drilled wells. Some
kind of indexing system is used, as described in the next section, to guide the platform
accurately into position over the pre-drilled well with a guiding component on the sea
bed and a corresponding component on the platform itself. Although the problem of
impacts between the two components that make up the indexing system only occurs in
the short time whilst the platform is actually being installed over the template, it is very
important that excessive loads are avoided during this time. It is this problem that we

now go on to examine in more detail.
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5.2 Jacket to template docking problems

The conventional method, until recently, of developing an offshore hydrocarbon field
has been to construct and then install the jacket structure prior to drilling the well. The
recovery of capital investment can be achieved far more quickly if the drilling operation
can be performed in tandem with the construction of the jacket structure. The wells are
drilled and capped off, with a template installed over them so that the platform can be
accurately located over the well when it is finally installed, possibly two or three years
after drilling. Accurate location of the jacket structure over the pre-installed template
is essential since the wells are pre-drilled. Different methods for docking the structure
have been tried and one of the common limitations of such methods is excessive impacts
between the jacket and the guiding template. The dynamical response of the nonlinear
system comprising the jacket structure and template needs to be understood if the
installation process is to proceed successfully. This is essentially a forced impacting

oscillator problem, and in this section one particular docking method is discussed.

Several different methods for locating the jacket structure over the locating template are
used in practice. All involve some kind of restraining arrangement on or near the
template with which part of the jacket structure is mated. Amoco's Northwest Hutton
platform was installed using a bumper-pile system for the mating of the platform and
template [Nelson et al, 1983, Stahl et al, 1983]. This technique involves the installation
of bumper piles near to the subsea template against which the platform structure is
manoeuvred, protecting the template from damage and orienting the structure correctly.
The bumper piles must be designed in order to withstand the impact loads inflicted on
them by the jacket in the installation procedure. An alternative method is to use a
pin/sleeve combination arrangement. Two or three docking piles are installed in the
template which act as either the male or female component with either a pin or sleeve
mounted in the jacket. The gap between the pin/sleeve combination is designed to taper
down from a large distance at initial engagement to a distance small enough to be
within the required tolerance for the final position of the structure when fully installed.
This method was used in the installation of the Beryl B jacket in the North Sea
[Robinson & Ramzan, 1988].

- 121 -



Robinson & Ramzan performed a numerical simulation of the installation of a 7500
tonne jacket in a water depth of 66m using the pin/sleeve docking arrangement
described above, illustrated in figure 5.1. The structure was modelled as a 12 degree
of freedom system which has a piecewise linear stiffness function, where the stiffness
matrix changes on pile contact, forced by a random sea state with specified spectrum
type of a given significant wave height. At the closing stages of the installation
procedure the pile loads were found to become largest. In particular, the pile loads (the
forces at the piles) were found to be highly dependent on the mean period of the forcing
function. Figures 5.2 and 5.3 show the results of two runs of these numerical
simulations taken from Robinson & Ramzan [1988]. It was found that the jacket sway
amplitude increased rapidly at mean wave periods of greater than 5 seconds. The two
runs shown are taken at 6 seconds and 7.8 seconds mean wave periods. In the first
case, the jacket sway behaviour was such that the structure was impacting mainly at one
of the piles, with only occasional occurrences of two sided impacting, which Robinson
& Ramazan called "ringing behaviour”. In the second case, at mean wave periods of
7.8 seconds there are long bursts of high amplitude, ringing {two sided impacting)

behaviour with occasional less severe periods where there are only one sided impacts.

The natural period of free oscillations of the sway mode, the mode asseciated with the
high amplitude ringing events in the numerical simulations described above, is given
by Robinson & Ramzan as 7 seconds. The one-sided low amplitude impact events are
observed from these simulations to be taking place just above the natural frequency of
this mode and the high amplitude two sided ringing events take place at a lower
frequency, just below the natural frequency. It appears from the time series in figure
5.3 that neither the surge or heave modes play an important role in the onset of the
ringing events which lead to unacceptably high loads at the piles. Thereis clearly some
unexplained nonlinear behaviour taking place here since resonances are occurring away
from the natural frequency of oscillation of the sway mode : this is nott surprising since,
as has already been discussed, a system with impacts has two very differing regimes
at and away from impacts and so the system is naturally very nonlinear. We could
expect the transition from low amplitude one sided to high amplitude two sided

impacting to show up in a simple one degree of freedom model of the sway motion.
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In order to see how the behaviour described by Rob'nson & Ramzan could be explained
by a very simple one degree of freedom model of only the sway motions of the jacket
we use the simple coefficient of restitution model with a linear stiffness and linear
damping, sinusoidally forced. Despite being a possibly over simple model for the
impact process, part of the work of this project has been to show that the overall
qualitative behaviour which arises from the coefficient of restitution rule is the same as
that which arises from more realistic rules. Experimental work with laboratory impact
oscillator models also shows that qualitative behaviour is predicted well by the

cocfficient of restitution impact rule. The one degree of freedom model is given by

