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Abstract

Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are a common cause of autosomal dominant familial Parkinson’s
disease (PD). LRRK2 encodes a multi-domain protein containing GTPase and kinase enzymatic domains. Disease-associated
mutations in LRRK2 variably influence enzymatic activity with the common G2019S variant leading to enhanced kinase
activity. Mutant LRRK2 induces neuronal toxicity through a kinase-dependent mechanism suggesting that kinase activity is
important for mediating the pathogenic effects of LRRK2 mutations. A number of LRRK2 kinase substrates have been
identified in vitro but whether they represent authentic physiological substrates in mammalian cells or tissues is not yet
clear. The eukaryotic initiation factor 4E (eIF4E)-binding protein, 4E-BP1, was recently identified as a potential substrate of
LRRK2 kinase activity in vitro and in Drosophila with phosphorylation occurring at Thr37 and Thr46. Here, we explore a
potential interaction of LRRK2 and 4E-BP1 in mammalian cells and brain. We find that LRRK2 can weakly phosphorylate 4E-
BP1 in vitro but LRRK2 overexpression is not able to alter endogenous 4E-BP1 phosphorylation in mammalian cells. In
mammalian neurons LRRK2 and 4E-BP1 display minimal co-localization, whereas the subcellular distribution, protein
complex formation and covalent post-translational modification of endogenous 4E-BP1 are not altered in the brains of
LRRK2 knockout or mutant LRRK2 transgenic mice. In the brain, the phosphorylation of 4E-BP1 at Thr37 and Thr46 does not
change in LRRK2 knockout or mutant LRRK2 transgenic mice, nor is 4E-BP1 phosphorylation altered in idiopathic or G2019S
mutant PD brains. Collectively, our results suggest that 4E-BP1 is neither a major nor robust physiological substrate of LRRK2
in mammalian cells or brain.
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Introduction

Mutations in the leucine-rich repeat kinase 2 (LRRK2, PARK8) gene

cause late-onset, autosomal dominant Parkinson’s disease (PD),

and represent the most common cause of inherited PD [1,2,3].

LRRK2 mutations are also prevalent in sporadic PD in some

populations, whereas more common genetic variation in the

LRRK2 gene associates with PD in genome-wide association

studies [1,3,4,5]. The clinical, neurochemical and neuropatholog-

ical spectrum of LRRK2-linked PD is largely indistinguishable from

idiopathic PD [1,6,7,8]. Therefore, LRRK2 plays an important role

in the development of familial and sporadic PD.

The LRRK2 gene encodes a large multi-domain protein

belonging to the ROCO protein family [9]. LRRK2 contains a

Ras-of-Complex (ROC) GTPase domain and a C-terminal of

ROC (COR) domain followed by a serine/threonine kinase

domain with similarity to the mixed-lineage kinase family.

Surrounding the central ROC-COR-kinase catalytic core region

are a number of putative protein-protein interaction domains

including N-terminal ankyrin and armadillo-like repeats, a

leucine-rich repeat region, and a C-terminal WD40-like repeat

domain. Mutations known to cause PD are clustered within the

central catalytic region including the GTPase (N1437H, R1441C,

R1441G and R1441H), COR (Y1699C) and kinase (G2019S and

I2020T) domains [9]. Mutations alter enzymatic activities that

include enhanced kinase activity (i.e. G2019S and N1437H)

[10,11,12], reduced GTPase activity (i.e. R1441C/G/H and

Y1699C) [13,14,15,16] or enhanced GTP-binding (i.e. N1437H,

R1441C/G/H and Y1699C) [17] of LRRK2. LRRK2 mutations

have also been shown to enhance neuronal toxicity compared to

the wild-type (WT) protein through a mechanism dependent on

kinase and/or GTPase activity [17,18,19,20]. Therefore, alter-

ations in the enzymatic activity of LRRK2 due to pathogenic

mutations are most likely important for the development of PD.

LRRK2 can act as a functional kinase in vitro whereby it can

mediate autophosphorylation or phosphorylation of generic kinase

substrates (i.e. myelin basic protein) [10,17,18,21,22,23,24]. The
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most common mutation, G2019S, is located within a DYG motif

within the kinase activation domain and robustly enhances kinase

activity [11]. A number of putative substrates for LRRK2 kinase

activity have been identified in vitro including moesin [22], 4E-BP1

[25], b-tubulin [26], FoxO1 [27], MAPKK proteins [28,29] and

ArfGAP1 [30,31], but it is unclear whether these proteins act as

physiological substrates of LRRK2 in mammalian cells or tissues.

4E-BP1 is known to function as a repressor of protein translation

by binding to the eukaryotic translation initiation factor, eIF4E,

leading to inhibition of cap-dependent translation [32]. Phosphor-

ylation of 4E-BP1 at Thr37 and Thr46 serves to prime subsequent

phosphorylation at Ser65 and Thr70 which disrupts the interac-

tion with eIF4E and results in the activation of protein translation

[33,34].

4E-BP1 was previously suggested to be a LRRK2 substrate with

phosphorylation occurring at two specific residues, Thr37 and

Thr46 [25]. Both human LRRK2 and Drosophila LRRK (dLRRK)

mediated the phosphorylation of human 4E-BP1 or d4E-BP,

respectively, in vitro. Silencing of dLRRK reduced whereas

dLRRK overexpression enhanced d4E-BP phosphorylation at

Thr37/46 in Drosophila [25,35]. Furthermore, the overexpression

of human LRRK2 enhanced the phosphorylation of 4E-BP1 at

Thr37/46 and to a lesser extent at Thr70 in HEK-293T cells [25].

While these observations potentially suggest that 4E-BP1 is a

physiological LRRK2 substrate, a recent study by Kumar and

colleagues suggests that 4E-BP1 may be a relatively weak substrate

of LRRK2 kinase activity in vitro compared to LRRK2 autophos-

phorylation, and they were unable to confirm the phosphorylation

of 4E-BP1 by LRRK2 in cells [36].

