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A search for a narrow Higgs boson resonance in the diphoton mass spectrum is presented based on
data corresponding to 10 fb−1 of integrated luminosity collected by the CDF experiment from proton–
antiproton collisions at

√
s = 1.96 TeV. To increase the sensitivity of the search, we employ a multivariate

discriminant technique for the first time in this channel at CDF. No evidence of signal is observed, and
upper limits are set on the cross section times branching ratio of the resonant state as a function of the
Higgs boson mass. The limits are interpreted in the context of the standard model with an expected
(observed) limit on the cross section times branching ratio of 9.9 (17.0) times the standard model
prediction at the 95% credibility level for a Higgs boson mass of 125 GeV/c2. Moreover, a Higgs boson
with suppressed couplings to fermions is excluded for masses below 114 GeV/c2 at the 95% credibility
level.
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1. Introduction

The standard model (SM) of particle physics has proven to be a
robust theory that accurately describes the properties of elemen-
tary particles and the forces of interaction between them. However,
the origin of mass has remained an unsolved mystery for decades.
The SM suggests that particles acquire mass due to interactions
with the Higgs field via spontaneous symmetry breaking [1]. In di-
rect searches at the Large Electron–Positron Collider (LEP) [2] and
recent search results from the Tevatron [3] and the Large Hadron
Collider (LHC) [4], all potential SM Higgs boson masses outside the
ranges 116.6–119.4 GeV/c2 and 122.1–127.0 GeV/c2 are excluded
by at least one experiment.

In the SM, the branching ratio for a Higgs boson decaying into
a photon pair B(H → γ γ ) is maximal for Higgs boson masses be-
tween about 110 and 140 GeV/c2. This is a mass range that is
most suitable for Higgs boson searches at the Fermilab Tevatron [3]
and is favored by indirect constraints from electroweak observ-
ables [5]. The SM H → γ γ branching ratio peaks at a value of
about 0.23% for a Higgs boson mass mH = 125 GeV/c2 [6]. This is
a very small branching ratio; however, the distinctive signal that
photons produce in the detector makes H → γ γ an appealing
search mode. Compared to the dominant decay modes involving
b quarks, a larger fraction of H → γ γ events can be identified
and the diphoton invariant mass of these events would cluster in
a narrower range, thus providing a better discriminator against the
smoothly distributed background. There are also theories beyond
the standard model that predict a suppressed coupling of a Higgs
boson to fermions. In these “fermiophobic” Higgs boson models,
the diphoton decay can be greatly enhanced [7].

The Collider Detector at Fermilab (CDF) and D0 experiments at
the Tevatron have searched for both a SM Higgs boson, H , and
a fermiophobic Higgs boson, h f , decaying to two photons [8]. The
CDF and D0 experiments recently set 95% credibility level (C.L.) up-
per limits on the cross section times branching ratio σ × B(H →
γ γ ) relative to the SM prediction and on B(h f → γ γ ) using data
corresponding to integrated luminosities L of 7.0 fb−1 [9] and
8.2 fb−1 [10], respectively. The h f result sets a lower limit on mh f

of 114 GeV/c2 and 112.9 GeV/c2, respectively. These results sur-
passed for the first time the 109.7 GeV/c2 mass limit obtained
from combined searches at the LEP collider at CERN [11].

The ATLAS and CMS experiments at the LHC at CERN have
searched for a SM Higgs boson decaying to two photons using
L = 4.9 fb−1 [12] and 4.8 fb−1 [13], respectively. In the low mass
range, rates corresponding to more than twice the SM cross sec-
tion are excluded at the 95% C.L. An excess of 1.8σ is present
in the CMS result and of 1.5σ in the ATLAS result, accounting
for the look-elsewhere effect, which could be consistent with a
SM Higgs boson with a mass near 125 GeV/c2. Recent updates
confirm these excesses at the 5σ level [14]. Searches for a fermio-
phobic Higgs boson in the ATLAS diphoton data exclude the ranges
110.0–118.0 GeV/c2 and 119.5–121.0 GeV/c2 at the 95% C.L. [15],
and in the CMS diphoton data the ranges 110.0–124.5 GeV/c2 and
127.0–137.5 at the 95% C.L. [16].
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24 Visitor from National Research Nuclear University, Moscow, Russia.
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In this Letter, we present a search for a Higgs boson decaying to
two photons using the final CDF diphoton data set, corresponding
to an integrated luminosity of 10 fb−1. This analysis searches the
diphoton mass distribution for a narrow resonance that could re-
veal the presence of a SM or fermiophobic Higgs boson, updating
the previous CDF result [9] with more than 40% additional inte-
grated luminosity. We furthermore implement a new multivari-
ate technique for events that contain two central photons, using
both diphoton and jet kinematic variables to improve the sensitiv-
ity for identifying a Higgs boson signal from the diphoton back-
grounds.

