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Abstract

Cubic ice Ic is a rarely-observed ambient pressure phase of water implicated in the catal-

ysis of atmospheric reactions. It forms between 160 K1 and 243 K2, in droplets smaller

than 5 µm3 in diameter. It is metastable with respect to hexagonal ice Ih and is poorly

characterised both experimentally and theoretically. The proton ordered ground state

for cubic ice has I 41md symmetry and is named ice XIc4. We find that the ground state

proton ordered configurations of hexagonal and cubic ice, XI and XIc are isoenergetic.

The surface energy of ice is strongly dependent on proton ordering. The “striped”

configuration5 has the lowest surface energy, and clustering of dangling OH bonds in-

creases the surface energy. Cubic ice is has a surface energy approximately 10% higher

than hexagonal, and is more reactive. Elementary steps on the ice surface reconstruct

to lower the step formation energy; under-coordinated molecules on the step edge relax

to form an additional hydrogen bond with the lower terrace. We examine five different

steps: the low energy A-and B1-steps and the high energy B∗1-, B2 and B∗2-steps. Different

growth rates for these steps combined with a proton disorder are in part responsible for

the isotropic bilayer growth of ice observed by Sazaki et al 6.

Glycolaldehyde, the simplest sugar, has been observed recently in the interstellar

medium7;8 and in a solar-type protostar9. We evaluate two potential mechanisms for its

formation on icy dust grains at 10 K, finding that activation barriers are greatly reduced

by the ice surface, and that the most likely route is a reaction between H2COH and

HCO radicals, which are formed by the sequential hydrogenation of carbon monoxide.
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Chapter 1

Introduction

1.1 Why study ice?

In spite of its ubiquity, water is a contentious area of research; for example, in 2009,

Huang et al. asserted that liquid water is inhomogeneous, and consists of ‘tetrahedral

patches surrounded by thermally excited H-bond distorted structures’20;21 — a view

directly contended by Soper et al 22., who suggest that ‘each molecule is typically hydro-

gen bonded to four others, with rarely more than one additional nonbonded molecule

in the first coordination shell’. The simple chemical formula H2O belies its extensive

range of anomalous physical properties (listed in extensive detail on Martin Chaplin’s

website23), including the unusual temperature dependences of its density and phase, its

wide range of stable and metastable amorphous and crystalline solid structures and its

high viscosity and surface tension. Most of these properties can be generally explained

by the ability of each water molecule to form four relatively strong hydrogen bonds,

although an accurate theoretical model of water remains elusive; for this reason, the

question ‘what is the structure of water’ was one of the top 125 unanswered questions

in the 125th anniversary edition of Science24.

Hexagonal ice is the solid phase of water that is most commonly encountered on

Earth and has been extremely well studied, yet new and unusual properties continue to

20



CHAPTER 1. INTRODUCTION 21

Figure 1.1: Photographs of hexagonal ice Ih crystals10, and the crystalline structure of
orientationally ordered hexagonal ice.

be discovered. For example, it has been recently shown that ice nucleates differently at

positively and negatively charged surfaces of pyroelectric materials25 (materials which

become polarised upon temperature change), and that the surface of crystalline ice dis-

plays a continuum of vacancy energies26.

A crystalline ice lattice consists of water molecules bound together by hydrogen

bonds; in a crystal free of defects, all water molecules are four-coordinated, donating

two hydrogen bonds and accepting two. The ambient pressure ice I polytypes (including

the ubiquitous hexagonal ice Ih and cubic ice Ic) discussed in this thesis are comprised

of tetrahedrally coordinated water molecules with a ĤOH bond angle close to 109.5◦

and hydrogen bonds which are approximately straight and form six-rings.
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(a) Hexagonal ice (b) Cubic ice

Figure 1.2: Stacking of bilayers in hexagonal and cubic ices. The vertical is normal to
the (0001) basal surface of hexagonal ice, and the (111) surface of cubic ice. Only oxygen
atoms are shown, connected by hydrogen bonds indicated by blue lines. The coloured
boxes indicate the sequences that have translational symmetry in the z-direction (green:
A, pink: B, orange: C). It can be seen that hexagonal ice is characterised by a mirror
plane, whereas cubic ice contains straight “channels” that run diagonally from this per-
spective.

There are currently 15 known phases of ice, with ice XV being discovered as recently

as 200927. Of the two low pressure proton disordered polytypes, ices Ih (hexagonal)

and Ic (cubic) , only hexagonal ice has been studied extensively. Cubic ice — which

is studied in this thesis — is metastable (hence the absence of a solid line in the phase

diagram, figure 1.3), and has not been synthesised in pure form in the laboratory. These

two polytypes differ only in the stacking order of the hexagonal bilayers (figure 1.2).

Experiments have revealed that ice nucleates homogeneously as cubic ice in small

droplets with radii in the range 5 nm28;29 to 5 µm2 and in confined pores3 at tempera-

tures between 160 K1 and 243 K2. Whilst it was previously thought that Ic transforms

to Ih at temperatures above∼180 K–200 K, recent studies indicate that Ic remains stable

for hours at 228 K with complex time and temperature dependences2. There is no well
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Figure 1.3: The phase diagram of water11. There is considerable uncertainty in the
temperature bounds of the regime of interest for ice Ic, highlighted with a red box.

defined phase transition. The cohesive energy difference between ices Ic and Ih is tiny

by chemical standards. Attempts have been made to measure the heat of transition from

ice Ic to ice Ih (∆Hc→h ), with estimates ranging from −160 J mol−1 to −13 J mol−1 30–37.

Murray et al. suggest that this is because cubic ice invariably contains some hexago-

nal sequences, and the cubic sequences anneal to hexagonal ones over a wide range of

temperatures such that there is no distinct cubic-hexagonal phase transition — for this

reason, there is some debate as to whether cubic ice is actually a distinct phase of water:

it could be more accurate to describe it as hexagonal ice with cubic stacking faults. As

a result, calorimetric techniques tend to underestimate ∆Hc→h
38, and they suggest that

the true value is likely to lie closer to −155 J mol−1, from the 2006 study by Shilling et

al.36.

The structural and energetic differences between cubic and hexagonal ice are subtle



CHAPTER 1. INTRODUCTION 24

but the chemical reactivity of these two phases are distinct and could profoundly effect

atmospheric chemistry on Earth. Given the temperature regime and droplet sizes re-

quired for cubic ice formation, it seems likely that cubic ice nucleates preferentially in

the Earth’s upper atmosphere39, with a significant impact on processes such as cloud

formation and ozone depletion as a result of differences in surface chemistry between

hexagonal and cubic ices40–43. It has also be suggested that cubic ice could be used in

cryopreservation of cells, since octahedral Ic crystals are benign, in contrast with the

destructive needle-like crystals that can be formed by hexagonal ice44.

It has been shown experimentally and using quantum chemistry, that a proton or-

dered (i.e. orientationally ordered) form of hexagonal ice can exist at temperatures be-

low 72 K, even though differences between the cohesive energies of proton ordered con-

figurations are small (up to ∼1 kJ mol−1)12. However, there is no known analogous

proton ordered phase of cubic ice. Quantum chemical simulations have shown that

proton ordering affects surface energies by an order of magnitude more than it effects

bulk energies5, which is particularly relevant since surface effects will be dominant in

the size regime of ice nucleation.

There are very few computational studies (particularly quantum mechanical) of cu-

bic ice in the literature, and given (i) the absence of conclusive experimental data, and

(ii) the difficulty in preparing pure samples of cubic ice, modelling offers a route to a

better understanding of its structure and chemistry.

In this thesis, three different aspects of the chemistry of ice are examined. First,

a characterisation of bulk cubic ice is undertaken, comparing it with the ubiquitous

hexagonal ice. In particular, the effect of orientational (proton) ordering will be in-

vestigated, and the ground state configuration determined. Next, the effect of proton

ordering on both pristine ice surfaces and surfaces with step defects is discussed. Fi-

nally, the developed surface models are employed to simulate the reactions which form

interstellar glycolaldehyde.



Chapter 2

A review of water ice

2.1 The crystalline structure of ice

There are currently 15 known crystalline structures of ice23;45, which are identified by

the roman numerals I – XV; this does not include a number of amorphous phases in-

cluding high density and low density amorphous ices. The high pressure phases of ice,

which form in excess of 100 MPa, will not be discussed in any detail here, since the main

thrust of this study is the simplest ambient pressure polytypes, ices Ih (hexagonal) and

Ic (cubic) and their proton ordered variants. Ice XI is the most stable proton ordered

form ice Ih, and is formed when KOH-doped ice Ih is cooled to 72 K46. Proton order-

ing is discussed in more detail in chapter 4. Examples of high pressure phases include

Ice VII, which consists of two interpenetrating Ic lattices and its stable orientationally-

ordered analogue ice VIII, and ice X which is a non-molecular form of the tetrahedral

ice lattice with protons equidistant from adjacent pairs of oxygen atoms. These phases

all contain approximately straight hydrogen bonds and six-membered rings; this is not

necessarily the case for other high pressure phases, which contain four-, five-, seven-

and eight-membered rings and bent hydrogen bonds. In the most unusual high pres-

sure phase, ice X, molecular units of H2O can no longer be discerned — it consists of

hydrogen atoms at the midpoint between pairs of oxygen atoms.

25
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Note that to date, no pure proton ordered ices have been formed in laboratory con-

ditions45, with the exceptions of ice VIII, which can be formed by cooling ice VII23 and

ice II, which has no proton disordered form; they have only been synthesised in the

presence of a dopant. There is currently no known proton ordered phase of ice Ic.

Bjerrum made one of the first attempts to deduce the properties of ice from a simple

electrostatic model of the H2O molecule47. The oxygen atoms in a hexagonal ice crystal

form a tetrahedral structure as a result of the four-coordination of water molecules; each

donates and accepts two hydrogen bonds. The resulting structure is a puckered hexag-

onal layering of oxygen atoms. The stacking order of these layers determines whether

the ice has a hexagonal structure (ABAB stacking), or a cubic structure (ABCABC stack-

ing, reminiscent of diamond), as shown in figure 1.2. Ice Ih therefore consists of sheets

of hexamers in the chair and boat configurations, whereas Ic contains only the chair

configuration; the higher symmetry of cubic ice made it popular for modelling applica-

tions in the past46. Despite the structural similarities, Ic is metastable with respect to

Ih. Hexagonal ice is the familiar structure of ice generally seen in terrestrial conditions,

while cubic ice has been shown to nucleate homogeneously at low temperatures and in

small droplets2, yet the difference in energy between cubic and hexagonal is small; ex-

perimental estimates of its value vary between −160 J mol−1 and −13 J mol−1 30–37. Like

the energies, the structures are very subtly different; the difference in cohesive energy

may be due to the fact that cubic ice has twelve molecules in the second coordination

sphere, compared with thirteen for hexagonal ice.

To answer the question of why hexagonal ice forms preferentially to cubic ice, Bjer-

rum characterised hydrogen bonds as strong or weak, depending on the geometry of

the water “dimer” constituting the bond. He identified 6 possible dimer configurations.

Taking symmetry into account, there are four unique hydrogen bond configurations

(figure 2.1), which I will refer to as they are more commonly and concisely known in

the literature12;47: c-trans (inverse mirror symmetric), h-cis (oblique mirror symmetric),
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c-cis (inverse centre symmetric) and h-trans (oblique centre symmetric).

Figure 2.1: (Taken from Hirsch et al.12) Hydrogen bond types in a tetrahedral ice lattice
- h-cis (A), h-trans (B), c-cis (C) c-trans (D).

Bjerrum suggested, not unreasonably, that the trans hydrogen bond configurations

would be more energetically favourable, since the distance between repulsive centres

is maximised - indeed, his calculations from experimental data indicated that mirror-

symmetric bonds are 0.5% shorter than centre-symmetric bonds, and electrostatic cal-

culations showed that 100% centre-symmetric ice is less stable than 25% mirror sym-

metric; evidence, perhaps that proton ordering does play a role in the formation of

ice crystals. If this theory of strong and weak hydrogen bonds was robust, we would

expect the relative number of strong (trans-) hydrogen bonds to increase as the temper-

ature decreases, i.e. the most stable proton-ordered structures should have the largest

fraction of trans hydrogen bonds. Bjerrum’s hypothesis resulted in the prediction of

the P na21 (figure 2.5b) structure as the lowest energy proton ordered configuration of

hexagonal ice. It has since been shown using quantum mechanical calculations that this

is incorrect12, although calculations using classical potentials tend to favour the P na21

structure (see, for example, Buch et al.48). Bjerrum’s classification scheme may still be
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important; Hirsch and Ojamäe12 have suggested that the energy of a cell may be related

to a linear combination of the hydrogen bond types rather than a simple fraction of

bonds with the trans- configurations.

2.2 Cubic ice

2.2.1 Structure: a stacking disordered phase?

Whilst pure hexagonal ice has been isolated within instrumental resolution, pure cubic

ice still eludes experimental synthesis; Murray and Bertram2 have prepared cubic ice

that is ∼80% pure, although the coherence of the cubic sequences was not reported. A

common trend in the literature regarding laboratory preparation is the assumption of

cubic ice formation on the basis of the temperature and pressure regime, rather than

spectroscopic analysis. Recently, Malkin et al. used X-ray diffraction on ice crystallized

from supercooled water droplets suspended in an oil emulsion at temperatures under

232 K49. Instead of cubic ice, they observed a stacking disordered phase they named

ice Isd with approximately the same proportion of cubic and hexagonal sequences, ran-

domly arranged. These observations were strongly supported by Monte Carlo simu-

lations using the TIP4P model. Earlier molecular dynamics simulations by Moore and

Molinero using the mW model (a monatomic water model that mimics hydrogen bonds

using a short range anisotropic potential) also predict a stacking disordered phase, albeit

with a 2:1 ratio of cubic to hexagonal sequences50.

2.2.2 Phase transition to hexagonal ice

There is no sharp temperature-dependent phase transition between hexagonal and cubic

ice; Ic gradually and irreversibly anneals to Ih as it is heated over approximately−200 K–

−180 K, although it has been recently shown to persist for several hours at 228 K. They

have almost identical densities, and extremely similar binding energies, with a heat of
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transition (∆Hc→h ) in the range −160 J mol−1 to −13 J mol−1 30–37. Yamamuro et al.30

suggested that measurements on the high end of the range had overestimated the energy

difference by forming ice Ic from amorphous ice, which resulted in small particles and

an exaggerated surface effect; they cite a figure of 37 J mol−1 using cubic ice formed from

the sequence of transitions III→ IX→ Ic. Murray et al. suggest that the energy differ-

ence has been grossly underestimated since pure cubic ice has not been synthesized, and

necessarily contains hexagonal sequences38, and support the value cited by Shilling et

al.36, 155 J mol−1. Indeed, Kuhs et al.51 assert that the stacking faults are an inherent

property of ice Ic; it could be claimed that cubic ice is not a unique phase, but merely

hexagonal ice containing a high proportion of cubic stacking faults. On the other hand,

it has been proposed that the broad phase transition is a result of the defect energy at in-

terphase grain boundaries when hexagonal crystals grow in bulk cubic ice52. Salzmann

et al. suggest that increasing numbers of hexagonal sequences in cubic ice seem to cor-

relate with a less exothermic transition53. The lower free energy of Ih is attributed to

an extra water molecule in the second coordination sphere of Ih in comparison to Ic23;

radial distribution functions confirm that hexagonal stacking gives rise to 13 molecules

inside the second coordination sphere, compared with 12 molecules for cubic stacking,

resulting from the lack of a mirror plane.

2.2.3 Cubic ice in nature

Although cubic ice is metastable and forms at low temperatures, its effects were first

observed as early as 1629 by Christophe Scheiner54. Haloes are visible around the sun

and moon around 100 times a year; these usually appear at an angle of 22◦ (figure 2.2)

and are a result of light refracted by large quantities of randomly oriented ice Ih crystals

in the form of hexagonal prisms. Scheiner’s halo was at an angle of 28◦ and was most

probably caused by light refracted by octahedral crystals of ice Ic. The fact that there

were only three subsequent sightings of Scheiner’s halo in the following 250 years in-
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Figure 2.2: A 22◦ halo around the sun13. These are caused by light refracted by large
quantities of hexagonal ice crystals in the upper atmosphere. Scheiner’s halo appears at
28◦, has been observed very infrequently and is evidence of octahedral cubic ice crystals.

dicate just how rare it is. Whalley54 suggests that the halo will only result from large

numbers of octahedral crystals that are small enough to be fully randomly oriented by

Brownian motion; larger crystals that are not completely randomly oriented may result

in partial haloes. Scheiner’s halo was recently observed in Northern Chile in 200055.

The formation of dendritic or polycrystalline snow flakes with their c-axes at 70◦ to one

another is further evidence of the influence of cubic ice in nature. Studies56;57 suggest

that this is a result of the growth of ice Ih on an octahedral ice Ic nucleus.

It is thought that cubic ice is influential in processes occurring in the earth’s at-

mosphere, particularly in ice cirrus clouds (from aqueous ammonia and sulphuric acid

droplets), and in polar stratospheric clouds (from aqueous nitric and sulphuric acid

droplets), which play a key role in stratospheric ozone depletion39. Murphy40 has pro-

posed a mechanism by which ice nucleates to Ic, then converts to Ih, with the resulting

vapour pressure differential resulting in the formation of larger ice crystals; larger crys-
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tals have higher terminal velocities and are therefore more effective at dehydrating air.

This dehydration mechanism is only important at temperatures below 200 K, which

happens to be the temperature range present in tropical tropopause and polar strato-

spheric clouds.

2.2.4 Formation conditions

Cubic ice was first created under laboratory conditions by Dewar in 190554, who ob-

served a phase change to a ‘milk-white’ crystalline form when slowly heating com-

pressed ice at 15 kbar and 193 K. Dowell and Rinfret later prepared amorphous ice

by condensation of water on to a surface maintained below 110 K, which transformed

to cubic ice (identified by X-ray diffraction) on heating above 110 K58. Bertie et al.59

claimed to be the first to prepare large quantities of ice Ic in 1963, by heating samples of

high pressure ice phases (ices II, III and V) from 77 K at zero pressure. Mayer and Hall-

brucker33 succeeded in preparing cubic ice from liquid water in 1987 (it had previously

only been formed via the amorphous ice phase) by rapidly quenching aqueous aerosol

droplets with a diameter of roughly 3 µm to 190 K–200 K on a cryoplate. They found

that cubic ice formed in this way annealed to ice Ih slower than ice Ic formed from amor-

phous ice, perhaps as a result of the higher surface area to volume ratio, which allowed

faster heat dissipation. This would suggest that cubic ice crystals formed in the atmo-

sphere must be more stable, since they are thermally isolated from each other. Steytler

et al. cooled heavy water trapped in porous silica (with pores of mean diameter 9 nm) to

260 K and identified cubic ice using neutron diffraction60, demonstrating that cubic ice

could be stabilised at higher temperatures by formation in confined geometries.

Johari61 argues that water droplets will freeze to ice Ih or Ic depending on their

size. His thermodynamic calculations yield a ‘critical radius’ of 15.1 nm, suggesting that

water droplets smaller than this will freeze to ice Ic, and larger droplets will freeze to

ice Ih. He also calculates the ‘critical thickness’ of a water film to be 10 nm (water films
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thinner than 10 nm will freeze to ice Ic). These results are borne out by experiment, to

an extent; a number of studies (for example, Dunn et al. (1988)3) on ice formation in

the pores of nanoporous materials indicate that ice Ic is indeed formed in these confined

geometries. Johari adds that the critical radius (or thickness, for a water film) is affected

by the temperature and shape of the droplets, and that it is expected to be affected by the

presence of impurities and, crucially, the degree of proton ordering in the ice formed

since heat capacity is affected by proton ordering.

2.2.5 Attempts to prepare pure cubic ice

Murray et al.39 attempted to experimentally simulate the conditions present in the at-

mosphere during cloud formation, namely homogeneous nucleation of ice in water

droplets. Aqueous droplets of 2 µm–20 µm were suspended in an oil matrix by emul-

sification, and the ice phase formation was monitored using X-ray diffraction. Aqueous

droplets containing ammonia, sulphuric acid and nitric acid among other solutes were

all found to freeze to ice Ic containing hexagonal stacking faults at 190 K, a temperature

representative of the tropical tropopause and stratosphere, while 10 µm droplets of pure

water were shown to contain significant proportions of ice Ic (∼67%) at 235 K. Suffi-

cient heating of these ice particles caused the ice Ic to anneal to ice Ih. The authors of the

study estimated that heat transfer is approximately ten times slower in the atmosphere

than it is in the emulsion, so a 10 µm droplet in the atmosphere is unlikely to contain

much ice Ic after freezing.

Murray and Bertram2 conducted similar experiments, with an emphasis on deter-

mining the proportion of cubic ice formed in emulsified pure water droplets as a func-

tion of droplet size, and investigating the stability of the droplets after freezing. They

found that as the median diameter of the droplets increased from 5.6 µm to 17 µm, the

fraction of ice Ic present decreased from almost 100% (with some hexagonal stacking

faults), indicating a strong inverse size dependence. This can be rationalised in terms of
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heat transfer: crystallisation is an exothermic process, so heat is produced on freezing.

Smaller crystals have a larger surface area to volume ratio, and can therefore dissipate

the heat to their surroundings more rapidly; this heat would otherwise result in the

ice Ic to Ih transition. They conclude that ice Ic is the phase that nucleates, and the

final amount of Ic in the droplet is governed by the variation in the temperature of the

droplet after freezing.

As part of the same study, they also looked at ice Ic stability as a function of tem-

perature. Using a similar experimental setup, an emulsion of 10 µm water droplets

was cooled to 228 K–263 K, then the temperature increased, and the diffraction pattern

monitored. It was found that ice Ic is extremely stable at 228 K, but at 263 K it is rapidly

converted to ice Ih; there is a clear disparity with previous studies, with indicated that

ice Ic is rapidly converted to Ih at 205 K. Murray and Bertram rationalise this by sug-

gesting that the transition is highly dependent on the surface area of droplet, and the

results of previous experiments were dominated by gas phase transfer which is blocked

by the emulsion. This theory is corroborated by studies on freezing in porous silica, in

which ice Ic was also observed at higher temperatures3.

Murray and Bertram’s results conflict with predictions from Johari’s61 thermody-

namic calculations, which predicted that only droplets of<10 nm would freeze to ice Ic,

a difference of almost 3 orders of magnitude. One order of magnitude can be accounted

for by the increased heat transfer from the droplets in the emulsion; in the atmosphere,

heat dissipation would occur at approximately a tenth of the rate in the emulsion so a

10 µm droplet in the emulsion will behave as a 1 µm droplet in the atmosphere.

2.3 Proton ordering in bulk ice

Linus Pauling’s seminal 1935 paper62 was the first to quantify orientational effects on

entropy in ice. It was known that the oxygen atoms in an ice crystal form a tetrahedral

structure from X-ray diffraction studies; however there was still uncertainty regarding
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the positions of the hydrogen atoms because X-rays are scattered by electrons, and the

bulk of the electron density surrounds the oxygen atoms leaving the hydrogen positions

poorly characterised. Pauling deduced that the hydrogens must not be midway between

the oxygens since this would require a much larger change in properties than is observed

between the gas, liquid and solid phases of water; for example, the melting points of

most ionic crystals are several hundred degrees higher than that of ice63. Additionally,

there must be a constraint forcing the hydrogen atom to occupy one of the two available

positions between a pair of neighbouring oxygens, since the concentration of H3O
+ and

OH− ions in water is low. These orientational constraints are summarised by the “ice

rules,” formalised by Bernal and Fowler64, which stipulate that:

1. there may only be two hydrogen atoms bonded to each oxygen (formally, a water

molecule)

2. there may only be one hydrogen atom per hydrogen bond (that is, one hydrogen

atom between each pair of neighbouring oxygen atoms).

Two types of defects arise from the violation of these rules45: ionic defects resulting

in the violation of the first rule, which are responsible for the formation of H3O
+ and

OH− ions, and Bjerrum L (no proton on a hydrogen bond axis) and D (two protons on

a hydrogen bond axis) defects, resulting from the violation of the second rule.

Thus ice crystals can exist in a number of configurations with differing molecular

orientations, subject to the ice rules. Each molecule can assume one of six orienta-

tions (figure 2.3) — a constraint imposed by the underlying tetrahedral structure — and

according to Pauling62, the chance that the adjacent molecules will permit that orien-

tation is 1
4 , hence there are ( 64)

N = ( 32)
N ways of arranging N molecules, therefore the

molar entropy (S) of ice at 0 K is given by,

S = R lnW =N R ln
�3

2

�

, (2.1)
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Figure 2.3: The six canonical orientations of a water molecule in a tetrahedral ice lattice.

where R is the molar gas constant and W is the number of ways of arranging the

molecules.

Pauling calculated that there are ( 32)
N ways of arranging N water molecules in an

ice crystal, but speciously argued that these configurations would all be degenerate at

low temperatures, perhaps based on the assumption that all configurations contribute

equally to the entropy. Petrenko and Whitworth suggest that long range interactions

between molecules are negligible; they quote Pauling: ‘under ordinary conditions the

interaction of non-adjacent molecules is not such as to stabilise one of the many con-

figurations satisfying the ice rules with respect to the others’46. It seems intuitive that

variations in proton ordering would affect the electrostatic energy, making some con-

figurations more favourable than others. However, the energy differences between pro-

ton ordered structures with the same underlying oxygen lattice can be small (as low as

10 J mol−1)65, so their resolution requires the application of extremely precise modelling

techniques.

Ice therefore has a finite entropy at 0 K, and must have a large number or proton-

ordered and disordered configurations. It is now known that proton ordered phases of
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ice can form under certain conditions, indicating that the different configurations are

non-degenerate.

Although Pauling’s entropy calculation is exact for dendritic (branching) structures,

closed loops of hydrogen bonds introduce an error. For example, it has been shown

that in a closed loop of six hydrogen bonds (the shortest closed loop present in ice I),

assuming the first five bonds are correctly formed with probability 1
2 , the probability

that the sixth bond is correctly formed is slightly greater than 1
2 . As a result, Pauling’s

calculation underestimates W and therefore the entropy46;63.

To date, there is a considerable body of computational work on proton ordering

in bulk hexagonal ice, but very little on cubic ice or the ice surface. There have been

attempts at determining the structure of a possible proton ordered phase of ice Ic in the

literature: Silvi compares the I 41md cubic ice and ice XIII structures, identifying the

former as a “prototype”66, and Lekner generates an exhaustive set proton ordered con-

figurations from the cubic cell67;68. Casassa et al. compare the configurational energies

of different hexagonal and cubic proton ordered and disordered structures69. However,

it would seem that there has been no published work on cubic ice analogous to Hirsch

and Ojamäe’s on hexagonal ice12: an exhaustive study of proton ordered polymorphs

of ice Ic in order to determining the most viable candidate for a proton ordered cubic

ice phase using DFT.

2.4 Modelling ice using empirical potentials

One of the striking features of the ice (and water) literature is the sheer number of

models that have been constructed in attempts to reproduce small subsets of the anoma-

lous properties of water. In his 2002 review, Guillot lists 46 different forcefield models;

this value has increased considerably in the interim70. The most common are rigid

body models, which have no internal degrees of freedom; these models generally differ

in terms of geometry, charge distribution, polarisation, etc. Flexible (in which bond
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lengths and angles are degrees of freedom) and polarisable (in which charge distribu-

tion is a degree of freedom) models are also available, but do not offer any significant

advantage over simpler models considering the added computational cost71.

One of the most simple models is SPC (simple point charge) 72; it is a three site model

with the tetrahedral geometry of ice, point charges located on the atomic positions,

and a Lennard-Jones potential centred on the oxygen site. A reparameterisation of this

model that has been extremely successful in reproducing the properties of ice is the

SPC/E variant. It is identical to SPC, except that it includes a polarisation correction

with the aim of reproducing the enthalpy of vaporisation.

