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Abstract 

Myocardial infarction is the largest cause of morbidity and mortality worldwide. 

Despite optimal treatment, patients have a mortality which approaches 12% at 

six months. 

Reperfusion of the ischaemic myocardium is essential to salvage 

myocardium. However, reperfusion itself is harmful, with up to 40% of 

myocardial necrosis occurring at this time. This is known as “Lethal 

Reperfusion Injury”. Opening of the mitochondrial permeability transition pore 

(MPTP), a channel situated in the inner mitochondrial membrane is central to 

this process. In its quiescent state, the MPTP remains closed, but once open 

it becomes non-selectively permeable to solutes of up to 1.5 kDa, resulting in 

rapidly advancing necrotic cell death.  

The molecular structure of the MPTP has not yet been fully determined, 

although cyclophilin D (Cyp D) has been shown to be essential to its function. 

Genetic ablation of Cyp D has been shown to result in delayed opening of the 

MPTP and resistance to myocardial damage after acute ischaemia-

reperfusion injury. MPTP inhibition is cardioprotective, and may be achieved 

by a variety of means including ischaemic pre- and post-conditioning, and by 

pharmacological agents.  

The aim of this thesis is to investigate the role of the MPTP (cyclophilin D) in 

cardioprotection from acute ischaemia-reperfusion injury. 

In chapter 4 we investigate whether it is possible to protect the heart in mice 

deficient of cyclophilin D by applying a stronger ischaemic preconditioning 

stimulus to that previously investigated in vivo. We found that there was a 
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non-statistically significant trend towards a protective effect in cyclophilin D 

deficient mice which were subjected to a stronger IPC stimulus than that 

previously studied in vivo.  

Chapter 5 explores whether it is possible to protect the heart whilst avoiding 

the deleterious extra-cardiac effects of cyclosporin A by sub-cellular targeting 

of cyclosporin A (CsA) to mitochondria in the first in vivo testing of a 

mitochondrial-specific form of CsA (mtCsA). We demonstrated that mtCsA 

administered at reperfusion did not protect the heart of wild type mice from 

ischaemia- reperfusion. 

Chapter 6 examines the possibility of achieving cardioprotection independent 

of cyclophilin D. In this chapter, the effects of the matrix metalloproteinase 

inhibitor, Ilomastat, are studied. We confirmed that MMP inhibition was 

cardioprotective in wild type mice and also showed for the first time in vivo 

that administration of ilomastat can protect the heart from ischaemia- 

reperfusion in mice deficient in cyclophilin D. 

In summary our data supports the hypothesis that it is possible to protect the 

heart from ischaemia – reperfusion in cyclophilin D deficiency by 

administration of an MMP inhibitor at reperfusion. We also showed a trend 

towards cardioprotection in cyclophilin D deficiency by administration of an 

increased IPC stimulus. Together, these data may suggest that necrotic cell 

death may not all be mediated by the MPTP, or possibly, that the MPTP may 

exhibit a threshold effect which is surmountable by an increase in inhibitory 

action of combined pharmacology or increase in IPC stimulus. 
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Chapter 1-Introduction 

1.1 Epidemiology of Acute Myocardial Infarction 

Ischaemic heart disease (IHD) is the leading cause of morbidity and mortality 

worldwide (1). It has previously been demonstrated that after coronary 

occlusion occurs, survival is directly related to the extent of cardiac muscle 

loss (2). The most important factor in salvaging myocardium is the restoration 

of flow to the affected coronary artery territory (reperfusion) (3-5). This may be 

achieved by mechanical (primary percutaneous coronary intervention) or 

pharmacological means (thrombolysis). The principal determinant of infarct 

size is the duration of ischaemia (6,7) and thus one of the major targets of 

treatment of myocardial infarction is to reduce the time to reperfusion after the 

onset of arterial occlusion. However, there is a “ceiling” effect in terms of 

reducing time to reperfusion: progress may be limited by a variety of factors 

which may be strategic (ie related to transport and treatment delays) or patient 

related (delay in symptom recognition before the call to help). Inevitably, even 

despite optimal treatment, some degree of cardiac damage does occur and 

the six month mortality rate of up to 12% reflects this (8). This high mortality 

rate is the driver behind the search to find interventions which may reduce 

infarct size further. In investigating this, it is important to understand the 

pathological processes involved in the myocardial cell death which occurs in 

the reperfused acute myocardial infarction. 
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1.2 Physiological changes in Acute Myocardial Infarction 

Acute myocardial infarction is caused by the rupture of an atherosclerotic 

plaque, subsequent platelet activation and formation of occlusive thrombus in 

the affected coronary artery. This in turn results in cessation of delivery of 

oxygenated blood to the myocardium and the tissue becomes ischaemic.  

However the extent of cellular necrosis is not fully determined during the 

period of index ischaemia in the reperfused myocardium. Jennings in 1960 

(9), first reported the pathological changes which take place after reperfusion 

of the circumflex artery in a canine model, describing what later became 

known as “lethal reperfusion injury”.  

Although opening the occluded artery is essential to salvaging viable 

myocardium, the process of reperfusion itself leads to a variety of changes 

which take place at the cellular level which are deleterious to the myocardium. 

In fact, reperfusion itself accelerates the process of myocardial necrosis. This 

has been debated in the literature (10) - but the finding that interventions 

given at the time of reperfusion can reduce infarct size by up to 40%) (11-15), 

supports the theory that reperfusion itself creates a degree of myocardial 

damage, with the clear implication that tissue is “salvageable” during this time. 

This rapid process of cardiac damage is referred to as “Lethal Reperfusion 

Injury” (LRI), and it is defined as “injury caused by restoration of blood flow 

after an ischaemic episode leading to death of cells which were only reversibly 

injured during the preceding ischaemic episode”(16).  
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1.3 The Effect of Ischaemia on the Myocardium 

To fully understand lethal reperfusion injury, it is imperative to appreciate the 

effect of ischaemia itself on the myocardium.  

The cessation of antegrade coronary flow results in a variety of changes at the 

cellular level- as a result of tissue hypoxia (due to lack of delivery of 

oxygenated blood) and failure of the nutrient (adenosine triphosphate (ATP) 

supply. The immediate effect of tissue hypoxia is failure of oxidative 

phosphorylation, with resultant failure of aerobic synthesis of ATP. Adenosine 

diphosphate (ADP), inorganic phosphate and reduced cofactors and 

coenzymes (eg NADH) then accumulate. Metabolism then switches to 

anaerobic glycolysis. This results in acidosis, both from lactate production and 

generation of hydrogen ions. The overall result is a rise in intracellular 

potassium and sodium and over-riding acidosis due to lactate production, 

reduced CO2 efflux, and failure of the ATP driven H+ pumps (17). 

If the ischaemic insult persists beyond a critical duration, then the damage 

sustained becomes irreversible. This does not happen uniformly within the 

myocardium, but is incremental throughout the period of ischaemia beginning 

in the subendocardium and progressing to the epicardium (7). This was first 

described by Reimer and Jennings and this phenomenon is known as the 

“wavefront of cell death”.  

The processes resulting in this cell death are described in brief overleaf.  
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The hallmark of irreversible damage is the loss of membrane integrity. This is 

the result of increased intra-cellular osmolarity creating an osmotic gradient, 

drawing water into the cell and causing it to become oedematous.  

The cytosolic calcium concentration also rises during ischaemia. The 

sarcoplasmic reticulum cannot take up this redistributed calcium as there is 

inadequate phosphorylation of ATP. This results in increased calcium release 

further exacerbating the problem. 

During ischaemia toxic lipid metabolites accumulate – eg acetyl- CoA, acyl 

CoA. Activation of phospholipase A2 causes breakdown of the phospholipid 

membrane and release of harmful free fatty acids some of which exert a direct 

toxic effect (18). Free fatty acids also promote generation of reactive oxygen 

species (ROS), by uncoupling oxidative phosphorylation. 

Reactive oxygen species (ROS) are a group of compounds which, as their 

collective title suggests are a group of highly reactive oxygen derived free 

radicals or free radical precursors. If the production of reactive oxygen species 

exceed the capacity of cellular scavengers to remove them oxidative stress 

results. This has a direct toxic effect on the cell (19). 
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1.4 Lethal Reperfusion Injury 
 
At the time of reperfusion there is a dramatic and rapid alteration in the 

cellular physiology. These changes are complex, and involve interaction of a 

number of harmful processes.  

1.4.1 Restoration of physiological pH 

Firstly, there is a rapid restoration of physiological pH. This occurs because 

lactate is washed out of the cell, and there is activation of the Na/HCO3 

symporter and Na/H exchange (20). The rise in pH which occurs is 

cardiotoxic, causing opening of the MPTP, hypercontracture of the cell and 

cell death (20). Studies have shown that perfusion of post-ischaemic hearts 

with acidic buffer reduces myocardial damage (22) in animal models, but this 

has not been borne out in clinical trials of eniporide, an Na+/H+ exchange 

inhibitor given at reperfusion in the setting of acute myocardial infarction (23). 
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1.4.2 ROS generation 

Reoxygenation after an ischaemic insult to the myocardium has been shown 

to be directly harmful (24). It causes a degree of injury which is greater than 

the injury caused by ischaemia alone, and this has been referred to as “the 

oxygen paradox” (11,25,26). The mechanism for this is thought to be damage 

to mitochondria, which prohibits efficient transfer of electrons by complexes I 

and III of the electron transport chain, generating a huge burst of 

mitochondrial derived ROS, causing oxidative stress and resultant myocardial 

damage (27,28). 

An additional effect of oxidative stress is that it limits availability of nitric oxide 

which itself has a cardioprotective effect (11). 

Although it would appear that the role of ROS in myocardial damage seems 

undisputed, the literature is conflicted. There are several studies which appear 

to show benefit from treatment with ROS scavengers (29-31). In contrast, 

there are also a number of studies which appear to refute this (32,33). 

It is clear that ROS have been shown to stimulate opening of the MPTP (34), 

and thus are likely to play some role in lethal reperfusion injury, but 

pharmacological modulation of this in humans is difficult due to the very short 

therapeutic window required to achieve a useful clinical effect and the inability 

to achieve sufficient levels of the antioxidant in the cardiomyocyte. 

1.4.3 Rise in intracellular calcium 

The accumulation of intracellular calcium which begins during ischaemia is 

further exacerbated by reperfusion. During ischaemia, anaerobic metabolism 
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is the source of ATP synthesis, and this produces lactate, acidifying the 

cytosol. In order to try to maintain physiological pH, the sarcolemmal Na+/H+ 

exchange mechanism is activated. The sodium ions are then exchanged for 

calcium ions by the Na+/ Ca2+ exchanger (35). At the time of reperfusion, there 

is a rapid escalation in intracellular calcium content- this is due to damage to 

the sarcolemmal membrane and also dysfunction of the sarcoplasmic 

reticulum (11). A maladaptive response then occurs, whereby the calcium is 

taken up by the mitochondrial Ca2+ uniporter, driving calcium into the 

mitochondrial matrix (36). This, in turn, stimulates opening of the MPTP.  

 

1.4.4 Rise in inorganic phosphates (Pi) 

During the injurious ischaemic episode, inorganic phosphates accumulate 

within the mitochondrion. This is largely caused by a drop in the mitochondrial 

pH level, which leads inorganic phosphate to be taken up into mitochondria. 

This is a potent MPTP stimulant (202). 

 

1.5 The Mitochondrial Permeability Transition Pore 

1.5.1 What is the MPTP? 

The mitochondrial permeability pore (MPTP) is a non-specific channel located 

in the inner mitochondrial membrane, which was first discovered by Hunter 

and Haworth in the 1970s (37-39). Its critical involvement in tissue damage 

occurring during myocardial ischaemia / reperfusion was revealed in the 

1980s by Crompton (40-42). Under physiological conditions the pore remains 

closed. During ischaemia, due to inhibition by cellular acidosis, it remains 
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quiescent (43,44). The pore is sensitive to a number of stimuli as discussed 

above- alterations in calcium concentration, generation of reactive oxygen 

species, restoration of physiological pH and the presence of inorganic 

phosphate (45), conditions which are created within a few moments of 

reperfusion. When the pore opens it becomes freely permeable to solutes of 

up to 1.5 kDa including protons (38,46). The crossing of protons results in a 

rapid dissipation of the electrical gradient across the membrane and 

uncoupling of oxidative phosphorylation (failure of ATP generation) and also 

leads to reversal of the proton-translocating ATPase causing hydrolysis of 

ATP leading to profound ATP depletion (47). If the pore remains open, this will 

lead to rapidly advancing cell death by necrosis. At the same time, as proteins 

are unable to cross the membrane, an osmotic gradient is also generated 

between the cytosol and matrix, which causes the mitochondria to swell, 

rupturing the outer mitochondrial membrane and releasing cytochrome C (48). 

Cytochrome C then associates with apoptosis inducing factor and caspase-9, 

which induces the release of caspase-3 and onset of apoptosis. The pro-

apoptotic members of the Bcl-2 (B-cell lymphoma-2) family are also 

upregulated and contribute to apoptotic cell death in this setting (223).  

Importantly, the MPTP remains closed during myocardial ischaemia and 

opens only during the first few minutes of reperfusion (44), making it an ideal 

target for therapeutic manipulation in the setting of myocardial infarction. 

1.5.2 Components of the MPTP 

Despite much research, the precise structure of the MPTP remains elusive. Its 

function was initially thought to be the result of the interaction between a 
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number of subunits: namely cyclophilin D (Cyp D), the voltage dependent 

anion channel (VDAC) and adenine nucleotide translocase (ANT). Genetic 

studies have revealed that VDAC and the ANT play a non-essential role in 

pore function. The role of each, and the evidence for their involvement 

is detailed below. 

1.5.2 Cyclophilin D 

Cyclophilins are a group of proteins whose function is to catalyse the cis-trans 

isomerisation of peptidyl-prolyl bonds- hence being referred to as PPIases 

(peptidylprolyl cis-trans isomerases). Cyclophilin D, the mitochondrial isoform, 

is an 18kDa protein, and is located in the mitochondrial matrix (49). Its role in 

function of the MPTP was discovered after administration of cyclosporin A 

was found to be a potent inhibitor of the MPTP (50). Its identification as a 

PPIase took place shortly afterwards, by Halestrap’s group, who observed 

that cyclosporin and its analogues inhibited a matrix peptidyl-prolyl cis-trans 

isomerase (PPIase) and subsequently purified it from rat livers, identifying it 

as cyclophilin D (51-53). Work by Baines confirmed that cyclophilin D was an 

essential component of the MPTP (13).  

Ablation of the mouse Ppif gene which encodes cyclophilin D has enabled 

further understanding of its role in ischaemia-reperfusion injury (IRI). 

Mitochondria isolated from mice deficient in this gene have been shown to be 

resistant to the harmful effects of noxious stimuli including calcium overload 

and oxidative stress induced cell death (13), both of which are known to 

promote opening of the MPTP. Baines group also confirmed that MPTP 

opening was delayed in Ppif null mice and that they were protected to some 
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degree from IRI, with a significant reduction in the extent of infarction in 

comparison to wild type controls (13,54). Treatment with agents known to 

inhibit cyclophilins – Debio-25 (55), sanglifehrin A (56) have also been shown 

to inhibit the MPTP to a similar degree as Ppif null animals (57). As cyclophilin 

D is the binding site responsible for reduction in infarct size seen after 

ischaemia-reperfusion, these mice exhibit smaller infarct sizes and do not 

exhibit a further reduction in infarct size after administration of cyclosporin A 

(12).  

1.5.3 Voltage Dependent Anion Channel (VDAC) 

The voltage dependent anion channel (otherwise known as porin) is located in 

the outer mitochondrial membrane of all eukaryotic organisms (58).  Mammals 

have three isoforms (VDAC- 1, 2 and 3). VDAC was formerly considered to be 

essential for function of the MPTP. In its closed state it is permeable to solutes 

of up to 1.5 kDa (as is the open MPTP), and when open it allows solutes of 

molecular weight of up to 5kDa to pass. However, if VDAC was an essential 

part of the MPTP it would be expected that closure of VDAC would result in 

closure of the MPTP, protecting the mitochondrion from calcium influx- but, as 

noted above the closed state of VDAC allows the same size of molecules to 

pass as the open MPTP. In fact the closed VDAC increases calcium influx into 

mitochondria, which would conversely result in MPTP opening (59).  Initial 

data suggested that use of VDAC inhibitors also inhibited MPTP action, but 

these inhibitors were relatively non-selective in their site of action (60). Further 

data, in isolated mitochondria from mice lacking VDAC -1 has shown normal 

MPTP function, with inhibition by CsA (61). Experimental data by Baines et al, 

has demonstrated that cardiac fibroblasts lacking all three isoforms continue 
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to display MPTP activity in response to calcium and oxidative stress. 

Additionally, administration of cyclosporin A abolished this activity (62), 

refuting the previous suggestion that VDAC was a necessary component of 

the MPTP. It is more likely that VDAC instead plays a role in targeting of 

protective proteins such as Akt and protein kinase C.  

1.5 4 Adenine Nucleotide Translocase 

The adenine nucleotide translocase (ANT) is a small protein (approximately 

300 amino acids long) which is located in the inner mitochondrial membrane. 

There are four isoforms of translocase, ANT-1and ANT-2, both of which are 

present in rodents, and ANT-3, which is present in humans  but not rodents 

(63), and ANT-4 which is found in murine germ cells (64). The function of the 

translocase is to shuttle ATP and ADP across the inner mitochondrial 

membrane. Clues to its involvement in the function of the MPTP are that ATP 

and ADP directly inhibit the MPTP, but other nucleotides such as AMP, GDP 

and GTP, which don’t pass via the ANT do not. The ANT has two 

conformations – C (cytosolic) and M (matrix). Bongkreic acid shifts the ANT to 

the M conformation, whilst atractyloside shifts it to the C conformation. 

Bongkreic acid has been shown to block the calcium induced MPTP (52), 

whilst atractyloside sensitises the MPTP response to calcium (65) in isolated 

mitochondria. This would be in keeping with a change in conformation of the 

ANT, from its resting state into the pore-forming cytosolic type at the time of 

reperfusion. In further support of this, studies in isolated cardiomyocytes have 

shown that bongkreic acid protects against oxidative stress (66), and 

atractyloside blocks the protective effect of nitric oxide donors (67). 

Additionally, ANT-1 interacts with cyclophilin D at contact sites between the 
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inner and outer mitochondrial membranes- this is where the pore is thought to 

be located (68), implicating ANT-1 in MPTP function.   

Despite the evidence supporting its involvement in the MPTP, ANT is not 

thought to be an essential component. The fact that ANT-1, but not ANT-2 

interacts with cyclophilin is one of the arguments against it being an essential 

component: the MPTP is found in most organs, yet ANT-1 is only found in 

striated muscle. Knock out studies have also drawn the exact role of ANT in 

pore function into question. Mice with both ANT-1 and ANT-2 knocked out (ie -

/-) exhibit a typical pattern of calcium dependent pore action, and cyclosporin 

inhibits this (69). The calcium threshold for pore opening in the double knock-

out was elevated, which does suggest some degree of ANT involvement, but 

this data demonstrates conclusively that the ANT does not play an essential 

role in function of the MPTP. It is, however, considered to play a regulatory 

role in pore function. 

1.5.5 The mitochondrial phosphate carrier 

Recent data has suggested that the mitochondrial phosphate carrier may 

regulate MPTP opening although the data is far from conclusive. 

Data presented by Leung et al, shows that the phosphate carrier binds to 

cyclophilin D in a cyclosporin sensitive manner, and is also associated with 

the ANT, features which are suggestive of involvement in pore function (70). 

Its role has not yet been clearly established in pore function. 
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Figure 1.1 Schematic diagram of proposed structure of the MPTP 
 

1.6 Biological function of the MPTP 

The precise biological function of the MPTP remains unclear. Although 

genetic knock out studies initially suggested that loss of cyclophilin D exerts a 

positive effect on the myocardium, by protecting against ischaemia-

reperfusion injury, data is emerging which suggests that genetic ablation of 

CypD has a long-term maladaptive effect. Elrod et al presented a study which 

explored the role of cyclophilin D in the heart, and found that animals deficient 

in cyclophilin D were unable to increase myocardial contractility in comparison 

to wild type controls after administration of the β-adrenergic agonist 

isoproterenol. After exposure to trans- aortic constriction (TAC), the CypD 

deficient animals developed severe left ventricular hypertrophy and cardiac 

fibrosis, with animals of this genotype showing increased propensity to 

develop heart failure when faced with mechanical pressure overload. This was 

also found when exercise in the form of swimming was used to assess the 

effect of physiological (exercise induced) hypertrophy – the CypD -/- genotype 
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had a significantly higher mortality from drowning due to fatigue. Histology 

showed a greater degree of hypertrophy and pulmonary oedema than their 

wild type counterparts. Further investigations showed that cardiac 

mitochondrial calcium content was elevated in mice deficient of cyclophilin D, 

and that there was an increase in the calcium threshold for MPTP opening. 

Cyclosporin A was seen to increase calcium efflux from mitochondria. Altered 

substrate utilisation was also noted, with increased levels of dehydrogenase 

activity with a net result of increased glucose in this series of experiments 

(71). Elrod’s paper thus provides an important insight into the potential role of 

the MPTP in regulation of calcium metabolism and response to 

haemodynamic stress.  

The MPTP does appear to have more than one role, however, mediating 

necrotic cell death after reperfusion of an ischaemic organ, and also in 

mediating protection by preconditioning and postconditioning .  

The protection conferred by ischaemic preconditioning (discussed later in this 

chapter) is related to opening of the MPTP. In contrast to lethal reperfusion 

injury, IPC may be mediated by a transient opening of the MPTP, whereas in 

necrotic cell death, this is prolonged. This transient MPTP opening has been 

shown to be an essential part of IPC induced cardioprotection (72).  

Administration of MPTP blocking agents during preconditioning completely 

abolishes any protective effect. This effect is thought to result from 

mitochondrial uncoupling and subsequent reduction in calcium loading of 

mitochondria and increased mitochondrial ROS signalling (72).  
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1.7 Methods of cardioprotection:  MPTP Inhibition 

Infarct size is the strongest determinant of prognosis after acute myocardial 

infarction, and thus a wealth of research has been focussed on interventions 

to reduce infarct size. There is a degree of myocardial necrosis which is 

determined by the duration of ischaemia, but at the time of reperfusion, a 

substantial amount of damage occurs in tissue, which until then was 

salvageable - lethal reperfusion injury. The MPTP plays a major role in this 

cell death, and therefore interventions which inhibit its function have been the 

focus of much research. 

Cardioprotective strategies such as ischaemic preconditioning (15,73) and 

postconditioning (74) (discussed in more detail below) have been shown to 

inhibit opening of the MPTP, and reduce cell death after ischaemia-

reperfusion. In addition to this, drugs which inhibit MPTP function (75) have 

also been studied in detail and these are also discussed below. 

1.8 Mechanical methods of cardioprotection 

1.8.1 Ischaemic Preconditioning (IPC) 

Ischaemic preconditioning is a phenomenon whereby the application of a 

period of non-lethal ischaemia to an organ prior to a sustained injurious 

ischaemic insult results in protection from necrotic cell death (76). 

Murry et al in 1986 first reported in a canine model that brief periods of 

sublethal ischaemia administered to the circumflex artery before the onset of a 

prolonged ischaemic insult to the same vessel could protect against 

myocardial damage measured at four days post-reperfusion (76). These 

findings have been supported subsequently by a number of confirmatory 
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studies in a variety of animal models (54,77). Human cellular work using IPC 

in isolated cardiomyocytes (78) and superfused human myocardium (79) has 

also been successful in reducing cellular damage after an ischaemic insult.  

There appear to be two periods during which the heart is maintained in a 

“preconditioned” state- the initial period, within 1-2 hours of the 

preconditioning stimulus (80), and a later “second window” of protection 

(SWOP), where the cardioprotective effect has been shown to recur 24 hours 

later and last for 2-3 days- described by some researchers as “delayed” or 

“late” IPC. 

The mechanisms involved in IPC still remain elusive despite much research, 

but the signalling mechanisms involved are being discovered slowly over time.  

The IPC stimulus causes release of a series of autacoids (eg bradykinin (81), 

adenosine (82) and opioids (83)) from the organ being preconditioned. 

Blockade of any one of these agents abolishes the protective effect of IPC. 

These autacoids are all thought to act in parallel with one another and act via 

G- protein coupled receptors.  

More than one pathway for the protection of IPC has been proposed  

Inhibition of protein kinase C (PKC) has been shown to block the protective 

effect of all three substances (84-86), leading to the conclusion that PKC is a 

downstream point of convergence for the action of autacoids.  

The autacoids also act via G protein-coupled receptors to trigger activation of 

signal transduction pathways involving PI3K- Akt- e NOS, Erk 1 /2, p38, JNK 

MAPK, JAK-STAT3, PKC/PKG (the signalling kinases) which act on 

downstream effectors such as the mitochondrial potassium- ATP channel, 
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MPTP, and ROS. These are referred to as pro-survival kinases. These then 

inhibit the MPTP (87), by a mechanism which to date is currently unknown. 

 

Figure 1.2 Simplified diagram of pathway resulting in the protective effect of 

ischaemic preconditioning. 

 

Postconditioning achieves protection by similar means (87,88), and both pre- 

and postconditioning act via pathways which are convergent at the point of 

reperfusion- this is collectively referred to as the reperfusion injury salvage 

kinase (RISK) pathway (89). 

A further pathway has also been found – which is referred to as the survival 

activating factor enhancement (SAFE) pathway (90). This has been reported 

to involve TNF- α activation, Signal Transducer and Activator of Transcription 

3 (STAT3) and its actions are independent of the RISK pathway (91).  