To better define a potentially important interaction between

LRRK2 and 4E-BP1, we have explored the effects of LRRK2

expression and pathogenic mutations on the phosphorylation

status of 4E-BP1 in the mammalian brain using transgenic and

knockout mice that are now available. Our data demonstrate that

modulation of LRRK2 expression does not influence 4E-BP1

phosphorylation at Thr37 and Thr46 in mammalian cells or brain

tissue. We conclude that 4E-BP1 is not a major or robust

physiological substrate of LRRK2 in mammalian cells or brain.

Results

Phosphorylation of 4E-BP1 by LRRK2 in vitro but not in
HEK-293T cells

We first sought to confirm the phosphorylation of 4E-BP1 by

LRRK2 in vitro under optimized LRRK2 activity conditions. We

employed recombinant GST-tagged human LRRK2 consisting of

amino acids 970-2527 together with GST-tagged human 4E-BP1

for in vitro kinase assays with [32P]-c-ATP. Notably, the 4E-BP1

recombinant protein was highly soluble and derived from bacteria

and therefore has no inherent phosphorylation modifications. We

could confirm that wild-type (WT) LRRK2 modestly phosphor-

ylates 4E-BP1 whereas kinase-inactive LRRK2 (D1994A) displays

no activity (Fig. 1A). Notably, LRRK2 autophosphorylation is

substantially more efficient than 4E-BP1 phosphorylation in this

assay (Fig. 1A), consistent with recent reports [36]. It is possible

that co-factors are required that are not present in the in vitro

reactions, so we explored LRRK2 phosphorylation of 4E-BP1 in

HEK-293T cells where 4E-BP1 is actively phosphorylated. The

expression of WT or G2019S LRRK2 fails to increase 4E-BP1

phosphorylation at Thr37/46 or Ser65 relative to expression of

D1994A LRRK2 or cells lacking myc-tagged LRRK2 (Fig. 1B).

Collectively, these data confirm that 4E-BP1 is a rather modest

substrate of LRRK2 in vitro and cannot influence additional

phosphorylation on 4E-BP1 in HEK-293T cells even with

overexpression of the kinase-hyperactive G2019S LRRK2.

LRRK2 does not change 4E-BP1 subcellular localization or
protein complexes

Although the phosphorylation of 4E-BP1 by LRRK2 in HEK-

293T cells could not be demonstrated here and also in a previous

study [36], dLRRK has been reported to phosphorylate d4E-BP at

Figure 1. Phosphorylation of 4E-BP1 by LRRK2 in vitro and in mammalian cells. (A) In vitro kinase assay with [32P]-c-ATP, recombinant GST-
tagged human LRRK2 (DN, residues 970–2527) and GST-tagged human 4E-BP1. Coomassie-stained SDS-PAGE gels indicate equal loading of 4E-BP1
and LRRK2 proteins in each condition. Autoradiographs indicate the phosphorylation of 4E-BP1 by WT LRRK2 compared to kinase-inactive D1994A
LRRK2. Autophosphorylation of WT LRRK2 is also detected. (B) Western blot analysis of endogenous 4E-BP1 phosphorylation at Thr37/Thr46 or Ser65
in HEK-293T cells transiently expressing myc-tagged human LRRK2 variants (WT, G2019S and D1994A). LRRK2 overexpression fails to alter 4E-BP1
phosphorylation. Blots are representative of duplicate experiments. Molecular mass markers are indicated in kilodaltons (kDa).
doi:10.1371/journal.pone.0047784.g001

4E-BP1 Phosphorylation Is Not Altered by LRRK2
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Thr37/46 in vivo in brain extracts from Drosophila [25]. It is possible

therefore that 4E-BP1 phosphorylation by LRRK2 occurs in a

cell- or tissue-specific manner (e.g. brain tissue). To explore the

relationship between LRRK2 and 4E-BP1 in the mammalian

brain, we assessed the subcellular co-localization of 4E-BP1 and

LRRK2 in rat primary cortical neurons. Cortical cultures were

infected at DIV 6 with recombinant human adenovirus expressing

full-length FLAG-tagged human LRRK2 variants (WT, R1441C

or G2019S), fixed at DIV 16 and subjected to immunocytochem-

istry. Confocal microscopic analysis reveals limited co-localization

of exogenous LRRK2 and endogenous 4E-BP1 occurring in the

cytoplasm of cortical neurons whereas substantial 4E-BP1 also

resides in the nucleus where LRRK2 is largely excluded (Fig. 2A).

LRRK2 pathogenic mutations, R1441C and G2019S, do not

influence 4E-BP1 subcellular localization or the degree of co-

localization with LRRK2 in cortical neurons compared to WT

LRRK2 (Fig. 2A). To isolate a possible interaction in the cytosol,

we conducted subcellular fractionation of cerebral cortex tissue

derived from adult LRRK2 knockout (KO) mice and their WT

control littermates, or human G2019S LRRK2 transgenic and

non-transgenic mice. 4E-BP1 is enriched in the soluble S1, S2 and

S3 fractions and at lower levels in the synaptosomal cytosolic LS1

and synaptic vesicle cytosolic LS2 fractions but is largely excluded

from the nuclear P1 fraction (Fig. 2B). In contrast, LRRK2 is

enriched in the microsomal P3 fraction and at lower levels in the

synaptic vesicle membrane (LP2) and soluble S1 and S2 fractions

(Fig. 2B). Therefore, 4E-BP1 and LRRK2 partly co-localize in the

soluble S1 and S2 fractions but otherwise exhibit distinct

subcellular distribution profiles in adult mouse brain. The

subcellular fractionation profile of 4E-BP1 in brain is not altered

in LRRK2 KO mice or human G2019S LRRK2 transgenic mice

compared to littermate control mice (Fig. 2B). To explore the

impact of LRRK2 expression on 4E-BP1 protein complex

formation, we conducted size-exclusion chromatography on

soluble brain extracts derived from adult WT and LRRK2 KO

mice. The elution profile of total and phosphorylated 4E-BP1 is

similar in WT and KO mouse brain fractions without obvious

differences in the levels of total or phosphorylated (Thr37/46) 4E-

BP1 (Fig. 2C). Collectively, these data reveal that 4E-BP1 and

LRRK2 only partly co-localize in cultured neurons and in soluble

fractions of mouse brain, however, LRRK2 expression does not

influence the subcellular localization, phosphorylation or protein

complex formation of 4E-BP1 in the mouse brain.