The popular TIPnP (n-point transferable intermolecular potential) family of models

is characterised by the use of the gas phase geometry of water molecules73. The simplest

member is the three site TIP3P model, which is is similar to SPC in terms of charge

distribution and the potential, but adopts the geometry of the gas phase molecule. Jor-

gensen et al. developed the four site TIP4P model in an attempt to better reproduce the

oxygen-oxygen radial distribution function74; it differs from TIP3P primarily in terms

of charge distribution: the charge is moved off the oxygen atom, and onto the massless

‘M-site’ along the HOH angle bisector in the direction of the hydrogen atoms, with the

Lennard-Jones potential remaining at the oxygen site. This allows the dipole moment

to be varied without altering the geometry of the molecule. The TIP5P model resem-

bles TIP3P, but with additional negative charges at the ‘L-sites,’ located at the positions

of the oxygen lone pairs. These models are parameterised to reproduce experimental

values for the enthalpy of vaporisation and density at ambient conditions, and crucially

in the case of TIP5P, the temperature at which the density of water is at a maximum

(TMD)75.
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(a) TIP3P (b) TIP4P (c) TIP5P

Figure 2.4: The three basic TIPnP forcefield models, with geometries and charges.
TIP4P contains an imaginary “M”-site at the bisector of the HOH angle, and TIP5P
has two imaginary “L”-sites at the positions of the lone pairs on the oxygen.

Model Type σ (Å) ε (kJ mol−1) l1 (Å) l2 (Å) q1 (e) q2 (e) θ (◦) φ (◦)

SPC a 3.16600 0.6500 1.0000 — +0.410 −0.820 109.47 —
TIP3P a 3.15061 0.6364 0.9572 — +0.417 −0.834 104.52 —
TIP4P b 3.15365 0.6480 0.9572 0.15 +0.520 −1.040 104.52 52.26
TIP4P/ice b 3.1668 0.8822 0.9572 0.1577 +0.5897 −1.1794 104.52 52.26
TIP4P/2005 b 3.1589 0.7749 0.9572 0.1546 +0.5564 −1.1128 104.52 52.26
TIP5P c 3.12000 0.6694 0.9572 0.70 +0.241 −0.241 104.52 109.57
NE6 b + c 3.115OO 0.715OO 0.9800 0.8892L +0.477 −0.044L 108.00 111.00

0.673HH 0.115HH 0.2300M −0.866M

Table 2.1: Geometries and parameters for some relevant rigid body forcefield models23

(NE6 refers to the Nada-van der Eerden six-site model). The type and geometric quan-
tities correspond to those indicated in figure 2.4; σ and ε are Lennard-Jones parameters.

There have been many attempts to reparameterise the TIP4P model, including sev-

eral with the specific aim of reproducing ice properties. Even though TIP4P molecules

assume the gas phase geometry, it generates a qualitatively correct phase diagram, for

which reason Abascal et al. attempted to modify it to model ice71. They noted that it

is impossible to simultaneously fit the melting temperature and the enthalpy of vapor-

isation for rigid models, choosing to prefer fitting to the melting temperature. The re-

sulting potential, named TIP4P/ice, demonstrated excellent agreements for the melting

point of ice Ih (272.2 K), the densities of most ice phases, and the enthalpy of melting,

but an unsurprisingly bad fit for the enthalpy of vaporisation. However, it provided a
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poor representation of the extremely dense forms of ice (VII and VIII), perhaps a conse-

quence of the model having only one repulsive site per molecule.

Abascal et al. later proposed a new variation of dubbed TIP4P/200576 which was,

like TIP4P/ice, designed to model the condensed phases of water. In contrast with

TIP4P/ice, it does not sacrifice the ability to predict the enthalpy of vaporisation, for

which it uses a corrective term. It was also taken into account that many empirical

models overestimate the stability of ice II; SPC/E, in particular does this unless it is

transformed into a four site model. They used a larger number of target parameters

than most other potentials, notably including TMD, and the distance between the oxy-

gen atom and the M-site was modified. The resulting potential represented a signifi-

cant improvement in terms of accuracy of predictions (for the liquid phase as well as

the solid), and reproducing a wider range of properties than many other potentials. It

proved to be a better model than SPC/E, TIP3P, TIP4P and TIP5P73 over a wide range

of properties which notably included densities of ice polymorphs, melting points and

structure predictions. Vega et al.73 note that although the dipole moments of the mod-

els examined are similar, the quadrupole moments differ greatly, TIP4P/2005 having

the highest, and TIP5P having the lowest. This may be a clue as to why TIP4P/2005 is

so much better at modelling the condensed phases, where there is a strong short range

orientational dependence between molecules.

McBride et al.77 have attempted to modify TIP4P/2005 to include quantum delo-

calisation effects which are responsible for (to name one example) the discrepancy in

the maximum density temperature between H2O (∼4◦C) and D2O (∼7◦C). Empirical

models which are tailored to reproduce experimental results at 273 K tend to fail as the

temperature is reduced since classical models do not account for one of the consequences

of the third law of thermodynamics, namely that the thermal expansion coefficient α

tends to zero as the temperature tends to zero. Quantum effects are thus significant

at low temperatures, particularly in the 77 K regime, where many experiments are con-
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ducted using liquid nitrogen cooling. The TIP4P/2005 and the “quantum compensated”

TIP4PQ/2005 models are identical, except that the latter has a larger dipole moment

achieved by a 0.02e shift in charge from each of the hydrogen sites to the M site. Sim-

ulations on all ice phases other than ice X suggested that the new model was ‘clearly

superior.’

Empirical models allow the reproduction of limited sections of the phase diagram of

water, and are computationally inexpensive way of calculating relative thermodynamic

potentials and configurational energies, but they clearly fall short when attempting to

resolve the subtle energy differences between proton ordered polymorphs. This under-

lines the need for more precise modelling techniques, such as density functional theory

(DFT, discussed in detail in chapter 3).

It should be noted that the success of classical methods in predicting the relative

energies of proton ordered configurations depends largely on the complexity of the

model. The most widely used potentials, namely SPC and the TIPnP family, have failed

in predicting the structure of ice XI, favouring the antiferroelectric P na21 configuration

instead of the experimentally verified C mc21 configuration48;78. Only the six-site Nada-

van der Eerden six-site model (NE6)79 has been successful in this respect78.

2.5 Ice XI

Ice XI is the proton ordered form of ice Ih. Although there has been some debate

regarding its crystalline structure, the consensus is that it is the ferroelectric C mc21

variant, as opposed to the antiferroelectric configuration predicted by Davidson and

Morokuma14, the P na21 structure (figure 2.5a).

Tajima et al.80 reported a phase transition in KOH-doped ice Ih at 72 K, associated

with a loss of approximately 70% of its configurational entropy, indicating a transition

to a proton ordered phase; later experiments indicate an entropy loss of up to 82%46.

They noted that the phase transition is remarkably insensitive to the KOH concentra-



CHAPTER 2. A REVIEW OF WATER ICE 41

(a) C mc21 (b) P na21

Figure 2.5: The ferroelectric C mc21 structure of ice XI and the antiferroelectric P na21
structure predicted by Davidson and Morokuma14.

tion (it could be varied by at least two orders of magnitude without losing the transi-

tion), perhaps indicating the role of the OH− ions as a catalyst. Howe and Whitworth81

suggested that the Ih↔XI transition does not occur in pure ice because it does not con-

tain the point defects that allow orientational reconfiguration. Leadbetter et al.82 per-

formed neutron diffraction experiments on KOH-doped D2O, and concluded that only

the lattice spacings in the C mc21 structure could account for the diffraction pattern.

Jackson and Whitworth83 later addressed the fact that the proposed C mc21 struc-

ture is ferroelectric by investigating the transition of KOH-doped ice Ih under the in-

fluence of an applied electric field. They used a ‘thermally stimulated depolarisation’

(TSD) technique, in which KOH-doped ice was cooled in an electric field, causing the

induced polarisation to become ‘frozen in.’ Upon removal of the applied electric field

and heating, a ‘TSD’ current was observed. They determined that ice XI is ferroelec-

tric parallel to the c-axis, consistent with the C mc21 structure, and crucially, that when

no electric field was applied, no TSD current was observed. This indicated that the

summed contributions to the electric field over bulk ice XI must average to zero, that

is, without an applied electric field, ice XI forms from ferroelectric domains with op-
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posing orientations resulting in a non-polar macroscopic structure. This was supported

by the observation that increasing the applied electric field resulted in a larger TSD cur-

rent (although they did not increase it enough to reach a saturation point, which would

indicate a single domain limit).

According to Petrenko and Whitworth46, there are six possible domain orientations

in ice XI, and there must be equal proportions of domains polarised in opposite direc-

tions in order to avoid a net polarisation. They suggest that there are ‘incompatibilities’

between certain domain orientations - for example, it is impossible for two domains

oppositely polarised along their c axes to join without violating the ice rules at the

boundary; for this reason there will always be some residual ice Ih and it is impossible

to form a single-domain phase pure ice XI crystal. This is supported by the failure of

calorimetric experiments to recover the full Pauling entropy; OH− ions would have to

follow an improbably exact path through the ice lattice in order to remove all remaining

disorder.

2.6 Generating ice simulation cells

Howe84 devised a scheme for generating the symmetry-unique proton ordered configu-

rations of the 8-molecule cell of ice Ih. By independently fixing the orientations of spe-

cific molecules in one of the two hexagonal layers of the cell, and working out the per-

mutations of orientations of the dependent molecules subject to the constraints of the

ice rules, she was able to determine that there are 13 unique configurations of molecules

in one of the layers. By considering the combinations of ways in which the two layers

could be connected, she concluded that there are 57 configurations permissible by the

ice rules. This differs from the number of 114 configurations independently arrived at

by Hirsch and Ojamäe by a factor of two, but can be explained by the fact that there

are two possible positions for a proton on every hydrogen bond, and for every one of

the 57 configurations predicted by Howe there is a ‘converse’ configuration in which
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each proton is the alternate position. Hayward and Reimers85 developed a method of

generating proton disordered hexagonal ice cells with minimised multipole moments

by the application of orientational constraints. However, it seems that the most effi-

cient method of generating hydrogen bond topologies is that of Kuo, Knight, Singer et

al.86–88. They demonstrate the use of graph invariants in generating proton ordered con-

figurations, and show that graph invariants may also be used to predict various physical

properties.

Lekner67;68 calculates the electrostatic energies of various proton ordered configura-

tions of ice Ic, based on the conjecture that any energy difference as a result of differ-

ences in proton ordering will be purely electrostatic. It is a fairly primitive study, since

it only considers the Hartree component of the total energy, and uses ideal (unrelaxed)

ice lattices with straight hydrogen bonds, ignoring quantum effects. By using the pro-

ton position on the hydrogen bond as a coordinate, and what appears to be a similar

method to Howe’s84, Lekner concludes that there are 90 configurations of the cubic

eight-molecule F d 3̄m cell that satisfy the ice rules. In a later study68, Lekner explicitly

calculates the number of valid configurations for the eight-molecule ice Ih cell as 114 in

agreement with Hirsch and Ojamäe12.

Lekner’s calculations suggest that the electrostatic energy is linearly related to the

dipole moment of the cell squared, so the degeneracy of the configurations can be

worked out on the basis of the cell dipole moment; in this way, he determines that

there are 17 distinct energies for the Ih cell (in agreement with Howe84), and 4 for the Ic

cell. He goes on to suggest that antiferroelectric configurations for both hexagonal and

cubic cells would be energetically favoured on the basis of electrostatic considerations.

In an analogous study of diamond68, he shows using purely electrostatic arguments that

the cubic structure for a lattice of carbon atoms is the energetically favourable compared

with a hexagonal lattice. Although his method makes qualitatively correct predictions,

it is highly unlikely that it is robust considering the coarseness of the approximations;
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he used unrelaxed structures and did not take quantum mechanical effects into consid-

eration.

It is impossible to use atomistic periodic models of ice to simulate macroscopic pro-

ton disordered systems since they are ordered by construction (although it is possible to

simulate proton disorder using surprisingly small cells of a few hundred molecules);

any non-periodic system would have to be intractably large in order to capture the

macroscopic properties of ice, and would include surface effects. Rick and Haymet89

used ensembles of quasi-disordered ice configurations generated by their ‘Move Algo-

rithm’ in order to simulate disorder, with the aim of reproducing experimental values

of the exceptionally high dielectric constant of water. The Move Algorithm essentially

uses random walks to identify closed loops of hydrogen bonds, then reorienting the

molecules on the loop using the Metropolis Monte Carlo scheme to accept or reject the

new arrangement on the basis of configurational energy. Of the three empirical poten-

tials used, they found TIP4P-FQ (a TIP4P variant that allows fluctuating charge, and

therefore induced polarisation90) to give a dielectric constant closest to the experimen-

tal value; it also showed signs of a transition to a proton ordered phase at 50 K–100 K

which would make it consistent with the ice Ih↔ ice XI transition.

2.7 Proton ordering in ices Ih and Ic

Buch, Sandler and Sadlej48 approach the problem of proton ordering in ice with a view

to constructing a potential that favours the ferroelectric C mc21 as the most stable pro-

ton ordered form of ice Ih, rather than Bjerrum’s P na21 structure. They used a Rick

and Haymet’s ‘Move Algorithm’89 to generate quasi-random proton-disordered config-

urations for large unit cells containing up to 1600 water molecules. Cells were gen-

erated containing the oxygen sub-lattice for ice Ic or Ih, and a hydrogen atom placed

at one of the two possible positions on each oxygen-oxygen axis, at which point each

oxygen atom would be ‘bonded’ to between zero and four hydrogen atoms. At each
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Monte Carlo step, a bond was picked at random, and the hydrogen atom moved to the

alternative position on the oxygen-oxygen axis with a probability favouring a config-

uration with all oxygen atoms bonded to exactly two hydrogen atoms. The fact that

they found 16 distinct eight-molecule ice 1h configurations (in agreement with Hirsch

and Ojamäe12) vindicates their method. The energies of the ideal cells displayed a linear

correlation with the fraction of trans hydrogen bonds ( ft ), with more stable structures

having a higher ft as predicted by Bjerrum; however full geometry optimisation broke

the correlation. Rick and Haymet89 have used ft as an order parameter in an earlier

study, but this only makes sense when using rigid body models such as SPC and TIP4P.

One limitation of studying proton-ordered configurations of ice is that for a cell

containing a given oxygen sub-lattice, the fraction of trans hydrogen bonds can only

take certain discrete values. Bartók and Baranyai65 performed Monte Carlo simulations

on quasi-disordered ice configurations, in order to effectively make the trans fraction a

continuous variable, within limits prescribed by the geometric constraints - for example,

the fraction of h-cis and h-trans bonds in ice Ih is 0.75. They noted that it was only

possible to generate disordered configurations with the trans fraction in a narrow range,

and it was not generally possible to expand this range substantially by increasing the cell

size; for example, in a 432 molecule cell, 0.56 < ft < 0.75. They found that the energy

and trans fraction were (more or less) correlated, as expected, and suggested that the

distribution of hydrogen bond isomers can be used to uniquely identify phases for the

tetrahedral structures examined (ices Ih, XI, VII and VIII), but the hydrogen bonding

structures of other phases were too complicated for this approach. They conclude by

estimating that there are generally small energy differences of 10 J mol−1–1000 J mol−1

between pairs of proton ordered and disordered polymorphs, which is consistent with

DFT calculations.

Bartók and Baranyai used several empirical potentials in their aforementioned study,

including TIP5P-EW (a re-parameterised TIP5P with better representation of long range
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forces), TIP4P-EW and TIP4P/2005. In a previous paper91, they simulated the ice

phases I-XII (an exhaustive set at the time) using the popular SPC/E and TIP4P po-

tentials and a Monte Carlo method. The results suggested that these coarse models are

unable to predict the subtle energy differences between low pressure phases (notably ices

Ih and Ic), and they significantly overestimate the energies of the high pressure phases.

This is not entirely surprising when one considers the physical origin of these models

as Baranyai and Bartók do in a subsequent paper92. They are both rigid body models

based on opposite extremes of the phase diagram: SPC/E is 3-site model based on the

perfect tetrahedral structure of crystalline ice, and TIP4P is a 4-site model with geom-

etry based molecules in the gas phase. In this study, they repeated the calculations on

thirteen phases of ice using the TIP4P potential and two of its variations, TIP4P-EW and

TIP4P/ice, as well as an ‘average’ model, with geometry compromised between those

of SPC/E and TIP4P. It was found that none of these models resulted in a significant

improvement over SPC/E and TIP4P, although TIP4P-EW yielded the best results. It

therefore seems that no single simple rigid-body model is sufficient to model all phases

of water, and are not capable of resolving the energy differences between ices Ic and Ih,

let alone their proton ordered configurations, although constant refinement and repa-

rameterisation may eventually yield a usable potential.

The group of Casassa, Pisani et al. has written a number of papers on proton order-

ing energetics in hexagonal and cubic ice69;93–96. In their 1996 paper93, they use periodic

Hartree-Fock (HF) calculations to determine the energy difference between two proton

ordered forms of ice Ih, denoted C-ice (which is the actual structure of Ice XI, space

group C mc21) and P-ice (a hypothetical anti-ferroelectric proton-ordered ice structure

proposed by Davidson and Morokuma14, in space group P na21). According to David-

son and Morokuma’s three-body potential calculations, P-ice has a lower energy than

C-ice because all of the hydrogen bonds have the trans-configuration, maximising the

distances between repulsive centres; however the HF calculations of Pisani et al. sug-
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gest that C-ice and P-ice are ‘essentially iso-energetic’, and while their binding energies

were in good agreement with experimental results (allowing for the characteristic under-

binding of HF calculations), Hirsch and Ojamäe’s later work12 demonstrates that HF

calculations using the fairly extensive 6-31G** basis set are not accurate enough to re-

solve energy differences between proton ordered polymorphs of ice, most likely due to

the omission of electron correlation.

Whilst there are no studies that examine an exhaustive set of proton valid proton

ordered configuration in cubic ice in the vein of the Hirsch and Ojamäe study12, there

are details of possible ground state structures. In a neutron diffraction study of ice Ic,

Kuhs et al. mentioned candidates for a hypothetical proton orrdered phase with space

groups I 41md and P212121
51. Casassa et al. examined two configurations with space

groups I 41md (ferroelectric) and P41212 (antiferroelectric)69. In this paper, they take

a step up from HF methods and apply GGA and hybrid periodic DFT methods to

calculate the energies of four different proton ordered configurations of ice: the afore-

mentioned C mc21 (polar hexagonal) and P na21 (apolar hexagonal) structures, and two

different cubic ice configurations: P41212 (apolar cubic) and I 41md (polar cubic). By

performing DFT calculations on water molecules and dimers using various basis sets, it

was shown that HF tends to under-bind and DFT tends to over-bind, with the B3LYP

hybrid functional yielding results closer to experimental values cited by Petrenko and

Whitworth46 than the PW91 GGA functional. Their results indicated that ice XI

(C mc21) is metastable with respect to proton ordered cubic ice (I 41md ) by 880 J mol−1–

3517 J mol−1, a fact they described as ‘contrary to intuition.’ They conclude that the

cubic structure is more stable than the hexagonal, and ferroelectric structures are more

stable than anti-ferroelectric; the latter assertion is widely supported in the literature

(for example, Knight et al.88), but the former has interesting implications, and again

raises the question as to why hexagonal ice structures are preferred in nature. Note that

in contradiction with the CRYSTAL calculations in this paper, the VASP calculations
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suggest that the anti-ferroelectric structure should be more stable; they also disagree

with the analogous CASTEP calculations of Hirsch and Ojamäe, which are considered

to be robust - indeed, they acknowledge that the VASP results are erroneous in a later

publication96.

In their 2009 papers94–96, Erba et al. perform essentially the same calculations as in

the 2005 paper69 on the C mc21 and P na21 structures, but with a different computa-

tional setup. HF, post-HF (local-MP2) and DFT (PW91, B3LYP) with two different

basis sets. In this case, the GGA calculations were in agreement with those of Hirsch

and Ojamäe. The B3LYP results are in such good agreement with experimental data

that Erba et al. significantly conclude that dispersive interactions are insignificant in ice

(since DFT is known not to model long range interactions well); however, unpublished

results suggest that a dispersion correction adds 5–10% to total absolute energies, which

would take the B3LYP energies significantly away from the experimental values; in this

case, perhaps a ‘fortuitous cancellation of errors’69 is responsible for the excellent agree-

ment.

Tribello and Slater97 revisited the 16 symmetry-inequivalent proton ordered struc-

tures of Hirsch and Ojamäe in an attempt to determine what effect the exchange-correlation

functional recipe has on their relative energies, the answer being “surprisingly little”. By

performing DFT calculations using the CASTEP code, they showed that the relative en-

ergies were similar for two GGA functionals, PW91 and RPBE, and even an LDA func-

tional - leading to the conclusion the proton ordering energetics are determined solely

by electrostatic effects; this was confirmed by a multipolar analysis, which also demon-

strated that an accurate description of the electrostatics in ice requires ‘surprisingly high

order multipoles.’

Labat et al. performed a detailed study of the P na21 and C mc21 configurations

of hexagonal ice, their assertion being that the energy of the P na21 structure is close

to the approximate average energy of the ensemble of structures comprising ice Ih98.
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They examine the relative energies using several density functionals including GGA,

hybrid, meta-GGA and hybrid meta-GGA with differing fractions of Hartree-Fock ex-

change. Whilst the structure and band gap are sensitive to the choice of functional,

they show that the energy difference is only weakly affected, by ∼2 meV, supporting

the notion that the energetics of proton ordering is well-described by a range of func-

tional97. They conclude that although non-local exchange has a significant effect on

the electronic structure and energetics of hexagonal ice, it does not significantly affect

the relative energies of proton ordered configurations, and that the relative energy is

insensitive to changes in the exchange-correlation functional recipe. They also note that

only the M06-L (meta-GGA) and B3LYP (hybrid) functionals reproduce the formation

energies, and only B3LYP is capable of accurately describing the electronic structure.

Calculating the dipole moment of a water molecule in an ice crystal is a non-trivial

task, since it is necessary to take into account the dipoles induced by neighbouring

molecules (and perhaps even those in higher coordination shells). Batista et al.99 de-

veloped an ingenious ‘induction model’ which uses an individual water molecule to

calculate high order multipole moments of water molecules in ice crystals. Starting

with the dipole moment of an isolated molecule, a first order correction is added for

dipoles, quadrupoles, octapoles and higher order multipoles induced by neighbouring

molecules, then this process is repeated using the updated multipoles to generate a sec-

ond order correction, and so forth. Each molecule is then represented by multipole

tensors at its centre of mass. The electric field of the molecule is then calculated using

experimental values for the dipole and quadrupole, and results obtained from ab initio

calculations for higher order multipoles. They found that by using such a multipole ex-

pansion up to and including the hexadecapole, they were able to reproduce the electric

field as calculated using DFT. This goes some way to explaining why empirical poten-

tials have been so unsuccessful at correctly predicting the structure of ice XI (they tend

to show a preference for the P na21 structure predicted by Bjerrum instead of the ferro-
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electric C mc21 structure) - most of these potentials do not expand beyond the dipole

term.

2.8 Proton ordering in the ice surface

Faraday’s famous experiment in which a length of cheese wire with weights at either

end cuts through a block of ice demonstrated that there is something ‘special’ about the

ice surface; as the wire descends, the two surfaces above it fuse together, leaving a sin-

gle block of ice, a phenomenon known as ‘regelation’ that cannot simply be accounted

for by pre-melting46. The ice surface is characterised by three different types of sur-

face molecule: dangling OH bonds, notionally dangling hydrogen bonds (the lone pair

on the oxygen atom, or the hydrogen bond site not occupied by a proton) and four-

coordinated water molecules with distorted geometry. Dangling bonds tend to desta-

bilise the surface, so there is great interest in how surface reconstructs itself in order to

(at least partially) mitigate their effect.

Fletcher’s 1992 paper100 considers proton ordering on the ice surface. His intuitive

analysis of electrostatic interactions in basal and prism surfaces led him to conclude that

these surfaces should undergo a transition to a proton-ordered phase. One candidate

for an ordered phase was the distinctive ‘striped’ phase (see figure 5.2 for the atomic

structure), consisting of alternating rows of dangling OH bonds and lone pairs. He pro-

posed a mechanism for this reconstruction, based on the motion of Bjerrum L (“empty”

hydrogen bonds) and D (hydrogen bonds occupied by two protons) defects which can

form in bulk ice in pairs, but singly at the surface. The surface acts as a sink and a source

for these defects, and at a reduced energy cost since the surface reduces the elastic strain

associated with these defects.

Proton transfer can also occur in ice via the motion of ionic defects. In the absence

of impurities, these defects are formed by water autoionisation, in which a pair of water

molecules forms a H3O
+ ion and an OH− ion; charge transfer occurs as a result of pro-
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tons hopping between ions because the H3O
+ is more mobile. Note that this is not a

conduction mechanism; the passage of a proton along a path results in molecular reori-

entations which would require violations of the second ice rule for additional protons

to follow the same path. Devlin and Buch101 used an isotopic exchange technique to

examine this phenomenon. The spectra of three unique species were observed in D2O-

doped ice nanocrystals: D2O, coupled [HDO]2 dimers and isolated HDO molecules.

Measurements of proton transfer rate suggested that it occurred 20 times faster in the

surface than in the bulk, and that there is an energy barrier to the penetration of surface-

originating protons which increases with depth into the crystal — perhaps a result of

coulombic attraction to the much less mobile OH− ions which are “frozen” into the

surface. Intriguingly, they found that the proton exchange rate could be made to vary

wildly with the addition of an adsorbate. For example, a surface monolayer of a pro-

ton source such as H2S greatly increased the exchange rate by injecting protons into the

crystal. A 1% monolayer of NH3 almost stopped proton exchange due to the trapping

of surface protons by a strong acceptor, whereas a full monolayer induced an increased

exchange rate since the high OH− ion concentration restarted exchange in spite of the

low mobility of OH− ions. A 40% monolayer of SO2 caused an extreme acceleration in

proton exchange; this was attributed to a reduction in surface strain due to the incorpo-

ration of the adsorbate into the surface. The SO2 adsorbate also eliminated orientational

defects, supporting the hypothesis that Bjerrum defects are injected from the surface.

Buch et al.102 performed a series of surface calculations using two empirical poten-

tials, TIP4P/ice and EMP (a modification of the MCY ab initio potential designed to

include induced polarisation effects103), and sets of ice slabs with orientational disorder

in the bulk. Each slab had one of three surface ordered pattern on the two basal planes

that formed the slab surfaces; it was found that the sets using the fletcher “striped” phase

had the lowest mean energy. Monte Carlo simulations of fully disordered surfaces indi-

cated a tendency for clusters of dangling OH bonds to “unclump” - although the surface
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atoms did not assume the Fletcher striped phase, they did arrange themselves in a ‘me-

andering stripe pattern,’ which was locally reminiscent of the striped phase, and almost

iso-energetic. This is qualitatively in agreement with the DFT calculations of Pan et

al., whose order parameter (which is directly correlated with surface energy) assigns the

striped and meandering striped phase the same value, whilst the less favourable “honey-

comb” phase has a higher order parameter. It is important to note that the model Buch

et al. used in this study does not predict the correct structure for ice XI, which is not

a convincing basis for a study on surface effects; however, the only significant surface

effect is the Coulomb repulsion of dangling protons, which is modelled. Another pos-

sible criticism of this study is the lack of an order parameter to quantify the degree of

order in the ice surface.

One of the defining characteristics of the many DFT calculations of the energies of

proton ordered configurations of bulk ice is how small the range of energy differences

is: slightly less than 1 kJ mol−1 separates the most and least stable or the 16 symmetry-

unique proton ordered configurations of Hirsch and Ojamäe12. In their study on proton

order of the ice Ih surface, Pan et al.5;104 estimate that the proton-ordered configurations

of bulk ice Ih are within ∼5 meV/H2O of each other, compared with ∼100 meV/H2O

for the surface. It therefore seems that proton ordering affects the energetics of the ice

surface by an order of magnitude more than it affects the bulk. Indeed, according to

their calculations, the studied ice surfaces (the basal [0001] and prism [1010̄]) will not

become fully disordered at any meaningful temperature, i.e. before the onset of pre-

melting. They also determined, using an order parameter, that surface energy increases

as the degree of proton ordering in the surface increases, although they were not able

to identify a unique surface that could be said to be the most stable - instead there ap-

pears to be a family of highly ordered degenerate surfaces, including Fletcher’s ‘striped

phase,’ in which the repulsive electrostatic energy of dangling OH bonds is minimised.

