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Voltage-gated calcium channels consist of the main pore-forming α1 subunit, together, except in the case of
the T-type channels, with β and α2δ and sometimes γ subunits, which are collectively termed auxiliary or ac-
cessory subunits. This review will concentrate on the properties and role of the α2δ subunits of these chan-
nels. These proteins are largely extracellular, membrane-associated proteins which influence the trafficking,
localization, and biophysical properties of the channels. This article is part of a Special Issue entitled: Calcium
channels.
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1. Introduction

Voltage-gated calcium (CaV) channels are required for many key
functions in excitable cells, including transmitter release and muscle
contraction [1]. The calciumchannel complex in skeletalmuscles is local-
ized in skeletal muscle transverse tubules. Purification shows it to con-
tain five protein bands: α1 (~170 kDa), α2 (~150 kDa), β (~52 kDa), δ
(~17–25 kDa) and γ (~32 kDa) in approximately stoichiometric
amounts [2,3]. The α1 subunit was found to bind the calcium channel
blockers 1,4-dihydropyridines (DHPs), and was therefore identified to
be the pore-forming subunit. The β and α2δ subunits were then termed
auxiliary or accessory subunits. Here I will focus on the role of the α2δ
subunits, updating and building on several previous reviews on the sub-
ject [4–10]. I will concentrate on their role in the calcium channel com-
plex, although recent evidence suggests they may have additional roles
in cell function [9,11,12].

2. α2δ subunit genes

Fourα2δ subunit genes have been cloned. CACNA2D1 encodesα2δ-1,
theα2δ subunit, whichwasfirst identified in skeletalmuscle. It has fairly
ubiquitous distribution, being present in cardiac and smooth muscle as
well as brain, while CACNA2D2 and CACNA2D3, encoding α2δ-2 and
α2δ-3, are differentially expressed in neurons and some other tissues
[13,14] (Table 1). CACNA2D4, encoding α2δ-4, shows expression which
is mainly non-neuronal, although it is present in retinal neurons
[15,16]. The gene structure is similar for allα2δ subunit genes, for exam-
ple CACNA2D2has 39 exons. Several other similar genes have been iden-
tified by bioinformatic means [17], but they have not been shown to
function as calcium channel α2δ subunits.

2.1. α2δ subunit splice variants

The first evidence for the presence of splice variants in α2δ sub-
units came from the fact that the cDNA sequence of the main α2δ-1
subunit isoform expressed in rat brain showed regions of divergence
compared to the skeletal muscle transcript [18]. Multiple sequence
alignments allowed three regions, termed A, B and C, to be identified
as resulting from alternative splicing. Five different transcripts were
found in mouse brain, skeletal muscle, cardiac and smooth muscle
[19]. Alternative splicing of the other α2δ subunits has also been de-
scribed [13,15,20]. In preliminary studies we have recently found
changes in alternative splicing of α2δ-1 in rat dorsal root ganglion
Table 1
Summary of α2δ subunits.

Gene name Accession numbera (human) Protein name Main tissue ex

CACNA2D1 NM_000722 α2δ-1 Skeletal, cardia
endocrine tissu

CACNA2D2 NM_001005505 α2δ-2 CNS, especially
CACNA2D3 NM_018398 α2δ-3 CNS, PNS [55]
CACNA2D4 NM_172364 α2δ-4 Retina, endocr

CNS, central nervous system; PNS, peripheral nervous system.
a The accession number given is one of several available in Genbank, since sequences the
(DRG) neurons have been observed following spinal nerve ligation
(SNL) [21].

3. Determination of α2δ subunit topological features

Theα2δ proteins have complex topological features, whichwere ini-
tially difficult to unravel. Following disulfide bond reduction, themolec-
ular weight of the skeletal muscle α2 subunit was ~150 kDa, and the δ
subunitwas between17 and 25 kDa [22]. In contrast, without reduction
the α2 and δ subunits behaved as a single protein of ~175 kDa. The in-
terpretation of this result is that α2 and δ are disulfide-bonded under
native conditions (Fig. 1A, B). Following the partial sequencing of the
α2 and δ proteins, and the cloning of a single gene [23], it then became
clear thatα2 and δ are encoded by the same gene, with δmaking up the
C terminal end of a pre-protein that is then subject to proteolytic cleav-
age, post-translationally. N terminal sequencing of the δ protein bands
indicated they all had the same proteolytic cleavage site [22], and the
different sizes of the δ peptides were found to represent several glyco-
sylation states [22]. Bothα2 and δ are heavily glycosylated, as their mo-
lecular weights are reduced by glycosidase enzymes [22,24] (Fig. 1B).

