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Abstract

One of the most important features of nonlinear dynamicai systems is that, as system

parameters are varied, qualitative changes in the overall behaviour of the system can

occur at a bifurcation . For smooth systems, the local bifurcations which occur under

the change of one parameter are well understood. Non-smooth dynamical systems,

which frequently arise due to the way certain physical processes are modelled, undergo

bifurcations which have not been widely studied. We examine a particular type of

bifurcation arising in a commonly occurring class of non-smooth dynamical system,

combining theoretical and experimental results.

In this thesis we are concerned with the study of the important class of dynamical

system we call impact oscillators, which undergo oscillations under the influence of

some forcing, and additionally can undergo impacts at rigid stops. Such systems are

of interest because a large number of physical and engineering systems display

behaviour which can be classified as impacting, where it is important to use a

dynamical analysis to identify and thus avoid the noise, wear or failure which could be

caused by repeated impacts producing unacceptably large loads. Recent interest in such

systems has concentrated on the unusual bifurcational behaviour which occurs when part

of an orbit begins to undergo low velocity impacts. Using analytical methods to locate

particular simple steady state solutions of an impact oscillator these grazing bjfurcations

are investigated. Comparisons are made between the behaviour of these special

bifurcations, which arise because of the instantaneous reversal of velocity in the

mathematical model of the impact process, and the standard bifurcations of smooth

dynamical systems.

An experimental study of an electromagnetically forced metal beam impacting against

a stop is used to show that the overall qualitative behaviour displayed by a simple

theoretical model is also displayed in a physical impact oscillator. Finally the

theoretical studies are related to a particular problem of offshore engineering and it is

shown how a very simple model can be used to explain some unusual observed

behaviour.
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1. Preliminaries

1.1 Introduction to Impact Oscillators

Physical applications which undergo impacts against some kind of stop to limit the

motion of a system are very common and arise in many different areas of engineering.

The very fact that the impact process exists and is very different from the free"

motions away from impact make such impacting systems nonlinear, and if there is an

external driving function then these impacting systems form an important class of forced

dynamical system. We shall call this class impact oscillators. We now give a brief

survey of the literature which exists concerning systems in this general class first,

some of the theoretical studies, then some practical applications and finally some

experimental studies.

1.1.1 Theoretical studies

Early work by Shaw and co-workers concentrated on one sided impact oscillators

modelled by sinusoidally forced, second order ordinary differential equations with either

a piecewise linear stiffness function or a linear stiffness function and a coefficient of

restitution (COR) rule. For both of these cases some particular analytical solutions can

be located for the model of an impact oscillator [Shaw & Holmes, 1983c]. The stability

of these analytical solutions can also be found allowing loci of saddle-node and flip

bifurcations to be located. The discontinuous nature of maps obtained from impact

oscillators was noted in this work. A similar analysis was performed by Whiston

[1979]. Further studies by the same authors [Shaw & Holmes, 1983a, 1983b] analysed

the special case of a linear oscillator with a COR rule where the coefficient is small

(zero or near zero). In the case of zero coefficient of restitution, the whole system can

be reduced to a one dimensional map (on a circle) which is discontinuous and regions

of stable orbits of low period are shown, and also transient nonperiodic motions. The

same technique as used by Shaw & Holmes for obtaining analytical solutions of the

COR rule impact oscillator was also used by Hindmarsh & Jefferies [1984]. Using both
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analytical calculations and numerical simulations, this work identified regions of

stability for low period solutions and also identified apparently chaotic solutions. The

discontinuities and discontinuities in gradient inherent in the system were identified as

being of interest. Shaw [1985a, 1985b] again studied the simple COR rule model, this

time with two stops, and showed local and global bifurcations.

Whiston [1987a] studied local bifurcations in an impact oscillator with COR rule and

preload (i.e. the equilibrium position with no forcing is at a stop), again using the same

kinds of analytical techniques as many previous authors described above, whereas

Whiston [198Th] studied in some detail the global dynamics of the same system.

Again, it was noted that the discontinuities in the dynamics could lead to "non-

differentiable" bifurcations which merited further study. Shaw & Rand [1989] find

analytical solutions for the system consisting of an inverted pendulum with a COR rule

applied at two stops, and again find local and global bifurcations, and the same ideas

are extended to a two degree of freedom COR impact oscillator [Shaw & Shaw, 1989].

The analysis for the single degree of freedom, two sided COR rule impact oscillator

system is generalised by Natsiavas [1990] to general n-periodic steady state solutions

with arbitrary numbers of impacts.

Nordmark [1991] developed further some of the observations made in the work

discussed above that discontinuities and discontinuities in gradient exist in impact

oscillators which use an instantaneous impact rule (such as the COR rule). Orbits

which just "graze" a stop (i.e. start to impact with zero velocity) were shown in this

paper to cause a loss of stability at a grazing bjfurcation. These bifurcations due to low

velocity impacts have been the subject of much interest from several authors in recent

years. Chillingworth [1989] has studied the geometry of the sets in phase and

parameter space which lead to orbits which graze the stop, and this work is continued

by Whiston [19921 in which homoclinic bifurcations due to the non-differentiable nature

of impact oscillators are studied in some depth. Nordmark [1992a & 1992b]

investigates these grazing phenomena further. One interesting development by

Nordmark is the approximation of the instantaneous impact rule by a continuous

function (with nonlinear stiffness which rises rapidly after impact). Here, a chaotic
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attractor with a typical " fingered " shape for COR impact oscillators, is more and more

closely approached as the stiffness at impact in the equivalent continuous model rises

more steeply. Budd et al [1993] also investigate grazing bifurcations for a one sided

COR impact oscillator as the position of the stop is varied.

1.1.2 Physical and Engineering Systems with Impacts

As well as the theoretical developments discussed above, many studies have highlighted

the practical physical and engineering problems which can be studied as impact

oscillators. Mechanical engineering provides many examples of systems with impacts

such as rattling gears [Karagiannis & Pfeiffer, 1991, Kahraman and Singh, 1990,

Pfeiffer & Kunert, 1990, Reithmeier, 1990], vibration absorbers [Sharif-Bakhtiar &

Shaw, 1988], car suspensions [Stennson et al 1992] and impact print hammers [Tung

& Shaw, 1988a, 1988b]. In these mechanical engineering examples of impact

oscillators, the primary problems caused by the successive impacts are noise and wear.

Another rich source of impact oscillator problems is the offshore engineering

environment. Work by Thompson and co-workers on the problem of a ship moored to

an articulated mooring tower, essentially an inverted pendulum with buoyancy,

undergoing wave driven oscillations was extensively studied [Thompson, 1983,

Thompson & Ghaffari, 1983, Thompson & Elvey, 1984, Thompson, Bokaian &

Ghaffari, 1984]. A similar problem, that of a ship moored against a fender, was

studied by Lean [1971], and more recently by Stemdorff et a! [1992]. Other offshore

impacting problems arise in the installation of a structure over a guiding "indexing"

system, discussed in more detail in chapter 5. Indexing systems can comprise of

bumper piles, which guide the structure into position [Nelson et a!, 1983, Stahl et al,

1983] or pile/sleeve arrangements [Robinson & Ramzan, 1988]. The effect of

earthquakes on various structures has motivated other studies of dynamical impact type

problems, for example, the responses of a slender block which rocks under external

excitation [Hogan, 1989, 1992a & 1992b, Tso & Wong, 1989]. Hogan uses similar

ideas to those of Shaw and others to obtain analytical solutions for an idealized

piecewise linear model of a slender rocking block, along with the stability of these

solutions, and extends these ideas in order to obtain expressions for the invariant
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manifolds of unstable solutions in order to find heteroclinic bifurcations. The

pounding w (i.e. collision) of nearby buildings under earthquake excitation is another

example [Jing & Young, 1990, 1991]. The electricity generating industry has also

produced impact oscillator problems, such as the cross flow induced impacting of heat

exchanger tubes [Paidoussis & Li, 1992].

1.1.3 Experimental impact oscillators

Several experimental studies of impact oscillators have been undertaken, designed to

show different aspects of the response of these systems. Again, Shaw and co-workers

have been active in this area [Moon & Shaw, 1983, Shaw, 1985, Moore & Shaw, 1990]

using a vibrating beam in the first two papers and a normal and inverted pendulum for

the third. In each case particular bifurcations were matched between theory and

experiment. Bayly and Virgin [1992] also found good agreement between experimental

results using a "rollercoaster" arrangement with a collision at a stop and a piecewise

linear impact oscillator model. Nordinark & Stennson [1992] used a sinusoidally

shaken mass/spring system with one sided impact and compared the results to a simple

linear COR model with very good agreement. Even experimentally obtained apparently

chaotic Poincaré maps were closely matched to numerical simulations of the theoretical

model in this study.

1.1.4 Outline of the thesis

It is apparent from the brief review of the literature concerning impact oscillators given

above that one of the interesting features of these systems is that they can undergo

"unusual" bifurcations. These grazing bifurcations cannot be understood using the

conventional theory of smooth bifurcations. The problem arises due to the idealised

rule which is often used to model the impact process, namely the coefficient of

restitution rule v-'-rv where v is the velocity at impact. The instantaneous nature of the

reversal of velocity leads to discontinuities and discontinuities in gradient in mappings

arising from the dynamical system.
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This thesis is largely concerned with the study of these grazing bifurcations. Other

work in similar subject areas has been taking place independently by Budd and co-

workers [Budd et a!, 1993], Nordmark [1991] and Whiston [1992]. The analytical

solutions which are developed in chapter 3 for simple orbits of an impact (i.e. those

orbits with low numbers of impacts) can be used to examine in detail grazing

bifurcation events. Both stable and unstable paths of steady state solutions can be

located analytically. We find that there can be two distinct types of "first grazing"

bifurcation, and there is a simple criterion for distinguishing between them. These first

grazing bifurcations in impact oscillators using the coefficient of restitution rule are

compared to the conventional bifurcations undergone by an impact oscillator where the

impact process is modelled with a continuous and differentiable function.

A particular problem of marine engineering which involves impacts in the installation

of a jacket structure over pre-installed piles is examined in chapter 5 in the light of the

ideas developed in earlier chapters concerning grazing bifurcations. It is found that

these bifurcations play an important part in the overall behaviour of the simple model

of the physical system. Experimental verification of grazing bifurcation events is

obtained in chapter 6. The experimental apparatus consists of an electromagnetically

forced steel beam with a one sided amplitude constraint imposed by a metal stop.
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1.2 Smooth dynamical systems

1.2.1 The Poincaré Section

Continuous time dynamical systems commonly arise from models of physical systems,

for example as the time evolution of a set of ordinary differential equations. The

simplest kind of limit set for this class of dynamical system is a fixed point, i.e. if we

start with initial conditions at a fixed point we will stay there for all time. In later

chapters we concentrate on forced dynamical systems, in which the time variable is

explicitly included in the right hand side of the set of differential equations which define

the dynamical system. In this case, we always have an equation, "1=1", which

immediately excludes the possibility of a fixed point (since one of the variables is

always increasing), and so other types of limit sets exist, for example a periodic orbit.

This is a solution which repeats exactly after some time T, the period of the limit cycle.

It is often convenient to reduce the continuous time problem to one of discrete time, and

also to reduce the dimension of the problem by one, using the method of Poincaré

sections.

Given a continuous time dynamical system =f(x), xE R", we define a Poincaré section

E E R" as a local n-I dimensional surface which is everywhere transverse to the flow.

Figure 1.1 shows such a surface in a three dimensional space. The heavy line in this

figure represents a periodic orbit of the flow, which intersects the surface at x. The

other, thinner line represents a transient orbit which first intersects at x, and then at

x2. It is clear that the device of a Poincaré section has given a mapping from E to E,

P say. So we have that P(x) =x and P(x1) =x2. We can see that any closed orbit of

the flow arising from the original set of differential equations will be a fixed point of

some degree of the map. It is also straightforward to show that there is a simple

relationship between the characteristic exponents of the closed orbit and the eigenvalues

of the fixed point of the map. The eigenvalues of the map are just the exponentials of

the characteristic exponents.

We exclude here the zero characterstic exponent in the flow direction.
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A frequently encountered class of continuous time dynamical system which can always

be reduced to a discrete time system with a "natural" Poincaré section is the

periodically forced oscillator. This is a set of differential equations of the form

1=f(x,t), where f(x,t)=f(x,t+T) for all x, and T is the period of the forcing. We can

see that a Poincaré section defined by ((x,y,O) . 0=4) where 0=t mod Tand t0E[O,TJ

will always be transverse to the flow (since 1=1). The map which takes points on the

section 0=r0 back on to this section is often called the stroboscopic Poincaré map since

it is using a time periodic sampling of the state of the dynamical system. In later

chapters we will always use this stroboscopic map in preference to other candidates.

The reason for this is that it is guaranteed to be transverse to the flow everywhere.

Other "natural" choices are often not everywhere transverse, and this can lead to some

confusing results. For example, Kleckza et a! [1992] analyse an oscillator with a

piecewise linear stiffness function and choose a section along one of the "switching

planes", i.e. at the displacement where one of the changes in stiffness occurs. They

observe a "period 3 to period 4" bifurcation in the switching plane map. There is no

corresponding bifurcation in the flow: the apparent bifurcation is due only to the "bad"

section (not everywhere transverse to the flow).
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1.2.2 Structural stability and co-dimension one bifurcations

Typically a dynamical system will have parameters which, when varied, can change the

overall dynamical behaviour of that system. At certain values of these parameters,

changes in the qualitative structure of the solutions can change, and these changes are

called bjfurcations. The definition of a bifurcation value (see for example

Guckenheimer & Holmes [1990]) is a parameter value at which the dynamical system

is not structurally stable (this can apply both to maps and flows). A precise definition

of structural stability can be found in (iuckenheimer and Holmes section 1.7.4, but

essentially a structurally stable system is one that retains its qualitative properties under

small perturbations. Restricting this definition to smooth maps, we can see that a fixed

point of a map will undergo a bifurcation when there is a direction just poised between

contraction and expansion, i.e. when one of the eigenvalues of the map linearised

around the fixed point is of unit modulus. An arbitrary perturbation to the map will

then have two possible outcomes. Examples of this in one dimensional maps are shown

in figures 1.2 and 1.3. The line ;=x,, (where f(x,.)) is shown dotted in both

cases along with three slightly different curves which represent the mapping from; to

x,,, with the parameters i<O, =O and p.>O. The middle line in these diagrams,

with u=O represents a bifurcating curve, i.e. one which has a fixed point at which the

slope of the curve has modulus one.

In figure 1.2 the slope of the bifurcating curve at the fixed point B is +1. The other

two curves represent perturbations of this bifurcating one, and it is seen that, depending

on the particular type of perturbation there are two distinct qualitative structures. The

lower curve has two more intersections with the line x=x 4 , than the higher curve, i.e.

the mapping represented by the higher curve has two more fixed points (the lower one

stable, with slope less than the x =x,., line, and the upper one unstable, with slope

greater than this line) than the mapping represented by the lower curve.

In figure 1.3a the slope of the bifurcating curve at the fixed point is -1. Again, the

other two curves represent perturbations of this bifurcating one and here it is seen that,

although the number of intersections with the line ; =xN+ , is the same for all three

curves. In fact there is only one intersection which is forced to be at the same point
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in each case. The fixed point in the higher curve (jL > C) is unstable (the slope of the

curve at the fixed point is greater than one in modulus) and the fixed point in the lower

curve (jL <C) is stable (the slope of the curve at the fixed point is less than one in

modulus). Figure 1 .3b shows the second iterate of the same map f2(x) against Xa

again for the three cases LL<ZO, L =O and In this case we can see that there is

only one (stable) fixed point for <0, but there are three fixed points off2 for >0,

two stable and one unstable. These two bifurcations are the saddle node or fold

bifurcation and flip bifurcation which we will go on to discuss in a following section.

In later chapters we will be concentrating on "unusual" bifurcations of maps derived by

taldng Poincaré sections through the vector field of a sinusoidally forced impact

oscillator. The essential feature which is the cause of the unusual bifurcational

behaviour of these maps is that they are non-smooth. Not only are there lines of

discontinuity of gradient, but along these lines there is a square root type singularity in

the derivative of the map (see section 3.6). From the definition given above, a

bifurcation can occur at parameter values at which a fixed point lies on a line of

discontinuity of gradient since the map can be structurally unstable along this line.

Before discussing the unusual bifurcations which occur in continuous but non-

differentiable mappings, we briefly discuss the generic bifurcations a one dimensional

mapping under the change of one parameter. We consider the smooth, one parameter

family of diffeomorphismsf(,x) (/L,x ER) for which f(0,x)=0 has a non-hyperbolic

fixed point at the origin, i.e.f(0,0)=0, IDxf(0,0)I =1 (a linear mapping is said to be

hyperbolic if it has no eigenvalues with modulus equal to unity). Taylor expanding

about (,x)=(O,O)
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f(jz,x) = DJ(O,O)x + D/(O,O)z +

1.1
.[DJ(O,O)x2 + 2D,J(O,O)jzx + D,,f(O,O)i2] + O([1a,x]3)

This can be written as a series expansion in x

f(jA,x)=a0+a1x+a2x2+a3x3+...

+ (b0 + b1x + b2x2 + ...)	 1.2

+ 2 (c0 + c1x + •..) +

where

a0 = f(O,O) , a 1 = Df(O,O) , a2 = DJ(O,O)

b0 = D/(O,O) , 1'l = D,t'(O,O)
	

1.3

= .DJ(O,O)

In order to find fixed points of f(u,x) we can look for g(jix)=f('1ti,x)-x=O. There are

two ways in which the mappingf can satisfy the condition that it be non-hyperbolic at

the origin, either by having an eigenvalue of +1 or -1. A higher dimensional map can

also lose hyperbolicity with a pair of complex conjugate eigenvalues with modulus one,

but we will not consider this case here.

1.2.3 The Saddle Node Bifurcation

Taking the first case, in which the eigenvalue Df(OO)= +1, we have the case shown

in figure 1.1 of a fold or saddle node bifurcation. The condition for a fixed point is

g(,x) O, which gives

g x) = a0 + b0 + /L2 c0 + ... +	

1.4
(a1 +b1 +... -1)x+(a2+b2+...)x2+...=O

Since we have that f(O, 0) = 0 and assuming that D,f(O, 0) ^ 0 then the Implicit Function
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Theorem implies the existence of a function jL(x) such that

g((x),x)	 0
	

1.5

over an interval xE (-f,E), € >0. Differentiating 1.5 with respect to x gives

D g(0,0) =
	 1.6

D1(0) - Dg(0,0)
I'

and differentiating with respect to x a second time gives

D,, (0) = - Dg(O, 0) = - Dj(O,O)
________	 ________	 1.7
Dg(0,0)	 Dj(0,0)

Further assuming that

Df(O,O) > 0	 ,	 Dj(0,O) > 0	 1.8

then equation 1.6 gives that the function jq'x) has a turning point at x=0, and 1.7 with

1.8 gives the further information that this turning point is a maximum. The function

f(j&,x) therefore has two fixed points for u <0, one with x> 0 and one with x <0.