LRRK2 does not regulate the phosphorylation of 4E-BP1
at Thr37/46 in mouse brain

To explore the impact of LRRK2 expression and pathogenic

mutations on 4E-BP1 phosphorylation in mouse brain, total 4E-

BP1 was immunoprecipitated from cerebral cortex extracts of WT

and LRRK2 KO mice, or from human R1441C or G2019S

LRRK2 transgenic mice and non-transgenic littermate control

mice. 4E-BP1 immunoprecipitates were analyzed by Western

blotting with antibodies recognizing total or phosphorylated

(Thr37/46) 4E-BP1. The phosphorylation of 4E-BP1 at Thr37/

46 is not altered by LRRK2 deletion or overexpression of mutant

LRRK2 in the cerebral cortex, nor are differences in phospho-

shifts noted using total 4E-BP1 antibodies (Fig. 3A). Similar

observations were made in striatal extracts derived from LRRK2

KO and human LRRK2 transgenic mice compared to control

mice (Fig. 3B). LRRK2 deletion in KO mice is confirmed using an

antibody specific for total LRRK2 (MJFF2) whereas human

LRRK2 expression in transgenic mice is confirmed using a

human-selective LRRK2 antibody (MJFF4) (Fig. 3). Collectively,

these data demonstrate that LRRK2 expression or pathogenic

mutations (G2019S or R1441C) do not influence 4E-BP1

phosphorylation at Thr37/46 in the mouse brain.

LRRK2 does not alter post-translational modifications of
4E-BP1 in cells or brain

As LRRK2 fails to alter 4E-BP1 phosphorylation in mouse

brain tissue, we elected to explore whether LRRK2 expression or

activity could influence the post-translational modification of 4E-

BP1. Such modifications could potentially reveal alternative sites

of 4E-BP1 phosphorylation in addition to other covalent

modifications. To assess the effects of LRRK2 kinase activity on

4E-BP1, extracts from human SH-SY5Y neural cells expressing

FLAG-tagged human LRRK2 variants (WT, G2019S or D1994A)

were resolved by 2D SDS-PAGE and subjected to Western blot

analysis for total 4E-BP1. Endogenous 4E-BP1 is detected as ,6

discrete acidic species of similar molecular mass in SH-SY5Y cells

(Fig. 4A). However, the 2D migration pattern of 4E-BP1 is not

altered by WT or G2019S LRRK2 expression compared to

D1994A LRRK2 expression (Fig. 4A). We next conducted similar

studies on cerebral cortex and striatal extracts derived from

LRRK2 KO and WT mice. 4E-BP1 is detected as 4–5 discrete

acidic species in brain tissue but this 2D migration pattern is not

altered by deletion of LRRK2 (Fig. 4B and C). Collectively, these

data suggest that modulating LRRK2 expression or activity in

human cells or mouse brain does not alter the post-translational

modification of 4E-BP1 consistent with no effect of LRRK2 on

4E-BP1 phosphorylation in vivo.

Phosphorylation of 4E-BP1 at Thr37/46 in idiopathic and
G2019S mutant PD brains

Since we were not able to detect LRRK2-dependent alterations

in 4E-BP1 phosphorylation in human cell lines and mouse brain,

we next sought to determine whether 4E-BP1 phosphorylation is

altered in human brain tissue derived from PD subjects with or

without LRRK2 mutations. Soluble extracts derived from frontal

cortex and basal ganglia of idiopathic or G2019S mutant PD

brains and normal control brains were subjected to Western blot

analysis with antibodies to total or phosphorylated (Thr37/46) 4E-

BP1. In frontal cortex, we observe a significant overall reduction of

total 4E-BP1 levels in G2019S mutant PD brains (in 3 out of 5

subjects) compared to control brains, whereas the level of 4E-BP1

phosphorylation is not different across brain samples (Fig. 5A). In

the basal ganglia, we observe a significant increase of total 4E-BP1

levels in idiopathic (in 5 out of 5 subjects) and G2019S mutant (in

3 out of 4 subjects) PD brains compared to control brains (Fig. 5B).

The levels of phosphorylated 4E-BP1 are significantly reduced in

basal ganglia extracts from idiopathic PD brains compared to

control brains (Fig. 5B). The detection of full-length LRRK2 in

post mortem human brain extracts is problematic and has not

been possible using currently available LRRK2 antibodies. The

apparent alterations in total 4E-BP1 levels in G2019S and iPD

brains, which for G2019S subjects is opposite between frontal

cortex and basal ganglia, could potentially reflect the effects of

various factors, including post mortem delay, agonal state, age,

disease pathology or tissue sampling, since not all subjects reveal a

consistent trend within each group as noted above. Importantly,

we do not observe increased 4E-BP1 phosphorylation in the frontal

cortex or basal ganglia of idiopathic or G2019S mutant PD brains

compared to control brains suggesting that 4E-BP1 phosphoryla-

tion is not altered by LRRK2 pathogenic mutations in the human

brain.

4E-BP1 Phosphorylation Is Not Altered by LRRK2
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Discussion