MX" + AX' + 02X = Acos@7) , r,<X<I,

5.1
X' = -rX’ , X=r, or X=I,
where :
M effective mass
A linear damping coefficient
W, natural frequency of the sway oscillations
Q forcing frequency of sway oscillations
A amplitude of the forcing of sway oscillations
r coefficient of restitution
T, : distance from equilibrium position to right hand stop
1, : distance from equilibmum position to left hand stop
X : displacement from equilibrium position of sway mode
T : time
’ : time derivative

In contrast, the 12 degree of freedom model used a piecewise linear stiffness function
to model the impact, a quadratic damping term, and a random forcing function based
on a specified spectrum with given significant waveheight and mean period. A
sinusoidal forcing function can be looked upon as a worst case scenario since

resonances at a particular frequency are g'ven time to build up.

The maximum amplitude of the sway oscillations found when the 12 d.o.f. numerical

model, freely suspended, was subjected to 3 hours of random waves at a mean wave
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period of 7.8 seconds was found to be 0.667m. Given that the natural period of these
oscillations is given as 7 seconds then we can assume (using the analytical solution for

equation 5.1) an equivalent forcing amplitude value of

A= max()()JA’Q2 + (Q’-mf)z 52

where max(X) is the maximum absolute value of the displacement of the sway motions
of the jacket, «_ is the linear natural frequency of the sway oscillations (2%/7 rad s%)
and w the mean forcing frequency (27/7.8 rad s*). When the jacket is lowered over
the sleeve, at the position where the time series shown in figures 5.2 and 5.3 were
taken, the gap between sleeve and pile is given as 0.697m. We could expect that there
will be a bias to one side, so put r,=0.29m, so this gives [,=0.407m. By rescaling the
time and displacement variables in equation 5.1 we can obtain a model comparable to

the one studied in earlier sections

X +dx+x=oacoswt) , b<x<lI 53

X - -rx x=1 or x=b
In this equation an overdot represents differentiation with respect to time. Rescaling
has been applied to equation 5.1 in such a way that the right hand stop is at x=1,
giving b=-1.403. The forcing frequency in this equation is the normalised frequency
w=0/w,, so the first time series is taken at w=7/6=1 667 and the second at
w=7/7.8=0.897. Assume a coefficient of restituton r=0.7 and a linear damping
coefficient d=0.1 used in earlier sections. Putting maz(X)=0.65 in equation 5.2, a
value just less than the absolute maximum measured in the full jacket model, gives a
forcing amplitude of «=0.4803. We have thus defined a simple one degree of freedom
model which captures the fundamentals of the impaortant sway oscillations of the jacket

at this crucial stage of the deployment over the template.

Using the numerical techniques described in chapter 2, the solution path of the period
one non-impacting solution which exists for small frequencies of this system was
followed numerically as the frequency varied, and the results are shown in figure 5.4.
The maximum absolute values of the velocity and displacement measured over one
period are plotted against the forcing frequency which 1s varied with all other

parameters of the system kept constant. Stable solutions are followed until a bifurcation
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occurs, where there is a qualitative change in the behaviour of the dynamical system:
the unstable solution which continues on from a bifurcating stable one is then followed.
The response curves are identical to those of the one sided impact oscillator at the same
parameters but with only a stop at x=1 until the maximum displacement reaches the
position of the second stop at x=-1.403. On examining the behaviour of the
comparable one sided COR impact oscillator (see section 4.1.5) then for a forcing
amplitude o=0.4803 we expect the period one non-impacting solution to lose stability
at a "flip type” first grazing bifurcation (as the forcing frequency w is increased from
zero). This is followed by a conventional flip bifurcation at which the unstable period
one solution created at the first grazing is restabilised. Numerically this grazing
bifurcation is found to occur at w=0.72 (Gl) followed by a flip at w=0.97 (F1). The
consequence of the loss of stability at the grazing bifurcation G1 is that a chaotic
solution develops. The period one orbit which becomes stable again at F1 is impacting
only on the right hand stop. The amplitude of the response of this period one, one
impact solution increases with increasing w until part of the orbit reaches the left hand
stop at w= 1.2 (G2). Here, as can be seen in figure 5.4, there is a further “flip type®
grazing at which the period one, one sided impacting solution again loses its stability
in the transition to a period one unstable solutien impacting at both stops. Following
the path further, we see a conventional flip bifurcation at w=1.4 (F2) leading to a
stable period one solution impacting once at either stop, which disappears at a saddle
node bifurcation at w=1.9 (SN1). The two sided impacting unstable solution which
meets and annihilates the two sided impacting stable solution at SN1 continues back to
a further grazing bifurcation, this time at w=1.2 (G3), where the stable, non impacting
solution grazes the right hand stop with decreasing w. In order for this last bifurcation
to occur, there must have been a transition from two sided impacting to one sided
impacting solutions along the unstable path between SN1 and G3. The "kink" un this
solution path at w=1.4 in figure 5.4a can be seen to be the place where this transition
occurs from figure 5.4b. Here, an unstable orbit just grazes a stop and remains
unstable, so the number and type of solutions does not change, so no bifurcation has