Taylor expanding again

DJ'(x,L) = DJ(O,0) + xDJ(O,O) + z D,1/(O,0) +	
1.9

= 1 + xDJ(0,0) +

using the fact that = 0(x2) for -e <x < e. The fixed points with x> 0 are therefore

unstable and those with x<0 are stable, using 1.8, as illustrated in figure 1.1.

1.2.4 The Flip Bifurcation

The other way in which the mapf can become non-hyperbolic is for the eigenvalue of

the fixed point at the origin DJ(0,0)=-1. In this case we simplify the analysis of the

bifurcation by assuming that a further transformation has been performed so that the

fixed point is always at zero, i.e. f4i 3 O)=0 for all . So we again have the Taylor

series expansion equation 1.2 where the terms a0=b0=c0=... =0. We consider the case

where the change of stability of the period one path f(,0)=0 at ti=0 is from stable

with <0 to unstable with >0. This means that b, <0. Since, with >0, the period
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one path is unstable, we look for further solutions in the mappingf 2(4u,x). The leading

terms of the Taylor expansion forf2 are

f 2(JL,x) = x(1 - 2ib1) - 2(a2 + a3)x3 + ...	 1.10

and so the condition for a period two fixed point is that the function h(/L,x)=f2(,x)-

x=O. That is,

x[-2j.b1 - 2(a + a3)xl = 0	 1.11

So we see that we recover the path x=O (which we already know to be an unstable

period one fixed point off, and is therefore also a fixed point off 2), and another two

solutions

x2 = 
-______	 1.12
a + a3

Since we have already assumed that b1 <0, the sign of a+a3 controls the type of

bifurcation at = 0. If a+ a3 > 0 then there are two fixed points of f2 for &> 0, and

if a22+a3 <0 there are two fixed points off2 for <0. These are the supercritical and

subcritical flip bifurcations respectively. Examining the stability of the period two

solutions arising from these two types of flip bifurcation we see that the first differential

with respect to x of the Taylor series expansion of f2 is given by D/2(',x) = 1 +4gb,.

The supercritical bifurcation gives rise to a period two solution for z >0, and so this

solution is stable. The subcritical bifurcation gives rise to a period two solution for

p<O, and so this is unstable.

1.3.1 Non-smooth dynamical systems

Although some of the "classical" chaotic mappings which have been studied are non-

differentiable, for example the tent map and the Lozi map, the bifurcations which occur

in these maps have not been widely studied. Nusse & Yorke [19921 did investigate

some of the types of bifurcation which can arise in piecewise smooth maps, and called

them border collision bifurcations. In order to demonstrate the kinds of unusual

bifurcational behaviour which can occur when a mapping is continuous but not

differentiable some examples from Nusse & Yorke are given below. The general form
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a
X1

A.
y1

ii	 xi

= Yi

ab
,A=

cO
1.14

1
a

a
X2

B.
Y2

db
,B=

eO

of the mapping studied is

= a; + by

y,1+1 = cx,1

= dx + by

= ex1

XI. <0

+tL

X ^ 0

1.13

Nusse and Yorke derive this form from any general piecewise smooth nonlinear

mapping. The map is smooth in each of the half planes x <0, ; ^ 0 and is continuous

along the line x=O. The types of bifurcation which can occur in this class of

dynamical system are very unusual when compared to the bifurcations of smooth maps

of the plane onto itself (such as those discussed above). For example, if a=-1.4, b=1,

c=-O. 1, d=-3, e=-4 then a numerical investigation shows that there is a bifurcation

when z=O in which a stable periodic orbit of period 2 disappears and a stable period

3 orbit appears (figure 1.4). Using simple linear algebra it is easy to find the steady

state solutions of this system. A systematic procedure can be used to test any possible

steady state solutions of the mapping. We start off with the possible period 1 fixed

points. These are solutions of the equations

Solving these equations we get that (x,,y,) = (2p./5,-4u/25), (x2 ,y2 ) =(tz/8,-pJ2). Since,

for the solutions to be valid, x, must be less than zero and x 2 must be greater than zero

then the solution (x,,y,) is a period one solution only for z <0 and the solution (x,y2')

is a period one solution only for >0. The eigenvalues of the matrices A and B give

the stability characteristics of these period one solutions. The matrix A has eigenvalues

(-7±V39)I1O and so is a saddle type solution and the matrix B has eigenvalues

(-3±iV7)/2 and so is a repellor. A similar process can be used to find a period two
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solution by solving

	

X3 I	 1X3	
1.15

	

B [A [ •
1	

(')J +()
•I +	 I .1

	

Y3J	 1J
to give (x3",y3")=(761ti/65,3 1 /13O), and by noting also that

B(x3 ,y3")+=(-31il13,-2/13) we see that this period two solution is only valid for

i <0. The stability characteristics of this period two fixed point can be found by

computing the eigenvalues of the matrix AB. In this case the eigenvalues are

(1±IV'159)/20, both less than one in modulus, and so the period two fixed point is

stable (figure 1.4). There are two possibilities for period three fixed points which can

be found by solving

B[B[

I

1x4 I

()J +	 + (
I)	 1X4 I

Al .1 +jL
=	

SI

Iy4 
J

1.16

A[A[ I 

.'I I •'l
1x5 I1 x5 I

()J +	 + ()
B 1 .1 +iL = I .1

The solutions to these two equations are (x4 ,y4 ) = (l334u/8S,/88) and

(Xs",Ys") = (-7Oil27,-124J1/27). Full investigation shows that both are true solutions as

long as > 0. The eigenvalues of the matrix AAB, which give the stability

characteristics of the period three fixed point (x4 ,y4 ) are (2±iV'21)/25, i.e. it is a stable

fixed point since both eigenvalues are less than one in modulus. The eigenvalues of

BBA, which give the stability characteristics of the other period three fixed point

are (53±3V241)/20. In this case, one eigenvalue is greater and one less than

one in modulus, so the fixed point is a saddle. We now have a fairly comprehensive

picture of what is going on in the apparent "period two to period three" bifurcation.

When the parameter <0 there are two fixed points, one stable period two and one

period one saddle. At the critical, bifurcation value u=0 both of these solutions

disappear, and three new solutions valid for u >0 are created. Two of these are period

three solutions, one stable and one saddle type, and there is also a period one repellor.

Nusse and Yorke in their paper did not find the unstable periodic solutions as well as

the stable ones. We have given here a complete picture including all periodic orbits up
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to period three, and make the point that if we have a map which is continuous but not

differentiable then we are no longer limited to the familiar bifurcations of smooth maps.

The next example shows a bifurcation from a stable period one solution to an apparently

chaotic solution as the fixed point crosses the discontinuity in gradient.

Consider again equation 1.13, this time with a=1/2, b=1/2, c=1/2, d=-3, e=1/4.

In this case, numerical investigation shows that for i <0 there is a stable period one

fixed point of the map. As increases through 0 a chaotic solution is created which

grows out from the bifurcation point with no period doubling sequence of bifurcations,

see figure 1.4. Again, we can use the systematic procedure described above to look for

periodic solutions of the piecewise linear map. One period one solution is given by

(x,y)=(4i,2j), valid when <0. The stability of this fixed point is given by the

eigenvalues of A, i.e. (1 ±V'5)/4, so the fixed point is stable. Another period one fixed

point is given by (x,y) = (8/31,2/31), valid when > 0. The stability of this fixed point

is given by the eigenvalues of B, i.e. (-6±'/38)14, so the fixed point is of saddle type,

with one stable and one unstable direction. If we look for further periodic fixed points,

we fmd one of order two, none of order three, and one of order four. Both of these

are valid only for >0 and are of saddle type, and both only visit the left hand side of

the plane once. The positions of these fixed points in the left hand plane are

(-68/69,1OjzI69), with eigenvalues (-9±v'73)/16, for the period two and

(-1 4892I78 19,1 894 jz/78 19), with eigenvalues (-669 ±V'447553)I 128, for the period

four fixed point. Of course there will be many more, higher periodic orbits, which

could be found in the same systematic way.

If we change the linear map for the right hand half plane in the example above such that

d=-1, then the period one fixed point for <0 is clearly identical. For p>O, there is

still a period one saddle, (x,y) = (8c/15,2u/15) with elgenvalues (-2±V6)14, but there

is a stable period two orbit valid for >0 (see figure 1.6). This orbit visits both sides

once (as it must). Its position in the left half plane is (x,y)=(-4/37,104a/37) and in the

right hand half plane (x,y)= (40j /37,-2,1/37). The eigenvalues of this period two fixed

point are (-1 ±iV'7)/16, both less than one in modulus, so this is a stable orbit. So we

have what appears to be a similar event to the supercritical flip bifurcation described

above. A stable period one fixed point disappears at a critical parameter with the
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formation of a saddle type period one fixed point and a stable period two fixed point

growing out of the bifurcation point. The characteristic shape of the stable period two

orbit growing out from a supercritical flip bifurcation (the shape is a quadratic with

respect to the parameter) is clearly not replicated in this piecewise linear example

though. The only possibility here is that the period two orbit grows out at a constant

angle, dependent on the precise linear mappings in the left and right hand half planes.

All of these examples serve to show that we should not be too surprised in the later

work on bifurcations in impact oscillators when bifurcations occur in continuous, non-

differentiable maps, which cannot be classified using bifurcation theory for smooth

maps. The bifurcations which occur in this special class of map have not been very

deeply investigated. Nusse and Yorke did demonstrate a whole variety of the kinds of

bifurcations which can occur, but they did not present anything like the simple,

systematic procedure for finding orbits of a particular period described above.

1.3.2 Piecewise linear maps with a large direction of expansion

In this section we will look at a particular case of a border collision bifurcation in

which the linear map in the right half plane has a large direction of expansion. This

will be seen to be of relevance later on when we look at grazing bifurcations in impact

oscillators, where there is a square root singularity in gradient.

Period one solutions of the piecewise linear mapping, equation 1.13, are found by

solving equation 1.14, where A is the linear map in the left hand side of the plane

(x <C) and B is the linear map in the right hand side of the plane (x> C). Assume that

the mappings in both the right and left hand sides of the plane are orientation preserving

and dissipative, i.e. the determinants of A and B are between zero and one. Further

assume that A is such that both eigenvalues are less than one in modulus and the

resulting stable, period one fixed point exists for <0. If we put d= 11€, where

and det(B)=f then we have that be=-3, and the eigenvalues of B are

€+O(€). Solving equation 1.14 for x2 and Y2 we obtain x2=-i/E+O('E), y2=ex2'.

This period one fixed point can only exist if x1 >O. Therefore, if E>O we must have

that L <0 and if <0 then p >0. In other words, if € >0 then an orientation preserving

period one saddle exists for <0 along with the stable period one fixed point which we
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assume to exist from the outset. Both stable and unstable fixed period one fixed points

disappear at JL = 0, (xy) = (00). Otherwise, if <0 then an orientation reversing (flip)

period one saddle exists for >0. In this case, the stable fixed point which we have

assumed to exist for i<0 disappears at u=O, (x,y)(0,0) and a saddle is "created at

this point.
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(a) f(p,x)

(b)

x

x

it<O

I.L=O

IL>O

Figure 1.3 The flip bifurcation. The first and second iterates of
three maps are shown in figures (a) and (b) respectively. In
each case there is a fixed point of f at x-O, stable for p<O,
neutrally stable for -O and unstable for ii>O.
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2. Numerical Methods

2.1 Path following methods

One of the most common numerical procedures which is used in the analysis of

nonlinear dynamical systems is the location and continuation of an asymptotic solution

of a system as a parameter varies. Some of the numerical examples in later chapters

use these techniques, generally known as continuation methods or path following

methods. The general problem can be stated as solving

f(x ; z) = 0 , f: R' m-.R" , x E R , E ]Rm	
2.1

c(x;) = 0 , c:Rm.Rk

where x is some set of state variables, j. is a set of parameters and c(x;i) is an optional

extra set of constraint equations (which could be used for example to find the location

of a bifurcation), and both land c are smooth functions (i.e. differentiable as many

times as we will need in the following). If there are no constraints and no parameters,

i.e. m=O, then the problem is just one of conventional root finding. The Newton

method for determining roots can be derived by a Taylor expansion of the function and

its derivative about a root, x

f(x + &) = f(x ) + Df(x) ix + O(&r2)	

2.2
D f(x + &) = D f(x •) + O(&)

Given a guess x1 =x+& then the next guess x 4., is given by correcting x1 by & where

& is given by solving the set of linear equations

f(x1) = f(x ) + D,f(x ) x + O(x2) = DJ( 1) & + ...	 2.3

The n-dimensional Newton root finding algorithm is then given by the iterative

procedure

xI+I = XI - i3x
	

2.4

For a unique solution to the linear set of equations given by 2.3 the matrix of first

derivatives at x must be of full rank. If this matrix is rank deficient by
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one then the correction & is not unique. In the linearized system there is a line of

solutions along the direction of the eigenvector corresponding to the zero eigenvalue.

Having discussed the familiar Newton method we now go on to extend it to not only

find solutions of f(x;)=0 (possibly with further constraints c(x;i)=C), but also to

follow solutions as system parameters are varied. The standard Newton method locates

zero dimensional (isolated point) solutions of f(x)=O as long as the matrix of first

derivatives is of full rank (and the initial guess is close enough to a root). If we form

a new function g

g(v) 
= () 

,g:R m ^R* ,	 2.5

then the matrix of first differentials of g at a point v where g(v)=0 generically has

rank n+k if m^k (i.e. maximum rank). If m-k=0 the problem isjust the one of root

finding discussed above, but if m-k=1 then the implicit function theorem gives us that

there exists an open interval 1 around zero such that for a El there is a function

A(a):R-'R"m such that X(0)= ye, g(?(a)) =0, X '(a) ^ 0. Differentiating gq'a)) =Ogives

g'(X(cr))X'(a)=O, so the tangent to the curve X spans the one dimensional kernel of g.

Figure 2.1 illustrates a simple case where g:R'-.R, is an arbitrary line passing through

v" and both X =g' (0) and 'y are parameterised by cx in such a way that X(0) =7(0) = v.

This line X is precisely the path which we want to find with a path following algorithm.

The use we will have for these techniques is to locate the solution of a set of equations

and then to follow it as a single parameter varies, or to follow a bifurcation as two

parameters vary.

Given a function g as defined in equation 2.5 with m-k=1, and a root of g, v", then the

aim of a path following algorithm is to continue this solution, i.e. find another nearby

point along the one dimensional path of solutions for g(v)=0. First, a step in a

direction tangent to the path at a known root v (or some approximation to that tangent)

gives an initial guess for the next point on the path of solutions g(v)=0. There are

several ways in which, given a guess for a new point on the solution path we can

develop an iterative procedure based on Newton's method to locate a nearby solution,

see figure 2.2. Perhaps the simplest is to simply "ignore" one of the directions

altogether, i.e. choose an n +k dimensional set of basis vectors along coordinate
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directions, and use a standard Newton root finding algorithm. In general, nearby there

will be a unique isolated point solution to g(v)=O in this n+k dimensional space, see

figure 2.2a. A problem arises with this method if the same coordinate direction is

always ignored. If the solution curve has a turning point in this direction then at some

point a step will take the hypersurface past the turning point and there will be no roots

in the n +k dimensional space for the Newton method to find. This problem can be

overcome by varying the direction to ignore, for example, choose the ignored direction

to be the one which was changing most at the previous step.

A similar idea is again to restrict the Newton algorithm to an n+k dimensional space,

but this time to use a set of basis vectors which span the space which is perpendicular

to the direction tangent to the path at the last found point, see figure 2.2b. In this case,

for small enough step sizes, there will in general be a unique root of g(v) nearby.

Both of the above approaches are based on a similar idea: the overdetermined problem

is reduced to conventional Newton Raphson (with as many equations as unknowns) by

restricting the Newton search to a co-dimension one subspace. A different approach

which can be used is to solve the overdetermined set of equations at each step to give

a line of (approximate) roots and then to make some necessarily arbitrary choice of a

point on this line as the next guess. The derivation of the conventional Newton method

given above still holds even if there are more unknowns than equations, e.g. if m-k=1.

In exactly the same way we can write

= v -
	 2.6

where

g(v,) = D,g(v1) ôv + ...	 2.7

The solution of this set of linear equations is easily obtained using the singular value

decomposition technique (SVD) [Golub & Van Loan 1989, Press et al 1988], which

decomposes any matrix A into U,S, V where U, V are orthonormal matrices and S is

diagonal such that A = US VT. The positive real values s on the diagonal of S are called

the singular values. SVD explicitly constructs an orthonormal basis for the range and

nullspace of A. The columns of U which are associated with non-zero singular values

- 35 -



form a basis for the range of A. The columns of V which are associated with zero

singular values form a basis for the null space of A. We can use these ideas to solve

the overdetermined set of equations, 2.8. If we pad the matrix of first differentials

D,g(v) with a row of zeros to make it square and pad the corresponding row of the right

hand side of the equation also with zeros then we have a square matrix (with no more

or less information than before), i.e. as many equations as unknowns. The trivial

equation which has been added will inevitably lead to a zero (or in practice very close

to zero) singular value. We want to single out a solution from the one dimensional set

of general solutions given by a particular solution vector plus any vector in the (one

dimensional) null space. The "best" solution is the one of 6hortest length, i.e. the

correction vector we want to choose is the one which drops a perpendicular line onto

the approximation to the path (see figure 2.2c). This is achieved using the usual "trick"

for inverting singular matrices with SVD : we replace us, by zero if s=O. Then the

solution is given by

'v	

vEd.	

111_i
=	 1aJJ (uT (&n) J]

	
2.8

where the matrix D('v), padded with a row of zeros in the (n+1)th row has been

decomposed into USVT using SVD. To show that the solution given by equation 2.8

has the shortest length 5v I ' we consider the vector 5v+z, where z is in the nulispace

of the padded matrix of first differentials. Then

I a v + z = VS 1 U 
T((lfl)) + 

Z

= v (s_i uT (8n)) +
	 2.9

= SUT '1 + VTz
1°)

using the orthonormality of V for the second and third equalities. Now looking at the

two terms on the right hand side, the first one is a vector with non-zero components in

the i'th position only when s ^ 0 and the second is a vector with non-zero components

in the i'th position only when s1 =O. Any non-zero vector z can only therefore increase

the length of the vector Iav+zI.
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Further information is yielded by SVD concerning the tangent to the path at the

particular solution : this is just the column of V corresponding to the zero singular

value. Other path following methods will typically use a fmite difference approximation

for the tangent of the path, but using SVD we actually compute a tangent as a by

product of solving the set of linear equations given by the Newton algorithm 2.7.