 

At the time of reperfusion after a sustained ischaemic insult, the MPTP is 

known to open. This is a sustained “high-conductance” opening, and this 



Cara Hendry 
 

36 

event is a critical mediator of lethal reperfusion injury. However, the MPTP 

can open transiently, (as in IPC) and this can affect calcium efflux and 

mitochondrial calcium load (92). It has also been shown that transient pore 

opening can mediate mitochondrial ROS release (93) and may be triggered by 

mitochondrial uncoupling (94). These findings prompted further study, by 

Hausenloy et al, in order to determine whether transient opening of the MPTP 

could be a primary mediator of the cardioprotection afforded by IPC. The 

findings of this study in a Langendorff model of ischaemia-reperfusion 

confirmed that the cardioprotection of IPC, diazoxide and mitochondrial 

uncoupling were dependent on both MPTP opening and reactive oxygen 

species (72). This placed the MPTP in a crucial role for both IPC and lethal 

reperfusion injury.   

This role has been confirmed in experimental data showing that administration 

of MPTP inhibitors during the IPC stimulus abolishes generation of 

mitochondrial ROS (95) and also cardioprotection (72). Additionally, mice 

deficient in cyclophilin D, an essential component of the MPTP do not appear 

to be protected after ischaemic preconditioning (54). Hausenloy et al 

confirmed that the protective effect of IPC was mediated by MPTP inhibition 

(15). 



Cara Hendry 
 

37 

 

 

Figure 1.3 Simplified diagram of the role of transient MPTP opening as a 

mediator of the cardioprotection of IPC (reproduced with permission, 

Hausenloy et al (203) 

The benefit of IPC in reduction of cardiac damage after sustained ischaemia 

countered the previous widely held belief that infarct size was fully determined 

during ischaemia and held huge potentially beneficial implications for the 

reduction in cellular injury sustained during an ischaemic event.  

Although of great scientific importance, this data had one large drawback in 

terms of direct clinical application in treatment of acute myocardial infarction 

(AMI) –primarily because in the real world setting, the onset of myocardial 

infarction is usually unprecedented. However this method does have a 

potential role in situations where the onset of ischaemia is predictable- in 

vascular (96,97), gastro-intestinal (98), cardiac (99) and transplant surgery.   
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1.8.2 Ischaemic Postconditioning (IPOC) 

In 2003, Zhao demonstrated in a canine model of reperfused myocardial 

infarction (with the LAD as the target vessel) that the application of three brief 

periods of ischaemia – reperfusion as a postconditioning stimulus immediately 

after reperfusion resulted in a reduction in infarct size measured at three 

hours (100). This data was supported in a variety of models (101) and was 

welcomed, as it lent new promise to future therapy for STEMI. In fact, after 

investigation in small numbers of patients, the use of ischaemic 

postconditioning (by inflating an angioplasty balloon for brief periods after 

restoration of coronary flow) in the catheter laboratory has been subsequently 

shown to reduce markers of myocardial injury, such as release of creatinine 

kinase and improve angiographic markers of reperfusion (blush grade) (102). 

However, the introduction of thrombectomy (manual aspiration of thrombus 

during treatment of acute myocardial infarction by primary angioplasty), has 

made it difficult to perform and assess the effect of postconditioning in the 

setting of primary angioplasty. To date no study of postconditioning has 

demonstrated a reduction in mortality. In addition, recent data, using 

myocardial salvage index, left ventricular ejection fraction, and infarct size by 

MRI as the outcome measures has been disappointing- with no improvement 

in any of these measures after three cycles of postconditioning in the setting 

of acute myocardial infarction (204). However, there is data utilising surrogate 

outcome measures, such as troponin and creatinine kinase release which do 

show benefit. To date the clinical trials have all had small patient numbers. 

There are also other studies, which are currently underway, such as the 

Danish Study of Optimal Acute Treatment of Patients with ST-elevation 
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Myocardial Infarction (DANAMI-3), which is currently recruiting, aiming for 

recruitment of 1000 participants, and is using magnetic resonance imaging to 

quantify infarct size out to three months after acute myocardial infarction.  

 

1.8.3 Remote Ischaemic Preconditioning (RIPC) 

The benefits of ischaemic conditioning may also be seen when a distant organ 

undergoes pre-emptive ischaemia. This is referred to as remote ischaemic 

preconditioning, and was initially described by Przyklenk who performed IPC 

in dogs and used the circumflex artery as the IPC stimulus, and the LAD as 

the vessel undergoing the prolonged ischaemic insult, with a significant 

reduction in infarct size (104). Perhaps this could be considered as “regional” 

IPC. However, this phenomenon has been shown in liver cells (105), and in 

the brain after limb ischaemia (106) and a reduction in renal and cardiac 

damage was observed after cross clamping the iliac arteries prior to repair of 

aortic aneurysm (107) – this has been termed remote IPC. Remote IPC has 

been shown to reduce troponin release in patients undergoing elective 

coronary intervention (108), surgery on children with congenital cardiac 

defects (109) and coronary artery bypass surgery (110). Recent data in 

humans has supported that inducing transient limb ischaemia by inflating a 

cuff at high pressure to a distant limb prior to complex cardiac surgery 

attenuates release of markers of myocardial damage (CK) and reduces length 

of intensive care stay (111).  

Disappointingly, not all trials of RIPC have demonstrated beneficial effects 

(112,113) and none has translated to an improvement of survival. In fact, the 

most recent study investigating RIPC in patients undergoing high risk CABG 
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has shown an increase in the degree of myocardial injury in the group treated 

with RIPC (205).   

It is clearly difficult to clearly define the benefit of the trials of interventions 

such as RIPC. There are a number of reasons for this. Firstly, the patient 

groups investigated are widely heterogeneous. Additionally, there has been 

no clinical trial carried out to determine the optimum conditioning protocol. It is 

possible that the protocol used widely at present – as described by Kharbanda 

et al (207), may be subtherapeutic in some groups of patients (206). Timing of 

RIPC stimulus in relation to the ischaemic episode is also critical, and varies 

amongst the clinical trials (208, 209). Anaesthetic agents used in the trials are 

also relevant. As discussed in chapter 3, the halothane anaesthetic agents 

have been shown to be cardioprotective in experimental infarction (180-182), 

and this may prevent any demonstration of protection. This is borne out by the 

fact that the studies showing a positive effect of RIPC have not used 

halothane anaesthesia (209, 210), and the studies showing no benefit have 

used the halothanes (208, 211). However, the issue remains far from clear. 

Currently, the Effect of Remote Ischaemic Preconditioning on Clinical 

Outcomes in Patients Undergoing Coronary Artery Bypass Graft Surgery 

(ERICCA) study is being undertaken. This study is using a number of 

indicators to assess the potential benefit of IPC, such as mortality, major 

adverse cardiac events, troponin release and duration of stay in intensive 

care, amongst a variety of other indicators. The target for recruitment is over 

1700 patients, which may permit demonstration of any potential treatment 

effect more clearly than previous small scale trials.  
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1.8.4 Remote Ischaemic Perconditioning 

The term perconditioning refers to the application of an ischaemic stimulus to 

a remote organ after the onset of ischaemia and before reperfusion occurs. 

The most obvious potential clinical application of this is in the setting of acute 

myocardial infarction whereby inflation of a blood pressure cuff can be used 

as the stimulus, and can be applied before the patient even arrives at hospital. 

In the context of acute myocardial infarction (STEMI) trials have shown benefit 

in terms of myocardial salvage in patients with a large area of myocardium at 

risk, as measured a reduction in myocardial salvage index by SPECT (114), 

but the same study does not show any reduction in mortality or overall 

occurrence of heart failure. Thus far, there is no data which confirms an actual 

benefit in terms of overall improvement in left ventricular ejection fraction / 

heart failure / mortality after remote “perconditioning”. This is a major limitation 

of these trials and this is driven by the fact that the trials are not adequately 

powered to detect such differences. Subgroup analysis may suggest that in 

high- risk groups (ie those with an area at risk of over 35% of myocardium), 

left ventricular function may be improved by remote preconditioning (115). 

However, as with all subgroup analyses, these results must be interpreted 

with caution, and further studies are required to fully evaluate this method of 

cardioprotection in the setting of STEMI. On reviewing clinical trials underway 

in this regard, there are 8 studies described on www.clinicaltrials.gov ongoing 

at present to assess the effect of “conditioning” in acute myocardial infarction, 

reflecting the need for more data on this subject. 

 

 

http://www.clinicaltrials.gov/
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Author 

 
Intervention 

 
No of 
pts 

 
Ischaemia 
duration 

 
Timing  
 

 
Outcome 

 
Piot et al 

 
Cyclosporin 
A116 

 
58 

 
< 5 h 
mean 
 

Within 
1 min 
of 
PPCI 

 
Reduced CK 
release 

Ma et al Post-
conditioning103 

94 < 12 h Within 
1 min 
of 
PPCI 

Reduced CK, 
improved TIMI-
frame count & 
change in WMSI 

Staat et al 
 

Post-
conditioning102 

30  < 6 h Within 
1 min 
of 
PPCI 

Reduced CK, 
Improved blush 
grade 

 
Thibault et 
al 

Post-
conditioning117 

38 < 6 h Within 
1 min 
of 
PPCI 

Increased LV 
ejection fraction at 
6 months 

Laskey et 
al 

Post-
conditioning118 

24 < 6 h After 
flow 
wire 

Improved CFR & 
ST- segment 
resolution 

Yang et al Post-
conditioning119 

41 < 6 h 30 
secs 

Reduced infarct 
size by SPECT, 
reduced CK 

Thuny et al Post- 
conditioning222 

50 < 12 h Within 
1 Min 
of 
PPCI 

Reduced infarct 
size at 48-72h post 
MI 

 

Table 1.1 Successful conditioning treatments in humans with acute 

myocardial infarction treated by primary percutaneous coronary intervention 

Key to abbreviations in Table 1.1: 

h = hours, PCI = percutaneous coronary intervention, PPCI = primary 

percutaneous coronary intervention, CK = creatinine kinase, TIMI frame count 

= thrombolysis in myocardial infarction frame count, a measure of myocardial 

perfusion, WMSI = wall motion score index- a measure of left ventricular 

systolic function, LV = left ventricle, CFR = coronary flow reserve- a measure 

of microvascular function, ST- segment resolution = improvement in the 
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electrocardiogram indicative of reperfusion, SPECT = single photon emission 

computed tomography,  

 

1.9 Non-mechanical cardioprotection 

1.9.1 Pharmacological Cardioprotection 

The role of pharmacological agents as conditioning-mimetics has been 

investigated extensively both in the laboratory and clinical setting of acute 

myocardial infarction. The earliest studies examined the role of inhibition of 

xanthine oxidase by allopurinol (120,121) in animal models. Further 

translational studies have been conducted with a myriad of agents including 

adenosine (122), erythropoietin (123,124) and lately, the most notable 

success is with the cyclophilin D inhibitor cyclosporin A (116), which is 

discussed in more detail in section 1.9.2. 

A reduction in infarct size has been demonstrated by a variety of 

pharmacological agents known to inhibit the MPTP when administered at 

reperfusion. This includes the volatile anaesthetics (178-180) and cyclosporin 

A (116), amongst many others. The signalling cascades involved are the 

same as those recruited during ischaemic pre and post-conditioning (226).  
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1.9.2 Cyclosporin A 

Cyclosporin A is an undecapeptide produced by the fungus tolypocladium 

inflatum. It was introduced clinically in the 1980s to combat rejection of 

transplanted organs in humans, and has been shown repeatedly to be 

partially cardioprotective in ischaemia-reperfusion injury (23-27). Its primary 

site of binding is cyclophilin D, which is known to be an essential component 

of the MPTP (125). It also inhibits the calcium- dependent phosphatase 

calcineurin, which is responsible for its suppressive effect on the immune 

system. The non-cardiac effects of this drug- nephrotoxicity, 

immunosuppression, potential cancer risk and very narrow therapeutic index 

(126) make it unattractive for ongoing therapeutic use. The benefit of 

cyclosporin A in reduction of myocardial damage in animal models has been 

well established54, but in humans its use has been controversial (127,116)  

Use of non-immunosuppressive (ie without calcineurin inhibition) cyclophilin D 

inhbitors (sanglifehrin A (54), Debio 025 (14), NIM811 (128)) in in vivo models 

of ischaemia-reperfusion injury also demonstrate significant cardioprotection, 

suggesting that cardioprotection is not mediated by calcineurin inhibition, but 

by inhibition of cyclophilin D.  

However, calcineurin itself exerts an effect on the mitochondrion. Under 

normal resting conditions, mitochondria are maintained in a constant 

equilibrium of fusion and fission. Predominance of one or other states leads to 

either cell survival or cell death respectively. Calcineurin has been shown to 

be necessary for the process of mitochondrial fission, which is a well 
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described process in the death of this organelle (129). Dynamin- related 

protein-1 (Drp-1) is dephosphorylated in response to calcineurin activation, 

which occurs when the mitochondrion is exposed to a sustained rise in 

cytosolic calcium level and mitochondrial depolarisation, resulting in fission. 

Inhibition of the fission process by administration of the pharmacological Drp-1 

inhibitor mitochondrial division inhibitor-1 (MDIVI-1) has been shown to delay 

MPTP opening and protect the heart from ischaemia-reperfusion injury (130). 

It is possible therefore, that cyclosporin A protects by both inhibition of 

calcineurin and cyclophilin D. 

Cyclosporin A does remain a promising therapy in myocardial infarction, but at 

the price of its renal and immunosuppressive effect. One large scale clinical 

trial is currently recruiting patients with acute myocardial infarction to 

determine its effects when administered at reperfusion- the pilot data from this 

group suggests that there are potentially significant benefits to be seen in 

terms of infarct size reduction (116).  The calcineurin- related effects could 

potentially be reduced by subcellular drug targeting. This is discussed in more 

detail in the next section. 
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1.10 Targeting drug to site of effect 

In this thesis, we aim to explore the role of the MPTP in cardioprotection from 

ischaemia-reperfusion injury, and in this section, we discuss the 

mitochondrial-specific targeting of a drug known to inhibit cyclophilin D, the 

main component of the MPTP.  

The use of therapeutic drugs is often substantially limited by the inability to 

access the site of action in adequate concentration to achieve its desired 

clinical effect. In the specific case of ischaemia-reperfusion injury, the most 

attractive target is not determined at organ or cellular level, but at a 

subcellular level. The organelle at the centre of the pathological changes is 

the mitochondrion, the function of which is a critical determinant of cell death 

after ischaemia-reperfusion (57). As such, this represents the major 

therapeutic target.  

An ideal drug for cardioprotection therefore, would be one which maintains the 

cardioprotective effect of cyclophilin D blockade, whilst avoiding the 

deleterious effects of inhibition of extra mitochondrial cyclophilins and 

calcineurin. 

1.10.1 Nanocarriers 

By modifying a drug to facilitate its access to its site of action, one of the 

primary concerns is the maintenance of its therapeutic effect, which may be 

compromised by conjugating the drug to other molecules. The aim is that 

modifications would increase the treatment effect, but in trying to do so, it is 

possible that the drug could be rendered metabolically inactive. A group of 
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compounds known as nanocarriers have been developed which enable 

facilitated uptake of pharmacological agents to their target sites. 

To gain selective access to mitochondria molecules require to be 

“mitochondriotropic”- ie they must be able to accumulate within the inner 

mitochondrial membrane despite its high membrane potential. Nanocarriers 

have been shown previously to enable specific uptake of drugs to 

mitochondria (131).  A variety of molecules may be used for this purpose. 

Amongst these is the triphenylphosphonium cation. 

1.10.2 The Triphenyl- phosphonium Cation 

The triphenyl- phosphonium (TPP) cation was initially utilised as a method of 

exploring the electrical properties of phospholipid bilayers in organic 

chemistry. Latter years have shown these molecules to be invaluable in the 

investigation of mitochondrial function, with particular respect to measurement 

of the mitochondrial membrane potential (214).  

In addition these molecules enable confirmation of mitochondrial localisation 

of labelled substances and facilitate accumulation of bioactive molecules and 

drugs within mitochondria. There are a number of examples of this in the 

literature (215).  

 In an attempt to selectively utilise the desirable aspects of cyclosporin A 

(inhibition of cyclophilin D), whilst potentially suppressing its deleterious 

effects (calcineurin and extra-mitochondrial cyclophilin inhibition), a unique 

mitochondrial- targeted cyclosporin A molecule (mtCsA) was developed by 

Professor David Selwood at University College, London.  
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This method of producing “mitochondriotropic” drugs is well described in the 

literature (132-134). The lipophilic triphenyl-phosphonium molecule is 

commonly used for this purpose as it can be conjugated to therapeutic agents 

and is effectively electrophoresed into the negatively charged mitochondria by 

utilising the membrane potential.  

 

 

 

Figure 1.4 The triphenyl-phosphonium cation. 
 
The mtCsA molecule was tested and found to inhibit cyclophilin D inside 

mitochondria preferentially over extra-mitochondrial cyclophilin A in an in vitro 

model. It was also seen to reduce cell death in hippocampal neurons which 

were exposed to oxygen and glucose deprivation- ie energy failure (135). The 

molecule could potentially have significant benefits in vivo in reducing 

myocardial damage in ischaemia-reperfusion, with the benefit of having a 

more selective site of action, avoiding calcineurin mediated effects and also 

allowing dose reduction due to increased selectivity.  
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The potential benefits in the clinical setting of acute myocardial infarction are 

obvious- delivery of a more efficacious drug to a specific site of action 

reducing the required dose and potential side effects, whilst maximising the 

degree of cardioprotection. 

In chapter 5 of this thesis we set out in the first in vivo study of mitochondrial 

targeted cyclosporin A to test the hypothesis that its administration in an in 

vivo murine model of ischaemia-reperfusion will be cardioprotective. 

 

1.11 Non-cyclophilin- D dependent methods of 

cardioprotection 

The aim of this thesis is to investigate the role of the MPTP (cyclophilin D) in 

the myocardial damage which occurs after ischaemia-reperfusion. The focus 

of the introduction so far has been on interventions which aim to prevent or 

delay pore opening in order to reduce cardiac injury. 

Cyclophilin D ablation is known to provide partial protection from ischaemia-

reperfusion injury. However, a degree of cardiac damage still occurs, both in 

CypD knock- out mice exposed to I-R injury (13,54), and in wild type mice 

treated with MPTP inhibitors (12,14,136). This raises the possibility that there 

may be another pathway which results in cell death in this setting. 

Recent evidence appears to support this theory. Roubille et al has published 

data which counters previous belief that it is not possible to protect the heart 

by ischaemic postconditioning after the first few minutes of reperfusion after 

an ischaemic insult, resulting in myocardial damage which is irreversible in the 
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absence of therapeutic intervention during this time (137). This paper shows 

that it is possible to achieve cardioprotection using a protocol of 

postconditioning applied at a period of up to 30 minutes after reperfusion in an 

in vivo mouse model. This suggests that the time window during which 

cardioprotection can be achieved is substantially longer than was previously 

believed (138).  The implication of this is that the cardioprotection in this 

setting may not all be MPTP mediated.  

As discussed previously, the MPTP remains closed during ischaemia, but 

opens in the first few minutes of reperfusion (44), and most of the data 

published previously has suggested that after this time, the myocardium is not 

salvageable (137,139). However, experimental protocols investigating 

postconditioning exhibit widespread variations not only in timing of the IPOC 

stimulus, but also duration of index ischaemia and species. This, coupled with 

the strong bias of learned journals to report only positive data make it difficult 

to clearly establish protocols which have been previously tested (140).   

This data provides an interesting challenge to what has been regarded to be a 

widely held belief that all necrotic cell death is pore mediated. 
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1.11.2 Matrix Metalloproteinases 

 
Matrix metalloproteinases (MMPs) are neutral zinc endopeptidases which are 

present throughout the body. They were first discovered approximately 40 

years ago (141) and play an essential role in regulation of the continual 

process of degradation and synthesis of collagen within the extracellular 

matrix as part of an ongoing homeostatic process. MMPs possess the ability 

to degrade all components of the extracellular matrix. To date, 28 MMPs have 

been confirmed. They are grouped according to their proteolytic functions- eg 

gelatinases (MMP 2 and 9), collagenases (MMP 1, 8, 13), matrilysins (MMP 3, 

10, 11), metalloelastases (MMP 12), stromelysins (MMP 7, 26) and 

membrane type MMPs (MMP 1-8).   

The structure of MMPs is varied, although they possess similar 

characteristics. They are released as inactive zymogens and have a pro-

peptide attached which protects the zinc activation site. The pro-peptide 

(which is highly conserved amongst the MMPs) is cleaved off by a variety of 

stimuli to reveal the active binding site and enable binding of the zinc ion. It 

has been shown that MMPs are involved in a number of pathological 

conditions- which involve inflammatory processes- rheumatoid arthritis (142), 

heart failure, cancer (143,144) and left ventricular remodelling in the aftermath 

of myocardial infarction (145-147).  
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MMP 2 and 9, the gelatinases, are capable of degrading gelatins and type IV 

collagen in basement membranes. They are both highly expressed within 

human myocardium (148). 

 MMPs are activated early in the time course of myocardial infarction- this has 

been confirmed in MMP 1 (absent in rodents (149)), 2 and 9 in both the area 

at risk and the remote area (150).  Additionally, in an animal model of acute 

myocardial infarction, upregulation of matrix metalloproteinase activity has 

been shown to occur as early as 10 minutes after the onset of coronary 

occlusion (147). Within one minute of reperfusion in an ex vivo system, it has 

been shown that MMP -2 is upregulated, and is strongly correlated to 

mechanical dysfunction. In the same group of experiments, treatment with a 

known inhibitor of MMP activity (doxycycline) was shown to reverse this effect, 

demonstrating recovery of contractility (151). This raises important questions 

about the role of MMPs in ischaemia- reperfusion injury.  

Preconditioning has also been shown to modify MMP activity (152,153), and 

in an hyperlipidaemic rat model, where the benefits of IPC are attenuated, 

administration of an inhibitor of MMPs has been shown to result in significant 

cardioprotection (154), which suggests that blocking MMP activity results in 

protection by a means which is disparate to that of IPC, and that these 

mechanisms may potentially be additive. 

1.11.2.1 Regulation of Matrix Metalloproteinases 

Transcription 

MMPs are controlled on three main levels- transcription, activation of latent 

proenzyme and inhibition by TIMPs (tissue inhibitor of metalloproteinases). 
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A wide variety of stimuli have been shown to increase the synthesis of MMPs. 

This includes IL-1, IL-6, TNF- ɑ, epidermal growth factor, platelet derived 

growth factor and CD40 (155).  

1.11.2.2 Tissue Inhibitor of Metalloproteinases 

Four TIMPs have been discovered in humans (TIMP1-4). They are the 

predominant method of intracellular regulation of matrix metalloproteinase 

activity. Each form of TIMP is encoded by a single gene. Under normal 

circumstances, TIMPs and MMPs act to maintain a constant state of 

equilibrium within the extra cellular matrix of the myocardium (156).  

Dysregulation of this homeostatic mechanism –by upregulation of MMP 

activity, or downregulation of TIMP activity results in adverse remodelling 

within the extracellular matrix of the myocardium and causes disruption of the 

collagenous architecture. 

Blockade of the matrix metalloproteinase system has been shown to reduce 

hepatic damage after ischaemia-reperfusion (157).  Inhibition of MMPs has 

also been to reduce infarct size to a similar degree as that observed after 

preconditioning (158). 
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1.11.3 Pharmacological Inhibition of Matrix Metallproteinases 

MMPs may be inhibited in a variety of ways. It is known that α-2 

macroglobulin is a non – selective irreversible inhibitor, and has been 

described as the major plasma inhibitor of MMPs (159). Heparin is also known 

to be an exogenous inhibitor (160).  

An extensive list of synthetic, so-called small molecule inhibitors of MMPs 

have been developed, but clinical trials of the MMP inhibitors have proven to 

be disappointing – many drugs have been shown to have troublesome side 

effects seen in phase II clinical trials, and as a result beneficial results have 

yet to be seen, with the exception of use of doxycycline which is used to treat 

periodontal disease. Interestingly, the development of side effects in these 

drugs appears to be cumulative and dose related: in the case of marimastat 

(tested in pancreatic cancer) the severe side effects developed after 56 days 

with a dose of 75mg twice daily and 199 days with a dose of 25mg once daily 

(161). This has also been demonstrated in animal models. 

The most common side effect encountered appears to be the 

“musculoskeletal syndrome”, a condition whereby treated patients develop 

joint pains, stiffness and reduction in range of movement.  
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Ilomastat  

 

 

 

Figure 1.5 Ilomastat  

Ilomastat (R)- N4 – Hydroxy-N1-[(S)-2-(1H-indol-3-yl)-1-methylcarbamoyl-

ethyl]-2-isobutyl-succinamide (otherwise referred to as Galardin, GM6001) 

belongs to the group of MMP inhibitors referred to as hydroxamates. It has a 

broad spectrum of MMP inhibition, inhibiting MMP 1, 2, 9 and 12. 

The hydroxamates act as chelators and also block ADAMs (A disintegrin and 

metalloprotease) proteins and TACE (tumour necrosis factor ɑ convertase). 

They may potentially chelate other metalloproteins as they have a binding 

affinity to iron, nickel and copper.  