There are also multiple cysteines in both α2 and δ, making it likely
there are both intra- and inter-subunit disulfide bonds. The process of
disulfide-linking and proteolytic cleavage of α2 and δmust occur dur-
ing trafficking of the α2δ protein. Disulfide bond formation normally
occurs co-translationally in the lumen of the endoplasmic reticulum
(ER), and most proteolytic processing occurs later in the maturation
of proteins, particularly in the trans-Golgi network. Thus it is likely
that a loop formed by disulfide bonding in α2δ is then proteolytically
cleaved by a so far unidentified protease, at an unknown subcellular
site (probably post-ER), leaving the two subunits disulfide-bonded.
The residues have recently been identified that are involved in disul-
fide bond formation between α2 and δ in α2δ-1 [25].

Theα2 subunit ofα2δ-1 has anN terminal signalmotif, clearly show-
ing that the N terminus is extracellular (Fig. 1A). It was initially
suggested, based on hydrophobicity plots, that there were three hydro-
phobic and potential transmembrane regions [22,23], but thismodel lo-
cated several of the predicted N-glycosylation motifs intracellularly,
making it unlikely. It has also been shown that α2 can be released
from membranes by disulfide bond reduction, indicating that it is en-
tirely extracellular [22]. In contrast, the δ protein is not released, show-
ing it to be an integral membrane protein [22]. In agreementwith these
findings, site-directed topology mapping using anti-peptide antibodies
[26] and studies using truncated α2δ-1 constructs also showed that α2

is extracellular [24,27,28].
pression Pathologies associated with gene disruption

c and smooth muscles. CNS, PNS,
es [22,55,117]

Cardiac dysfunction [104], disruption of
neuropathic pain [105].

cerebellum [14,20,55] Epilepsy, cerebellar ataxia [14,112,118].
Central processing of pain [115]

ine tissue [16]. Retinal dystrophy, night blindness [16,60]

various splice variants, and partial sequences are also available.

ncbi-n:NM_000722
ncbi-n:NM_001005505
ncbi-n:NM_018398
ncbi-n:NM_172364


Fig. 1. Topological features of α2δ subunits, illustrated for α2δ-1. A: α2δ-1 pro-protein, with notable features. The sequence is taken from rat α2δ-1 (NM_012919). B: mature α2δ-1
protein, cleaved into α2 and δ. The approximate positions of the VWA domain and the two bacterial chemosensory domains (C) are given. The mature form has multiple
intrasubunit disulfide bonds, only the intersubunit disulfide bond between α2 and δ is shown. It also has multiple identified glycosylation sites (●) in both α2 and δ. About
35 kDa of carbohydrate residues can be removed with Endoglycosidase F [35], corresponding to utilization of between ~9 and ~12 glycosylation sites. There are 15 predicted
N-glycosylation sites in α2δ-1, two of which are in δ-1. α2δ-1 is shown as a GPI-anchored protein; it is nevertheless possible that transmembrane forms exist.
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The general topology of theα2δ protein is likely to be very similar for
all α2δ subunits. They are all predicted to have N terminal signal se-
quences, although for α2δ-2, the N terminal signal motif is longer than
average for such sequences [29], but is nevertheless absent from the
mature cell-surface-expressed protein [30]. When expressed, the signal
sequence is co-translationally cleaved and the α2 moiety is inserted in
the lumen of the ER, and becomes completely extracellular [22,29].
After cleavage of the N-terminal signal sequence, there are 19 cysteines
in the mature rat α2δ-1, 19 in the mouse α2δ-2 and 20 in rat α2δ-3 se-
quences, of which 8 are in δ-1, 9 in δ-2 and 8 in δ-3. Theα2δ subunits all
show reducedmolecular weights following by disulfide bond reduction
[22,31,32], indicating that α2 and δ are linked by one or more disulfide
bonds. The pair of cysteines responsible for the disulfide bond between
α2 and δ-1 has been identified [25] (Fig. 1B).

4. Membrane anchoring of α2δ proteins

The α2δ subunits have only short predicted intracellular sequences
distal to the C-terminal hydrophobic stretch of residues that forms a po-
tential transmembrane domain [7]. The C-terminal sequence of rat
α2δ-1 is given in Fig. 1A. The C terminal sequence of ratα2δ-3 is similar,
being …..HPEENARECGGASSLQAQVALLLLPLVSSLFSR. There are two hy-
drophilic residues at the extreme C-terminus, preceded by 13 hydro-
phobic residues (underlined), which is likely to be too short for a
plasma membrane-spanning α-helix. This sequence is also split by a
helix breaking proline. The predicted GPI-anchoring motif is CGG or
GAS (bold). Similarly, the C-terminal sequence in mouse α2δ-4 is …

HPEENAQDCGGASDTLPSSPLLLLSLGAWLLPPQLLW, with only one aro-
matic residue after the 17 residue C-terminal hydrophobic sequence,
which contains two prolines. For these and other reasons, in various
proteomic prediction programs some of these α2δ proteins are predict-
ed to be glycosyl-phosphatidylinositol (GPI)-anchored [33,34], particu-
larly α2δ-3 and α2δ-4. We have now obtained a large amount of
biochemical, imaging and electrophysiological evidence in agreement
with the hypothesis that both heterologously expressed and endoge-
nous α2δ proteins can form GPI-anchored proteins [31] (Fig. 1A, B).