2.1.1 Fixed points of autonomous vector fields

A direct application of the above techniques can be used to find fixed points of
autonomous vector fields x=F(x,) where xER", 11ER, F:R'-'R. Since fixed

points of a vector field are given by 2=F(x,p)=O, we can just use F as the equivalent

of g in equation 2.7 above. If we have F explicitly we can also explicitly calculate the

matrix of first differentials necessary for the Newton root finding algorithm.

2.1.2 Fixed points of maps

In order to locate fixed points of a mapping x^1=P(x,,,) we reformulate the problem

to reduce it to one of root finding by defining a residual map R(x;u) =P(x;u)-x. If 1

is a fixed point of the mapping P at a parameter set p', then clearly R(x;)=O. The

path following techniques described above can then be used directly on R (R is directly

equivalent to the g used in equation 2.7).

2.1.3 The variational method

So far the path following methods discussed have been presented in theoretical terms

with no discussion of their practical implementation. An essential requirement of any

Newton type root finding algorithm is the first differential matrix of the function whose

roots are to be found. In the common case where we are trying to follow the path of

a fixed point of the mapping P, where P is not explicitly available because it arises

from taldng a Poincaré section of a vector field, then we need some way of

approximating the matrix of first differentials. In particular we will consider the case

of a periodically forced set of o.d.e.'s with our map P defined by taking the

stroboscopic Poincaré section t mod T= 0, where T is the period of the forcing and:
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the time variable. The elements of the matrix of first differentials could be computed

easily by simple finite difference approximations. A more accurate and efficient way

is to use the variational method to compute the matrix of first differentials directly.

Using the notation introduced above where v= (x,jh) we have

' =f(v;t)
	

2.10

Differentiating with respect to a set of initial conditions v0 we have

= D f(v;t)
V.

2.11
i.e.	 .._D,V = D,f(v;t)Dv

dt

Then setting

V=Dv
	

2.12

we have a set of equations for the elements of the first differential matrix with respect

to a set of initial conditions

V = DJ'(v,t) V
	

2.13

This set of equations can be numerically integrated along with the original set of first

order o.d.e.'s. Starting with initial conditions t=O, v=v0 and integrating the equations

given by 2.10 and 2.13 for one period until t=T we obtain the image under the

stroboscopic Poincaré map from 2.10 and the matrix of first differentials from 2.13.
V is an (n+k) x (n+m) matrix of the first differentials of v at time I with respect to
initial conditions v0. To integrate 2.13 we use initial conditions V=0 if i^j, 1'1
if i=j.

2.1.4 Following bifurcations

The path following methods described above can be used directly to locate fixed points

of a map (and by finding the eigenvalues of the matrix of first differentials, the stability

of the fixed points) and following them under the variation of one system parameter.

By adding an extra constraint to the set of equations, it is possible for the parameter

value at which a bifurcation occurs to be located, and followed. Since we have had to

add one constraint, a one dimensional path can be found by allowing an extra parameter

to vary. For example, we might follow a period one solution of a map as a parameter
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corresponding to the frequency is varied and find that at a particular frequency w, there

is a saddle node bifurcation. We could then follow the path of that bifurcation as both

frequency and another parameter, corresponding say to the amplitude of forcing, are

varied. All that is required is to add a suitable constraint equation., for example, for

the saddle node bifurcation

c(x,z) = det(D;P(x) - 1)

which is zero when the matrix of first differentials of the map F', DJ(x), has an

eigenvalue of +1.
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2.2 Location of basins of attraction

In this section we discuss ways in which we can locate the basins of attraction for the

various asymptotic steady state solutions of a dynamical system. Recently there has

been much interest in the concept of "safe basins" of attraction. In real world

dynamical systems, where a physical system is operating in a noisy environment, the

classical notions of stability are insufficient to guarantee that the operating conditions

are safe. For example, Thompson et al [1990] propose a criterion for ship stability

based on the size of the basin area which does not lead to eventual failure. This safe

area can be rapidly eroded by incursive fractal "fingers", leading eventually to a

situation in which, although there is a stable solution for the system to settle onto,

almost any initial condition will lead to failure (i.e. capsize of the ship).

We will restrict ourselves to the discussion of the location of the basins of attraction of

a two dimensional map P, for example a Poincaré section through a three dimensional

flow. A robust approach to locating the basins and their boundaries is to take a grid

of starts and iterate each forwards until a steady state behaviour is approximately

realised. As the number of points is increased the location of the basin boundaries

become better approximated. The computational effort required can soon become

restrictive though, especially if working on a microcomputer. The method of cell to cell

mapping [Hsu, 1987] for the location of attractors and their basins is ideally suited to

the microcomputing environment, and gives a large improvement in efficiency over the

'integration of a grid of points' method.

An area of the Poincaré section is divided into small cells. The essential assumption

made is that whole cells map to whole cells. Thus given a starting cell C1 , the centre

of which maps under P to somewhere in C2 , we assume that we can continue by

mapping the centre of C2 to a point in a cell C3, where we again re-centre before

continuing. We proceed in this way until the string of cells settles on to 'an attractor',

that is until a sequence of cells is visited repeatedly in order. The underlying

assumption that all points within one cell map to one other cell then implies that all

points in all cells in the string settling onto the attractor will themselves converge to that

same attractor.
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Initially all of the cells are labelled [E] for 'empty'. A starting cell is chosen and

labelled [U] for 'under process'. A string of cells is generated as described above by

mapping forward the centres of the cells encountered. Each time a new cell labelled [E]

is encountered it is re-labelled [UI. When the string lands on a cell already labelled [U]

then a limit cycle has been reached. The number of steps taken for this cell to be

reached again determines the order of the attractor. Each of the cells in this attracting

cycle are labelled as [Al] for 'attractor 1' and the labels of the remaining cells in the

string are changed from [U]to [Bi] for 'basin 1'. This finishes the processing of this

string (see figure 2.3). Now a new cell labelled [E] is chosen and the process continues

as before. Any string which now lands on a cell labelled [Al] or [Bl] is labelled [Bl]

since it will eventually map onto the attracting cycle [Al]. New attractors are labelled

[A2] , [A3] ,... and their basins labelled [B2] , [B3] .....This process is continued

until there are no more cells labelled [U].

This algorithm can be seen to be very efficient as compared to a grid of starts by noting

that each cell need only be mapped forwards once. With a grid of starts each point

might be mapped forwards a large number of times, N say. The computational effort

required for cell to cell mapping is decreased by a factor of N. Furthermore, there is

no guarantee that even after N iterations convergence will have been reached.

The cell to cell mapping method is particularly well suited to a microcomputing

environment where it is possible to use the screen graphics as memory storage. A cell

is identified with a single screen pixel, with the labelling achieved by using different

screen colours.

Several problems can arise using this algorithm. If the convergence to an attractor is

slow it is possible for two or more labels to be assigned to the same underlying

attractor. Repellors and saddles may also be labelled as attractors if the divergence is

low or if the fixed point lies near the centre of the cell. If there is a chaotic attractor

it will be labelled as a high order attracting cycle, since eventually some cell will be

revisited. These problems can be avoided by modifying the algorithm slightly. Once an

attracting cell cycle is located, processing is continued without re-centring. In this way

the true nature of the underlying attractor, if any, can be deduced.
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(b) Search perfc
perpendicular tc
from last two p

p2

(a) Search performed in subspace
perpendicular to a coordinate diiection

(c) SVD used to approximate tangent t
path. Next guess is obtained by finding
shortest distance from previous guess to
this tangent.

Figure 2.2 Three strategies for path following. In each case p 1 and p2 are
previously located points on the path and g is the linear extrapolation "next guess".
In (a) and (b) the Newton search is restricted to a two dimensional subspace

perpendicular to a coordinate direction or the tangent direction respectively.
In (c) SVD is used to locate an approximate tangent to the path onto which a
perpendicular from g is dropped. The new point on the path is p3.
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3. Impact Oscillators

3.1 Introduction

The mathematical modelling of dynamical systems involving impacts comprises of two

parts : the modelling of the system away from the impact and the modelling of the

impact process itself. In this chapter, we will concentrate on the second part, the

impact process. Between impacts we will use a simple linear stiffness and damping

model since this is sufficient to give all of the interesting behaviour which is found to

occur in impact oscillators, described in this chapter and the next. Any system which

undergoes sudden impacts at rigid stops will however clearly have two distinct regimes,

one between impacts and one during impact. Nonlinearities are therefore inherent in

models of impact oscillators. In this chapter we first examine some ways of modelling

the impact process. We then go on to investigate one particular model in more detail,

using the coefficient of restitution rule which is the simplest and most easy to apply

impact model. Technical difficulties with this model involving discontinuities caused

by it are highlighted and their consequences to the overall dynamical behaviour of the

impacting system discussed. One of the advantages of using such a simple model is that

much of the dynamical behaviour can be deduced analytically, and these techniques are

shown.

3.2 Impact models

In the sections which follow, we describe three different ways in which the impact

process can be modelled in an impact oscillator. The emphasis here is on modelling

the impact process itself so away from impact, in each case, the dynamical system

comprises of just the linearly damped, linear stiffness, sinusoidally forced oscillator

described by the second order ordinary differential equation

..t +d +	 = acos(c,t)	 ,x<a	 3.1

which is valid when the displacement x <a, where x=a is the position of the stop. In

equation 3.1 an overdot represents differentiation with respect to the time t, d is the

linear damping coefficient, a the amplitude of the forcing function and w the forcing
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frequency. In almost all cases, one more system parameter can be eliminated from the

above by rescaling the displacement, x, so as the stop is at x = 1. This does rule out the

special case of x=O, so we will use the above form. In equation 3.1 we assume that

time and displacement have been rescaled in order to scale to one any mass or stiffness

terms. We also note that variation of the forcing amplitude a is directly equivalent

(after rescaling) to adjusting the position of the stop. A further rescaling of x by

putting x-ax in equation 3.1 gives the exactly the same linear oscillator with the stop

at a/a, i.e. increasing the amplitude of the forcing by some factor is equivalent to

moving the stop closer to the equilibrium position by the same factor. For x ^ a one

of the following impact models is applied, giving overall a model of a one sided impact

oscillator with a stop at x=a.

3.21 Coefficient of restitution (COR) impact model

The coefficient of restitution impact rule (COR) is the simplest to apply in practice and

for impacts between hard surfaces, where the impact process takes a small amount of

time compared with the time between impacts, can prove effective. In addition to

equation 3.1, when the displacement x reaches the position of the stop x=a the rule

x--ri	 ,x=a	 3.2

is applied, where the coefficient of restitution, r lies in the range O<r^1. This

coefficient, r, is determined empirically for the impact between two surfaces of

different material properties. After the rule 3.2 has been applied then the linear

oscillator 3.1 takes over again. This rule models two aspects of the impact process.

Firstly, the direction of the velocity i is reversed and secondly some (kinetic) energy

is lost in the process since if r< I the size of the velocity is reduced at impact. The

impact process is modelled here as taldng place instantaneously. Whilst this is clearly

never going to be completely true of any physical impact process, if the time between

impacts is long with respect to the time taken for the impact process to occur then the

coefficient of restitution rule acts as a reasonable model. Goldsmith [1960] gives some

typical values for r for various materials. For example for a baseball against wood

r 0.43 ; for an one inch steel sphere against a cast iron plate r varies between 0.7 and

0.9 depending on the velocity of impact. We will always assume however that r is
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independent of the velocity at impact. The instantaneous reversal of velocity can cause

problems when it comes to the more detailed study of the dynamical behaviour of the

impact oscillator with a coefficient of restitution impact rule. Clearly this rule is

discontinuous in velocity, whereas many of the tools of dynamical systems theory [e.g.

Guckenheimer & Holmes, 1990, Thompson & Stewart, 1986] require continuity, and

often differentiability to some degree in order to be applied. The consequences of these

discontinuities, and further discontinuities in gradient which are caused by this

instantaneous impact rule are discussed in subsequent sections. One of the advantages

of having such a simple instantaneous impact rule is that, when used in conjunction with

a simple linear oscillator away from impacts, much analysis can be performed on the

system. Methods for locating simple steady state periodic orbits, their stability

characteristics and some bifurcations will be described in later sections.

3.2.2 Hertz impact law

The Hertz impact law [Goldsmith, 1960], which describes the force/deformation

relationship between two locally spherical bodies is given byf=k(x-af, wheref is the

force between the two bodies which are impacting at displacement x=a. This impact

rule has been used in several structural dynamics problems as a reasonable model for

the impact process [Jing & Young, 1990,1991, Tso & Wong, 1989, Davis 1992].

Combining this impact law with equation 3.1 in such a way as to retain continuity we

obtain

+ di + x + k(x-a)3 = acos(cat)	 , x^a	 3.3

where all parameters are as before, and k relates to the particular material properties

of the impacting surfaces. Equations 3.1 and 3.3 then make up a one sided Hertz law

impact oscillator. The stiffness function in equation 3.3, s, is shown in figure 3.1(a)

and the integral with respect to x of this stiffness function, p. which represents the

potential energy function of this system is shown in figure 3.1(b).

S = x+k(x-a)3
	

3.4

It can be seen that the force exerted after impact rapidly grows to oppose the motion.

In contrast to the coefficient of restitution rule, the impact process in this case will not
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p = Js dx 
=	

+ .(x_a)5I2	 3.5

be instantaneous the time spent in the impact regime will depend on the size of the

parameter k and the velocity at which the impact process takes place. There is however

no specific energy loss mechanism included in this impact law. The only way that

energy will be lost during impact is through the usual linear damping. The equation

3.3 does however describe a continuous and differentiable vector field, which means

that the tools of dynamical systems theory can far more readily be applied to this

model. The main use we will have for this model later on will be as a 'close' (in some

sense), continuous and differentiable system with which to compare the bifurcational

behaviour of the COR model.

3.2.3 Piecewise linear stiffness

After the COR model, perhaps the simplest way of modelling the impact process is to

regard the stop at which the impact takes place as a very stiff spring. In this case,

when equation 3.1 describes the behaviour away from impact, the complete system is

described by the equation

+ dx + ic(x) = acos(cit)

3.6
ic(x) -{+k,-	 (x-a) , x^a

where k, is the stiffness after impact. The stiffness function ,q'x) is shown in figure

3.2(a) and the integral with respect to the displacement, x, of this function which

represents the potential energy function of this system is shown in figure 3.2(b). As

with the Hertz law model, the force exerted during the impact process grows rapidly

to oppose the motion. Also, as with the Hertz law model, the linear damping is the

only mechanism for energy loss. Although this impact model has a continuous vector

field, it is not differentiable along the line x=a. The piecewise linear stiffness model

is included here for completeness and since many case studies of systems with impacts

have used it. Shaw and Holmes [1983] showed that as k,-'oo the time taken in the

impact region x> a tends to zero and, if the velocity immediately before impact is Yo
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then the velocity immediately after impact tends to Yo' i.e. as the stiffness after impact

tends to infinity the piecewise linear impact rule behaves like the COR rule with

coefficient of restitution 1.

*
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3.3 Numerical solution of the COR model

The COR model comprising equations 3.1 and 3.2 is governed by the simple linear

o.d.e. with sinusoidal forcing 3.1. The numerical solution of this system away from

the stop could be achieved by simple numerical integration, for example a variable step

size Runge Kutta routine [Press et a!, 1991]. The impact rule must be applied when

an orbit reaches the stop x=a, so an additional check must be made at each step of the

time integration to inspect the value of x. If this value is greater than a, then either the

method of Hénon [1982] , or a root finding method must be used in order to evaluate

the time and velocity at which the impact occurs. The coefficient of restitution rule,

equation 3.2, can then be applied and the integration continued. However, due to its

linear nature, the general solution to equation 3.1 is available (see equations 3.21 &

3.22). A set of initial conditions (x,2,t) = (X,,y1,tj) define the two constants of integration

which then completely define the evolution of the system in time. The solution

obtained in this way, valid only until an impact occurs, is allowed to evolve in time by

stepping gradually until it is detected that an impact has occurred, x> a. A root finding

routine is then used to locate the time at which the displacement x=a. A good root

finding algorithm to use here is Newton-Raphson, which can be applied without any

need for further differentiation since expressions for x(t) and .('t) are already available.

The Newton algorithm requires iteration of t^,=t,,-(x(t,)-a)/.t(t,). This scheme has

quadratic convergence, and so we have an efficient method for very accurately locating

the time, and through this the velocity, of the impact. After the impact rule is applied

there are a new set of initial conditions which define two new constants of integration.

This new solution can again be stepped through gradually until another impact is

detected, where the process is repeated. Since no errors accumulate in the time

stepping part of this numerical scheme, the only place where errors can occur are in the

root finding routine, and this quickly converges to any desired accuracy. There are two

additional sources of possible error in this scheme. If the time step is too large to

capture a low velocity impact then the important bifurcational events which will be

shown to result from low velocity impacts will be missed. This is not too much of a

problem since the if a parameter of the system is changed slightly the numerical scheme

will detect a low velocity impact, so the bifurcation will just have been slightly shifted

in parameter space. The other source of error in this numerical scheme is the
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possibility that there can be an infinite number of impacts with decreasing velocity in

a finite period of time leading to a "sticking" condition, where the displacement is

constant (at the stop) for some time before falling off again. As long as neither of these

events happen then this gives a very simple to implement and accurate scheme for the

numerical evaluation of the COR model.
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3.8

3.9

3.4 Numerical observations of grazing bifurcations

In this section a simple two sided COR impact oscillator is investigated numerically.

The numerical observations indicate that there is some "unusual" behaviour associated

with low velocity impacts, and it is this behaviour which will be studied at greater

length in the following work. Later on, the system which is used in order to try to

understand these "unusual" events is the even simpler, one sided COR impact oscillator.

Here we are considering the specific two sided coefficient of restitution law impact

oscillator

+ O.1 +x = acos(1.9t) 	 ,	 -l<x<1	
3.7

x--rx	 ,	 lxi =1

where there is only one free parameter a, the amplitude of the forcing. On inspection,

it is clear that for small values of a there will be a simple, non-impacting stable period

one solution which is just the solution to the linear o.d.e. as t-oo (see section 3.7.1),

__________________	
1.9x0.1

x =	 a	 cos(l.9t+ct)	 ,
'(1.9XO.l)2+(l.92l)2	 1.92_i

Such solutions will be valid if the forcing amplitude a obeys

a < (l . 9XO . l)2 +(1 . 92 _i)2 - 2.617

i.e. the maximum displacement x< 1 in size. To see numerically how the transition

takes place from non-impacting solutions to impacting ones we slowly increase the

parameter a in small steps from below this value where the stable non-impacting

solution is known to exist. At each new value of a the numerical procedure is allowed

to converge on to a fixed point (or series of fixed points), using as an initial condition

the final point calculated at the previous parameter value. The newly computed solution

will be a continuation of a solution path (as long as the parameter step is small enough),

unless a bifurcation has occurred. After a bifurcation, the system will stabilize onto a

different, possibly remote attracting solution which in turn is followed.