occurred.
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This whole complicated scenario of conventional and grazing bifurcations tells us much
about the overall behaviour of the system. The response curves in figure 5.4 show the
unstable solutions which follow on when stable solutions disappear at a bifurcation.
Further investigation is needed to discover what solution the system restabilises onto

after these bifurcations.

The one degree of freedom model, equation 5.3, is modelling tive sway mode of the
jacket structure under consideration here. The high degree off freedom, randomly
forced mode! of this physical system was observed to undergo one sided impacts when
the mean frequency of the wave forcing was just above the natural frequency of the free
sway oscillations, at w=1.1667. This frequency is between the bifurcations F1 and G2
in figure 5.4, and in this region there is a one sided impacting solution, illustrated in
figure 5.5. Figure 5.5a shows a time series of the displacement, », against time £ taken
over 15 forcing periods after all transients had been allowed to decay, and figure 5.5b
shows the phase plane projection of this stable period one orbit (where velocity is
plotted against displacement, i.e. time has been "projected out"). Further numerical
investigations (e.g. a cell-to-cell mapping in this region to determine basins of

attraction) reveal no other solutions.

At a mean wave frequency of w=0.897, just below the natural frequency of sway
oscillations of the jacket structure, the 12 degree of freedom model was observed to be
undergoing two sided impacts with much higher loads at the piles. This frequency is
in the range between the bifurcations G1 and F1. The stable non-impacting period one
orbit loses stability at the flip type grazing bifurcation G1 and then regains stability at
the conventional flip bifurcation F1. At w=0.897 there is no stable period one orbit
for the system to fall on to. A cell-to-cell mapping at this parameter set shows that two
period two solutions exist, and the basins of attraction of these solutions are shown in
figure 5.6. These two period two solutions are illustrated in figures 5.7 and 5.8. As
in figure 5.5, figures 5.7 and 5.8 show the steady state time series over 15 forcing
periods and the phase plane projections of the stable solutions. Figure 5.7 shows the
steady state solution associated with the large, white basin of attraction in figure 5.6.
This is seen to be a period two, two sided impacting motion. Figure 5.8 shows the
steady state solution associated with the much smaller, black basin of attraction, which

- 126 -



again repeats after two periods, but only undergoes impacts on one side. In a random
forcing environment centred around these parameters we would expect the two sided
solution to dominate since its basin of attraction is much larger. This is indeed the type
of behaviour observed in the 12 d.o.f. model of Robinson & Ramzan for the jacket/pile
interaction (figure 5.3), i.e. a large amplitude, two sided behaviour dominates with

occasional bursts of smaller amplitude one sided impacting behawviour.

In the previous section we described the results obtained from following the unstable
solution paths which continue on from stable ones after a bifurcation of the system,
equation 5.3. If instead we allow the system to slowly evolve and thus fall onto another
stable solution after bifurcation we obtain the bifurcation diagram, figure 5.9. This
figure shows the bifurcation diagram obtained by starting with initial conditions on the
stable period one, one sided impacting orbit which exists at w=1.2 (see figure 5.4) and
slowly decreasing the frequency. The force at the impact is shown plotted against the
forcing frequency, w, since it is the pile load which is the important limiting quantity
in the docking of the jacket structure over the piles. We see that the stable, period one,
one sided impacting solution is followed with the response (force at the right stop) fairly
constant, until F1 at w=0.97 where there is a supercritical flip bifurcation. The period
two solution which results from this bifurcation grows rapidly in size until it impacts
also against the left hand stop. At this point there is a further grazing bifurcation and
the amplitude of the forces at the stops becomes around twice as large. An orbit on the
path of this large amplitude, two sided impacting motion is illustrated in figure 5.7.
Below this, beyond the parameter region of interest for this particular problem, there
are many further bifurcations, leading eventually to the final (flip type) grazing
bifurcation at which an unstable period one impacting solution bifurcates to leave a

period one, stable non-impacting solution at G1.