We have recently examined the behavior of an α2δ-1 construct
truncated at the predicted GPI-anchor site [35]. Similar to a previous
study using a truncated Prion protein construct [36], the majority of
C-terminally truncated α2δ-1 is soluble and secreted into the medi-
um. Unexpectedly, some of the truncatedα2δ-1 protein remains asso-
ciated with detergent-resistant membranes (DRMs), also termed lipid
rafts, and is extrinsically bound to the plasma membrane, by an as yet
unknown mechanism [35]. Identification of the binding partners of
α2δ-1 responsible for this membrane tethering will provide an im-
portant insight into its function.

5. Structural and biochemical studies on α2δ subunits

5.1. Interaction of α2δ with α1 subunits

After α2δ subunits were identified as components of the calcium
channels in skeletal muscle,α2δ proteins were also found to be present
in native cardiac (L type) [37] and brain N-type and P/Q-type channels
[38,39]. It is likely that all native CaV1 and CaV2 calcium channels can
associate with α2δ subunits, but it is still unclear whether these α1

subunits might membrane α2δ subunits. Within different tissues and
brain regions the calcium channel complexes formed are likely to
depend on cellular expression [40].

Purification experiments using native T-type calcium channels are
hampered by the lack of suitable selective drugs and antibodies to aid
purification of the channels. Since the expression of cloned channels
is substantial in the absence of α2δ subunits, it is assumed that native
T-type channels normally exist without associatedα2δ proteins in the
plasma membrane [41,42].

5.2. Structural studies of calcium channel complexes using electron
microscopy

Low resolution structures of calcium channel complexes purified
from skeletal and cardiac muscle have been obtained using single par-
ticle averaging of electron microscopic (EM) images [43–45]. Tenta-
tive identification of the α2δ and β subunits within the particles has
been possible using antibody labeling. Lectin labeling also identifies
the position of α2δ which is the only glycosylated species in the car-
diac calcium channel complex, since it lacks γ subunits [45]. The
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density associated with α2δ-1 subunit within the cardiac calcium
channel complex was also identified by subtraction of the CaV3.2 sin-
gle particle EM density, as this represented an α1 subunit alone [45].
The density assigned to α2δ surrounded, but did not cover, the pre-
sumed pore region of theα1 subunit [45]. EM studies in skeletal muscle
have identified particles thought to correspond to DHPR complexes
[46]. However, following extensive knock-downofα2δ-1, by viral infec-
tion of short interfering RNA into myotubes, the size and pattern of the
tetradic calcium channel particles was unaltered, indicating that they
probably represent the α1S (CaV1.1) subunit [47].
5.3. The domain structure of α2δ proteins

Bioinformatic analysis of α2δ sequences shows that all α2δ subunits
contain certain domains, including a Von Willebrand Factor A (VWF-A
or VWA) domain [17]. This domain was defined in vonWillebrand Fac-
tor, where it is involved in binding to a number of cell adhesion and ex-
tracellular matrix proteins. VWA-like domains are usually about 200
residues long, and also found in some integrin subunits, collagens and
laminin [48]. The VWA domain represents a dinucleotide binding fold
with ametal ion adhesion (MIDAS)motif, which participates in divalent
cation-dependent interactions. In general, VWA domains are involved
in protein–protein interactions, via their MIDAS motif [17], which
co-ordinates a divalent cation, most often Ca2+ or Mg2+ [17]. The
α2δ-1 and α2δ-2 proteins contain a “perfect” MIDAS motif, in which
all 5 co-coordinating amino acids are present. This has been predicted
to indicate that a structural alteration of the protein complex will
occur following divalent cation-binding and subsequent complex for-
mation with another protein ligand [17]. The structure of α2δ VWA do-
mains has been modeled by homology with other VWA domains
present in the structure database [9,49]. A key component of the
MIDAS motif is a 5 residue motif containing three of the co-ordinating
residues (D×S×S), near the N-terminal end of the VWA domain,
which is also present in α2δ-3 and α2δ-4. The functional relevance of
the VWA domain is discussed below in Section 8.1.