They go on to suggest that the charge-charge interactions between dangling OH bonds
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on the ice surface is analogous to the much weaker dipole-dipole interactions “notion-

ally dangling” hydrogen bonds (i.e. an oxygen lone pair that acts as a hydrogen bond

acceptor) in the bulk ice, which may explain why proton ordering affects energetics on

the surface so much more dramatically than it does in the bulk.

Computational modelling has clearly taught us a great deal about the relationship

between the sub-nanometre scale structure of ice and its properties, but many gaps in

our knowledge remain. The calculations described in this thesis to further our under-

standing of ice primarily use electronic structure methods, for which the theoretical

background is discussed in the next chapter.



Chapter 3

Theoretical background

3.1 Introduction

At the atomic level, all interactions between non-relativistic particles are governed by

quantum mechanics, as prescribed by the time-dependent Schrödinger equation.

i ħh
dΨ({ri}; t )

d t
= ĤΨ({ri}; t ) (3.1)

Here, the particle wavefunctionΨ is a function of its position ri and time t , and Ĥ is the

Hamiltonian. The wavefunction can be decomposed into time-dependent and indepen-

dent parts, and written Ψ({ri}; t ) = Ψ({ri})e−
i E
ħh t . If the wavefunction does not evolve

with time, equation (3.1) simplifies to the time-independent Schrödinger equation,

HΨ({ri}) = EΨ({ri}) (3.2)

This is an eigenvalue equation; the eigenstates correspond to stationary points on the

potential energy surface, and the eigenvalues at those points are their energies. The

ground state energy can in principle be determined by minimising the total energy E

with respect to the independent variables {ri}. In practice, this is a very difficult prob-

54
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lem for all but the simplest systems; for many-body systems, it is intractable unless

approximations are made. The most basic of these is the Born-Oppenheimer approx-

imation: since the mass of an electron is so much smaller than the mass of a nucleus,

their motions can be decoupled by treating the nuclear mass as infinite when solving the

Schrödinger equation for the electrons, and using the gradient of the electronic energy

to calculate the forces on the nuclei.

This section discusses the means by which the Schrödinger equation can be recast

into a form which can in practice be used to explore the potential energy landscapes of

systems of many atoms. These methods can be used to evaluate clusters of atoms, or

when periodic boundary conditions are applied, bulk solids. With a judicious choice

of models, they can also be used to model (among many other things) infinite two-

dimensional surfaces and to study reaction chemistry and catalysis.

3.2 General polyelectronic systems

The basic Hamiltonian for a system of interacting electrons and nuclei is (using atomic

units of ħh = me = e = 4π
ε0
= 1):

Ĥ =−
1

2

∑

i

∇2
i −
∑

i ,I

ZI

|ri −RI |
+

1

2

∑

i 6= j

1

|ri − r j |
−

1

2

∑

I 6=J

ZI ZJ

|RI −RJ |
(3.3)

= T̂ + V̂ext+ V̂int+ EI I (3.4)

where ZI is the charge of the I th nucleus, ri is the position of the i t h electron and

RI is the position of the I t h nucleus. Note that the nuclear kinetic energy opera-

tor −
∑

I
1

MI
∇2

I is omitted via application of the Born-Oppenheimer approximation

(MI � me , where MI is the mass of nucleus I ). The terms in equation (3.3) are, in

order, the kinetic energy operator (T̂ ), the potential energy of an electron in the nu-

clear potential (V̂int), the potential energy arising from electron-electron interactions
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(V̂ext) and the nuclear-nuclear potential energy (EI I ).

The total energy of the system is the expectation value of the Hamiltonian acting on

the total electronic wavefunction:

E = 〈Ĥ 〉=
〈Ψ|Ĥ |Ψ〉
〈Ψ|Ψ〉

= 〈T̂ 〉+ 〈V̂int〉+
∫

d 3 rVext(r)n(r)+ EI I (3.5)

Here, EI I is a classical additive term. The eigenstates of this equation are stationary

points of E, and can be found using the variational method and Lagrange multipliers.

A naïve first guess at the total wavefunction Ψ of a N electron system is a simple

product of the single electron spin orbitals, the Hartree product:

Ψ(1,2, . . . ,N ) = χ1(1)χ2(2) . . .χN (N ) (3.6)

where χN is the single electron spin orbital of the N th electron. This choice is inappro-

priate because it does not satisfy the antisymmetry principle (or Pauli exclusion princi-

ple), which requires the sign of the total wavefunction to change under the exchange of

two electrons. To state this in a more intuitive way, the Hartree product assumes that

the probability of finding an electron at a specific point is independent of the probability

of finding any other electron there.

The most convenient way of writing an antisymmetric polyelectronic wavefunction

is a Slater determinant.

Ψ=
1
p

N !

�

�

�

�

�

�

�

�

�

�

�

�

�

χ1(1) χ2(1) · · · χN (1)

χ2(1) χ2(2) · · · χN (2)
...

... . . . ...

χN (1) χN (2) · · · χN (N )

�

�

�

�

�

�

�

�

�

�

�

�

�

(3.7)

Interchanging any two rows of the determinant represents the exchange of two electrons

and is associated with a change of sign. Additionally, a multiple of any column can be
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added to any other column without altering the determinant, i.e. spin orbitals can be

constructed from linear combinations of other spin orbitals.

3.3 Hartree-Fock theory (HF)

The expression for the energy of a general polyelectronic system (3.3) can be cast in a

more concise form by decomposing the energy into the three main contributions:

1. The potential and kinetic energy of the electrons moving in the nuclear potential:

H core
i i =

∫

dτ1χi (1)

 

−
1

2
∇2

i −
M
∑

a=1

ZA

riA

!

χi (1) (3.8)

2. The pairwise electrostatic repulsion between electrons 1 and 2 in spin orbitals i

and j :

Ji j =
∫ ∫

dτ1dτ2χi (1)χ j (2)
1

r12

χi (1)χ j (2) (3.9)

The total electrostatic interaction between electrons in orbital χ1 and the other

(N − 1) electrons is therefore,

ECoulomb
i =

N
∑

j 6=i

∫

dτ1dτ2χi (1)χi (1)
1

r12

χ j (2)χ j (2) (3.10)

Hence the total Coulomb contribution for all electrons is:

ECoulomb
total =

N
∑

i=1

N
∑

j=i+1

∫

dτ1dτ2χi (1)χi (1)
1

r12

χ j (2)χ j (2) (3.11)

=
N
∑

i=1

N
∑

j=i+1

Ji j (3.12)

3. The energy of the exchange interaction between electrons 1 and 2 in orbitals i

and j . This is a manifestation of the Pauli exclusion principle, and it has no clas-

sical analogue. The physical consequences are that there is a finite probability of
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finding two electrons with the opposite spins at the same position, but there is a

zero probability of finding two electrons with the same spin at the same position.

The exchange interaction always lowers the total energy, and is therefore some-

times interpreted as the interaction of an electron with a positive “exchange hole”

surrounding it.

Ki j =
∫ ∫

dτ1dτ2χi (1)χ j (2)
1

r12

χi (2)χ j (1) (3.13)

This quantity is only non-zero if the electrons in spin orbitals χi and χ j have the

same spin. The interaction energy between an electron in spin orbital χi and the

other N − 1 electrons is:

EX
i =

N
∑

j 6=i

∫ ∫

dτ1dτ2χi (1)χ j (2)
1

r12

χi (2)χ j (1) (3.14)

Hence the total exchange energy for the system is:

EX
total =

N
∑

i=1

N
∑

j ′=i+1

∫ ∫

dτ1dτ2χi (1)χ j (2)
1

r12

χi (2)χ j (1) (3.15)

=
N
∑

j=1

N
∑

j ′=i+1

Ki j (3.16)

where the j ′ label indicates a sum over electrons with the same spin as i .

These terms can be incorporated into the Schrödinger equation as follows:



−
1

2
∇2

i

M
∑

A=1

ZA

r12



χi (1)+
∑

j

�
∫

dτ2χ j (2)χ j (2)
1

r12

�

χi (1)−

∑

j

�
∫

dτ2χ j (2)χi (2)
1

r12

�

χi (1) =
N
∑

j

εi jχ j (1) (3.17)

H core(1)χi (1)+
N
∑

j

Ji (1)χi (1)−
N
∑

j

K j (1)χi (1) =
N
∑

j

εi jχ j (1) (3.18)
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Note that the sums in equation (3.17) include spurious “self-interaction” terms where

i = j ; in the full Hartree-Fock expression, these conveniently cancel out between the

Coulomb and Exchange terms (the second and third terms in equation (3.17)). Using

the fact that {Ji (1)−Ki (1)}χi (1) = 0, we arrive at the Hartree-Fock equations:






H core(1)+

N
∑

j=1

{J j (1)−K j (1)}






χi (1) =

N
∑

j=1

εi jχ j (1) (3.19)

Fi (1)χi (1) =
N
∑

j=1

εi jχ j (1) (3.20)

Where the Fock operator Fi is an effective one-electron Hamiltonian for a polyelec-

tronic system. For the less general closed shell case, it becomes,

Fi (1) =H core(1)+
N/2
∑

j=1

{2J j (1)−K j (1)} (3.21)

The Fock operator is invariant under unitary transformations, and as long as εi j is her-

mitian, it is always possible to transform the Hartree-Fock equations (3.20) to a canon-

ical eigenvalue equation Fiχi = εiχi . The integro-differential equations (3.19) can be

recast as a set of algebraic equations by representing wavefunctions using a set of spatial

basis functions (for example, Gaussians). Introducing a general basis {φµ},µ= 1, . . . ,K ,

the spatial orbitals ϕ are:

ϕi =
K
∑

µ=1

Ciµφµ i = 1,2, . . . ,K (3.22)

Substituting into the canonical Hartree-Fock equations:

F (1)
∑

ν

Ciνφν(1) = εi

∑

ν

Ciνφν(1) (3.23)
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Multiplying by φ∗
ν

and integrating:

∑

ν

Ciν

∫

φ∗
ν
(1)F (1)φν(1)dr1 = εi

∑

ν

Ciν

∫

φ∗
ν
(1)φν(1)dr1 (3.24)

∑

ν

Ciν〈φµ|F |φν〉= εi

∑

ν

Ciν

∫

φ∗
µ
(1)φν(1)dr1 (3.25)

∑

ν

CiνFiν = εi

∑

ν

CiνSµν (3.26)

In matrix form, these are the Roothan-Hall equations, FC= SCε; F , C, S and ε are

K ×K matrices and ε is diagonal. In order to solve the Roothan-Hall equations must

be transformed into an eigenvector equation using the transformation matrix X, which

generates an orthonormal basis {φ′} from the initial basis {φ}. This orthogonal trans-

formation satisfies X†SX= I such that C′ =X−1C and C=XC′. Thus the Roothan-

Hall equations become:

FXC′ = SXC′ε (3.27)

(X†FX)C′ = (X†SX)C′ε (3.28)

F ′C′ =C′ε (3.29)

Many properties of they system can be derived using the electron density, so the

electron density matrix Pµν can be derived from the electron density ρ(r) as follows:

ρ(r) = 2
N/2
∑

i=1

|ϕi (r)|
2 = 2

N/2
∑

i=1

ϕi (r)ϕ
∗
i (r) (3.30)

= 2
N/2
∑

i=1







K
∑

µ

Cµiφµ(r)







 

K
∑

ν

Cν iφν(r)

!∗

(3.31)

=
K
∑

µ,ν






2

N/2
∑

i=1

Cµi C
∗
ν i






φµ(r)φ

∗
ν
(r) (3.32)

Pµν = 2
N/2
∑

i=1

Cµi Cν i (3.33)
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Each equation represents the motion of a single electron in the fixed field resulting

from the N − 1 other electrons in the system — clearly, any solution found for the

single electron Hamiltonian will alter the solutions of the remaining N −1 equations —

thus the overall solution must be found using the self-consistent field (SCF) approach.

The following iterative procedure105 is generally used when solving the Hartree-Fock

equations:

1. Calculate the integrals comprising the Fock matrix

2. Construct the overlap matrix S

3. Diagonalise S

4. Guess or calculate initial density matrix P

5. Construct the Fock matrixF using integrals and density matrix

6. TransformF →F ′ =X†FX

7. DiagonaliseF ′ to solve the eigenvalue equation (3.29) with respect to C′

8. Calculate C=XCT

9. Re-evaluate density matrix P using C

10. Repeat from step 5 until self-consistency is achieved

Hartree-Fock is an ab initio method; its strength lies in the fact that in principle,

it calculates the exact exchange energy. However, it neglects all correlation other than

the two-body correlation required by the Pauli exclusion principle, and this usually

constitutes a significant error. Although Hartree-Fock calculations on small systems

are tractable, it scales poorly with size; 3N coordinates are required to describe a closed

shell system containing N electrons (4N for an open shell system); it also scales as b 4

for a system described by b basis functions.
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3.4 Open shell systems: unrestricted Hartree-Fock (UHF)

The restricted Hartree-Fock (RHF) as described above assumes all molecular orbitals

are fully occupied; the most general formulation, Unrestricted Hartree-Fock, relaxes

this requirement.

A major shortcoming of RHF can be demonstrated by considering the hydrogen

molecule (H2) with a minimal basis set, i.e. the atomic orbitals consist of one s-function

on each centre, χA andχB . An RHF calculation will result in a doubly occupied bonding

MO, φ1, and an unoccupied anti-bonding MO, φ2:

φ1 = χA+χB (3.34)

φ2 = χA−χB (3.35)

The ground state can be expressed as a Slater determinant, Φ0:

Φ0 =

�

�

�

�

�

�

�

φ1(1)α(1) φ1(1)β(1)

φ1(2)α(2) φ1(2)β(2)

�

�

�

�

�

�

�

(3.36)

=φ1(1)α(1)φ1(2)β(2)−φ1(1)β(1)φ1(2)α(2) (3.37)

=φ1(1)φ1(2)[α(1)β(2)−α(2)β(1)] (3.38)

The first excited state Φ1 can be written,

Φ1 =

�

�

�

�

�

�

�

φ2(1)α(1) φ2(1)β(1)

φ2(2)α(2) φ2(2)β(2)

�

�

�

�

�

�

�

(3.39)

=φ2(1)α(1)φ2(2)β(2)−φ2(1)β(1)φ2(2)α(2) (3.40)

=φ2(1)φ2(2)[α(1)β(2)−α(2)β(1)] (3.41)

The Hamiltonian is spin-independent in the RHF approximation, so the spin functions
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α andβ can be ignored, and the MOs expanded in terms of the atomic orbitals (equation

(3.34)).

Φ0 = (χA(1)+χB(1))(χA(2)+χB(2)) = χAχA+χBχB +χAχB +χBχA (3.42)

Φ1 = (χA(1)+χB(1))(χA(2)−χB(2)) = χAχA+χBχB − (χAχB +χBχA) (3.43)

The final expressions for Φ0 and Φ1 can be divided into two separate contributions. The

first is the ionic contribution to the wavefunction, with both electrons on the same

atomic centre (χAχA+χBχB ) and the second is the covalent contribution with electrons

on opposite atomic centres (χAχB +χBχA). These expressions demonstrate that in the

RHF approximation, the wavefunctions contain equal ionic and covalent character at

all atomic separations, when in fact, in the case of the H2 molecule, the wavefunction

should have 100% covalent character at large separations. This is known as the RHF

dissociation problem: when the atomic centres are pulled apart, the ionic character

results in heterolytic rather than the desired homolytic dissociation.

The RHF dissociation problem can be corrected using an unrestricted Hartree-Fock

wavefunction:

φ1α(1) = (χA+ cχB)α(1) (3.44)

φ1β(1) = (cχA+χB)β(1) (3.45)

The coefficient c is determined using the variational principle. A value of c = 1 recovers

the RHF wavefunction. Thus the ground state UHF wavefunction can be written by
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expanding its Slater determinant:

ΦUHF
0 =

�

�

�

�

�

�

�

φ1(1)α(1) φ1(1)β(1)

φ1(2)α(2) φ1(2)β(2)

�

�

�

�

�

�

�

(3.46)

= c(χAχA+χBχB)(αβ−βα)+ (χAχBαβ− c2χBχAβα) (3.47)

+(c2χBχAαβ−χAχBβα) (3.48)

= [c(χAχA+χBχB)+ (χAχB +χBχA)](αβ−βα) (3.49)

+(1− c2)(χAχBβα−χBχAαβ) (3.50)

Expanding the first four RHF determinants in terms of AOs gives,

ΦRHF
0 = [χAχA+χBχB +χAχB +χBχA](αβ−βα) (3.51)

ΦRHF
1 = [χAχA+χBχB −χAχB −χBχA](αβ−βα) (3.52)

ΦRHF
2 = [χAχA+χBχB](αβ−βα)− [χAχB](αβ+βα) (3.53)

ΦRHF
3 = [χAχA−χBχB](αβ−βα)+ [χAχB −χBχA](αβ+βα) (3.54)

The excited states ΦRHF
2 and ΦRHF

3 can be combined to construct the singlet and triplet

states, 1Φ− and 3Φ+ respectively:

1Φ− =Φ
RHF
2 −ΦRHF

3 = [χAχA−χBχB](αβ−βα) (3.55)

3Φ+ =Φ
RHF
2 +ΦRHF

3 = [χAχB −χBχA](αβ+βα) (3.56)

Thus the first term in the expansion of ΦUHF
0 (3.49) can be expanded as a linear combina-

tion of the ΦRHF
0 and ΦRHF

1 determinants and therefore describes a pure singlet state. The

second term (3.50) has terms in common with the triplet state 3Φ−. Thus the ground

state UHF determinant contains both singlet and triplet states, and is not a pure spin

state — this phenomenon is known as spin contamination. Spin contamination is gen-
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erally most significant near transition states, where bonds are stretched and are not at

the RHF limits. The UHF description overestimates biradical character in homolytic

dissociation (i.e. the tendency for a bond to break into two radicals rather than two

ions). Spin contamination is not constant along the reaction coordinate, which can lead

to the actual transition state appearing as a bogus local minimum on the UHF poten-

tial energy surface. In addition, the UHF solution is often too flat near saddle points,

which can lead to UHF barriers being lower than RHF barriers. The UHF wavefunc-

tion lowers the energy by allowing some occupation of excited states (i.e. introduces

some correlation), but increases the energy by higher energy spin states. The point at

which these two effects are equal is known as the instability point: as a bond is stretched,

the correlation energy increases until it exceeds the spin contamination energy at this

point.

For pure spin states, the expectation value of the Ŝ2 operator is given by the ex-

pression 〈Ŝ2〉 = Ŝz(Ŝz + 1). This equality no longer holds when spin contamination is

involved; it is evaluated by taking the spatial overlap between all pairs of α and β spin

orbitals:

〈Ŝ2〉= Ŝz(Ŝz + 1)+Nβ−
NM O
∑

i j

〈φαi |φ
β
j 〉

2 (3.57)

Therefore if α and β are identical, there is no spin contamination.

3.5 Electron correlation and post-Hartree-Fock meth-

ods

The Hartree-Fock method captures approximately 99% of the total energy of a system;

the remaining 1% is called the “correlation energy” and although relatively small, is of-

ten important in describing chemical interactions. Mean field models such as Hartree-

Fock and density functional theory assume that the probability of an electron classically
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occupying a specific point in space is independent of the position of all other electrons

in the system, and instead depends on an all-encompassing potential. Lewars uses the

analogy of an individual walking through a crowd106: given the knowledge of the posi-

tions and motions of every other person in the crowd, it is possible to avoid collisions

by adjusting, or correlating one’s route accordingly; this information is not available in

the case of a “mean field.” Since interactions are not treated in a pairwise manner in the

HF approximation, they are allowed to get too close to each other on average, resulting

in an energy that is too high, even in the limit of an infinite basis set.

Löwdin defines the correlation energy in the following terms:106;107

“The correlation energy for a certain state with respect to a specified Hamil-

tonian is the difference between the exact eigenvalue of the Hamiltonian and

its expectation value in the Hartree-Fock approximation for the state under

consideration”

In other words, the correlation energy is defined as the difference between the true

energy of the system and the Hartree-Fock energy with an infinite basis set — thus the

correlation energy will always be negative. In Lewars’ words, the correlation energy is

the “energy that the Hartree-Fock procedure fails to account for”106.

Ecorrelation = Eexact− EHF limit (3.58)

Hartree-Fock theory only includes correlation arising as a result of the Pauli exclu-

sion principle, and there is no correlation between two electrons in the same molecular

orbital (MO). Correlation between electrons with opposite spins (Coulomb correla-

tion) has both intra- and inter-orbital contributions, and will therefore be more signif-

icant than correlation between electrons with the same spin (Fermi correlation). Elec-

tron correlation is the tendency for electrons to “avoid” each other, thereby reducing

the energy of the system. Even notional uncharged electrons would be surrounded by
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a region that cannot be occupied by another uncharged electron of the same spin (the

Fermi hole); there is a similar exclusion zone which arises from electrostatic repulsion

(the Coulomb hole). Thus correlation energy arises from two distinct effects. Dynamic

correlation is the “instantaneous” correlation (electrons in the same spatial orbital), and

static correlation is where electrons avoid each other on a more “permanent” basis (elec-

trons in different spatial orbitals). By way of example, correlation between the two elec-

trons in a helium atom is purely dynamic, whereas correlation between the electrons in

a hydrogen molecule is purely static. There is no convenient way of decomposing the

correlation energy into dynamic and static contributions.

There are three general strategies for adding correlation effects to the Hartree-Fock

formalism:

• Explicitly include interelectronic distances as a variable in the Schrödinger equa-

tion. This is usually computationally intractable.

• Explicitly include the wavefunction of electron configurations other than the

ground state, i.e. excited states. This forms the basis for the configuration in-

teraction and coupled cluster methods.

• Treat the real system as a perturbed Hartree-Fock system, as in many body (Møller-

Plesset) perturbation theory.

3.5.1 Configuration interaction (CI)

It is possible to improve on the Hartree-Fock description by allowing electrons to oc-

cupy virtual molecular (anti-bonding) orbitals, essentially giving them more room to

avoid each other. This can be achieved using a multi-determinant wavefunction. In the

HF method, the components ψi of the many body wavefunction ψ are constructed as
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a linear combination of M basis functions, χs .

ψi =
M
∑

s=1

ci sχs (3.59)

Using the CI method, the componentsΨi of the wavefunctionΨ are built using a linear

combination of N Slater determinants φs :

Ψi =
N
∑

s=1

ci sφs (3.60)

In this representation, φ1 is the ground state HF determinant, and the rest represent ex-

cited states formed by promoting one or more electrons from occupied MOs to virtual

MOs. Just as M basis functions result in M MOs, L determinants result in L wave-

functions. Ψ1 is the ground state wavefunction, and Ψi>1 are wavefunctions for excited

states. Thus electron correlation methods are “two dimensional,” requiring two bases:

the basis set used to expand electronic wavefunctions, and the set of determinants to

model correlation. This makes them prohibitively expensive for all but the smallest

systems.

Excited Slater determinants are generated by replacing MOs that are occupied in

the HF determinant with MOs that are unoccupied. The excitation level depends on

the number of such replacements: singles (S), doubles (D) triples (T) and quadruples

(Q) denote one, two, three and four occupied orbitals in the determinant replaced with

virtual MOs respectively, up to a potential L excitations. For any basis set larger than

minimal, there are more virtual MOs than occupied MOs, thus number of excited Slater

determinants increases factorially with the number electrons and basis functions.

The CI method is uses a variational approach comparable to Hartree-Fock. A set

of fixed HF MOs are used to build Slater determinants (φ), and a trial wavefunction is
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written as a linear combination of these determinants:

ΨCI = a0φHF+
∑

S

aSφS +
∑

D

aDφD +
∑

T

aTφT + . . . (3.61)

=
∑

i

aiφi (3.62)

Where φHF is the HF determinant, φS are singly excited determinants, φD are double

excited and so on. Without going into the mathematics in detail, this is solved varia-

tionally using Lagrange multipliers, subject to the constraint that the CI wavefunction

is normalised. The Lagrangian L is therefore,

L= 〈ΨCI|H |ΨCI〉−λ(〈ΨCI|ΨCI〉− 1) (3.63)

where the first bracket is the energy of the CI wavefunction, and the second bracket is

its norm. Exploiting the orthogonality of the MOs, this reduces to,

L=
∑

i=0

a2
i Ee +

j 6=0
∑

i=0

ai a j 〈φi |H |φ j 〉−λ(
∑

i=0

a2
i − 1) (3.64)

The variational procedure requires that all derivatives of the Lagrangian with respect to

ai are set to zero:

∂ L

∂ ai

= 2
∑

i

a j 〈φ j |H |φ j 〉− 2λai = 0 (3.65)

ai (Ei −λ)+
∑

j 6=0

a j 〈φi |H |φ j 〉= 0 (3.66)

Here, it turns out that the Lagrange multiplier λ is the CI energy. The variational

problem has become the set of secular CI equations, which can be written as a matrix

equation (using Hi j = 〈φi |H |φ j 〉) and solved by diagonalising:

(H− EI)a= 0 (3.67)
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The lowest eigenvalue is the CI energy, the second lowest is the energy of the first excited

state, and so on.

In principle, the full CI energy is exact in the limit of an infinite basis set; how-

ever, as mentioned, the number of determinants increases factorially with the number

of electrons and basis functions, so only extremely small systems are computationally

tractable. In practice, the excitation level as in equation (3.61) must be truncated. Trun-

cation at the singles level results in the configuration interaction with singles method

(CIS), which gives no improvement over HF energies. Inclusion of only doubles (CID)

results in an improvement, but is only marginally more expensive than including sin-

gles and doubles (CISD). CISD is the normal practical limit for calculations, and scales

as M 6 (where M is the number of basis functions).

The CI method generates excited electron states from a single reference state,the

Hartree-Fock determinant. In many cases this is not an appropriate choice for the ref-

erence state, for example, ozone (O3) formally resembles a closed shell singlet species,

but in fact has significant open shell biradical character (figure 3.1). In such cases, a mul-

tireference wavefunction must be used by invoking such methods as multiconfiguration

SCF (MCSCF), multireference CI (MRCI), complete active state SCF (CASSCF) and

restricted active space SCF (RASSCF).
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Figure 3.1: Resonance structures ozone15. The presence of non-equivalent resonance
structures requires the use of multireference methods in order to recover all of the cor-
relation energy.