The identification of physiological substrates for LRRK2 kinase

activity is of major importance for understanding the pathogenic

effects of disease-causing mutations, for understanding the

molecular signaling pathways downstream of LRRK2 activity

but upstream of LRRK2-dependent neuronal toxicity, and as

potential surrogate markers of LRRK2 kinase activity in vivo for

monitoring the actions of kinase inhibitors. To date, only a small

number of putative LRRK2 substrates have been identified in vitro

but none of these proteins have yet been confirmed as

physiological or pathological substrates in mammalian cells or

tissues [9]. Of the putative LRRK2 substrates identified so far, 4E-

BP1 provides one of the more compelling cases since previous

studies have shown that modulating LRRK2 expression in

Drosophila or mammalian cells leads to alterations in 4E-BP1

phosphorylation [25,35]. Despite these observations, a recent

Figure 2. Effect of LRRK2 on 4E-BP1 subcellular localization and protein complex formation. (A) Confocal fluorescence microscopy
reveals minimal co-localization of FLAG-tagged human LRRK2 variants and endogenous 4E-BP1 in rat primary cortical neurons. Pathogenic mutations
(R1441C or G2019S) do not alter the localization of LRRK2 with 4E-BP1 compared to WT LRRK2. Cytofluorograms and co-localization coefficients
(Rcoloc; mean6SEM, n = 5–10 neurons) reveal the extent of co-localization between LRRK2 and 4E-BP1 fluorescent signals. Confocal images are taken
from single z-plane at 0.1 mm thickness. Images are representative of at least five neurons taken from duplicate experiments. Scale bar: 10 mm. (B)
Subcellular fractionation of cerebral cortex from WT and LRRK2 KO mice, or human G2019S LRRK2 transgenic (TG) and non-transgenic (NTG) mice. 4E-
BP1 is enriched in soluble cytosolic (S1, S2 and S3) fractions, and at lower levels in synaptosomal (LS1) and synaptic vesicle (LS2) cytosolic fractions.
4E-BP1 subcellular localization is not altered by LRRK2 deletion or G2019S LRRK2 expression compared to control mice. Endogenous and human
LRRK2 is enriched in the microsomal (P3) fraction and at lower levels in synaptosomal membrane (LP1) and soluble cytosolic (S1 and S2) fractions. The
distribution of marker proteins demonstrates the enrichment of mitochondria/heavy membranes (TIM23; P2 and LP1), synaptosomal/synaptic vesicle
membranes (synaptophysin 1; P2, P3, LP1 and LP2) and synaptosomal/synaptic vesicle cytosolic (a-synuclein; LS1 and LS2). (C) Size-exclusion
chromatography on soluble whole brain extracts from WT and LRRK2 KO mice. Sequential fractions (0.5 ml) were analyzed by Western blotting with
antibodies to total or phosphorylated (Thr37/46) 4E-BP1 and b-tubulin, whereas total homogenates were probed with antibodies to LRRK2 (c41-2/
MJFF2). The elution profile of 4E-BP1 is similar in WT and KO brains, whereas the elution profile of individual protein standards is indicated. Blots are
representative of duplicate experiments. Molecular mass markers are indicated in kilodaltons (kDa).
doi:10.1371/journal.pone.0047784.g002

Figure 3. Effect of LRRK2 on 4E-BP1 phosphorylation in mouse brain. Total 4E-BP1 immunoprecipitates or input lysates from the (A) cerebral
cortex or (B) striatum of WT and LRRK2 KO mice, or human LRRK2 (R1441C or G2019S) transgenic (TG) and non-transgenic (NTG) mice were analyzed
by Western blot analysis with antibodies to phosphorylated (Thr37/46) and total 4E-BP1, or LRRK2 (total: c41-2/MJFF2; human-selective: c81-8/MJFF4).
Densitometric analysis reveals unaltered 4E-BP1 phosphorylation by LRRK2 deletion or mutant human LRRK2 expression compared to littermate
control mice. The levels of phosphorylated 4E-BP1 were normalized to total 4E-BP1 and expressed as a percent of control mice (mean6SEM, n = 3
mice/genotype). Molecular mass markers are indicated in kilodaltons (kDa).
doi:10.1371/journal.pone.0047784.g003

4E-BP1 Phosphorylation Is Not Altered by LRRK2
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study by Kumar and colleagues was unable to confirm the

phosphorylation of 4E-BP1 by LRRK2 in mammalian cells, and

further demonstrated that 4E-BP1 serves as a rather weak

substrate for LRRK2 in vitro [36]. For these reasons, we decided

to extend these prior studies to explore the contribution of LRRK2

expression and pathogenic mutations to 4E-BP1 phosphorylation

in the mammalian brain to begin to understand whether abnormal

4E-BP1 phosphorylation could contribute to LRRK2-linked PD. In

the present study, we were able to replicate previous experiments

showing that 4E-BP1 is weakly phosphorylated by LRRK2 in vitro

[25,36]. Furthermore, we could replicate recent observations from

Kumar and colleagues by similarly demonstrating unaltered 4E-

BP1 phosphorylation in HEK-293T cells transiently expressing

LRRK2 [36].

We extended these observations to mammalian brain tissue

where we could demonstrate that the deletion of LRRK2 or the

expression of human LRRK2 harboring disease-causing muta-

tions, R1441C or G2019S, failed to alter 4E-BP1 phosphorylation

at Thr37 and Thr46 in the mouse brain. Furthermore, 4E-BP1

phosphorylation at these residues was not increased in brain

extracts from idiopathic or G2019S mutant PD subjects compared

to control subjects. Further supporting the notion that 4E-BP1 is

not a physiological substrate of LRRK2 in the mammalian brain,

we could show that 4E-BP1 and LRRK2 only partially co-localize

Figure 4. Effect of LRRK2 on 4E-BP1 post-translational modification in mammalian cells and brain. (A) 2D SDS-PAGE (pH 3–10 and 8–
16% SDS-PAGE) analysis of SH-SY5Y cell extracts expressing FLAG-tagged human LRRK2 variants (WT, G2019S or D1994A). 2D blots were probed with
4E-BP1 antibody or stained with Ponceau S red to reveal equivalent protein loading. The 2D migration profile of 4E-BP1 is not altered by LRRK2
kinase-inactive (D1994A) or kinase-hyperactive (G2019S) mutations relative to WT LRRK2. 1D blots were probed with anti-FLAG antibody to reveal
equivalent human LRRK2 levels. Blots are representative of duplicate experiments. (B and C) 2D SDS-PAGE analysis of cerebral cortex and striatum
extracts derived from WT or LRRK2 KO mice with 4E-BP1 antibody or Ponceau S red as a protein loading control. The 2D profile of 4E-BP1 is not
altered by LRRK2 deletion. Blots are representative of three experiments using independent mice for each genotype. Molecular mass markers are
indicated in kilodaltons (kDa).
doi:10.1371/journal.pone.0047784.g004

4E-BP1 Phosphorylation Is Not Altered by LRRK2
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and that altering LRRK2 expression or activity does not influence

the subcellular localization of 4E-BP1 in neurons or the mouse

brain. In addition, the deletion of LRRK2 failed to alter the

formation of native 4E-BP1 protein complexes or the post-

translational modification of 4E-BP1 in the mouse brain.