There are also two bacterial chemosensory-like or Cache domains in
α2δ subunits, situated downstream of the VWA domain [50]. These
were identified by homology with an extracellular domain found in
many bacterial chemotaxis receptors. In bacteria, these proteins are in-
volved in sensing both potential sources of nutrients or molecules to
avoid. Several such domains have been crystallized in the presence of
bound hemewhich is a redox sensor [51]. Other bacterial chemosensors
are involved in chemotaxis to dipeptides, ribose and galactose, and as-
partate and repellants [52]. In plants the ethylene receptor has a similar
domain [53]. The potential function of these domains in α2δ subunits is
discussed in Section 8.1.
6. Cellular localization of the α2δ subunits

6.1. α2δ-1

A number of studies have examined the cellular and subcellular lo-
calization of the different α2δ subunits at the level of both transcript
and protein. The α2δ-1 subunit is strongly expressed in skeletal muscle
but is also fairly ubiquitously present in other tissues,mainly in excitable
cells [23,32]. The α2δ-1 isoform is also present in cardiac and smooth
muscle. In these tissues it is the principal α2δ subunit associated with
CaV1.2 [37,54]. Within the mouse brain, message for α2δ-1 is present
throughout the brain, particularly in cerebral cortex, hippocampus and
cerebellum [13]. The α2δ-1 mRNA is found in many neuronal cell types
[55], and is also present in neurons of the peripheral nervous system, in-
cluding DRG neurons [56,57]. Interestingly, in neurons the presence of
α2δ-1 transcript was partially correlated with excitatory neurons rather
than inhibitory interneurons [55].
6.2. α2δ-2

Theα2δ-2 protein is expressed in fewer tissues than isα2δ-1. In both
human and mouse tissues,α2δ-2 is found in brain, using in situ hybrid-
ization, Northern blots and PCR based localization [14,58,59]. In the
brain,α2δ-2 is concentrated in cerebellum, where it is highly expressed
in Purkinje cells [14,29,32].α2δ-2 is also found in other brain regions in-
cluding striatum and hippocampus [14]. Within the central nervous
system, the cellular distribution of α2δ-2 mRNA was found to correlate
partially with GABAergic neurons [14,55]. Message for α2δ-2 was also
found in human lung tissue, in two reports [32,59], although not in an
earlier study [13]. However, the α2δ-2 protein was hardly detectable
[32]. The reason for the discrepancy between low protein expression,
despite high transcript levels, is unclear. In contrast, α2δ-2 mRNA was
not found in mouse lung tissue [14].

6.3. α2δ-3

In the mouse, α2δ-3 mRNA and protein are solely expressed in
brain, whereas in humans, the transcript is also found in skeletal mus-
cle and heart [32]. Within mouse brain α2δ-3 mRNA is found in many
brain regions, including caudate-putamen, cerebral cortex and hippo-
campus [55].

6.4. α2δ-4

The α2δ-4 subunit was initially reported to show very restricted
distribution of transcription in some endocrine tissues, and not pres-
ent in brain [15]. However, another study has shown a more ubiqui-
tous distribution of α2δ-4 mRNA, albeit with low expression in
brain and muscle [60]. It is also present in the retina [60], where ge-
netic mutations result in a form of night blindness [16,60].

7. Subcellular localization of α2δ subunits

7.1. Skeletal muscle

Within skeletal muscle, α2δ-1 is strongly concentrated in the skel-
etal muscle transverse (T) tubules in association with the DHPR com-
plex. In the T-tubule-sarcoplasmic reticulum junction, the DHPRs are
present in a tetrad structure, juxtaposed with the ryanodine receptors
which are on the sarcoplasmic reticulum [61,62].

7.2. Presynaptic terminals

In brain and spinal cord, the α2δ-1 protein is mainly found in the
neuropil, and at a much lower level in somata [63]. In hippocampal cul-
tures it co-localizes with presynaptic boutons [64]. It is also highly
concentrated in synaptosomes together with the CaV2 calcium channels
involved in transmitter release.

In primary afferent DRG neurons, its presence in their central ter-
minals in the spinal cord has been confirmed electron microscopically
[57]. Nevertheless it is not exclusively presynaptic as it was also
present in dendritic structures [57]. We have also found that α2δ-1
subunits are transported from the site of synthesis in the DRG cell
bodies, down both their central and peripheral axons, and are found
within trafficking vesicles [57]. The finding that α2δ-1 is transported
in peripheral axons opens the possibility that it might affect other
processes, such as regeneration following nerve damage, as well as
calcium channel trafficking.

There is little information on the subcellular distribution of mamma-
lian α2δ-2 or α2δ-3 proteins, mainly because of the lack of appropriate
antibodies. Evidence from Drosophila suggests that the α2δ-3 homolog
(straitjacket) interactswith cacophony, a calciumchannel that is localized
to active zones and involved in presynaptic release [65]. Furthermore,
the C. elegans α2δ subunit (UNC36) is required for the presynaptic
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localization of UNC2, which is a CaV2 calcium channel homolog [66].
These results all point to the likelihood that α2δ subunits play a role in
targeting calcium channels to specific presynaptic locations associated
with active zones. In retinal rods and cones, α2δ-4 has also been found
to be presynaptically localized to the ribbon synapses of the salamander
retina [67].