The cardioprotective effect of ilomastat has been shown to persist even in a 

population of hyperlipidaemic rats (158) Hyperlipidaemia attenuates the effect 

of IPC, by a mechanism which is not fully understood, but has been proposed 

as being due to a reduction in cardiac nitric oxide availability (162,163) and 

increased apoptosis (164) . The finding that MMP inhibition can protect the 

heart in a model which is resistant to IPC raises the possibility that MMP 

inhibitor- induced cardioprotection is mediated by a pathway which is distinct 

to that of IPC, and thus not mediated by the MPTP.
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In chapter six of this thesis, we set out to investigate whether the 

cardioprotection conferred by administration of ilomastat at the time of 

reperfusion is independent of cyclophilin D, a component of the MPTP. 
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Chapter 2 

Summary, Aims Objectives and Hypotheses 

2.1 Summary 

The organelle at the centre of the processes resulting in cell death after 

myocardial ischaemia- reperfusion injury is the mitochondrion, and thus it is of 

great interest when therapeutic treatments to reduce the degree of cell death 

are being considered. 

The central process which is involved in lethal reperfusion injury is the 

opening of the mitochondrial permeability transition pore (MPTP).  

A variety of methods have been used to attempt to reduce this potentially 

reversible injurious process. These include mechanical methods such as 

ischaemic preconditioning (IPC) and ischaemic postconditioning (IPOC) and 

utilisation of cardioprotective drugs (eg cyclosporin A and its analogues).  

These interventions are targeted at inhibition of MPTP opening. 

Mice deficient in cyclophilin D, which has been shown to be central to MPTP 

function, have been shown to be resistant to the effects of ischaemia- 

reperfusion (I-R), but nonetheless display a degree of myocardial damage 

after I-R injury, albeit much reduced in comparison to their wild type brethren. 

They appear to be resistant to further protection by standard IPC protocols.  

Preliminary, unpublished work, by Di Lisa et al, has questioned this, raising 

the possibility that these mice have a raised threshold for IPC, and that this 

may be overcome by increasing the IPC stimulus. In addition, the same group 

have shown (unpublished) work (Appendix) which shows that treatment with 
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agents known as “congenia inhibitors”  (small molecule MPTP inhibitors) in 

combination with cyclosporin A results in improved calcium retention capacity 

(ie reduced MPTP opening) in comparison to cyclosporin A alone. In an ex 

vivo model, these agents also showed a better reduction in infarct size than 

cyclosporin A. Nakagawa also showed that in cyclophilin D deficient mice, the 

MPTP could be induced by administration of high doses of calcium, raising the 

possibility that the MPTP is subject to a threshold phenomenon (165).  

 

The work detailed above questions whether there may a threshold effect of 

pore inhibition. In chapter four, we set out to investigate whether it is possible 

to protect the cyclophilin D deficient mouse by increasing the IPC stimulus. 

 

Cyclosporin A is known to achieve its cardioprotective effect by binding to 

cyclophilin D in mitochondria, thus inhibiting the MPTP. However, its potential 

clinical utility is limited by its calcineurin- mediated (extra-mitochondrial) side 

effects of immunosuppression and deleterious effect on renal function. 

Targeting of cyclosporin A to mitochondria by use of nanocarrier particles 

could potentially achieve cardioprotection, whilst avoiding these detrimental 

effects, and could also potentially require smaller doses to achieve MPTP 

inhibition. In chapter 5, we investigate whether administration of a novel 

mitochondrial-targeted form of cyclosporin A is cardioprotective in its first in 

vivo use. 

 

Data published by Ferdinandy’s group also highlights the possibility that the 

MPTP may not be the only pathway to cell death after ischaemia-reperfusion. 
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The ability to protect hyperlipidaemic hearts from this injury (which previously 

has not been possible by IPC - the strongest cardioprotective stimulus) by 

administration of the matrix metalloproteinase (MMP) inhibitor ilomastat 

suggests that its protective effect may not be mediated by inhibition of the 

MPTP. In chapter 6, we administer ilomastat in an in vivo model of ischaemia- 

reperfusion injury to mice deficient in cyclophilin D and their wild type 

counterparts to investigate whether it is possible to achieve cardioprotection 

by a mechanism independent of the MPTP. 

2.2.1Hypotheses 

2.2.1 Ischaemic preconditioning can protect the heart in the absence of 

cyclophilin D 

2.2.1.1 Objectives 

To determine whether mice deficient in cyclophilin D are amenable to 

cardioprotection by ischaemic pre- conditioning 

2.2.1.2 Rationale 

Cyclophilin D has been shown to be an essential component of the MPTP, 

which plays a central role in cell death in the aftermath of acute myocardial 

infarction. Genetic studies have confirmed that mice deficient in cyclophilin D 

are resistant to pore opening in response to calcium (166) and oxidative 

stress (13), and also exhibit smaller infarct sizes when exposed to ischaemia-

reperfusion in the brain (167) and heart (54). 

The reduction in myocardial damage seen in models of ischaemic 

preconditioning, pharmacological preconditioning as well as ischaemic 



Cara Hendry 
 

60 

postconditioning have been shown to be mediated by inhibition of the MPTP 

(73,74,168). 

Previous studies have shown that using standard IPC / IPOC protocols and 

established pharmacological preconditioning-mimetics it is not possible to 

reduce infarct size after ischaemia-reperfusion in the cyclophilin D deficient 

mouse (12,54). 

However, mice deficient in cyclophilin D still display a degree of myocardial 

damage after myocardial ischaemia and reperfusion, suggesting that there 

may be another mechanism of myocyte damage, which is distinct to that 

involving cyclophilin D.  

2.2.1 Hypothesis: Administration of a mitochondrial specific analogue of 

cyclosporin A will offer superior protection against myocardial damage 

in comparison to cyclosporin A 

2.2.2 Objectives 

To determine if it is possible to achieve superior cardioprotection by the 

administration of a novel mitochondria-selective form of cyclosporin A (mtCsA) 

in mice exposed to ischaemia-reperfusion. 

2.2.3 Rationale 

 

Opening of the MPTP has been shown to be a key step in the death of cells 

after ischaemia-reperfusion. Cyclophilin D is an essential component of the 

MPTP, and ablation of cyclophilin D is known to exert a protective effect on 

the heart exposed to ischaemia- reperfusion. The primary binding site of 

cyclosporin A is cyclophilin D, but it also binds to extra-mitochondrial forms of 
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cyclophilin (eg cyclophilin A) and also to calcineurin. This extra-mitochondrial 

binding is responsible for the negative effects of cyclosporin ie renal toxicity 

and immunosuppression.  

It would therefore be desirable to target more specifically mitochondrial 

cyclophilin D in order to selectively inhibit the MPTP, whilst minimising effects 

on extra-mitochondrial cyclophilins. 

Data presented previously by Maloutrie et al (135) has demonstrated that in a 

model of hippocampal neurons subjected to glucose and oxygen deprivation 

ie an “energy failure” model administration of a novel mitochondrial- selective 

form of cyclosporin A demonstrated enhanced cytoprotection in comparison to 

cyclosporin A.  

 

2.3.1 Hypothesis: Inhibition of matrix metalloproteinases may protect the 

heart from ischaemia-reperfusion in the absence of cyclophilin D 

2.3.2 Objectives 

To confirm cardioprotection after administration of an MMP inhibitor at the 

time of reperfusion in an in vivo model of ischaemia-reperfusion injury. 

To determine whether it is possible to protect the myocardium in mice devoid 

of cyclophilin D by treatment with an MMP inhibitor administered at the time of 

reperfusion. 

 

2.3.3 Rationale 

Cyclophilin D is an essential component of the MPTP as discussed previously. 

However, in mice devoid of cyclophilin D, exposure to ischaemia-reperfusion 
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still results in a degree of myocardial damage, although this is reduced in 

extent in comparison to mice retaining Cyp D.  

The possibility therefore exists that there is another pathway distinct from 

cyclophilin D which results in part of the cellular damage which occurs after 

reperfused myocardial infarction.  

Matrix metalloproteinases (MMPs) have long been the subject of study in the 

arena of acute myocardial infarction as their role in collagen turnover is an 

essential part of the remodelling process which occurs in STEMI, and a 

variety of other models of cardiac disease.  

Study of MMPs by Etoh et al has revealed that MMP levels rise in the acute 

phase of myocardial infarction - and are detectable at 10 minutes of ischaemia 

(169), and also that administration of MMP inhibitors results in a degree of 

cardioprotection which is similar to that observed after IPC (154). Additionally, 

hyperlipidaemic rats (resistant to benefits of IPC) when exposed to ischaemia-

reperfusion exhibited cardioprotection when treated with an MMP inhibitor 

(158).  

This led us to question whether administration of an MMP inhibitor at the time 

of reperfusion would be cardioprotective in a manner which was independent 

of cyclophilin D. 
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Chapter 3 - Methods 

3.1 General 

In order to establish the role of the mitochondrial permeability transition pore 

in cardioprotection, a mouse model of in vivo ischaemia-reperfusion injury was 

selected. The unique genetic malleability of the mouse - in particular the 

availability of mice deficient in cyclophilin D (an essential component of the 

MPTP), enabled evaluation of whether cardioprotection after a variety of 

interventions was possible in these knockout mice in comparison to the wild 

type.  

All experiments were carried out in accordance with the United Kingdom 

Home Office Guidance on the Operation of Animals for Scientific Procedures 

Act (A(SP)A)1986. 

Mice were allowed water and feed ad libitum, and were exposed to standard 

12 hour dark / light cycle. 

All experiments were carried out on male mice to ensure maximum uniformity 

of infarct size, as data has recently been published which suggests that the 

infarct size and remodelling post myocardial infarction may vary between the 

sexes (170). 

Male mice were bred in - house from a colony with a B6Sv129F1 background, 

which were deficient in Cyclophilin D (Cyp D -/-), provided to us by Baines et 

al (13). These had been back-crossed twice, which maintains a genetic 

background which has approximately 87.5% of B6Sv129F1 DNA. We used 
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cyclophilin D (Cyp D +/+) mice, created by breeding male with female 

homozygous +/+ mice as our wild type controls. Similarly, the Cyp D -/- mice 

were bred from homozygotes. Genotyping was carried out on a random basis 

to ensure correct allocation. 

3.2 Chemicals and Drugs Used 

Cyclosporin A (Tolypocladium inflatum) was supplied by Calbiochem (Merck, 

Nottingham, UK). Mitochondrial targeted cyclosporin A was synthesised and 

produced by Professor David Selwood (Head of Biological and Medicinal 

Chemistry Wolfson Institute for Biomedical Research, University College 

London). Ilomastat and TTC were supplied by Sigma Aldrich, UK. Anaesthetic 

drugs – ketamine, xylazine and atropine were obtained from Fort Dodge 

Animal Health Ltd (UK), Millpledge Veterinary (UK), and Lameln 

Pharmaceuticals (UK) respectively. PCR reagents were obtained from Qiagen 

(UK). 
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3.3 In vivo mouse ischaemia-reperfusion recovery model 

In order to attempt to replicate the human situation of myocardial infarction 

and subsequent reperfusion, we sought to set up an in vivo model recovery 

model of ischaemia-reperfusion in the mouse. The intention was that this 

would enable non- invasive in vivo assessment of myocardial function and 

geometry, and permit serial measurements of changes over time using 

magnetic resonance imaging with gadolinium enhancement. This method of 

assessing ventricular geometry and infarct size has been well validated in 

mouse models of myocardial infarction (171-175). 

Mice were anaesthetised using ketamine (75mg/kg) and medetomidine 

(1mg/kg) administered in a small volume (approx 0.4ml) using a short 27G 

needle (176).  

The mouse was placed into a warmed cage, observed continuously and 

removed after three minutes, by which time it was adequately anaesthetised. 

The hind limb reflex was then checked to confirm adequate depth of 

anaesthesia. 

The neck and chest areas were then shaved using an electrical clipper, and 

cleaned with chlorhexidine solution. 

The mouse was then positioned for intubation in the supine position on an 

electrical heating pad, with the upper limbs abducted and lower limbs 

extended and taped down.  

The neck was extended by threading a suture behind the incisors and 

maintaining this under gentle tension, securing it to the heating pad with tape. 
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A rectal thermometer was lubricated with Vaseline and inserted to provide 

contemporaneous temperature measurements. Temperature was maintained 

at 37ºC (+/-0.5). 

A small midline incision was made on the skin of the neck (1-1.5cm). Using 

blunt dissection, the salivary glands were separated and the paratracheal 

muscles exposed and split along the midline fascia and deflected laterally. 

They were retained in this position by a blunt hook stay on either side. This 

enabled direct visualisation of the trachea. 

 

Figure 3.1 Visualisation of the trachea 

A stainless steel cannula (Hugo Sachs, Germany) was then passed through 

the oral cavity and by direct visualisation through the cervical incision, into the 

trachea. The cannula was attached at its other end, to a plastic Y connector 

which was in turn connected to a ventilator (Minivent Mouse Ventilator, Hugo 

Sachs Electronik, Germany) set at 0.2 ml volume, 120 stroke/min with 
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supplemental oxygen supplied by an oxygen cylinder set at 1.5l/min. This was 

maintained under positive end expiratory pressure (PEEP) by immersing the 

exhaust from the ventilator in 3cm H2O. 

After establishing ventilation, a dose of buprenorphine was administered 

(0.05mg/kg IM), to ensure the animal was pain free post operatively. 

The position of the mouse limbs was then altered to facilitate the surgery. The 

right hindlimb was first placed in an extended position and secured with tape. 

The left hindlimb was then placed over the right hindlimb and was also 

secured by tape. This position facilitates exposure of the heart and left 

anterior descending artery for cardiac surgery. 

An oblique skin incision was made (approximately 1cm) reaching from the left 

sternal border to 1-2mm inferior to the left axilla (4th intercostal space). 

Blunt dissection was then used to separate the skin from connective tissue 

layers and the pectoral muscles were exposed. Pectoralis major and minor 

were then separated and held in place by hook stays taped down to the 

heating pad to maintain gentle tension. 

The ribs were then opened at the 4th intercostal space. Any bleeding was 

terminated by use of low temperature cautery. The chest was held open by a 

mini-Goldstein retractor. 
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Figure 3.2 Use of retractors to expose the heart 

The pericardium was teased apart and the heart exposed. 

A suture (8/0 prolene) was hooked under the left anterior descending artery 

approximately 1mm distal to the tip of the left atrium. 

The system described by Marber et al (177) was then used to temporarily 

occlude the left anterior descending coronary artery, using a short piece of 

PE-50 tubing threaded over the 8/0 prolene suture and using this to act as a 

snare. A short piece of PE-50 tubing (0.28 x 0.61mm) was also placed over 

the surface of the LAD to prevent it from being lacerated by the tightening of 

the suture. The distal tip of a pipette was then passed over the suture needle 

(tip first), and a short segment of PE 50 tubing was placed inside the pipette 

tip and this created a brake system (see figure overleaf). 
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Figure 3.3 The snare arrangement 

The heart was allowed to stabilise for fifteen minutes prior to occlusion of the 

LAD. 

The suture was then tightened over the LAD for a period of thirty minutes. 

The tubing was removed from the LAD to initiate reperfusion, and the prolene 

suture retained in position and loosely tied off. 

Two interrupted 5/0 mersilk sutures were applied to close the ribs. The first (in 

the lateral position) was tightened first and before tightening the second 

suture, gentle pressure was applied to the thoracic cavity in order to expel any 

air and prevent formation of a large pneumothorax. The second suture was 

subsequently tightened. 



Cara Hendry 
 

70 

The pectoral muscles were then gently replaced in their original position and 

the skin was closed with individual interrupted sutures (5/0 mersilk). 

The wound was then cleaned with alcohol. 

The anaesthetic was reversed with Atipamezole (5mg/kg IP). 

The mouse was kept on the heated pad with supplemental oxygen until it 

recovered sufficiently, and was then returned to a warmed cage with access 

to water and diet, and was carefully supervised until it was fully ambulant.  

A further IM dose of buprenorphine was administered at 6 and 18 hours post 

operatively. 
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3.4 Problems Encountered with the Ischaemia-reperfusion 

Recovery Model 

In attempting to set up this model (not previously established in our centre) 

difficulties were encountered.  

Using C57 mice to set up the model, firstly permanent infarction (where 

instead of using the snare arrangement, the LAD was occluded by tying off 

the prolene suture) was carried out to confirm that the animal could be safely 

recovered. The length of procedure from administration of anaesthesia 

approximated 30 minutes for this, and recovery was good. All sham 

operations (suture passed, but not tied off) survived. 

However, with an initial stabilisation period of 35 minutes to standardise for 

three cycles of ischaemic preconditioning, and a sham operation, with a total 

anaesthetic time of 105 minutes, the operative survival was poor (10/24 mice). 

Despite a number of manoeuvres to improve this, including administration of 

warmed intraperitoneal saline at the start of the procedure to prevent 

dehydration resulting from prolonged open- chest procedure, the figure could 

not be improved upon. 

Advice was sought from centres with an established recovery protocol and 

these centres used isoflurane as the anaesthetic of choice, both for induction 

and maintenance of anaesthesia, and also reported problems with survival 

when utilising injectable anaesthetic agents. We had initially elected to avoid 

the use of isoflurane in view of its cardioprotective properties (178-180). There 
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is a body of evidence supporting the fact that its mechanism of protection 

converges on the pathways involved in ischaemic preconditioning eg, 

inhibition of apoptosis, phosphorylation of protein kinase C, attenuation of 

ROS generation and delayed opening of the MPTP (178,181-183). This could 

potentially reduce the ability to detect a reduction in infarct size from a novel, 

potentially cardioprotective agent. However, in view of the problems with 

survival using injectable anaesthetic agents, isoflurane was used for 

subsequent procedures with 100% survival in the sham group with 

anaesthetic time of 105 minutes, and 71% in the ischaemia-reperfusion group. 

Due to the extensive time taken to progress to this stage, and the limited time 

remaining to perform experiments, it was felt appropriate to switch to a non-

recovery model in view of the need to perform further refinement of the 

technique in order to carry out a longitudinal study. 

 

 

3.5 Non recovery model of ischaemia and reperfusion 

Mice were anaesthetised with a combination of ketamine, xylazine and 

atropine, which was administered intraperitoneally. The total volume 

administered was 0.01ml/gram body weight. Final concentration of ketamine, 

xylazine and atropine was 10mg/ml, 2mg/ml and 0.06mg/ml respectively (54).  

Once sufficient anaesthesia was achieved (confirmed by absence of the 

hindlimb reflex), animals were placed in the supine position, with the forelimbs 

abducted and taped down, and the hindlimbs extended and taped to a 
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warmed heating pad. The whiskers were also taped down to extend the neck 

(see fig below) 

.  

Figure 3.4 Preparation and positioning for tracheotomy 

Animals were then tracheotomised and ventilated using a rodent mini-

ventilator (Type 845, Harvard Apparatus, Kent) at a stroke volume of  220 

microlitres and ventilatory rate of 120/minute. Supplemental oxygen at a rate 

of 1.5l/min was administered. 

Body temperature was monitored continuously using a rectal thermometer 

(Hanna, K couple HI 8757) and was maintained at 37ºC +/- 0.5º C.  

Electrocardiographic monitoring was carried out using a standard three lead 

recording of limb lead I.  
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Figure 3.5 .In vivo set up (non-recovery model) 
 
The external jugular vein and carotid artery were dissected out and 

cannulated with a length of PE-50 tubing for drug administration, (both of 

which had been shaped with a flame to create a finely tapered tip) and 

monitoring of intra-arterial blood pressure respectively.  
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Figure 3.6 In vivo set up during experimental protocol 

Both electrocardiogram and intra-arterial blood pressure were recorded using 

Chart 5 for Windows® software (AD Instruments, UK). 

Using the method described by Fisher et al (177), animals were placed in 

position for thoracotomy. The skin was reflected and pectoralis major exposed 

and reflected back, as was pectoralis minor. A thoracotomy incision was made 

at the level of the 4th intercostal space, exposing both atria and ventricle 

beneath a thin layer of pericardium. The pericardium was gently teased apart 

using blunt forceps to expose the ventricle and the left anterior descending 

coronary artery (LAD) was seen as a bright orange vascular structure running 

from the atrium in a caudal direction to the apex of the ventricle.  

An 8-0 prolene® synthetic monofilament (Ethicon, UK) suture was then 

passed around the LAD, at around 2mm from the inferior border of the atrium. 
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This was passed through a snare, fashioned from a short piece of PE 50 

tubing tied to the end, and a D200 pipette tip with a piece of PE 50 tubing to 

act as a brake (see recovery model).  

The animal was then maintained under anaesthesia for a maximum period of 

35 minutes (varied according to experimental protocol- see figure 3.6). This 

period is known as stabilisation. The snare was then tightened for 30 minutes 

to achieve ischaemia, which was confirmed by a drop in mean arterial 

pressure (figure 3.9) and the presence of ST segment elevation / depression 

on the electrocardiogram (see figure 3.8). 

Figure 3.7 ECG during stabilisation 
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Figure 3.8 ECG during ischaemia 

Figure 3.9 Expected blood pressure change during 5 minutes preconditioning 
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 At the end of 30 minutes ischaemia, the snare was released and the LAD 

was reperfused for a period of two hours, after which time the heart was 

harvested and placed on ice.  

A two hour reperfusion period was selected as it has previously been 

demonstrated in the murine ischaemia-reperfusion model to optimally 

demonstrate the infarct size with 2,3,5 triphenyltetrazolium chloride (TTC) 

staining (77). 

3.6 Characterisation of the model  

 

Commercially available C57BL6 black mice (Harlan, UK) were used to confirm 

that myocardial protection was achieved after a single five minute period of 

IPC prior to 30 minutes of sustained ischaemia, with two hours of reperfusion. 

 

 

Figure 3.10 Cardioprotection achieved after one cycle of IPC in C57BL6 

(p<0.005). N=5 in each group. Error bars denote SEM (standard error of the 

mean) 

 
IS/AAR% = infarct size expressed as a % of the area at risk 
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3.7 Exclusion Criteria 

Mice with any evidence of barbarism were excluded. Also, mice were 

excluded if there was absence of a drop in mean arterial blood pressure or if 

there was no change in electrocardiogram after the snare was applied. 

Additionally, if the mean arterial pressure during the stabilisation period was 

<90mmHg, or if significant operative bleeding or the animal did not survive the 

2 hour reperfusion period it was excluded. 

3.8 Assessment of infarct size 

Use of Evans Blue and 2, 3, 5 TTC 

The heart was harvested from a midline incision and dissected out beneath 

the level of the aortic arch. To ensure an adequate length of aorta is obtained, 

it is recommended that the thymus is removed with the heart- within which the 

aortic arch resides. The connective tissue was dissected away to facilitate 

rapid cannulation of the aortic root (less than 3 minutes) and the heart was 

then perfused with 1ml of physiological (0.9%) saline in order to remove any 

residual blood. This was followed by injection of 10ml of 1% 2,3,5 

triphenyltetrazolium chloride (TTC). TTC reacts with dehydrogenases to form 

a deep red (formazan) pigment. It is injected over 1-2 minutes in a small 

beaker to ensure staining of the external surface of the heart in order to 

delineate viable myocardium (stains red, infarcted areas remain unstained). 

Use of TTC in measuring infarct size is a standard, well validated method 
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(184). After this, the LAD suture was re-tied and 1ml of 0.5% Evans Blue was 

injected to determine the area at risk (AAR), delineated by absence of Evan’s 

Blue dye. The area not at risk is stained with Evans Blue.  

The heart was then blotted dry and weighed. 

The heart was frozen at -20ºC for a minimum of 2 hours and then sectioned in 

the short axis from apex to the level of the suture, creating 5 slices of 

approximately 1mm thickness. The slices were then rinsed in physiological 

saline and bathed in 10% neutral formalin solution for 90 minutes at room 

temperature.  

The right ventricle was then removed by careful dissection, leaving the left 

ventricle for analysis. 

The slices were then placed sequentially between two transparent Perspex 

blocks and secured for photography. This was then scanned using a standard 

colour scanner using 1200 bit colour definition (Epson®) into a computer for 

analysis (Figure 3.10). 

 
 

Figure 3.11 Typical example of stained heart before analysis
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3.9 Image J 
 
Image J software devised by the National Institute for Health, USA, (a public 

domain Java image processing domain which is freely available for use 

without license) was used to analyse the heart slices to determine the area at 

risk and infarct size.  

Image J facilitates computerised planimetry of the ventricle by splitting the 

colourisation of photographed images into red and green wavelengths. Red is 

used to highlight the areas stained by Evans Blue and green to highlight the 

infarcted area. By altering the threshold, it is possible to accurately planimeter 

the surface area for each region (see figure 3.12). This is digitally measured 

by pixel counts for each slice and the totals for each slice are added to 

achieve the result for the entire left ventricle. 

Figure 3.12 Outline of left ventricle. 
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Figure 3.13 Red image to delineate the Evans Blue staining 

Figure 3.14 Highlighted areas show Evans Blue staining. 

 

Figure 3.15 Green image delineating infarcted areas (pale). 
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Figure 3.16 Automated planimetry highlighting areas of infarction 

The area at risk (AAR) is expressed as a percentage of the left ventricle 

(AAR/LV%), and the infarct size is expressed as a percentage of the area at 

risk (IS/AAR%). 

3.10 Genotyping 

3.10.1 Digestion  

Ear snips were taken from a random sample of mice at intervals to confirm 

correct genetic allocation. Each sample was placed in a 0.5 ml 

microcentrifuge tube and 180 µl of Direct PCR Lysis Reagent ® was added, 

along with 20µl of Qiagen proteinase K (Sigma). This was then mixed using a 

vortex and incubated at 55ºC overnight. The following morning each sample 

was vortexed for 15 seconds to ensure adequate mixing had taken place. This 

was then replaced in the heating block for 30-45 minutes and the temperature 

was then increased to 85ºC in order to denature the proteinase K, thus 

preventing continued lysis. The samples were then centrifuged for 10 seconds 

at 14,000 RPM to precipitate any hairs. 1 microlitre (µl) of lysate was used for 

each 20µl PCR reaction.  
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 3.10.2 Polymerase Chain Reaction 

All PCR reagents were kept on ice throughout. They were centrifuged and 

vortexed briefly before use. The reagents used are listed in the table below. A 

‘stock mix’ of PCR reagents was prepared, which contained sufficient quantity 

for the number of samples present, a positive control and distilled water 

control. 