The attracting non-impacting solution existing at a =2.0 was numerically followed in
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this way until a=5.O. At a sequence of points A-E at a=2.6, 2.65, 3.0, 3.5 and 4.25,

the attracting orbits onto which the system converged are shown in figure 3.3 in the

phase plane projection, where time is projected out and .t is plotted against x. The

position of the x coordinate of the stroboscopic Poincaré map obtained by sampling the

system at phase O=t mod (2w/w)=O is plotted against the parameter a in the bifurcation

diagram, figure 3.4. This bifurcation diagram shows that as a is increased through

a =2.617, the value at which the non-impacting orbit just starts to touch the stops on

either side, there is a sudden jump to a distant solution. The orbits just before this

jump at A and just after at B show that there is a sudden jump from a non-impacting

solution to a symmetric impacting solution. As a is further increased the symmetry of

the impacting solution breaks just before a =3.0, which can be seen from orbit at C.

At around a =3.5 a loop develops on the symmetry broken orbit (the orbit at D), which

moves towards the right hand stop at x=1, until the ioop touches the stop just after E

at a4.3. At this point, the asymmetric period one impacting solution disappears and

the system restabilises onto an apparently chaotic solution.

The numerical observations described above seem to indicate that some kind of

bifurcation occurs each time part of an orbit just touches a stop under the change of a

parameter. However, if the stability of the fixed point in the stroboscopic Poincaré map

is computed as the parameter changes, we do not see any of the usual indications that

a bifurcation is about to occur. The standard, smooth bifurcations encountered in

nonlinear maps occur when an eigenvalue of the first differential matrix of the map at

a fixed point passes through the unit circle on the complex plane, i.e. one direction of

the map linearised about the fixed point passes from stable to unstable. Up to the

parameter value at which the first transition from non-impacting to impacting solutions

occurs, a 2.6 17, the stability characteristics of the stable orbit are constant : the

eigenvalues of the fixed point of the stroboscopic Poincaré map depend only on the

forcing frequency and linear damping coefficients, not on the forcing amplitude. There

is clearly some kind of bifurcational event occurring as the stable orbit just touches both

stops since there is a large jump in the response (as measured by the position of the

Poincaré point), but it cannot be classified as one of the standard bifurcations of smooth

dynamical systems. As we will go on to show, these grazing bifurcations occur when
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a part of an orbit just touches a stop with zero velocity. Another way of looking at this

bifurcation is that a fixed point of a map from an impact oscillator crosses a line of

discontinuity of gradient of the map. This discontinuity in gradient prevents the fixed

point being linearised at bifurcation. Grazing bifurcations then are comparable to the

"border collision" bifurcations described by Nusse & Yorke [1992].

A further, more detailed investigation of the second grazing bifurcation shown in

figures 3.3 and 3.4, just after E shows that the apparent chaotic attractor which results

from this bifurcation already "existed", i.e. a different path is followed if the direction

of change of parameter is reversed. If we start with initial conditions on the period 4

attractor at a =4.4 (just after the chaotic attractor at a = 4.3) and decrease the parameter

a slowly then the complicated response is replicated and then continues below a=4.3,

as shown in the bifurcation diagram figure 3.5. This chaotic attractor disappears at

a 4.28, where there is a transition to a period 3 attracting solution which continues

to a=4.15 and beyond. The sequence of bifurcations shown in figure 3.5 is reversible,

i.e. the same picture is obtained whether the parameter is increased from a=4.15 to

a=4.4 or decreased. Figure 3.6 shows the period 3 orbit in the phase plane projection

at a =4.28, just before the complicated, apparently chaotic region appears. Again, we

observe that part of a loop is very close to the right hand stop and is just about to

graze.

In the bifurcation diagrams 3.4 and 3.5 and the phase plane projections of orbits 3.3

and 3.6, totally "unexpected" bifurcations associated with part of an orbit just grazing

a stop have been observed. They are unexpected in the sense that there is no indication

that a bifurcation is about to occur from the eigenvalues of the first differential matrix

of the stable fixed point which is about to bifurcate. Three grazing events have been

shown in these figures. The first, just after A, where the stable non-impacting orbit

grazes the stop for the first time, leads to a jump to a distant attracting solution which

already "exists". In this case, if the parameter a is decreased from above a=2.6l7 to

a=2 there is no bifurcation : the system here is said to be hysteretic since a different

path is followed on increasing the parameter to that followed decreasing the parameter.

The second grazing event, just after E, where part of a loop on an asymmetric period
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one impacting orbit just touches a stop, is similar. Again there is hysteresis : a

different path is followed increasing the parameter to that followed decreasing the

parameter. The chaotic attractor onto which the system stabilises after the orbit grazes

at the stop already "existed" and so cannot be said to have been "created" at the grazing

bifurcation. The third grazing event, where part of a period three impacting orbit just

touches a stop differs from the previous two. There is no hysteresis in this case. The

same path is followed whichever way the parameter is changed. In this case the chaotic

solution which occurs directly after the grazing event can be said to have been "created"

at the grazing since it did not exist before.

An analogy can be made between the two types of grazing bifurcation described above

and conventional saddle-node and flip bifurcations which occur in smooth maps. At a

saddle-node bifurcation (where an eigenvalue of the first differential matrix of a map

passes through +1) a stable and unstable fixed point come together and annihilate one

another under the change of a parameter. After a saddle-node bifurcation there will be

ajump to a distant attracting solution, but in general, if the parameter is then reversed,

no bifurcation will occur in the opposite direction. This is qualitatively similar to the

first two grazing events described above. After a supercritical flip bifurcation in a

smooth map, a stable period n solution will period double : a stable period 2n fLxed

point solution will have been "created" at the bifurcation along with an unstable period

n solution. This appears similar to the third grazing event described above. This

apparent similarity will be expanded upon further in later sections.
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3.5 Continuity considerations in the COR model

As discussed above in the section describing the COR model, the instantaneous reversal

of velocity in the CUR rule causes a discontinuity in the vector field described by the

equations 3.1 and 3.2 together. We can define a three dimensional vector field from

this second order o.d.e. by rewriting 3.1 as

ti = x2

= crcos(wO) - dx2 -	 3.10

0=1

where the displacement x=x,, velocity I=x2 and time, : has been replaced by 0=: mod

2'A/W, since the only place where time appears is in the periodic cosine function. Thus

the vector field defined by 3.1 occupies the three dimensional space R2xS' illustrated in

figure 3.7, and a three dimensional subspace of this when the constraint 3.2 is imposed.

In section 1.2.1 the technique was described for reducing the dimension of a continuous

time dynamical system by defining a surface of section transversal to the flow on a

vector field, and then a Poincaré mapping which takes this surface back onto itself. In

order to study the dynamics of the COR impact oscillator model it is convenient to

define such a discrete time mapping. The discontinuities in the flow lead to problems

in defining a surface of section which is valid everywhere. Two 'natural' surfaces of

section are discussed below, and their advantages and disadvantages are considered.

Whilst neither section is globally valid, in that both lead to maps which are

discontinuous, there are only one dimensional sets of "bad points" and so, if used

carefully, the reduction to a mapping is still possible and useful.

3.5.1 The impact map

One of the most natural surfaces of section which we can choose to reduce the

dimension in the CUR model is the stop itself. We define the impact section E.

the positive half plane at the stop, and the

impact map The restriction to the positive half plane is possible since any

orbit which impacts at the stop must do so with positive velocity. The condition which

must be satisfied for a section to define a globally valid Poincaré map is that all orbits

must be transverse to the section ,. It is immediately obvious from the definition of
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the section that there is a line of points in E1.., — (O,O), along which the flow is

tangential to E (inspection of equation 3.10 shows that the flow is always tangential to

the velocity axis when the velocity is zero). It is also important to note that due to the

linear damping in the o.d.e. describing the flow away from the stops, not all points in

the section . necessarily map back to this section : some orbits starting in the section

could fall asymptotically on to a non-impacting periodic solution so the mapping is not

suijective.

3.5.2 The stroboscopic section

A mapping can be obtained from any periodically forced dynamical system by sampling

at a constant phase of the forcing. We define the stroboscopic section for 3.10,

sampling at phase zero, E5 = (=(',, ):('x,x,O)=(,,2,O)), and the stroboscopic map

P,:Ej-'. In any continuous periodically forced system the stroboscopic section is valid

since O=i so the flow is perpendicular to the section. In the case of the COR impact

oscillator, the impact rule is discontinuous at the stop, x=a. Although the flow is

transverse to the section both before the impact rule is applied and afterwards, there is

a discontinuous jump in velocity at the stop.

3.5.3 Discontinuities in P,. and P

Define the preimage under the impact map of the line of zero velocity at the stop in the

COR model kj =P'j (Aa) where X,=(y,,&,)EE1... In this section it is

shown that on either side of this line X.., the mapping P. will behave in two distinct

ways. The orbit starting from a point on one side (the impact side) of k, will undergo

a low velocity impact in time close to the time O=O-O. On the other side of X, the

orbit will just miss the stop in a time close to 0 and the next impact (if any) will not

necessarily be close to the line X0. The mapping P. is therefore discontinuous along the

line X.,. This is numerically demonstrated in figure 3.8, where a rectangular area over

the line X.., for a particular one sided impact oscillator is mapped forwards once under

the impact map P,. The image of the rectangular area consists of two distinct

disconnected areas. This discontinuity of the impact map comes directly from the

observation discussed in the previous section that the flow is not transverse to the
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surface of section along the zero velocity line. Any surface of section which has such

properties will have similar kinds of discontinuity. This discontinuity is thus essentially

artificial : it comes from a 'bad' choice of section. It has been discussed at some length

here since the many papers in the literature have been concerned with the discontinuity

of the impact map. As will be shown later, along the line of discontinuity in the impact

map, the map is also discontinuous in gradient, and it is this property which causes

much of the interesting bifurcational behaviour of COR impact oscillators.

Define the preimage under the stroboscopic map of a line along the stop in the COR

model A., =P '3 (A0) where A( = (a,y0) E E,, A., = (x.,,y..1)E E. This line is a line of

discontinuity of the map P,. On one side of the line A., points are mapped near to the

stop with positive velocity (just before impact) and on the other side points are mapped

near to the stop with negative velocity (just after the impact rule has been applied).

This is numerically demonstrated in figure 3.9, where a rectangular area over the line

A., for a particular impact oscillator is mapped forwards once under the stroboscopic

map P,. The image of the rectangular area consists of two distinct disconnected areas

bordered by the stop, one with positive and one with negative velocity. Here the

discontinuity is a direct result of the discontinuous COR rule, and not just a result of

a bad choice of surface of section. However, both parts of the image border the stop

and the relationship between points at the stop with positive velocity and points at the

stop with negative velocity is simply given by the impact rule. This is a very 'simple'

form of discontinuity if a fixed point of P5 exists with positive velocity near to the

stop, and under a smooth change of parameter moves towards the stop, reaching the

stop at positive velocity v1, a fixed point will 'emerge' with negative velocity -n By

- sampling at a different phase, this particular discontinuous jump would not occur,

although any stroboscopic map will have its own one dimensional discontinuous set.

- 58 -



3.6 Discontinuities in gradient from the COR model

We have seen in section 3.4 that numerical observations indicate that some sort of

bifurcation occurs in a COR impact oscillator when part of an orbit just touches a stop

with zero velocity. This bifurcational event occurs when a stable fixed point of the map

crosses a line of discontinuity in gradient (in fact a square root singularity in the

derivative of the map). It is possible to show how this square root singularity in the

derivative arises by expanding for a small time backwards and forwards in time from

a low velocity impact. Let us take a dynamical system which is governed by a smooth

second order ordinary differential equation with periodic forcing away from the impact,

with the coefficient of restitution rule x-.-rt applied at impact. Suppose that a low

velocity impact occurs with velocity i=O I at time to. We will try to obtain the

mapping from the plane defined by t=t, to the plane t= t2 (see figure 3.10) where

&, — t-t1 41, &2 =t,-r041 , by expanding in the small variables defined

above. The mapping takes the point to ( 2, 2,t2) undergoing a low velocity

impact at (a,O,t0) in the process. Expanding backwards from the impact we have

= a-O&1+A1&+... 	 3.11

= O-t1 A 1 +...	 3.12

and expanding forwards from the impact, after the application of the impact rule we

have

= a-rOLi2+A,&+...	 3.13

= -rO+A2&2+... 	 3.14

where A, and A2 are the accelerations at the impact with positive and negative velocities

respectively.

Now 3.12 gives 0
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0	 1 +t1 A 1 +...	 3.15

and substituting 3.15 into 3.11 gives an expression for &,

=	 3.16
A1

where we take the positive root since when t1 = 0 we must have that E,-a = 0. Now we

define the total time between the initial and final times

& =
	 3.17

Then, using 3.15, 3.16 and 3.17 in 3.13 and 3.14 we obtain expressions for 2 and 2

= (a -E 1) 12r+1

	

	 3.18+a -r1
A2J

12	 IA2	 'I
= -yn -2A 1 ( 1 -a) '	 + r I

1	 J	

1.+A2&	 3.19

We note that

0 = f-2A 1 ( 1 -a) +	 3.20

so that, as the velocity of the impact tends to zero the expression under the square root

tends to zero. The mapping from r, to t2 given by equations 3.18 and 3.19 is only valid

where 0>0. If 0<0 there is no impact between t, and t2 and so a simple linear

mapping which is such that the whole mapping is continuous takes a point to

(E21n2, r2) if & is small enough. The further mapping from t2 back to t, -FT (assuming

that the oscillator is periodically forced with period T this forms the stroboscopic

Poincaré map sampled at phase t,), if it has no further low velocity impacts, will also

be a simple linear mapping locally. The total map, composed of the mapping around

the low velocity impact and the further mapping back onto the plane t=t, has two

distinct regions separated by the line 0=0. When 0<0 both parts of the total mapping

behave in a simple locally linear manner, and so the resulting total mapping will also

behave in a simple, locally linear manner. When 0>0 there is a square root term in
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the mapping around the low velocity impact, and thus in the total mapping. As 02.O

from above this square root term goes to zero, and the first differential of this mapping

with respect to arid , will have terms involving I/O. There will therefore be a

square root singularity in the derivative of the mapping on the impact side of the line

0=0, although continuity will still be preserved. This discontinuity in gradient is very

important to the dynamical behaviour of the impact oscillator.

Figure 3.11 shows a numerically calculated illustration of such a square root

singularity. A rectangular area lying over a discontinuity in gradient of a stroboscopic

Poincaré map from a one sided COR impact oscillator was mapped forwards one

iteration and here is plotted vertically against x,.t. The square root singularity is

clearly evident. The effect of this form of discontinuity in gradient on an area which

lies over the discontinuity in gradient is shown in figure 3.12. Figure 3. 12a shows a

small rectangle lying over part of the line of discontinuity of gradient in a stroboscopic

map from a one sided impact oscillator. Figure 3. 12b shows its image under one

iteration of the map. Orbits which pass through the rectangle on one side of the line

of discontinuity in gradient go on to just hit the stop with low velocity, while orbits

which pass through the rectangle on the other side just miss the stop. On the low

velocity impact side, there is a large degree of stretching and so the image is long, thin,

almost one dimensional. On the other side, where orbits just fail to impact, there is no

significant stretching. In the next chapter, the effect of a fixed point crossing this line

of discontinuity under the change of a parameter is investigated through analytical

steady state solutions to the one sided COR impact oscillator. The methods for locating

such solutions are developed in the following sections.
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3.7 Locating steady state periodic solutions of the COR model

3.7.1 General solution away from impacts

The strategy for the location of particular steady state periodic solutions of COR impact

oscillators which behave linearly between impacts has been widely used, for example

[Shaw, 1985, Shaw & Holmes, 1983c, Whiston, 198Th]. The general idea is that the

solution of the linear oscillator away from impacts is known, and so conditions for

simple steady state solutions with low period and low numbers of impacts can often be

written down and solved analytically. The derivation is repeated here since the

expressions obtained will be used later to analyse the behaviour of a COR impact

oscillator when part of an orbit just touches a stop with zero velocity at a grazing

bifurcation. First, we solve the second order linear o.d.e. 3.1 to find the general

solutions away from impact. In subsequent sections, the matching conditions for

particular steady state solutions are imposed and expressions for points on these

solutions are obtained.

Away from any impacts, 3. 1 has general solution

x = e'"[Acosfl(t-t,) + BsinIl(r-t,)] - .icos(@t+)	 3.21

Differentiating this with respect to t gives

x = -e[Acos1(t-t,) + Bsin(1(t-t,)] +

e	 -A 1sin 1l(t-t,) + Bcosc2(t-t,)]	 322

+ ..sin(o,t+)
•1

where

A = x, + .cos(@t,+4)	 3.23

-_sin(c,t,+4)]	 3.24B =	 + f3x, +	 cos(wt,+4) 7
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tan4 =	 ; y =	 + (c,2 _ 1)2 ; 2/3 = d ; U = 1i -/3 3.25
CA) -1

3.7.2 Period one, one impact solutions

The simplest steady state solutions with impacts of the system defined by 3.11 are of

period one (i.e. they repeat once in a complete forcing cycle) and undergo only one

impact per period. In order to locate such solutions we impose these conditions on the

general solution for 3.1 given above. We take initial conditions at the stop

(x,i,t) = (a,y1,t) before imposing the coefficient of restitution rule. After applying the

impact rule we have (x,.t,t) = (a,-ry1,t) which defines the constants A and B in terms of

the unknowns y, and t,. Then 3.21 and 3.22 are equations for x and x as functions of

y, t, and time r. By adding the matching conditions which need to be satisfied at a

steady state period one, one impact per period, periodic orbit we have the conditions

that x(t,+2T/w,y,t)=a , .t(t1 +2irIc,;y,t)=y1. Using these conditions, 3.21 and 3.22 can

be rewritten by collecting together terms in c=cos(wt1 +4), s1 =sin(wt+4), and

constants depending only on the parameters to give:

-ry1 = 11c, + l2s + 13	 3.26

0 = m 1 c1 + m2S1 +	 3.27

where the coefficients l,,l,,13,m1 m2,m3 are given by the expressions below which are

functions only of the system parameters
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3.31

3.32

1 =I	 -11.13

12 =
	 3.28

a13 = _l1

11	111c

I 
w [3-c} -flsin1 = - + w	 vJ

m2 = P , [i 
+ 

1)
	 3.29

a
m3 = —m1

11.

c = cosI2(t-t1) ; s = sinc2(t1-t1) ; tftj=•_•_	 3.30

Now if we treat 3.26 and 3.27 as simultaneous equations in c1 and s we can obtain

	

=	 ry8

£
m1 

I 2

m2
- ry4
in 1	 m3

	

ci =-	--
in!