7.3. Membrane microdomain localization of α2δ subunits

All the α2δ proteins are strongly localized in detergent-resistant
membrane (DRM) fractions, which are cholesterol-rich, and also
called “lipid rafts”. This localization is seen both following heterolo-
gous expression of α2δ proteins, and when examining native α2δ pro-
teins in neurons [31,68]. This suggests they may be localized in
specific microdomains in neuronal membranes. In agreement with
this, experiments in retina have shown the mobility of α2δ-4, and
by assumption, also the L-type channels involved in transmitter re-
lease in rods and cones, is highly confined to synaptic regions, but in-
creases transiently on transmitter release, and shows less restricted
movement following lipid raft disruption [67].

8. Effects of α2δ subunits on the pharmacological and biophysical
properties associated with specific calcium channels

The α2δ subunits affect the electrophysiological properties of CaV1
and CaV2 calcium channels, and some of these effects are dependent
on the expression of a β subunit [69]. It is likely that β subunits en-
hance the movement of calcium channels out of the ER, by promoting
correct folding and protecting the CaV1 and CaV2 channels from
proteasomal degradation [70,71].

8.1. Effect of α2δ on plasma membrane expression of calcium channels

For CaV1 and CaV2 calcium channels, β subunits are a key subunit
allowing trafficking to the plasma membrane [72]. The specific effect
of the α2δ subunits alone is difficult to determine as several heterol-
ogous expression systems, including Xenopus oocytes, and HEK-293
cells contain endogenous β subunits [73,74]. When endogenous oo-
cyte β3 is knocked down we observed a large reduction in functional
expression of CaV2.2 [75]. Furthermore, expression systems may also
contain a low level of endogenous α2δ [76,77].

Several studies have found that α2δ subunits increase the expres-
sion of various CaV α1 subunit/β subunit combinations, all α2δ sub-
units having comparable effects, where comparisons have been
made. For CaV1.2, α2δ-1 co-expression in oocytes increased the
amount of α1 subunit protein associated with the plasma membrane
[78]. The peak CaV1.2 current amplitude was also increased 3-fold by
co-expression of α2δ-1 [79]. In another study the α2δ-2 subunit in-
creased CaV1.2 currents 2-fold [80].

For CaV2.1, the α1/β4 current was increased 2–7-fold by
co-expression of α2δ-2 in different expression systems [14,29,49,68].
The CaV2.1/β4/α2δ-2 calcium channel combination is likely to exist in
cerebellar Purkinje cells, in which these subunits are highly expressed
[14,29]. However, α2δ-2 had no effect on the single channel conduc-
tance of CaV2.1/β4, or any of the other single channel properties mea-
sured, indicating that the increase in whole cell current is a result of
an increased number of functional channels inserted in the plasma
membrane [14,29].

For CaV2.2 one study found the α2δ-2 subunit to increase CaV2.2
currents, by 9-fold [80]. In our experiments, we found the α2δ-1,
α2δ-2 and α2δ-3 subunits to all increase peak CaV2.2/β1b currents
to a similar extent, by about 5-fold [31,49,64,81]. Furthermore for sin-
gle channel currents, α2δ-1 subunits were also found to reduce the
number of null traces recorded, indicating that the CaV2.2 channels
in the plasma membrane are more likely to be in an activatable
state [82].
For CaV2.3 channels, it was reported that α2δ-1 subunits do not in-
crease the current amplitude when co-expressed in Xenopus oocytes
[83]. A different result was obtained in HEK-293 cells, where the max-
imum conductance for CaV2.3 was increased 2-fold byα2δ-1 alone, al-
though the α2δ subunit gave no additional increase over that
produced by β subunits [84]. It is therefore possible that CaV2.3 may
be less influenced by α2δ subunits.

T-type calcium channels do not require accessory β or α2δ sub-
units for expression. Nevertheless, both α2δ-1 and α2δ-2 increased
CaV3.1 currents almost 2-fold [77,80], and thus it is possible that T
type channels might associate with α2δ subunits. However, in other
studies α2δ-1 and α2δ-3 produced minor effects on CaV3.1 current,
whereas α2δ-2 increased CaV3.1 current density [13,58,85].

One of the main mechanisms for the effect of α2δ subunits on HVA
channel current density is likely to be an increase in the plasma mem-
brane expression of the CaV1 and CaV2 α1 subunits and decrease of
their turnover [49,86], although how this occurs is still unclear. As a
step in understanding this process, we have found the MIDAS motif in
the VWA domain of α2δ-1 and α2δ-2 subunits is essential for this pro-
cess [49,64]. Mutation of this motif virtually abolished the ability of
α2δ-1 [64] and α2δ-2 [49] subunits to increase calcium currents in ex-
pression systems. We also found that the MIDAS mutant of α2δ-2
caused α1 subunits to be retained in intracellular compartments [49].
Since VWA domains are involved in protein–protein interactions, via
their MIDAS motif [17], it is possible that the α2δ VWA domains are
interacting either with a trafficking protein, involved in trafficking ei-
ther of α2δ alone, or of the entire calcium channel complex to the plas-
ma membrane. Alternatively, or in addition, the VWA domains may be
involved in the interactionwith the calciumchannelα1 subunit, leading
indirectly to increased trafficking of the complex.