 

Reagent Volume per sample 

Qiagen 10 x PCR buffer 

CL 

2.0µl 

10MM dNTPs 0.4µl 

Primer 1 Exon 3F 0.2µl 

Primer 2 Neo F 0.2µl 

Primer 3 Exon 4R 0.2µl 

Taq Polymerase 0.2µl 

Distilled Water 15.8µl 

Total 19µl 

Table 3.1 Reagents for PCR 

19µl of PCR ‘stock mix’ was then pipetted into fresh, labelled micro -PCR 

tubes, and to each of these, 1µl of DNA sample was added. The tubes were 
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all tapped gently, then centrifuged briefly, to ensure that the DNA was fully 

immersed in the reagent mixture. These tubes were then placed into the DNA 

engine (Peltier Thermal Cycler) and subjected to a saved protocol as follows: 

 

Reaction time Process 

1. 95ºC Double stranded DNA separation 

2. 95ºC Double stranded DNA separation 

3. 59ºC Annealing of primers 

4. 72 ºC DNA synthesis 

5. 95 ºC Double stranded DNA separation 

6. 57 ºC Annealing of primers 

7. 72 ºC DNA synthesis 

8. Repeat stages 5-7 for 32 cycles DNA Amplification 

9. 72 ºC DNA synthesis 

10. 4 ºC Storage 

Table 3.2 Protocol for DNA amplification 
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3.10.3 Gel Electrophoresis 

2% agarose gel was made up in Tris – Acetate - EDTA (TAE) buffer with 1µl 

of SYTO 60 ® (Invitrogen, UK) 

A standard gel block (with a wide comb) was used, the edges of which were 

tightly secured with autoclave tape.  

2.0 grammes of agarose powder was added to 100ml of 1 x TAE solution in a 

conical flask. This was rotated gently to dissolve the agarose. This solution 

was then microwaved on high power for 90 seconds. After cooling for 

approximately 5 minutes on a bench, 1µl of SYT060 was added, and rotated 

to mix. This was then aliquotted into the gel block and left to set for 

approximately 15 minutes. 

After this time, the tape was removed from the set gel and placed in the 

central block of the Thermo apparatus. The gel combs were then gently 

removed, and the Thermo block was then filled to the fill line with TAE buffer. 

The first well was then filled with a molecular weight reference ladder. 15µl of 

water was then added to the second well as a negative control PCR reaction. 

Each of the remaining wells were then filled with 15µl of the test samples. The 

lid was then replaced and the unit attached to a powerpack and set to run at 

120V for 90 minutes. 
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The gels were analysed and recorded using the Li-Cor Odyssey® infra red 

imaging system. The images were exported as high quality JPEG files at 300 

dpi (dots per square inch). An example demonstrating both cyclophilin D 

knock out and wild type genotypes is shown below.  

 

 

 

 

 

 

Figure 3.17 DNA electrophoresis 

1200bp

800bp 

500bp
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 3.11 Statistics 

Data was analysed using Prism software and one way ANOVA followed by 

Tukey’s multiple comparison of means test.  A P value of <0.05 was 

considered to be statistically significant. Results are expressed as means 

±SEM. 
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Chapter 4- Ischaemic Preconditioning in The Cyclophilin D 

Deficient Mouse 

4.1 Ischaemic Preconditioning Study 

4.1.1 Background 

 

As discussed in chapters one and two, cyclophilin D appears to be an 

essential component of the mitochondrial permeability transition pore, which 

has been shown to be a critical mediator of cell death after ischaemia- 

reperfusion (13).  

Prior data has shown that it has not been possible to reduce infarct size in the 

mouse deficient in cyclophilin D when subjected to standard IPC/ IPOC / 

pharmacological preconditioning- mimetics (54).  

Mice devoid of cyclophilin D when exposed to ischaemia – reperfusion exhibit 

a reduced infarct size in comparison to their wild type brethren. The level of 

infarct size resulting from this injurious insult is comparable to that of wild type 

animals treated with a cardioprotective stimulus (IPC/IPOC/cyclosporin A). 

 

There is data which has been published in abstract form by Carpi et al, 

(Appendix 1.1) which may suggest that it is possible to protect the hearts of 

mice devoid of cyclophilin D by increasing the IPC stimulus to three cycles in 

an ex vivo model of ischaemia-reperfusion, and also further work 

(unpublished) by the same group (Contursi et al)- see appendix 1.2, which 

suggests that treatment with small molecule MPTP inhibitors “congenia 
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inhibitors” may result in a superior degree of cardioprotection in an ex vivo 

model than is achieved by administration of cyclosporin A (Appendix 1.2).  

 

These findings challenge the widely held belief that once in a “protected” state 

either by IPC or genetic ablation of cyclophilin D the heart cannot be further 

protected against ischaemia-reperfusion- induced injury. 

  

This has not been demonstrated previously in the literature, but raises the 

possibility that it may be possible to “condition” the heart to a greater extent 

than that achieved by genetic ablation of cyclophilin D, either by increasing 

the preconditioning stimulus, or by administration of novel pharmacological 

agents. If cyclophilin D knock-out animals can be protected from I-R injury, 

this raises the possibility that application of two protective stimuli in the clinical 

setting of myocardial infarction could provide significant benefit. 

4.1.2 Aims 

 

A series of experiments were conducted In order to test the following 

hypothesis: 

Ischaemic preconditioning can protect the heart in mice deficient in 

cyclophilin D 

In this chapter we have set out to assess if it is possible to demonstrate 

cardioprotection from ischaemia-reperfusion in mice devoid of cyclophilin D in 

response to an increase in the IPC stimulus in an in vivo model. 
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4.1.3 Methods 

 

Both wild type and Cyp D deficient mice were subjected to thirty minutes of 

ischaemia followed by two hours of reperfusion. These were randomised into 

receiving either no IPC, a single cycle of IPC or three cycles of IPC. 

 

Animals were anaesthetised and prepared for surgery as described in the 

non- recovery model in chapter 3. To reduce procedural time and minimise 

bleeding for this study the carotid artery was cannulated, but not the jugular 

vein. Thoracotomy was carried out and the pericardium was teased apart to 

expose the ventricle. An 8-0 prolene® suture was placed 1-2 mm beneath the 

caudal edge of the atrium. This was attached to a snare which was tightened 

over the left anterior descending artery to achieve periods of ischaemia and 

released to reperfuse the artery, as described in chapter 3. 

Mice with any evidence of barbarism were excluded (n=1). Also, mice were 

excluded if there was absence of a drop in mean arterial blood pressure (n=1) 

or if there was no change in electrocardiogram after the snare was applied 

(n=0). 

Additionally, if the mean arterial pressure during the stabilisation period was 

<90mmHg (n=2), or if significant operative bleeding or the animal did not 

survive the 2 hour reperfusion period it was excluded (n=1). 
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Firstly, in order to characterise the surgical model and confirm protection from 

a single cycle of ischaemic preconditioning a simple validation study was 

carried out. 

4.2 Characterisation of the model 

Commercially available C57BL6 mice (Harlan, UK) were used as they were 

more readily available than wild type mice, to develop the surgical model. I 

was able to demonstrate cardioprotection after a single 5 minute cycle of 

mechanical ischaemic preconditioning with n=5 in each group as 

demonstrated in chapter 3, figure 3.10.  
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4.3 Experimental Protocols 

 

Figure 4.1 Experimental Protocols 

Animals were anaesthetised and prepared for surgery as described in chapter 

three. All groups were subjected to thirty minutes of ischaemia and 2 hours of 

reperfusion preceded by one of the three protocols outlined above- a control 

group which had 35 minutes stabilisation prior to the 30 minutes ischaemia, a 

group which received a single 5 minute cycle of IPC within 5 minutes prior to 

the 30 minutes ischaemia, and finally, a group which underwent three 

alternating 5 minute cycles of IPC and LAD perfusion prior to the 30 minute 

ischaemia. 

The above experiments were carried out on both cyclophilin D knock out and 

wild type mice.  
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Both genotype and experiments were randomised to in order to minimise 

intra-operator bias.  

All experiments were conducted by a single operator (CH). 

The physiological data relating to these experiments are detailed in the 

subsequent graphs and tables. For each of the graphs, the data shown 

represents the mean +/- SEM.  

Physiological parameters (mean arterial pressure and heart rate) were 

recorded throughout the experimental protocol. In the graphs which follow, the 

timescale is non-linear, in order to highlight the changes in observations which 

occur during the short preconditioning cycles.  

In each graph, the coloured bar describes the experimental protocol. The blue 

bars represent LAD perfusion whilst the black boxes indicate LAD ischaemia. 

Notably, the trend of the mean arterial pressure was, in the control group, to 

remain stable during the stabilisation period, fall during ischaemia and then 

experience a drop at the time of reperfusion, then progressively decline until 

the end of the two hour protocol. 

It was also noted that the MAP during stabilisation was significantly higher in 

the Cyp D knock-out mice (108 v 93 mmHg, p<0.04). This pattern persisted in 

the single cycle IPC data, but was not apparent in the data relating to the 3 

cycle IPC protocol. This would suggest that this was not a true effect related 

to the genotype as it was not borne out in all experiments.  
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4.3.1 Results 

Effect of standard (control) protocol on mean arterial pressure 
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* =P<0.05 

 Figure 4.2 Effect of standard ischaemic protocol on mean arterial pressure 

The blue bars represent LAD perfusion whilst the black boxes indicate periods 

of LAD ischaemia. 

MAP: Mean arterial pressure, measured in millimetres of mercury (mmHg) 
 
+/+ = Wild type mice (blue) 
 
-/- = Cyclophilin D deficient mice (red) 

The data is displayed as the mean, with error bars to represent the standard 

error of the mean. 

 

The above data demonstrates the blood pressure profile of the animals which 

were subjected to the standard ischaemic (control) protocol, with 35 minutes 

Stabilisation (35mins) Reoerfusion (120mins) 
Ischaemia 

(30mins) 

* * * * * * * * 
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of stabilisation followed by 30 minutes of ischaemia and 2 hours of 

reperfusion.  

This data is presented in tabular format below on the next page. The blood 

pressure values shown are the mean arterial pressure recorded in millimetres 

of mercury. The given figure is the arithmetical mean.  
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Table 4.1 Blood pressure tables for standard ischaemic (control) 

protocol 

Stabilisation Period 

Time 
(mins) 

N 5  10 15 20 25 30 35 

MAP 
(mmHg) 
+/+ 

9 93 
(3.01) 

91 
(2.74) 

93 
(1.7) 

95 
(1.68) 

94 
(2.08) 

91 
(1.0) 

93 
(1.59) 

MAP 
(mmHg)  
-/- 

9 108 
(6.38) 
 

108 
(4.86) 

110 
(4.52) 

109 
(4.80) 

107 
(4.44) 

104 
(3.89) 

104 
(4.38) 

P value  0.04 0.01 0.01 0.01 0.02 0.01 0.03 

Ischaemia 

 

Time 
(mins) 

1 5 15 25 

MAP 
(mmHg)+/+ 

77 
(3.79) 

74 
(4.83) 

79 
(3.27) 

77 
(3.14) 

MAP 
(mmHg)-/- 

83 
(4.49) 
 

84 
(5.01) 

83 
(4.04) 

79 
(2.44) 

P value 0.24 0.11 0.29 0.44 

Reperfusion 

 

Time 
(mins) 

1 5 10 15 30 60 90 120 

MAP 
(mmHg)+/+ 

67 
(4.10) 

69 
(5.03) 

71 
(4.43) 

69 
(3.84) 

66 
(3.53) 

60 
(3.10) 

53 
(2.79) 

43 
(3.46) 

MAP 
(mmHg)-/- 

77 
(1.98) 

75 
(2.12) 

75 
(2.26) 

74 
(3.06) 

70 
(3.27) 

62 
(2.91) 

53 
(4.28) 

43 
(3.80) 

P value 0.04 0.26 0.36 0.28 0.58 0.85 0.76 0.98 
 

All data shown as mean +/- SEM 
 
MAP = mean arterial pressure (millimetres of mercury) 
 
+/+ = wild type 
 
-/- = Cyclophilin D knock-out 
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4.4.1 Effect of single cycle of IPC on mean arterial pressure 

 

0

20

40

60

80

100

120

M
A

P
 (

m
m

H
g)

Effect of single cycle of IPC on MAP

+/+ IPC x 1

-/- IPC x 1

 

*=P<0.05 

Figure 4.3 Effect of single cycle of IPC on mean arterial pressure comparing 

the blood pressure response in wild type and Cyp D knock-out mice 

The blue bars represent LAD perfusion whilst the black boxes indicate periods 

of LAD ischaemia. 

MAP: Mean arterial pressure, measured in millimetres of mercury (mmHg) 
 
+/+ = Wild type mice (blue) 
 
-/- = Cyclophilin D deficient mice (red) 

The data is displayed as the mean, with error bars to represent the standard 

error of the mean. 
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Figure 4.3 details the mean arterial pressures for the animals which were 

subjected to the single cycle of ischaemic preconditioning (referred to earlier 

as group B). 

As with the standard protocol, there was a higher baseline MAP in the CypD 

knockouts.  

The tables overleaf show the data presented above for the animals which 

were subjected to a single cycle of ischaemic preconditioning. 
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Table 4.2 Data tables for single cycle IPC protocol 

Stabilisation 

 

Time 
(mins) 

N 5  10  15  20  25  30 IPC 35  

MAP 
(mmHg)+/+ 

6 99 
(4.74) 

97 
(2.15) 

99 
(3.05) 

99 
(2.82) 

101 
(2.77) 

83 
(4.08) 

98 
(2.84) 

MAP 
(mmHg)-/- 

9 110 
(4.20) 

107 
(4.30) 

103 
(2.37) 

102 
(2.72) 

101 
(3.35) 

78 
(3.42) 

95 
(2.17) 

P value  0.10 0.07 0.33 0.49 0.87 0.33 0.44 
 

Ischaemia 

 

Time (mins) 1  
 I 

5    
I       

15   
I 

25  
I 

MAP 
(mmHg)+/+ 

81 
(5.00) 

78 
(4.30) 

81 
(3.53) 

80 
(3.78) 

MAP 
(mmHg)-/- 

82 
(2.86) 

85 
(2.98) 

81 
(2.72) 

76 
(3.24) 

P value 0.87 0.21 0.88 0.36 

Reperfusion 

 

Time (mins) 1 
R 

5 
R 

10 
R 

15 
R 

30 
R 

60 
R 

90 
R 

120 
R 

MAP 
(mmHg)+/+ 

77 
(3.45) 

76 
(2.94) 

78 
(3.35) 

72 
(3.34) 

68 
(2.54) 

60 
(2.48) 

49 
(2.82) 

35 
(1.87) 

MAP 
(mmHg)-/- 

71 
(3.94) 

67 
(2.78) 

68 
(2.55) 

68 
(2.38) 

70 
(2.51) 

65 
(3.18) 

48 
(3.92) 

36 
(4.59) 

P value 0.23 0.06 0.03 0.50 0.60 0.68 0.89 0.83 

 

 
All data expressed as mean +/- SEM 
 
MAP = mean arterial pressure (millimetres of mercury) 
 
+/+ = wild type 
 
-/- = Cyclophilin D knock-out 
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4.5.1 The effect of three cycles of IPC on Mean Arterial 

Pressure
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Figure 4.4 The data above demonstrates the blood pressure response to 

three cycles of ischaemic preconditioning  

The blue bars represent LAD perfusion whilst the black boxes indicate periods 

of LAD ischaemia. 

MAP: Mean arterial pressure, measured in millimetres of mercury (mmHg) 
 
+/+ = Wild type mice (blue) 
 
-/- = Cyclophilin D deficient mice (red) 

The data is displayed as the mean, with error bars to represent the standard 

error of the mean. 
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The blood pressure response to three cycles of IPC was very similar in both 

wild type and cyclophilin D deficient mice. 

Figure 4.7 demonstrates the temporal changes which occurred during the 

three cycles of IPC protocol. The initial blood pressure is satisfactory, and this 

drops in response to the first cycle of IPC. The pressure rises again, but does 

not fully recover to equate to the initial pressure. The next cycle of IPC follows 

a similar pattern with a large reduction in pressure confirming ischaemia, and 

again with reperfusion, the pressure improves, with partial recovery. Each 

preconditioning stimulus follows a similar pattern, and the mean arterial 

pressure is seen to undergo a graded decline. The period of index ischaemia 

results in a sustained reduction in MAP, and at reperfusion there is a further 

drop in pressure, due to the metabolic insult known as lethal reperfusion 

injury. There is a mild recovery of MAP after some time, and subsequently it 

gradually declines out to the two hour protocol end. 
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Haemodynamic differences observed 

The graphic images appear to demonstrate that there is a significant 

difference in the initial mean arterial pressure recorded between the CypD 

knockout mice and the wild type. To test this hypothesis, a t test was carried 

out to compare the means of the initial MAP readings between all of the 

cyclophilin D deficient mice and all of the wild type mice undergoing the 

experimental protocol. 

The results indicate that there was a statistically significant difference in MAP 

at the outset, with the mean for knock- out mice being higher than their wild 

type counterparts (109mmHg versus 99mmHg respectively).  

However, during the remainder of the protocol the mean arterial pressure did 

not differ according to genotype, so this is not thought to be an important 

effect.
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The data below demonstrates the values of mean arterial pressure recorded 

during the experimental protocol using three cycles of ischaemic 

preconditioning. 

Table 4.3 Data tables for three cycles of IPC protocol 

Stabilisation 

Time 
(mins) 

N 5  10 IPC 15  20 IPC 25  30 IPC 35  

MAP 
(mmHg)+/+ 

6 105 
(3.23) 

89 
(3.86) 

104 
(3.74) 

89 
(4.89) 

95 
(4.61) 

80 
(6.19) 

92 
(4.86) 

MAP 
(mmHg)-/- 

9 108 
(5.47) 

86 
(6.80) 

103 
(3.98) 

84 
(5.17) 

98 
(2.09) 

78 
(4.83) 

97 
(3.00) 

P value  0.67 0.70 0.76 0.51 0.69 0.84 0.34 

Ischaemia 

 

 

 

 

 

Reperfusion 

 

Time 
(mins) 

1 
R 

5 
R 

10 
R 

15 
R 

30 
R 

60 
R 

90 
R 

120 
R 

MAP 
(mmHg)+/+ 

67 
(2.65) 

62 
(1.99) 

63 
(1.82) 

62 
(2.43) 

59 
(1.75) 

54 
(2.65) 

48 
(1.98) 

41 
(2.23) 

MAP 
(mmHg)-/- 

70 
(2.69) 

67 
(2.27) 

69 
(2.28) 

67 
(1.80) 

62 
(1.91) 

55 
(2.06) 

47 
(3.31) 

37 
(4.06) 

P value 0.57 0.10 0.14 0.09 0.25 0.71 0.73 0.54 

 

MAP= mean arterial pressure (millimetres of mercury), expressed as the 
arithmetical mean 
 
+/+ = wild type mice, -/- = cyclophilin D knock-out mice

Time 
(mins) 

1  
 I 

5    
I       

15   
I 

25  
I 

MAP 
(mmHg)+/+ 

79 
(6.28) 

75 
(6.27) 

76 
(6.14) 

72 
(3.89) 

MAP 
(mmHg)-/- 

78 
(3.59) 

80 
(3.46) 

77 
(3.07) 

72 
(2.67) 

P value 0.92 0.44 0.91 0.96 
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4.6.1 Effect of control protocol (no IPC) on heart rate profile 

 

* = P<0.05 
 

Figure 4.5 Heart rate profile in response to the control (no IPC) protocol in wild 

type and cyclophilin D- deficient mice 

The blue bars represent LAD perfusion whilst the black boxes indicate periods 

of LAD ischaemia. 

Heart rate is measured in beats per minute (bpm) 
 
+/+ = Wild type mice (blue) 
 
-/- = Cyclophilin D deficient mice (red) 

The data is displayed as the mean, with error bars to represent the standard 

error of the mean. 

 

The data is presented in tabular format overleaf. 
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Table 4.4 Heart Rate response to control protocol (no IPC) in wild type 

and cyclophilin D knock-out mice 

Stabilisation 

 

Time 
(mins) 

N 5 mins 10 
mins 

15 
mins 

20 
mins 

25 
mins 

30 
mins 

35 
mins 

CTRL+/+ 
HR(bpm) 

9 446 
(11.15) 

432 
(8.95) 

414 
(8.91) 

407 
(8.14) 

411 
(10.07) 

403 
(9.43) 

393 
(8.23) 

CTRL-/- 
HR(bpm) 

9 418 
(13.12) 

413 
(13.00) 

397 
(14.13) 

400 
(13.84) 

398 
(14.98) 

387 
(16.72) 

400 
(15.63) 

P value  0.92 0.40 0.38 0.83 0.65 0.68 0.45 

 

Ischaemia 

 

 

 

 

 

Reperfusion 

 

Time 
(mins) 

1 
R 

5 
R 

10 
R 

15 
R 

30 
R 

60 
R 

90 
R 

120 
R 

CTRL+/+ 
HR(bpm) 

395 
(6.52) 

403 
(9.27) 

389 
(7.84) 

382 
(7.62) 

388 
(7.89) 

363 
(12.35) 

427 
(17.55) 

424 
(11.51) 

CTRL-/- 
HR(bpm) 

410 
(13.56) 

409 
(12.90) 

400 
(14.04) 

396 
(16.34) 

395 
(18.54) 

418 
(13.92) 

428 
(22.03) 

422 
(28.18) 

P value 0.03 0.07 0.05 0.14 0.47 0.03 0.38 0.68 

 

HR = heart rate (beats per minute), expressed as the arithmetical mean. 
 
+/+ = wild type mice 
 
-/- = cyclophilin D knock-out mice 
 

 

 

Time 
(mins) 

1  
 I 

5    
I       

15   
I 

25  
I 

CTRL+/+HR 
(bpm) 

395 
(10.12) 

407 
(7.31) 

393 
(6.25) 

394 
(5.8) 

CTRL-/-HR 
(bpm) 

412 
(14.93) 

421 
(17.14) 

409 
(17.25) 

408 
(15.63) 

P value 0.34 0.46 0.35 0.07 
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4.7.1 Effect of single cycle of IPC on heart rate profile  
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Figure 4.6 Heart rate profile in response to single cycle of IPC (wild type and 

cyclophilin D deficient mice). 

The blue bars represent LAD perfusion whilst the black boxes indicate periods 

of LAD ischaemia. 

Heart rate measured in beats per minute (bpm), expressed as the arithmetical 

mean. 

 
+/+ = Wild type mice (blue) 
 
-/- = Cyclophilin D deficient mice (red) 

The data is displayed as the mean, with error bars to represent the standard 

error of the mean. 

This data is presented in tabular format overleaf.  
 



Cara Hendry 
 

108 

Table 4.5  Effect of single cycle of IPC protocol on heart rate 

Stabilisation/IPC  

 

Time 
(mins) 

N 5 mins 10 
mins 

15 
mins 

20 
mins 

25 
mins 

30 
mins 

35 
mins 

IPC1+/+ 
HR(bpm) 

6 426 
(14.86) 

414 
(15.8) 

402 
(16.63) 

396 
(18.79) 

399 
(16.73) 

418 
(18.52) 

412 
(12.40) 

IPC1-/-
HR(bpm) 

9 418 
(13.37) 

413 
(11.56) 

397 
(13.01) 

400 
(10.36) 

398 
(9.35) 

387 
(10.94) 

400 
(12.87) 

P value  0.71 0.96 0.81 0.85 0.80 0.17 0.50 

 

Ischaemia 

 

 

 

 

 

Reperfusion 

 

Time 
(mins) 

1 
R 

5 
R 

10 
R 

15 
R 

30 
R 

60 
R 

90 
R 

120 
R 

IPC1+/+ 
HR(bpm) 

417 
(8.15) 

423 
(13.92) 

423 
(14.22) 

411 
(11.75) 

409 
(7.04) 

438 
(13.6) 

451 
(11.83) 

455 
(22.07) 

IPC1-/- 
HR(bpm) 

390 
(7.56) 

395 
(6.97) 

388 
(8.72) 

385 
(11.66) 

398 
(12.10) 

409 
(14.04) 

432 
(16.88) 

443 
(17.81) 

P value 0.03 0.08 0.05 0.14 0.47 0.17 0.38 0.68 

 

HR = heart rate (beats per minute) 
 
+/+ = wild type mice 
 
-/- = cyclophilin D knock-out mice 
 

Time 
(mins) 

1  
 I 

5    
I       

15   
I 

25  
I 

IPC1+/+ 
HR(bpm) 

418 
(13.42) 

423 
(15.05) 

414 
(13.35) 

411 
(10.10) 

IPC1-/-HR 
(bpm) 

410 
(8.49) 

404 
(7.70) 

400 
(9.18) 

389 
(6.56) 

P value 0.62 0.29 0.35 0.08 



Cara Hendry 
 

109 

4.8.1 The effect of three cycles of IPC on heart rate  
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Figure 4.7 Heart rate response to three consecutive cycles of IPC in wild type 

and knock-out mice. 

The blue bars represent LAD perfusion whilst the black boxes indicate periods 

of LAD ischaemia. 

Heart rate measured in beats per minute (bpm) 
 
+/+ = Wild type mice (blue) 
 
-/- = Cyclophilin D deficient mice (red) 

The data is displayed as the mean, with error bars to represent the standard 

error of the mean. 