3.5.2 Møller-Plesset perturbation theory

In perturbation theory, it is assumed that the problem at hand differs only slightly

from a “reference” problem that has already been solved. In the case of the Schrödinger

equation, the perturbed Hamiltonian H is written,

H =H0+λH ′ (3.68)

where H0 is the reference Hamiltonian for the solved reference problem, H ′ is the per-

turbation, and the parameter λ varies from 0 to 1 such that λ = 0 corresponds to the

reference problem, which is:

H0φi = Eiφi (3.69)

where φi is a complete set of orthonormal solutions. The perturbed Schrödinger equa-

tion is then,

Hψ=Wψ (3.70)
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As the perturbation is increased by varying λ, the energy and wavefunction increase

continuously, and can be expressed as a Taylor expansion in terms of λ:

W =W0+λW1+λ
2W2+ . . . (3.71)

ψ=ψ0+λψ1+λ
2ψ2+ . . . (3.72)

Substituting these into the perturbed Schrödinger equation (3.70):

(H0+λH ′)(ψ0+λψ1+λ
2ψ2+ . . .) = (W0+λW1+λ

2W2+ . . .) (3.73)

Collecting terms with the same powers of λ:

H0ψn +H ′ψn−1 =
n
∑

i=0

Wiψn−i (3.74)

It can be show that the nth order wave function can be used to calculate the (2n+ 1)th

order energy:

W2n+1 = 〈ψn|H
′|ψn〉−

n
∑

k ,J=0

W2n−1−k−l 〈ψk |ψl 〉 (3.75)

The corrections to the unperturbed energy and wavefunction become more and more

complicated to express as the perturbation order is increased, so I will only mention

the first and second order corrections. Bearing in mind that the nth order corrections

to the energy and wavefunction can be expressed in terms of the matrix elements of

the perturbation operator over the unperturbed wavefunction φ0 and the unperturbed

energy E0. Starting from equation (3.74),

1. First order: H0ψ1+H ′φ0 =W0ψ1+W1φ0 where ψ1 =
∑

i ciφi

W1 = 〈φ0|H
′|φ0〉 (3.76)

c j =
〈φ j |H ′|φ0〉

E0− E1

(3.77)
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2. Second order: H0ψ2+H ′ψ1 =W0ψ2+W1ψ1+W2φ0 where ψ2 =
∑

i diφi

W2 =
∑

i=0

〈φ0|H ′|φi〉〈φi |H ′|φ0〉
E0− E1

(3.78)

d j =
∑

i=0

〈φ j |H ′|φi〉〈φi |H ′|φ0

(E0− E j )(E0− Ei )
−
〈φ j |H ′|φ0〉〈φ0|H ′|φ0〉

(E0− E j )
2

(3.79)

Møller-Plesset perturbation theory is formulated by choosing a sum over Fock op-

erators (equation (3.21)) to be the unperturbed Hamiltonian; this is the only choice that

results in a size-extensive method, although it is not necessarily consistent with the re-

quirement that the perturbation is small compared with H0. For an N electron system:

H0 =
N
∑

i=1

Fi =
N
∑

i=1

(hi +
N
∑

j=1

(J j −K j )) (3.80)

=
N
∑

i=1

hi +
N
∑

i=1

N
∑

j=1

〈gi j 〉 (3.81)

=
N
∑

i=1

hi + 2〈Vee〉 (3.82)

H ′ =H −H0 =
N
∑

i=1

N
∑

j=1

gi j −
N
∑

i=1

N
∑

j=1

〈gi j 〉 (3.83)

=Vee − 2〈Vee〉 (3.84)

Here, Vee is the interelectronic potential, and the final expression for H ′ is referred to

as the “fluctuation potential.” The zeroth order wavefunction is therefore simply the

Hartree-Fock determinant, and the zeroth order energy is,

W0 = 〈φ0|H0|φ0〉= 〈φ0|
N
∑

i=1

Fi |φ0〉=
N
∑

i=1

εi (3.85)

which is the sum of HF molecular orbital energies. The MO energy is the energy of

an electron in the field of all nuclei and all other electrons, therefore at zeroth order,

electron-electron repulsion is double counted. Using equation (3.76), the first order
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correction is,

W1 = 〈φ0|H
′|φ0〉= 〈Vee〉− 2〈Vee〉=−〈Vee〉 (3.86)

which corrects the spurious double counting. Therefore the first order Møller-Plesset

(where MPn denotes the nth order Møller-Plesset method) recovers the total energy

from the Hartree-Fock method, and in this scheme, the lowest level of approximation

for electron correlation occurs at the second order. The second order energy correction

is,

W2 =
occ
∑

i< j

vir
∑

a<b

〈φ0|H ′|φab
i j 〉〈φ

ab
i j |H

′|φ0〉

E0− E ab
i j

(3.87)

E(MP2) =
occ
∑

i< j

vir
∑

a<b

〈φiφ j |φaφb 〉− 〈φiφ j |φbφa〉
εi + ε j − εa − εb

(3.88)

The Møller-Plesset method essentially allows electrons to partially occupy virtual MOs,

giving them more room to “avoid” each other, thus lowering the total energy. The de-

nominator of equation (3.88) shows that as the energy difference between the occupied

and virtual MOs increases the second order contribution to the energy becomes smaller

since it becomes harder to promote electrons, meaning that higher order excitations

have a smaller contribution to the correlation energy.

The perturbation is a two-electron operator, so all matrix elements involving triples,

quadruples and higher order excitations are zero. It can be shown that the contribution

from singly excited states is zero, leaving only contributions from doubles. This appears

as a sum over doubly excited determinants, where two electrons are promoted from

occupied (occ) MOs i and j to virtual (vir) MOs a and b . MP2 generally accounts for

80–90% of the correlation energy108. It is relatively cheap, since the energy correction

is calculated as a sum of two electron integrals over HF MOs, which scale as M 4, but

there is a transformation from the atomic orbital basis to the molecular orbital basis

which pushes this up to M 5. This makes MP2 the cheapest post-Hartree-Fock method
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of introducing correlation effects. MP3 and MP4 scale as M 6 and M 7 respectively, and

are still computationally feasible; MP4 requires a similar amount of effort to a CISD

calculation, and captures 95-98% of the correlation energy.

MPn methods are not variational, and as such do not represent an upper bound

to the energy; this may result in some error cancellation. The main limitation is the

assumption that the zeroth order wavefunction is a good approximation to the real sys-

tem, which in turn allows the assumption that the perturbation is small. This assump-

tion does not hold for systems that are not well described in the HF approximation

(for example, systems with significant multireference character). A poor reference state

description can result in slow or erratic convergence. Another problem arises as a con-

sequence of the theory of infinite series convergence: the perturbation coefficient λ is

allowed to take complex values, and the series is only convergent inside the “conver-

gence radius” |λ| < R, which allows for non-physical states such as λ < 0, representing

an attractive force between electrons. These “intruder states” can prevent the conver-

gence.

3.5.3 The coupled cluster method

Whilst perturbation theory adds all types of correction (single, double, triple etc.) to

nth order, the coupled cluster method includes all corrections of a given type to infinite

order. The method defines an “excitation operator” T ,

T = T1+T2+ . . .+TN (3.89)
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such that Ti acting on the HF reference wavefunction generates all i th excited Slater

determinants. For example,

T1φ0 =
occ
∑

i

vir
∑

a

t a
i φ

a
i (3.90)

T2φ0 =
occ
∑

k< j

vir
∑

a<b

t ab
i j φ

ab
i j (3.91)

The expansion coefficients t are called “amplitudes.” An intermediate normalisation

generates the CI wavefunction.

ψCI = (1+T )φ0 = (1+T1+T2+ . . .)φ0 (3.92)

The coupled cluster wavefunction is,

ψCC = eTφ0 = (1+T +
1

2
T 2+

1

6
T 3+ . . .)φ0 =

∞
∑

k=0

1

k!
T K (3.93)

Substituting equation (3.89) and collecting all singles, doubles, triples etc. gives,

eT = 1+T1+(T2+
1

2
T 2

1 )+(T3+T2T1+
1

6
T 3

1 )+(T4+T3T1+
1

2
T 2

2 +
1

2
T2T 2

1 +
1

24
T 4

1 )+ . . .

(3.94)

These terms represent the HF reference, all singles, all doubles, all triples, all quadruples

and so forth. Terms in this expansion can be “connected” (for example, T4, which repre-

sents four electrons interacting simultaneously) or “disconnected” (T 2
2 representing two

non-interacting pairs of electrons interacting). The key difference between the coupled

cluster and CI methods is that the coupled cluster equations contain “product” states

such as T2T1 and T 3
1 , whereas the CI equations only contain “true” states such as T2 and

T3. The formal coupled cluster Schrödinger equation is:

H eTφ0 = EeTφ0 (3.95)
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The energy can be evaluated as the expectation value of the coupled cluster wavefunc-

tion, and the variational principle used to find the amplitudes.

Evar
CC =

〈ψCC|H |ψCC〉
〈ψCC|ψCC〉

=
〈eTφ0|H |eTφ0〉
〈eTφ0|eTφ0〉

(3.96)

The expansion of the exponential operator according to equation (3.93) contains non-

vanishing terms up to 1
N !T

N , where N is the number of electrons. Therefore, this

method is tractable only for very small systems. When the HF orbitals are used to

construct the Slater determinants, the one-electron integrals vanish due to Brillouin’s

theorem, and the only non-vanishing terms are two-electron integrals.

ECC = E0+
occ
∑

i< j

vir
∑

a<b

(t ab
i j + t a

i t b
j − t b

i t a
j )(〈φiφ j |φaφb 〉− 〈φiφ j |φbφa〉) (3.97)

This is the general coupled cluster equation.

The equations above are exact, containing all terms up to T N where N is the number

of electrons, and give results identical to a full CI calculation. In practice, it is necessary

to truncate the expansion to include only terms up to the nth excitation. Truncating the

series at T = T1 offers no improvement over the HF description due to Brillouin’s theo-

rem. Including only T = T2 (coupled cluster doubles, CCD) significantly improves the

description, and scales as M 6 (for M basis function). However, singles can be included in

a CCD calculation, improving the description without increasing the cost significantly

(scaling as M 6), resulting in coupled cluster singles and doubles (CCSD). Truncating

the series at T = T3 gives coupled cluster singles, doubles and triples (CCSDT), which

scales as M 8. CCSD(T) involves calculating the triples perturbatively rather than itera-

tively, using the MP4 formula with CCSD amplitudes, and scales as M 7. The CCSD(T)

approach is regarded as the benchmark for moderately sized molecular calculations106.
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3.6 Density Functional Theory (DFT)

Density functional theory has revolutionised condensed matter theory fields by allow-

ing the replacement of intractable systems of many-body wave mechanics equations

with relatively simple sets of equations based on electron density. It has been shown to

usually outperform Hartree-Fock theory in terms of accuracy.

In their 1964 paper109, Hohenberg and Kohn made the first step towards a workable

density functional theory with their theorems110:

1. For any system of interacting particles in an external potential Vext(r), the poten-

tial Vext(r) is defined uniquely by the ground state particle density n(r).

2. It is possible to define a universal energy functional of the density, E[n], valid

for any Vext(r). For any particular Vext, the ground state energy is the global

minimum of this functional.

The computational expediency gains from using DFT stem from the fact that for a

N electron system, the electron density is the square of the wavefunction integrated over

N − 1 coordinates, depends on three coordinates, and is independent of the number of

electrons (N ). This is in contrast with wavefunction methods, which use 3N coordinates

(4N if the spin is included) and are therefore scale less favourably with system size.

The problem can be formulated as follows: the Hamiltonian (H ) for a system of

interacting electrons is the sum of the kinetic (T ) and mutual interaction (V ) energy

of the electrons, and an external potential (U ) representing the influence of nuclear

attraction.

H = T +U +V =H0+V (3.98)

H0 is the “fixed” part of the Hamiltonian, the sum of the internal and kinetic energies

of the system, whilst V is a sum of electronic potentials v(ri ) and is determined by the
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Kohn-Sham theory.

V =
N
∑

i=1

v(ri ) (3.99)

If the many-body wavefunction is ψ, then the ground state energy Eg is given by the

integral,

Eg = 〈ψ|H0+V |ψ〉 (3.100)

The electron density n(r) is in fact a sum of two spin polarised electron densities in the

open shell case, n(r) = n↑(r)+ n↓(r). The density is defined as:

n(r) =
∑

σ

n(r,σ) =
∑

σ

Nσ
∑

i=1

|ψσi (r)|
2 (3.101)

where σ is the spin. Although I have dropped the spin superscript in the remaining

equations, they are straightforward to generalise from the closed shell case.

Since Eg is uniquely determined by the electron density, it can be written in the

following functional form, with the external field interaction separated from the inter-

electron interactions:

Eg[n(r)] =
∫

drv(r)n(r)+ F [n(r)] (3.102)

Here, F [n(r)] is the ground-state expectation value of H0 when the electron density is

n(r). Given the correct density, Eg will be the ground state energy. The minimisation

can be achieved using the variational principle and the constraint that the number of

electrons is fixed, namely:

N[n] =
∫

n(r)dr=N (3.103)

It is convenient to extract the long-range Coulomb interaction (the Hartree energy)

from F [n]:

F [n] =
1

2

∫ ∫ n(r)n(r′)

|r− r′|
drdr′+G[n], (3.104)
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where G[n] is another functional. Thus the energy functional (3.102) can be expanded:

E[n] =
∫

v(r)n(r)dr+
1

2

∫ ∫ n(r)n(r′)

|r− r′|
drdr′+G[n] (3.105)

Kohn and Sham developed a method by which the Hohenberg-Kohn theorems

could be employed practically to determine the properties of a many body system us-

ing the electron density as a basic variable in their 1965 paper111. Their strategy was to

construct a more tractable ‘auxiliary system’ via the Kohn-Sham ansatz110:

• The ground state density of the interacting system is the same as that of some

chosen non-interacting system.

By this assumption, Kohn and Sham showed that it is possible to reduce a compli-

cated many-body problem to an easier set of single-body problems. The many-body

problem is recast as a set of Schrödinger-like single-body equations under the influence

of an effective potential, Veff. Starting from equation (3.104), the functional G[n] is

expressed as a sum of the kinetic energy of non-interacting electrons (Ts[n]) and a term

(which is exact by definition) encompassing the exchange and correlation components

of the electron-electron interactions, EXC[n]:

G[n] = Ts[n]+ EXC[n] (3.106)

Applying the variational principle to (3.105), and requiring that the number of electrons

remains constant,
∫

δn(r)dr= 0, (3.107)

one obtains the equation,

∫

δn(r)
¨

ϕ(r)+
δTs[n]

δn(r)
+µXC(n(r))

«

dr= 0, (3.108)
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where

ϕ(r) = v(r)+
∫ n(r′)

|r− r′|
dr′, (3.109)

and µXC is the chemical potential of a uniform electron gas of density n(r), and depends

on the choice of functional EXC[n]. It can be shown that (3.108) is exactly the same as

for a non-interacting electron gas under the influence of an effective external potential

Vext:

Veff = ϕ(r)+µXC(n(r)) (3.110)

Applying the Lagrange undetermined multipliers method to the variational problem

results in a set of Schrödinger-like equations, the Kohn-Sham equations:

HKSψi (r) = εiψi (r) (3.111a)

HKS =−
1

2
∇2+Veff(r) (3.111b)

Veff(r) =Vext(r)+VHartree(r)+VXC(r) (3.111c)

The electron density is related to the Kohn-Sham orbitals ψi (r) by the relationship

n(r) =
N
∑

i=1

|ψi (r)|
2 (3.112)

The Schrödinger-like Kohn-Sham equation is complicated by the fact that the elec-

tron density, n(r) appears on both sides — it must therefore be solved self consistently.

The following procedure110 is generally used:

1. Make an initial guess of electron density n(r).

2. Calculate the effective potential Veff.

3. Solve the Kohn-Sham equations (3.111).

4. Calculate the electron density (3.112).
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5. If n(r) is not self-consistent, return to step 2. If self-consistency has been achieved,

proceed.

6. Calculate the relevant quantities: energy, forces, stresses, eigenvalues etc.

The Kohn-Sham equations, in principle, are exact. The difficulty arises in the choice

of the exchange-correlation functional, EXC[n]. After the local spin-density approx-

imation, there is no established analytical or consistent method for generating new

and more accurate functionals. As established in equation (3.17), the spurious self-

interaction terms cancel between the Coulomb and exchange terms in Hartree-Fock the-

ory; DFT exchange-correlation functionals, in contrast, contain self interaction terms

that can only be corrected at great computational expense (although, in the limit of

exact DFT, these would vanish).

The advantage DFT has over HF theory is the inclusion of correlation terms beyond

exchange, namely the van der Waals energy. This is a long range effect, and can be

physically explained as the tendency of separate electron densities to “avoid” each other,

resulting in transient dipoles, which weakly attract each other. Whilst significant, it is

by far the smallest contribution to the total energy, constituting around 1%. In practice,

it is very difficult to calculate the exact correlation contribution, so a convenient (but

not the only) definition of the correlation energy is:

EC = E DFT
XC − E HF

X (3.113)

i.e. the difference between the exchange correlation energy as calculated by DFT and

the exact exchange energy as calculated by HF.

There are several levels of approximation used in the construction of the exchange-

correlation functional (3.114), which treat it with varying degrees of complexity; these

are rungs of what Perdew and Schmidt call the ‘Jacob’s ladder of density functional ap-

proximations’112. Higher rungs of the ladder incorporate theory from lower rungs with
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improvements, and generally (but not necessarily) represent a higher level of accuracy

at greater computational expense.

EXC[n(r)] =
∫

drn(r)εXC(n(r);r) (3.114)

The five rungs of the ladder are (from highest to lowest)112:

• Exact exchange and exact partial correlation (hybrid)

• Exact exchange and compatible correlation (hybrid)

• Meta-generalised gradient approximation (meta-GGA)

• Generalised gradient approximation (GGA)

• Local spin density approximation (LSDA/LDA)

The computational costs for the first three rungs are fairly similar, but they rapidly

increase thereafter113. Post Hartree-Fock methods such as MP2 and CCSD offer even

higher accuracies at extreme computational costs.

The lowest level is the local spin density approximation (LSDA), which simplifies to

the local density approximation (LDA) in closed shell systems. Starting from the ansatz

that the density is a slowly varying function, it can be assumed that the density can be

treated locally as a uniform electron gas, i.e. truncating the expansion of EC[n] in terms

of the energy of homogeneous electron gas after the first term:

EXC[n] =
∫

εXC(n)ndr+
∫

ε(2)XC(n)|∇n|2dr+ . . . (3.115)

where εXC is the energy per electron in a homogeneous electron gas. The rationale for this

approximation is that the range of exchange and correlation effects is short for densities

characteristic of solids. One would expect it to work best where the electron gas is close

to homogeneous as in solids, but fail in inhomogeneous cases where the electron density
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tends to zero outside atoms. In practice, the LDA tends to underestimate exchange

energy by ∼ 10%, and overestimate the correlation energy by a factor of ∼ 2, resulting

in significant overbinding108. The performance of LDA models is similar to that of HF

theory.

The next level of approximation is the generalised gradient approximation (GGA),

in which the density and its derivatives are used to construct the exchange-correlation

functional (this is more complicated that the simple Taylor expansion in equation (3.115),

hence “generalised”). These methods are sometimes known as “semi-local,” because

they use the require the density at position r, and in and infinitesimal neighbourhood

surrounding r. GGA models generally perform much better than LDA methods, giv-

ing better geometries and vibrational frequencies; the performance is comparable to ab

initio second order Møller-Plesset (MP2) methods.

The third rung of the ladder, meta-GGA, uses kinetic energy densities τσ (r), and

sometimes the Laplacian of the electron density,∇2n(r), as ingredients of the exchange-

correlation functional. Meta-GGA is the highest rung that does not utilise full non-

locality, instead using a non-local functional of electron density and a semi-local func-

tional of orbitals. It is thus potentially not much more expensive than a pure GGA

but has the advantage of eliminating self-correlation, which can have a severe effect in

low density systems. Meta-GGA functionals generally result in better atomisation ener-

gies, metal surface energies and lattice constants, but bond lengths (especially hydrogen

bonds) can be worse than for pure GGA functionals.

The highest level of approximation involving density functional theory is the “hy-

brid” model, which takes elements of both HF theory and DFT. The exchange-correlation

energy is related to the potential connecting a non-interacting “reference” system and a

real interacting system by the adiabatic connection formula (ACF):

EXC =
∫ 1

0
〈ψλ|VXC(λ)|ψλ〉dλ, (3.116)
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where VXC is the exchange-correlation potential, and the integration coupling constant

λ can be considered to “turn on” electron-electron correlation interactions. The λ = 1

case corresponds to the real, fully interacting system, whilst λ = 0 represents a system

of non-interacting electrons in an effective one body potential with the same density as

the real system (the Kohn-Sham auxiliary system)114, and exact exchange as prescribed

by HF theory. Becke proposed a simple correction to the λ = 0 case to incorporate

correlation into an exact exchange framework:

EXC = E DFT
XC + a0(E

exact
X − E DFT

X ), (3.117)

where E DFT
XC is approximate DFT exchange-correlation energy, E exact

X is the exact ex-

change energy from HF theory, E DFT
X is the contribution to exchange energy contribu-

tion from DFT, and a0 is a parameter determining the ‘Hartree-Fock character’114. Em-

pirical fitting atomisation energies suggest that a value of a0 '
1
4 is optimal114; Perdew

et al. later justified this value using fourth order perturbation theory115 — thus the

PBE0 hybrid functional incorporates 25% exact exchange into the PBE GGA func-

tional. There are various other recipes for incorporating exact exchange using different

numbers of parameters, for example, B3LYP uses three mixing parameters in a variation

of equation (3.117). Although such hybrid functionals are generally more accurate than

pure GGA functionals (especially at predicting reaction barriers, which GGA function-

als tend to grossly underestimate), they require the solution of the Hartree-Fock equa-

tions and are therefore much more computationally expensive.

DFT calculations require a similar amount of computational effort to HF calcula-

tions, but have the potential to be much more accurate due to the implicit inclusion of

correlation effects. It has been shown (for example, in Feibelman (2008)116) that DFT

methods can characterise hydrogen bonding well (when HF theory fails, for example,

in Casassa et al. (2005)69), which is an important consideration when modelling ice.

One of its main shortcomings is the failure of current functionals to characterise disper-
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sion (Van der Waals-type) interactions; for example, the inherent overbinding in LDA

models results in an attraction between rare gas atoms which is inaccurate. Errors as-

sociated with DFT calculations include, the basis set superposition error (BSSE) arising

from the use of local basis sets (but not unique to DFT), self-interaction and unphysical

effects arising from certain functionals, such as the existence of correlation energy in

one-electron systems.

Unlike HF theory, DFT is considered by some not to be an ab initio method. In

principle it is exact, but only in the limit of a complete basis set and with an exact

exchange-correlation functional. There is currently no functional that works for all

systems, which means that choosing the correct functional for a system is as much of

an art as a science. Additionally, many functionals (excluding LDA and many GGA)

contain empirical fitting parameters and tabulated data for the sake of expediency.

3.7 Quantum Monte Carlo (QMC)

Variational (VMC) and Diffusion (DMC) Monte Carlo are stochastic techniques for

evaluating the expectation values of many body Hamiltonians and wavefunctions. Al-

though they are computationally expensive, they scale well with system size, and are

currently regarded as the most accurate method of evaluating the energies of large num-

bers of interacting quantum mechanical particles117. Both methods are variational, and

as such yield an upper bound to the ground state energy.
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3.7.1 Variational Monte Carlo

The energy calculated via the variational principle, Evar, for an approximate many-body

trial wavefunction, ΨT , can be written,

Evar =

∫

dRΨT (R)ĤΨT (R)
∫

dRΨ2
T (R)

(3.118)

=
∫

dRElocal(R)p(R), (3.119)

where the local energy Elocal(R) and probability function p(R) are defined,

p(R) =
Ψ2

T (R)
∫

dR′Ψ2
T (R

′)
(3.120)

Elocal(R) = Ψ
−1
T ĤΨT (3.121)

The variational energy Evar can be evaluated by randomly sampling the probability dis-

tribution p(R) within the integration limits using the Metropolis Monte Carlo algo-

rithm. Evar is then the average of the local energies of configurations Ri over M sampling

points:

Evar =
1

M

M
∑

i=1

El ocal (Ri ) (3.122)

The main problem with this process is the difficulty in preparing trial wavefunctions

of equivalent accuracy for different systems. Thus the VMC approach is often used to

optimise the parameters in trial wavefunctions for DMC calculations.

3.7.2 Diffusion Monte Carlo

In the diffusion Monte Carlo method, the imaginary time operator e−τĤ is used to

project out the ground state from the initial state. This is equivalent to solving the

imaginary time Schrödinger equation, where the time t is replaced with the imaginary
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time τ = i t in the time dependent Schrödinger equation (3.1):

−
∂

∂ τ
Φ(R,τ) = (Ĥ − ET )Φ(R,τ) (3.123)

= (−
1

2
∇2

R+V (R)− ET )Φ(R,τ) (3.124)

Here, ET is an arbitrary offset called the reference energy. Equation (3.124) has the

form of a generalised diffusion equation, hence the name diffusion Monte Carlo. If the

approximate wavefunction Φ(R,τ) is expanded in terms of the exact wavefunction φi ,

Φ(R,τ) =
∑

i

ci (τ)φi (R,τ) =
∑

i

ciφi (R)e
−Eiτ, (3.125)

it can be seen that states with a high energy (Ei ) decay faster than low energy states, and

as a result, only the ground state survives.

3.7.3 Some QMC caveats

QMC techniques rely on sampling from a probability distribution, but fermionic wave-

functions can not generally be treated as such because they contain positive and negative

regions due to antisymmetry. This results in 3N − 1 dimensional hypersurfaces called

nodes, on which the wavefunction and therefore probability is zero; excessive sampling

of nodal regions will reduce the accuracy of the calculation. This problem can be over-

come using the fixed node approximation, which effectively places an infinite repulsive

potential on the nodal surface, or by using a more computationally efficient importance

sampling transformation.

The accuracy of a QMC calculation is very sensitive to the trial wavefunction, in

particular, the nodal structure, which is not trivial to determine. Most electronic sys-

tems use a trial wavefunction of the Slater-Jastrow type, ΨSJ , which is a product of the

Jastrow factor e J (R) and spin up and down determinants (which are often obtained from
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DFT or HF calculations):

ΨSJ (R) = e J (R)det[ψn(r
↑
i )]det[ψn(r

↓
j )] (3.126)

J (R) =
Ne
∑

i

χ (Ri )−
Ne
∑

i> j

u(Ri ,R j ) (3.127)

The parameters in J (R) are chosen to reproduce nuclear-electron and electron-electron

cusps. In this formulation, correlation is introduced through the explicit dependence

on electron separation.

In a QMC geometry optimisation, peak computational efficiency is achieved by

moving a single atom at a time. This allows a faster evaluation of the trial wavefunction.

Many particle wavefunctions satisfy Bloch’s theorems, but it is only possible to perform

many particle calculations on a single k-point, resulting in a poor representation of bulk

systems. Therefore, a supercell is usually required.

QMC methods are associated with an inherent statistical error which decreases with

the inverse square of the sampling frequency. The statistical error makes evaluation of

derivatives for geometry optimisations and vibrational frequencies problematic.

3.8 A note on nomenclature

For all DFT and ab initio calculations, the standard nomenclature for representing the

levels of theory is used. For example, CCSD(T)/cc-pVDZ//MP2/cc-pVTZ means that

the geometry of the system was optimised at the MP2 level using the cc-pVTZ basis set,

and the calculated energy is a CCSD(T) single point using the cc-pVDZ basis set.

3.9 Dispersion corrections in DFT

One of the main shortcomings of common GGA and hybrid functionals is their in-

ability to describe the long range correlation effects responsible for Van der Waals-type
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interactions. DFT works well for systems under extremes of temperature or pressure

since the repulsive part of the potential is sampled at high pressures, but is less accu-

rate for weakly interacting systems at ambient conditions, notably hydrogen bonded

liquids. Two different dispersion corrections have been used in this thesis, the DFT-D

method of Grimme118;119 and the van der Waals DFT method of Langreth et al.120;121.

Langreth et al. note that it is impossible to construct a GGA that will mimic van der

Waals interactions because there is not enough information in the small overlap region

utilised by the functional, and atoms that can affect van der Waals interactions may not

be nearest neighbours120.

3.9.1 DFT-D

Grimme118 proposed the solution of limiting the density functional description to short

range, and describing medium to long range interactions with damped C6R−6 terms,

where C6 is the ‘dispersion coefficient.’ The scheme is limited to the C6 term because

it was found that the higher order C8 and C10 terms interfered with the short range

description. Compared with other dispersion correction schemes, Grimme’s (named

DFT-D2) is less empirical and requires fewer fitting parameters; it is reported to give

good results when implemented with the B97-D functional, and to a lesser extent, PBE

(although it is not explicitly tested with bulk water in the literature).

A recent revision to Grimme’s DFT-D scheme is detailed in his 2010 paper119, of-

fering an improved description of inter- and intra-molecular dispersion for the most

commonly used functionals. It implements a consistent description of all chemically

relevant elements with atomic number 1–94, specifying dispersion coefficients and cut-

off radii for element pairs, and coefficients that are dependent on coordination number

derived from ab initio calculations on simple molecules. The only other new ingredi-

ents are the C8 term representing a shorter range contribution to the dispersion, and

a C9 term for three-body interactions. There are only two parameters that must be
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determined empirically, the sr,6 and s8 factors, which allow the seamless merging of cor-

relation contributions from different length scales; the rest can be determined ab initio

(although this is not necessarily done for expediency).

On the basis of the WATER27 benchmark — a ‘tough test for the description of

strong hydrogen bonds’119, using 27 neutral (H2O)n, negative OH−(H2O)n and positive

H+(H2O)n clusters — it seems that PBE is a poor choice of functional, displaying clear

overbinding which is only exacerbated by the dispersion correction. Grimme et al.

therefore recommend the BLYP, revPBE or B97-D functionals for modelling water119

because they underbind in the absence of a dispersion correction.