2. Higgs boson signal model

For the SM search, we consider the three most likely produc-
tion mechanisms at the Tevatron: gluon fusion (GF); associated
production (VH), where a Higgs boson is produced in association
with a W or Z boson; and vector boson fusion (VBF), where a
Higgs boson is produced alongside two quark jets. As an exam-
ple, the SM cross sections [3] for mH = 125 GeV/c2 are 949.3 fb
[17], 208.0 fb [18], and 65.3 fb [19] respectively. In the fermio-
phobic search, we consider a benchmark model in which a Higgs
boson does not couple to fermions, yet retains its SM couplings
to bosons [7]. In this model, the GF loop process is suppressed and
fermiophobic Higgs boson production is dominated by VH and VBF.
With L = 10 fb−1, about 28 (43) H → γ γ (h f → γ γ ) events are
predicted to be produced for mH = 125 GeV/c2.

The acceptance of these events in well-instrumented regions of
the CDF detector times the efficiency of passing the full diphoton
selection discussed in Section 3 [9] is only about 25%. This frac-
tion, along with the predicted distributions of kinematic variables,
is obtained from a simulation of Higgs boson decays into dipho-
tons. For each Higgs boson mass hypothesis tested in the range
100–150 GeV/c2, in 5 GeV/c2 steps, signal samples are developed
from the pythia 6.2 [20] Monte Carlo (MC) event generator and
a parametrized response of the CDF II detector [21]. All pythia

samples were made with CTEQ5L [22] parton distribution func-
tions, where the pythia underlying event model is tuned to CDF jet
data [23]. Each signal sample is corrected for multiple interactions
and differences between the identification of photons in the simu-
lation and the data [9,24]. The GF signal is furthermore corrected
based on a higher-order theoretical prediction of the transverse
momentum distribution [25].

3. Detector and event selection

We use the CDF II detector [26] to identify photon candidate
events produced in pp̄ collisions at

√
s = 1.96 TeV. The silicon

vertex tracker [27] and the central outer tracker [28], contained
within a 1.4 T axial magnetic field, measure the trajectories of
charged particles and determine their momenta. Particles that pass
through the outer tracker reach the electromagnetic (EM) and
hadronic calorimeters [29–31], which are divided into two re-
gions: central (|η| < 1.1) and forward or “plug” (1.1 < |η| < 3.6).
The EM calorimeters contain fine-grained shower maximum detec-
tors [32], which measure the shower shape and centroid position
in the plane transverse to the direction of the shower develop-
ment.

The event selection is the same as in the previous H → γ γ
search [9]. Events with two photon candidates are selected and
the data are divided into four independent categories according
to the position and type of the photons. In central–central (CC)
events with non-converted photons, both photon candidates are
detected within the fiducial region of the central EM calorimeter
(|η| < 1.05); in central–plug (CP) events with non-converted pho-
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tons, one photon candidate is detected in this region and the other
is in the fiducial region of the plug calorimeter (1.2 < |η| < 2.8);
in central–central events with a conversion (C′C), both photon can-
didates are in the central region, but one photon converts and is
reconstructed from its e+e− decay products; in central–plug events
with a conversion (C′P), there is one central conversion candidate
together with a plug photon candidate.

For the diphoton resonance technique described in Section 4,
the event selection in the fermiophobic Higgs boson search is ex-
tended by taking advantage of the final-state features present in
the VH and VBF processes. Because the Higgs boson from these
processes will be produced in association with a W or Z boson,
or with two jets, the transverse momentum of the diphoton sys-
tem pγ γ

T is generally higher relative to the diphoton backgrounds.
A requirement of pγ γ

T > 75 GeV/c isolates a region of high h f sen-
sitivity, retaining roughly 30% of the signal while removing 99.5%
of the background [8]. Two lower-pγ γ

T regions, pγ γ
T < 35 GeV/c

and 35 GeV/c < pγ γ
T < 75 GeV/c, are additionally included and

provide about 15% more sensitivity to the h f signal.