Above we have described the results of numerical investigations of a simple model of
an impact oscillator designed to be comparable to the sway oscillations of a particular
jacket/pile interaction problem. It has been shown that the behaviour observed from
a much larger model including all of the modes of oscillation, and subject to "realistic”
forcing functions can be reproduced and explained in terms of bifurcations of the simple

one degree of freedom nonlinear system, equation S.1. The advances in the
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understanding of grazing bifurcations described in previous chapters mean that the
results obtained above can be interpreted correctly, with the effects of both grazing and
conventional bifurcations understood and appreciated. It is not suggested that these
ideas can replace the comprehensive modelling of complex engineering systems, but
rather, once possible problems have been identified using such large models, then more
detailed studies of a simplified dynamical system containing the essential elements can
be performed. One advantage of this approach is the ease with which parametric
studies can be performed to identify which parameter sets are safe and which unsafe.
With the more complicated models, computer power and time limitations mean that
often only a few parameter settings can be investigated, and so important jumps to

resonant solutions could be missed altogether.
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Image removed due to third party copyright

Figure 5.1 Typical pin/sleeve docking arrangement (from Robinson and Ramzan, 1988).
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Image removed due to third party copyright

Figure 5.2 Time series of docking pile and jacket motions in a sea state with significant wave
height Hs=2m, mean period T=6s (taken from Robinson and Ramzan, 1988).
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Image removed due to third party copyright

Figure 5.3 Time series of docking pile and jacket motions in a sea state with significant wave
height Hs=2m, mean period T=7.8s (taken from Robinson and Ramzan, 1988).
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Figure 5.4 Frequency response curves for equation 5.3, «=0.4803, d=0.1, r=0.7, b=-1.403.
(a) Shows maximum velocity, x against forcing frequency, w, (b) shows maximum displacement
x against w for period one solutions. Solid lines represent stable solutions, dotted lines unstable.

G1, G2 and G3 are grazing bifurcation events, F1 and F2 are flip bifurcations and SN1 is a
saddle-node.
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Figure 5.5 Illustrations of (a) 15 periods of the time series x against t and (b) the phase plane

projection, x against x, for one sided impacting stable period one orbit of equation 5.3,
parameters as figure 5.4, w=1.667.

- 133 -



*g'G 2InJY Ul UMOYS 31GI0 oY) 0) BIJE NIBIq A ‘LS 21n31y ur umoys
11G10 9y} 0} SPUOdsaLI0d Bare AYM YL “L68'0=" ‘P°S aindy se siajawered ‘g'¢ uonenbs Joj uonodeNIe Jo suiseq 9°S andig

. X
! cor'1-

- 134 -




(=) SO 100 150 200

Figure 5.7 Illustrations of (a) 15 periods of the time series x against t and (b) the phase plane

projection, X against x, for two sided impacting stable period 2 orbit of equation 5.3, parameters
as figure 5.4, w=0.897.
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Figure 5.8 Illustrations of (a) 15 periods of the time series x against t and (b) the phase plane

projection, X against x, for one sided impacting stable period 2 orbit of equation 5.3, parameters
as figure 5.4, w=0.897.
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6. Experimental stuxdies of an impact oscillator

6.1 Introduction

Several experimental studies of impact oscillators have ieen carried out. Moon and
Shaw [1983] investigated tie chaotic vibrations of a beam with impzcts at a stop, and
compared the experimentd results with a piccewise lineir model obtained from a
Galerkin approximation using only the first mode. Poincaré maps and fourier
transforms of chaotic motions from the experiment and Tfrem the theoretical model were
compared, and found to agree reasonably well. Stennson and Nortlmark [1992] used
a vibrating spring/mass sy stem with impacts & a stop and compared this experimental
setup with a simple coefficient ofl restitution theoreticd meodel. Bifurcation diagrams
and chaotic attractors in Poincaré maps obtamned from numerical simulations of the
model and from the experinent were compared. Seme of these results showed a
remarkable agreement Tle nuim concern of the present work has not however been
addressed in previous experimental studies. The grazing b furcations which are found
to occur in the COR mode! when an orbit undergoes an additional low velocity impact
seem to be very important to the overall bifurcational behaviourof an impact oscillator.
In chapter 4 it was shown that even when the discontinueus coefficient of restitution
impact rule is replaced by acoitinuous and differentiable stiffness function which rises
rapidly at impact to oppose tie motion (the Hertz law modd), the qualitative
bifurcational behaviour appears to be the same. Inthis chepter an experiment is
described which is. devised n oxder to test whether the qualitative bifurcational

behaviour of the COR madel and a1 experiment with one sided impact are the same.
6.2 Experimental sefup