 

 

This data is shown in tabular format overleaf. 
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Table 4.6 Effect of three cycles of IPC on heart rate on wild type and 

cyclophilin D knock-out mice 

Stabilisation/IPC  

 

Time 
(mins) 

N 5 mins 10 
mins 

15 
mins 

20 
mins 

25 
mins 

30 
mins 

35 
mins 

IPC3+/+ 
HR (bpm) 

6 414 
(12.63) 

446 
(25.36) 

402 
(6.58) 

389 
(5.35) 

408 
(13.78) 

409 
(13.22) 

408 
(13.46) 

IPC3-/- 
HR (bpm) 

9 436 
(9.86) 

415 
(13.58) 

418 
(11.43) 

412 
(12.71) 

417 
(13.56) 

398 
(17.14) 

411 
(17.75) 

P value  0.20 0.27 0.30 0.20 0.63 0.64 0.91 

 

Ischaemia 

 

 

 

 

 

Reperfusion 

 

Time 
(mins) 

1 
R 

5 
R 

10 
R 

15 
R 

30 
R 

60 
R 

90 
R 

120 
R 

IPC3+/+ 
HR (bpm) 

396 
(18.46) 

384 
(17.86) 

381 
(18.67) 

381 
(17.26) 

378 
(19.16) 

391 
(15.82) 

440 
(20.40) 

466 
(28.41) 

IPC3-/- 
HR (bpm) 

415 
(13.27) 

425 
(8.25) 

409 
(11.46) 

401 
(11.89) 

395 
(15.30) 

417 
(26.19) 

413 
(21.66) 

422 
(21.78) 

P value 0.40 0.10 0.20 0.28 0.50 0.47 0.41 0.24 

 

HR = heart rate (beats per minute), expressed as the arithmetical mean. 
 
+/+ = wild type mice 
 
-/- = cyclophilin D knock-out mice 
 

The heart rate profile shows common features in all three groups – initially the 

heart rate is high during stabilisation, and subsequently falls. During 

Time 
(mins) 

1  
 I 

5    
I       

15   
I 

25  
I 

IPC3+/+HR 
(bpm) 

392 
(17.52) 

388 
(16.5) 

379 
(16.68) 

390 
(12.56) 

IPC3-/-HR 
(bpm) 

405 
(16.23) 

402 
(12.54) 

402 
(14.01) 

415 
(13.32) 

P value 0.59 0.52 0.30 0.22 
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ischaemia the heart rate rises as expected to maintain cardiac output, and this 

is persistent during the initial reperfusion phase. Later in reperfusion the heart 

rate falls slightly, to rise again at the end of 2 hours reperfusion as the blood 

pressure continues to fall. 

4.9 Haemodynamics 

In two of the experimental protocols it was noted that the initial mean arterial 

pressure was higher in cyclophilin D deficient than in wild type mice. This led 

us to compare the overall initial mean arterial pressure in all groups to assess 

if this was affected by genotype. 

The mean MAP was 109mmHg in the CypD deficient group, and 98.5mmHg 

in the wild type mouse indicating a significant difference, with p of 0.008. 

However, this difference was only present during the first recorded MAP and 

did not persist during the remainder of the experiment and for this reason it is 

unlikely to have had a significant impact on the results obtained. 
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4.10 Uniformity of area at risk (AAR) in IPC study 
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Figure 4.8 Area at risk expressed as a percentage of the left ventricle  

AAR = Area at risk 
 
%LV = percentage of left ventricle  
 
The n number is denoted by the figure appearing in each data column. 
 
As shown in the graph above, the area at risk was uniform between all groups 

within the ischaemic preconditioning study. 

As discussed in the methods chapter, on measuring the infarct size, there are 

two main areas of myocardium identified: the area which stains blue with 

Evans Blue dye, and the area which does not. The area devoid of Evans’ blue 

is the area which is subtended by the left anterior descending artery (LAD). 

This is referred to as the area at risk. It is well established that infarct size is 

influenced by the area at risk(76,185). The area at risk is a potential source of 

variation in infarct size and thus it is important to quantify it, to ensure there is 

no significant difference between the experimental groups. 

 

9 6 6 9 9 9 
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4.11 Effect of increasing the ischaemic preconditioning 

stimulus 
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Figure 4.9 Effect of increasing the IPC stimulus on infarct sizes in wild type 

mice and controls.  

The number of animals is displayed within the columns of data. 

Key to Diagram:  

CTRL refers to mice subjected to control protocol (ie no IPC) 

IPC1 refers to mice subjected to a single IPC stimulus of 5 minutes 

IPC3 refers to mice subjected to three episodes of five minutes IPC 

The WT mice are referred to throughout the chapter as +/+ 

Mice deficient in cyclophilin D are referred to as -/- 

9 6 6 9 9 9 

  

   * *  * 
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 N IS/AAR(%) SEM 

CTRL +/+  9 40.8 2.96 

IPC1 +/+ 6 21.6* 2.95 

IPC3 +/+ 6 23.7* 3.59 

CTRL -/- 9 30.9 3.16 

IPC1-/- 9 28.8 4.43 

IPC3-/- 9 22.5* 2.12 

Table 4.7 Infarct size expressed as a percentage of the area at risk in each 

treatment group 

* = P<0.05 in comparison to wild type control protocol 
 
The data above demonstrates that the application of a single IPC stimulus 

prior to 30 minutes of ischaemia results in a reduction of infarct size from 

40.8% of the area at risk to 21.6% (P<0.05). The use of three IPC cycles did 

not appear to further reduce infarct size.  

There was a trend towards a significantly smaller infarct size in the cyclophilin 

D deficient hearts in comparison to wild type (30.9% v 40.8% respectively). 

There was also a strong trend towards protection in the CypD deficient mice 

receiving 3 cycles of IPC, although this did not reach significance (30.9% v 

22.5%). These findings are discussed overleaf. 
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4.12 Discussion 

The aim of this chapter was:  

1. To test if the myocardium may be protected from ischaemia-

reperfusion in cyclophilin D deficient mice by increasing the 

ischaemic preconditioning stimulus.  

Confirmation of protection in wild type mice 

Firstly, the cardioprotective effect of ischaemic preconditioning by application 

of a single five minute cycle of IPC has been confirmed in wild type mice with 

a significant reduction in infarct size as shown in published data (54,177). 

Cardioprotection after three cycles of ischaemic preconditioning in wild type 

mice was also confirmed in keeping with the above publications (54,177). 

There was no difference observed between the infarct sizes of the wild type 

mice receiving one and three cycles of ischaemic preconditioning, suggesting 

that once preconditioned, these hearts could not be protected further. 

In the group of cyclophilin D knock-out mice, application of a single cycle of 

IPC did not reduce infarct size. This is expected as prior studies have shown 

that it has not been possible to protect Cyp D deficient mice from ischaemia-

reperfusion injury when exposed to standard IPC protocols (54). 

There was a strong trend towards a protective effect in the cyclophilin D 

deficient mice receiving three cycles of IPC. However, this did not reach 

statistical significance. It is possible that using larger experimental groups that 

protection may be seen. The statistical method of comparing multiple 
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measures to a single control may prevent a clear demonstration of such 

benefit. 

In comparing the infarct size in the wild type mice and the cyclophilin D 

deficient mice subjected to ischaemia- reperfusion, there was no statistically 

significant difference between the groups with infarct size expressed as 

percentage of area at risk of 40.8% v 30.9% respectively (p=0.103). Prior data 

would suggest that a significant difference would be expected between these 

groups. 

The control infarct size is in keeping with other series (54) and concurs with 

the infarct size found in C57BL/6 mice detailed as demonstrated in the 

characterisation of the model. It has been described in the literature that 

colony-specific variation of infarct size may occur (186), but as we used only 

one level of back-cross, then bred homozygotes, this would not be expected 

to incur a large variation in infarct size in our study. 

Prior published data (from our centre) has shown a wild type control infarct 

size of 54%, and CypD deficient control infarct size of 27.9% (54). Baines 

described wild type control infarct size of 45% and CypD deficient controls of 

approximately 30% (13). In the experimental groups described in this chapter, 

the wild type control infarct size observed was 40.8%, and in the cyclophilin D 

deficient control mice 30.9%.  

The infarct sizes obtained in the cyclophilin D deficient groups are all similar, 

but the “wild type” controls exhibit varied infarct sizes between studies.  

It is important therefore to consider what exactly represented the “wild type”. 
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4.13 Importance of genetic background 

 
In Baines paper, the wild type animal was a true wild type mouse, which was 

overexpressing cyclophilin D (+/+). In the paper by Lim et al, the “wild type” 

control was a B6129svF1, which was purchased from a commercial breeder 

(Harlan, UK). 

Both wild type and cyclophilin D deficient animals used in the experiments 

described in this thesis were kindly provided by Baines et al. These were 

subjected to backcrossing with a C57BL6 background.  

By this method CypD +/- (heterozygotes) are bred with one another and the 

homozygotes from each litter are discarded. Each subsequent litter results in 

an increase in the homogeneity of the genetic background. (see figure 4.4) 
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Genetic Background 

 

Figure 4.10 Backcrossing of mice with commercially available C57BL6 mice  

At each level of backcrossing genotyping was carried out to identify 

homozygotes from heterozygotes. At each level heterozygotes are interbred 

with the C57BL6 mice. 

The primary aim of backcrossing is to minimise the amount of genome-wide 

heterozygosity. At the third level of backcross, this is limited to 12.5% (ie 100-

87.5%) (187). 

In this thesis this was the level of backcrossing utilised. The heterozygotes 

from the third backcross were then interbred with one another to produce 

homozygous mice. 
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The table below demonstrates the genotypes obtained after breeding 

heterozygotes with one another (table 4.5) 

CypD Allele + - 

+ +/+ +/- 

- +/- -/- 

Table 4.8 Genotypes obtained after interbreeding of heterozygotes. 

 

It has been described in the literature that there is a significant degree of 

diversity in the amount of myocardial damage which results from an ischaemic 

stimulus amongst mice with differing genetic background. Marber’s group 

have described a very significant difference in the volume of infarct measured 

in a Langendorff model of global ischaemia. In this paper, the measured 

infarct sizes vary from 24% in one C57BL6 wild type mouse (MKK3) to 65.8% 

in another C57BL6 based wild type mouse (MAPKAPK2). This is borne out by 

previous data showing that in a model of transient forebrain ischaemia (188) 

and in situ mouse heart undergoing ischaemia-reperfusion (189) that different 

strains exhibit differing vulnerability to ischaemia. 

This data make it unsurprising that the control infarct sizes in this study varied 

between Baines group and previous data from our unit, as the genetic 

background was differing in all three groups. 

In order to clarify this issue further, increasing the n number in each group 

may be one option to determine a true difference between the groups, or 

comparing a smaller number of groups to control is another method which 

may facilitate the demonstration of a difference. It was our aim to minimise the 



Cara Hendry 
 

120 

number of animals used in the experiments to comply with Home Office 

regulations. To increase the ischaemic stimulus (ie duration of ischaemia) in 

all groups would be another method of increasing the infarct size and 

potentially demonstrating important differences between the groups.  
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4.14 Was the IPC stimulus sufficient? 

It would have been desirable to assess the effect of a further increase in the 

IPC stimulus, but due to localised damage to the left anterior descending 

artery occurring resulting in increased infarct size and mortality as described 

in the problems section, I did not find this to be feasible using the model 

described. Unfortunately, this is a limitation of this in vivo murine surgical 

model.  There have been other methods of achieving LAD ischaemia, 

described by Eckle et al (212). It is possible that adoption of a different 

surgical model may result in less localised trauma to the LAD, potentially 

enabling more cycles of IPC to be administered. 

Alternatively, to further test this hypothesis, the experiments could potentially 

be carried out in a larger animal model, by using an increased number of IPC 

stimuli. However, in view of the genetic malleability of mice, they are by far the 

most practical option when investigating the effect of ablation of a particular 

gene. 

To further explore the effects of IPC in the cyclophilin D deficient mouse, it 

would be interesting to investigate whether signalling pathways known to be 

involved in IPC (190) are activated after three cycles of IPC, which could 

potentially indicate that there is a threshold effect. If there was found to be 

activation of the RISK pathway, this might prompt further experiments, 

perhaps in a mouse Langendorff model, with a larger n number. This is further 

discussed in the next section. 
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4.15 Should the sample size be increased? 

Using Stata® software (version 10.0), a power calculation was carried out to 

assess whether a larger cohort would be required to achieve statistical 

significance. This demonstrated that to detect a 40% reduction in infarct size 

(ie infarct reduction from 46% to 28% based on previous literature), with a 

confidence level of 0.05, n of 12 in each group would be required. 

To detect a 40% reduction in infarct size in the cyclophilin knock out group 

(from 28% to 17%) the desired n number would be 30 in each group. 

This was considered, but due to both the limited availability of both knock out 

and wild type animals it was not felt to be feasible.  Additionally, we felt that to 

do so would not be in keeping with the basic principles of the Guidance on the 

Use of Animals (Scientific Procedures) Act 1986, which encourages reduction 

of animal use where possible. 
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4.16 Problems Encountered  

In this study, problems were encountered with the surgical model.  

Although administration of one cycle of IPC with recovery of blood pressure 

and resolution of ECG changes was straightforward, when three cycles of IPC 

were undertaken, it was noted that in a number of cases (n=5), by the third 

cycle the arterial pressure and ECG did not resolve.  

Examination of the LAD and left ventricle under the dissecting microscope 

showed that the myocardium remained pale and the LAD did not appear to 

refill. It was assumed that local damage to the LAD had occurred, which would 

result in an increase in the duration of ischaemia. In view of this, the animals 

falling into this category were excluded from the final analysis.  

Hearts from 3 of these animals were examined and the infarct size found after 

2 hours reperfusion was found to be consistent with this theory, with a mean 

infarct size (expressed as % of the area at risk) of 49.79% (higher than the 

control infarct size).  

Additionally, increased mortality was noted (n=6, including the 5 mice which 

had obvious evidence of no-reflow) in the mice randomised to three cycles of 

IPC. These mice were excluded from the overall analysis as they did not 

reach the pre-determined two hour reperfusion end point, at which time the 

infarct size was measured. 
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As discussed in chapter one evidence is emerging to suggest that the MPTP, 

or more precisely, cyclophilin D, is unlikely to be the end effector of a pathway 

to myocardial damage. This was first considered because genetic ablation of 

cyclophilin D does not completely abolish myocardial damage in the setting of 

ischaemia-reperfusion. Further data by Nakagawa et al showed that cells from 

cyclophilin D deficient mice responded normally to a variety of apoptotic 

stimulants (r- Bid, Bad and r- Bax). Additional findings from this paper were 

that it was possible to induce the MPTP by administration of high doses of 

calcium, this would support the idea that inhibition of the MPTP is a threshold 

effect (165). This theory is further supported by research showing that in a 

model of muscular atrophy following denervation, cyclophilin D deficiency did 

not protect against muscular atrophy in response to activation of apoptotic 

pathways after denervation (191) by division of the sciatic nerve. 

Further, unpublished work, described in Appendix 1.1 demonstrates 

cardioprotection by three cycles of IPC in an ex vivo model of ischaemia-

reperfusion. In this series of experiments, not only was the Langendorff ex 

vivo model used- there was also an increase in the duration of ischaemia, 

which may highlight any difference between the groups by increasing the 

control infarct size. This data did show a reduction in infarct size by 

application of three cycles of IPC in the CypD deficient mouse.  

The experiments described in this chapter did not support the hypothesis that 

ischaemic preconditioning can protect the heart in the absence of cyclophilin 

D. 
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4.17 Suggested areas for future study 

Proposed future study would include assessment of signalling pathway 

activation during each protocol to demonstrate upregulation of these survival 

kinases (eg ERK 1 /2, AKT, MAPK) by Western blotting techniques. If there is 

upregulation of this pathway with a higher number of IPC cycles, this may 

suggest that, in fact there is a protective effect, but that our model is too 

insensitive to detect it.  

A cellular model could also be used, for example a model of hypoxia- 

reoxgenation with repeated episodes of hypoxia to mimic the effect of 

ischaemic preconditioning. Both these models have significant limitations in 

their potential clinical applicability – the Langendorff ex vivo isolated perfused 

heart model, although preferred in comparison to cellular models, has the 

disadvantage of requiring differing concentration of drugs, and the full 

biological effect of drug is not assessed as neural and humoral signals are not 

appreciated by this method. 

It would also be useful to carry out a dose – response curve to determine 

whether it would be possible to increase the duration of ischaemia further in 

order to improve the likelihood of detecting a difference between groups. In 

order to minimise animal use, this was not performed due to the low numbers 

of animals available. 

There are alternative methods of achieving experimental LAD occlusion 

described in the literature, for example the “hanging weights” system 

described by Eckle et al (211). This system is reported to potentially reduce 
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the localised damage to the LAD as a result of the application of ischaemia, 

but no formal comparison of these methods has been carried out. For future 

experiments, this model could potentially be taken into consideration for use 

as an alternative. 
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Chapter 5  

Mitochondrial Targeted Cyclosporin A 

A Pharmacological Intervention Study 

5.1 Background 

Cyclosporin A (CsA) is known to protect the myocardium from ischaemia-

reperfusion injury, and as such is the focus of much research into treatment of 

acute myocardial infarction. Cyclosporin A has a high binding affinity for the 

cyclophilins (peptidyl-prolyl isomerases (PPIases)). This effect is mediated by 

inhibition of cyclophilin D, which is an essential component of the MPTP. The 

MPTP plays a central role in the cell death which occurs after reperfused 

myocardial infarction.However, the cardioprotective effects of CsA are limited 

in vivo by its effect on the extra-mitochondrial cyclophilins (cyclophilin A and 

B). The interaction of CsA and cyclophilin A inhibits the calcium- dependent 

phosphatase, calcineurin.  
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The main therapeutic use of cyclosporin A at present is in 

immunosuppression, an effect which results from its binding to cyclophilin A. 

However, this also results in a variety of non-desirable clinical effects- renal 

and hepatic toxicity, as well as increased susceptibility to cancers. 

Targeting of cyclosporin to mitochondria should in theory abolish these extra-

mitochondrial effects mediated by calcineurin inhibition, whilst maintaining 

inhibition of peptidyl-prolyl isomerase (PPIase) activity, and thus MPTP 

inhibition.  

It is also theoretically possible that therapeutic effect may be possible in a 

lower dose range if the drug has increased affinity for its binding site, which 

could also be clinically beneficial, by avoidance of dose related side effects. 

Previous data has shown that in isolated mitochondria and hippocampal 

neurons deprived of glucose and oxygen administration of a novel 

mitochondrial- targeted mtCsA was cytoprotective (135).  

In this chapter, the aim was to determine in the first in vivo experiment 

whether mtCsA would be cardioprotective in animals subjected to ischaemia-

reperfusion. 

In this chapter, we carried out the first in vivo experiments utilising a novel 

mitochondrial targeted form of cyclosporin A (mtCsA) created by Professor 

David Selwood (Wolfson Institute for Biomedical Research, University College 

London).  

 



Cara Hendry 
 

129 

5.2 Aims 

To prove the hypothesis: Administration of a mitochondrial specific 

analogue of cyclosporin A at reperfusion will offer superior protection to 

the myocardium from ischaemia-reperfusion in wild type mice when 

compared to standard CsA. 

5.3 Methods 

Animals were prepared and anaesthetised as described in chapter 3. In this 

chapter the jugular vein was dissected out and cannulated with P10 tubing in 

order to administer medication to the central circulation safely. In each of the 

experimental groups a fifteen minute stabilisation period was observed before 

the snare was tightened over the left anterior descending artery for a period of 

thirty minutes (index ischaemia). One minute prior to reperfusion, the drug to 

which the animal was randomised was infused slowly through the cannula to 

ensure bioavailability at the time of reperfusion. The snare on the coronary 

artery was then released. Two hours of reperfusion followed.  

Drug was prepared by dissolving in 1% cremophor EL/ethanol solution and 

reconstituted with physiological saline. This was aliquotted into individual 

doses, frozen and was thawed in a water bath at 37ºC and sonicated both 

whilst being reconstituted and again after thawing for five seconds prior to 

administration to aid dissolution (volume 0.1ml). 
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5.4 Experimental Protocols 

As the formulated mitochondrial targeted cyclosporin A (mtCsA) had not 

previously been administered in vivo, a selection of doses were used in order 

to create a dose response curve. Given the increased specificity of the drug 

for mitochondria, it was felt that doses lower than the conventional dose of 

cyclosporin used in animal models (10mg/kg) (54) should be used for initial 

investigations. On an arbitrary basis the doses 0.2mg/kg, 1mg/kg and 5mg/kg 

were selected for use. 

Mice with evidence of barbarism were excluded (n=0). Also, mice were 

excluded if there was absence of a drop in mean arterial blood pressure (n=1) 

or if there was no change in electrocardiogram after the snare was applied 

(n=0). 

Additionally, if the mean arterial pressure during the stabilisation period was 

<90mmHg (n=2), or if significant operative bleeding or the animal did not 

survive the 2 hour reperfusion period it was excluded (n=1). 
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Mice were randomised into eight groups as follows: 

1. Wild type vehicle (WT VEH) 

2. Wild type cyclosporin A 10mg/kg (WT CsA) 

3. Wild type mitochondrial targeted cyclosporin A (0.2mg/kg) (WT mt 0.2) 

4. Wild type mitochondrial targeted cyclosporin A (1mg/kg) (WT mt1) 

5. Wild type mitochondrial targeted cyclosporin A (5mg/kg) (WT mt 5) 

6. Cyp D knock out vehicle (KOVEH) 

7. Cyp D knock out cyclosporin A (KOCSA) 

8. Cyp D knock out mitochondrial targeted cyclosporin A (1mg/kg) (KO 

mt1) 
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5.5 Results 

Physiological effect of pharmacological inhibition of 

cyclophilin in wild type mice  
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Figure 5.1 Effect of pharmacological inhibition of cyclophilin D on mean 

arterial pressure 

MAP = mean arterial pressure (millimetres of mercury), expressed as mean 

value +/- standard error of the mean 

Black bar denotes LAD ischaemia, Blue bar denotes LAD perfusion 

WTCsA = Wild type treated with cyclosporin A  

 

WTMITO 0.2 = Wild type treated with 0.2mg/kg mitochondrial targeted CsA  
 
WTMITO 1 = Wild type treated with 1mg/kg mitochondrial targeted CsA 
 
WTMITO 5 = Wild type treated with 5 mg/kg mitochondrial targeted CsA 
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Table 5.1 Effect of pharmacological inhibition of cyclophilin D on MAP  

Stabilisation 

Time (mins) N 5  stab 10  stab 15 stab 

VEH MAP 
(mmHg) 

6 112 
(4.66) 

108 
(3.60) 

106 
(2.76) 

CsA MAP 
(mmHg) 

6 106 
(6.42) 

103 
(7.03) 

102 
(5.52) 

P value 
VEH v CSA 

 0.45 0.51 0.45 

mt0.2MAP 
(mmHg) 

6 116 
(4.00) 

112 
(3.71) 

111 
(2.89) 

P value 
VEH v m0.2 

 0.55 0.43 0.25 

mt1 MAP 
(mmHg)  

6 114 
(7.92) 

104 
(4.74) 

104 
(3.82) 

P value 
VEH v Mt1 

 0.85 0.52 0.70 

mt5 MAP 
(mmHg) 

4 104 
(1.78) 

104 
(2.39) 

105 
(3.66) 

P value  
VEH v mt5 

 0.25 0.46 0.75 

Ischaemia 

 

 

 

 

 

 

 

 

 

Time 
(mins) 

1  
 I 

5    
I       

15   
I 

25  
I 

VEH MAP 
(mmHg) 

91 
(2.23) 

93 
(2.28) 

95 
(3.08) 

87 
(3.35) 

CsA MAP 
(mmHg) 

83 
(6.69) 

87 
(7.73) 

86 
(6.77) 

84 
(6.39) 

P value 
VEH v CSA 

0.22 0.44 0.20 0.66 

mt0.2MAP 
(mmHg) 

93 
(3.91) 

96 
(4.18) 

95 
(4.21) 

96 
(2.80) 

P value 
VEH v m0.2 

0.65 0.47 0.99 0.08 

mt1 MAP 
(mmHg)  

91 
(4.81) 

91 
(2.46) 

94 
(3.49) 

85 
(2.94) 

P value 
VEH v Mt1 

0.90 0.58 0.71 0.69 

mt5 MAP 
(mmHg) 

85 
(1.60) 

92 
(1.03) 

95 
(1.25) 

90 
(2.84) 

P value  
VEH v mt5 

0.10 0.80 0.99 0.53 
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Reperfusion 
 

Time 
(mins) 

1 
R 

5 
R 

10 
R 

15 
R 

30 
R 

60 
R 

90 
R 

120 
R 

VEH MAP 
(mmHg) 

93 
(2.59) 

88 
(1.09) 

84 
(1.56) 

82 
(2.13) 

81 
(2.58) 

72 
(1.87) 

66 
(2.20) 

58 
(3.36) 

CsA MAP 
(mmHg) 

74 
(8.64) 

75 
(7.08) 

72 
(5.47) 

70 
(5.41) 

65 
(5.06) 

56 
(7.42) 

53 
(7.76) 

46 
(8.77) 

P value 
VEH v CSA 

0.04 0.05 0.04 0.05 0.01 0.03 0.07 0.18 

mt0.2MAP 
(mmHg) 

90 
(3.20) 

83 
(4.26) 

81 
(3.67) 

82 
(2.02) 

78 
(2.40) 

70 
(4.26) 

60 
(3.99) 

47 
(3.51) 

P value 
VEH v 
mt0.2 

0.57 0.21 0.40 0.96 0.49 0.59 0.14 0.04 

mt1 MAP 
(mmHg)  