4. Diphoton resonance search

The decay of a Higgs boson into a diphoton pair would ap-
pear as a very narrow peak in the distribution of the invariant
mass mγ γ of the two photons. The diphoton mass resolution as
determined from simulation is better than 3% for the Higgs boson
mass region studied here and is limited by the energy resolution
of the electromagnetic calorimeters [33] and the ability to identify
the primary interaction vertex [9,24]. The diphoton invariant mass
distribution for the most sensitive search category in the SM and
fermiophobic scenarios is provided in Fig. 1, with an inset show-
ing the signal shape expected from simulation. In each diphoton
category, we perform a search of the mγ γ spectrum for signs of a
resonance.

For this search, the total diphoton background is modeled
from a fit to the binned diphoton mass spectrum of the data
using a log-likelihood method, as described in [9,24]. The fit
is performed independently for each diphoton category and in-
cludes only the sideband region for each mH hypothesis, which
is the control region excluding a mass window centered on the
Higgs boson mass being tested. The full width of the mass win-
dow is chosen to be approximately ±2 standard deviations of
the expected Higgs boson mass resolution, which amounts to
12 GeV/c2, 16 GeV/c2, and 20 GeV/c2 for mass hypotheses of
100–115 GeV/c2, 120–135 GeV/c2, and 140–150 GeV/c2, respec-
tively. Example fits for the CC category for mH = 125 GeV/c2 are
shown in Fig. 1.

5. Multivariate discriminator

The diphoton mass distribution is the most powerful vari-
able for separating a Higgs boson signal from the diphoton back-
grounds. However, other information is available that can be used
to further distinguish this signal. We improve the most sensitive
search category (CC) by replacing the diphoton mass shape as a fi-
nal discriminator with a “Multi-Layer Perceptron” neural network
(NN) [34] output distribution. The NN combines the information
of several well-modeled kinematic variables into a single discrim-
inator, optimized to separate signal and background events. Four
diphoton kinematic variables are included: mγ γ , pγ γ

T , the dif-
ference between the azimuthal angles of the two photons, and
the cosine of the photon emission angle relative to the colliding
hadrons in the diphoton rest frame (the Collins–Soper angle) [35].
For events with jets, we also include four variables related to
the jet activity, which are particularly useful for identifying VBF
Fig. 1. The invariant mass distribution of CC photon pairs in the data is shown for
(a) the entire pγ γ

T region used in the SM Higgs boson diphoton resonance search
and (b) the highest-pγ γ

T region (the most sensitive region) used in the h f diphoton
resonance search. Each distribution shows a fit to the data for the hypothesis of
mH = 125 GeV/c2, for which the signal region centered at 125 GeV/c2 is excluded
from the fit. The expected shape of the signal from simulation is shown in the inset
of (a). A Gaussian fit to the 125 GeV/c2 signal simulation yields a 1σ resolution of
less than 4 GeV/c2.

and VH signal events. These variables are the number of jets in
the event, the sum of the jet transverse energies, and the event
sphericity and aplanarity [36]. Jets are reconstructed from tower
clusters in the hadronic calorimeter within a cone of radius 0.4
in the η–φ plane [37]. Each jet is required to have |η| < 2 and
a transverse energy ET > 20 GeV, where the energy is corrected
for calorimeter response, multiple interactions, and absolute en-
ergy scale.

In order to optimize the performance of the method, we di-
vide the CC category into two independent subsamples of events:
the CC0 category for events with no jets and the CCJ category for
events with at least one jet. The CC0 category uses a network
trained with only the four diphoton variables; the CCJ category
uses a network trained with the four diphoton and four jet vari-
ables.

The sideband fit used in the diphoton resonance search pro-
vides an estimate of the total background prediction in each signal
mass window; however, the multivariate analysis requires a more
detailed background model. Specifically, we divide the background
into its distinct components in order to best model all input vari-
ables used by the discriminant, which is also sensitive to correla-
tions. There are two main background components in the CC data
sample: a prompt diphoton (γ γ ) background produced from the
hard parton scattering or from hard photon bremsstrahlung from
energetic quarks, and a background comprised of γ –jet and jet–jet
events (γ j+ j j) in which the jets are misidentified as photons [38].
To model the shape of kinematic variables in the γ γ background,
we use a pythia MC sample developed and studied in a measure-
ment of the diphoton cross section [35]. To model the variable
shapes in the γ j + j j background, we obtain a data sample en-
riched in misidentified photons by selecting events for which one
or both photon candidates fail the NN photon ID requirement [9].