3.9.2 Van der Waals DFT (vdw-DFT)

Van der Waals DFT120 is a cheap yet sophisticated treatment of long range correlation

effects in which a standard GGA functional is used to calculate exchange, but the cor-

relation part is replaced with a “van der Waals density functional” (vdW-DF). Many

common GGA functionals exhibit a binding effect between rare gas dimers; this has

been shown to arise from the exchange interaction instead of correlation, and is not

present when exact exchange is used122. Whilst this long range exchange effect mitigates

the lack of long range correlation to some extent, it has been shown to be unreliable

in general123 (although it should be noted that this refers to long range exchange; the

overall exchange energy is accurate to within 1% in the majority of cases).

Langreth et al. recast the exchange-correlation functional as follows:

EXC[n] = EGGA
X + E0

C+ Enl
C (3.128)

where the terms on the right hand side represent respectively the GGA exchange

energy, the short range (but still non-local) correlation term, and the term encompassing

non-local correlation terms that give rise to long range van der Waals interactions. The

short range correlation term is approximated to the LDA correlation, E LDA
C , which is
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valid for slowly varying systems.

In its original incarnation, the exchange part of the vdW-DF consists of the LDA

exchange energy with the gradient correction term from the revPBE functional, which

does not exhibit the attractive long range exchange interaction typical of many GGAs.

Klimeš et al. were able to improve the accuracy of the vdW-DF by replacing revPBE

exchange with a different, optimised GGA functional124. They achieved substantially

improved accuracy for the S22 dataset (of weakly interacting biologically important

dimers) using van der Waals density functionals with reparameterised B88 and PBE

exchange, dubbed optB88-vdW and optPBE-vdW. Significantly, coupled cluster calcu-

lations predict the ground state of the water hexamer to adopt a “prism” configuration,

whilst PBE and BLYP give rise to six-ring and “book” configurations. The optPBE-

vdW functional recovers the prism configuration, along with a dissociation energy that

is essentially identical to that obtained with CCSD(T).

3.10 The Gaussian and plane waves (GPW) representa-

tion

The main difference between the DFT code used for this research, the QUICKSTEP

module of CP2K125 and its contemporaries is the use of the Gaussian and plane waves

(GPW) representation of wavefunctions and electron density — it utilises the strengths

of both representations to allow better algorithmic efficiency.

3.10.1 The Gaussian representation

Atomic orbitals can be represented as Slater-type orbitals (STO), which consist of wave-

functions constructed from Slater determinants. STOs are a faithful representation of

electronic wavefunctions; however integrals involving STOs are difficult to calculate,

especially when the atomic orbitals in question are centred on different nuclei. Such
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integrals can be made analytic by expanding the atomic orbitals as linear combinations

of Gaussian functions105;126 of the form xa y b z c e−αr 2
, where the exponent α determines

the spread of the function. The product of two Gaussians is another Gaussian with an

intermediate centre, which offers the advantage of allowing two-electron integrals to be

reduced to the integral of a single Gaussian.

The accuracy of calculations depends on the number and types of functions in the

basis set. Increasing the number of basis functions generally (but not invariably) im-

proves accuracy; a minimal basis set includes a single Gaussian contraction (a sum of

Gaussian functions with fixed exponents and coefficients) per atomic orbital, whilst a

double-zeta set would contain two contractions, a triple-zeta set would contain three

contractions, and so on. Adding functions beyond the minimal basis set allows the

description of non-spherical aspects of the electron distribution required for higher an-

gular momenta (p-orbitals and above). Split valence sets use a simpler set for modelling

core electrons, with a more diverse set for the chemically interesting valence electrons.

Polarisation functions can be added for a better description of molecules, where the

charge distribution is often perturbed from the nuclear centres, and highly diffuse func-

tions are useful for situations where there is a significant charge density in the internu-

clear region, for example, lone pairs. An increase in the quality of the basis set obviously

comes at the expense of computational cost.

A fundamental difficulty that arises from the necessity of using incomplete basis

sets is the basis set superposition error (BSSE). When interacting species approach each

other, their basis functions overlap, effectively increasing the size of their basis sets,

resulting in a difference in energy between the composite species and its individual part,

beyond the cohesive energy. This becomes less significant when larger basis sets are

used, and disappears in the limit of a complete basis set.
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3.10.2 The plane wave representation

When modelling ordered, highly symmetric condensed matter systems such as metals,

the most natural representation for electrons is in terms of plane waves, which are peri-

odic by definition, as opposed to Gaussian functions, which are localised. According to

Bloch’s theorem, a wavefunction can be expanded in a plane wave basis using a wave-like

component and a cell-periodic component127:

ψi (r) = fi (r)e
ik·r, (3.129)

where k is a reciprocal vector. The cell periodic part, f , can be expanded using a basis

set of discrete plane waves with coefficients c :

fi (r) =
∑

G

ci ,Ge iG·r, (3.130)

where G are reciprocal lattice vectors. Thus each electronic wavefunction can be written

as a sum of plane waves:

ψi (r) =
∑

G

ci ,k+Ge i(k+G)·r (3.131)

As a result of the reciprocal space representation, coefficients c with a small kinetic

energy ( ħh2m |k+G|2) are more important, so that only plane waves with an energy lower

than a pre-determined cutoff energy are included. Bloch’s theorem ensures that there is

a finite number of plane waves (for a continuous plane wave basis set, there would be an

infinite number of plane waves regardless of the cutoff); it is then possible to increase

the cutoff until convergence is achieved.

A problem with the plane wave method is that all-electron calculations are much

more expensive. Core electrons are tightly bound, and have rapidly oscillating wave-

functions in the vicinity of the nucleus due to the strong ionic potential. In addition,

valence electron wavefunctions oscillate rapidly in the core region to maintain orthogo-
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nality with the core electrons. A large number of plane waves is necessary to represent

these rapidly varying wavefunctions accurately. This problem is usually overcome us-

ing the pseudopotential approximation: instead of including the chemically irrelevant

core electrons in the calculation, their influence is folded into a smooth potential that

only excludes valence electrons; it is constructed such that the scattering properties of

pseudo-wavefunctions are identical to the cumulative scattering properties of the nuclei

and core electrons, but critically, have no radial nodes in the core region. Outside the

core region, the pseudo-wavefunctions are indistinguishable from the actual wavefunc-

tions.

3.10.3 The GPW representation

The plane wave representation has several advantages over the Gaussian representa-

tion128. Plane waves are independent of atomic positions, which simplifies calculation

of forces; there is no associated BSSE; calculation of exchange-correlation and Hartree

potentials are much more straightforward, and the use of Fourier transforms simplifies

algebraic manipulations (fast Fourier transform (FFT) algorithms make this even more

efficient). However, the BSSE is replaced by the degree of approximation inherent in

the use of pseudopotential and the computational cost of modelling the vacuum is the

same as for populated regions, making surface calculations more expensive.

The GPW approach involves explicit treatment of valence electrons only, with pseu-

dopotentials accounting for the effect of core electrons. Plane waves are used to rep-

resent electron density, thereby simplifying calculations of the Hartree and exchange-

correlation potential, whilst Gaussians are used to represent wavefunctions. In this
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formulation, the energy functional (3.104) becomes:

E[n] =
∑

i

fi〈ψi | −
∇2

2
+V PP

loc (r)|ψi〉+
∑

i

fi〈ψi (r)V
PP

nl (r,r′)|ψi (r
′)〉

+ 4πΩ
∑

|G|<Gc

n∗(G)n(G)

G2
+
∫

drn(r)εXC[n](r)
(3.132)

Here, the pseudopotential is split into local (V PP
loc ) and non-local (V PP

nl ) parts, fi is the

occupancy of orbital ψi defined by

n =
∑

i

fi |ψi |
2, (3.133)

Ω is the volume and Gc is the wave vector corresponding to the cutoff energy. n is

the density evaluated in the primary (Gaussian) basis, and n is the density evaluated

in the auxiliary (plane wave) basis, the two being equal if both basis sets are complete.

The pseudopotentials of Goedecker, Teter and Hutter (GTH)129 are appropriate for this

method since they are constructed such that all matrix elements can be calculated ana-

lytically in a Gaussian basis. The numerical accuracy in the GPW scheme as prescribed

by Lippert et al.128 is dependent on only two parameters: the plane wave cutoff Gc and

the screening parameter εs .

Vandevondele et al.125 note that DFT is generally efficient for up to about 100 atoms,

but for larger systems, the computation of the Hartree energy and orthogonalisation of

wavefunctions do not scale linearly with system size — Gaussians are localised, so the

representations of the Kohn-Sham, overlap and density matrices become sparse as the

system size increases; together with a real space integration scheme, linear scaling is

achieved.
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3.11 Using DFT to model hydrogen bonding in water

and ice

There has been a great number of studies in the literature on the ability of DFT to char-

acterise hydrogen bonds, notably for the case of this project, the water dimer. It has been

noted130 that the LDA overbinds the dimer by ∼70%, and results in an oxygen-oxygen

separation that is ∼10% too short; use of the GGA results in significant improvements.

Santra et al.131 evaluated the performances of 16 different functionals on small (≤5

molecules) water clusters using the large aug-cc-PV5Z basis set, with a view to min-

imising basis set incompleteness errors. Since there is limited available experimental

data on such clusters, results were compared with MP2 benchmarks extrapolated to the

complete basis set limit, which are accurate to within a few meV, and bond lengths to

within 0.01 Å. They observed that with sufficiently large basis sets, all of the functional

considered are capable of chemical accuracy (1 kcal mol−1 ' 43 meV/H bond), although

this is a fairly weak constraint, considering hydrogen bond strengths vary from 10 meV–

30 meV/H bond. The best performance for dissociation energies and geometries were

achieved by the X3LYP and PBE0 hybrid functionals, with X3LYP giving results almost

identical to MP2 in some cases. Dissociation energies for these functionals were within

7 meV/H bond of MP2 benchmarks. The best pure GGAs were mPWLYP and PBE1W,

achieving dissociation energies within 12 meV/H bond of the benchmarks. BLYP and

B3LYP consistently underbound clusters by 35 meV/H bond and 20 meV/H bond re-

spectively, whilst PBE displayed a tendency to overbind more as the size of the cluster

increased (overbinding the dimer by 5 meV/H bond, and the pentamer by ∼20 meV/H

bond).

Dimer and cluster energies and geometries are a good test case for functionals, but

these quantities are not representative of hydrogen bonding in ice. The phenomenon of

cooperativity has been demonstrated on water clusters131 — as the number of molecules
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in a cluster increases, the average hydrogen bond strength increases, resulting in a length

contraction. Hamann130 systematically compares one LDA and four GGA functionals,

including B86, PW91, PBE and B-loc, applied to the Bernal-Fowler ice cell. He con-

cludes that PW91 and PBE give by far the best agreement for the cohesive energy and

the volume, but they significantly underestimate the bulk modulus — an effect which is

mitigated by adding a correction to model the zero-point motion of hydrogen atoms.

In his study on the ab initio calculation of the lattice constant mismatch betweenβ-

AgI and ice Ih, Feibelman116 compares the performances of eight GGA functionals. It

has been suggested that as a result of the similarity in lattice parameters between β-AgI

and ice Ih, AgI smoke might be used to “seed” cloud formation by acting as a catalyst

for ice nucleation. Experiments have shown that the mismatch between the a and c

lattice parameters is 2.2%, whilst PBE predicts a 5.9% mismatch. He notes that PBE re-

sults in the best lattice energy (5% overbinding), and BLYP gives the best volume (2.8%

too large). However, DFT tends to under-represent Van der Waals interactions, whilst

arguably the best GGA functional for modelling ice, PBE, overbinds — thus adding an

attractive dispersion correction would only exacerbate the overbinding. From this per-

spective, the GGA functionals that underbind, namely BLYP, RPBE and revPBE, are

the most promising. However, none of the functionals adequately calculates the lattice

mismatch factor; RPBE comes closest, but is still out by a factor of two.

The majority of the calculations in chapters 4 and 5 employ the PBE functional,

which has been shown by Hirsch and Ojamäe to predict the correct proton ordered

ground state for ice Ih12.Feibelman also demonstrates that of the GGA functionals, it

yields a good agreement with experiment for the lattice energy and geometry in spite

of a small but consistent overbinding116. I have used the underbinding BLYP functional

in conjunction with the D3 dispersion correction, since using D3 with PBE would ex-

acerbate the overbinding. It was necessary to use a hybrid functional for the reaction

chemistry in chapter 6 to correctly evaluate barriers. The choice of hybrid functional
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used in these calculations is discussed in detail in section 6.7.1.



Chapter 4

Proton ordering in bulk ice

4.1 Introduction

Hexagonal ice is the most prevalent phase of ice on Earth, accounting for ∼10% of its

surface area, thus giving it an important role in climatic regulation via albedo. Although

hexagonal ice is one of the most studied materials in science, new properties are being

discovered, with implications for both ice and other materials. For example, it has

been shown that ice nucleates differently at positively and negatively charged surfaces

of pyroelectric materials25, and that the surface of crystalline ice displays a continuum

of vacancy energies26.

Cubic ice has not been studied to the same extent, and its existence in nature is a sub-

ject of debate since it is known that proton disordered ice Ic is metastable with respect

to Ih52. Scheiner’s halo is interpreted as evidence of cubic ice in the upper atmosphere,

but it has only been observed a few times over the past 200 years132, perhaps suggest-

ing that cubic ice is not important in nature. However, recent work suggests that ice

Ic forms readily and persists under conditions characteristic of the Earth’s atmosphere.

Experiments have shown that water droplets homogeneously freeze to cubic ice at am-

bient pressure and temperatures between 160 K1 and 240 K2, and in droplets with radii

in the range 5 nm28;29 to 5 µm2. Whilst it was previously believed that Ic transforms

100
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rapidly to Ih at temperatures above ∼180 K–200 K, recent studies indicate that Ic re-

mains stable for hours at 228 K2. It has also been argued that differences in the surface

chemistry of cubic and hexagonal ice could influence processes such as cloud formation

and dehydration40 and ozone depletion39.

The proton ordered ground state of hexagonal ice is well characterised. It forms

when ice Ih is cooled to 72 K in the presence of a KOH dopant80, since the OH– ions

generate the Bjerrum defects necessary for orientational reordering. A stacking defect-

free sample of cubic ice has yet to be prepared in the laboratory, so observation of a

proton ordered cubic ice ground state is unlikely for the foreseeable future. In fact, on

the basis of X-ray diffraction experiments and Monte Carlo simulations, Malkin et al.49

suggest that cubic ice sequences only exist in a stacking disordered phase, ice Is d . Hirsch

and Ojamäe12 demonstrated that DFT methods predict the correct structure of ice XI,

so we attempt a similar analysis here.

This chapter is motivated by these recent developments, and consists of a basic char-

acterisation of bulk cubic ice. We first generate an exhaustive set of proton ordered,

symmetry-unique cells for cubic ice in order to determine the proton ordered ground

state, analogous to ice XI. We then compare the proton ordered ground states (ices XI

and XIc) in order to gain some insight into their relative abundances and the unusual

phase transition.

4.2 Methodology and computational setup

4.2.1 Constructing unit cells

In section 2.3, it was noted that there are six ways of orienting each water molecule

within the constraints of a tetrahedral ice lattice. Therefore, there are 6N ways of ori-

enting the molecules in a N molecule ice cell. Hence, for an eight-molecule cubic or

hexagonal ice cell, there are 68 = 1679616 ways of orienting the molecules, most of
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which are forbidden by the ice rules. A computer code developed by the author (avail-

able on request) which employed the Hayward-Reimers algorithm85 was used to gener-

ate all valid eight-molecule cells for cubic and hexagonal ice; in both cases, it was found

that there are only 114 valid configurations for each phase. It should be noted that this

algorithm yields an exhaustive list of valid configurations and as a result is computa-

tionally intractable for cells of approximately 16 molecules and larger. Most of the 114

valid cells are related by symmetry operations; the set of symmetry-unique structures

was found using graph invariant software developed by Knight, Singer and Beck86–88;133,

resulting in 16 hexagonal ice cells, in agreement with Hirsch et al.12

The cubic ice cell listed generally mentioned in the literature contains eight molecules,

and is cubic with a side of length 6.358 Å and space group F d 3̄m. This cell only has

4 symmetry-unique proton ordered configurations, one of which is anti-ferroelectric.

By cutting through the (011) plane, it is possible to construct a four molecule tetrag-

onal cell of dimensions 4.4958 Å × 4.4958 Å × 6.3580 Å, which also has four proton

ordered configurations; this can be used to construct a 2× 1× 1 supercell which has

11 symmetry-unique proton ordered configurations, two of which are antiferroelectric,

and is comparable to the eight molecule orthorhombic cell used by Hirsch and Ojamäe.

This cell was used to examine proton ordering in cubic ice.

4.2.2 Setup for DFT calculations

DFT calculations were conduced using the VASP plane wave code and the QUICK-

STEP 125 module of the CP2K suite, which uses the computationally efficient Gaus-

sian/plane wave representation.

Initial calculations on all symmetry-unique proton ordered configurations of the

aforementioned eight molecule hexagonal and cubic ice cells were conducted using

CP2K. Wavefunctions were constructed using the triple-ζ doubly polarised (TZV2P)

basis set, and the electron density using a plane wave expansion with a 450 Ry cut-
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off with Goedecker-Teter-Hutter (GTH) norm-conserving pseudopotentials129 and ba-

sis sets. For calculations without a dispersion correction, the Perdew-Burke-Ernzerhof

(PBE) GGA exchange-correlation functional was used, since it has been shown to de-

scribe hydrogen bonding energetics in ice Ih well5;130, with a small but consistent 5%

overbinding116.

Applying a dispersion correction in conjunction with PBE would only exacerbate

the overbinding; however, the Becke-Lee-Yang-Parr (BLYP) GGA functional consis-

tently underbinds ice, and has been shown to perform well for hydrogen bonded sys-

tems when dispersion is taken into account134. The long range dispersive forces were

accounted for using Grimme’s DFT-D3 correction119 with a dispersion cutoff of 12 Å,

and the repulsive three-body C9 term was omitted from the calculations since it consid-

erably increases the computational cost without significantly improving the accuracy.

CP2K only supports Γ-point sampling, so the unit cells were replicated to construct

3× 2× 2 hexagonal ice supercells (with a smallest lattice parameter of 13.48 Å) and 2×

3× 2 cubic ice supercells (with smallest side 12.46 Å), both containing 96 molecules. In

all cases, full cell relaxation and geometry optimisation were performed in the absence

of any symmetry constraints.

In order to gauge the impact of basis set completeness and basis set superposition er-

ror (BSSE), the CP2K calculations were repeated using VASP. The projector-augmented

wave (PAW) method was used135 with a plane wave cutoff of 550 eV and a 6× 3× 3

Monkhorst-Pack grid of 54 k-points for hexagonal ice or 3×6×4 grid of 72 k-points for

cubic ice. Additional high precision calculations were performed on the ground state

cubic and hexagonal ice configurations using hard PAW potentials, a plane wave cutoff

of 1000 eV and 128 k-points (a 8×4×4 grid for hexagonal ice or 4×8×4 for cubic ice).

For the high precision calculations, a number of approaches were used to examine the

importance of van der Waals interactions and electron delocalisation between the two

ground state polytypes, including the PBE GGA functional, the van der Waals density
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functional121 using PBE exchange (optPBE-vdW124) and the PBE0 hybrid functional,

which includes 25% Hartree-Fock exchange. The van der Waals DFT calculations were

performed in VASP, using the self-consistent implementation of Klimeš et al.136

4.2.3 Setup for DMC calculations

As an independent quantum mechanical reference point, diffusion Monte Carlo (DMC)

calculations were performed on the ground state hexagonal and cubic configurations by

Dario Alfè4. His calculations employed the CASINO code117 with Dirac-Fock pseu-

dopotentials137 using core radii of 0.4 Å and 0.26 Å for oxygen and hydrogen respec-

tively, and trial wavefunctions of the Slater-Jastrow type, with a single Slater determi-

nant. The single particle orbitals were obtained from plane wave DFT calculations

in the local density approximation using the PWscf code138 with a plane wave cutoff

of 300 Ry, and re-expanded in B-splines139. Extensive tests on the ice VIII and ice II

primitive cells, close to their equilibrium volumes140 demonstrated that a time step of

0.002 a.u., together with the locality approximation141, resulted in cohesive energy dif-

ferences converged to within 5 meV per molecule; this setup was therefore used in the

calculations described. The 96-molecule hexagonal and cubic ground state supercells de-

scribed for the CP2K calculations were used for the DMC calculations. The model pe-

riodic Coulomb technique was used to treat electron-electron interactions, significantly

reducing DMC size errors142. Size tests performed on the ice VIII and II cells showed

that finite size errors are reduced to less than 5 meV per molecule for cells containing 96

molecules or more140.

4.2.4 Setup for empirical forcefield calculations

Although previous computational studies have shown that the commonly used empiri-

cal potentials lack the precision required to describe proton ordering in ice48;65;91;92 there

are still some reasons to be interested in them, particularly from a methodological per-
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spective. What is the magnitude of the difference in energy between proton ordered

configurations when using empirical potentials, and can we expect to see evidence of

proton ordering during a simulation of nucleation? And perhaps more importantly,

do these commonly used models display a bias towards nucleation of a specific phase?

The latter question may have considerable repercussions, for example, in the field of

biological simulations, where the TIP3P model is very frequently used.

All calculations were carried out using the GROMACS molecular dynamics code143

using 596 molecule supercells of the orthorhombic eight-molecule hexagonal and cubic

ice cells mentioned in the previous section (6× 3× 4, with a shortest side of 24.92 Å

for cubic and 6× 4× 3, with a shortest side of 22.01 Å for hexagonal). Simulations

were run in the isothermal-isobaric (NPT) ensemble; the temperature was maintained

at 0.01 K using a velocity rescaling thermostat with a 1 ps period in lieu of a zero-

temperature energy minimisation, and the pressure was maintained at 1 bar using an

anisotropic Berendsen barostat with a period of 5 ps. For each proton ordered configu-

ration considered, a leapfrog integrator was run for 100 ps with a timestep of 1 fs (100000

steps), and a cutoff of 10 Å was used when calculating neighbour lists, and van der Waals

and Coulomb interactions. Coulomb interactions were treated using the particle-mesh

Ewald (PME) method.

4.3 Results and discussion

Here the cohesive energy Ec (synonymous with “sublimation energy”) is defined as the

energy released when n (non-interacting) water molecules, each of energy Emolecule in the

gas phase are brought together to form the unit cell of an ice lattice with energy Ecell,

i.e.

Ec = Ecell− nEmolecule (4.1)
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When phase transition energies are discussed, it is important to distinguish between

the internal energy U and the enthalpy H , which is defined as:

H =U + pV (4.2)

For a cell of volume V at pressure p. Assuming a pressure of 1 bar and a cell volume

of 250 Å3, the contribution from the pV term is of the order of 2 J mol−1. Considering

the cell volume varies by no more than 1% between proton ordered configurations, it

can be deduced that the contribution of the pV term to the enthalpic difference will

be less than a negligible 0.01 J mol−1. Therefore the enthalpy of transition as discussed

below is approximated to the internal energy change of transition.

Tables 4.1 and 4.2 list the cohesive energies of each of the 27 proton ordered configu-

rations for the orthorhombic eight-molecule unit cells of hexagonal and cubic ice using

the PBE exchange-correlation functional and the BLYP-D3 dispersion-corrected func-

tional using the GPW method of CP2K, and the PBE functional using a BSSE-free plane

wave basis in VASP. The cohesive energies relative to structure number 1 for hexago-

nal and cubic ice have been plotted in figure 4.1. The structures numbered in order of

symmetry, 1 having the highest symmetry. In both cases, structure 1 is found to be the

ground state proton ordered configuration. For hexagonal ice, this corresponds to the

C mc21 structure of ice XI, in agreement with the calculations of Hirsch and Ojamäe12

and Tribello and Slater97. It should be noted that this structure has been experimentally

verified82 (see section 2.5).

Cohesive energies for the TIP4P and TIP3P forcefields are tabulated in tables 4.3

and 4.4, and their energies relative to the C mc21 configuration for hexagonal ice and

I 41md for cubic ice are plotted in figures 4.2a and 4.2b. Relative energies for TIP3P in

the figures have been scaled down by a factor of ten in the graphs to allow easy compari-

son. Surprisingly, the TIP3P model agrees with DFT on the ground state configuration

of cubic ice, but not for hexagonal ice. In agreement with other studies48;78, both the
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(a) Hexagonal ice

(b) Cubic ice

Figure 4.1: Relative energies for 16 hexagonal and 11 cubic symmetry-unique proton
ordered configurations, as calculated using DFT. Energies are shown relative to struc-
ture 1 in both cases. The connecting lines have no physical meaning, and are present to
guide the eye. In 4.1a, structure 1 is the experimentally verified C mc21 structure of ice
XI, and 2 is the antiferroelectric P na21 configuration predicted by Davidson and Mo-
rokuma14. In 4.1b, structure 1 is the ground state I 41md structure, according to PBE
and BLYP-D3 calculations, and can be considered the cubic analogue of ice XI.
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TIP4P and TIP4P/2005 models favour the P na21 structure for hexagonal ice, and the

P41212 structure for cubic ice, in both cases the antiferroelectric configuration with the

highest symmetry. The range of energies for proton ordered configurations is consider-

ably lower for the TIP4P calculations, up to∼150 J mol−1, which in turn is considerably

lower than the range for the DFT calculations. These models are useful in many situ-

ations, but when they are used to attempt to resolve energy differences on the scale of

40 J mol−1 (the TIP4P energy difference between the C mc21 and P na21 configurations),

they are clearly insufficient. The preference for antiferroelectric phases (in the case of

TIP4P) suggests an underlying problem with the model; this has been addressed by Tri-

bello and Slater, who established that widely used potential models such as TIP4P lack

the description of high order multipole moments required to capture proton ordering

energetics97.

4.3.1 Hexagonal ice

All three datasets for hexagonal ice (figure 4.1a) agree with each other with regards to

the ground state and the general shape; they are also in broad agreement with calcu-

lations by Hirsch and Ojamäe12, with differences perhaps attributable to their choice

of functional (PW91), k-point sampling and lower plane wave cutoff. The similarity

between the VASP and CP2K results confirms that the GPW method is reliable for dis-

criminating the extremely small (on the J mol−1 scale) energy differences involved in

proton ordering. Grimme’s D3 dispersion correction uses an empirically parameterised

function with a 1
r 6 dependence to simulate long and short range dispersive forces119. It

can be seen that the relative energies calculated using BLYP-D3 (the red line in figure

4.1a) have a similar distribution, suggesting that to a first approximation, long range dis-

persion has a negligible effect on proton ordering energetics. The inherent overbinding

of PBE at hydrogen bonding distances mimics the effect of short range dispersive forces

on the cohesive energy. The cohesive energy of −67.76 kJ mol−1 compares favourably
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(a) Hexagonal ice

(b) Cubic ice

Figure 4.2: Relative energies for 16 hexagonal and 11 cubic symmetry-unique proton
ordered configurations, as calculated using MM. Energies are shown relative to structure
1 in both cases. The connecting lines have no physical meaning, and are present to guide
the eye. In 4.2a, structure 1 is the experimentally verified C mc21 structure of ice XI, and
2 is the antiferroelectric P na21 configuration predicted by Davidson and Morokuma14.
In 4.1b, structure 1 is the ground state I 41md structure, and 11 is the antiferroelectric
configuration with the highest symmetry. The relative energies for TIP3P are much
larger than for the TIP4P models, and have been scaled down by a factor of 10 for easy
comparison.
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(a) Ice XIh (C mc21) (b) Ice XIc (I 41md )

Figure 4.3: DFT ferroelectric ground state structures of ice Ih (XIh) and ice Ic (XIc).
Although the tetragonal four molecule cell of XIc is shown, a 2× 1× 1 supercell was
generated to enumerate proton ordered configurations and calculate energies.

with the value of −68.1 kJ mol−1 reported by Pan et al.5, who also used CP2K albeit

with a lower plane wave cutoff.