Collectively, our data suggest that 4E-BP1 is not a major or

Figure 5. Phosphorylation of 4E-BP1 in brains of PD subjects. Western blot analysis of (A) frontal cortex or (B) basal ganglia soluble fractions
from human control, idiopathic PD (iPD) and G2019S LRRK2 PD subjects with antibodies to total or phosphorylated (Thr37/46) 4E-BP1, or b-actin as a
protein loading control. Molecular mass markers are indicated in kilodaltons (kDa). Densitometric analysis of 4E-BP1 phosphorylation (upper protein
band) or total 4E-BP1 levels in idiopathic or G2019S PD brains compared to control brains. The levels of phosphorylated 4E-BP1 were normalized to
total 4E-BP1, whereas total 4E-BP1 levels were normalized to b-actin levels, and expressed as a percent of control subjects (mean6SEM, n = 4–5
brains/group). For basal ganglia, G2019S subject 3 was excluded from the densitometric analysis due to a lack of detectable 4E-BP1 expression.
*P,0.05 or **P,0.01 by one-way ANOVA with Newman-Keuls post-hoc analysis. ns, non-significant.
doi:10.1371/journal.pone.0047784.g005

4E-BP1 Phosphorylation Is Not Altered by LRRK2
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robust substrate of LRRK2 kinase activity in the mammalian

brain.

We speculate that important differences may exist between

mammalian and Drosophila 4E-BP1 and/or LRRK2 which may

account for the apparent phosphorylation of d4E-BP by dLRRK

in the Drosophila brain [25,35]. The nature of these potential

differences are not clear at present but could reflect alterations in

the function or subcellular localization between dLRRK and

LRRK2 and/or d4E-BP and 4E-BP1, or a combination of these

factors. For example, mammals contain two related LRRKs,

LRRK1 and LRRK2, whereas Drosophila and other invertebrates

contain a single LRRK protein indicating functional divergence in

mammals. Alternatively, it is possible that 4E-BP1 phosphoryla-

tion is stimulated by stress consistent with the phosphorylation of

4E-BP1 by the stress-activated kinase p38a [36]. In this context,

one could speculate that LRRK2-dependent 4E-BP1 phosphory-

lation may occur in aging flies due to inherent stress, as reflected

by the increased sensitivity of dLRRK transgenic flies exposed to

oxidative insult [25], whereas the LRRK2 knockout and

transgenic mice at the ages used in this study do not develop

robust brain phenotypes and might therefore be considered free of

stressful stimuli [37,38]. 4E-BP1 appears to be consistently, albeit

weakly, phosphorylated by LRRK2 in vitro yet evidence that 4E-

BP1 is a robust substrate of LRRK2 in vivo is lacking [25,36].

These observations highlight the importance of verifying LRRK2

substrate phosphorylation in mammalian cells or tissues to confirm

or clarify the physiological relevance of putative LRRK2

substrates. In future, we hope to apply similar analyses to other

putative or novel LRRK2 substrates pending the availability of

suitable phosphorylation-specific substrate antibodies. Taken

together, our data allow us to conclude that 4E-BP1 is not a

major or robust physiological substrate of LRRK2 kinase activity

in vivo in the mammalian brain. We suggest that attention should

now focus on other putative LRRK2 substrates to confirm or

disprove their phosphorylation by LRRK2 in mammalian cells or

brain tissue.

Materials and Methods

Ethics statement
For use of human brain tissue in this study, patients provided

written informed consent and approval for the consent procedure

and experiments were obtained from the NHS National Research

Ethics Committee of the UK (Approval No. 02/N093). All animal

experiments were approved by the SCAV (Service de la

consummation et des affaires veterinaries) in the Canton de Vaud,

Switzerland (Animal authorization No. 2293), and conducted in

strict accordance with the European Union directive (2010/63/

EU) for the care and use of laboratory animals.

Animals
Mice and rats were maintained in a pathogen-free barrier

facility and exposed to a 12 h light/dark cycle with food and water

provided ad libitum. Pregnant female Sprague-Dawley rats were

obtained from Charles River Laboratories (L’Arbresle Cedex,

France) and resulting P1 rats were used for preparation of primary

cortical neuronal cultures. LRRK2 knockout mice with a deletion

of exon 41 were kindly provided by Drs. Giorgio Rovelli and

Derya Shimshek (Novartis Pharma AG, Basel, Switzerland) [37].

Transgenic mice expressing full-length human LRRK2 (R1441C

or G2019S) from a CMV-enhanced human PDGFb promoter

were described previously [38].

Expression plasmids, antibodies and proteins
Mammalian expression plasmids containing FLAG-tagged full-

length human WT and G2019S LRRK2 were kindly provided by

Dr. Christopher Ross (Johns Hopkins University, Baltimore, USA)

[20]. A D1994A mutation was introduced into FLAG-tagged WT

LRRK2 by PCR-mediated site-directed mutagenesis using the

QuickChange II XL kit (Agilent Technologies, La Jolla, CA, USA)

and verified by DNA sequencing. Myc-tagged full-length human

LRRK2 (WT, G2019S and D1994A) plasmids were kindly

provided by Dr. Ted M. Dawson (Johns Hopkins University,

Baltimore, USA) [17]. The following antibodies were employed:

mouse monoclonal anti-FLAG (M2), anti-FLAG (M2)-peroxidase

and anti-b-tubulin (clone TUB 2.1), and rabbit polyclonal anti-b-

actin (Sigma-Aldrich, Buchs, Switzerland); rabbit monoclonal anti-

LRRK2 (clones MJFF2/c41-2 and MJFF4/c81-8; Epitomics Inc.,

Burlingame, CA, USA); rabbit monoclonal anti-4E-BP1 (clone

53H11), anti-phospho-4E-BP1 (Thr37/46; clone 236B4) and anti-

phospho-4E-BP1 (Ser65; clone 174A9) (Cell Signaling Technolo-

gy, Danvers, MA); mouse monoclonal anti-c-myc-peroxidase

(clone 9E10; Roche Applied Science, Switzerland); mouse

monoclonal anti-TIM23 (clone 32) and a-synuclein (Syn1, clone

42) (BD Biosciences, Allschwil, Switzerland); mouse monoclonal

anti-synaptophysin 1 (Synaptic Systems, Göttingen, Germany);

peroxidase-conjugated anti-mouse and anti-rabbit IgG, light

chain-specific secondary antibodies (Jackson ImmunoResearch,

Inc., West Grove, PA, USA); anti-rabbit IgG-AlexaFluor-488 and

anti-mouse IgG-AlexaFluor-633 (Invitrogen, Carlsbad, CA, USA).