In the diphoton cross section analysis [35] it was found that
a pγ γ

T -dependent correction was needed for the pythia modeling
of prompt diphoton events. We adopt the correction for this anal-
ysis, reweighting the pγ γ

T distribution from pythia to match the
pγ γ

T distribution from control regions in prompt diphoton data.
For each category, CC0 and CCJ, and for each Higgs boson mass hy-
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Fig. 2. For a Higgs boson mass of 125 GeV/c2, the reweighting function obtained
from the ratio of the pγ γ

T distribution in pythia to the pγ γ
T distribution in prompt

diphoton data, for events with (a) zero jets and (b) at least one jet. In both plots,
the best fit to the pythia-to-data ratio points is given by a solid curve. The other
two curves show the systematic uncertainty of the fit.

pothesis, event weights are derived for the γ γ background based
on the sideband regions, excluding the signal mass window. The
weights are derived by fitting a smooth function to the ratio of the
pγ γ

T distribution from the data to that from the pythia prediction.
The best fit in the CC0 category is obtained from a polynomial
(constant) function for pγ γ

T < 50 GeV/c (pγ γ
T > 50 GeV/c). A dif-

ferent polynomial (constant) function provides the best fit in the
CCJ category for pγ γ

T < 60 GeV/c (pγ γ
T > 60 GeV/c). Fig. 2 shows

the reweighting function for a Higgs boson mass hypothesis of
125 GeV/c2. The solid curve shows the best fit to the data and
the other two curves show the variations induced by propagating
the 68% C.L. fit uncertainties to the fitting function. The rise of the
reweighting function from pγ γ

T ∼ 20 GeV/c to pγ γ
T ∼ 50 GeV/c in

both the CC0 and CCJ categories is interpreted in Ref. [35] as an
effect of parton fragmentation not modeled in pythia, which con-
tributes to the prompt diphoton production cross section in that
range.

The relative contributions of the two background components
are obtained from a fit to the diphoton data. Three histograms for
each NN input variable are constructed: one from the γ γ back-
ground sample after reweighting, one from the γ j + j j background
sample, and one from the diphoton data. Events used for the fit are
required to have diphoton mass values greater than 70 GeV/c2 and
to be outside of the signal mass window. The histograms are then
used to build a χ2 function defined by

χ2 =
Nbins∑ Nvariables∑ [

(αgij + β f i j − dij)
2

dij

]
(1)
i=1 j=1
Fig. 3. For a Higgs boson mass of 125 GeV/c2, a comparison of the data to the
background prediction in (a) the pγ γ

T distribution for the CC0 category and (b) the
distribution of the sum of the reconstructed jet ET for the CCJ category. The ex-
pected SM Higgs boson signal for the three production processes is multiplied by a
factor of 20.

where gij , f i j , and dij refer to the number of events in the ith bin
of the jth input variable for the prompt γ γ background, γ j + j j
background, and diphoton data samples, respectively. The sums are
over all bins of each input variable for which there are at least 5
events in the data, and the global α and β coefficients are de-
termined by minimizing the χ2 function. This function is defined
and minimized separately for each Higgs boson mass hypothesis
and for each category (CC0 and CCJ).

A neural network discriminant is trained separately for each
mass hypothesis using signal and background events. The signal
events used in the training are optimized for the SM scenario and
are composed of GF, VH, and VBF MC samples so that the corre-
sponding total numbers are proportional to their SM cross section
predictions. The background sample is made by taking a portion of
the γ j + j j sample available for each mass hypothesis and adding
γ γ events from pythia weighted by the ratio α/β from the χ2 fit
for the given mass hypothesis.

After training, the NN is applied to diphoton data events with
mass inside the signal window. Fig. 3 shows input variables such
as the pγ γ

T distribution for events with no reconstructed jets and
the sum of the jet E T for events with �1 reconstructed jet. The
signal shapes are scaled to 20 times the expected number of
reconstructed events in the SM scenario. The background predic-
tion is also provided. While the χ2 fit described by Eq. (1) is used
to fix the relative composition of the γ γ and γ j + j j background
components, the total expected number of background events is
more accurately determined from the sideband mass fits described
in Section 4. The resulting NN shapes for mH = 125 GeV/c2 are
provided in Fig. 4.
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Fig. 4. For a Higgs boson mass of 125 GeV/c2, a comparison of the NN output dis-
tributions for the data and the background prediction for (a) the CC0 category and
(b) the CCJ category. The expected SM Higgs boson signal for the three production
processes is multiplied by a factor of 20.