It is possible that in α2δ subunits the chemosensory-like domains
are also involved in the trafficking function of α2δ subunits. One
might speculate that they are implicated in binding to gabapentinoid
drugs (See Section 11.1), and in binding to the putative endogenous
ligand(s) that have been found to compete for gabapentin binding,
whose identity is unknown [87,88]. The role of the endogenous li-
gand(s) in α2δ function is unclear but they might be important for
full function. One piece of evidence that supports this hypothesis is
that mutation of the RRR motifs involved in gabapentin binding with-
in α2δ-1 and α2δ-2, to RRA which markedly reduces the gabapentin
binding affinity, also significantly impedes the ability of α2δ-1 and
α2δ-2 to enhance calcium currents [81,89]. Presumably these muta-
tions would also inhibit the binding of the endogenous ligand(s).

Although the exact site at which the α2δ subunits intervene in the
calcium channel trafficking process remains to be established, it is as-
sumed that they interact with one or more exofacial domains of the
α1 subunit. For example, it has been described that the α2 subunit
of α2δ-1 binds to domain III of CaV1.1 [28]. We have also studied
the trafficking of α2δ subunits [31,49,68,81,90], and our evidence in-
dicates that they must interact with intracellular trafficking proteins.
Our finding that a proportion of the α2δ-1 truncated at the predicted
C-terminal GPI-anchor site is still in part extrinsically-associated with
the plasma membrane provides support for this proposition [35]. Fur-
thermore, this truncated α2δ-1 construct is still able to enhance calci-
um channel currents, although to a smaller extent than full-length
α2δ-1, indicating that intrinsic membrane-anchoring is not essential
for this process [35].
8.2. Effects of α2δ subunits on single channel properties

There is very little information concerning the effect of α2δ sub-
units on single channel properties of calcium channels. The α2δ sub-
units have not been found to affect the single channel conductance
of native [14] or expressed CaV2.1 [29] or CaV2.2 [82] calcium chan-
nels. However, surprisingly, the co-expression of α2δ-1 was found
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to reduce single channel open times measured for the CaV2.2/β1b
combination [82].

8.3. Effects of α2δ subunits on voltage-dependence of activation and
inactivation of calcium channel currents

The presence of low concentrations of endogenousβ [74,75], and in-
deedα2δ subunits [35], in various different expression systemsmake it
difficult to accurately assess the effects of the individual subunits sepa-
rately. Since β subunits also influence inactivation, the effects of α2δ
subunits on the voltage-dependent and kinetic properties of calcium
channels may also depend on which β subunit is expressed.

The α2δ-1 subunit was found to have little effect on the voltage-
dependence of activation of CaV1.2 [78,91–93], or on the voltage-
dependence of charge movement [94]. In contrast, another study
found that α2δ-1 hyperpolarized the voltage-dependence of activa-
tion of CaV1.2/β4 by about 10 mV [79]. This effect was also found
with a “δ” construct, although δ did not enhance the current ampli-
tude. A further study found that the activation of the CaV1.2/β3 com-
bination was shifted to more negative potentials by α2δ-1, using the
cut-open oocyte technique [95]. They also found that α2δ-1 did not
affect the voltage-dependence of charge movement. These results
point towards α2δ subunits increasing the coupling efficiency be-
tween voltage sensor movement and channel opening, and also sug-
gest there are more channels in the membrane [95]. The α2δ-2
subunit also had little effect on the activation voltage-dependence,
when co-expressed with CaV2.1 and β4 in Cos-7 cells [29]. However,
α2δ-1 was found to shift the activation of CaV2.3 to more depolarized
potentials, both in the absence of β subunits and in the presence of ei-
ther β1b or β2a [83]. In contrast in HEK-293 cells α2δ-1 had no effect
on the voltage-dependence of activation gating for CaV2.3 [84]. Thus
some effects of α2δ subunits on activation appear to depend on the
particular α1 subunit with which it is expressed.

In most cases α2δ-1 and α2δ-2 hyperpolarized the steady-state in-
activation of CaV1.2, CaV2.2 and CaV2.3 currents by a similar amount
[58,79]. However α2δ-1 was not found to affect the steady-state inac-
tivation of CaV2.3, either in the absence or presence of β subunits [83].

From these results it appears that there are no absolute rules
concerning the effects of α2δ subunits on calcium channel voltage-
dependent properties. In part, this may be because it is difficult to dis-
sect out these biophysical effects from the fact that there are also
more channels in the plasmamembrane, as well as the fact that expres-
sion systems may have endogenous α2δ subunits.