Recombinant GST-tagged human LRRK2 proteins (DN, residues

970-2527) were obtained from Invitrogen. GST-tagged full-length

human 4E-BP1 was obtained from Sigma-Aldrich.

Cell culture and transient transfection
Human SH-SY5Y neuroblastoma cells (CRL-2266; ATCC,

Manassas, VA, USA [39]) and HEK-293T cells (Invitrogen) were

maintained in Dulbecco’s modified Eagle’s media supplemented

with 10% fetal bovine serum and 1x penicillin/streptomycin at

37uC in a 5% CO2 humidified atmosphere. For transient

transfection, cells were transfected with plasmid DNAs using

FuGENE HD reagent (Roche Applied Science) according to

manufacturer’s recommendations. Cells were routinely harvested

at 48 h post-transfection for Western blot analysis.

Primary neuronal cultures
Sprague-Dawley P1 rats were sacrificed by decapitation, whole

brains were dissected, and the cerebral cortices were stereoscop-

ically isolated and dissociated in media containing papain (20 U/

ml; Sigma). Cells were grown in 35 mm dishes on glass coverslips

pre-coated with mouse laminin (33 mg/ml; Invitrogen) and poly-

D-lysine (20 ng/ml; BD Biosciences, Allschwil, Switzerland) in

media consisting of Neurobasal (Invitrogen), B27 supplement (2%

w/v), L-glutamine (500 mM) and penicillin/streptomycin (100 U/

ml). At days-in-vitro (DIV) 3, cortical cultures were treated with

cytosine b-D-arabinofuranoside (AraC, 10 mM) to inhibit glial cell

division. For infection with adenoviral vectors, we used 36108

infectious units on dishes containing 36105 cells to give a MOI of

1000.

Adenovirus production
Second generation E1, E3, E2a-deleted recombinant human

serotype 5 adenoviruses (rAd) were generated as previously

described [40,41]. A modified version of the pDC511 shuttle

plasmid (Microbix Biosystems Inc., Ontario, Canada) was

generated containing an expression cassette consisting of a human
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synapsin-1 promoter, a synthetic intron, codon-optimized

3xFLAG-tagged human LRRK2 cDNA (WT, G2019S or

R1441C) and a SV40 polyadenylation signal, as previously

described [41,42]. Each pDC511-LRRK2 shuttle plasmid was

co-transfected with a modified FLP, frt human Ad5 genomic

plasmid (pBHGfrtDE1,3FLP; Microbix) into E2a-complementing

cells (E2T) [40], and rAd production was performed according to

a standard protocol [43]. Final vector stocks were purified and

concentrated using the Vivapure AdenoPACK 100RT kit

(Sartorius). Viral titers of purified vector stocks were determined

by OD260 measurements and expressed as viral particles. To

determine MOI units, we estimated that 1 MOI is equivalent to 40

viral particles (assuming that on average 1 out of 40 viral particles

are infectious). Adenovirus stocks were stored at -80uC until

further use.

Cell fractionation and Western blotting
Transiently transfected HEK-293T or SH-SY5Y were harvest-

ed at 48 h post-transfection in 1 ml of lysis buffer (1X phosphate-

buffered saline [PBS] pH 7.4, 1% Triton X-100, 1X phosphatase

inhibitor cocktail 1 and 2 [Sigma-Aldrich], 1X Complete protease

inhibitor cocktail [Roche Applied Sciences]). Cell lysates were

rotated at 4uC for 1 h and soluble fractions were obtained by

centrifugation at 17,500 g for 15 min at 4uC. Protein concentra-

tion of detergent-soluble fractions was determined by BCA assay

(Pierce Biotechnology, Rockford, IL, USA). For western blot

analysis, 50 mg of protein was resolved by SDS-PAGE, transferred

to Protran nitrocellulose membrane (0.2 mm; Perkin Elmer,

Schwerzenbach, Switzerland) and incubated with primary and

secondary antibodies. Proteins were visualized by enhanced

chemiluminescence (ECL; GE Healthcare, Glattbrugg, Switzer-

land) on a FujiFilm LAS-4000 Luminescent Image Analysis

system. Quantitation of protein levels by densitometry was

conducted on acquired images using LabImage 1D software

(Kapelan Bio-Imaging Solutions, Leipzig, Germany).

Brain fractionation and immunoprecipitation
Mice were sacrificed by cervical dislocation and decapitation

and whole brains were rapidly removed and dissected and frozen

on dry ice. For immunoprecipitation (IP) assays, the cerebral

cortex and striatum from adult wild-type and LRRK2 KO mice

(with targeted deletion of exon 41) or human R1441C or G2019S

LRRK2 transgenic and non-transgenic mice was employed. Brain

extracts were prepared by homogenization in TEN buffer

(100 mM Tris-HCl pH 7.5; 100 mM NaCl; 10 mM EDTA;