To the best of our knowledge, there is no experimental estimate for the cohesive

energy of ice XI. According to Petrenko and Whitworth, proton disordered ice Ih is

estimated to have a cohesive energy of −58.95 kJ mol−1 46. Pan et al. reported an en-

ergy range of 500 J mol−1 dependent on the degree of proton disorder, and a recent

study yielded a cohesive energy of 67.3 kJ mol−1 for Ih26. The results presented here

suggest, in agreement with Tribello and Slater97, that the proton ordering energies are

not sensitive to the choice of functional, hence it must be predominantly influence by

the electrostatic interactions. Note that the energy difference between the C mc21 and

P na21 structures (N= 1 and 2 respectively in figure 4.1) is 400 J mol−1, which compares

favourably with the 335 J mol−1 reported by Labat et al.98.
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4.3.2 Cubic ice

Given that results for hexagonal ice are consistent with previous work (notably by

Hirsch and Ojamäe12), the results for cubic ice can be viewed with confidence. Accord-

ing to all of the DFT recipes used, the ground state is the ferroelectric I 41md structure

(only 2 and 7 are anti-ferroelectric), and consists of 100% inverse centre-symmetric (“h-

cis”) dimers, according to Bjerrum’s classification47. This configuration will henceforth

be referred to as “Ice XIc,” where the “c” suffix is retained from ice Ic to denote the

cubic stacking order of the bilayers even though the unit cell is tetragonal. I 41md is a

sub-group of F d 3̄m, the space group of the cubic ice cell (in the interest of disambigua-

tion, ice XI will be referred to as “XIh” in this chapter). The hydrogen bond topology

is in fact identical to that of the sub-lattices of ice VIII (recall that ice VIII is the pro-

ton ordered variant of ice VII, which consists of two interpenetrating ice Ic lattices);

however, the ice VIII lattice is antiferroelectric overall, because the dipole moments of

the two sub-lattices exactly cancel each other out. The dipole moments of all molecules

in the XIc cell are aligned in the c-direction, resulting in a higher dipole moment in

comparison with XIh.

4.3.3 Estimating the Ic→Ih transition energy

In real terms, a phase transition from cubic ice to hexagonal ice is a transition from the

Ic phase to the Ih phase, both of which are disordered. Since simulating proton disorder

is computationally expensive, the energy difference between XIh and XIc is used as a

first approximation to the transition energy.

Although the hexagonal and cubic dataset are internally consistent, agreeing on the

ground state configurations and relative energies of the structures, there is a significant

mismatch in the energy difference between XIh and XIc (∆Hc→h ) for the GPW and

plane wave datasets. GPW calculations using the PBE functional indicate that XIh has

a lower cohesive energy than XIc by 102 J mol−1, but the plane wave calculation yield
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a much larger difference of ∆Hc→h '−416 J mol−1. Note that the order of stability

(hexagonal being more stable than cubic) disagrees with the findings of Casassa et al.69

In order to shed light on this discrepancy, additional DMC and high precision plane

wave DFT calculations were performed on the XIh and XIc structures, as delineated at

the end of section 4.2.2. The results of these calculations are displayed in table 4.5.

The first point to take from the high precision calculations is that regardless of the

functional recipe used, ∆Hc→h is very close to zero; for all of the methods used (with

the possible exception of DMC which is subject to a statistical error), the cohesive ener-

gies are within 60 J mol−1 of each other. The second noteworthy point is that the sign

of∆Hc→h varies with the recipe used. The GGA functional PBE, the hybrid PBE0 and

the BLYP-D2 functional, employing the semi-empirical D2 dispersion correction118 all

suggest that XIc is marginally more stable, with values of+47,+54, and+12 J mol−1 re-

spectively. (Note that data for BLYP-D2 are not included on table 4.5 because molecular

energies could not be reliably calculated as a result of a software bug.) In particular, the

PBE0 result suggests that a moderate level of non-local exchange (25%) has very little

effect on the energy difference between two proton ordered configurations. The func-

tional with the most sophisticated treatment of long range dispersion, optPBE-vdW,

is the only one to yield a negative value for ∆Hc→h (−29 J mol−1). Together with the

lower energy difference from BLYP-D2, it seems likely that long range dispersion sta-

bilises XIh with respect to XIc. Finally, with regards to the DMC calculations, the

XIc is slightly (40 J mol−1) more stable, albeit with a substantial error bar; the primary

conclusion one can draw from this result is that XIh and XIc are essentially isoenergetic.

There is no clear correlation between the relative cell volumes per molecule and

cohesive energies. One would intuitively expect the structure with the lower cohesive

energy to be more dense, and therefore have a smaller cell volume; however, the PBE

calculations suggest that XIc is more stable and denser, whereas the optPBE-vdW calcu-

lations show the opposite trend, with XIh being more stable, but XIc having the higher
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Figure 4.4: Equation of state plot for ices XIc and XIh; calculated using the optPBE-
vdW functional and DMC.

density. It has been noted that PBE overbinds at hydrogen bonding distances, which

mimics short-range dispersion, but there is no effect that adds long-range dispersion.

The optPBE-vdW functional explicitly models both types of dispersion, therefore one

might expect it to stabilise XIh with respect to XIc, since XIh has an additional wa-

ter molecule in the second coordination sphere. PBE0 on its own has no long range

dispersion correction, and generates a more localised electron density distribution; this

results in a larger electrostatic contribution to the cohesive energy and yields XIh as the

denser and more stable phase. This is slightly counterintuitive, since one might expect

the larger dipole moment of the XIc cell (by 0.1 Debye) to electrostatically stabilise it

with respect to XIh.

The zero point energy is sizeable in ice and could therefore influence the relative

stability of XIh and XIc. Four point numerical derivative vibrational mode calculations
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were performed on the PBE (hard PAW pseudopotential) optimised structures; at the

time, the stress tensor had not been implemented for the optPBE-vdW functional, even

though it would have been the natural choice for these calculations). It was found that

the zero point energy of XIc is 133.349 kJ mol−1, compared with 133.224 kJ mol−1 for

XIh — i.e. the zero point energy of XIc is 125 J mol−1 greater than for XIh. Thus∆Hc→h

is modified to −78 J mol−1, suggesting that XIh is the more stable phase. PBE calcula-

tions using ultrasoft pseudopotentials and the plane wave CASTEP code, performed by

Ben Slater4, tell a different story: a zero point energy difference of 467 J mol−1 com-

bined with a∆Hc→h of −130 J mol−1 stabilise cubic ice. However, considering that sev-

eral first derivative methods have been unable to reach an agreement as to which phase

is more stable, it seems premature to interpret zero point energies, which are derived

from the second derivative of the energy.

Turning to configurational entropy, there are six possible orientations of each molecule

in the cell within the constraints of the ice lattice, resulting in 68 = 1679616 configura-

tions for an eight molecule cell. Of these, only 114 are allowed by the ice rules, and the

majority of the 114 are related by symmetry operations. In the case of hexagonal ice,

six of the 114 have the C mc21 structure, whilst for cubic ice, six of the 114 have the

I 41md structure. Thus there are the same number of ways of generating both ground

state configurations (XIh and XIc), and it can be concluded that they have identical

configurational entropies.

For all of the functionals used, the denser phase reassuringly has the lower nearest

neighbour oxygen-oxygen separation. It has recently been shown that that the linearity

of the OĤO bond is an extremely good indicator of stability144 — more stable structures

generally correspond to hydrogen bond angles closer to 180◦. For all of the functionals

used, XIc has a mean OĤO bond angle closer to 180◦, with a smaller variance; this is

compelling evidence that XIc should be the more stable phase, and that the order of

stability is very subtly influenced by the functional recipe used.
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Recently, Kobayashi and Yasuda145 induced a phase transition from Ic to XI at 95 K

in a thin film by irradiation with high energy electrons. It is noteworthy that there was

no transition to XIc, and the transition occurred above the 72 K reported by Tajima

et al 80. and the Bjerrum defects required for reorientation are created by ionisation of

water molecules into H+ and OH–. They suggest an intermediate transition to Ih, but

do not rule out the possibility of XIc forming.

4.4 Summary and conclusions

The ferroelectric I 41md configuration (polarised in the c direction), dubbed ice XIc, is

identified as the unambiguous ground state proton ordered phase of cubic ice accord-

ing to PBE and BLYP-D3 DFT calculations performed using the Gaussian/plane wave

CP2K code. Higher precision plane wave calculations using a variety of functionals (no-

tably the best available approximation to a long range dispersion corrected functional,

optPBE-vdW) and hard PAW pseudopotentials in the VASP code suggest that the differ-

ence in cohesive energy between XIh and XIc is only a few tens of J mol−1. Considering

the error bars in the DMC calculations and the lack of agreement between the high pre-

cision plane wave DFT methods, it is only appropriate to conclude that ices XIh and

XIc are essentially isoenergetic.

In principle Ic should transform to XIc in a manner similar to the Ih→ XIh tran-

sition, with the addition of a KOH dopant to allow reorientation. The difference in

energy between the most favourable and second most favourable proton ordered con-

figuration for cubic (∼270 J mol−1) and hexagonal (∼130 J mol−1) suggest that the tran-

sition may be more facile in the case of cubic ice, since the potential well separating the

two most favorable configurations is deeper.

In order to prepare ice XIc, one would need to surmount the considerable obstacle of

obtaining a reasonably pure sample of Ic. Ices XIII, XIV53 and XV27 have been isolated

by cooling very slowly (to prevent transformation to Ih and XIh) in the presence of a
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dopant, and it can be tentatively suggested that XIc might be prepared from a good Ic

sample in a similar way4.
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DFT cohesive energy (kJ mol−1)

N Space group CP2K/PBE CP2K/BLYP-D3 VASP/PBE

1 C mc21 −67.901 −69.434 −64.503
2 P na21 −67.432 −68.914 −64.102
3 P na21 −67.470 −68.979 −64.131
4 P b n21 −67.650 −69.144 −64.268
5 P ca21 −67.740 −69.241 −64.373
6 P212121 −67.330 −68.818 −63.995
7 P212121 −67.572 −69.070 −64.235
8 C c −67.777 −69.307 −64.402
9 P c −67.718 −69.234 −64.336
10 P c −67.665 −69.144 −64.273
11 P c −67.688 −69.189 −64.324
12 P21 −67.450 −68.946 −64.115
13 P21 −67.452 −68.945 −64.118
14 P21 −67.735 −69.230 −64.374
15 P21 −67.665 −69.136 −64.271
16 P1 −67.760 −69.272 −64.387

Table 4.1: DFT cell optimised cohesive energies for all symmetry-unique proton or-
dered hexagonal ice configurations.

DFT cohesive energy (kJ mol−1)

N Space group CP2K/PBE CP2K/BLYP-D3 VASP/PBE

1 I 41md −67.797 −69.021 −64.087
2 P41212 −67.182 −68.312 −63.538
3 P na21 −67.479 −68.615 −63.818
4 P na21 −67.354 −68.424 −63.680
5 P mn21 −67.346 −68.452 −63.663
6 P ca21 −67.640 −68.768 −63.952
7 P21212 −67.327 −68.453 −63.662
8 P c −67.504 −68.616 −63.806
9 P c −67.650 −68.771 −63.953
10 P21 −67.408 −68.493 −63.738
11 P21 −67.353 −68.424 −63.681

Table 4.2: DFT cell optimised cohesive energies for all symmetry-unique proton or-
dered cubic ice configurations.
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MM potential energy (kJ mol−1)

N Space group TIP4P TIP4P/2005 TIP3P

1 C mc21 −57.084±0.000 −63.018±0.000 −54.826±0.000
2 P na21 −57.125±0.000 −63.053±0.000 −54.544±0.002
3 P na21 −57.074±0.000 −62.994±0.000 −54.229±0.005
4 P b n21 −57.067±0.000 −62.996±0.000 −53.954±0.003
5 P ca21 −57.109±0.000 −63.037±0.001 −54.301±0.003
6 P212121 −57.100±0.001 −63.033±0.001 −55.101±0.002
7 P212121 −57.105±0.001 −63.036±0.000 −54.963±0.001
8 C1c1 −57.010±0.000 −62.931±0.000 −54.633±0.001
9 P1c1 −57.041±0.000 −62.964±0.000 −54.235±0.002
10 P1c1 −57.045±0.000 −62.966±0.000 −54.108±0.004
11 P1211 −57.061±0.000 −62.989±0.000 −54.065±0.005
12 P1211 −57.097±0.000 −63.024±0.000 −54.763±0.003
13 P1211 −57.099±0.000 −63.026±0.000 −54.658±0.003
14 P1211 −57.087±0.000 −63.017±0.000 −54.228±0.003
15 P1211 −57.050±0.000 −62.974±0.000 −54.041±0.006
16 P1 −57.063±0.000 −62.990±0.000 −54.419±0.003

Table 4.3: MM cell optimised cohesive energies for all symmetry-unique proton or-
dered hexagonal ice configurations, using 3 common empirical potentials: TIP4P,
TIP4P/2005 and TIP3P.

MM cohesive energy (kJ mol−1)

N Space group TIP4P TIP4P/2005 TIP3P

1 I 41md −57.032±0.000 −62.961±0.000 −55.564±0.001
2 P41212 −57.129±0.000 −63.064±0.000 −54.920±0.064
3 P na21 −57.089±0.000 −63.017±0.003 −54.697±0.071
4 P na21 −57.099±0.000 −63.029±0.001 −54.800±0.067
5 P mn21 −57.079±0.000 −63.009±0.000 −54.129±0.001
6 P ca21 −57.058±0.001 −62.983±0.002 −55.029±0.035
7 P21212 −57.078±0.000 −63.009±0.001 −54.132±0.001
8 Pc −57.060±0.000 −62.991±0.000 −53.940±0.002
9 Pc −57.057±0.000 −62.984±0.001 −55.049±0.026
10 P21 −57.075±0.000 −63.008±0.000 −54.054±0.002
11 P21 −57.102±0.001 −63.033±0.000 −54.805±0.067

Table 4.4: MM cell optimised cohesive energies for all symmetry-unique proton ordered
cubic ice configurations, using 3 common empirical potentials: TIP4P, TIP4P/2005 and
TIP3P.
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Chapter 5

The ice surface

5.1 Introduction

Polar stratospheric clouds (PSC, figure 5.1) are observed in the stratosphere at altitudes

of 15 km to 25 km during the winter. They are thought to contain cubic ice crystals,

which is inferred from observations of Scheiner’s halo54 and the temperature regime at

that altitude. Reactions which process HCl, ClONO2 and HOCl into Cl2, and subse-

quently dissociate Cl2 homolytically to form the chlorine radicals implicated in ozone

depletion are heterogeneously catalysed by the surfaces of ice crystals in these clouds146.

Just as proton ordering affects the bulk cohesive energy of ice, it is known to affect

the surface energy, albeit to a much greater extent5. When a hexagonal ice crystal is

cleaved to reveal the [0001] basal plane, each surface molecule in the top half of the

Figure 5.1: Polar stratospheric clouds.

120
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Figure 5.2: [0001] basal surface of a 2 bilayer hexagonal ice slab. Dark blue atoms are
oxygens in the top half of the uppermost bilayer. The dangling OH bonds are ordered
as in Fletcher’s striped phase, with the stripes highlighted in green.

bilayer has one broken hydrogen bond; when the surface molecule is a hydrogen bond

donor, it is said to have a “dangling OH bond.” Each surface molecule has six sur-

face nearest neighbours (figure 5.2); it has been shown that the orientation of a surface

molecule relative to those of its six neighbours has a significant effect on the surface

energy.

Experiments have shown that the ice surface is indeed the ideal full bilayer surface

termination of the basal plane of hexagonal ice147. Although they were not able to

resolve proton ordering, Glebov et al. observed “small domains of additional structure”

with a periodicity of approximately twice the lattice constant of the ideally terminated
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surface in helium atom scattering experiments147. Whilst Glebov et al. conclude that

the most likely configuration of the ice surface is disordered (attributing the helium

diffraction peaks mentioned above to boundaries between domains of different phase or

orientation, Buch et al. suggest that they may be a result of the proton ordered striped

phase102.

Recently, Sazaki et al. optically imaged elementary steps on a hexagonal ice sur-

face using laser confocal microscopy6. Such observations will in principle allow the

experimental evaluation of the step ledge free energy of hexagonal ice, which may be

important not only in the theory of two dimensional nucleation, but also in reaction

chemistry, where these defects may be important in catalysis. For example, theoreti-

cal studies of HCl adsorption on ice have shown that ice surface defects can increase

its adsorption energy, and possibly facilitate ionisation148. Bolton reports QM/MM

simulations which indicate that step (and seven-ring) defects on a hexagonal ice surface

facilitate that barrierless ionic dissociation of HCl molecules146. Batista and Jónsson

used the TIP4P potential to form “island” defects on a hexagonal ice surface, their re-

sults suggesting that for one to five adsorbed water molecules, the molecules comprising

the island occupy non-crystallographic positions, but become crystalline when a sixth

molecule is added via a complicated restructuring with a low barrier149. The first stage

in a study of surface defects is an analysis of step defects.
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Figure 5.3: A reconstructed step feature on an ice I surface consisting of two visible
bilayers. Molecules on the step edge are in colour.

Figure 5.4: Optical images of a basal [0001] hexagonal ice surface taken using laser con-
focal microscopy (taken from Sazaki et al.6) They show the birth, growth and coales-
cence of elementary (single bilayer) step defects. The fact that no step contrast remains
after the growth fronts merge indicates that the steps are indeed elementary. Note that
the step growth is isotropic.

This chapter begins with an assessment of the effect of proton ordering on the hexag-

onal and cubic ice surfaces, followed by an attempt to characterise step defects on the
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basal planes of cubic and hexagonal ice with a view to explaining the circular growth

observed in figure 5.4.

5.2 Model and methods

5.2.1 Generating proton ordered cubic ice slabs

As mentioned previously, the surface energy of hexagonal ice is affected by proton or-

dering by an order of magnitude more than the bulk cohesive energy. With this in mind,

we can fully randomise the bulk proton ordering in the slab, and only pay attention to

the surface ordering whilst assuming that the bulk energy has not changed significantly.

The surface ordering is defined by the following order parameter on the [0001] basal

plane (of the hexagonal ice cell)5,

C B
OH =

1

NOH

NOH
∑

i=1

ci , (5.1)

where NOH is the total number of dangling OH bonds on the surface (both sides of

the slab), and ci is the number of dangling OH bonds adjacent to the i th dangling OH.

The B denotes the basal [0001] surface of hexagonal ice. In other words, the order

parameter COH is defined as the average number of dangling OH bonds surrounding a

dangling OH bond.

In principle, C B
OH can vary between 2 and 6, where the Fletcher “striped phase” has

an order parameter of 2 — although the order parameter is non-unique, for example, a

“meandering” surface pattern will also have a surface order parameter of 2. A high order

parameter represents a high degree of clustering of dangling OH bonds, while a random

surface configuration will have an order parameter of 3. Note that C B
OH is calculated by

averaging over both sides of the slab in this work.

The analogous surface of cubic ice is the (111) plane. Cubic ice crystals are generally
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described as having octahedral symmetry (for example, in the explanation of Scheiner’s

halo54), and all eight surfaces on an octahedral crystal will be topologically identical

(ignoring proton disorder) due to the symmetry. Whilst the (111) surface may not be

the only facet expressed during crystallisation, it is the natural starting point for a study

of the surface energy of cubic ice, which has no equivalent to the prism face of hexagonal

ice.

The cubic ice cells used in chapter 4 do not have bilayers normal to the faces of the

cell, so it was necessary to construct a new cell with bilayers normal to the z-direction,

analogous to those for hexagonal ice. Thus starting from the fully cell optimised cubic

P41212 cell (chosen because it is the highest symmetry antiferroelectric cell, and a non-

polar slab is required for such calculations), a surface was constructed in the (111) plane,

resulting in a 12 molecule cell that was three bilayers deep. This was used to construct

a six-bilayer 5× 3× 2 supercell containing 360 molecules, analogous to the six-bilayer

hexagonal ice slabs used by Pan et al.5. The surfaces of the slab were defined at the

extremities of the cell in the z-direction (z = 0 and z = c ); the initial cell had an order

parameter of 2.

Rick and Haymet describe an algorithm for randomising the proton ordering in

an ice cell without violating the ice rules, called the “move” algorithm89, summarised

below.

1. Identify a closed loop of hydrogen bonds

a) Randomly select a molecule in the lattice, i

b) Randomly select one of its 4 nearest neighbours, j

c) If j is a hydrogen bond donor to i , randomly pick one of the two neighbours

of j that are donors to j ; otherwise pick one of the two neighbours of j that

are acceptors to j .

d) Continue to walk randomly in this way until the next molecule has already
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been visited on the walk. In a periodic cell, the walker may stop on a periodic

image of the starting molecule.

2. Reorient the water molecules without violating the ice rules. For each molecule

j on the N -molecule loop, rotate the molecule about the O j –H1 j axis, where H1 j

is the hydrogen atom in j not in the loop. The effect of this is to reverse the

direction of all the hydrogen bonds that form the loop.

This scheme would normally be used in conjunction with a Monte Carlo/Metropolis

algorithm, where the acceptance probability of a move is an exponential function of the

energy change resulting from the move. In this case, however, the aim was to alter

the proton ordering pattern on the surface, so only moves that (i) contained surface

molecules and (ii) increased the order parameter were accepted; a configuration was

saved after every such move. Although in principle the maximum value of C B
OH is 6 in

an infinite cell5, no configurations were observed with values of more than ∼4.5 (with

loose tolerances; it was assumed that no more configurations were to be found after

5000 “moves” with no increase in the order parameter). Some examples of the surfaces

constructed by this algorithm are shown in figure 5.5.

As an additional step, after every move, the configuration was screened for a dipole

moment. When performing slab calculations, it is necessary to ensure that the dipole

moment of the slab is close to zero in the z-direction, otherwise there may be long range

residual electrostatic forces between periodic images, which cause the slab to potentially

drift through the vacuum gap during geometry optimisation. Any move which was

found to increase the magnitude of the dipole in the cell was rejected. Hayward and

Reimers describe three methods of imposing this constraint in an ice slab85.

C0: No additional constraints; screen the cell for zero dipole moment after generation

C1: Constrain the number of each of the 36 OH bond orientations (24 for hexagonal

ice) to be equal.



CHAPTER 5. THE ICE SURFACE 127

C2: Constrain the number of each of the 12 OH bond orientations per bilayer to be

equal.

Constraint C0 is inefficient, since it will result in a vast majority of unusable config-

urations, whilst C2 is too strong and my introduce unwanted order into the lattice.

Therefore, the cell was tested against the C1 constraint after every move.

5.2.2 Surface energy of ices Ih and Ic

Surface energy calculations were performed on five such configurations with different

order parameters, and by way of comparison, on the five configurations used by Pan et

al.5 (surface energy calculations are extremely sensitive to the details of the computa-

tional setup, so it was decided that these calculations should be repeated using the same

settings, rather than using the data acquired by Pan et al.)

The surface energy γ of a n bilayer slab is calculated as prescribed by Pan et al 5.:

γ =
E slab

tot (n)− nEbulk
tot

2A
, (5.2)

where E slab
tot is the total energy of the slab, Ebulk

tot is the bulk reference energy per bilayer

and A is the surface area of one face of the slab. The bulk reference energy is defined as,

Ebulk
tot = E slab

tot (n)− E slab
tot (n− 1), (5.3)

i.e. the difference in energy between a n bilayer slab and a n − 1 bilayer slab. Here,

it is assumed that the slab is deeper than the critical thickness, such that the total en-

ergy increases uniformly with the number of bilayers. Figure 5.6 demonstrates that the

surface energy converges rapidly with respect to the number of bilayer. The fact that

cubic ice has a lower surface energy than hexagonal for the first column of this plot has

no physical meaning, since a single bilayer of ice is neither hexagonal nor cubic. The

difference in energy between the single bilayer data points arises from the difference in
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Figure 5.5: Illustration of proton ordering patterns on the (111) surface of ice Ic. Dan-
gling hydrogens are shown in white; hydrogen atoms below the uppermost layer are
hidden. The surfaces respectively have order parameters (C B

OH) of A: 2.0, B: 2.8, C: 3.6,
D: 4.4. Note that these numbers include dangling bonds on both sides of the slab, even
though only one side of each slab is shown. Neighbouring dangling OH bonds corre-
spond to the second nearest neighbour oxygen atoms (they are all on one half of the
bilayer), hence the hexagonal pattern.

cell dimensions, since this was a geometry optimisation rather than a cell optimisation

(the slabs were created by successively removing bilayers from a six bilayer hexagonal

or cubic ice slab). Thus although in principle the structures for single bilayer slabs are



CHAPTER 5. THE ICE SURFACE 129

Figure 5.6: Graph of surface energy against number of bilayers. The surface energy has
essentially converged at 3 bilayers.

identical, there is some residual stress caused by the unrelaxed cell, and there may be a

different number of plane waves in each cell.

Five slabs with different surface order parameters were generated using the method

described in section 5.2.1. The bulk structures were converted to slabs by inserting a

vacuum gap of at least 20 Å extending in the z-direction; these were geometry optimised

in CP2K using the PBE exchange-correlation functional, a 400Ry plane wave cutoff and

the GTH TZV2P basis set. SCF cycles were assumed to have converged for energy

changes of less than 1.0× 10−6 Eh. The geometry optimisation was assumed to be con-

verged when the change in geometry was less than 3.0× 10−3 a0 and the forces were less

than 5.0× 10−5 Eh a0
−1.
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5.2.3 Step formation energies of ices Ih and Ic

The grooved slab used to model steps is shown schematically in figure 5.7. Step forma-

Figure 5.7: Schematic representation of the grooved slab used to model step defects
(taken from Yu et al.16). A single layer step is formed on a N layer slab; the slab is 2D
periodic with cell dimensions a = Lx and b = Ly (in the 3D periodic case a vacuum gap
is used in the c -direction, and steps separated by a distance l .

tion energies were computed using a modified version of the method described by Li et

al 150. The surface energy γ is taken from equation (5.2), and the ledge energy is defined

as,

Eledge =
(Eslab− Ebulk− γA)

2Lx

, (5.4)

where the terms in parenthesis are respectively the energy of the grooved slab (Eslab), the

bulk energy (Ebulk), and the surface energy over both sides of the slab (γA), i.e. the ledge

energy is the excess energy when the bulk and surface energies are subtracted from the

slab energy. Lx is the length of the step. Here, it is assumed that either the step is non-

polar, or the separation l between periodic images of the step is sufficient such that there

is no residual electrostatic interaction between steps. Interactions between steps can be

incorporated using the following relation, which assumes an inverse square interaction

between images:

Eledge = Estep+
B

l 2
, (5.5)
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where B is a constant to be determined.

Thus for cases where there is interaction between steps, the ledge energy is calculated

for slabs with different step separations (l ), and equation (5.5) used to determine the

form of the step energy. This is problematic in the case of the ice surface since for

any proton disordered surface, there will be a different arrangement of dangling OH

bonds on the step for different values of l — and it is impossible to decompose the final

contribution into proton disorder and the Coulomb interaction between periodic step

images. For this reason, we will only consider the ledge energy Eledge, ensuring that only

steps with a sufficiently large value of l are considered.

A variety of different slabs were used to calculate step energies; these were con-

structed using the eight-molecule hexagonal and twelve-molecule cubic cells described

in section 5.2.1. A 10× 3× 3 striped (order parameter 2) hexagonal ice slab was con-

structed to investigate step growth in the [1000] direction, and a 5× 6× 3 slab to study

growth in the perpendicular [0100] direction. Similarly, 10×3×2 and 5×6×2 slabs of

cubic ice were constructed to study steps in analogous directions (they are not assigned

Bravais-Miller indices due to the cubic cell). The top (or bottom) bilayer of the slab was

cleaved as in figure 5.7 on either side to create a symmetrical “top hat” feature of varying

widths, resulting in a set of configurations with different values of l . These configura-

tions were geometry optimised using the same computational setup as in section 5.2.2.