82 
(5.16) 

85 
(4.62) 

84 
(4.06) 

80 
(3.26) 

77 
(3.37) 

70 
(2.02) 

62 
(2.41) 

51 
(4.37) 

P value 
VEH v Mt1 

0.09 0.56 0.91 0.58 0.32 0.45 0.14 0.23 

mt5 MAP 
(mmHg) 

82 
(2.99) 

89 
(5.63) 

81 
(2.99) 

76 
(2.29) 

74 
(1.65) 

67 
(3.79) 

61 
(2.40) 

53 
(2.21) 

P value  
VEH v mt5 

0.02 0.91 0.26 0.09 0.11 0.22 0.12 0.32 

 

VEH = wild type treated with vehicle only 

CsA = wild type treated with 10mg/kg of cyclosporin A 

mt 0.2 = Wild type treated with 0.2mg/kg mitochondrial targeted CsA 

mt 1 = Wild type treated with 1mg/kg mitochondrial targeted CsA 

mt 5 = Wild type treated with 5 mg/kg mitochondrial targeted CsA 
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5.6 The effect of pharmacological inhibition of cyclophilin D 

on mean arterial pressure in cyclophilin D deficient mice 
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Figure 5.2 Effect of administration of cyclophilin D inhibitors on mean arterial 

pressure (MAP) during the experimental protocol in cyclophilin D knock- out 

mice 

Black bar denotes LAD ischaemia 

 

Blue bar denotes LAD perfusion 
 
MAP expressed as mean +/- standard error of the mean (in millimetres of 
mercury) 

KOVEH = knock-out treated with vehicle  

 

KOCSA = knock-out treated with 10mg/kg cyclosporin A  
 
KOMITO 1 = knock-out treated with 1mg/kg mitochondrial targeted CsA 
 

The data shown above is demonstrated in tabular format overleaf. 
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Table 5.2 Effect of pharmacological inhibition of cyclophilin D on MAP in 

CypD deficient mice 

Stabilisation 

 

Time (mins) N 5  stab 10  stab 15 stab 

VEH MAP 
(mmHg) 

6 121 
(7.32) 

112 
(8.69) 

114 
(8.02) 

CsA MAP 
(mmHg) 

6 113 
(4.74) 

112 
(5.15) 

111 
(6.39) 

P value 
VEH v CSA 

 0.36 0.89 0.78 

Mt1MAP 
(mmHg) 

6 127 
(10.52) 

120 
(10.83) 

113 
(7.40) 

P value 
VEH v Mt1 

 0.62 0.61 0.98 

Ischaemia 

 

 

 

 

 

 

 

 

Time 
(mins) 

1  
 I 

5    
I       

15   
I 

25  
I 

VEH MAP 
(mmHg) 

89 
(8.25) 

93 
(7.70) 

96 
(6.96) 

90 
(5.74) 

CsA MAP 
(mmHg) 

90 
(5.37) 

94 
(3.42) 

92 
(3.34) 

88 
(3.46) 

P value 
VEH v CSA 

0.92 0.97 0.66 0.79 

Mt1MAP 
(mmHg) 

90 
(6.73) 

94 
(6.70) 

95 
(4.97) 

87 
(2.88) 

P value 
VEH v Mt1 

0.88 0.97 0.91 0.69 
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Reperfusion 

 

Time 
(mins) 

1 
R 

5 
R 

10 
R 

15 
R 

30 
R 

60 
R 

90 
R 

120 
R 

VEH MAP 
(mmHg) 

86 
(6.32) 

84 
(5.98) 

83 
(5.47) 

82 
(5.74) 

76 
(4.87) 

62 
(2.06) 

51 
(3.12) 

36 
(2.08) 

CsA MAP 
(mmHg) 

83 
(3.91) 

82 
(3.79) 

81 
(2.60) 

79 
(2.07) 

76 
(3.55) 

65 
(2.33) 

51 
(2.32) 

38 
(2.69) 

P value 
VEH v CSA 

0.65 0.75 0.69 0.61 0.96 0.36 0.83 0.54 

Mt1MAP 
(mmHg) 

81 
(4.48) 

84 
(4.6) 

85 
(2.93) 

85 
(3.01) 

71 
(3.04) 

66 
(3.33) 

56 
(5.88) 

46 
(7.88) 

P value 
VEH v Mt1 

0.58 0.99 0.72 0.71 0.41 0.31 0.42 0.21 

 

All data expressed as mean value +/- SEM (in parentheses) 
 
 

VEH = knock-out treated with vehicle  

 

CSA = knock-out treated with 10mg/kg cyclosporin A  
 
MITO 1 = knock-out treated with 1mg/kg mitochondrial targeted CsA 
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5.7 Effect of pharmacological inhibition of cyclophilin D on 

heart rate in wild type mice  
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 Figure 5.3 Effect of pharmacological inhibition of cyclophilin D on heart rate 

(measured in beats per minute) during ischaemia-reperfusion. 

Key to Figure 5.3 

Black bar denotes LAD ischaemia, Blue bar denotes LAD perfusion 

 

Data expressed as mean value +/- standard error of the mean 

WTCsA = Wild type treated with cyclosporin A  

 

WTMITO 0.2 = Wild type treated with 0.2mg/kg mitochondrial targeted CsA  
 
WTMITO 1 = Wild type treated with 1mg/kg mitochondrial targeted CsA 
 
WTMITO 5 = Wild type treated with 5 mg/kg mitochondrial targeted CsA 

This data is shown in tabular format overleaf. 
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Table 5.3 Effect of pharmacological inhibition of Cyp D on HR in WT  

Stabilisation 

Time (mins) N 5  stab 10  stab 15 stab 

VEH HR 
(bpm) 

6 388 
(19.31) 

387 
(12.72) 

374 
(15.37) 

CsA HR 
(bpm) 

6 408 
(17.87) 

411 
(13.46) 

393 
(10.08) 

P value 
VEH v CSA 

 0.50 0.24 0.37 

mt0.2HR 
(bpm) 

6 395 
(17.62) 

397 
(14.15) 

404 
(13.44) 

P value 
VEH v mt0.2 

 0.81 0.63 0.17 

mt1 HR 
(bpm)  

6 420 
(22.54) 

408 
(20.32) 

399 
(17.55) 

P value 
VEH v mt1 

 0.31 0.38 0.30 

mt5 HR 
(bpm) 

4 416 
(14.74) 

422 
(26.99) 

410 
(30.54) 

P value  
VEH v mt5 

 0.35 0.21 0.27 

Ischaemia 

 

 

 

 

 

 

 

 

 

 

Time 
(mins) 

1  
 I 

5    
I       

15   
I 

25  
I 

VEH HR 
(bpm) 

352 
(19.55) 

363 
(18.80) 

363 
(13.50) 

376 
(15.84) 

CsA HR 
(bpm) 

389 
(9.34) 

380 
(3.14) 

371 
(7.55) 

386 
(5.87) 

P value 
VEH v CSA 

0.20 0.46 0.65 0.64 

mt0.2HR 
(bpm) 

387 
(9.45) 

393 
(10.83) 

398 
(10.62) 

399 
(12.01) 

P value 
VEH v 0.2 

0.16 0.21 0.07 0.30 

mt1 HR 
(bpm)  

400 
(17.68) 

404 
(15.17) 

389 
(10.43) 

397 
(10.87) 

P value 
VEH v mt1 

0.10 0.13 0.18 0.32 

mt5 HR 
(bpm) 

376 
(15.14) 

377 
(13.60) 

394 
(13.58) 

397 
(14.30) 

P value  
VEH v mt5 

0.44 0.62 0.17 0.41 
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Reperfusion 

 

Time 
(mins) 

1 
R 

5 
R 

10 
R 

15 
R 

30 
R 

60 
R 

90 
R 

120 
R 

VEH HR 
(bpm) 

382 
(18.06) 

387 
(18.55) 

377 
(20.26) 

372 
(17.23) 

387 
(15.04) 

384 
(11.27) 

397 
(17.62) 

436 
(20.48) 

CsA HR 
(bpm) 

392 
(8.43) 

388 
(13.44) 

387 
(9.15) 

386 
(3.81) 

381 
(6.13) 

394 
(7.52) 

426 
(6.34) 

450 
(16.25) 

P value 
VEH v CSA 

0.68 0.96 0.69 0.51 0.76 0.54 0.22 0.62 

mt0.2HR 
(bpm) 

410 
(11.30) 

397 
(15.32) 

405 
(14.97) 

401 
(11.99) 

414 
(13.59) 

421 
(12.15) 

424 
(18.40) 

418 
(10.06) 

P value 
VEH v 
mt0.2 

0.23 0.70 0.30 0.20 0.22 0.048 0.31 0.46 

mt1 HR 
(bpm)  

410 
(13.06) 

409 
(14.97) 

405 
(15.30) 

405 
(13.43) 

389 
(13.44) 

389 
(7.87) 

397 
(15.32) 

417 
(18.36) 

P value 
VEH v mt1 

0.25 0.39 0.30 0.17 0.92 0.79 0.99 0.50 

mt5 HR 
(bpm) 

415 
(16.22) 

407 
(15.68) 

406 
(22.78) 

417 
(18.76) 

407 
(21.43) 

407 
(21.04) 

422 
(31.61) 

453 
(33.12) 

P value  
VEH v mt5 

0.26 0.49 0.38 0.12 0.45 0.34 0.48 0.66 

VEH = wild type treated with vehicle 

CsA = Wild type treated with cyclosporin A  

 

mt0.2 = Wild type treated with 0.2mg/kg mitochondrial targeted CsA  
 
mt1 = Wild type treated with 1mg/kg mitochondrial targeted CsA 
 
mt5 = Wild type treated with 5 mg/kg mitochondrial targeted CsA 
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5.8 The effect of pharmacological inhibition of cyclophilin D in 

Cyp D knock- out mice on heart rate response to ischaemia-

reperfusion 
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Figure 5.4 Effect of pharmacological inhibition of cyclophilin D on heart rate 

(beats per minute) in cyclophilin D deficient mice subjected to ischaemia-

reperfusion  

Black bar denotes LAD ischaemia 

 

Blue bar denotes LAD perfusion 
 
Data expressed as mean value +/- standard error of the mean 

KOVEH= knock-out treated with vehicle  

 

KOCsA = knock-out treated with 10 mg/kg cyclosporin A   
 
KOMITO 1 = knock-out treated with 1mg/kg mitochondrial targeted CsA 
 
The above data is presented in tabular format overleaf. 
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Table 5.4 Effect of pharmacological inhibition of CypD on heart rate in 

cyclophilin D deficient mice 

Stabilisation 

 

Time 
(mins) 

N 5  stab 10  stab 15 stab 

VEH HR 
(bpm) 

6 411 
(14.84) 

407 
(13.51) 

407 
(9.96) 

CsA HR 
(bpm) 

6 411 
(13.88) 

399 
(21.23) 

405 
(14.82) 

P value 
VEH v CSA 

 0.98 0.76 0.91 

Mt1HR 
(bpm) 

6 409 
(22.82) 

404 
(25.13) 

396 
(20.20) 

P value 
VEH v 
mt1 

 0.94 0.91 0.64 

Ischaemia 

 

 

 

 

 

 

 

 

 

Time 
(mins) 

1  
 I 

5    
I       

15   
I 

25  
I 

VEH HR 
(bpm) 

399 
(13.87) 

394 
(13.48) 

399 
(9.48) 

401 
(6.04) 

CsA HR 
(bpm) 

395 
(16.94) 

391 
(17.49) 

391 
(18.45) 

391 
(13.05) 

P value 
VEH v CSA 

0.84 0.91 0.73 0.48 

Mt1HR 
(bpm) 

398 
(22.34) 

376 
(25.24) 

383 
(28.29) 

383 
(16.12) 

P value 
VEH v mt1 

0.98 0.55 0.59 0.21 
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Reperfusion 

 

Time 
(mins) 

1 
R 

5 
R 

10 
R 

15 
R 

30 
R 

60 
R 

90 
R 

120 
R 

VEH HR 
(bpm) 

424 
(11.86) 

432 
(7.79) 

410 
(7.99) 

407 
(10.15) 

405 
(16.03) 

391 
(11.18) 

401 
(10.35) 

405 
(10.87) 

CsA HR 
(bpm) 

380 
(11.33) 

385 
(11.53) 

393 
(11.67) 

397 
(12.37) 

414 
(12.52) 

422 
(16.28) 

425 
(10.82) 

413 
(11.34) 

P value 
VEH v CSA 

0.02 0.007 0.27 0.55 0.69 0.15 0.14 0.66 

Mt1 HR 
(bpm) 

394 
(13.30) 

400 
(18.64) 

403 
(18.90) 

400 
(26.28) 

385 
(21.22) 

406 
(19.69) 

418 
(20.34) 

423 
(17.20) 

P value 
VEH v mt1 

0.12 0.13 0.75 0.80 0.45 0.51 0.44 0.39 

VEH= knock-out treated with vehicle  

 

CsA = knock-out treated with 10 mg/kg cyclosporin A   
 
Mt1 = knock-out treated with 1mg/kg mitochondrial targeted CsA 
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5.9 Haemodynamic effects of pharmacological inhibition of 

cyclophilin D 

The data above demonstrates that the blood pressure response during this 

experimental protocol is similar within all experimental groups- including both 

cyclophilin D deficient and wild type genotypes.  

The mean arterial pressure tends to drop slightly after the first recording made 

during the stabilisation phase. This is likely due to the stress involved in being 

anaesthetised. It then remains stable during the stabilisation phase and drops 

markedly at the onset of ischaemia (it is one of the findings which confirms 

ischaemia). It then drifts downwards slightly during the period of ischaemia. 

Due to the administration of the fluid bolus containing the experimental drug 

or vehicle, there is a rise in the observed MAP at the beginning of the 

reperfusion phase.  The effect of this is brief, and the MAP gradually declines 

as the protocol continues to its two hour completion, as observed in the 

preconditioning experiments of chapter four.  

The heart rate responses were similar within all groups during the protocol. 

This remained constant throughout the protocol, but towards the end of the 

experiments there was a tendency of the heart rate to rise slightly, as part of 

the haemodynamic response to heart failure. 



Cara Hendry 
 

145 

5.10.1 Area at risk in wild type mice  

 

 

 

Figure 5.5 Area at risk in wild type mice subjected to administration of 

cyclophilin D inhibitors at the time of reperfusion 

Area at risk is expressed as a percentage of the left ventricle, and mean value 

displayed +/- standard error of the mean 

N for each group is displayed in each column. 
 
WT VEH= wild type receiving vehicle only  
 
WT CsA = wild type receiving 10mg/kg of cyclosporin A  

WT mt0.2 = wild type receiving 0.2 mg/kg of mitochondrial targeted CsA  

WT mt 1 = wild type receiving 1mg/kg of mitochondrial targeted CsA 

WT mt 5 = wild type receiving 5mg/kg of mitochondrial targeted CsA 

 
The area at risk did not vary significantly amongst the groups. 
 
 
 

6 6 6 6 4 
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5.10.2 Area at risk in cyclophilin D knock out mice 

 

Figure 5.6 Area at risk expressed as a percentage of the left ventricle. 

Data expressed as the mean value +/- standard error of the mean. The n 

number of each group is displayed in the corresponding column. 

KO VEH = knock-out receiving vehicle 

KO CsA = knock out receiving 10 mg/kg cyclosporin A  

KO mt1= knock-out receiving 1 mg/kg of mitochondrial-targeted cyclosporin A  

As shown above, the area at risk was uniform amongst treatment allocations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

6 
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5.11 Effect of cyclophilin D inhibition on infarct sizes after 

ischaemia-reperfusion in wild type mice 

 

Figure 5.7 Infarct sizes obtained after administration of cyclophilin D inhibitors 

to wild type mice at reperfusion 

IS/AAR(%) = infarct size expressed as a percentage of the area at risk 
 
WT VEH= wild type receiving vehicle only  
 
WT CsA = wild type receiving 10mg/kg of cyclosporin A  

WT mt0.2 = wild type receiving 0.2 mg/kg of mitochondrial targeted CsA  

WT mt 1 = wild type receiving 1mg/kg of mitochondrial targeted CsA 

WT mt 5 = wild type receiving 5mg/kg of mitochondrial targeted CsA 

The n number in each group is displayed in the corresponding column. 

 
 
 

6 6 6 6 4 
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Effect of pharmacological inhibition of Cyp D on infarct size 

 

 

 

 IS/AAR (%LV) SEM 

WT vehicle 35.04 1.74 

WT cyclosporin A 23.26 3.33 

WT mt CsA 0.2 34.71 5.93 

WT mtCsA 1 31.89 5.06 

WT mtCsA 5 45.46 4.46 

 

 

Table 5.5 Effect of pharmacological inhibition of cyclophilin D on infarct size in 

wild type mice 

WT vehicle = wild type treated with vehicle  

WT cyclosporin A = wild type treated with cyclosporin A  

WT mtCsA 0.2= wild type receiving 0.2 mg/kg of mitochondrial targeted CsA 

WT mtCsA 1 = wild type receiving 1mg/kg of mitochondrial targeted CsA 

WT mtCsA 5 = wild type receiving 5mg/kg of mitochondrial targeted CsA 

The data above demonstrates that there was a strong, but not significant 

trend towards protection in the group treated with CsA in comparison to 

vehicle (35% v 23%, P>0.05). The groups receiving the lower doses of 

mitochondrial specific CsA exhibited infarct sizes comparable to vehicle 

controls. The group receiving the highest dose of mtCsA showed a higher 

infarct size (not significant) than control, which could suggest that the 

treatment is actually harmful at higher doses. 
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5.12 Effect of pharmacological inhibition of cyclophilin D on 

infarct size in cyclophilin D deficient mice 

 

Figure 5.8 Infarct size obtained after cyclophilin D knock- out mice received 

pharmacological inhibition of cyclophilin at the time of reperfusion 

IS/AAR(%)= Infarct size expressed as a percentage of the left ventricle 
 
N number for each group displayed in the corresponding column 
 

KO VEH = knock-out receiving vehicle 

KO CsA = knock out receiving 10 mg/kg cyclosporin A  

KO mt1= knock-out receiving 1 mg/kg of mitochondrial-targeted cyclosporin A  

 

The data above shows that there was no difference in infarct size measured 

after 30 minutes ischaemia in cyclophilin D deficient mice treated with CsA. 

The administration of mitochondrial-targeted CsA resulted in an apparent 

(non- significant) increase in infarct size observed.  

 

6 6 6 
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Effect of pharmacological inhibition of cyclophilin D on infarct 

size in knock- out mice subjected to ischaemia-reperfusion 

 

 KO vehicle KO cyclosporin A KO mitoCsA 

IS/AAR(%LV) 20.32 19.70 31.32 

SEM 1.33 1.76 10.15 

 

Table 5.6 Effect of pharmacological inhibition of cyclophilin D in knock out 

mice 

 

IS = infarct size 
 
AAR = area at risk 
 
SEM = standard error of the mean 
 
KO vehicle = knock- out receiving vehicle 
 
KO cyclosporin A = knock- out receiving cyclosporin A 
 
KO mito CsA = knock-out receiving mitochondrial targeted cyclosporin A  
  
There was no change in infarct size observed after the administration of 

cyclosporin A in comparison to vehicle control (20% v 20%, P>NS) to Cyp D 

deficient mice. However, when mitochondrial-targeted CsA was given to Cyp 

D deficient mice, there was an increase in infarct size observed. 
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5.11 Discussion 

This group of experiments was designed to test the hypothesis that 

administration of a novel mitochondrial targeted form of cyclosporin A at the 

time of reperfusion in a mouse model of ischaemia-reperfusion injury would 

be cardioprotective. 

From the data represented in fig 5.7, it can be seen that there was no 

evidence of cardioprotection in wild type mice from mitochondrial -targeted 

cyclosporin administered at doses of 0.2mg/kg, 1mg/kg and 5mg/kg just prior 

to the onset of reperfusion. 

As part of this chapter we administered cyclosporin A as a positive control. In 

this series of experiments, when analysed as a group by Tukey’s analysis of 

multiple means (assuming equal variances) this did not demonstrate a 

statistically significant reduction in infarct size.  There was a strong trend to a 

reduction in infarct size, which, when analysed by Student’s T test did appear 

to be significant, with a p value of <0.05. However, when comparing multiple 

groups to a single control, the T test would not be an appropriate statistical 

test to use. This demonstrates the dilution effect of multiple comparisons 

when trying to demonstrate statistical significance. 
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In the cyclophilin D knock- out mice, there was no significant difference 

between the groups. As expected, there was no difference between the Cyp D 

knockouts receiving vehicle and those receiving cyclosporin A. The effect of 

cyclosporin A is mediated by via cyclophilin D, and prior data supports the fact 

that cyclophilin D deficient animals treated with CsA do not show a reduction 

in infarct size after ischaemia-reperfusion (54). 

To minimise the use of animals, in the Cyp D knock -out group only one dose 

of mitochondrial targeted cyclosporin A was tested. The mid-range dose of 

1mg/kg was arbitrarily selected for use in this experiment. Also, use of a 

mitochondrial - targeted molecule would not be expected to confer any 

reduction in infarct size in this group for the same reason. It was interesting to 

note that the infarct size was observed to be higher in the group treated with 

mitochondrial targeted cyclosporin A. This raises the possibility that the 

treatment may be harmful. 

Localisation of mitochondrial specific cyclosporin A to site of action 

To investigate whether the mtCsA reached its intended site of action in 

mitochondria, after terminal anaesthesia with 160mg/kg pentobarbitone, ex 

vivo hearts were perfused with mtCsA labelled with100nM chloromethyl-X-

rosamine (Mito-tracker Red- which labels respiring mitochondria) in a 

Langendorff model using C57BL6 (Harlan, UK) mice by Dr Sean Davidson 

(Hatter Institute).  

Twenty micromoles per litre of blebbistatin (an inhibitor of actin–myosin cross-

bridge cycling) was added to prevent contraction and movement (201).  
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Fluorescence was then excited at 840nm and multi-photon imaging was 

carried out using a Zeiss 510 NLO microscope. Fluorescence was strongly 

localised to cardiomyocyte mitochondria as shown in figure 5.9 below 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9 Fluorescence of cardiomyocyte with loaded with 100 nano-molar 

mtCsA – rosamine 

 
(Reproduced with kind permission of Dr Sean M Davidson (Hatter Institute, 

UCL) 
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Figure 5.10 Fluorescence in heart loaded with TMRM (tetra-methylrhodamine-

methyl ester), which labels respiring mitochondria.  

Reproduced with kind permission of Dr Sean M. Davidson (Hatter Institute, 

UCL). 

 

The images above demonstrate that the fluorescence of the mtCsA is 

approximately 50% of that in the TMRM assay, ie mtCsA has been taken up 

into approximately 50% of respiring mitochondria, thus confirming that it has 

reached its desired site of action.
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In this chapter the pharmacological effect of a novel, potentially 

cardioprotective agent has been studied in both wild type and cyclophilin D 

knock- out mice which have been subjected to myocardial ischaemia and 

reperfusion. 

Cyclosporin A has a high degree of affinity for the Cyclophilins. These are 

proteins which possess peptidyl-prolyl isomerase activity, and leads them to 

be referred as “PPIases” as discussed in chapter 1. This is an essential 

process required for protein folding in vivo. Cyclosporin A inhibits PPIase 

activity in its bound state. Cyclophilin A and B are located in the cytosol and 

endoplasmic reticulum respectively, whilst cyclophilin D is located within 

mitochondria. The function of these proteins varies widely: CypA is involved in 

translocation of apoptosis inducing factor to the nucleus and protection from 

oxidative stress, whilst CypB suppresses the apoptosis involved with oxidative 

stress and altered calcium metabolism. The binding of cyclosporin A to CypA 

results in a drug-protein complex which inhibits calcineurin (a calmodulin and 

calcium- dependent phosphatase) (82). This process is responsible for the 

immunosuppressive effect of cyclosporin A, causing inhibition of interleukin-2, 

tumour necrosis factor -ɑ, interleukin-3, interleukin-4, CD 40L, granulocyte –

macrophage colony stimulating factor and interferon-ɣ (194). In 1990, 

Halestrap and Davidson revealed that CsA inhibited the opening of the MPTP 

by binding to cyclophilin D (52). Cyclophilin D was later confirmed as the 

molecular target of cyclosporin A in 1996 (53).  
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Genetic ablation of cyclophilin D in mice by Baines has since confirmed that 

CypD is the cellular target of cyclosporin A, and that it is essential for the 

function of the MPTP (213). 

Cyclosporin A, as discussed in chapter 1 exerts a cardioprotective effect on 

the myocardium when administered prior to reperfusion. This has been 

reproduced in many models and in a variety of settings (54, 213). However, its 

deleterious effects on the immune system and renal function make it 

undesirable for clinical use. Its effect in clinical trials has also been 

disappointing limited (112, 216). 

The potential benefits of targeting cyclosporin A to mitochondria, and thus 

increasing the selectivity to cyclophilin D are increased potency and abolition 

of these cyclophilin A/ calcineurin inhibitory mediated side effects of 

cyclosporin which involve immunosuppression, renal and hepatic toxicity and 

increased susceptibility to cancers.  

The synthesis of a novel mitochondrial selective form of cyclosporin A 

(mtCsA) thus held much promise. The novel mitochondrial selective 

cyclosporin A (mtCsA) molecule was created by Professor David Selwood 

(University College London), by conjugating cyclosporin A with the triphenyl-

phosphonium cation. The resulting compound (mtCsA) then accumulates into 

the mitochondria by electrophoresis down the proton gradient of the 

mitochondrial membrane.  