0.5% NP-40) supplemented with 1X phosphatase inhibitor

cocktail 1 and 2 (Sigma-Aldrich) and 1X Complete protease

inhibitor cocktail (Roche Applied Sciences), and clarified by

centrifugation at 100,000 g for 20 min at 4uC. The detergent-

soluble supernatant fraction was quantified by BCA assay (Pierce

Biotechnology). Detergent-soluble fractions (5–10 mg of protein)

were incubated with 50 ml Protein G-Dynabeads (Invitrogen) pre-

incubated with 5 mg of rabbit monoclonal anti-4E-BP1 antibody

(clone 53H11; Cell Signaling Technology) followed by overnight

rotation at 4uC. Dynabead complexes were sequentially washed

twice with TEN buffer supplemented with 500 mM NaCl and

twice with TEN buffer alone. Immunoprecipitates were eluted by

heating at 70uC for 10 min in 2X Laemmli sample buffer (Bio-

Rad AG, Reinach, Switzerland) containing 5% 2-mercaptoetha-

nol. IP and input lysates (50 mg of protein) were resolved by SDS-

PAGE, transferred to Protran nitrocellulose (0.2 mm; Perkin

Elmer, Schwerzenbach, Switzerland), and subjected to Western

blot analysis with anti-4E-BP1 (clone 53H11; Cell Signaling

Technology), anti-phospho-4E-BP1(Thr37/46) (clone 236B4; Cell

Signaling 53H11), or anti-LRRK2 antibodies (clones c41-2/

MJFF2 or c81-8/MJFF4; Epitomics, Inc.) and appropriate

secondary antibodies. Proteins were visualized by enhanced

chemiluminescence (ECL; GE Healthcare, Glattbrugg, Switzer-

land) on a FujiFilm LAS-4000 Luminescent Image Analysis

system. Quantitation of protein levels by densitometry was

conducted on acquired images using LabImage 1D software

(Kapelan Bio-Imaging Solutions, Leipzig, Germany).

Two-dimensional SDS-PAGE
Mice were sacrificed by cervical dislocation and decapitation

and whole brains were rapidly removed and dissected and frozen

on dry ice. Brain extracts were resolved by 2D SDS-PAGE (1st

dimension: pH 3–10, non-linear gradient IEF strips; 2nd dimen-

sion: 8-16% gradient SDS-PAGE) using the ZOOM IPGRunner

system (Invitrogen) according to manufacturer’s instructions.

Briefly, brain proteins (150 mg) were rehydrated in 160 ml of

rehydration buffer (8 M Urea, 2% CHAPS, 0.5% Carrier

Ampholytes (Invitrogen), 0.002% Bromphenol Blue) and loaded

on ZOOM IPG Strips (pH 3–10, non-linear gradient) in the

ZOOM IPGRunner system for 1 h at room temperature. Proteins

were first separated using isoelectric focusing (step 1: 200 V/

70 Vh; step 2: 430 V/120 Vh; step 3: 750 V/200 Vh; step 4:

200 V/1650 Vh), re-equilibrated with DTT-equilibration buffer

(75 mM Tri-HCl pH 8.8, 6 M Urea, 30% glycerol, 2% SDS,

0.002% Bromphenol Blue and 125 mM DTT) for 10 min at room

temperature and then with alkylating solution (75 mM Tri-HCl

pH 8.8, 6 M Urea, 30% glycerol, 2% SDS, 0.002% Bromphenol

Blue and 125 mM iodoacetamide) for 10 min at room tempera-

ture. Proteins were resolved in the second dimension by SDS-

PAGE using 8-16% gradient gels (Invitrogen). Following 2D SDS-

PAGE, proteins were either transferred to nitrocellulose for

Western blot analysis with anti-4E-BP1 antibody or gels were

sequentially stained with ProQ Diamond fluorescent stain (532/

560 nm ex/em; Invitrogen) and Coomassie colloidal blue (G250;

Bio-rad) and images were captured on a GE Typhoon 9400

Imager. For 2D SDS-PAGE analysis of SH-SY5SY cells, cells

transiently transfected with FLAG-tagged human LRRK2 (WT,

G2019S or D1994A) plasmids were harvested at 48 h post-

transfection, lysed and cell extracts (200 mg protein) were subjected

to 2D SDS-PAGE as described above.

Subcellular fractionation of mouse brain
Mice were sacrificed by cervical dislocation and decapitation

and whole brains were rapidly removed and dissected and frozen

on dry ice. Subcellular fractionation was conducted as described

previously [44,45,46] using cerebral cortex tissue from adult wild-

type and LRRK2 KO mice or human R1441C or G2019S

LRRK2 transgenic and non-transgenic mice. Briefly, mouse brain

homogenates were subjected to centrifugation at 800 g for 10 min

at 4uC to obtain pellet nuclear/whole cell (P1) and soluble

cytosolic (S1) fractions. S1 fractions were centrifuged at 9,200 g for

15 min at 4uC to obtain heavy membrane (P2) and soluble

cytosolic (S2) fractions. The P2 fraction was further solublized and

centrifuged at 25,000 g for 20 min at 4uC to enrich synaptosomal

membranes (LP1) and synaptosomal cytosolic (LS1) fractions. The

LS1 fraction was further fractionated by ultracentrifugation at

165,000 g for 2 h at 4uC to produce synaptic vesicle-enriched

(LP2) and cytosolic (LS2) fractions. To enrich light membranes/

microsomes (P3), the S2 fraction was subjected to ultracentrifu-

gation at 165,000 g for 2 h at 4uC. Protein concentrations were

determined by BCA assay (Pierce Biotechnology) and equal

quantities of each fraction were assessed by Western blotting with

specific antibodies labeling mitochondria (TIM23; P2 and LP1),
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synaptosomes/synaptic vesicles (synaptophysin 1; P2, P3, LP1 and

LP2), and synaptosomal/synaptic vesicle cytosolic (a-synuclein;

LS1 and LS2) subcellular compartments.

Size-exclusion chromatography of mouse brain
Size-exclusion chromatography was performed at 4uC using an

Akta-FPLC system (Amersham Biosciences). Mice were sacrificed

by cervical dislocation and decapitation and whole brains were

rapidly removed. Whole brains from adult wild-type or LRRK2

KO mice were homogenized on ice for 30 min in lysis buffer

(0.1% Triton X-100 in 1X PBS containing 1X Complete protease

inhibitor cocktail [Roche Applied Sciences]), briefly centrifuged,

and cleared lysates were injected for FPLC. Gel filtration was

conducted using a Superdex 200 10/300 GL column (Amersham

Biosciences) equilibrated with lysis buffer at 0.4 ml/min. Column

void volume was 8 ml, and elution volumes of standards were 9 ml

for thyroglobulin (669 kDa), 10.5 ml for ferritin (440 kDa),

12.5 ml for aldolase (158 kDa), 15.5 ml for conalbumin

(75 kDa), and 16.5 ml for ovalbumin (43 kDa). Fractions

(0.5 ml) were analyzed by SDS-PAGE and Western blotting with

anti-4E-BP1, anti-phospho-4E-BP1 (Thr37/46) and b-tubulin

antibodies.