Figure 6.1 shows a diagram ofthe expenmental setup wsed A long, slender steel beam
is attached to a metal base at one end. At the other, free end of the beam there is an
electromagnet which is used to ferce the beam, a prox'mity prebe to measure the
displacement of the bearn and a steel pin whch acts as a stop. The pin is attached to
a micrometer and so can be mioved towards the beam or away from it, and the distance

from the stop to the beam can be measured A micocemputer with an analogue to
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digital / digital to analogue conwverter (ADC/DAC) card is used beth to drive the
electromagnet with some waveform and to read the voltage from he proximity probe.

Some of the specifications of the experimental setup are given bd.ow.

Beam:
Length : 300mm
Width : 30mm
Thickness : 2mm

ADC/DAC (National Instruments LAB-PC) :

Input voltage range : #5v

Maximum sampling rake : 62500 Hz
Analogue input resolufion 12 bits (1in 4096)
Output woltage range : 15v

Maximum waveform update rate:  Approx. 200003 points/sec
Analogue output resolution 12 bits @l in 409 6)

A piece of software has been custom written to drive the elec tiomagnetic forcer and
take readings from the proximity prebe. A continuous sine wave function of a given
frequency and amplitudeis sent to the output channel. A range difreguencies is chosen
and the software steps through this mange of frequencies, dllowig 30 seconds at each
step for any transient motions to decay. The ADC is then used to acquire 10000
readings of the vaoltage at the proxinuty probe at a rate of X000 Hz p.e. one second of
data. Since the DAC uses aseparate clock on the ADC/D AT card to the ADC, the two
functions of waveform generation and data acquis tion can take place simultaneously.
The maximum absolute valtage in tlis one second is acquistion period is recorded and
the timebase for waveform generation is then altered to stert tie DAC generating the
waveform at the mext frequency. Affter a further 30 seconds amoilheor reading is taken,
and so on. When the end of this range of frequenaies is neached the process is reversed

so that a frequency sweep is performed in the opposite direction,

There is a good linear relationship between the voltage measued from the proximity

probe and the displacement of the beam as measured by the micrometer which the stop
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is attached. At each of the locations of the stop at which readings were taken, the
amplifier from the proximity probe was adjusted until the veltage necorded with the
beam in its equilibrium position was zero : this allowed fer the cormection of any small
drift of the instruments over tme. The beam was them held down en to the stap and
the resulting steady voltage recorded. In figure 6.2 the recorded voltage v (vdits) is
plotted against the measured distance to the stop &, (mm) , zong with the best least
squares fit given by the model v=M\d,, whete the fitted paraneter A=2.07 v mm’’.

6.3 Frequency sweeps with no step

In order to give a good comparison with the theoretical modieks investigated in the
previous chapters it is required that the beam on its own should have a linear frequency
response curve. To achieve this as nearly as possible we excite thebeam at & frequency
near to the natural frequency of the first mode. The amplitude of the forcing is also
chosen so as to be small enought that the beam is not forged irto a region with nenlinear
response characteristics. With the stop well away frem the baam, three frequency
sweeps were carried out. Inthisway itis confirmed that the frecquency response curves
of the beam alone are very close to linear. Preliminary studes had indicated a natural
frequency zround 28Hz, so the trequency range chosen was 25 .$Hz to 30 3Hz and in
each case a sweep up in 56 equal steps and down in $5 equal steps was performed.
The parameters of the beam can then be estimated fraom th's experimentally ebtained
frequency response curve. We are assuning that only the first linear mode is being
excited, and further assume that there is linear dampirg of the beam. The idealised
equation descrbing the mation of a pointalong the beam (when no stop is present) is
then

£ v AX + ofx = Acos(or) 6.1

where an overdot represents differentiation with regpect to time #, A is the linear
dampung coefficient, w,the natural trequency and A the forcing anplitude after the mass
has been scaled out, and x is the displacement of the beam from the stop in mm. The
asymptotic steady state solution of this equatien & x=({AAy)cos(wt), where
v=(Aw)f+ (*-w )2 The maximum zsolute value of the displacement is therefore