8.4. Effect of α2δ subunits on calcium current kinetics

In several studies, the α2δ-1 subunit increased the inactivation rate
for both the CaV1.2 [79,96] and CaV2.1 [79]. In another study, both
α2δ-1 and α2δ-2 increased inactivation of CaV1.2, and CaV2.3 (and sur-
prisingly also CaV3.1) currents [58]. The α2δ-1 subunit was also found
increase the inactivation of CaV1.2 gating currents [94]. The increased
inactivationmay explain the reported ability ofα2δ-1 to increase the af-
finity for DHP antagonists, since these drugs show increased binding to
inactivated channels [97]. It has also found α2δ-1, α2δ-2 and α2δ-3 all
increased inactivation for several different HVA channels [6,31,49]. In
skeletal muscle the CaV1.1 currents are very slowly activating, and par-
adoxically, the activation rate is increased following knockdown of
α2δ-1 [47,98].

8.5. Effect of α2δ subunits on pharmacological properties of calcium
channels

Several indirect effects of α2δ subunits have been observed on cal-
cium channel pharmacology. It has been found that expression of
α2δ-1 subunits reduced the on-rate and affinity of block of N-type cal-
cium channels by several ω-conotoxins, including ω-conotoxin-GVIA
and ω-conotoxin-MVIIA [99]. This may reflect masking of the binding
site near the channel pore by the α2δ protein.

In other studies, both α2δ-1 and the other auxiliary subunits have
been found to contribute to increasing the affinity and Bmax of L-type
channels (both CaV1.1 and CaV1.2) for DHP antagonists [79,97,100].
This result suggests that theα2δ subunits may alter the channel confor-
mation. As described in Section 8.4, the increased affinity for DHP antag-
onistsmay result from the increased inactivation seenwithα2δ-1, since
DHP antagonists favor the inactivated channel state [79].

9. Differential association between specific α2δ and α1 subunits

Following the cloning of four different α2δ subunit genes, it is of
interest to ask whether there is any differential association between
particular α1 and α2δ subunits. In heterologous expression systems
no specificity has been reported, but in vivo there may be greater se-
lectivity. For example in Purkinje cells α2δ-2 is the main, if not the
only α2δ expressed, at least in mice [14], and it is likely to associate
with CaV2.1, the main α1 subunit in these cells. Expression profiling
showed that CaV2.1, β4 and α2δ-2 were the most abundant tran-
scripts in cerebellum, whereas CaV2.3, β2, and α2δ-1 were the most
prevalent transcripts in hippocampus [40].

10. Effect of α2δ subunits on transmitter release

The concentration of α2δ-1 in presynaptic terminals [57], and their
presence and function in calcium channel complexes (CaV2.1 and
CaV2.2) that are key to transmitter release, indicates that theseα2δ sub-
units are likely to affect presynaptic function. It has recently been found
that transient over-expression ofα2δ subunits in cultured hippocampal
neurons leads to an enhancement of the presynaptic concentration both
of the α2δ protein and of endogenous CaV2.1 channels [64]. Whether
the channels are on the cell surface in the presynaptic boutons was
not tested in this study, and paradoxically the α2δ subunits decreased
the presynaptic Ca2+ elevation resulting from a single action potential.
However, all the α2δ subunits examined (α2δ-1, α2δ-2 and α2δ-3)
caused an increase in vesicular release in response to an action poten-
tial, which depended on an intact MIDAS motif [64].

11. Mutations and epigenetic regulation of CACNA2D genes indicate
the involvement of α2δ subunits in multiple pathologies

11.1. α2δ-1

It is well-established that α2δ-1 plays a role in the development of
chronic pain associated with nerve injury (neuropathic pain) and its
therapy (see [9] for recent review). Some of this work has come
from the use of mouse mutants [89,101]. Experimental peripheral
nerve injury results in an elevation in the level of α2δ-1 mRNA in
the damaged sensory neurons (trigeminal neurons and DRGs), as
evidenced from in situ hybridization [56], microarray data [102] and
quantitative PCR [57]. There is a corresponding augmentation of
α2δ-1 protein in DRGs and spinal cord, as shown by Western blotting
[103] and immunohistochemistry [57]. In contrast, CaV2.2 mRNA and
protein is not generally found to be up-regulated following sensory
nerve damage [101,102]. This suggests that up-regulated α2δ-1 en-
hances CaV2.2 trafficking and presynaptic function.

The development of hypersensitivity resulting from peripheral
nerve injury has been examined in a number of transgenic mouse
lines. It is of great interest that α2δ-1 over-expressing mice show a
neuropathic phenotype of hyperalgesia and tactile allodynia com-
pared to wild-type mice, under control conditions [101], indicating
that α2δ-1 is required to increase the excitability of DRG neurons. In
contrast, α2δ-1 knockout mice have a cardiac phenotype, but surpris-
ingly no gross defects in skeletal muscle function [104]. We have
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recently shown that they also have deficits in sensory perception and
in the development of neuropathic hypersensitivity [105].