Vacancy energies (Evacancy) were calculated by removing one molecule from the step and

re-optimising; the vacancy energy is defined as:

Evacancy = Eslab− Estep− EH2O (5.6)

where Eslab is the total energy of the slab with a step defect and vacancy, Estep is the total

energy with the step but no vacancy, and EH2O is the gas phase total energy of a water

molecule.
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5.3 Results and discussion

5.3.1 Surface energy of ices Ih and Ic

The results of the surface energy calculations are presented in figure 5.8. This is in

Figure 5.8: Surface energy of hexagonal and cubic ice as a function of the order param-
eter C B

OH; a higher value of C B
OH represents a higher degree of clustering of dangling

OH bonds. Formally, it is the average number of dangling OH bond adjacent to each
dangling OH bond.

broad agreement with the results of Pan et al., who report a linear correlation between

the surface energy and order parameter. The surface energy of the striped hexagonal

phase is slightly higher at the PBE level (12.9 meV Å−2 compared with 12.5 meV Å−2

according to Pan). Unsurprisingly, the cubic ice surface displays the same trend, from

which we can draw the same conclusion as Pan et al.: that the most favourable surface

ordered configuration minimise electrostatic repulsion between dangling OH bonds,
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subject to the constraint that the ice rules are not violated.

Crucially, the cubic ice surface has a higher surface energy by approximately 10%

for all values of C OH
B , although the physical meaning of this is a potential subject for

debate. At the most fundamental level, cleaving a cubic crystal to expose the (111) plane

is less facile than it is to form the basal [0001] plane of hexagonal ice. This means that

the hexagonal ice surface is more stable, and therefore less reactive.

In order to explain these findings, we calculated the structural relaxation energy of

the striped surfaces, which is defined as the difference in total energy between the final

optimised structure and a single point on the initial structure. The relaxation energy

turned out to be 0.15 eV higher for hexagonal ice, i.e. the hexagonal ice surface relaxes

considerably more. An analysis of the structure revealed that both surfaces undergo

reconstruction to roughly the same extent for both polytypes; the oxygen-oxygen sep-

aration in the surface bilayers changes from 2.691 Å to 2.704 Åfor cubic ice and from

2.694 Å to 2.707 Å for hexagonal. The standard deviation of surface bilayer oxygen-

oxygen separation changed from 0.002 Å to 0.073 Å for cubic ice and 0.021 Å to 0.071 Å

for hexagonal. The relative separation of surface protons changed very little, by less

than 0.001 Å on average. The only outlying value in this case is the standard deviation

surface oxygen-oxygen separation for hexagonal ice before reconstruction; it is almost

an order of magnitude higher than for cubic, suggesting there is considerably less sym-

metry in the hexagonal surface (i.e. the oxygen atoms are further from their ideal lattice

points).

The fact that the atoms in cubic ice are more constrained to their lattice points sug-

gests that the curvature of potential energy surface is higher than for hexagonal ice. This

is supported by the fact that the hexagonal ice slab took almost an order of magnitude

more steps to reach the same convergence threshold (99, compared with 16 for the cubic

slab). It is possible that when the surface is cleaved, the shallow potential energy surface

for hexagonal ice facilitates further movement in phase space. Performing calculations
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Figure 5.9: Definition of the two step types. Only oxygen atoms are shown; atoms in
the uppermost bilayer are coloured red, and atoms in the lower bilayer are coloured
grey. Oxygen atoms on step edges are coloured blue on the upper half of the top by
layer and cyan on the lower half. The cubic ice surface is shown; on the hexagonal ice
surface, there would be no offset between the layers (the hexagons in the two bilayers
would coincide vertically), and the steps would grow in the [1000] and [011̄0] directions
for the A-steps and in the [0100] direction for the B-step.

analogous to Watkins et al.26 to determine vacancy energies for the cubic ice bulk and

surface may be instructive.

5.3.2 Steps on striped surfaces

There are two contributions to the step formation energy on ice surfaces; this section

focuses on the effect of the underlying oxygen lattice on the step energy, followed by

the effect of proton ordering in section 5.3.3.

5.3.2.1 A, B1 and B2 steps

In order to simplify the notation, we define two distinct types of step: A and B (figure

5.9). Furthermore, B-steps are subdivided into two types: B1, which are terminated

with molecules in the upper half of the top bilayer (figure 5.10b), and B2, which are

terminated with molecules in the lower half (figure 5.10c).
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(a) A-step

(b) B1-step (c) B2-step

Figure 5.10: The A-, B1- and B2-steps (unrelaxed). Oxygen atoms on the step edge on
the upper half of the top bilayer are blue, and cyan on the lower half.

Step formation energies for the hexagonal and cubic A-steps are reported in table

5.1. The alternating value of the ledge energy for the A-steps as l increases is an artefact

of the method by which the slab was created, but leads to an important insight into

step formation. For the higher ledge energies, the proton ordering resulted in a major

structural relaxation on one side of the striped slab, but not on the other, whilst for the

lower ledge energies, reconstruction occurred on both sides.

When the basal plane of an ice crystal is cleaved, as in section 5.2.2, the water

molecules that are normally four-coordinated in the bulk become three-coordinated at

the surface. When a step defect is introduced, some molecules in the top half of the top

bilayer on the step edge become two-coordinated, an energetically unfavourable situa-

tion. These two-coordinated molecules will sometimes relax to form a third hydrogen

bond with a three-coordinated molecule on the bilayer below (figure 5.11), but in some

cases the hydrogen bond topology makes this impossible. The lower ledge energies on

table 5.1 correspond to surface proton ordering configurations where substantial recon-
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A-step B-step

l (Å) Hexagonal Cubic l (Å) Hexagonal Cubic

8.8 10.1 17.0 15.3 30.1 29.4
13.2 16.5 8.9 19.1 37.8 37.5
17.6 10.4 16.7 22.9 14.26 15.9
22.0 16.3 9.0 26.7 42.9 41.2
26.4 10.5 16.8 30.6 29.9 28.9
30.8 16.9 10.1 34.4 38.2 37.1
34.2 12.8 17.0 38.2 14.3 16.0

Table 5.1: Ledge energies (Eledge) in eV Å−1 of hexagonal and cubic A- and B-steps on
striped surfaces. l is the distance between steps (periodic images), i.e. a larger value of
l represents a narrower step with a larger distance to the next periodic image (see figure
5.7). A single row of molecules is removed from the step edge in to create slabs with
progressively larger values of l .

struction as in figure 5.11 occurs on both step defects (i.e. both sides of the “top hat”

on the slab), whilst the higher energies correspond to a situation where there is recon-

struction on one side only. Reconstruction can occur similarly on the B-step, as shown

in figure 5.12.

Ledge energies for B-steps are almost invariably higher than for the A-steps, but

spread is much larger, and there are four distinct energy “bands”. As with the A-steps,

it is possible for either side of the step feature to relax, but in addition there are two

distinct ways of cleaving the surface to generate either a B1-step or a B2-step, compared

with one for the A-steps. The ledge energies are considerably higher as a result of the

topology of the surface — in all cases, only one of the two step edges was able to relax to

form the third hydrogen bond mentioned above. On the A-step, there were up to three

water molecules on the step edge that underwent major structural relaxation to form an

extra hydrogen bond (figure 5.13), compared with up to five on the B1-step (figure 5.14)

and none on the B2 step. The B2 step undergoes minimal structural relaxation because

all of the molecules on the step edge are in the lower half of the bilayer and are therefore

three-coordinated.



CHAPTER 5. THE ICE SURFACE 137

(a) Top view before reconstruction. (b) Top view after reconstruction.

(c) Side view before reconstruction. (d) Side view after reconstruction.

Figure 5.11: A step feature on the basal plane of a striped six bilayer 10×3×2 cubic ice
surface before and after reconstruction (only two bilayers shown). Oxygen atoms are
coloured according to their “height” in the cell; dark blue atoms are in the top half of the
upper bilayer, and dark red atoms are in the lower half of the bottom bilayer. Hydrogen
bonds are indicated by blue broken lines. Note the formation of the new hydrogen
bond to the two-coordinated molecules in the uppermost bilayer after relaxation.

5.3.2.2 B∗1 and B∗2 steps

The situation is complicated further by the lack of mirror symmetry for the two upper-

most bilayers when a B-step forms. It is therefore necessary to define two further types



CHAPTER 5. THE ICE SURFACE 138

(a) Top view before relaxation. (b) Top view after relaxation.

(c) Side view before relaxation. (d) Side view after relaxation.

Figure 5.12: A step feature on the basal plane of a striped six bilayer 5× 6× 2 cubic
ice surface before and after relaxation (only two bilayers shown). Oxygen atoms are
coloured according to their “height” in the cell; dark blue atoms are in the top half of the
upper bilayer, and dark red atoms are in the lower half of the bottom bilayer. Hydrogen
bonds are indicated by blue broken lines. Note the formation of the new hydrogen
bond to the two-coordinated molecules in the uppermost bilayer after relaxation.

of B-step: B∗1 and B∗2. The difference between B1 and B∗1 is shown in figure 5.15. There

are one-coordinated molecules on a B∗1-step edge, thus even after major reconstruction,

the edge molecules remain two-coordinated. The two-coordinated edge molecules on
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Figure 5.13: The “active” molecules in the reconstruction of the A-step in the top bilayer
(green) and its only nearest neighbour in the lower bilayer (orange) on an A-step. Red
oxygen atoms are in the upper terrace and blue ones are in the lower terrace.

Figure 5.14: The “active” molecules in the reconstruction of the B1-step in the top bi-
layer (green) and its nearest neighbours in the lower bilayer (orange) on an A-step. Red
oxygen atoms are in the upper terrace and blue ones are in the lower terrace.

the B1 step have two nearest neighbours on the lower terrace with which they can form

a hydrogen bond, compared with only one for the B∗1-step.

A similar situation arises for the B2- and B∗2 steps; however, there is minimal struc-

tural relaxation for any B2 step, so their step formation energies should be similar.

Due to the symmetry of the ice slab, it is impossible to form a grooved slab with only

B1 or B∗1 steps, there will always be one of each (and similarly for B2 and B∗2). Therefore

the ledge energies presented for B-steps are not representative of a single type of step.

The five different types of step are summarised in table 5.2. Table 5.3 lists the lowest
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(a) B1 (top). (b) B∗1 (top).

(c) B1 (side). (d) B∗1 (side).

Figure 5.15: Difference between B1- and B∗1 unreconstructed steps. Two-coordinated
molecules are green, and the lower terrace molecules to which they form new hydrogen
bonds are orange. Note that in the B∗1 step, the two-coordinated molecules each have
two nearest neighbours in the lower terrace, compared with one for the B1-step.

ledge energies for the cubic striped slabs. For these three cases, both sides of the terrace

have the same step feature (i.e. a reconstructed A-step, a reconstructed B1 step or an

unreconstructed B2 step on both sides), so based on the assumption that l is sufficiently

high (approximately 20 Å in these cases) and the Coulomb interaction between step

images is essentially zero, these are the step formation energies.
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Step Coordination number of
step edge molecules

Number of nearest
neighbours in lower

terrace
A 2 1
B1 2 1
B∗1 1 2
B2 3 —
B∗2 3 —

Table 5.2: Summary of different step types.

Ledge energy

meV/Å eV/molecule

A 17.38 0.25
B1 + B∗1 22.81 0.10
B2 + B∗2 32.95 —
B1 + B2 15.97 —
B∗1 + B∗2 41.22 —

Table 5.3: Lowest step formation energies for proton ordered (striped) surfaces. Due
to the slab symmetry, there are always two types of step in the B-direction on each
slab. Step energy per molecule refers to (notionally) two-coordinated molecules. Ledge
energies per molecule are expressed as energy per two-coordinated molecule. Values for
step combinations involving a B2 step have not been included because they do have
two-coordinated molecules on the step edge.

The bulk energy of hexagonal or cubic ice is 0.7 eV and in the bulk, there are two

hydrogen bonds per molecule (in the bulk each molecule is involved in four hydrogen

bonds, accepting and donating two each, but these are shared so there are only two

bonds per molecule), resulting in an average energy of 0.35 eV per bond. The lowest

ledge energy per molecule for an A-step on the cubic striped slab can be expressed as

0.25 eV per notionally two coordinated molecule, which corresponds approximately to

the formation of one additional hydrogen bond during reconstruction. Similarly, the

energy of the B1 step can be expressed as 0.10 eV per two coordinated molecule, which

is considerably lower. The B1 step has a higher density of two coordinated molecules

than the A-step (2.20 Å−1 for the former compared with 3.81 Å−1 for the latter), but the
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ledge energy per Ångstrom is higher for the B1 step. This is somewhat counterintuitive,

since one might expect more reconstructions per unit length to lower the B1 step energy

more than for the A-step.

5.3.2.3 Formation energies of different step types

In order to explain these numbers, I have attempted to calculate the energy of each

unique B-step type. The symmetry of the ice lattice normal to the surface and in the

B-direction means that it is only possible to construct certain combinations of B-steps.

This gives the sums of step energies in table 5.3. These can be regarded as four simulta-

neous equations with four unknowns, which can be written in matrix form:
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(5.7)

This matrix is singular, as can be demonstrated by adding the first and second rows,

and the third and forth rows, thus there are linear dependencies and this set of equations

cannot be uniquely solved. If we assume that B2 = B∗2, the resulting equations can be

solved to give step energies of E(B1)=−0.51 meV Å−1, E(B∗1)= 23.33 meV Å−1 and E(B2)

= 16.49 meV Å−1. The negative energy for the B1 step suggests that the assumption

that the B2 steps have identical energies is not completely valid. It is not unreasonable,

however, to assume they are similar, from which it follows that the B1 step has the lowest

energy of all steps (including A) due to the dense reconstruction. The high energy

of the B∗1 step is a result of one-coordinated molecules reconstructing to become two

coordinated, such that although they do undergo reconstruction, the edge molecules

still have a lower coordination (2) than on the B2 steps (3). Finally, in order to make

the step formation energy of B1 positive, the B2-step must have a lower energy than B∗2,
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although the reasons for this are unclear, since both undergo minimal reconstruction.

Up to this point, we have not discussed the difference between steps on hexagonal

and cubic ice surfaces. Table 5.1 suggests that A-step energies are about 5–10% higher for

hexagonal ice on the cubic ice surface, and B-step energies are generally 5–10% higher for

B-steps on the hexagonal ice surface. In a hexagonal ice crystal the bilayers are stacked

such that in the z-direction, “channels” run through the hexagonal rings; in cubic ice,

the layers are offset such that a molecule lies at the centre of a hexagonal ring on the layer

below. The differences in step energy must be a combined result of the difference, and

the subtly different proton ordering (even though both hexagonal and cubic surfaces are

striped). At this stage, we do not have an explanation for the energy differences.

In the following sections, we use only proton disordered cubic ice surfaces; both

hexagonal and cubic ices are of interest for different reasons, so the choice is somewhat

arbitrary. We expect the same step formation model will be valid for both polytypes

with subtle energetic differences, since in the first coordination sphere of a molecule,

the structures are identical. After development of a model for cubic ice, we hope to

revisit hexagonal ice in future work.

5.3.3 Steps on disordered surfaces

It is difficult to relate these numbers to the two-dimensional single bilayer crystal growth

on the ice surface, firstly because the surfaces considered thus far are striped (having

an order parameter of 2), and secondly because of topological variation when a single

layer is cleaved from the step edge due to both the underlying ice lattice and the surface

proton ordering. The lowest energy B-step on the hexagonal slab is more favourable

than the lowest energy A-step, but a randomly cleaved B-step is less likely to have the

lower energy due to topological variation. These considerations are however somewhat

artificial, since one would expect the surface to be proton disordered, with an order

parameter of 3.0.



CHAPTER 5. THE ICE SURFACE 144

l (Å) A-step

13.2 20.0
17.6 28.4
22.0 25.0
26.4 25.5
30.8 17.4
35.2 30.1
39.6 18.5

Table 5.4: Ledge energies in meV Å−1 for proton disordered cubic ice A-steps (C OH
B =

3.07).

l (Å) B1 + B∗1 B2 + B∗2
9.5 19.1 38.8
17.1 30.6 36.3
24.8 38.6 31.7
32.4 31.6 37.1

Table 5.5: Ledge energies in meV Å−1 for proton disordered cubic ice B-steps (C OH
B =

3.07).

The energies in section 5.3.2 only apply to a special case, the striped Ih/Ic surface;

on a disordered surface, the step termination is unlikely to lead to a straight step defect

since the relaxation must be dependent on the proton ordering on the top two bilay-

ers. Surface disordered slabs were generated as in section 5.2.1; in the first instance,

surfaces with an order parameter closest to three (the supposed order parameter of a

real hexagonal ice surface) were considered. Tables 5.4 and 5.5 demonstrate the range of

ledge energies for seven different proton disordered A-steps and eight different proton

disordered B1 and B2 steps on surfaces with an order parameter of 3.07.

From this relatively small set of results, it can be seen that ledge energies range be-

tween 17.4 meV Å−1 and 30.1 meV Å−1 for A-steps, 19.1 meV Å−1 and 38.6 meV Å−1 for

B1-steps and 31.7 meV Å−1 and 38.8 meV Å−1 for B2-steps. These numbers give the im-

pression that disordered A-steps generally have the lowest ledge energies, followed by

B1 steps, and B2 steps have the highest energies.
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Considering first the A-step energies, those at the lower end of the range occur

when all of the two-coordinated step edge molecules are in a favourable configuration

to form the additional hydrogen bonds. As the number of under-coordinated molecules

increases, the step energy increases. There are instances where a two-coordinated molec-

ular configuration is so unfavourable due to Coulomb repulsion that it is almost forced

out of the step, becoming part-way between a step molecule and a surface-adsorbed

molecule; these have the highest step energy.

The energies above for B1 steps are an average for the B1-step on one side of the

terrace, and a B∗1 on the other — and as demonstrated in section 5.3.2, the B1 ordered step

has the lowest formation energy and the B∗1 ordered step has the highest energy since

after reconstruction B1-step edge molecules are three-coordinated, whereas B∗1 molecules

are two-coordinated. The outlying energy for the B1-step at l = 9.5 has two possible

causes. The first is the favourable, locally striped proton ordering on the B1-step which

allows full reconstruction of all two-coordinated edge molecules. The second is the

fact that each edge molecule on the B∗1 step has two nearest neighbours on the lower

terrace, which for the local proton ordered structure in this case, allowed one of the

edge molecules to become three coordinated, lowering the step energy substantially.

The figures in tables 5.4 and 5.5 give an indication of the affect of proton ordering on

cubic ice steps, but to get a statistical average for these energies requires far more calcula-

tions on surfaces of varying order parameter and the same periodic step separation. The

surfaces used in this chapter are somewhat biased by the way they were constructed:

the Move algorithm was used on a striped slab; although this randomises the surface

over time, surfaces with low values of C B
OH locally retain characteristics of the striped

slab, which may result in slabs that are more ordered than intended. A possible solution

would be to start with a high-C B
OH slab, and run the algorithm in reverse, only accepting

moves that reduce the order parameter.



CHAPTER 5. THE ICE SURFACE 146

(a) 0.67 eV 2.85D (b) 0.50 eV 2.77D (c) 0.69 eV 2.60D (d) 0.48 eV* 2.37 (e) 0.67 eV 3.21D (f ) 0.49 eV* 2.81D

(g) 0.33 eV* 2.50D (h) 0.58 eV 3.18D (i) 0.62 eV 3.33D (j) 1.17 eV 3.30D (k) 0.74 eV 3.04D (l) 0.70 eV 3.18D

Figure 5.16: The twelve possible configurations for the “active” molecules in a A-step
edge termination on cubic ice, together with the vacancy energy of the molecule in the
upper half-bilayer of the step (coloured green) and its dipole moment. The other upper
bilayer molecules are coloured red, and lower bilayer molecules are coloured blue. The
ledge energy depends on whether this molecule is unrestricted enough to relax and form
a hydrogen bond with the closest molecule in the upper half-bilayer of the lower terrace
(coloured yellow). The three configurations marked with an asterisk (*) do not undergo
this reconstruction.

5.3.3.1 Vacancy energies for disordered steps

In the case of the A-step, it was observed that the ability of a two-coordinated molecule

in the top half of the top bilayer (dark blue in figure 5.11) to relax is determined by

its orientation and the orientation of its nearest three-coordinated neighbour in the top

half of the bilayer below (pale red in figure 5.11). A molecule constrained by an ice

lattice has six allowed orientations, and there are only two possible orientations of the

molecule in the lower bilayer that can influence the relaxation, a dangling OH bond

or a non-dangling OH. Thus there are 2× 6 = 12 configurations of the two “active”

molecules, pictured in figure 5.16. The vacancy energy of the upper bilayer molecule

(in green) was evaluated in each case, along with the dipole moment of the molecule in

question.

It is noteworthy that of the 12 configurations illustrated in figure 5.16, only three

are incapable of the reconstruction to form an additional hydrogen bond. These con-
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figurations have the lowest vacancy energies, which is unsurprising since they remain

two-coordinated. Thus approximately one in four molecular sites on a step will have

a high energy, onto which adsorption and therefore crystalline growth are easier. Ad-

sorption onto one of these sites will result in two kinks on the step, which facilitate

expansion of the growth front.

5.3.3.2 Molecular dipoles of step edge molecules

Watkins et al. established that surface molecules have a large and continuous range of

vacancy formation energies, and that the vacancy energy is weakly correlated with the

molecular dipole26. They note that in the bulk (a set comprised of all molecules below

the surface bilayer), molecular dipoles have values in a narrow band around 3.5D, the

bulk molecular dipole, and the surface molecules have dipoles in a wide band between

roughly 2.7D and 4.5D. Figure 5.17 shows the frequency of molecular dipoles in a 10×

3× 2 (6-bilayer) proton disordered cubic ice slab with an A-step. In agreement with the

finding of Watkins et al. there is a strong peak in the range 3.4–3.7D which constitutes

the bulk molecules, with a large spread for the surface molecules.

If we consider only molecules on the step edge that are two-coordinated when the

surface is cleaved, the frequency distribution of dipoles is shown in figure 5.18. It can

be seen that most edge molecules have a dipole between the bulk value (3.5D) and the

gas phase value (1.85D). This is because the geometry of a molecule is less constrained

at the step edge compared with the bulk, and the bond angle is allowed to relax to a

conformation closer to the gas phase value.

In a similar analysis to Watkins et al 26., figure 5.19 shows the molecular dipole plot-

ted against the vacancy energy, but only for molecules on the step edge in the top half of

the bilayer, i.e. molecules that are two coordinated instantaneously after the surface is

cleaved to create the step feature. Note that the gas phase energy of a water molecule is

used as the reference here (whereas Watkins et al. used a bulk phase reference). It shows
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Figure 5.17: Histogram of molecular dipole moments for all molecules in seven different
six-bilayer cubic ice slabs with a step feature. The sharp peak in the 3.5–3.6D range
corresponds to the molecular dipole in bulk ice.

a weak positive correlation — higher dipoles are generally associated with a higher va-

cancy energy. This is consistent with the findings of Watkins et al. for a pristine surface.

Thus in principle, it should be possible to identify the most weakly bound molecules

by identifying the step molecules with the lowest dipole moment as the points on the

step edge most susceptible to pre-melting. Thierfelder et al. report adsorption ener-

gies in the range 0.548 eV to 0.576 eV for a water monomer on a disordered hexagonal

ice surface using VASP and the PBE functional151. The adsorption energy is therefore

higher than the vacancy energy for the step edge molecules that do not undergo sig-

nificant reconstruction in figure 5.16 (5.16d, 5.16f and 5.16g), and possibly one or two

that do undergo reconstruction (5.16b, 5.16h). Molecules in these configurations must

be metastable with respect to migration from the step to the terrace, but there must

also be an activation barrier since they did not spontaneously move during geometry

optimisation. It is possible that some of these molecule occupy local minima on the po-

tential energy surface, and it should be emphasised that we have only performed static
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Figure 5.18: Frequency distribution of dipoles of molecules that are two-coordinated
when the surface is cleaved to form a step defect (i.e. molecules in the top half of the
bilayer). These molecules may or may not relax to form a third hydrogen bond with a
molecule on the lower bilayer, as in figure 5.11d. This plot uses data from 12 different
slabs, for a total of 76 data points.

Figure 5.19: Plot of molecular dipole moments against vacancy energies for water
molecules on the step edge in the top half of the uppermost bilayer. The red line shows
the weak inverse correlation.
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calculations at 0 K. In a molecular dynamics simulation, where the system is given ther-

mal energy, it is quite possible that these loosely bound molecules will overcome low

barriers and migrate to one of the terraces, manifesting pre-melting on the microscopic

scale.

The ledge energies for ordered and disordered surfaces give us an important insight

into the rate and direction of the two dimensional nucleation reported by Sazaki et al 6.

A low step energy represents a stable termination. After the crystal is cleaved to form a

step, some of the molecules in the upper half of the top bilayer will be two-coordinated,

i.e. they only form hydrogen bonds with two other molecules. This is an unstable

arrangement — the lowest energy configuration in bulk ice consists of four-coordinated

molecules which are topologically impossible at the surface — therefore molecules at the

step edge prefer to relax, forming a third hydrogen bond with the lower terrace. The

formation of such stable steps actually hinders the lateral growth of a bilayer because

hydrogen bonds must be broken in order to adsorb additional molecules. Steps are more

reactive relative to the surface or bulk because the molecular sites are undercoordinated,

and are therefore particularly susceptible to adsorption and modify diffusion barriers152.

Crystal growth is faster on “sticky” edges, that is, edges with a higher ledge energy

where the energy will be lowered by the addition of a molecule from the liquid phase

without a barrier. In the case of the three-coordinated step edge molecules, this might

require the breaking of the newly formed hydrogen bond. Growth is therefore faster

on a step where the structural relaxation has not occurred.

Sazaki et al. observed birth and isotropic growth of single ice bilayers — there was

no preferred growth direction and no distinct flat step front. Steps in [1000] and [101̄0]

directions are topologically identical (as illustrated in figure 5.9 when considering the

oxygen sub-lattices, so one might expect to see the birth of hexagonal “islands” and their

planar growth; the work of Sazaki demonstrates that this is not necessarily the case.

The formation of hexagonal islands is hindered by two effects. The first is that an
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A-step may conditionally have a higher ledge energy than a B-step, due to the fact that a

B-step may consist of only molecules in the upper half of the bilayer in the upper terrace,

or only molecules in the lower half of the bilayer. The former will relax to create a low

energy step due to the higher density of notionally two-coordinated molecules per unit

length compared with A-steps, whilst the latter is a high energy and therefore “sticky”

step since molecules in the lower half of the bilayer are invariably three-coordinated and

cannot relax. This should presumably lead to a step growth with two distinct alternating

rates: fast when the sticky high energy step is exposed, then low when the low energy

relaxed step is formed.

The second effect is surface proton disorder. Watkins et al. demonstrated that the

ice surface has a wide range of molecular vacancy energies, and figure 5.19 demonstrates

that the same is true of step edge molecules in the upper half of the bilayer, suggesting

that certain points on the step are more susceptible to pre-melting. The converse is also

true: that there is a range of molecular adsorption energies at the step edge which will

result in non-uniform two-dimensional crystal growth.

In conclusion, it would appear that the isotropic two-dimensional growth of single

bilayers on the ice surface is a complicated superposition of three effects: firstly, the

growth of A-steps in the direction of the prism faces which in principle would result

in the formation of expanding hexagonal islands; secondly, growth of B-steps, which

alternates between faster than growth in any other direction and slow depending on

whether the step terminates in molecules in the bottom or top half of the bilayer respec-

tively; and thirdly, proton disorder, which should be stochastic for the expected random

dangling-OH distribution. It is not inconceivable that these three effects in conjunction

could lead to the birth and growth of the expanding circular islands observed by Sazaki

et al. but a more detailed characterisation requires further study.
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5.4 Summary and conclusions

DFT calculations show that the cubic ice surface, like the hexagonal ice surface, un-

dergoes reconstruction to minimise the energy due to electrostatic repulsion between

dangling OH bonds. As with hexagonal ice, the surface energy is correlated with the

order parameter C OH
B , which describes the average number of dangling OH bonds adja-

cent to a dangling OH bond, such that clustering of dangling OH bonds is energetically

unfavourable, whilst the Fletcher striped phase has the lowest energy. The surface en-

ergy of the cubic striped phase is approximately 10% higher than that of the hexagonal

striped phase, so hexagonal ice is less reactive.