1	 2

And we can eliminate time completely by noting that ç 2 +s 2 =1 , ie.

2	

i2

_______	

m3 in1	 + 1 m31 =1

2]	
m2

	

F 
[m)	

+	 Ii11 2L 1 	 m1J

mi

This is a quadratic equation in y, which we can easily solve, then by substituting this

into one of 3.31 we have an expression for the other unknown quantity t1. Therefore,

at a given set of parameters we have possible solutions for y, and t, which define a point
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on a steady state, period one, one impact per period orbit of the system defined by 3.1

and 3.2 together. It is only a possible solution : we must ensure that x=a at times t

and t+2T/w but at no time in between, since this would correspond to a non-physical

orbit, as shown in figure 3.13. Any possible solution must be numerically verified to

ensure that it is a true, physical solution. Since very accurate numerical schemes can

be used to calculate the time evolution of this COR impact oscillator (see section 3.3),

using this analytical technique with numerical checks is a very accurate way of finding

period one, one impact solutions.

3.7.3 Extension to symmetric, period one two sided impact solutions

A simple extension of the method for obtaining analytical period one, one impact,

steady state solutions for the one sided one impact oscillator 3.1 & 3.2 allows period

one symmetric steady state solutions of the two sided impact oscillator 3.33 to be

found.

	

X + dx + x = crcos(c,t) ,	 a<x<a	
333

x-* -rx	 ,	 lxi =a

A symmetric period one impacting solution with one impact at either stop can be found

by considering only the first half of the period. Starting with initial conditions at the

left stop (x,t,t)=(a,y,r), reflected immediately to (x,t,t)=(a,-ry1,t), we impose the

matching conditions that the impact at the right stop after half of a forcing period are

(x,t,t)=(-a,-y1,t+ir/w). If we put x--x in the differential equation 3.33 and shift the

phase of the forcing function by half a period then we see that the equation controlling

the flow in the second half of a forcing period is the same as that controlling the flow

in the first half, with x-*-x (and therefore X-x). Thus once this matching condition has

been reached, the orbit in the next half period must reach the original initial condition

at the end of the second half period. This technique does not ensure that analytical

solutions can be found for all period one solutions which impact once at either stop, but

only those with the symmetry described above. Using almost exactly the same strategy

as used in section 3.72 we impose the matching conditions (x,.t,t)=(-a,-y,r+T/w) onto

the solutions 3.21 and 3.22 for the differential equation 3.1 where the constants of

integration A and B are defined by the initial conditions just after impact (x.t,t) = (a-
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3.36

3.37

ry,,tj. Again, terms in c1 ,s, and y can be collected together to give

-ry, = p1c, + p2 . + p3	 3.34

O=q1 c1 +q2s+q3 	3.35

where

P	 J+LI ]p1 = - I -

P2 =

ILWS	 I v13S,,____	 I ____ -Pc +q1=-	 pit (•l
	 w rJ

q2 =
rJ

q3 = !q1
IL

a
j =_ ; v=e	 ; c = cos(l(t1-t)) ; s=sin((](t1-t1)) ; t1-t=.! 3.38

'1

So by replacing lJ ,1,l3 with p,,p1,p3 and m,,,n2,m3 with q,,q2,q3 in 3.31 and 3.32 we

obtain expressions for y4 and t in exactly the same way as for the analytical one sided

period one steady state solutions. Again, the solutions obtained in this way are only

possible solutions. Non-physical orbits will occur exactly as for the one sided impact

oscillator and numerical checks must be made to ensure that the analytical solution

found is a true, physical one.

3.7.4 Stability analysis of period one, one impact solutions

We have given above a method for locating a point on a steady state, period one, one

impact per period orbit of the system defined by equations 3.1 & 3.2. Since this point

is always on the plane x=a (the stop) we can regard it as a fixed point of the mapping
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which takes this plane onto itself. This impact map , where E.

=(E=(E,,:(x,.t,t)=(a,11),1>O) is one of the 'natural' Poinca.r6 maps which can

be defined by taldng a section almost everywhere transverse to the flow defmed by 3.1,

as discussed in section 3.7. It is only almost everywhere transverse to the flow since

along the zero velocity line i=O the flow is always tangential to the plane x=a. We

can similarly define E1+=(=(,,).(x,t,t)=(a,E,,),E,<O). Then the total mapping

P.E..-'E1.. is made up of two parts the instantaneous reversal of velocity by the impact

rule and the rest of the mapping P:E1+-E1... Now we differentiate 3.21 and

3.22 with respect to the initial time and velocity t1 and y and evaluate at t1=t+2T/w to

give the elements of the first differential matrix of the mapping from . = (-ry1,t) to

= (ypt) and we set y1=y since we are at a fixed point of the map P1.

=	 3.39
ôy1	(y1

= i -	 - vs1 c,, - (f3s1 + wci)]	 3.40
at,	 y1

äy	 0t	 13s]	 3.41
=

3)',

= I	
[ (sj+wcj)_wcjcw1 +w2c,

	 3.42
at,

The acceleration at impact is denoted by 	 . The mapping P,,..-'E,^ which takes the

initial point =(y,t) with positive velocity to the point ,^=(-ry1,t) also contributes

to the total first differential matrix D of the impact map, which by the chain rule is
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given by

-r o ay1 ayf

DP = DPrDPp =	
at1
	 3.43

0
	

l
	

8t1

From 3.43 we have the trace and determinant of D, tr(D) and det(D) respectively

det(D) = v2r2

tr(D) = l_rycw_	 rss1w [VSW 
(12)	 1] +

tJ	 y1

PCISw[,22 _r+4u2r_ar}
(1y1

The eigenvalues of the first differential matrix of the impact mapping are given then by

= tr(D) ± yltr(D)2 -4 det(D)
	

3.45
2

and so it is clear that as Yj° one of the eigenvalues will tend to either positive or

negative infinity (and since the map is dissipative overall and the product of the

eigenvalues equals the determinant, the other eigenvalue must tend to zero with the

same sign). Steady state solutions with very low velocity impacts will therefore be

saddle solutions with one direction of large expansion and one of large contraction.

This observation ties in with the previous observations of a square root singularity in

a Poincaré mapping from an impact oscillator. We see again that a grazing bifurcation

occurs at parameter values where the velocity at impact of a steady state periodic orbit

equals zero.

3.44
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Figure 3.1 (a) Stiffness and (b) potential energy functions for the Hertz law
model, equations 3.1 and 3.3, k-2000.
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Figure 3.2 (a) Stiffness and (b) potential energy functions for the
piecewise linear model, equation 3.6, k1 -100.
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Figure 3.12 (a) The small rectangle from figure 3.11 lying over a line of
discontinuity of gradient in the stroboscoopic section and (b) its image
under one iteration of the map P1.
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Figure 3.13 Physical and non-physical orbits. The non-physical orbit shown
in (b) to penetrates the stop before repeating.
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4. Bifurcations in impact oscillators

4.1 Bifurcations in the COR model

4.1.1 Bifurcations of period one, one impact solutions

The one sided COR impact oscillator given by equations 3.1 & 3.2 together, as well

as undergoing conventional, smooth bifurcations (flips and saddle nodes), see for

example Shaw & Holmes [1983], can undergo bifurcations due to low velocity impacts,

called grazing bifurcations. We also note here that equation 3.1 is dissipative (if the

damping, d>CY), as is the impact rule equation 3.2, and so any Poincaré map which we

obtain from the COR impact oscillator will have an overall area contraction. This

implies that no Neimark bifurcation can occur, since this would require both

eigenvalues of the two dimensional map to lie on the unit circle at bifurcation, which

would require there to be no area contraction. Nordmark [1991], Whiston [1992],

Foale & Bishop [1992] and Budd et al [1993] have all investigated various aspects of

the effect of low velocity impacts on COR impact oscillators. In this chapter the

analytical solutions available (see chapter 3) are used to try to relate grazing

bifurcations to conventional, smooth bifurcations. As discussed in section 3.6 there are

discontinuities in gradient in any Poincaré map from an impact oscillator along lines of

grazing points. When a fixed point crosses a line of grazing points under the change

of a system parameter then a grazing bifurcation occurs. In this section we look at the

simplest case of a grazing bifurcation in the one sided, linear COR impact oscillator 3.1

& 3.2, where a non-impacting period one stable steady state solution, under a change

in parameter just starts to hit the stop with low velocity.

4.1.2 Locus of first grazing bifurcations

Non-impacting steady state solutions of 3.1, where they exist, just consist of the

'particular integral' part of the general solution 3.21 and 3.22, after the transients have

exponentially decayed away. We form a discrete time dynamical system from the

continuous time one in the usual way, by taking a surface of section E and defining the

Poincaré map P which takes points in back onto itself. In this case it is most

convenient to use the stroboscopic Poincaré section where x and I are sampled at a

given phase of the forcing function, 4=t mod 2w/o=O. Fixed points of this map

- 82 -



corresponding to non-impacting periodic steady state solutions are easily seen from 3.21

and 3.22 to be given by x =-a cos()/y, .t=aw sin('c6)/7 and the first differential

matrix of this mapping is obtained by differentiating the equations 3.21 and 3.22 with

respect to x1 and .t and evaluating at time t=2T/ giving

DP-
 -
	 P C.....j..	

0	 4.1

V S
	

13 s,,,
P

0

The eigenvalues of the mapping P can then be calculated to be X,2=v(-c±s,,). We can

see that the maximum displacement x of the non impacting solution is a/'y, so at when

a/y<a the steady state, non-impacting orbit does exist. At a critical, grazing value of

a, a=ay, the non-impacting orbit will just graze the stop at x=a with zero velocity.

As a is increased past a, this stable orbit, or the stable fixed point of the stroboscopic

map, can no longer exist. It disappears at a grazing bifurcation. The locus of these

grazing bifurcations is given then by

= a-y =
	 4.2

4.1.3 Types of grazing bifurcation

In section 1.3.2 we looked at the behaviour of a continuous, piecewise linear map

consisting of two 2-dimensional linear maps, one with a large direction of expansion.

We assumed that the coordinates had been transformed so that the line of discontinuity

of gradient, where the two linear maps join, lies along the coordinate direction

separating the left and right half planes. This piecewise linear map was parameterised

by in such a way that a stable period one fixed point exists in the left hand half plane

when ,z ^0, and lies along the line of discontinuity in gradient when u=O. The

mapping in the right hand half plane has one large direction of expansion, i.e. one

eigenvalue with a large absolute value, X, say. We required that both linear mappings

were orientation preserving and dissipative, so that there is a corresponding small

eigenvalue, X2 of the same sign such that 0< X,X, <1. It was shown that if X, >0 then
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another (unstable) period one solution exists for jz ^ 0. If X, <0 then an unstable period

one orbit was shown to exist for j ^ 0.

A stroboscopic Poincaré map from a one degree of freedom COR impact oscillator was

shown in section 3.6 to have lines along which the map is continuous but discontinuous

in gradient, with a square root singularity on one side of the line. We again assume

that we have transformed coordinates such that the line of discontinuity of gradient lies

along the coordinate direction separating the left and right half planes and that the

system is parameterised by such that for i ^ 0 there is a stable, period one fixed point

in the left hand half plane. For any particular parameter i close to zero, we can

replace the map on the right hand side with an equivalent linear map. By this we mean

that there is a linear map with an identical period one fixed point, if any, as the map

with square root singularity, i.e. the fixed point has the same position, same

eigenvalues. We then have an equivalent piecewise linear system which has one large

direction of expansion, and the result described above shows the bifurcational behaviour

we can expect from such a system. If the eigenvalue corresponding to the direction of

large expansion is positive, there will be two period one fixed points (stable and

unstable) for <0. If the eigenvalue corresponding to the direction of large expansion

is negative, there will be a stable fixed point for <0 and an unstable fixed point for

L>O.

In summary, we expect to find two distinct types of grazing bifurcation in a two degree

of freedom COR impact oscillator. In both cases an unstable periodic orbit of the same

period continues on from the stable periodic orbit after grazing, either from below or

above. In the next section we use analytical solutions to show that this is the case for

the most simple grazing bifurcations.
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4.1.3.1	 One sided impact oscillator

We have discussed above how the simple, non-impacting stable solution reaches a

critical point at which the amplitude of the solution is such that part of the orbit is just

grazing the stop with zero velocity. In order to form a continuous solution path, a

period one solution with one low amplitude impact per period must continue on from

the end of this stable path. In order to see that this is so we look again at the analytical

solutions for period one, one impact per period solutions of 3.1.

Take equation 3.32, and by further noting that the parameter a only occurs in

l,,12,13,m,,m2,m3 linearly (if at all) we can define new quantities L ,,L2,L3 M1 ,M21 M3 all

independent of a.

aL 1 =11 , aL2 12 , L3 =13 , aM1 =m 1 , aM2 =m2 , M3=m3	 4.3

3.32 can then be rearranged to give

M2

a2 = a + 2cxry 
M2L -L2

yi2	
2

+ r2

1iL1L
2J 

L	 J]1M2
4.4

From equation 4.4 we can see that near grazing, when O<y4l then a-a from above

or below depending on the sign of the coefficient of the linear term of this quadratic in

y. Since r,y1 , a >0 we have that the sign of z where

M2

M1
z=

M
—EL -L1	 2

controls the type of grazing bifurcation. There are two distinct types of grazing

bifurcation depending on whether z is positive or negative: the two cases are sketched

in figure 4.1, where the maximum amplitude of the period one solutions are plotted

against the forcing amplitude a with all other parameters fixed. In both cases when

a < a there is a stable non-impacting period one solution whose amplitude grows

4.5
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linearly with a (the solid lines). The stability characteristics of this non-impacting

solution do not change as a changes as can be seen from equation 4.1 (c and s,4, are

functions of w and d and the other terms in 4.1 are functions only of d). In figure 4. la,

with z<O, as the velocity of the period one, one impact solution y,-'O, a-'a from

below, with a=a,, when y=O. Since the velocity at impact, y, is very small then we

can see from 3.44 and 3.45 that this solution is very unstable, with one eigenvalue

tending to infinity as a-'a. In figure 4.lb, with z>O, as the velocity of the period

one, one impact solution y1-.O, a-a from above, with a=a when y=0. Again the

velocity at impact, y1, is very small and so this solution is very unstable, with one

eigenvalue tending to infinity as These unstable solutions are represented by

dotted lines in figure 4. 1.

On examining the expression for z (using the parameters d=O.l, r=O.7, a=1.O in

equations 3.1 and 3.2) we see that z=O when s=sin(2i)Ic)=O, i.e. when w=2Wn

for n=1,2,... These are the values of w where the function z changes sign, see figure

4.2.

4.1.3.2	 Two sided symmetric impact oscillator

A similar analysis can be carried out for bifurcations from the non-impacting stable

steady state solutions of the two sided impact oscillator, equation 3.33, to symmetric,

period one steady state solutions with one impact at each stop in one period. We note

that we can rewrite p1 =aP,,p2 =aP2,p3 =P3 and q,=aQ,,q2 =aQ2 q3 =Q3, where

P,,P2,P3I Q,,Q2 Q3 are all independent of a. Then equations 3.31, 3.32 and thus 4.4

can be rewritten by changing L,,L 2,L3,M,,M2,M3 to P,,P2J P3,Q,,Q2,Q3 respectively,

giving

Q2

a2 = a + 2a ry
'in

.R1 -R2
QI

_________ 
1+1^]2

+r2
( Rl ] 2 L 1QJl

4.6

Since the expression 4.2 for the critical first grazing value a =a is the same as for the

one sided case we can interpret the quadratic equation 4.6 in the same way as before.
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The coefficient of the linear term in y, again controls the type of grazing bifurcation,

this time between stable non-impacting period one solutions and unstable period one

symmetric, one impact per stop solutions. We have that the sign of z' where

Q2

I-- ____	 4.7

Qll

controls the type of grazing bifurcation. When z'< 0 then a-a from above and when

z'> 0 then a-a. from below. On examining the expression 4.7 for z' we see that z'=O

when s=sin(ir(u/c.')=O, i.e. when =1lIn for n=1,2,... These are the values of o,

where the function of z' changes sign, and therefore where the type of grazing

bifurcation changes, see figure 4.3 (the parameters used here are d=0.l, r=0.7,

a= 1.0).

4.1.4 Illustrations of grazing bifurcations

Using the methods described in sections 3.71 and 3.72 we are able to analytically locate

steady state period one solutions of the system given by equations 3.1 & 3.2, both for

the case of non-impacting and one impact per period solutions. We must always

numerically ensure that the one impact per period orbits are physically possible (see

section 3.72 and figure 3.13). The stability analyses in sections 3.74 and 4.1.2 allow

us to monitor the stability of the periodic orbits found analytically in this way. Using

these methods we semi-analytically, semi-numerically obtain the amplitude-response

figures 4.4 & 4.5, where the maximum absolute displacement max(x) is plotted against

a. Here, all parameters are kept fixed (d=0.1, r=0.7, a=l.0, =1.8 & 2.2)except

the amplitude of the forcing a solid lines denote stable solutions and dotted lines

unstable solutions. The two cases are taken at constant values of the forcing frequency,

o, either side of the largest value of w at which the function z (equation 4.5) changes

sign, c2(c 1.9975, and illustrate the two types of grazing bifurcation described in

section 4.1.3.
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Case 1: co=1.8, figure 4.4

As a is increased up to the critical, first grazing value cr2.247 there exists a linearly

increasing path of the stable non-impacting period one solution. This solution must

disappear at grazing. Since the function z here is less than zero, it was shown in

section 4.1.3.1 that a period one, one impact per period solution approaches the first

grazing parameter value a from below, and since the velocity at impact is tending to

zero an eigenvalue of the impacting solution is tending to infinity as grazing is

approached. We see then a grazing bifurcation in figure 4.4 at G where a stable and

unstable solution meet and disappear together. As the path continues there is a saddle-

node bifurcation at SN. Although there are similarities between the two bifurcations

G and SN since in both cases stable and unstable solutions meet and annihilate one

another, they are quite different. At SN the stability characteristics of the two orbits

change smoothly, with an eigenvalue of the jacobian of P5 tending to +1 from above

and below. At G the stability characteristics of the stable solution do not change up to

grazing, but an eigenvalue of the unstable solution tends to infinity as grazing is

approached.

Case 2: c=2.2, figure 4.5

Again, as a is increased up to the critical, first grazing value a3.846 there exists a

linearly increasing path of the stable non-impacting period one solution. The function

z here is greater than zero, so the period one, one impact per period solution

approaches the first grazing parameter value a from above. Again, since the velocity

at impact is tending to zero as a—'cx1 from above, an eigenvalue of the impacting period

one solution tends to infinity as the grazing bifurcation G is approached. In this case,

as the path continues, there is a flip bifurcation at F.