A/y. By performing a nonlinear nunimisation on the funcaion
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with regpect to the three parameters A, 4 and w, we can estimate the best fit to the
model 6.1 for the experimental data set (r,w)), i=1,2,.., Nwhere &is the total number
of data points and r, is the maximum displacement of the bearm (measured in volts from
the proximity probe) at the frequency ¢«). The simplex search metiod of minimisation
was used to obtain the results in the table below

Run nuwmriber A W, A Total number
(mm s?) (rad s*) Y of paints
| 1 1.410 176.19 00775 111
u 2 1.430 176.19 0.0777 11 |
ll 3 1.489 174.09 0.09% 111 I

Diagrams 6.3a-c show the data and fitted curves for runs I te 3. The assumptions that
the beam is governed by the linear stiffness, linear damping motel 6.1 are confirmed
by the good fit to the datain mns 1 and 2. Run 3 appears tobe wery noisy at the lower
frequencies and so is discarded. Runs 1 and 2 agree well w il @ne another, so we can

estimate the parameters of the equivalent linear system as :

Forcing amplitude 4 : 1.420 mm s?
Natural frequency w, : 176.19 rad s’
Damping coefficient A: 0.0776 s

6.4 Frequency svweeps wth impact

Since the parameters A, w. and A have been fitted to the lincar model given by equation
6.1, the free parameter which is altered in the experimentis tle position of the stop.
Six runs were made with the stop at different positions. Atthe beginning of each run
the wltage measured at the proxinuty probe with no externil forcing applied was
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zeroed and then the beam held down on to the stop and the measured resulting voltage
noted. This, along with the distance measured by the micrometer, were used to show
the linear relationship between distance and measured voltage shown in figure 6.2.
Three frequency sweeps up and down for each position of the stop were then
performed, with the maximum displacement at each frequency being recorded as
described for the case with no stop. The three runs for each position of the stop were
averaged. From these experimental averaged frequency response curves the positions
of three bifurcational events were estimated for each pasition of the stop. These
bifurcations are : first grazing where the amplitude of response first reaches the
displacement of the stop as frequency is increased and the response curve flattens out;
second grazing where the amplitude of response first reaches the displacement of the
stop as frequency is decreased ; saddle-node bifurcation where the impacting solution
loses its stability as the frequency is increased. The results of the experimental runs

with the stop are summarised in the table below.

Run Measured Measured Frequency | Frequency | Frequency
number | displacement | displacement | of first of second | of saddle
of stop at stop grazing grazing node
(volts) (mm) (rad sV) (rad s™) (rad s)
1 0.09 4.65 171.53 179.07 186 42
2 0.17 4.60 173.98 177.81 184.79
3 0.26 4.55 174.99 177.37 182.65
4 0.40 4.50 175.43 176.56 188.43
5 0.49 4.45 175.99 177.06 180.52
6 0.61 4.40 175.87 176.49 180.14
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6.5 Comparison of experimental and theoretical results

Figure 6.4 shows a typical response curve for run 4 along with the numerically
calculated theoretical response curve assuming a coefficient of restitution model with
the parameters calculated from the linear response curves (the runs with no stop).
There is still one parameter which remains to be estimated : the coefficient of
restitution, r. In figure 6.4 we have chosen to have r=0.2 which is quite a low value
(Goldsmith [1960] gives the coefficient of restitution between steel and steel as
somewhere between 0.7 and 0.8). Despite the good fit between the runs with no stop
and a linear response curve (figure 6.2), confirming that predominantly only one mode
is being excited, once a stop has been imposed there is a possibility of other modes
being excited. The coefficient of restitution must be made small in order to account for
the energy which is being transferred to these higher modes at each impact. There is
a good qualitative agreement between the frequency response curves obtained
experimentally and the theoretical response curves. For each position of the stop the
response curve flattens out after the first grazing as the frequency is increased from
below the w,, the natural frequency of the first linear mode. The small increase in
maximum absolute displacement after the first grazing belies the greatly increased
velocity with which the beam hits the stop. With the simple experimental apparatus
used here it was difficult to measure velocities (the direct measurement of displacement
was not clean enough to differentiate for the velocity). However, just by ear it was
possible to tell that the severity of impacts at the stop was increasing, with the loudest
"ringing" of the beam against the stop occurring just prior to the saddle-node
bifurcation event which occurs when the impacting state disappears as the frequency is
increased, leaving the system to settle on a low amplitude non-impacting state. The
frequency response curves for the coefficient of restitution model bear out this
observation. Although the maximum displacement of the response increases only very
slowly after the first grazing until the final saddle-node bifurcation, the velocity at the
stop (the impacting velocity) increases quickly after first grazing. The velocity at
impact in the theoretical model increases until just before the final saddle node

bifurcation where the period one, one impact per period solution is destroyed.