In vitro testing of this agent described by Maloutrie et al demonstrated positive 

results, with a reduction in cellular necrosis seen in hippocampal neurons 

subjected to deprivation of glucose and oxygen, which was superior to that of 
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cyclosporin A. Additionally, mtCsA was shown not to inhibit calcineurin, 

thereby potentially avoiding the deleterious effects of cyclosporin A (135). 

The series of experiments detailed in chapter 5 represented the first in vivo 

testing of the mtCsA molecule. There had been no previous work to confirm 

its utility in this setting, nor its bioavailability at the desired site of action. The 

doses selected for use were lower than the experimental dose of cyclosporin 

A on the basis that as the molecule was more specific to mitochondria, the 

dose required would be lower to achieve the desired protective effect. We did 

attempt a dose- response curve to assess the optimal drug dose for use, but 

found that none achieved any benefit in terms of reduction in infarct size. It is 

possible therefore that all doses were either too low to achieve any clinical 

effect, or conversely, were administered at toxic doses. The experiments 

carried out by another researcher in our centre using an ex vivo model (Fig 

5.10) did later confirm that the mtCsA did reach the desired site of action. The 

in vivo effects of mtCsA however, have not demonstrated any benefit in terms 

of reduction in infarct size, despite being tested at a variety of doses.   
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The potential reasons behind this are multiple-  

1. The cyclophilin D binding affinity was not maintained due to structural 

modifications occurring during the manufacturing of the mtCsA 

molecule. 

2. Recent data has shown that the mtCsA molecule required a higher 

dose of mtCsA to block the MPTP than CsA itself (192)  

3. The drug may have a low therapeutic index, resulting in administration 

of toxic doses 

4. The uptake of the drug, administered one minute prior to reperfusion 

via the internal jugular vein in vivo may be insufficient to enter 

mitochondria by the time of pore opening. 

In considering the above scenarios- and taking each in turn, it is possible that 

the altered structure of the mtCsA could potentially reduce the cyclophilin D 

binding affinity as a result of the manufacturing process. The method of 

chemical linkage from the triphenyl-phosphonium cation to CsA uses 

“position-3”, which is required for the insertion of CsA into CypD. As a result, 

there is the potential for sterical prevention of binding to cyclophilin D. 

However, switching to other mitochondrial- targeting agents, such as 

Rosamine, for linkage, had similar effect, with similar reduction in binding 

affinity, suggesting that the TPP molecule was not directly responsible for this 

effect. It has been proposed that the actual linker from mtCsA to CypD may 

have undergone a conformational change resulting in folding back on itself, 

maximising hydrophobic interactions, this reducing access to the binding sites 



Cara Hendry 
 

159 

on cyclosporin A. This is borne out by the findings detailed by Dube, whereby 

the adoption of a shorter (ether) linking molecule in combination with the TPP 

molecule has improved the binding affinity of a novel form of mtCsA (192).  

A reduction in binding capacity of mtCsA for cyclophilin D has been confirmed 

in later experiments by Dube et al. (192). 

The suggestion of toxic dose administration, although possible, is unlikely 

given the findings of Dube et al, discussed below.  

The late drug uptake in vivo may remain a possibility, but given that 

cyclosporin A when reconstituted in an identical manner reaches its site of 

action in identical circumstances, is unlikely. Additionally, the mtCsA was 

shown to be present in mitochondria, in an ex vivo model (fig 5.9 and 5.10). 

A recent publication by Dube et al, has discussed the reason for therapeutic 

failure of the initial mtCsA and examines the effect of a new molecule, which 

possesses an 18- fold increase in the cyclophilin D affinity in comparison to 

the molecule we tested, and 12- fold increase in MPTP inhibition. The binding 

affinity of the original mtCsA was studied and was noted to be 1/30 of the 

binding affinity for cyclosporin A (192).  This would suggest that a lack of 

binding affinitity for cyclophilin D is the primary reason for the failure of 

mitochondrial- specific CsA (mtCsA) to protect the heart from ischaemia-

reperfusion injury.  

Proposed future work would involve administration of the second generation 

mitochondrial targeted cyclosporin A to in an in vivo mouse model of 

ischaemia-reperfusion, and demonstrating a dose response curve in order to 
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determine the most effective dose with which to achieve cardioprotection. To 

confirm the molecule reaching the site of action, it would be useful to repeat 

the experiments of Dr Davidson, using mito-tracker red labelled with the 

second generation mtCsA. 

A direct comparison to cyclosporin A could then be carried out to demonstrate 

whether the molecule shows an enhanced degree of cardioprotection in an in 

vivo setting in comparison to cyclosporin A. 

There is great potential utility of a novel mitochondrial- specific cyclosporin. 

However, the effect of mtCsA in our experiments was disappointing for the 

reasons above. However, the recently developed second generation molecule 

does show promise for future use, although much work is required to refine its 

role in cardioprotection. 
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Chapter 6  
 
Non MPTP pathways to cardioprotection 
 
Hypothesis: Inhibition of matrix metalloproteinases may protect the 

heart from ischaemia- reperfusion in cyclophilin D deficiency6.1 

Background 

As discussed in chapter one, matrix metalloproteinases have generated a 

great deal of interest over the last decade. They have been shown to be 

closely involved in the processes which occur in the aftermath of myocardial 

infarction- not only in the setting of the chronic remodelling process post 

myocardial infarction (145,149), but also in the acute stage of ischaemia and 

reperfusion (151).The gelatinases MMP 2 and 9 are highly expressed within 

human myocardium. As their name suggests, they degrade gelatins and also 

type IV collagen, which is present in basement membranes. MMP 2 and 9 

have been shown to be upregulated in the myocardium early in the course of 

myocardial infarction- both in the area at risk and remote myocardium 

(150).MMP-2 has been shown to be upregulated by oxidative stress (217) and 

phosphorylation (218). Both these factors are closely implicated in the 

processes involved in ischaemia – reperfusion.Administration of a non-

selective inhibitor of MMPs has been shown to result in recovery of 

contractility in an ex vivo model of ischaemia-reperfusion (151). 

MMP-2 has also been shown to cleave troponin I in an ex vivo model of 

ischaemia-reperfusion injury, and both troponin I release and the resulting 

mechanical dysfunction has been shown to be reduced by administration of 

doxycycline (a non-selective inhibitor of MMPs) (195).It is possible therefore, 
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that inhibition of matrix metalloproteinase activity could be used to modify the 

maladaptive response of ischaemia-reperfusion injury which occurs on 

opening the occluded coronary artery in the setting of acute myocardial 

infarction.   

To test the hypothesis that cardioprotection could be achieved by a non – 

MPTP dependent mechanism, an MMP inhibitor (ilomastat) was administered 

in an isolated heart preparation using a Langendorff apparatus (see fig 6.1 

overleaf).  These isolated heart experiments (ex vivo) were carried out by 

another researcher in our group (Dr Robert Bell, Hatter Institute, UCL). As this 

group of experiments involved a model of global ischaemia, the measurement 

of infarct size differs; the infarct size is expressed as a percentage of the left 

ventricle (as opposed to percentage of the area at risk in the in vivo 

experiments). 

 

Key to diagram overleaf:   
 

WT Ctrl = Wild type exposed to control protocol 

WT iPoC = Wild type treated with ischaemic post- conditioning 

KO Ctrl = Cyclophilin D knock-out treated by control protocol only 

KO iPoC = Cyclophilin D knock-out treated with ischaemic postconditioning 

KO Ilomastat = Cyclophilin D knock-out treated with ilomastat (0.25 

micromol/L) 
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6.2 Effect of Ilomastat in an Isolated Mouse Heart Model  

(Data presented courtesy of RM Bell) 

 

Figure 6.1 Effect of ischaemic postconditioning and inhibition of matrix 

metalloproteins. Data expressed as mean +/- SEM. Infarct size expressed as 

percentage of left ventricle 

WT Ctrl WT iPoC KO Ctrl KO iPoC KO Ilomastat 
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6.3 Aims 

In order to assess more fully the effect of matrix metalloproteinase inhibition a 

series of experiments were conducted in the in vivo model of ischaemia-

reperfusion.  

6.4 Effect of Matrix Metalloproteinase Inhibition in an in vivo 

model of ischaemia – reperfusion 

6.4.1 Methods 

The series of experiments detailed in figure 6.1 demonstrate that 

administration of an MMP inhibitor resulted in a significant reduction in infarct 

size both in wild type and in cyclophilin D knock- out mice.  

 In order to test the hypothesis that ilomastat would be cardioprotective in vivo 

in the absence of cyclophilin D a set of experiments were conducted as 

follows. 

Both wild type and CypD deficient mice were exposed to a standard period 

(30 minutes) of ischaemia. Those randomised to IPC underwent a single 5 

minute cycle of IPC prior to ischaemia.  

Ilomastat or vehicle control was administered via a central vein less than one 

minute prior to reperfusion. 

Ilomastat was administered at a dose of 6 µmol/kg (154) based on the total 

dose administered by Ferdinandy’s group as 4 separate boluses. The drug 

was dissolved in 1% cremophore/ethanol solution and sonicated for ten 

seconds and was then frozen until the day of use. The aliquots of drug were 
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then placed in a water bath at 37 degrees Celsius until they were defrosted. 

They were then sonicated prior to use to aid dissolution, and injected via a 

P10 cannula placed in the jugular vein one minute prior to reperfusion of the 

left anterior descending artery. 

6.4.2 Randomisation 

Both wild type and cyclophilin D deficient mice were used for this experiment.  

The treatments were randomised into 6 groups as follows (n=6 in each 

group):  

1. Wild type mice receiving vehicle only 

2. Wild type mice receiving ilomastat  

3. Cyclophilin D knock- out mice receiving vehicle only 

4. Cyclophilin D knock- out mice receiving ilomastat 

5. Wild type mice receiving vehicle plus a single 5 minute cycle of IPC 

6. Wild type mice receiving ilomastat plus a single 5 minute cycle of IPC 

 

 

 

 

 

 

 

 



Cara Hendry 
 

166 

 

6.5 Results 

Physiological Effect of Inhibition of Matrix Metalloproteinases 
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* = P<0.05 
 

Figure 6.2 Effect of ilomastat given at reperfusion on mean arterial pressure in 

wild type mice exposed to 30 minutes ischaemia and two hours reperfusion. 

 
Data is expressed as the mean value +/- SEM. 
 
Blue bars denote periods of LAD perfusion, back bars denote LAD ischaemia. 
 
MAP = mean arterial pressure (millimetres of mercury). 
 
+/+ VEH = wild type mice receiving vehicle only 
 
+/+ ILO = wild type mice receiving ilomastat 
 
 

 

This data is shown in tabular format overleaf. 
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Table 6.1 Effect of MMP Inhibition on MAP in wild type mice 

Stabilisation 

 

 

Time (mins) N 5  
stab 

10  
stab 

15 
stab 

+/+VEH 
MAP(mmHg) 

6 112 
(4.66) 

108 
(3.60) 

106 
(2.76) 

+/+ILO 
MAP(mmHg) 

6 115 
(5.28) 

105 
(5.49) 

106 
(3.65) 

P value  0.64 0.66 0.93 
 

Ischaemia 

 

 

 
 

 

 

 

 

Reperfusion 

 

Time (mins) 1 
R 

5 
R 

10 
R 

15 
R 

30 
R 

60 
R 

90 
R 

120 
R 

+/+VEH 
MAP(mmHg) 

93 
(2.59) 

88 
(1.09) 

84 
(1.56) 

82 
(2.13) 

81 
(2.58) 

72 
(1.87) 

66 
(2.20) 

58 
(3.36) 

+/+ILO 
MAP(mmHg) 

82 
(5.30) 

80 
(5.64) 

75 
(4.16) 

70 
(3.30) 

66 
(5.14) 

58 
(3.74) 

53 
(7.26) 

44 
(5.91) 

P value 0.09 0.20 0.01 0.05 0.02 0.01 0.09 0.05 
 
MAP = mean arterial pressure (millimetres of mercury). 
 
+/+ VEH = wild type mice receiving vehicle only 
 
+/+ ILO = wild type mice receiving ilomastat 

 
 

 

 

 

Time (mins) 1  
 I 

5    
I       

15   
I 

25  
I 

+/+VEH 
MAP(mmHg) 

91 
(2.23) 

93 
(2.28) 

95 
(3.08) 

87 
(3.35) 

+/+ILO 
MAP(mmHg) 

84 
(4.57) 

86 
(4.97) 

83 
(3.51) 

79 
(4.05) 

P value 0.20 0.27 0.02 0.15 
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Effect of MMP Inhibition on MAP in knock-out mice 
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Figure 6.3 Effect of ilomastat bolus on mean arterial pressure in cyclophilin D 

knock- out mice exposed to 30 minutes of ischaemia and two hours 

reperfusion. 

Data is expressed as the mean value +/- SEM. 
 
Blue bars denote periods of LAD perfusion, back bars denote LAD ischaemia 
 
MAP = mean arterial pressure (millimetres of mercury). 
 
-/- VEH = cyclophilin D knock-out mice receiving vehicle only 
 
-/- ILO = cyclophilin D knock-out mice receiving ilomastat 
 
 

This data is shown in tabular format overleaf. 
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Table 6.2 Effect of MMP inhibition on MAP in Cyclophilin D deficient 

mice 

 Stabilisation 

 

 

Time (mins) N 5  
stab 

10  
stab 

15 
stab 

-/-VEH 
MAP(mmHg) 

6 121 
(7.32) 

113 
(8.69) 

114 
(8.02) 

-/-ILO 
MAP(mmHg) 

7 114 
(4.15) 

107 
(4.94) 

106 
(4.51) 

P value  0.42 0.55 0.38 
 

Ischaemia 

 

 

 
 

 

 

 

 

Reperfusion 

 

Time (mins) 1 
R 

5 
R 

10 
R 

15 
R 

30 
R 

60 
R 

90 
R 

120 
R 

-/-VEH 
MAP(mmHg) 

86 
(6.32) 

82 
(5.98) 

84 
(5.47) 

83 
(5.74) 

82 
(4.87) 

62 
(2.06) 

51 
(3.12) 

36 
(2.08) 

-/-ILO 
MAP(mmHg) 

91 
(3.76) 

85 
(1.96) 

83 
(1.72) 

81 
(2.87) 

78 
(3.23) 

65 
(3.72) 

56 
(4.52) 

45 
(5.46) 

P value 0.43 0.88 0.72 0.48 0.18 0.60 0.36 0.17 

 
 

 

 

 

 

 

Time (mins) 1  
 I 

5    
I       

15   
I 

25  
I 

-/-VEH 
MAP(mmHg) 

89 
(8.25) 

93 
(7.70) 

96 
(6.96) 

90 
(5.74) 

-/-ILO 
MAP(mmHg) 

82 
(5.47) 

83 
(3.81) 

83 
(3.54) 

84 
(4.49) 

P value 0.51 0.21 0.10 0.43 
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Effect of IPC and MMP inhibition on Mean Arterial Pressure 
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* = P<0.05 

Figure 6.4 Combined effect of IPC and MMP inhibition on mean arterial 

pressure in wild type mice exposed to a single cycle of IPC, 30 minutes of 

ischaemia followed by 2 hours of reperfusion 

WTVEHIPC= wild type subjected to IPC and administration of vehicle at 

reperfusion 

WTILOIPC = wild type subjected to IPC and administration of the MMP 

inhibitor ilomastat at reperfusion 

MAP = mean arterial pressure measured in millimetres of mercury (mmHg). 

Figures shown as mean +/- SEM. 

This data is shown in tabular format overleaf. 

The bar in the x axis demonstrates periods of ischaemia (black) and 

reperfusion (blue). The timescale is non- linear to highlight the changes 

occurring during ischaemia. 
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Table 6.3 Effect of IPC and MMP inhibition on Mean Arterial Pressure 

Stabilisation 

Time (mins) N 5  
stab 

10  IPC 15 
stab 

+/+VEHIPC 
MAP(mmHg) 

6 118 
(5.95) 

91 
(5.21) 

104 
(6.22) 

+/+ILOIPC 
MAP(mmHg) 

5 100 
(2.08) 

76 
(4.09) 

98 
(3.21) 

P value  0.043 0.06 0.47 
 

Ischaemia 

 

 

 
 

 

 

 

 

Reperfusion 

 

Time (mins) 1 
R 

5 
R 

10 
R 

15 
R 

30 
R 

60 
R 

90 
R 

120 
R 

+/+VEHIPC 
MAP(mmHg) 

77 
(5.67) 

74 
(4.67) 

76 
(3.43) 

77 
(3.92) 

76 
(3.92) 

65 
(2.38) 

55 
(4.02) 

43 
(3.41) 

+/+ILOIPC 
MAP(mmHg) 

84 
(5.24) 

77 
(1.53) 

69 
(1.76) 

71 
(3.93) 

65 
(6.44) 

54 
(4.84) 

47 
(1.86) 

36 
(4.00) 

P value 0.43 0.64 0.17 0.35 0.16 0.03 0.16 0.17 

In the tables above +/+ refers to wild type mice, ILOIPC refers to mice treated 

with a single cycle of IPC and ilomastat administered at reperfusion. VEHIPC 

relates to those mice treated with a single cycle of IPC and vehicle 

administered at reperfusion. 

 

Time (mins) 1  
 I 

5    
I       

15   
I 

25  
I 

+/+VEHIPC 
MAP(mmHg) 

91 
(8.46) 

91 
(5.34) 

87 
(5.25) 

82 
(5.38) 

+/+ILOIPC 
MAP(mmHg) 

81 
(3.38) 

78 
(6.03) 

77 
(3.84) 

90 
(7.02) 

P value 0.42 0.13 0.21 0.33 
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Effect of MMP inhibition on heart rate in wild type mice   
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* = P<0.05 

Figure 6.5 Effect of ilomastat on heart rate in wild type mice subjected to 30 

minutes of ischaemia and two hours of reperfusion. 

Data expressed as mean +/- SEM 
 
Blue bars denote periods of LAD perfusion, back bars denote LAD ischaemia 
 

HR (bpm) = heart rate (beats per minute) 
 
+/+ VEH = wild type mice receiving vehicle only 
 
+/+ ILO = wild type mice receiving ilomastat 
 
The bar in the x axis demonstrates periods of ischaemia (black) and 

reperfusion (blue). The timescale is non- linear to highlight the changes 

occurring during ischaemia. 

This data is shown in tabular format overleaf. 
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Table 6.4 Effect of MMP inhibition on heart rate in wild type mice  

Stabilisation 

 

Time (mins) N 5  stab 10  
stab 

15 
stab 

+/+VEH  
HR (bpm) 

6 388 
(19.32) 

387 
(12.72) 

374 
(15.37) 

+/+ILO 
HR (bpm) 

6 442 
(22.19) 

445 
(24.47) 

446 
(22.02) 

P value  0.09 0.06 0.02 

Ischaemia 

 

 

 

 

 

Reperfusion 

 

Time (mins) 1 
R 

5 
R 

10 
R 

15 
R 

30 
R 

60 
R 

90 
R 

120 
R 

+/+VEH 
HR (bpm) 

382 
(18.06) 

386 
(18.56) 

377 
(20.26) 

372 
(17.23) 

387 
(15.04) 

385 
(11.27) 

397 
(17.62) 

436 
(20.48) 

+/+ILO 
HR (bpm) 

416 
(20.58) 

435 
(21.8) 

416 
(23.78) 

413 
(22.61) 

411 
(25.45) 

415 
(25.83) 

408 
(16.54) 

417 
(15.15) 

P value 0.24 0.12 0.24 0.17 0.44 0.30 0.67 0.46 

 

HR (bpm) = heart rate (beats per minute) 
 
+/+ VEH = wild type mice receiving vehicle only 
 
+/+ ILO = wild type mice receiving ilomastat 
 
 

 

Time (mins) 1  
 I 

5    
I       

15   
I 

25  
I 

+/+VEH  
HR (bpm) 

352 
(19.54) 

363 
(18.80) 

363 
(13.50) 

376 
(15.84) 

+/+ILO 
HR (bpm) 

410 
(23.67) 

404 
(26.31) 

408 
(23.18) 

405 
(23.67) 

P value 0.09 0.23 0.12 0.33 



Cara Hendry 
 

174 

 

 

Effect of MMP inhibition and IPC combined on heart rate in 

wild type mice 
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Figure 6.6 Response of heart rate to combination of IPC and MMP inhibition 

in wild type 

Key to diagram 

WTVEHIPC= Wild type animal treated with a single cycle of ischaemic 

preconditioning and vehicle administered one minute prior to reperfusion  

WTILOIPC= Wild type animal treated with a single cycle of ischaemic 

preconditioning prior to ilomastat administered one minute prior to 

reperfusion. 

The bar in the x axis demonstrates periods of ischaemia (black) and 

reperfusion (blue). The timescale is non- linear to highlight the changes 

occurring during ischaemia. 

This data is shown overleaf in the corresponding data tables. 
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Table 6.5 Effect of IPC and MMP inhibition on heart rate in wild type 

 

 

Stabilisation 
 

Time (mins) N 5  stab 10  IPC 15 
stab 

+/+VEHIPC 
HR (bpm) 

6 426 
(18.29) 

399 
(20.20) 

405 
(9.72) 

+/+ILOIPC 
HR (bpm) 

5 407 
(6.43) 

384 
(15.06) 

414 
(21.66) 

P value  0.51 0.63 0.66 

Ischaemia 

 

 

 

 

 

Reperfusion 

 

Time (mins) 1 
R 

5 
R 

10 
R 

15 
R 

30 
R 

60 
R 

90 
R 

120 
R 

+/+VEHIPC 
HR (bpm) 

389 
(17.98) 

382 
(18.78) 

374 
(21.89) 

376 
(22.64) 

385 
(18.08) 

383 
(23.10) 

414 
(27.20) 

410 
(28.12) 

+/+ILOIPC 
HR (bpm) 

421 
(24.59) 

409 
(9.39) 

398 
(17.06) 

409 
(9.45) 

408 
(5.24) 

391 
(14.01) 

393 
(7.62) 

387 
(11.59) 

P value 0.32 0.37 0.50 0.35 0.42 0.84 0.62 0.60 

 

 

+/+ VEHIPC= Wild type animal treated with a single cycle of ischaemic 

preconditioning and vehicle administered one minute prior to reperfusion  

 +/+ ILOIPC= Wild type animal treated with a single cycle of ischaemic 

preconditioning prior to ilomastat administered one minute prior to 

reperfusion. 

 

 

Time (mins) 1  
 I 

5    
I       

15   
I 

25  
I 

+/+VEHIPC  
HR (bpm) 

396 
(13.06) 

393 
(16.07) 

393 
(17.10) 

382 
(17.60) 

+/+ILOIPC 
HR (bpm) 

399 
(14.77) 

399 
(7.69) 

399 
(14.57) 

406 
(16.19) 

P value 0.88 0.79 0.82 0.42 
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Effect of MMP inhibition on heart rate in CypD deficient mice 
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Figure 6.7 Effect of ilomastat on the heart rate profile of cyclophilin D knock- 

out mice subjected to ischaemia-reperfusion 

Data is expressed as the mean value +/- SEM. 

 
On the x axis blue bars denote periods of LAD perfusion, back bars denote 

LAD ischaemia 

 
HR (bpm) = heart rate (beats per minute). 
 
-/- VEH = cyclophilin D knock-out mice receiving vehicle only 
 
-/- ILO = cyclophilin D knock-out mice receiving ilomastat 
 
 

This data is presented in tabular format overleaf. 
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Table 6.6 Effect of MMP inhibition on heart rate in CypD deficient mice 

Stabilisation 

 

Time 
(mins) 

N 5  stab 10  stab 15 stab 

-/-VEH 
HR(bpm) 

6 411 
(14.84) 

407 
(13.51) 

407 
(9.96) 

-/-ILO 
HR(bpm) 

7 402 
(17.79) 

396 
(12.63) 

388 
(15.40) 

P value  0.72 0.56 0.35 
 

Ischaemia 

 

 

 

 

 

 

Reperfusion 

 

Time 
(mins) 

1 
R 

5 
R 

10 
R 

15 
R 

30 
R 

60 
R 

90 
R 

120 
R 

-/-VEH 
HR(bpm) 

424 
(11.86) 

432 
(7.79) 

410 
(7.99) 

407 
(10.15) 

405 
(16.03) 

391 
(11.18) 

401 
(10.35) 

405 
(10.87) 

-/-ILO 
HR(bpm) 

395 
(13.62) 

399 
(12.53) 

403 
(13.73) 

404 
(14.12) 

400 
(15.11) 

408 
(13.66) 

435 
(28.92) 

434 
(16.10) 

P value 0.15 0.06 0.73 0.90 0.82 0.39 0.34 0.20 

 

-/- VEH = cyclophilin D knock-out mice receiving vehicle only 
 
-/- ILO = cyclophilin D knock-out mice receiving ilomastat 
 

Time 
(mins) 

1  
 I 

5    
I       

15   
I 

25  
I 

-/-VEH 
HR(bpm) 

399 
(13.87) 

394 
(13.48) 

399 
(9.48) 

401 
(6.04) 

-/-ILO 
HR(bpm) 

376 
(11.72) 

382 
(13.22) 

383 
(14.33) 

386 
(16.30) 

P value 0.22 0.57 0.41 0.46 
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6.6 Haemodynamic effects 
 
The blood pressure and heart rate responses observed during this group of 

experiments was similar to that found during the preceding chapters, with a 

marked drop in mean arterial pressure confirming onset of ischaemia and 

progressive drop in pressure during the period of reperfusion to the protocol 

end.  

Heart rate remained stable initially, and then rises during the stress of 

ischaemia and subsequently stabilises, finally rising towards the protocol end. 
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6.7 Area at Risk  

 

 

 

Figure 6.8 Uniformity of area at risk amongst all treatment allocations 
 
Area at risk expressed as mean value +/- SEM, as a percentage of the left 

ventricle. N numbers are displayed within the corresponding data columns. 