4.1.5 Bifurcation loci of smooth and grazing bifurcations

In section 4.1 equation 4.2 was derived which gives the locus of first grazing

bifurcations in terms of the system parameters. If we fix all parameters as in section

4.1.4 then as the forcing frequency varies the first grazing occurs at a, the thick

solid curve in figure 4.6. Using the analytical expression for the eigenvalues of the

period one, one impact solution, equation 3.45, we can numerically compute the loci
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of flip bifurcations, where an eigenvalue equals -1 and saddle-node bifurcations where

an eigenvalue equals +1. Figure 4.6 shows the locus of flip bifurcations as a thin solid

line and the locus of saddle-node bifurcations as a chain dotted line. Below w=O,5

there are further alternating flip and saddle node bifurcations, but the loci of these

bifurcations have not been computed here. It appears that the flip and saddle node loci

meet at the values of w where the function z passes through zero (equation 4.1.6, figure

4.2) and the type of grazing bifurcation changes. Again we show that this is the case

in section 4.1.6.

4.1.6 Co-dimension two bifurcations

It appears in the bifurcation locus diagram 4.6 that when the type of grazing bifurcation

changes, i.e. when the sign of z changes, then a line of saddle node bifurcations and

a line of flip bifurcations meet at this point. We now demonstrate that this is indeed

the case. Let 2iIo,=w+. Then s=-sin('€), c =-cos(€). If we substitute these

expressions into the equation 3.44, using equations 3.31 for s and c as well, we have

an expression for tr(D) in €. Expanding this in powers of the small variable € we have

tr(D) = 2vr + avw2 (l +r)z + 2v(1 +r)(vr-1) + O(€
	 4.8

Yl	 (l(+1)

The small variable € depends on the driving frequency w, not on the amplitude of the

forcing a, and so however small € is, we can choose a close enough to a such that yj

is as small as we like, and so €/y, is of 0(1) or greater. Any term in € can therefore

be ignored as small.

The condition which must be satisfied for a saddle-node bifurcation is

det(D) -tr(D) +1 = 0	 4.9

and for a flip bifurcation

det(D) + tr(D) + I = 0	 4.10

so we define sn=det(D)-tr(D)+1 and pd=det('D)+tr(D)+l. Using equation 4.8 for

tr('D) gives
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.cn=(rv_1)2_K.!+...	 4.11
yi

pd = (rv+1)2 + K! + ...	 4.12

where

K 
= avc 2 (1 +r) >
	 4.13

The condition 4.11 for a saddle-node bifurcation, sn=O, then gives

K€
sn=O	 y. = ______ +

(rv-1)2

The velocity at impact of the steady state, period one, one impact solution, y must be

positive, and this can only be so if €>O in 4.14. Thus we conclude that when is

small and positive (i.e. w < 21) there is a period one, one impact steady state solution

with velocity at impact given by 4.14 which is undergoing a saddle-node bifurcation.

For a given small positive € the parameter a3,, at which this bifurcation occurs can be

obtained from 4.4. Since ca<2t1 the variable z which controls the type of grazing

bifurcation nearby is negative, so as,, < and a,,-'a 1, as €-.O, i.e. as w-2f2 from below.

The amplitude of forcing a at which the saddle-node bifurcation occurs can be seen

from 4.4 to be

2 2a rzK	 4.15

(rv-l)2

Similarly, the condition 4. 10 for a flip bifurcation, pd=O, gives

K€
pd = 0	

= (rv+l)2 +	
4.16

Again, we must have that y, is positive, and this can only be so if c<O in 4.16. Thus

we conclude that when e is small and negative (i.e. c,>2l) there is a period one, one

impact steady state solution with velocity at impact given by 4.16 which is undergoing

a flip bifurcation. For a given small negative € the parameter a,, at which this

bifurcation occurs can be obtained from 4.4. Since w> 2(1 the variable z which controls

- 90 -



the type of grazing bifurcation nearby is positive, so a I d> c arid a,i-'c as -'O, i.e.

as	 from above. The amplitude of forcing a at which the flip bifurcation occurs

can be seen from 4.4 to be

1 2 2a rzK	 4.17
aPd = ja 

+ (rv+1)2 +
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4.2 Bifurcations in the Hertz law model

4.2.1 Bifurcations of period one, one impact solutions

In the previous sections the analytical solutions available for the one sided COR impact

oscillator were used to investigate the bifurcational behaviour of this model. An

important set of bifurcational events were found to occur when an orbit undergoes a low

velocity impact at the stop, a grazing bifurcation. In particular, the simplest grazing

bifurcation, the first grazing, when a stable non-impacting orbit just starts to hit the stop

with low velocity, was investigated. It was shown that two types of grazing bifurcation

occurred : as the amplitude of the forcing is increased towards the first grazing, an

unstable solution with low velocity impacts approaches the stable non-impacting solution

either from above or below. Examples of these grazing bifurcations were shown in

figures 4.4 and 4.5. If the Hertz law model (equations 3.1 and 3.3) and the COR

model both model the impact process reasonably well then we should expect the

bifurcational behaviour of the two models to be similar. Since the Hertz law model is

continuous and differentiable it does not suffer the same problems as the COR model

there is no discontinuity in gradient and therefore grazing bifurcations cannot occur.

Using the same parameters as were used in the illustrations of grazing bifurcations 4.4,

4.5, and k=2000, a path following algorithm (see chapter 2) was used to locate and

follow fixed points of the stroboscopic Poincaré map of the Hertz law model as the

amplitude of the forcing a changes. The elgenvalues of the Jacobian matrix of this map

were also monitored in order to locate changes in stability (bifurcations) along the path.

When a period one fixed point was located, the equations were further integrated over

a period in order to find the maximum absolute displacement max(x) of the periodic

orbit.

Case 1: w=1.8, figure 4.7 (cf. figure 4.4)

Just after the non-impacting orbit starts to hit the stop at

a rc 2.247 we observe a saddle-node bifurcation SN (an eigenvalue of the Jacobian

matrix of the stroboscopic Poincaré map leaves the unit circle at +1). An unstable

impacting orbit meets and annihilates the stable orbit. As the path continues there is

a further saddle-node bifurcation SN. Comparing this figure to the COR model, figure
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4.4, it can be seen that there are great similarities. Although in the COR model, as the

non-impacting orbit just grazes the stop, there is a grazing bifurcation G as opposed to

the conventional saddle-node bifurcation SN in the Hertz law model, an unstable low

velocity impacting orbit meets and annihilates the stable non-impacting orbit.

Case 2 : w=2.2, figure 4.8 (cf. figure 4.5)

In this case, just after the non-impacting orbit starts to hit the stop at air.3.846 there

is a flip bifurcation at F (an eigenvalue of the Jacobian matrix of the stroboscopic

Poincaré map leaves the unit circle at -1), with an unstable, impacting period one orbit

continuing on from the stable non-impacting one. As the path continues there is a

further flip bifurcation. Comparing this figure to the COR model, figure 4.5, again

there are great similarities. Instead of a grazing bifurcation G in the COR model just

after the first grazing there is a flip bifurcation F in the Hertz law model, but in both

cases an impacting unstable low velocity orbit continues on from the stable non-

impacting orbit.

4.2.2 Bifurcation Joci for the Hertz law model

In figures 4.4 & 4.7 and 4.5 & 4.8 a strong similarity between the paths of solutions

of the Hertz law impact oscillator and the COR model was numerically demonstrated.

For figure 4.9, showing the bifurcation loci for the Hertz law model at the parameter

set used above, we again use numerical path following methods to follow the loci of flip

and saddle-node bifurcations in the space of the two parameters a and w, near to the

largest forcing frequency w-1.9975 at which the grazing bifurcation type in the COR

model changes as the function z (equation 4.2) passes through zero. Figure 4.6 shows

the equivalent bifurcation loci for the COR model, where a saddle-node and flip

bifurcation also meet at this point. In the Hertz law model there are no grazing

bifurcations, but near to where there is a line of grazing bifurcations in the COR model

there is a line of either flip or saddle-node bifurcations in the Hertz law model. Both

the locus of flip bifurcations and saddle-node bifurcations ends at a cusp near to the

location of the codimension two event in the COR model in which a flip and saddle-

node bifurcation loci meet along the grazing bifurcation locus at the same point as the

type of grazing bifurcation changes. The degenerate codimension two event in the COR
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model appears to have split into two generic codimension two events (cusps).

4.2.3 Attractor following through bifu rcations

Figures4.S and 4.8 show the paths of the stable and unstable solutions of the COR and

Hertz law impact oscillators which correspond to the stable non-impacting low

amplitude solution and the unstable low velocity impact solutions which continue on

from it. If instead of trying to locate the unstable solutions we simply allow the system

to evolve slowly as the amplitude increases we will follow the stable non-impacting

solution up to bifurcation, where the system will lose its stability and restabilise onto

a different attracting solution. Figure 4.10 and 4.11 show the comparison between the

two models at the parameter settings used in figures 4.5 and 4.8 (c=2.2). Here there

is a flip bifurcation in the Hertz law model at a forcing amplitude just greater than the

critical amplitude at which the first impacts start to occur. This flip bifurcation is the

start of a period doubling cascade. Figure 4.11 appears to show an immediate jump to

a period 4 solution, but if we look more closely at the region where the period four

solution begins we indeed see a period two solution (see inset, figure 4.11). In figure

4.10 there appears to be an immediate jump to a long period or chaotic solution

immediately after the point at which grazing occurs. No matter how closely we look

at this region we see this same sudden jump. There is a strong similarity between the

overall qualitative behaviour of the two models : in both cases there is a bifurcation

which leads to a large amplitude solution which appears to eventually become chaotic.
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xn+I={hlh) 

[1]4
b+(/z-2b)x

1J
0

4.19

2	 a

4.3 Analogous bifurcations in one dimensional maps

The numerical observations described in section 4.1 and 4.2 suggest that grazing

bifurcations are in some sense limiting cases of saddle-node and flip bifurcations as the

increase in stiffness at impact becomes large. However, we have presented only

numerical results showing similarities between particular, first grazing bifurcations and

their counterparts in the Hertz law model with a steeply increasing stiffness function at

impact. In order to try to explain how the grazing bifurcation behaviour of a two

dimensional map defined from the COR model could arise, we look at the behaviour

of one dimensional maps of the interval with the same essential characteristics. The

square root singularity in the derivative of a mapping defined by taking a two

dimensional section through the three dimensional phase space of the COR model is

seen to be the cause of the grazing bifurcation. We now examine the effect of

introducing the same kind of square root singularity into the derivative of a one

dimensional map of the interval. We consider two cases

b+(h-2b)x
	

0	
4.18

h_/h	 _l 4.---- n	 2

These one dimensional mappings are illustrated in figures 4.12 and 4.13. We set the

parameter b=O.1. The particular value of this parameter is not important to the

argument, except that b = 0 is avoided so that when h = 1 we do not have a line of fixed

points.

The parameter h in equations 4.18 and 4.19 corresponds to twice the height at which

the square root singularity occurs, it can be seen from the equations to always occur at
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X = '/z. Both in equations 4.18 and 4.19, as h is increased towards 1 there is a stable

period one fixed point of the one dimensional maps (the points at which the solid curve

crosses the dotted 450 line in figures 4.12 and 4.13, seen in figure 4.14 when h< 1.

In the higher line in figure 4.12, h has increased above 1 (h=1.1), and the period one

fixed point has gone highly unstable (the derivative of the mapping is large and

negative). Figure 4.13 shows the bifurcation diagram resulting from equation 4.18.

There is an immediate jump to a long period, complicated, apparently chaotic solution

as soon as h> 1, similar to that seen in figure 4.6. However closely we zoom in on the

bifurcation point at h =1 we never see a period doubling cascade to chaos. We can

prove that equation 4.18 is indeed chaotic as soon as h> II. Rewrite the equation as

XR+,f(Xr) . Define x0 < '4 wheref(xJ= ½ (i.e., x0 =(1-2b)12(h-2b)) and x,>'4 where

f(x,)='% (i.e., x,=1-1/h+11/r'). Then define L=[x0,'AJ, R=['%,x,J. Now f2(L)=[f

2('4)f(!,&)] and f2(R)=[12('4)f('½)J. Then if h=1+, cJ, we have I
€12 + O(€) <0 f ('4) <x0 and f('½)-x, = €-O(c 2) >0 f('½) >x,. Therefore

[x0 x,J=LUR C f2(L)flf2(R) = [f('½)/(½)], and sof is dhaotic as soon as h>1 (for

the proof result about one dimensional maps see for example Block and Coppel [1992]).

Furthermore we can define an interval TCJO,1], T=[f2(½)J'('%)J. The interval Tcan

be decomposed into T, =[f 2('4) '4) over which f increases monotonically and,

T2=['4f("%)] over whichf decreases monotonically. Now f(T) Cf =t12('%)f('4)J.

Thereforef(7)=T= any point tE T is mapped byf into T , i.e., Tis a trapping region

forf, f('4) =h/2, f2 ('%) = (14/77)h/2.

When the parameter h is less than one in equation 4.19 there are three fixed points, the

points of intersection between the solid curve and the dotted x =x1 , line, two of which

are stable and one unstable, illustrated by the lower line in figure 4.12 (h=0.9). At

h =1 we can see that a stable and unstable fixed point meet and both disappear. As h

is further increased above 1 as illustrated by the upper line in figure 4.12 (h1.1), only

one fixed point remains (at x = 1) and this is stable since the slope is less than one so

all initial conditions in the unit interval lead to this solution.

- 96 -



The relationship between the bifurcational behaviour of the one dimensional maps of

the interval 4.18 and 4.19, and conventional saddle node and flip bifurcations can easily

be seen. If the square root singularities were 'rounded off' and smooth maps were

considered instead, at approximately h = 1 there would clearly be a flip bifurcation in

4.18 and a saddle node bifurcation in 4.19.

The one dimensional maps described above, although displaying similar bifurcational

behaviour to the two dimensional maps arising from the COR impact oscillator model,

have not been derived from this model. Rather, they have been constructed so as to

have the same square root singularity characteristic which causes grazing bifurcations.

In order to analyze codimension one bifurcations of smooth maps it is possible to use

centre manifold theory to reduce the dynamics of the system to a one dimensional

(centre) manifold. A further coordinate transformation in the centre manifold yields the

normal form of a bifurcation, which allows it to be classified, for example as a flip or

saddle-node. Grazing bifurcations cannot be analyzed in this way since a centre

manifold does not exist at a grazing bifurcation. One cannot even linearise the map

around the fixed point at grazing, since the derivative of the map is not unique at this

point. Since the qualitative behaviour of the two dimensional maps arising from COR

impact oscillators seem to be captured by the one dimensional maps, equations 4.18

and 4.19, a similar transformation to reduce the behaviour at bifurcation to a one

dimensional map would be desirable. This is an area which requires further work, as

does the study more generally of maps which are continuous but not differentiable (to

some degree).
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4.4 Bifurcations of subharmonics

In section 3.7.2 and 3.7.4 we derived expressions for possible solutions to the COR

impact oscillator of period one with one impact per period. Almost exactly the same

analysis can be used to locate subharmonics of the same COR model with one impact

in N periods where N=2,3,4.....The only changes which are required are that instead

of looking for an orbit which repeats after time T (one period) we look for one which

repeats after time NT (N periods). In equation 3.30 the we just put =27N/w, which

modifies the constants v,c and s,,,. The procedure for locating possible steady state

solutions is then identical to that for period one solutions. First, the quadratic 3.32 is

solved for the velocity at impact yi and this is then substituted into one of 3.31 to solve

for the time at impact, t. The possible solution given by this procedure must be

numerically verified to ensure it is a true, physical solution. The jacobian matrix of the

impact map for period N solutions is obtained by substituting the modified constants

v,c and s,,, into equations 3.39 to 3.42 to obtain the elements of the matrix defined in

equation 3.43. Equation 3.45 then gives the eigenvalues of the jacobian exactly as

before.

Using the expressions for the eigenvalues of the jacobian we can locate the loci of

saddle-node and flip bifurcations of period N, one impact steady state solutions as in

section 4.1.5. The loci of these bifurcations for steady state, one impact solutions of

periods 2,3 and 4 are shown in figure 4.15 as the two parameters a and w are varied.

Also shown in this figure are the lines of grazing bifurcations.

Frequency response curves for various fixed forcing amplitudes are shown in figures

4.16 to 4.19. Both the maximum absolute displacement, x.., and the maximum velocity

at impact i,, over N forcing cycles are shown plotted against the forcing frequency o,.

Stable solutions are represented by a solid line whilst unstable solutions are shown with

a dotted line. Only the period N, one impact steady state solutions are shown in these

figures, i.e. those which can be calculated analytically. In figure 4.16 the forcing

parameter is kept fixed at a =0.5. In this case there are two "first grazing" bifurcations

either side of the linear natural frequency w= 1. As the forcing frequency is increased

from 0 only there is a stable non-impacting limit cycle whose amplitude grows as the
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frequency is increased towards 1. First grazing bifurcations occur at co=0. 710... and

w=1.218..., of "flip type" and "saddle-node type" respectively. The overall shape of

this frequency response curve is typical for small forcing amplitudes, such as in the

experiment which we describe in chapter 6. All of the solutions shown in figure 4.16

are of period one, and no higher period, one impact solutions exist at this low forcing

amplitude. Figures 4.17 to 4.19 show the response curves up to period four for the

forcing amplitudes a=l.5, 2.5 and 3.5. In each of these figures, there is only one first

grazing bifurcation, at = 1.578..., 1.868... and 2.119... respectively. The higher

period, one impact solutions all disappear as frequency w is increased at a saddle-node

bifurcation, but some appear at saddle-node bifurcations and others are created at

grazing bifurcations.
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- 100-

aa=ac

(b)z>O	 . a
•_______ Stable p.1 solution path (non-impacting)

Unstable p.1 solution path (impacting)

Figure 4.1 The two types of first grazing bifurcation for (a) z<0, (b) z>0
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Figure 4.16 Response curves of maximum displacement x.,and velocity i,
for period one solutions against forcing frequency, . Parameters as in
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unstable.
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5. Impacting offshore systems

5.1 Introduction

The work in this thesis was originally motivated by a particular problem involving

impacts which arises in offshore engineering. The problem of dangerous resonant

behaviour developing in impacting dynamical systems is not restricted to this problem,

or to offshore engineering. In this section we briefly mention some of the areas in

which such problems do arise, before concentrating on some of the particular problems

which arise in offshore engineering, and finally concentrating on the one which has

motivated this study. The theoretical insights into impacting dynamical systems which

have been discussed in chapters 3 and 4 have mainly concentrated on the qualitative

changes in behaviour which occur when a component just hits a stop with zero velocity.