- 143 -



A more detailed comparison between the bifurcational behaviour of the theoretical and
experimental models is made in figure 6.5 where the positions in parameter space
(position of stop vs forcing frequency or d vs w) of the various bifurcations listed in the
above table are shown. For a given forcing frequency, a grazing bifurcation will occur
if the maximum amplitude of the response with no impacts is equal to the position of
the stop, x=d. The locus of grazing bifurcations in d vs w parameter space then is

given by

A

d =
JBwP + (P -wl)?

6.3

The location of the saddle-node bifurcations in this parameter space for the theoretical
model with the fitted parameters can be calculated for a given coefficient of restitution
using the explicit expressions for the eigenvalues of the first differential matrix of the
impact map given in section 3.74 (with suitable rescaling). The loci of saddle-node
bifurcations for a range of values of the coefficient of restitution r is plotted in figure
6.5. Clearly a very low coefficient of restitution is required for the theoretical curve

to lie near to the experimentally observed one.

6.6 Conclusions

The overall qualitative behaviour of a one sided impact oscillator modelled using a
simple coefficient of restitution rule to model the impact appears to agree well with the
results of the experiments using an electromagnetically excited beam described above.
In particular, the bifurcations which are predicted by the theory (including both the
conventional, smooth bifurcations and the "new" grazing bifurcations), and which
determine the overall shape of the frequency response curve, are found experimentally.
It is clear that the grazing bifurcations which have been the subject of study of much
of this project play an important part in the overall dynamical response of an impact

oscillator.
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Image removed due to third party copyright

Figure 5.1 Typical pin/sleeve docking arrangement (from Robinson and Ramzan, 1988).
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7. Conclusions

A wide variety of physical systems undergo intermittent contact with motion limiting
stops under the influence of some external forcing. These impact oscillators have been
frequently studied in the light of a particular physical application, some examples of
which are given in the references in section 1.1.2. A common approach taken in these
studies is a parametric study, in which the parameters of interest in a mathematical
model of the physical system are varied, and in this way parameter regions of
*acceptable” behaviour are found. More systematic studies of nonlinear dynamical
systems concentrate on the bifurcations at which qualitative changes in the system
dynamics occur. In this way, for example, parameter sets at which bifurcations which
lead to jumps to "dangerous" types of motion can be located. The classification of
bifurcations and the behaviour they lead to in a dynamical system are therefore of great
interest. Impact oscillators are often modelled using the simple coefficient of restitution
(COR) rule to instantaneously reverse velocity at an impact. Complicated dynamics can
arise due to the non-smooth nature of the resulting dynamical system. In particular,
types of local co-dimension one bifurcation not found in smooth dynamical systems can
occur, called grazing bifurcations. In this thesis we have sought to show the types of
grazing bifurcation which can occur, and also to answer the important question of how
these bifurcations relate to smooth bifurcations. If we model an impact oscillator with
a smooth formulation, we would expect that the overall behaviour of the two similar

systems would be the same.

It was shown in section 3.5 that the reduction of the flow of a continuous time COR
impact oscillator to a discrete Poincaré map can result in that map being discontinuous.
Both the stroboscopic map, in which the displacement and velocity of the impact
oscillator are sampled once every forcing cycle (at the beginning, say) and the impact
map, in which the time and velocity are sampled at an impact, are shown to be
discontinuous. The stroboscopic map is discontinuous due to the instantaneous reversal
of velocity at the stop imposed by the COR rule, whereas the impact map is
discontinuous due to the lack of transversality of the chosen surface of section. More

serious to the overall dynamics of the COR impact oscillators are the discontinuities in
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gradient which are apparent in any Poincaré map. It is demonstrated in section 3.6 that
there is a square root singularity in the gradient of a map at any point which, if the
flow line through it were followed, would just touch a stop with zero velocity before
intersecting again with the surface of section. Since there is a line of points along the
stop with zero velocity in a one degree of freedom impact oscillator, then there will in
general be a line of discontinuity in gradient in the Poincaré map (we can see this just
by following the flow lines through the line of zero velocity at the stop backwards in
time to the surface of section). As a system parameter is varied, the position of a stable
fixed point of the one parameter family of maps will vary. If at some parameter value
the stable fixed point comes to lie on a line of discontinuity in gradient then this
parameter value is one at which the map has become structurally unstable. The square
root singularity on the impact side of the line ensures that a stable fixed point cannot
exist on this impact side, but can exist on the other side of the line. This event we have
called a grazing bifurcation. It is most useful to think of these grazing bifurcations
taking place in any map other than the impact map, since in the impact map a line of
discontinuity and of discontinuity in gradient coincide at the line of zero velocity. By
choosing for example the stroboscopic map it becomes clear that the grazing bifurcation

events occur because of fixed points crossing the line of discontinuity of gradient.