Human brain tissue
Human tissue for these studies was obtained from the archive at

Queen Square Brain Bank (QSBB). These include 4 G2019S

subjects, 5 idiopathic PD and 5 control brain subjects. Frontal

cortex tissue was obtained for a fifth G2019S subject from Sun

Health Research Institute, USA. The details of these human

subjects are listed in Table 1. Written informed consent was

obtained from all patients and approval for this study was obtained

from the NHS National Research Ethics Committee of the UK.

The 4 G2019S PD subjects from the QSBB brain bank were

classified neuropathologically as the limbic subtype for Lewy body

pathology according to McKeith consensus criteria for the

classification of DLBs [47]. In this limbic subtype, Lewy bodies

are present in brainstem and substantia nigra, and are also

prominently present in the limbic regions of the cortex i.e.

amygdala, transentorhinal and cingulate regions, but very few

Lewy bodies are detected in the frontal, temporal and parietal

cortices. The fifth G2019S subject, from Sun Health, also harbored

limbic subtype Lewy body pathology. The iPD subjects chosen

were matched for pathology with the G2019S subjects, while the

controls had no signs of any significant neuropathology and did

not suffer from any neurological disease. Flash-frozen tissue was

obtained from the basal ganglia and frontal cortex of these

subjects.

Fractionation of human brain tissue
10% (w/v) homogenates were prepared from 1 g tissue from

basal ganglia and frontal cortex regions in homogenization buffer

(20 mM Tris-HCl pH 7.4, 150 mM NaCl, 1X Complete protease

inhibitor cocktail [Roche Applied Sciences] and 1X phosphatase

inhibitor cocktail [Roche Applied Sciences]) with the aid of a

mechanical homogenizer, and cleared by centrifugation at 1,000 g

for 5 min at 4uC. Protein concentrations of cleared homogenates

were calculated by BCA assay (Pierce Biotechnology). Thirty mg of

protein were resolved on 18% Bis-Tris gels (Invitrogen) using

MOPS buffer and transferred onto PVDF membranes. Blots were

probed with anti-4E-BP1 and anti-phospho-4E-BP1 (Thr37/46)

(Cell Signaling Technology), or b-actin (Sigma-Aldrich) antibod-

ies, and appropriate peroxidase-conjugated secondary antibodies.

Enhanced chemiluminescence (Pierce) images were captured onto

X-Omat films (Kodak). Quantitation of protein levels by

densitometry was conducted on scanned images using LabImage

1D software (Kapelan Bio-Imaging Solutions). For quantitation of

phospho-4E-BP1 levels, the upper protein band corresponding to

4E-BP1 was used for densitometry.

Immunocytochemistry and confocal microscopy
For co-localization of LRRK2 and 4E-BP1, rat primary cortical

cultures were infected with adenoviral vectors expressing FLAG-

tagged human LRRK2 variants (WT, R1441C or G2019S) at

DIV 6, fixed at DIV 16 with 4% paraformaldehyde (PFA), and

subjected to immunocytochemistry with mouse anti-FLAG-(M2)

antibody and rabbit anti-4E-BP1 antibody followed by anti-mouse

IgG-AlexaFluor-633 and anti-rabbit IgG-AlexaFluor-488 antibod-

ies (Invitrogen). Fluorescent images were acquired using a Zeiss

LSM 700 inverted confocal microscope (Carl Zeiss AG, Feldbach,

Switzerland) with a Plan-Apochromat 63x/1.40 oil objective in x,

y and z planes and analyzed using NIH Image J software. Images

were subjected to deconvolution using HuygensPro software

(Scientific Volume Imaging, Hilversum, Netherlands). Represen-

tative images are taken from a single z-plane at a thickness of

0.1 mm.

In vitro radioactive kinase assays
Recombinant GST-tagged human LRRK2 protein (D970-

2527; WT or D1994A, Invitrogen) was incubated with recombi-

nant GST-tagged human 4E-BP1 (Sigma-Aldrich) in kinase assay

buffer (20 mM Tris pH 7.4, 5 mM EGTA and 20 mM b-glycerol

phosphate in 1X PBS). Reactions were initiated by addition of

activation buffer to final concentrations that includes 0.1 mM

[32P]-c-ATP (0.2 mCi/reaction) and 20 mM MgCl2 and incuba-

tion at 30uC with shaking for 30 min. Reactions were terminated

by placing the tubes on ice and proteins were resolved on SDS-

PAGE gels and exposed to phospho-imager screens to detect 32P

incorporation followed by staining with Coomassie colloidal blue.

Table 1. Clinical details of human brain tissue.

Subject Gender Age (yrs) PMD (h) Pathology

G2019S 1 F 80 44.4 Limbic

G2019S 2 F 81 15 Limbic

G2019S 3 F 84 32.2 Limbic

G2019S 4 F 72 24.55 Limbic

G2019S 5 M 85 1.66 Limbic

iPD 1 F 69 52.5 Limbic

iPD 2 M 70 61.2 Limbic

iPD 3 F 87 47.45 Limbic

iPD 4 M 75 48 Limbic

iPD 5 F 88 11.3 Limbic

Control 1 F 85 37 N/A

Control 2 M 93 112 N/A

Control 3 F 91 98.5 N/A

Control 4 M 87 36 N/A

Control 5 F 68 41.5 N/A

Abbreviations: iPD, idiopathic Parkinson’s disease; Limbic, limbic
subtype of Lewy body pathology according to McKeith consensus
criteria for the classification of DLB; N/A, non-applicable; PMD,
post mortem delay; yrs, years.
doi:10.1371/journal.pone.0047784.t001
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Statistical analysis
Data were analyzed by two-tailed, unpaired Student’s t-test for

pair-wise comparisons, or by one-way ANOVA with Newman-

Keuls post-hoc analysis for comparison of multiple data groups, as

indicated. P,0.05 was considered significant.
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