These grazing b(furcation events can lead to a sudden jump to a different (pcssibly

"dangerous") solution or to complicated, nonperiodic, chaotic motions, even under

simple sinusoidal forcing. A simple model which is developed in this chapter for the

pile/sleeve interaction problem which motivated this study is shown to have a very

complicated dynamical response, including several grazing bifurcation events, the effect

of which must be fully appreciated in order to understand the overall behaviour of the

nonlinear dynamical system.

Physical and engineering systems which undergo impacts at motion limiting constraints

are encountered in a wide range of situations such as ratthng mechanical gears [Pfeiffer

& Kunert, 1990], impact printer heads [lung & Shaw, 1988a,b], the pounding of

buildings under earthquake excitation [Davis, 1992] and heat exchanger tubes subject

to aerodynamic excitation [Paidoussis & Li, 1992]. Such systems are inherently highly

nonlinear since there are two greatly different "regimes". Any model of a system with

impacts must include a regular, between impact regime and also the completely

different behaviour at an impact. Offshore engineering is a source of several examples

of this type of system. A good understanding of the dynamical responses of offshore

structures subject to impacts is therefore very important. In mechanical systems with

impacts such as gear rattle or impact printers, the main problems are which are caused

by repeated impacts at a stop are noise and wear. In the offshore environment,
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however, a short burst of large impacts could cause great damage or even the complete

failure of a structure.

Early studies by Thompson and co-workers [Thompson, 1982, Thompson & Ghaffari,

1982,1983, Thompson & Elvey, 1984, Thompson, Bokaian & Ghaffari, 1983,1984]

investigated the dynamical behaviour of an articulated mooring tower with an oil tanker

moored to it by a light mooring line. The tanker itself can be regarded as an

immovable fixed object, whilst the articulated mooring tower is essentially an inverted

pendulum pinned to the sea bed. The tower oscillates under wave forcing causing the

mooring lines to repeatedly slacken and then tighten again. This behaviour can be

modelled as a bilinear stiffness (one stiffness regime with the line slack, with the

restoring moment on the tower solely due to buoyancy and the other, much greater

stiffness with the line taut). If the stiffness with the line taut is considerably greater

than with it slack then the system can be reasonably modelled as an impact oscillator.

Numerical investigations by Thompson showed a complex response of a one degree of

freedom model of such a mooring tower, with subharmonic motions of order n at

approximately n times the natural frequency of the structure. Aperiodic, chaotic

solutions were also found to exist for this simple system. A problem similar to that of

the dynamical response of an articulated mooring tower is the response of ships moored

either against stiff fenders in a harbour [Lean, 1971], or moored to a fixed offshore

platform [Sterndorff et al, 1992]. In the case of a ship moored to a small fixed offshore

platform the impact load of the ship can be greater than the expected extreme

environmental loads and so the ship impact can govern the design of the platform.

Another example of an offshore dynamical impacting system arises in the installation

of platforms over pre-installed templates on the sea bed over pre-drilled wells. Some

kind of indexing system is used, as described in the next section, to guide the platform

accurately into position over the pre-drilled well with a guiding component on the sea

bed and a corresponding component on the platform itself. Although the problem of

impacts between the two components that make up the indexing system only occurs in

the short time whilst the platform is actually being installed over the template, it is very

important that excessive loads are avoided during this time. It is this problem that we

now go on to examine in more detail.
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5.2 Jacket to template docking problems

The conventional method, until recently, of developing an offshore hydrocarbon field

has been to construct and then install the jacket structure prior to drilling the well. The

recovery of capital investment can be achieved far more quickly if the drilling operation

can be performed in tandem with the construction of the jacket structure. The wells are

drilled and capped off, with a template installed over them so that the platform can be

accurately located over the well when it is finally installed, possibly two or three years

after drilling. Accurate location of the jacket structure over the pre-installed template

is essential since the wells are pre-drilled. Different methods for docking the structure

have been tried and one of the common limitations of such methods is excessive impacts

between the jacket and the guiding template. The dynamical response of the nonlinear

system comprising the jacket structure and template needs to be understood if the

installation process is to proceed successfully. This is essentially a forced impacting

oscillator problem, and in this section one particular docking method is discussed.

Several different methods for locating the jacket structure over the locating template are

used in practice. All involve some kind of restraining arrangement on or near the

template with which part of the jacket structure is mated. Amoco's Northwest Hutton

platform was installed using .a bumper-pile system for the mating of the platform and

template [Nelson et al, 1983, Stahl et al, 1983]. This technique involves the installation

of bumper piles near to the subsea template against which the platform structure is

manoeuvred, protecting the template from damage and orienting the structure correctly.

The bumper piles must be designed in order to withstand the impact loads inflicted on

them by the jacket in the installation procedure. An alternative method is to use a

pin/sleeve combination arrangement. Two or three docidng piles are installed in the

template which act as either the male or female component with either a pin or sleeve

mounted in the jacket. The gap between the pin/sleeve combination is designed to taper

down from a large distance at initial engagement to a distance small enough to be

within the required tolerance for the final position of the structure when fully installed.

This method was used in the installation of the Beryl B jacket in the North Sea

[Robinson & Ramzan, 1988J.
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Robinson & Ramzan performed a numerical simulation of the installation of a 7500

tonne jacket in a water depth of 66m using the pin/sleeve docking arrangement

described above, illustrated in figure 5.1. The structure was modelled as a 12 degree

of freedom system which has a piecewise linear stiffness function, where the stiffness

matrix changes on pile contact, forced by a random sea state with specified spectrum

type of a given significant wave height. At the closing stages of the installation

procedure the pile loads were found to become largest. In particular, the pile loads (the

forces at the piles) were found to be highly dependent on the mean period of the forcing

function. Figures 5.2 and 5.3 show the results of two runs of these numerical

simulations taken from Robinson & Ramzan [1988]. It was found that the jacket sway

amplitude increased rapidly at mean wave periods of greater than 5 seconds. The two

runs shown are taken at 6 seconds and 7.8 seconds mean wave perioc!s. In the first

case, the jacket sway behaviour was such that the structure was impactii .g mainly at one

of the piles, with only occasional occurrences of two sided impacting, which Robinson

& Ramzan called "ringing behaviour". In the second case, at mean wave periods of

7.8 seconds there are long bursts of high amplitude, ringing (two sided impacting)

behaviour with occasional less severe periods where there are only one sided impacts.

The natural period of free oscillations of the sway mode, the mode associated with the

high amplitude ringing events in the numerical simulations described above, is given

by Robinson & Ramzan as 7 seconds. The one-sided low amplitude impact events are

observed from these simulations to be taking place just above the natural frequency of

this mode and the high amplitude two sided ringing events take place at a lower

frequency, just below the natural frequency. It appears from the time series in figure

5.3 that neither the surge or heave modes play an important role in the onset of the

ringing events which lead to unacceptably high loads at the piles. There is clearly some

unexplained nonlinear behaviour taking place here since resonances are occurring away

from the natural frequency of oscillation of the sway mode: this is tot surprising since,

as has already been discussed, a system with impacts has two very differing regimes

at and away from impacts and so the system is naturally very nonlinear. We could

expect the transition from low amplitude one sided to high amplitude two sided

impacting to show up in a simple one degree of freedom model of the sway motion.
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In order to see how the behaviour described by Rob'nson & Ramzan could be explained

by a very simple one degree of freedom model of only the sway motions of the jacket

we use the simple coefficient of restitution model with a linear stiffness and linear

damping, sinusoidaily forced. Despite being a possibly over simple model for the

impact process, part of the work of this project has been to show that the overall

qualitative behaviour which arises from the coefficient of restitution rule is the same as

that which arises from more realistic rules. Experimental work with laboratory impact

oscillator models also shows that qualitative behaviour is predicted well by the

coefficient of restitution impact rule. The one degree of freedom model is given by

MX" +	 +	 = Acos(fZr) , r,<X<I	
5.1

- —rX' , X=r yr X=l

where:

M
	

effective mass

(linear damping coefficient

natural frequency of the sway oscillations

(2
	

forcing frequency of sway oscillations

A
	

amplitude of the forcing of sway oscillations

r	 coefficient of restitution

r8	 distance from equilibrium position to right hand stop

18	 distance from equilibrium position to left hand stop

x
	

displacement from equilibrium position of sway mode

T
	 time

time derivative

In contrast, the 12 degree of freedom model used a piecewise linear stiffness function

to model the impact, a quadratic damping term, and a random forcing function based

on a specified spectrum with given significant waveheight and mean period. A

sinusoidal forcing function can be looked upon as a worst case scenario since

resonances at a particular frequency are gven time to build up.

The maximum amplitude of the sway oscillations found when the 12 d.o.lf. numerical

model, freely suspended, was subjected to 3 hours of random waves at a mean wave
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period of 7.8 seconds was found to be O.667m. Oiem that the natural period of these

oscillations is given as 7 seconds then we can assunie (using The analytical solution for

equation 5.1) an equivalent forcing amplitude value off

A = max(X)l,i&Q2 + (çp_)2	
5.2

where max(X) is the maximum absolute value of the displacement of the sway motions

of the jacket, c is the linear natural frequency of the sway oscillations (2T/7 tad s1)

and the mean forcing frequency (27/7.8 rad s e). When the jacket is lowered over

the sleeve, at the position where the time series shown in figures 5.2 and 5.3 were

taken, the gap between sleeve and pile is given as Q.697an. We could expect that there

will be a bias to one side, so put r3 =0.29m, so this gives l=O.4O7m. By rescaling the

time and displacement variables in equation 5.1 we can obtain a model comparable to

the one studied in earlier sections

+dx+x=aco(t) , b<x<l	
5.3

i-'-ri	 x=1 or,i=b

In this equation an overdot represents differentiatia wiiih respect to time. Rescaling

has been applied to equation 5.1 in such a way that the right hand stop is at x=1,

giving b=-1.403. The forcing frequency in this equatici is the riormalised frequency

ø=W,,, so the first time series is taken at o=7/6= 1 667 and the second at

=7I7.8 O.897. Assume a coefficient of restitution r=Q.T and a linear damping

coefficient d=0.1 used in earlier sections. Putting niax(X)=O.65 in equation 5.2, a

value just less than the absolute maximum measured in the full jacket model, gives a

forcing amplitude of c =0.4803. We have thus defiedl a simple one degree of freedom

model which captures the fundamentals of the important sway oscillations of the jacket

at this crucial stage of the deployment over the template.

Using the numerical techniques described in chapter 2, the solution path of the period

one non-impacting solution which exists for small frequencies of this system was

followed numerically as the frequency varied, and the results are shown in figure 5.4.

The maximum absolute values of the velocity and displacement measured over one

period are plotted against the forcing frequency which is varied with all other

parameters of the system kept constant. Stable solutions are followed until a bifurcation
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occurs, where there is a qualitative change in the behaviour of the dynamical system:

the unstable solution which continues on from a bifurcating stable one is then followed.

The response curves are identical to those of the one sided impact oscillator at the same

parameters but with only a stop at x =1 until the maximum displacement reaches the

position of the second stop at x=-1.403. On examining the behavioir off the

comparable one sided COR impact oscillator (see section 4.1.5) then for a forcing

amplitude c=0.4803 we expect the period one non-impacting solution to lose stability

at a "flip type" first grazing bifurcation (as the forcing frequency CL is increased from

zero). This is followed by a conventional flip bifurcation at which the unstable period

one solution created at the first grazing is restabilised. Num&cally this grazing

bifurcation is found to occur at co —0.72 ((31) followed by a flip at o 0.97 (Fl). The

consequence of the loss of stability at the grazing bifurcation (31 is that a chaotic

solution develops. The period one orbit which becomes stable again at Fl is impacting

only on the right hand stop. The amplitude of the response of this period one, one

impact solution increases with increasing w until part of the orbit reaches the left hand

stop at 1.2 (02). Here, as can be seen in figure 5.4, there is a further "flip type"

grazing at which the period one, one sided impacting solution again loses its stability

in the transition to a period one unstable solution impacting at both stops. Following

the path further, we see a conventional flip bifurcation at c. 1.4 (F2) leading to a

stable period one solution impacting once at either stop, wllidh disappears at a saddle

node bifurcation at c 1.9 (SN!). The two sided impacting unstable solution which

meets and annihilates the two sided impacting stable solution at SN! continues back to

a further grazing bifurcation, this time at w 1.2(03), where the stable, non impacting

solution grazes the right hand stop with decreasing w. In order for this last bifurcation

to occur, there must have been a transition fromi two sided impacting to one sided

impacting solutions along the unstable path betveen SN1 and (33. The "kink" an this

solution path at w 1.4 in figure 5.4a can be seen to be the place where this transition

occurs from figure 5.4b. Here, an unstable orbit just grazes a stop and remains

unstable, so the number and type of solutions does not change, so no bifurcation has

occurred.
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This whole complicated scenario of conventional and grazing bil'urcations tells us much

about the overall behaviour of the system. The response curves in figure 5.4 show the

unstable solutions which follow on when stable solutions disappear at a bifurcation.

Further investigation is needed to discover what solution the system restabilises onto

after these bifurcations.

The one degree of freedom model, equation 5.3, is modelling the sway mode of the

jacket structure under consideration here. The high degree off freedom, randomly

forced model of this physical system was observed to undergo one sided impacts when

the mean frequency of the wave forcing was just above the natural frequency of the free

sway oscillations, at c 1.1667. This frequency is between the bifurcations Fl and 02

in figure 5.4, and in this region there is a one sided impacting sohtion, illustrated in

figure 5.5. Figure 5.5a shows a time series of the displacement, x, against time t taken

over 15 forcing periods after all transients had been allowed to decay, and figure 5.5b

shows. the phase plane projection of this stable period ae orbit (where velocity is

plotted against displacement, i.e. time has been "projected out") Further numerical

investigations (e.g. a cell-to-cell mapping in this region to determine basins of

attraction) reveal no other solutions.

At a mean wave frequency of w=O.897, just below the natural] frequency of sway

oscillations of the jacket structure, the 12 degree of freedom model was observed to be

undergoing two sided impacts with much higher loads at the piles. This frequency is

in the range between the bifurcations 01 and F 1. The stable non-impacting period one

orbit loses stability at the flip type grazing bifurcation (31 and then regains stability at

the conventional flip bifurcation Fl. At w=O.897 there is no stable period one orbit

for the system to fall on to. A cell-to-cell mapping at this parameter set shows that two

period two solutions exist, and the basins of attraction of these solutions are shown in

figure 5.6. These two penod two solutions are illustrated in figures 5.7 and 5.8. As

in figure 5.5, figures 5.7 and 5.8 show the steady state time series over 15 forcing

periods and the phase plane projections of the stable solutions. Figure 5.7 shows the

steady state solution associated with the large, white basin of attraction in figure 5.6.

This is seen to be a period two, two sided impacting motion. Figure 5.8 shows the

steady state solution associated with the much smaller, black basin ef attraction, which
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again repeats after two periods, but only undergoes impacts on one side. In a random

forcing environment centred around these parameters we would expect the two sided

solution to dominate since its basin of attraction is much larger. This is indeed the type

of behaviour observed in the 12 d.o.f. model of Robinson & Ramzai for the jacket/pile

interaction (figure 5.3), i.e. a large amplitude, two sided behaviour dominates with

occasional bursts of smaller amplitude one sided impacting behaviour.

In the previous section we described the results obtained from following the unstable

solution paths which continue on from stable ones after a bifurcation of the system,

equation 5.3. If instead we allow the system to slowly evolve and thus fall onto another

stable solution after bifurcation we obtain the bifurcation diagram., figure 5.9. This

figure shows the bifurcation diagram obtained by starting with dnitial conditions on the

stable period one, one sided impactirg orbit which exists at o=1.2 (see figure 5.4) and

slowly decreasing the frequency. The force at the impact is shown plotted against the

forcing frequency, o, since it as the pile load which is the important limiting quantity

in the docking of the jacket structure over the piles. We see that the stable, period one,

one sided impacting solution is ollowed with the response (force at the right stop) fairly

constant, until Fl at O.97 where there is a supercritical flip bifurcation. The period

two solution which results from this bifurcation grows rapidly in size until it impacts

also against the left hand stop. At this point there is a further grazing bifurcation and

the amplitude of the forces at the stops becomes around twice as large. An orbit on the

path of this large amplitude, two sided impacting motion is illustrated in figure 5.7.

Below this, beyond the parameter region of interest for this particilar problem, there

are many further bifurcations, leading eventually to the final (flip type) grazing

bifurcation at which an unstable period one impacting solution bifurcates to leave a

period one, stable non-impacting solution at Gi.

Above we have described the results of numerical investigatiofls of a simple model of

an impact oscillator designed to be comparable to the sway oscillations of a particular

jacket/pile interaction problem. It has been shown that the behaviour observed from

a much larger model including all of the modes of oscillation, 2nd subject to urealisticu

forcing functions can be reproduced and explained in terms of bifurcations of the simple

one degree of freedom nonlinear system, equation 5.1. The advances in the
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understanding of grazing bifurcations described in previous chapters meaji that the

results obtained above can be interpreted correctly, with the effects of both grazing and

conventional bifurcations understood and appreciated. It is not suggested that these

ideas can replace the comprehensive modelling of complex engineering systems, but

rather, once possible problems have been identified using such large models, then more

detailed studies of a simplified dynamical system containing the essential elements can

be performed. One advantage of this approach is the ease with which parametric

studies can be performed to identify which parameter sets are safe and which unsafe.

With the more complicated models, computer power and time limitations mean that

often only a few parameter settings can be investigated, and so important jumps to

resonant solutions could be missed altogether.
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Figure 5.1 Typical pin/sleeve dockLng arrangement (from Robinson aid Rarnzan, 1988).
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Figure 5.2 Time series of docking pile and jacket motions in a sea state with significant wave
height Hs=2m, mean period T=6s (taken from Robinson and Ramzan, 1988).
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Figure 5.3 Time series of docking pile and jacket motions in a sea state with significant wave
height Hs=2m, mean period T=7.8s (taken from Robinson nd Ramzan, 1988).

- 131 -

Image removed due to third party copyright



2

•q.'•

E i..

I.

I .2

I

0.6

0.2

0
0 0.5	 1	 1.5	 2

2

-S

I.

1.2	
__•//

0.2

Figure 5.4 Frequency response curves for equation 5.3, or=O.4803, d=O.1, r=O.7, b=-l.403.
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Figure 5.7 Illustrations of (a) 15 periods of the time series x against t and (b) the phase plane
projection, x against x, for two sided impacting stable period 2 orbit of equation 5.3, parameters
as figure 5.4, w=O.897.
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6. Experimental studies of an impact oscillator

6.1 Introduction

Several experimenta1 studies of impact oscillators haive been carriei out. Moon and

Shaw [1983 investigated tie chaotic vibrations of a lbcain with impacts at a stop, and

compared the experirnen't1J results 'with a piecewise thesr model obtained from a

(3alerkin approximation using only the first mode.. Poincaré naps and fourier

transforms of chaotie nnotions foin the experiment and frcn'i the theoretical model were

compared,, and found to agree ieasonably welti. Stemnon and Nortlmart [19921 used

a vibratirg spring/mass system with impacts at a stop aid cornretl this experimental

setup with a simple coefficient ofi restitution theoretical model. Bifurcation diagrams

and chaotic aTh-actors in loincar niaps obtaned fron numerical simulations of the

model and from the experiin onE were compared. Some of these results showed a

remarkable agreement Tie niaii concern of the present work has not however been

addressed in previous experiznuflal studies. 'he grazing b furcatiotis Which are found

to occur tin the COR niodt1 when an orbit undergoes an additioaal low velocity impact

seem to be very important to the oivaall bifurcational beha'our®f au inipact oscillator.