6. Systematic uncertainties

The sources of systematic uncertainties on the expected num-
ber of signal events are the same as in the previous CDF H → γ γ
search [9,24]. They arise from the conversion ID efficiency (7%), the
integrated luminosity measurement (6%), varying the parton dis-
tribution functions used in pythia (up to 5%) [39,40], varying the
parameters that control the amount of initial- and final-state radi-
ation from the parton shower model of pythia (about 4%), and the
pythia modeling of the shape of the pγ γ

T distribution for the h f
signal (up to 4%) [41]. Finally, we include uncertainties from the
photon ID efficiency (up to 4%), the trigger efficiency (less than
3%), and the EM energy scale (less than 1%). The signal rate uncer-
tainties that arise from a common source are treated as correlated
when combining results from each category.

The statistical uncertainties on the total background rate in the
signal region are determined by the mγ γ fits. They are 4% or
less for the channels associated with the SM diphoton resonance
search and are less than 7% for the CC0 and CCJ categories used in
the multivariate technique. For the channels associated with the
fermiophobic Higgs boson diphoton resonance search, the back-
ground rate uncertainty is 12% or less, except for the high-pγ γ

T
bins with conversion photons, where it is 20%. These background
rate uncertainties are treated as uncorrelated between categories
because the mγ γ fits are determined from exclusive data samples.

For the search using the multivariate technique, in addition
to the rate uncertainties summarized above, we consider shape
uncertainties and bin-by-bin statistical uncertainties of the NN
discriminant. The signal shape uncertainties are associated with
initial- and final-state radiation and the jet energy scale [37], and
the background shape uncertainties are associated with the pythia
pγ γ
T -correction and the jet energy scale. The pythia shape uncer-

tainties due to the pγ γ
T fits are taken as uncorrelated between

the CC0 and the CCJ categories because the fits determining the
corrections for each category are done independently. The jet en-
ergy scale shape uncertainties are correlated between the two
categories in order to take into account event migration between
categories. The dominant uncertainty in the multivariate analysis
is the bin-by-bin statistical uncertainty of the γ j + j j background
histograms.

7. Results

No evidence of a narrow peak or any other structure is visible
in the diphoton mass spectrum or the NN output distribution. We
calculate a Bayesian C.L. limit for each Higgs boson mass hypoth-
esis based on a combination of likelihoods from the discriminant
distributions for all channels in the corresponding mass signal re-
gion. The combined limits for the SM search use the NN discrim-
inants of the CC0 and CCJ categories and the mass discriminants
from the CP, C′C, and C′P categories. The fermiophobic limits use
the NN discriminants of the CC0 and CCJ categories and the mass
discriminants from the CP, C′C, and C′P categories divided into pγ γ

T
regions. For the limit calculation, we assume a flat prior (truncated
at zero) for the signal rate and a truncated Gaussian prior for each
of the systematic uncertainties. A 95% C.L. limit is determined such
that 95% of the posterior density for σ × B(H → γ γ ) falls below
the limit [42]. The expected 95% C.L. limits are calculated assum-
ing no signal, based on expected backgrounds only, as the median
of 2000 simulated experiments. The observed 95% C.L. limits on
σ ×B(H → γ γ ) are calculated from the data.

For the SM Higgs boson search, the results are given relative to
the theory prediction, where theoretical cross section uncertain-
ties of 14% on the inclusive GF process, 7% on the VH process,
and 5% on the VBF process are included in the limit calculation [3,
43]. Since the NN technique divides the CC category into sepa-
rate channels based on the number of reconstructed jets, different
GF cross section uncertainties are assigned to the CC0 and CCJ
channels [3,44]. For the h f model, SM cross sections and uncer-
tainties are assumed (GF excluded) and used to convert limits on
σ ×B(h f → γ γ ) into limits on B(h f → γ γ ). The SM and fermio-
phobic limit results for the CC category alone are provided in Ta-
ble 1, showing the gain obtained by incorporating a multivariate
technique for this category. The combined limit results for both
searches are displayed in Table 2 and graphically in Fig. 5. Limits
are also provided on σ × B(H → γ γ ) for the SM search without
including theoretical cross section uncertainties. For the SM limit
at mH = 120 GeV/c2, we observe a deviation of greater than 2.5σ
from the expectation. After accounting for the look-elsewhere ef-
fect associated with performing the search at 11 mass points, the
significance of this discrepancy decreases to less than 2σ . When
the analysis is optimized for the fermiophobic benchmark model,
no excess is observed. For the h f model, we obtain a limit of
mh f < 114 GeV/c2 by linear interpolation between the sampled
values of mh f based on the intersection of the observed limit and
the model prediction.