VEH +/+ = wild type mice receiving vehicle only 

ILO +/+ = wild type mice receiving ilomastat 

VEH -/- = Cyp D knock-out mice receiving vehicle only 

ILO -/- = Cyp D knock-out mice receiving ilomastat 

IPCILO +/+ = wild type mice receiving IPC and ilomastat 

IPCVEH+/+ = wild type mice receiving IPC and vehicle 

The area at risk was uniform for all groups as demonstrated above. 

 

 

 

 

 

6 6 6 7 6 5 
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6.8 Effect of MMP inhibition of on Infarct Size  

 

 
 

Figure 6.9 Effect of matrix metalloproteinase inhibition on infarct size in both 

wild type and cyclophilin D deficient mice 

The infarct size is expressed as a percentage of the area at risk 
 
The n number for each group is displayed in the corresponding data column. 
 

VEH +/+ = wild type mice receiving vehicle only 

ILO +/+ = wild type mice receiving ilomastat 

VEH -/- = Cyp D knock-out mice receiving vehicle only 

ILO -/- = Cyp D knock-out mice receiving ilomastat 

IPCILO +/+ = wild type mice receiving IPC and ilomastat 

IPCVEH+/+ = wild type mice receiving IPC and vehicle 

The * denotes a statistically significant difference (p<0.05) in comparison to 

wild type receiving vehicle control 

 
† denotes a statistically significant difference (p<0.05) in comparison to 

cyclophilin D knock out receiving vehicle control 

6 6 6 7 6 5 
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Effect of MMP inhibition of on Infarct Size 

 

 IS/AAR (%LV) SEM 

+/+ Vehicle  35.04 1.74 

+/+ Ilomastat 21.51* 5.31 

-/- Vehicle  20.66* 1.18 

-/- Ilomastat 10.35*† 1.31 

+/+ Vehicle & IPC 18.65* 3.87 

+/+ IPC and Ilomastat 20.36* 0.43 

 

Table 6.7 Effect of MMP inhibition on infarct size  
 
+/+ refers to wild type mice 
 
-/- refers to cyclophilin D knock-out mice 
 

* = p<0.05 in comparison to +/+ vehicle control 
 

†= p<0.05 in comparison to -/- vehicle control 
 

The data above shows a significant reduction in infarct size after 30 minutes 

ischaemia in wild type animals treated with ilomastat in comparison to those 

receiving vehicle (35% v 22%, P<0.05).  

CypD deficient mice exposed to the same ischaemic protocol exhibited 

smaller infarct sizes than their wild type counterparts. The administration of 

ilomastat to CypD knock-outs resulted in a significant reduction in infarct size 

when compared with those receiving vehicle alone (20.7% v 10.4%, P<0.05). 

Co-administration of ilomastat and IPC did not result in further reduction in 

infarct size in comparison to either IPC or ilomastat alone. 
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6.9 Discussion 

Matrix metalloproteinases (MMPs) play a central role in the maintenance of 

the integrity of the extracellular matrix. There exists a constant equilibrium 

between collagen synthesis and breakdown, mediated by the up- and down- 

regulation of MMP activity and that of tissue inhibitors of metalloproteinases 

(TIMPs). All MMPs contain zinc (Zn2+) at their active binding site.  

There is strong evidence to show that modification of this continuous process 

occurs in the setting of acute myocardial infarction, and a variety of other 

cardiac diseases (170,193,198). In the setting of MI, upregulation of MMP 

activity has been shown to occur within 10 minutes of the onset of ischaemia 

(147). In an ex vivo system, activation has been confirmed within one minute 

of reperfusion, and this is strongly related to mechanical dysfunction. This 

effect has been shown to be reversed by administration of a broad spectrum 

MMP inhibitor (doxycycline) (151). 

The process of ischaemic preconditioning has also been shown to modify the 

activity of MMPs (152,153). Interestingly, in the instance of hyperlipidaemic 

rats, where the benefits of IPC are inhibited, MMP inhibition has demonstrated 

the ability to protect the heart from ischaemia-reperfusion injury (154). This 

could potentially suggest that the cardioprotection achieved by administration 

of MMP inhibitors may occur by a mechanism which is distinct to that afforded 

by IPC. 

Data demonstrating attenuation of cardiac damage in experimental 

myocardial infarction by inhibition of matrix metalloproteinases is plentiful 

(149,154) and as such these agents are of great interest to scientists and 
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clinicians alike in the search for agents which can protect the human heart in 

the setting of reperfused myocardial infarction, a pharmacological role which 

has to date remained unfilled (199). The pharmacological inhibitors of MMPs 

belong to the class hydroxamates, which inhibit MMPs by binding of 

hydroxamic acid to the Zn2+ site of MMP. 

Ilomastat belongs to the hydroxamates, and has a broad range of MMP-

inhibition, which includes MMP 1, 2, 9 and 12. In our experiments, we used 

ilomastat in a dose which equalled the summative dose administered by 

Ferdinandy’s group, demonstrating cardioprotection. We showed that not only 

did ilomastat protect the heart from ischaemia – reperfusion in wild type mice, 

but this protection was independent of an effect the MPTP- ie it occurred in 

mice which were deficient of cyclophilin D. This has not been demonstrated 

previously in vivo. Furthermore, we also showed that inhibition of MMP activity 

did not result in delayed opening of the MPTP, confirming that the protective 

effect was independent of MPTP inhibition.  

The additive benefit of ilomastat to MPTP inhibition is a very attractive clinical 

concept, and raises the possibility of either lone administration (of ilomastat), 

and the potential of co-administration with MPTP blocking agents such as 

cyclosporin A to gain added benefit, which may result in a substantial 

reduction in infarct size, not yet seen, even with cyclosporin A in human 

myocardial infarction. 
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What has not been uncovered by our investigations is the precise mechanism 

by which ilomastat protects the heart. Future investigations will involve the 

measurement of MMP and TIMP levels over the time frame of ischaemia and 

reperfusion, and the time frame involved in the reduction of MMP activity. 

MMPs do appear to be essential for the trigger phase of preconditioning by 

adenosine, bradykinin and opiates (219-221). 

Previous clinical trials have been set up in a variety of clinical disease 

processes (159) including cancer models (161), periodontal disease (200) and 

wound healing (201) to identify the clinical potential of inhibition of matrix 

metalloproteinase activity. The clinical utility of these agents has been limited 

by the side effects of long term administration in clinical trials – primarily due 

to development of the musculoskeletal syndrome.  

In a review of some ten years ago, this very issue was discussed (155), and 

the authors concluded that the likely role of MMP inhibition was as part of 

combination therapy on a long term basis to treat heart failure in the aftermath 

of myocardial infarction. However, on the basis of the data we have obtained, 

there could possibly be a place for MMP inhibition administered as a single 

dose at the time of reperfusion to attenuate lethal reperfusion injury. Single 

dosing could potentially abolish the deleterious effects on the musculo- 

skeletal system which have been the thorn in the side of the MMP inhibitors, 

as this appears to be related to their longer term administration (200).  
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In this chapter we set out to test the hypothesis that administration of a matrix 

metalloproteinase inhibitor at reperfusion would be cardioprotective in a 

manner which was independent of cyclophilin D. 

We have confirmed that there is significant attenuation of myocardial damage 

after ischaemia-reperfusion in cyclophilin D deficient mice in comparison to 

wild type. 

This series of experiments also shows that administration of the matrix 

metalloproteinase inhibitor ilomastat at the time of reperfusion results in 

significant cardioprotection in wild type mice subjected to ischaemia and 

reperfusion. 

We have also confirmed the cardioprotective effect of ischaemic 

preconditioning in wild type mice exposed to ischaemia-reperfusion. 

 

We have demonstrated a significant attenuation in the degree of myocardial 

damage after ischaemia-reperfusion in cyclophilin D deficient mice treated 

with a matrix metalloproteinase inhibitor. 

 

We have shown that when an inhibitor of MMPs was administered to wild type 

mice exposed to ischaemic preconditioning there was no further reduction in 

infarct size than with IPC alone. 
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This data confirms the hypothesis that administration of a matrix 

metalloproteinase inhibitor at the time of reperfusion protects the heart in the 

absence of cyclophilin D. 

As expected from previous published work we found that ilomastat protected 

wild type hearts from ischaemia-reperfusion (154).  

We confirmed previous data from our centre, and others, that IPC also 

confers a cardioprotective effect in wild type mice (experimental data in 

chapter 4 (54, 77, 189, 196, 200, 201)).  

We also found that ischaemic preconditioning (IPC) did not have an additive 

effect to matrix metalloproteinase inhibition in wild type mice subjected to 

ischaemia-reperfusion. This was expected, as published data has 

demonstrated that IPC modifies MMP activity (152,197). Also, if there is a 

conditioning “threshold” then this would be met by one or other method, but 

no added benefit would be derived from application of two differing stimuli- it 

has been shown that application of IPC or pharmacological pore inhibition 

does not reduce infarct size in mice lacking cyclophilin D (54). One 

confounder to this is that in hypercholesterolaemic rats, where there is no 

clear benefit from IPC, cardioprotection could be achieved by administration 

of MMP inhibitors, suggesting that the mode of protection by IPC and MMP 

inhibition differs (154). 
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The finding that ilomastat administration resulted in a significant reduction in 

infarct size in the cyclophilin D deficient mouse would be in keeping with the 

mode of protection achieved by ilomastat being independent of an effect on 

function of the MPTP. This is a novel finding, which challenges previous data 

which to date has suggested it is not possible to protect the heart of the 

cyclophilin D deficient mouse (12,54).  

This data suggests therefore, that there is a non-MPTP mediated pathway to 

cardioprotection, which has the potential for clinical utility in the setting of 

acute myocardial infarction.  

 

Timing of MPTP Opening Using Confocal Laser Microscopy 
 

To investigate its mode of action further ilomastat was administered to 

isolated cardiomyocytes exposed to laser light- triggered reactive oxygen 

species. MPTP opening was not altered in comparison to controls, whereas 

cyclosporin A (used as a positive control) did show delayed MPTP opening 

(data not shown). This suggests that the mode of action of ilomastat is 

independent of an effect on pore function. (The confocal laser experiments 

were carried out by Dr Robert Bell and Dr Sean Davidson, Hatter Institute, 

UCL). 

This data strongly supports that the protective effect of ilomastat is 

independent of MPTP inhibition. However, the mechanism by which it 

achieves cardioprotection is unknown.
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6.10 Suggestions for Future Study 

 

“Late” Administration of Ilomastat 

A further series of experiments could be conducted to assess whether 

administration of ilomastat after the time period when the MPTP is known to 

open (within the first few minutes if reperfusion) would potentially provide 

further confirmatory evidence that this protective process is non- pore 

mediated. However, the proposed non-MPTP pathway may also require 

intervention within the first few minutes of reperfusion, so a result showing no 

protection with “late” administration of ilomastat is not essential in 

demonstrating independence from PTP-related protection. 

 
Signalling mechanisms involved 

The signalling method resulting in the cardioprotection observed with 

ilomastat is unclear. Ilomastat has been shown to inhibit MMP activity, but 

exactly how this results in cardioprotection is not known. Investigation of the 

role of the reperfusion injury salvage kinase (RISK) pathway, which is central 

and upstream to the protection of MPTP inhibition would perhaps reveal a 

possible mechanism of protection. Suggested study would involve use of the 

Western blotting technique to determine whether there was an increase in 

phosphorylation of kinases, such as that found in IPC.  

 

Assay to determine MMP and TIMP levels 

Confirmation of reduction in MMP activity would be essential to guide further 

study into the cardioprotective effect of ilomastat. Thus, measurement of the 
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baseline gelatinase levels (MMP- 2 and 9) would be of value as well as the 

post treatment levels. The effect of ilomastat on tissue inhibitor of 

metalloproteinases (TIMPs) would also be of great interest.  

 



Cara Hendry 
 

190 

 

Chapter 7  
 
Discussion and Conclusions 

The role of this thesis was to evaluate further the role of the mitochondrial 

permeability transition pore in cardioprotection from ischaemia-reperfusion 

injury.  

The primary focus was to assess whether it is possible to improve 

cardioprotection by a variety of means- increasing the IPC stimulus, improving 

the sub-cellular selectivity of cyclosporin, and finally, by assessing whether 

cyclophilin D is essential in cardioprotection.  
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7.1 Summary of findings 
 
In chapter 4, using an in vivo murine model of ischaemia- reperfusion injury, 

we examined the effect of increasing the IPC stimulus on the infarct size 

sustained in both wild type and cyclophilin D deficient mice.  

We have confirmed previous data which demonstrated that wild type mice 

could be protected by a single 5 minute cycle of IPC.  

Increasing the IPC stimulus to three cycles of 5 minutes IPC and ischaemia- 

reperfusion continued to demonstrate a cardioprotective effect, but this was 

not significantly different to that observed with a single cycle of IPC in wild 

type mice. 

Cyclophilin D deficient mice had a lower observed infarct size in comparison 

to wild type mice which corresponds to literature suggesting that they are in 

an inherently protected state. In this chapter, this was not statistically 

significant, although there was a trend to smaller infarct sizes in CypD knock-

outs. Experiments detailed in chapter 6, however, did confirm a significantly 

smaller infarct size in cyclophilin D deficient animals. 

In cyclophilin D deficient mice there was no reduction in infarct size after 

exposure to a single 5 minute cycle of IPC in comparison to control protocol. 

This is in keeping with published data on this subject. 

In cyclophilin D knockouts, after increasing the IPC stimulus to three cycles of 

5 minutes IPC, there was no statistically significant cardioprotective effect 

observed. However, there was a trend towards protection in this group. 

The statistical methods employed were very rigorous as discussed in chapter 

4. If fewer groups had been compared, it is possible that protection of the 
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cyclophilin D deficient heart may have been demonstrated with three cycles of 

IPC. 

Further experiments to investigate this could potentially compare a smaller 

number of experimental groups, which may improve the statistical ability to 

demonstrate a reduction in infarct size. Alternatively, further increasing the 

number of cycles of preconditioning could be an option. However, due to the 

mechanical limitations of repeatedly snaring and reperfusing the left anterior 

descending artery causing localised trauma and no-reflow, it was felt not to be 

technically possible in this model. 

From the experimental data presented in chapter 4, we can conclude that 

there is a trend towards cardioprotection of the cyclophilin D deficient heart 

with an increase in the IPC stimulus, but in our data this did not reach 

statistical significance. 

In chapter 5, we investigated whether it was possible to enhance the 

cardioprotective effect of cyclosporin A in vivo by targeting the drug at a sub-

cellular level to mitochondria, by using a novel mitochondrial-targeted form of 

cyclosporin A (mtCsA) which was administered at the time of reperfusion.  

Despite previous published data showing very encouraging results in cellular 

models (135), we were unable to demonstrate any protection against 

ischaemia-reperfusion injury in the in vivo setting. 

The potential reasons for this are numerous. In the absence of prior in vivo 

work using the molecule, we were faced with selecting an arbitrary dose for 

administration. We selected three doses, all of which were a fraction of the 
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dose used for conventional cyclosporin A.  This was based on the assumption 

that increased selectivity would mean more active drug would reach the target 

site (ie cyclophilin D). The drug was also difficult to reconstitute- we used the 

same method employed in making cyclosporin A – reconstituting with a 

solution of cremophore and ethanol, and sonicating to aid dissolution.  

Ethanol itself has been shown to be cardioprotective in a number of 

experimental models (224). It is possible that its use as a vehicle may prevent 

demonstration of a protective effect by a therapeutic substance, as the vehicle 

itself would delay MPTP opening. Evidence suggesting that this effect was not 

important is provided by the fact that control infarct sizes were similar to those 

observed in the other chapters with identical durations of ischaemia.  

Later experiments carried out by Dube et al (192) revealed the reason for the 

lack of efficacy- the binding affinity of the mtCsA molecule was dramatically 

reduced by the process used to achieve mitochondrial selectivity. The sterical 

modifications required in order to make the molecule mitochondrial- selective 

caused shielding of the active zinc-binding site preventing it binding to 

cyclophilin as expected. 

The same paper detailed above uses another novel form of mtCsA and 

cellular work has shown that it has improved MPTP inhibition in comparison to 

cyclosporin A, and is biologically active at much lower doses. This could 

potentially have a future in reducing the infarct size after ischaemia- 

reperfusion. 

In vivo work is required to test the true potential of this new form of 

mitochondrial targeted cyclosporin A, which may hold some promise in the 
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treatment of STEMI- but any human use of this drug will be dependent on 

satisfactory pre-clinical data, and safety data from phase I-IV clinical trials, 

which would involve a process lasting years. 

In chapter 6, we investigated the potential role of non-MPTP pathways in 

ischaemia-reperfusion by administering a matrix metalloproteinase inhibitor 

(ilomastat) at the time of reperfusion. This was administered to both wild type 

and mice deficient in cyclophilin D to firstly confirm previous data 

demonstrating its cardioprotective effect (in wild type), and  to ascertain 

whether it was possible to protect the myocardium from ischaemia in mice 

lacking cyclophilin D, a major component of the MPTP.  

These experiments confirmed that wild type mice were protected by ilomastat, 

with a significant reduction in infarct size from 35% to 22% (P=<0.05).  

We also showed that ilomastat administered at the time of reperfusion 

resulted in a significant reduction in infarct size in the cyclophilin D deficient 

mouse. Infarct size was reduced from 21% to 10% by ilomastat (P=<0.05). 

This data would suggest that ilomastat may protect by a method which is not 

dependent on cyclophilin D inhibition.  

To further investigate this theory, isolated wild type cardiomyocytes were 

exposed to laser-light triggered reactive oxygen species and the effects of 

cells treated by ilomastat were compared with those treated with cyclosporin 

A (used as a positive control). The cyclosporin A treated cells had delayed 

pore opening, whereas the ilomastat-treated cardiomyocytes did not, 

indicating that MPTP function is not affected by treatment with ilomastat. 
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This data would suggest that the cardioprotective effect of ilomastat is not 

mediated by inhibition of MPTP function, as MPTP function is attenuated due 

to the congenital absence of cyclophilin D, which is its major constituent. This 

is a new finding- demonstrated in two different experimental models in our 

centre, and suggests that there exists a pathway mediating protection from 

lethal reperfusion injury which is pore independent. This area holds 

substantial potential for further research and pharmacological studies. 

 

We have therefore demonstrated in this thesis that it is possible to protect the 

cyclophilin D deficient heart in vivo. The experiments of chapter 4 which 

showed a non-significant trend to protection with an increase in the IPC 

stimulus suggested, but did not prove, this hypothesis. The experiments in 

chapter 6 showed that there was significant protection of the CypD deficient 

heart subjected to treatment with the matrix metalloproteinase inhibitor 

Ilomastat. The mechanism for protection by Ilomastat has not yet been 

elucidated. However, the confocal microscopy experiments by Bell and 

Davidson which show that Ilomastat does not delay MPTP opening would 

appear to suggest that its protection is not pore-mediated. This raises the 

possibility that there is a pathway to cardioprotection from necrotic cell death 

which is not MPTP dependent. 

Chapter 5 investigated whether it was possible to maintain cardioprotection 

whilst avoiding the deleterious effects of cyclosporin A by targeting the drug to 

its desired site of action in mitochondria and found that the molecule 

investigated did not protect the heart against ischaemia-reperfusion. However, 
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it is possible that mitochondrial-targeting through nanoparticle technology may 

increase the ability of cyclosporin A to protect the heart in future.  

7.2 Potential Clinical Implications 

The reduction in infarct size obtained by administration of the MMP inhibitor 

ilomastat could potentially represent a significant step forward in the 

understanding of lethal reperfusion injury and the processes involved in cell 

salvage. 

There may be significant cardioprotection achieved when administered alone, 

but co-administration of this agent with pore inhibitors, such as cyclosporin A 

could potentially result in an even greater reduction infarct size in comparison 

to cyclosporin alone.  

7.2.1 Adjunct to primary angioplasty 

In the setting of acute STEMI (ST segment elevation myocardial infarction), 

administration of ilomastat, either alone or in combination with the MPTP 

inhibiting effect of cyclosporin A could potentially result in a very large 

reduction in infarct size due to the synergistic actions of pore inhibition and 

MMP inhibition as found in our experimental data. This could potentially be 

large enough to finally translate into the real, measurable clinical benefit, 

which to date has eluded researchers in this field. 

7.2.2 Elective cardiac surgery 

In a similar manner, in the setting of elective high risk cardiac surgery or 

percutaneous coronary intervention, this drug could potentially be 

administered prior to reperfusion, bypass or angioplasty, potentially limiting 

the myocardial damage occurring at that time. As noted above co-
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administration with pore inhibitor (cyclosporin A) could potentially yield a 

superior clinical benefit to lone administration, as ilomastat appears to have 

additive benefit to MPTP inhibition. 

7.3 Limitations and Suggestions for Future Studies 

As the data contained in this thesis relates to a murine model of ischaemia-

reperfusion injury, there are a number of limitations. 

In keeping with the legislation in the Guidance on the Operation of the 

Animals (Scientific Procedures) Act 1986, we have minimised the quantity of 

animals used in each experiment. In the case of the experiments of chapter 4, 

we were unable to answer fully the research question, as to do so would have 

required use of a large number of animals to demonstrate a negative result, 

and we did not feel that this was scientifically or ethically justified. 

The major limitation of use of animal models are that, as found in many 

clinical trials of myocardial infarction that the data obtained may not be directly 

applicable to human patients with multiple co-morbidities. This has been a 

substantial reason for failure of translation into new clinical therapies for 

myocardial infarction to date. 

This thesis did not re-evaluate the novel version of mitochondrial targeted 

cyclosporin A, as this was not available at the end of the study period. It would 

have been helpful to determine if the new method of manufacturing with a 

differing linkage method to the triphenylphosphonium cation, which facilitates 

mitochondrial selectivity, demonstrated cardioprotection in vivo. This molecule 
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could potentially protect the heart at lower doses than those required for 

protection with conventional cyclosporin A.  

Investigating the mechanism of the cardioprotection afforded by matrix 

metalloproteinase inhibition would be a very interesting and essential part of 

the experiments provoked by this research. The finding of enhanced 

cardioprotection above that seen with inhibition of the mitochondrial 

permeability pore prompts a series of experiments. 

Confirmation of a significant reduction in MMP activity in response to 

administration of ilomastat would confirm that MMP reduction is one possible 

mechanism of the cardioprotective effect of ilomastat. 

It would also be useful to assess the effect of MMP inhibition on the signalling 

mechanisms involved in cardioprotection, eg the RISK pathway. 

Additional experiments could include assessment of the effect of MMP 

inhibition on caspase levels and mitochondrial morphology to determine if the 

pathway being inhibited is apoptosis. 

Confirmatory studies in a larger animal model would be desirable, and if 

successful, the ultimate test of ilomastat would be in administration to humans 

being treated for acute myocardial infarction. A useful tandem study would be 

to assess the benefit in co-administration with cyclosporin A in acute 

myocardial infarction, measuring traditional measures of cardiac damage such 

as high sensitivity troponin, brain natriuretic peptide and left ventricular 

function by magnetic resonance imaging, as well as mortality both in the short 

and long term. 
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Appendix 

1.1 Ex vivo data showing cardioprotective effect of increased IPC 

stimulus 

The following data has been reproduced from unpublished work by Andrea 

Carpi, Roberta Menabò, Emy Basso, Paolo Bernardi and Fabio Di Lisa. In this 

work, an ex vivo model of ischaemia- reperfusion has been used. 40 minutes 

of ischaemia was used with a variety of IPC protocols (no IPC, 3 x 5 minutes 

IPC, 5 x 5 minutes IPC), followed by 15 minutes of reperfusion in both C57 

and cyclophilin D deficient mice. The outcome measure was lactate 

dehydrogenase release. The results are demonstrated below. 
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The absence of CypD resulted in a significant decrease of LDH release 

induced by post-ischemic reperfusion (23.9±3.7% vs 41±4.7% of total LDH 

content in CypD-/- and WT mice, respectively). As expected the 3 cycle IPC 

protocol resulted in a high degree of protection that however was significantly 

enhanced by CypD ablation (17.2±2% vs 7.7±1.6% in WT and CypD-/-, 

respectively). The increase in IPC protection was decreased when the less 

robust protocol of 1 cycle IPC was applied (19.9±12.1% vs 13.7±4.9 in WT 

and CypD-/-, respectively) and appeared to be rather specific.  = p<0.05  

1.2 

Identification and characterisation of novel inhibitors of the MPTP and 

their efficacy in cardiac infarction.  

Contursi, Ballarini, Fancelli, Carpi, Di Lisa et al have also studied the effects 

of administration of small molecular weight inhibitors of the MPTP (referred to 

as “Congenia Inhibitors”). They studied the effects of administration of these 

agents to purified human liver mitochondria, and measured the calcium 

retention capacity, which is a surrogate marker for MPTP opening.  

The calcium retention capacity of purified liver mitochondria is determined by 

measuring the point at which pulse loaded calcium is released from the 

mitochondria (detected by fluorescence). MPTP inhibition results in a delay in 

release of calcium. 
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Reproduced from Contursi et al (unpublished). The congenia inhibitor is 

referred to as GNX. The above diagram demonstrates that the congenia 

inhibitor has similar effect on calcium retention to cyclosporin A, but also that 

there is an additive effect with cyclosporin A resulting in further delay in 

calcium release from mitochondria. 

 
 

The congenia inhibitor has also been shown to be protective in an ex vivo 

model of ischaemia-reperfusion injury (see overleaf). 
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Reproduced from Contursi et al, (unpublished).  In this ex vivo model, the 

congenia inhibitor reduces release of lactate dehydrogenase, a measure of 

myocardial damage. 
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