In chapter 4 at was shown that even when the disconnu)us coefficient of restitutiou

impact nile is replaced by a coi tinuous and dferenakle stiffness ftnction which rises

rapidly at impact to oppose the niotion (the Hertz law modd), the cjualitative

bifurcational behaviour appears to be the same. Iii this chapter an experiment is

described which is devised ii order to test whether the qa1itative bifurcatmonal

behaviour of the COIR model oncF an experiment with *orie sidd inpact are the same.

6.2 Experimental setu p

Figure 6.1 shows a diagram of the experimental setup used A long, slender steel bean

is attached to a metal base at one 4. At the other, free end of te beam there is an

electromagnet which is used to f.rce the beam, a !rmity pnibe to measure the

displacement of the beam and a steel pin wh ch acts mis a 'stop. The pin is attached to

a micrometer and so can he moved towards the beam or away from it, and the distance

from the stop to the bean can be measured A miaoclimpuler with an analogue to
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digital /1 digital to analogtie converter (ADCIDAQ) card is used b.ih to drive the

electromagnet 'ith some waorm and to read the 'coItge. fini lie proximity probe.

Some of the specifications of the experimental setup are given bdow.

Beam:

Length
	

300mm

Width
	

3Omnm

Thickness
	

2rnni

ADCIDAC (ationa1 Instruments LABC):

Input vottage range
	

±5v

Maximum sampliEg rake
	

62500Hz

Ana}ogue input rcso1uon
	

12 bits (liii O9

(Output voltage rage
	

±5v

Maximum waveform update rate: iApproa. 2001)0() points/sec

Anallogue output iesolation	 IZ bits (ii ira4O9(3J

A piece of software has been custors written to drive the electiomngnetic forcer and

take readings ifroni the proxinnit)' probe. A ConhI1nuou sine wave function of a given

frequency and amplitude is aent to the output channel. A large dffiieuendes is chosen

and the software steps through this range off frequencies, allowing, 31) seconds at each

step for any transient motions to decay. The AIDC is then used to acquire 10000

readings of the vdltage at 1e pxoxinsty probe at a rate o IOOD4J }1z,i.e. one second of

data. Since the DAC Lises aseparateclodkon the ADO1DAC card tothe ADC, the two

Ifunctions of waveIorn'i generation aid data acqis tion can take place simultaneously.

The maximum absolute vdtage in ills oue second is acaiaon period is recorded and

the tiniebase ffor waveform generation is then altered to start ti e DAC generating the

waveform at the next freqaenc,y. After a further 30 seconds anillior reading is taken,

and -so on. When the end of this raige of frequenes is seached the process is reversed

so that a frequency sweep is perforimed in the opposite directilom.

There is a good linear relationship ibetween the voltage neasu-&1 from the proximity

probe and the diplacemeii of the beam as measuid by the micro nieter which the stop
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is attached. At each of the locations of the stop at which readii were taken, the

amplifier from the proximity probe was adjusted until the vdtagc icordeJ with the

beam in üts equilibrium position was zero: this allowed f4ur the correction of any small

thift of the instruments over time. The bean was thea held down on to the stq) and

the resulting steady volte recordleci. In figure 6.2 the recorded voltage ' (vdts) is

platted gairist the measured (distance to the stop d, (in ni), alone with the best least

squares fit given by the model i=Xd,, wheie the fitted parameter A=2.O1 v rnnrE.

6.3 Frequency sweeps with no stsip

In order to give a good conpaiison with the theoretical niodlel investigated in the

previous chapters it is required that the bean on its own alioU}d haiie a linear frequency

response curve. To achieve this as nearly as possible we excite the beam at a frequency

near to the natural frequency of the first node. The ampiitud of the forcing is also

chosen so as to be small enogl that the beana is not forced ilto a legion With nonlinear

response characteristics. With the stop veIl away from the barn, three frequency

sweeps were carried out In this ''ay it is coafirmei that the Jreqincy response curves

of the beani alone are very close to Linear. Wre1imiary stud es had indicated a natural

frequenicy around 28Hz, so the frequency range chosen was 25 ito 30 3Hz and in

each case a sweep up in 56 equal steps aid down in 5 equal steps was performed.

The parameters of the ibeaia cail then be esti mated from ths eperimentally ebtained

fiequency response curve. We are assun ing that oniy the first linear mode is being

excited, and further assume that there is linear danipirg of the beam. The ideaEsed

equation descrbing the motion of a point along the beam (when no stop is present) is

then

+	 = A cos(o1)	 6.1

where an overdot represents Iifferentiaon with repect to tines, is the linear

damping coefficient, c the natural frequency and A the forcing ampliitude afterthe mass

has been scaled out, and x is the displacement of the beam frori the stop in nm. The

asymptotic steady state soiLtion of this equation i x=4/'y)cot), where

y= (&,)+ (h12-.wj2/"2. The maximum sibsolute value oF te dhplacement is therefore

A/y. By performing .a nonlinear rninirnisation on the funclion
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A 1	 6.2s=E I Tt-
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with repect to the three jarameters t,A and c we can estänate the best fit to the

model 6.1 for the experimental dita set i=1,2,..,P1where the total number

of data Uoints and r is the maximum diplacoment of the beam (measured in volts from

the proxlnTity probe) at the frequency o,. The simplex search ntetiod of minimisation

was used to obtain the results in the table below

Ruin nuiniber	 /4	 (J,c	 Total number

	

(mni s'2)	 (rad s41)	 ()	 of pcxnts

11	 11.410)	 176.19	 0.0775	 111

2	 11.430	 176.19	 0,@777	 Ill

3	 11.489	 174.09	 D.@992	 111

Diagrain 6.3a-c show the data and fitted curves for nina 11 to 3. The assumptions that

the beam is governed by the linear stiffnes, linear dariping motel 6.1 are confirmed

by the goo1 fit to the data in rruns I andI 2. Run 3 appears tobe very noisy at the lower

frequencies and so is discardeth Runs 1 and 2 agree well v UI ne another, so we can

estiinite the parameters of the equivalent linear system as

Forcing aniplitudeA :	 1.420 nm

Natural frequency t	 I7.I9 rad s'

Damping coefficient &	 0.0776 s1

6.4 Fvequency sweeps wth mpict

Since the parameters A, . and z have been fitted to the 1intz nxdel given by equation

6.1, the free parameter which is altered in the experiment is tie position of the stop.

Six runs were made with the stop at Ldifferent positions. At the beginnizg of each run

the voltage measured at the proximity probe with no e<terrnl forcing applied was
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zeroed and then the beam held down on to the stop and the measured resulting voltage

noted. This, along with the distance measured by the micrometer, were used to show

the linear relationship between distance and measured voltage shown in figure 6.2.

Three frequency sweeps up and down for each position of the stop were then

performed, with the maximum displacement at each frequency being recorded as

described for the case with no stop. The three runs for eadh position of the stop were

averaged. From these experimental averaged frequency response curves the positions

of three bifurcational events were estimated for each position of the stop. These

bifurcations are : first grazing where the amplitude of response first reaches the

displacement of the stop as frequency is increased and the response curve flattens out;

second grazing where the amplitude of response first readhes the displacement of the

stop as frequency is decreased ; saddle-node bifurcation where the impacting solution

loses its stability as the frequency is increased. The results of the experimental runs

with the stop are summarised in the table below.

	

Run	 Measured	 Measured	 Frequency Frequency Frequency

number displacement displacement of first 	 of second	 of saddle

of stop	 at stop	 grazing	 grazing	 node

	

(volts)	 (mm)	 (rad s')	 (rad s)	 (i-ad s')

	

1	 0.09	 4.65	 171.53	 179.07	 186 42

	

2	 0.17	 4.60	 173.98	 177.81	 184.79

	

3	 0.26	 4.55	 174.99	 177.37	 182.65

	

4	 0.40	 4.50	 175.43	 176.56	 188.43

	5	 0.49	 4.45	 175.99	 177.06	 180.52

	6	 0.61	 4.40	 175.87	 176.49	 180.14
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6.5 Comparison of experimental and theoretical results

Figure 6.4 shows a typical response curve for run 4 along with the numerically

calculated theoretical response curve assuming a coefficient of restitution model with

the parameters calculated from the linear response curves (the runs with no stop).

There is still one parameter which remains to be estimated : the coefficient of

restitution, r. In figure 6.4 we have chosen to have r=O.2 which is quite a low value

(Goldsmith [1960] gives the coefficient of restitution between steel and steel as

somewhere between 0.7 and 0.8). Despite the good fit between the runs with no stop

and a linear response curve (figure 6.2), confirming that predominantly only one mode

is being excited, once a stop has been imposed there is a possibility of other modes

being excited. The coefficient of restitution must be made small in order to account for

the energy which is being transferred to these higher modes at each impact. There is

a good qualitative agreement between the frequency response curves obtained

experimentally and the theoretical response curves. For each position of the stop the

response curve flattens out after the first grazing as the frequency is increased from

below the wi,, the natural frequency of the first linear mode. The small increase in

maximum absolute displacement after the first grazing belies the greatly increased

velocity with which the beam hits the stop. With the simple experimental apparatus

used here it was difficult to measure velocities (the direct measurement of displacement

was not clean enough to differentiate for the velocity). However, just by ear it was

possible to tell that the severity of impacts at the stop was increasing, with the loudest

wringing of the beam against the stop occurring just prior to the saddle-node

bifurcation event which occurs when the impacting state disappears as the frequency is

increased, leaving the system to settle on a low amplitude non-impacting state. The

frequency response curves for the coefficient of restitution model bear out this

observation. Although the maximum displacement of the response increases only very

slowly after the first grazing until the final saddle-node bifurcation, the velocity at the

stop (the impacting velocity) increases quickly after first grazing. The velocity at

impact in the theoretical model increases until just before the final saddle node

bifurcation where the period one, one impact per period solution is destroyed.
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A more detailed comparison between the bifurcational behaviour of the theoretical and

experimental models is made in figure 6.5 where the positions in parameter space

(position of stop vs forcing frequency or d vs c) of the various bifurcations listed in the

above table are shown. For a given forcing frequency, a grazing bifurcation will occur

if the maximum amplitude of the response with no impacts is equal to the position of

the stop, x=d. The locus of grazing bifurcations in d vs w parameter space then is

given by

Ad = __________	 6.3
k:t ,)2 + (,2 -

The location of the saddle-node bifurcations in this parameter space for the theoretical

model with the fitted parameters can be calculated for a given coefficient of restitution

using the explicit expressions for the eigenvalues of the first differential matrix of the

impact map given in section 3.74 (with suitable rescaling). The loci of saddle-node

bifurcations for a range of values of the coefficient of restitution r is plotted in figure

6.5. Clearly a very low coefficient of restitution is required for the theoretical curve

to lie near to the experimentally observed one.

6.6 Conclusions

The overall qualitative behaviour of a one sided impact oscillator modelled using a

simple coefficient of restitution rule to model the impact appears to agree well with the

results of the experiments using an electromagnetically excited beam described above.

In particular, the bifurcations which are predicted by the theory (including both the

conventional, smooth bifurcations and the neww grazing bifurcations), and which

determine the overall shape of the frequency response curve, are found experimentally.

it is clear that the grazing bifurcations which have been the subject of study of much

of this project play an important part in the overall dynamical response of an impact

oscillator.
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Figure 5.1 Typical pin/sleeve docking arrangement (from Robinson and Ramzan, 1988).
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7. Conclusions

A wide variety of physical systems undergo intermittent contact with motion limiting

stops under the influence of some external forcing. These impact oscillators have been

frequently studied in the light of a particular physical application, some examples of

which are given in the references in section 1.1.2. A common approach taken in these

studies is a parametric study, in which the parameters of interest in a mathematical

model of the physical system are varied, and in this way parameter regions of

wacceptablew behaviour are found. More systematic studies of nonlinear dynamical

systems concentrate on the bifurcations at which qualitative changes in the system

dynamics occur. In this way, for example, parameter sets at which bifurcations which

lead to jumps to "dangerous" types of motion can be located. The classification of

bifurcations and the behaviour they lead to in a dynamical system are therefore of great

interest. Impact oscillators are often modelled using the simple coefficient of restitution

(COR) rule to instantaneously reverse velocity at an impact. Complicated dynamics can

arise due to the non-smooth nature of the resulting dynamical system. In particular,

types of local co-dimension one bifurcation not found in smooth dynamical systems can

occur, called grazing b?fiircalions. In this thesis we have sought to show the types of

grazing bifurcation which can occur, and also to answer the important question of how

these bifurcations relate to smooth bifurcations. If we model an impact oscillator with

a smooth formulation, we would expect that the overall behaviour of the two similar

systems would be the same.

It was shown in section 3.5 that the reduction of the flow of a continuous time COR

impact oscillator to a discrete Poincaré map can result in that map being discontinuous.

Both the stroboscopic map, in which the displacement and velocity of the impact

oscillator are sampled once every forcing cycle (at the beginning, say) and the impact

map, in which the time and velocity are sampled at an impact, are shown to be

discontinuous. The stroboscopic map is discontinuous due to the instantaneous reversal

of velocity at the stop imposed by the COR rule, whereas the impact map is

discontinuous due to the lack of transversality of the chosen surface of section. More

serious to the overall dynamics of the COR impact oscillators are the discontinuities in
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gradient which are apparent in any Poincar map. It is demonstrated in section 3.6 that

there is a square root singularity in the gradient of a map at any point which, if the

flow line through it were followed, would just touch a stop with zero velocity before

intersecting again with the surface of section. Since there is a line of points along the

stop with zero velocity in a one degree of freedom impact oscillator, then there will in

general be a line of discontinuity in gradient in the Poincaré map (we can see this just

by following the flow lines through the line of zero velocity at the stop backwards in

time to the surface of section). As a system parameter is varied, the position of a stable

fixed point of the one parameter family of maps will vary. If at some parameter value

the stable fixed point comes to lie on a line of discontinuity in gradient then this

parameter value is one at which the map has become structurally unstable. The square

root singularity on the impact side of the line ensures that a stable fixed point cannot

exist on this impact side, but can exist on the other side of the line. This event we have

called a grazing bjfurcation. It is most useful to think of these grazing bifurcations

taldng place in any map other than the impact map, since in the impact map a line of

discontinuity and of discontinuity in gradient coincide at the line of zero velocity. By

choosing for example the stroboscopic map it becomes clear that the grazing bifurcation

events occur because of fixed points crossing the line of discontinuity of gradient.

In chapter 4 we studied the grazing bifurcation event in COR impact oscillators by

concentrating on the simple case of a sinusoidally forced one degree of freedom system

with linear damping and linear stiffness characteristics away from the stops. To further

simplify matters we concentrated on the first grazing bifurcations, that is bifurcations

between a stable, non impacting limit cycle and a steady state impacting limit cycle with

one impact. Both of these steady states can be located analytically using the methods

shown in chapter 3, along with their stability characteristics. It is shown that the

impacting solution is unstable as the velocity at impact tends to zero, whereas the non-

impacting steady state solution is always stable since it is just the asymptotic steady

state of a linear oscillator. Further, we have shown that the impacting solution

approaches the non-impacting solution (i.e. stable solution meets unstable) as the

parameter is moved towards that at which first grazing occurs. Two situations

corresponding to two different types of grazing bifurcation are possible. The unstable

periodic orbit can approach the stable one either from above or below as a parameter
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is varied. If both stable and unstable steady states approach one another from below,

they then annihilate one another at the critical first grazing parameter. In the other

case, the saddle solution "continues on" from the stable solution. We call these

bifurcations saddle-node type and flip type grazing bifurcations respectively, since these

are similar smooth bifurcations. Following a saddle-node type grazing there is no

nearby solution arid the system will restabilise onto a distant attracting solution. After

a flip type grazing, however, numerical evidence has shown that there is apparently an

immediate jump to a chaotic attractor. It is also numerically observed that a different

impact oscillator model, the Hertz law model, which does not suffer from the continuity

problems of the COR model, does indeed undergo saddle-node bifurcations and flip

bifurcations (the start of a period doubling cascade to a chaotic solution) near to their

grazing bifurcation counterparts. Analogous one dimensional maps of the interval, with

a square root singularity in gradient, are also shown to exhibit similar behaviour,

including an immediate jump to a chaotic solution. We also manage to find analytically

some co-dimension two bifurcations which occur when the first grazing bifurcation

changes at a point from flip type to a saddle-node type grazing. It appears from this

work that saddle-node and flip type grazing bifurcations can be seen as discontinuous

equivalents to their smooth counterparts. In the case of the flip type grazing

bifurcation, a whole period doubling cascade appears to have been compressed to a

point. A similar phenomenon is seen in Nordmark [1993] in which the shape of a

chaotic attractor in a smooth model of an impact oscillator approaches the shape of the

chaotic solution of the COR impact oscillator at the same parameter values as the

severity of the impact is increased.

There are many further questions, not addressed in this thesis, which can be asked

about grazing bifurcations. For example, given the observation that a chaotic solution

arises immediately from a flip type grazing bifurcation then is it possible to show that

there must be a homoclinic tangle in the invariant manifolds of the unstable solution

created at the bifurcation? It may be possible to locate the invariant manifolds

analytically, again due to the simple piecewise linear nature of the impact oscillator

model (a similar idea is used in Hogan [1992]). The observation made above that a

whole period doubling cascade appears to have been compressed to a point at a flip type

grazing bifurcation could be examined in smooth models of impact oscillators. Does
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the period doubling cascade get compressed to a point as the severity of the impact is

increased, and if so at what rate? Further interesting directions for further work may

lie in investigating the bifurcations which can occur in other continuous, non-

differentiable maps.

The simple experiment which is described in chapter 6 is not sensitive enough to show

the detailed events shown in some experimental studies, such as chaotic solutions, or

periodic solutions at exactly the predicted parameter settings. We were however able

to detect the significant bifurcational events which occur in this physical one sided

impact oscillator and show that the overall qualitative behaviour is as predicted by the

COR model. This gives a further indication that the COR model, although simple, does

capture the essential characteristics of true impacting systems. Although grazing

bifurcations only occur in the idealised mathematical model, they approximate the true

behaviour of impact oscillators undergoing low velocity impacts.
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