Gabapentin and pregabalin are anti-epileptic drugs that are also of
therapeutic use in neuropathic pain (for review see [106]). They were
identified from purification and ligand binding studies to bind to
α2δ-1 [107] and α2δ-2 [32], which were found to represent their main
binding proteins. A number of amino acids in α2δ-1 were shown to be
involved in the binding of gabapentinoid drugs, in particular, the third
arginine (R) in an RRR motif, located N-terminal to the VWA domain
[68,89]. This motif is also present in α2δ-2 [68]. In a knockin mutant
mouse bearing a mutation in this motif in α2δ-1 (RRR mutated to
RRA), these gabapentinoid or α2δ ligand drugs were no longer effective
in the alleviation of chronic pain resulting from nerve injury [89]. This
result therefore identifiedα2δ-1 as the protein responsible for the ther-
apeutic effects of these drugs in neuropathic pain. Although humanmu-
tations in CACNA2D1 have been identified to be associated with several
forms of cardiac dysfunction, including Brugada [108] and short QT
[109] syndromes, as yet no humanmutations or single nucleotide poly-
morphisms in this or other α2δ genes have been found to be associated
with epilepsies [110].

11.2. α2δ-2

The mouse strain Ducky (du), which is a spontaneously arising
mutant, exhibits spike-wave epilepsy and cerebellar ataxia [14]. The
mutation is in the α2δ-2 subunit gene, Cacna2d2, which, as described
above, is robustly expressed in cerebellar Purkinje cells. The mutation
results in a loss of expression of full length α2δ-2, and another allele
(du2J) produces a similar phenotype [29]. The calcium currents in
Purkinje cells of du/dumice are reduced at 6–8 days old [14], possibly
due to the absence of α2δ-2. Furthermore, there is a reduction of the
Purkinje cell dendritic tree and markedly reduced spontaneous activ-
ity in Purkinje cells [111]. A third allelic mutant mouse, Entla, was
identified which has generalized seizures, as do mice with a targeted
deletion of Cacna2d2 [112,113]. Despite these findings in mice, to date
no human mutations in α2δ subunits have yet been reported to be as-
sociated with epileptic phenotypes. It is worth noting that all the
mouse mutations are recessive, meaning the mice only have a signif-
icant phenotype as homozygotes, and the presence of one wild-type
copy of the α2δ-2 transcript is sufficient for normal function. It is like-
ly that the same would be true in humans. Thus, if such recessive mu-
tations are quite rare, they will only be observed as homozygotes in
isolated populations, as a result of consanguineous marriage, like
other rare recessive mutations, such as specific voltage-gated Na+

channels [114].

11.3. α2δ-3

A Drosophila melanogaster screen recently identified straitjacket, the
Drosophila homolog of CACNA2D3, as a ‘pain gene’ [115]. This study
showed that in both Drosophila and mice mutants lacking this gene
there is an impairment in the avoidance of noxious heat. The authors
found that this was a result of altered central processing. Furthermore,
two intronic SNPs in CACNA2D3were associated with altered pain per-
ception in humans, although the mechanism for this difference is un-
known. In another study, a splice site mutation in CACNA2D3 was also
found to be one of a number of ‘Likely Gene-Disrupting Mutations’ in
autism spectrum disorder [116].

11.4. α2δ-4

Mutations in CACNA2D4 (encoding α2δ-4 subunits) have been
shown to lead to dysfunction of photoreceptors, resulting in a recessive
form of night blindness, and slowly progressing cone dystrophy. A spon-
taneousmousemutation in this gene has also been identified, showing a
similar phenotype of autosomal recessive cone dystrophy [16,60]. Both
mutations are truncating, andwould lead to non-functional or very poor-
ly functional α2δ proteins. Since α2δ-4 is the main α2δ subunit in these
cells, the loss of functional α2δ-4 protein will be highly likely to result
in reduced CaV1.4 calcium channel trafficking and function, culminating
in less neurotransmitter release from the photoreceptor terminals. The
cone dystrophy might be a direct result of reduced photoreceptor func-
tion, or the loss of full-lengthα2δ-4 on the cell surface destabilizing syn-
aptic structures, or an indirect effect of the translation of a non-functional
truncated α2δ-4 protein.

12. Conclusion

The α2δ subunits have marked effects on the properties of calcium
channels, and also very clear links to disease processes. Whether they
are present in all calcium channel complexes remains an open ques-
tion, as does their mechanism of action. There is also evidence that
α2δ subunits may have additional functions as well as being calcium
channel subunits, which is covered more fully elsewhere [9].
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