8. Summary and conclusions

This Letter presents the results of a search for a narrow reso-
nance in the diphoton mass spectrum using data taken by the CDF
II detector at the Tevatron. We have improved upon the previous
CDF analysis by implementing a neural network discriminant to
increase sensitivity in the most sensitive diphoton category by as
much as 13% (17%) for the SM (fermiophobic) scenario. In addition,
we have included the full CDF diphoton data set, which adds more
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Table 1
Expected and observed 95% C.L. upper limits on the production cross section multiplied by the H → γ γ branching ratio relative to
the SM prediction for the most sensitive category (CC) using the NN discriminant. For comparison, values for the CC category are also
provided based on the diphoton resonance technique, which uses the mγ γ shape as a discriminant for setting limits. The expected and
observed 95% C.L. upper limits on the h f branching ratio (in %) are provided in parentheses, based on both the NN discriminant and
diphoton resonance technique for the CC category.

mH (GeV/c2) NN discriminant mγ γ discriminant

Expected Observed Expected Observed

100 13.9 (4.6) 10.6 (4.7) 15.1 (5.1) 11.3 (3.5)
105 12.6 (4.6) 13.0 (6.1) 14.1 (5.5) 10.6 (5.1)
110 11.9 (5.2) 11.8 (5.5) 13.5 (5.8) 11.4 (6.3)
115 11.4 (5.2) 14.1 (6.7) 12.9 (6.2) 15.4 (6.0)
120 11.3 (5.5) 23.2 (9.2) 12.8 (6.6) 22.2 (7.3)
125 11.7 (6.4) 20.5 (10.2) 12.9 (6.9) 21.2 (8.0)
130 12.5 (7.0) 13.1 (6.5) 13.9 (7.3) 16.0 (6.0)
135 13.7 (7.7) 15.0 (6.0) 15.3 (7.9) 17.2 (4.9)
140 16.5 (8.2) 20.4 (8.1) 17.5 (8.3) 25.4 (5.9)
145 18.5 (8.4) 27.4 (11.8) 21.2 (8.6) 24.3 (8.8)
150 25.7 (8.7) 17.1 (7.0) 28.2 (9.0) 15.1 (8.4)

Table 2
Expected and observed 95% C.L. upper limits on the production cross section times branching ratio relative to the SM prediction, the production cross section times branching
ratio with theoretical cross section uncertainties removed, and the h f branching ratio. The fermiophobic benchmark model prediction for B(h f → γ γ ) is also shown for
comparison.

mH (GeV/c2) 100 105 110 115 120 125 130 135 140 145 150

σ ×B(H → γ γ )/SM Expected 12.2 10.9 10.6 9.7 9.7 9.9 10.5 11.6 14.0 16.0 21.3
Observed 10.4 11.0 7.7 10.9 21.3 17.0 12.9 12.9 18.3 21.2 14.9

σ ×B(H → γ γ ) (fb) Expected 45.1 39.0 37.2 31.8 29.7 27.2 25.5 24.0 23.0 20.4 20.2
Observed 37.9 40.6 26.8 35.9 66.6 47.7 31.5 26.5 30.7 27.2 13.9

B(h f → γ γ ) (%) Expected 3.7 3.8 4.3 4.3 4.6 5.3 5.7 6.1 6.6 6.7 7.1
Observed 4.9 5.1 3.5 4.8 5.9 4.9 5.3 7.9 8.4 8.3 5.0
Fermiophobic prediction 18.5 10.4 6.0 3.7 2.3 1.6 1.1 0.8 0.5 0.4 0.3

Fig. 5. (a) As a function of mH , the 95% C.L. upper limit on the cross section times branching ratio for the SM Higgs boson decay to two photons, relative to the SM prediction.
(b) The 95% C.L. upper limit on the branching ratio for the fermiophobic Higgs boson decay to two photons as a function of mh f . For reference, the 95% C.L. limits from
LEP are also included. The shaded regions represent the 68% C.L. and 95% C.L. bands for the observed limit with respect to the expected limit based on the distribution of
simulated experimental outcomes.
than 40% additional integrated luminosity relative to the previous
diphoton Higgs boson search. There is no significant evidence of a
resonance in the data. Limits are placed on the production cross
section times branching ratio for Higgs boson decay into a photon
pair and compared to the predictions of the standard model and
a benchmark fermiophobic model. The latter results in a limit on
the fermiophobic Higgs boson mass of mh f < 114 GeV/c2 at the
95% C.L.
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