In chapter 4 we studied the grazing bifurcation event in COR impact oscillators by
concentrating on the simple case of a sinusoidally forced one degree of freedom system
with linear damping and linear stiffness characteristics away from the stops. To further
simplify matters we concentrated on the first grazing bifurcations, that is bifurcations
between a stable, non impacting limit cycle and a steady state impacting limit cycle with
one impact. Both of these steady states can be located analytically using the methods
shown in chapter 3, along with their stability characteristics. It is shown that the
impacting solution is unstable as the velocity at impact tends to zero, whereas the non-
impacting steady state solution is always stable since it is just the asymptotic steady
state of a linear oscillator. Further, we have shown that the impacting solution
approaches the non-impacting solution (i.e. stable solution meets unstable) as the
parameter is moved towards that at which first grazing occurs. Two situations
corresponding to two different types of grazing bifurcation are possible. The unstable

periodic orbit can approach the stable one either from above or below as a parameter
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is varied. If both stable and unstable steady states approach one another from below,
they then annihilate one another at the critical first grazing parameter. In the other
case, the saddle solution "continues on" from the stable solution. We call these
bifurcations saddle-node type and flip type grazing bifurcations respectively, since these
are similar smooth bifurcations. Following a saddle-node type grazing there is no
nearby solution and the system will restabilise onto a distant attracting solution. After
a flip type grazing, however, numerical evidence has shown that there is apparently an
immediate jump to a chaotic attractor. It is also numerically observed that a different
impact oscillator model, the Hertz law model, which does not suffer from the continuity
problems of the COR model, does indeed undergo saddle-node bifurcations and flip
bifurcations (the start of a period doubling cascade to a chaotic solution) near to their
grazing bifurcation counterparts. Analogous one dimensional maps of the interval, with
a square root singularity in gradient, are also shown to exhibit similar behaviour,
including an immediate jump to a chaotic solution. We also manage to find analytically
some co-dimension two bifurcations which occur when the first grazing bifurcation
changes at a point from flip type to a saddle-node type grazing. It appears from this
work that saddle-node and flip type grazing bifurcations can be seen as discontinuous
equivalents to their smooth counterparts. In the case of the flip type grazing
bifurcation, a whole period doubling cascade appears to have been compressed to a
point. A similar phenomenon is seen in Nordmark [1993] in which the shape of a
chaotic attractor in a smooth model of an impact oscillator approaches the shape of the
chaotic solution of the COR impact oscillator at the same parameter values as the

severity of the impact is increased.

There are many further questions, not addressed in this thesis, which can be asked
about grazing bifurcations. For example, given the observation that a chaotic solution
arises immediately from a flip type grazing bifurcation then is it possible to show that
there must be a homoclinic tangle in the invariant manifolds of the unstable solution
created at the bifurcation? It may be possible to locate the invariant manifolds
analytically, again due to the simple piecewise linear nature of the impact oscillator
model (a similar idea is used in Hogan [1992]). The observation made above that a
whole period doubling cascade appears to have been compressed to a point at a flip type

grazing bifurcation could be examined in smooth models of impact oscillators. Does
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the period doubling cascade get compressed to a point as the severity of the impact is
increased, and if so at what rate? Further interesting directions for further work may
lie in investigating the bifurcations which can occur in other continuous, non-

differentiable maps.

The simple experiment which is described in chapter 6 is not sensitive enough to show
the detailed events shown in some experimental studies, such as chaotic solutions, or
periodic solutions at exactly the predicted parameter settings. We were however able
to detect the significant bifurcational events which occur in this physical one sided
impact oscillator and show that the overall qualitative behaviour is as predicted by the
COR model. This gives a further indication that the COR model, although simple, does
capture the essential characteristics of true impacting systems. Although grazing
bifurcations only occur in the idealised mathematical model, they approximate the true

behaviour of impact oscillators undergoing low velocity impacts.
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