We have identified five distinct types of step on the ice I surface, and evaluated their

energies on proton ordered and disordered surfaces. Some proton ordered configura-

tions allow the undercoordinated molecules on a step edge to reconstruct, forming an

additional hydrogen bond with the lower terrace, thereby reducing the step energy.

B1 steps have the lowest step formation energy since they undergo the most molecu-

lar reconstructions per unit length. B∗1 steps have the highest surface energy because

the terminating molecules are one-coordinated, and reconstruct to become only two-

coordinated. Only molecules in the upper half of the top bilayer at the step edge are

capable of undergoing this relaxation, thus B2 steps, where the step terminates on a

three-coordinated molecule on the lower half of the bilayer will undergo minimal re-

construction (i.e. will not form new hydrogen bonds), and have a higher step energy.

Proton disordered steps have a range of energies, and disordered A-steps generally have

a lower energy than disordered B-steps for the reason detailed above.

Two-coordinated molecules on the step edge (prior to reconstruction) have a range

of vacancy energies; these vacancy energies are weakly correlated with the molecular

dipole moment, since the most weakly bound molecules have weaker hydrogen bonds,

therefore their electron density is closer to that of the gas phase.

Two-dimensional bilayer ice growth is dependent on step energies: high energy steps
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will result in a faster moving growth front since they are more reactive and therefore

“sticky”. Thus growth is fastest in the B-step direction, and has an alternating rate: fast

when a B2-step is exposed, and slow when a B1 step is exposed. However, the overlap-

ping range of energies for disordered A-steps means that growth in the direction of the

A-step maybe conditionally favoured depending on the local proton ordered configura-

tion. A range of molecular vacancy energies for two-coordinated molecules on the step

edge means that certain sites on the step are more favourable for adsorption, resulting

in non-uniform growth. These effects in part explain the lack of straight step fronts in

the two-dimensional growth of elementary ice layers observed by Sazaki et al., but we

cannot make strong inferences about the circular growth patterns observed.



Chapter 6

Formation of interstellar

glycolaldehyde

6.1 Introduction

Glycolaldehyde is the simplest sugar, a monosaccharide containing two carbon atoms

with the formula CH2OHCHO. It is the subject of interest due to its implication in the

formation of RNA and amino acids in terrestrial environments. The prebiotic synthesis

of sugars on Earth was thought to occur via the formose reaction 2 H2CO−→CH2OHCHO,

which is autocatalytic after the first reaction catalysed by (for example) a clay surface,

a base, or a photon7. The discovery of extraterrestrial glycolaldehyde in molecular

clouds, where stars are born, casts doubt on this proposition.

It has been detected in significant quantities first in the Galactic Centre molecular

cloud Sagittarius B2(N)7 and more recently near the star-forming hot molecular core

G31.41+0.318. It is known that the reactions necessary to form glycolaldehyde cannot

occur in the gas phase in the lifetime of a molecular cloud (roughly ten million years);

although many reactions between hydrogen atoms and neutral molecules have low bar-

riers, they cannot proceed at temperatures lower than 100 K153. Whilst the details of

154
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the formation mechanism is unknown, it is assumed to proceed via a series of reaction

starting with the hydrogenation of carbon monoxide, catalysed by icy “mantles” coat-

ing dust grains in the interstellar medium (ISM).

The interstellar formation of Glycolaldehyde is a potential future hot topic, since

it has recently been observed using ALMA (the Atacama Large Millimeter Array) in

the vicinity of the Sun-like protostar IRAS 16293-24229. Crucially it was detected at

distances roughly equivalent to the separation of the Sun and Uranus from the protostar,

suggesting that the ingredients for life were present during the formation of the solar

system.

Since it is impossible to simulate the long timescales and extremely low fluxes in-

volved in astrochemistry experimentally, examining reaction barriers using computa-

tional modelling can give us great insight into the mechanisms of glycolaldehyde forma-

tion.

In this chapter we propose a potential mechanism for the formation of glycolalde-

hyde based on the astrophysical and chemical considerations in a recent paper by Woods

et al., and an alternative proposed by Goumans (private communication, 2011). The

first part is a characterisation of the reactions comprising these mechanisms in the gas

phase to high levels of theory including MP2 and CCSD(T). The second part models

bare dust grains as hydroxylated silicate nanoclusters, assessing their effect on the reac-

tion barriers. The third part examines the catalytic effect of a crystalline ice surface on

these reactions, modelling icy mantles on interstellar dust grains.

6.2 The nature of interstellar dust grains

Glycolaldehyde has been observed in molecular clouds, cold and dense regions con-

taining gas and dust which agglomerate to form stars and planets. Temperatures vary

between 10 K and 100 K; the temperature is lowest at the core of the cloud, which is

shielded from radiation by the surrounding dust grains. The collision rate between
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gaseous atoms and molecules is less than once per year, with significant chemical evolu-

tion occurring over a timescale of 106 to 107 years154. At such low temperatures, reaction

barriers are typically too high in the gas phase, and are therefore thought to occur on

the surface of dust grains for the following three reasons154:

• At 10 K, most atoms and molecules deposited on the grain surface remain ad-

sorbed for long periods of time.

• Excess energy from exothermic reactions can escape into the surface, allowing ad-

dition and recombination reactions to proceed without subsequent dissociation.

• The surface can be a catalyst, reducing reaction barriers and allowing the forma-

tion of complex molecules under unfavourable conditions.

The nano-particles comprising interstellar dust make up only 1% of the total mass

of the interstellar medium, but play a vital role in its chemical evolution155. Dust grains

form at ∼1000 K from magnesium, silicon, oxygen and carbon surrounding dying stars

and range in size from 1 nm to 1 µm155. Young molecular clouds of this type are sparse

and easily penetrated by cosmic rays, and remain as bare siliceous or carbonaceous par-

ticles as volatile molecules are rapidly evaporated by incident radiation. As the cloud

cools the density increases, and the core is shielded from radiation, thus allowing the

deposition of molecules on the grains and the formation of mantles of molecular ices.

The mantle consists mostly of water ice, but contains many other species such as CO,

CO2, H2CO, CH3OH, CH4 and NH3, as observed in the infrared spectrum of the

molecular cloud surrounding protostar W33A (figure 6.1). The observed abundances of

these species can only explained by reactions catalysed on icy dust grain surfaces154.

Significantly, the broad H2O peak in the 3 µm region suggests the presence of low

density amorphous (LDA) ice, or amorphous solid water (ASW) (as denoted by the as-

tronomical community; here, the latter abbreviation is used to avoid confusion with

the local density approximation) instead of crystalline ice. The ASW mantle is doped
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Figure 6.1: 2.4 µm–2.5 µm infrared spectrum of icy dust grains comprising the molecu-
lar cloud around the protostar W33A (taken from Gibb et al. (2000)17). W33A is unusual
in having a ‘rich solid-state molecular spectrum.’

with impurities including CO and CO2. Crystalline cubic ice Ic forms at higher tem-

peratures and remains crystalline even when cooled to 10 K since it is more stable, but

can be transformed to ASW under certain conditions154.

• Under bombardment from 100 keV electrons at temperatures below 80 K.

• Under incident ultraviolet photons at temperatures below 70 K.

• Under bombardment from 700 keV protons or 3 keV He+ ions.

Note that although most water ice in interstellar dust grain mantles is thought to be

amorphous, observations of crystalline ice are not unprecedented. Ice mantles formed

above a threshold of∼110 K are crystalline, and those formed below are amorphous. In

addition to experimental data, Maldoni et al. developed an astrophysical model which

suggests that grain mantles in dust surrounding oxygen-rich stars are crystalline156. It

has been suggested that slow water deposition rates may result in the formation of cu-

bic ice, even at temperatures associated with amorphous ice formation157;158. However,

it does not necessarily follow that grain mantles in molecular clouds are crystalline.
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Amorphous ice undergoes a phase transition to ice Ic at ∼120 K, a process that occurs

at a decreased rate as the temperature drops. Omont et al. therefore propose that amor-

phous mantles may transform to crystalline ice if left for long enough at sufficiently

high temperatures below the transition point159, but this is likely to result in ice con-

sisting of the two coexisting phases. A crystalline “seeding” surface in amorphous ice

will also greatly increase the transition rate.

6.3 Reactions on icy mantles

Reactions on the surface of interstellar dust grains broadly fall into two categories. The

first type is energetic processes caused by incident cosmic rays, specifically ultraviolet

radiation and ions in the keV–MeV range. The products are numerous and varied, and

depend on the composition of the ice; CO, CO2 and CH3OH doped ices result in the

formation of such species as H2O2, HO2, HCO, H2CO, HCOOH and CH3CHO154.

Energetic processes are generally suppressed by shielding of the molecular cloud core,

leading to the second type, which includes non-energetic surface reactions involving

abundant species such as hydrogen and oxygen atoms.

At low temperatures, only atoms are likely to be mobile on grain surfaces; in partic-

ular at 10 K, only hydrogen atoms are mobile.

Most atomic and molecular species present in the ISM adsorb onto ice at 10 K. Typ-

ically one hydrogen atom will adsorb onto a dust grain per day, and one carbon or

oxygen atom every few days. The surface coverage of the grain is low, so the Langmuir-

Hinshelwood mechanism (in which both reacting species are adsorbed onto the surface)

dominates over the Eley-Rideal mechanism (one species is adsorbed, the other is inci-

dent from the gas phase). At 10 K, most thermally activated processes are impossible due

to the size of the reaction barriers, therefore quantum tunnelling becomes important.
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The de Broglie wavelength λdB of a particle of mass m is defined as,

λdB =
h

p
2mkT

(6.1)

For a rectangular barrier of width a and height E , the tunnelling rate kq is defined as

approximately,

kq ' ν0e−
2a
ħh

p
2mE (6.2)

where ν0 is the frequency of harmonic oscillation. It is clear that tunnelling is indepen-

dent of temperature. This can be compared with the rate of thermal diffusion kth,

kth = ν0e−
E

kT (6.3)

Tunnelling is generally possible when the de Broglie wavelength of the reactant species

is similar to the barrier width; this is only thought to be possible for light atoms (namely

hydrogen) at low temperatures. It is also significant in surface diffusion. The tunnelling

rate drops drastically as the mass of the species increases, and is acutely sensitive to

the shape of the barrier — meaning its symmetry as well as its width a (tunnelling is

facilitated by a symmetrical barrier).

6.4 The effect of grain surface morphology

There is no known viable mechanism for the formation of hydrogen molecules in the

gas phase via recombination of hydrogen atoms at low temperatures. It is therefore

generally accepted that this reaction happens on the surface of interstellar dust grains

via the Langmuir-Hinshelwood or hot atom mechanism. This reaction releases 4.5 eV

of energy, the partitioning of which could have a significant impact on the chemical

and physical evolution of the molecular cloud. Hornekær et al. performed laboratory

experiments in which hydrogen and deuterium recombined on porous and non-porous
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amorphous ice films160, reaching several important conclusions. Firstly, they found

that hydrogen atoms are extremely mobile on the ASW surface at temperatures as low

as 8 K. Secondly, H2 molecules formed by recombination on porous ASW remained

physisorbed for long periods since it is retained in the pores, with approximately one

molecule desorbing per year (a short period on an astronomical scale). Most of the heat

of recombination is transferred to the ASW in this case, facilitating thermal catalysis

of grain surface reactions. Thirdly, in the case of non-porous ASW, the H2 molecules

desorb much sooner after recombination, and the energy released is transferred into

the gas phase as translational and vibrational kinetic energy in the H2 molecules. They

conclude that in the case of dense or “dark” molecular clouds, the grain morphology

is responsible for the energy distribution of gaseous H2, and not the detailed chemical

nature of the grain surface.

Al-Halabi and van Dishoeck examined the adsorption and diffusion of hydrogen

atoms on an amorphous ice surface using classical trajectory calculations and the TIP4P

water model with a H–H2O pair potential161. They found that (somewhat counterin-

tuitively) the adsorption rate is weakly dependent on whether the surface is crystalline

or amorphous, but the atoms are much more tightly bound on the amorphous ice sur-

face as a result of corrugations, which mean that adsorbed species have more nearest

neighbours inside grooves. The binding energy distribution for crystalline ice is much

narrower since amorphous ice has a diverse array of adsorbing potential wells in com-

parison. They calculate that the adsorption lifetime for a hydrogen atom at 10 K is ap-

proximately 1 day on crystalline surface, compared with 230 million years on an ASW

surface. The vastly increased adsorption lifetime for ASW means that hydrogen recom-

bination is much more efficient. Since the recombination reaction is barrierless, it is

expected to be the dominant process on the grain surface, compared with hydrogena-

tion of CO-derived species.

Interstellar ice is thought to have a larger range of hydrogen binding energies due to
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the presence of molecules other than H2O. A lower binding energy generally results in

a higher diffusivity, but lowers the adsorption probability.

Hidaka et al. experimentally examined the effect of the morphology of the ice sur-

face on the hydrogenation of CO162. Hydrogenation was allowed to occur on amor-

phous and crystalline (presumably cubic from the formation regime) ices in the follow-

ing sequence,

CO−→HCO−→H2CO−→CH3O or H2COH−→CH3OH (6.4)

and the abundances of each species monitored using Fourier transform infrared spec-

troscopy. It is noteworthy that none of the radical species (HCO, CH3O or H2COH)

were detecting, suggesting that the biradical reactions involved in their hydrogenation

occurred extremely rapidly. It transpired that the rate of the CO+H−→HCO step

was much higher on ASW, perhaps due to the lower hydrogen desorption rate on the

amorphous surface caused by the trapping of atoms in pores and corrugations161. The

rate constant was found to be the same on ASW and crystalline ice, suggesting that the

enhanced rate on the ASW surface is purely a result of the greater hydrogen atom num-

ber density. CO doped ice has lower hydrogen adsorption rate than pure ice because it

has a much smaller dipole; as a result, the reaction rate is decreased if the CO molecule

coverage is too high.

6.5 Proposed glycolaldehyde formation mechanisms

Glycolaldehyde, methyl formate and acetic acid are isomers with the empirical formula

C2H4O2, and have all been detected in molecular cores. They appear with varying abun-

dances as a result of their different formation mechanisms; glycolaldehyde and acetic

acid have comparable abundances, whereas methyl formate is ubiquitous in comparison.

Hollis et al. reported relative abundances (glycolaldehyde : acetic acid : methyl formate)
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(a) Glycolaldehyde (b) Acetic acid (c) Methyl formate

Figure 6.2: Three isomers with the empirical formula C2H4O2 detected in molecular
clouds.

of 1 : 0.5 : 26 in the Large Molecule Heimat hot core in Sagittarius B2(N)163.

Woods et al. list five possible mechanisms for the formation of glycolaldehyde164:

I Sorrell (2001)165

H2O+hν −→OH+H (6.5)

CH4+hν −→CH3+H (6.6)

CH3+OH−→CH3OH (6.7)

CO+H−→HCO (6.8)

CH3OH+HCO−→CH2OHCHO+H (6.9)

II Bennett & Kaiser (2007)166

CH3OH+CRP−→CH2OH+H (6.10)

CO+H−→HCO (6.11)

CH2OH+HCO−→CH2OHCHO (6.12)
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III Halfen et al. (2006)167

H+3 +H2CO−→H2COH++H2 (6.13)

H2COH++H2CO−→CH2OHCH2O
+ (6.14)

CH2OHCH2O
+ −→CH2OHCHOH+ (6.15)

CH2OHCOH+ −→CH2OHCHO+H+ (6.16)

IV Béltran et al. (2009)8

CO+H+H−→H2CO (6.17)

CO+H−→HCO (6.18)

H2CO+HCO+H−→CH2OHCHO (6.19)

V Charnley & Rodgers (2005)168

CO+H−→HCO (6.20)

HCO+C−→HC2O (6.21)

HC2O+H−→CH2CO (6.22)

CH2CO+H−→CH2CHO (6.23)

CH2CHO+O−→OCH2CHO (6.24)

OCH2CHO+H−→CH2OHCHO (6.25)

Note that “CRP” stands for cosmic ray particle. All of these mechanisms apart from III

(which happens in the gas phase) occur on a grain surface, via the Langmuir-Hinshelwood

or hot atom mechanisms. Woods et al. assess each of these models using astrophysical

models, concluding that II and III can be dismissed since their rates would be too low to

account for the observed abundance of glycolaldehyde, whilst V is only feasible if the
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rate of the final step is enhanced. From a physical perspective, the chance of a three-

body collision happening as in mechanism IV is vanishingly small, although these steps

can be replaced with two separate hydrogenations.

It should be noted that during experimental observations of such reactions on amor-

phous ice surfaces, no radical species were detected169–171 because it is assumed that bi-

radical reactions that consume them occur at a much higher rate. It is therefore generally

thought that the biradical reaction steps are barrierless on the grain surface.

They conclude that a modified version of I is the most likely scheme at 10 K:

CH3+OH−→CH3OH (6.26)

CO+H−→HCO (6.27)

CH3OH+HCO−→CH2OHCHO+H (6.28)

Without performing any detailed quantum chemical calculations, Woods et al. attempt

to assess the chemical viability of these reactions164. They suggest that reaction 6.28

is not viable, since one of the reactants is the stable methanol molecule, and one of

the products is the extremely reactive hydrogen atom, so the reverse reaction would be

favoured. Similarly, reaction 6.19 is unlikely to occur not only because formaldehyde

(H2CO) is a stable species, and a reaction between two formaldehyde molecules is un-

likely to be facile. Instead, this reaction can be split in two parts; the formation of the

hydroxymethyl radical (H2COH) and a subsequent biradical reaction with HCO:

H2CO+H−→H2COH (6.29)

H2COH+HCO−→CH2OHCHO (6.30)

The crucial step in this sequence is the formation of the hydroxymethyl radical (H2COH)

which is in principle competitive with the formation of the methoxy radical (CH3O).

The latter is kinetically favoured in the gas phase, with a barrier that is lower by∼ 40 kJ mol−1 172,



CHAPTER 6. FORMATION OF INTERSTELLAR GLYCOLALDEHYDE 165

whilst the former is thermodynamically favoured, with an energy approximately 20 kJ mol−1

lower (at the MP3/6-31G**//HF/6-31G** level173).

Woods et al. suggest that mechanism V is unlikely since it involves carbon and oxy-

gen addition reactions, when the hydrogen atom is the only mobile species on the ice

surface at 10 K. In particular, reaction 6.21 is unlikely to compete with the formation

of formaldehyde since atomic hydrogen is so much more abundant than atomic carbon.

Hence from a chemical perspective, mechanism IV is identified as the best candidate of

the two favoured by astrophysical considerations.

6.6 The characteristic (cross-over) temperature

For a generalised reaction A+ B−→C, the rate of formation of C is expressed in the

equation,
d[C]

d t
= k(T )[A][B], (6.31)

where square brackets indicate the concentration of the enclosed species and k(T ) is a

temperature dependent rate constant. The van ’t Hoff equation describes the temperature-

dependence of the equilibrium constant k for a reversible reaction:

d ln k

dT
=
∆U

kBT 2
(6.32)

Here, kB is the Boltzmann constant and ∆U is the change in internal energy, which is

equivalent to the activation (reaction) barrier V0. This expression can be integrated to

give the Arrhenius equation, which allow the calculation of the classical rate constant as

a function of temperature.

k(T ) = k0e−
V0

kB T (6.33)

The pre-exponential factor k0 expresses the probability of a reaction occurring through

the frequency of collisions between reactants, and is determined via transition state the-
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ory. It can be expressed as a function of the vibrational modes of the system, thus

calculating the rate constant requires both a barrier height and vibrational frequencies;

whilst the first can be obtained for systems of hundreds of atoms using DFT, the sec-

ond is intractable for the systems considered in section 6.9. Moreover, the Arrhenius

equation only describes reactions classically; in the regime of interest, it is thought that

transitions across the activation barrier will be more frequent due to quantum mechan-

ical tunnelling.

Whilst it is not possible to calculate a rate constant using only the reaction profile, it

is possible to calculate the characteristic (or crossover) temperature Tc , which is defined

as the temperature at which the probabilities of classical thermal transitions over the

barrier and quantum mechanical tunnelling transition through the barrier are equal174.

Benderskii et al. simplify the problem to give the following expression for Tc
175:

Tc =
ħhω∗

2πkB

(6.34)

Here,ω∗ is the imaginary frequency associated with the transition state. If the cartesian

reaction coordinate is rescaled to normal mode coordinates in atomic units, this quan-

tity is given by the curvature (second derivative) of the reaction profile at the transition

state. The transformation into normal coordinates can be achieved by multiplying the

cartesian by the atomic mass for each atom in the system.

6.7 Gas phase reactions

The formation barriers and relative stability of the methoxy (CH3O) and hydroxymethyl

(H2COH) radicals may have an important role in the mechanism or products. For the
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reactions,

H2CO+H−→CH3O (6.35)

H2CO+H−→H2COH (6.36)

Saebø et al. report barriers of 51.9 kJ mol−1 and 84.2 kJ mol−1, and that the H2COH

species is more stable by 20.9 kJ mol−1, at the MP3/6-31G**//HF/6-31G** level173.

Sosa et al. conducted extensive studies on the same reactions using large basis sets, find-

ing the barriers to be 27.97 kJ mol−1 and 57.11 kJ mol−1 at the CISD-SCC/6-311G(d,p)//HF/6-

31G(d) level (where SCC stands for size consistency correction). They observed that

barriers calculated using perturbation theory are consistently 25 kJ mol−1–50 kJ mol−1

too high due to spin contamination in the transition state. They estimate the difference

in energy between the two radical species is 27.2 kJ mol−1.

Woon examines two steps in the hydrogenation of carbon monoxide, terminat-

ing with methanol; these are also important reactions in the glycolaldehyde mecha-

nism172;176: the addition of hydrogen to carbon monoxide to form the formyl radical

(HCO) and the addition of hydrogen to formaldehyde to form the methoxy radical

(CH3O). At the QCISD(T) level, his calculations indicate a barrier of 19.16 kJ mol−1

for HCO formation, and a barrier of 20.75 kJ mol−1 for CH3O formation. An experi-

mental derivation of the activation energy based on the Arhenius equation for the for-

mation of the formyl radical at 10 K yielded (8.3± 1.7) kJ mol−1, although this is likely

to be significantly lower than the actual barrier since it implicitly includes rate effects

such as quantum tunnelling.

Woon attempts to simulate the effect of an ice surface using cluster calculations con-

sisting of the reacting species and between one and four water molecules embedded in

a dielectric field which simulates the long range effect of an ice surface172. This has a

minimal effect on the barrier for formyl radical formation, with three water molecules
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increasing it by ∼1 kJ mol−1 at the QCISD//MP2 level.

The barrier for the formation of the methoxy radical is analogously 20.75 kJ mol−1

at the QCISD(T) level. Unlike the previous reaction, the addition of one to four water

molecules results in a significant (but perhaps insufficient) reduction in the barrier. The

reduction is attributed to the fact that formaldehyde has a dipole moment similar to that

of the water molecule, whereas the dipole moment of the carbon monoxide molecule

is twenty times lower than that of water. The addition of four H2O molecules reduces

the barrier by 3.60 kJ mol−1 at the QCISD level, which is a clear improvement over the

the other reaction. The dielectric field only reduces the barrier by 0.96 kJ mol−1 in the

gas phase, which would seem to suggest that the effect of the bulk ice on the barrier is

minimal. Woon initially suggests that abstraction of the formyl radical (H2CO+H�

HCO+H2) will compete with the hydrogenation of formaldehyde, but the calculations

indicate that the presence of water molecules hinders the formation fo the hydrogen

molecule.

This leads him to conclude that formyl radical formation may not be efficient on

grain mantles unless tunnelling has a greater effect than experiments suggest, and that

icy grains only play a minor role in formaldehyde and methanol formation.

6.7.1 Choice of density functional for surface reactions

One of the main drawbacks of DFT is that the approximated exchange-correlation func-

tionals available are not derived ab initio; the exact form of the density functional in the

Kohn-Sham equations is unknown, and there is no systematic method for developing

new functionals. In the absence of a universal density functional that describes all sys-

tems, new functionals are continually developed to model a small subset of systems or

phenomena, thus choosing the right functional is critical.

For the calculations in this chapter, it is necessary to use a hybrid density functional,

i.e. one that mixes a certain fraction of Hartree-Fock exchange in with the Kohn-Sham
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exchange. The reason for this is essentially that a fundamental flaw of approximate

exchange-correlation functional is the self interaction error, the interaction of an elec-

tron with its own charge distribution, which causes barriers to be grossly underesti-

mated; incorporating exact exchange goes some way towards mitigating this. Although

self interaction corrections are available for GGAs, they are costly and impractical.

Andersson and Grüning conducted a detailed survey of available density functional

and attempted to assess their suitability for studying astrophysically relevant reactions153.

They achieved this by calculating gas phase barrier heights and reaction energies for

10 reactions, notably including hydrogen addition (H+X � HX) and hydrogen ab-

straction (X+H2 � HX+H), using 39 different functionals including LDA, GGA,

meta-GGA, and hybrids with low and high exact exchange fractions.

Their general conclusions relevant to this work are summarised as follows:

1. Hybrids with a high exact exchange fractions (e.g. BHandHLYP, MPW1K) work

well for calculating barrier heights, but less so for atomisation and reaction ener-

gies.

2. Some hybrids with modest exact exchange fractions (notably B1B95-28, B97-1,

B97-2 and B98) result in barriers that are almost as good as with a high exact ex-

change fraction (in most cases), and give better atomisation and reaction barriers.

3. Meta-GGAs can potentially perform almost as well as hybrids for barriers, no-

tably VS98 and OLAP3. Functionals with OPTX exchange (e.g. OLYP) tend to

outperform those with B88 exchange (e.g. BLYP).

4. The HCTH family of GGA functionals performs almost as well the meta-GGAs,

but not as well as hybrids. In particular, the HCTH/120 functional has the water

dimer in its training set, and may be suitable for modelling ice.

5. The best hybrids for modelling the low barrier hydrogen addition reactions are

B1B95-25 and B1B95-28.
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6. BHandHLYP performs best (including reaction energies) for the abstraction-type

reactions.

7. For the general class of reaction where a hydrogen atom is a reactant, the best func-

tionals are MPW1K, B97-1, MPW58/60, BHandHLYP, KMLYP-mod and B98, all

of which have a mean average error of ∼4 kJ mol−1 for their barrier heights (i.e.

chemical accuracy).

8. The results achieved with double-ζ and triple-ζ basis sets are comparable to those

obtained with quadruple-ζ ; this bodes well for work on larger systems that rely

on smaller basis sets.

They conclude that the best overall functional with respect to barrier heights is MPW1K,

and the best overall description (including atomisation and reaction energies) is provided

by B1B95-28.

Obviously the choice of functional for this work is reliant on what has been im-

plemented in CP2K. The BHandHLYP functional was chosen since many of the semi-

empirical functionals have not been implemented, and in any case, the model used is

too crude to expect anything approaching chemical accuracy.

6.7.2 Model and methods

We first characterise the reactions of interest in the gas phase in order to gauge the

reaction barriers at high levels of theory.

All gas phase calculations were performed using the NWChem177 and Orca178 quan-

tum chemistry codes. Both are electronic structure codes that employ Gaussian basis

sets and are capable of performing (non-periodic) high level post Hartree-Fock calcula-

tions. NWChem was mainly used to characterise the larger systems since the paralleli-

sation is more extensive.

Initial and final geometries for gas phase products and reactants were determined
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at the hybrid DFT PBE0/DZVP level. The resulting structures were reoptimised at

the frozen core MP2/cc-pVDZ level using Orca, and for the cases where there was

an obvious reaction coordinate, constrained optimisation was used to locate the tran-

sition state, if any. Starting from the reacting species in the initial configuration, the

reaction coordinate was constrained using z-matrix notation, and all other degrees of

freedom were fully relaxed. The reaction coordinate was reduced, bringing the reactant

species closer together, and the process repeated until the product was reached. The

MP2 method suffers heavily from spin contamination near the transition state, so there

were frequently convergence problems, which were solved by reducing the reaction

coordinate step size in the constrained optimisation (this worked because the wavefunc-

tion from a completed constrained optimisation was used as the initial guess for the next

step). Tight SCF convergence criteria were used in all cases, namely an energy change

of 1× 10−8 Eh and a gradient of 1× 10−5 Eh a0
−1 for single points, and energy change of

5× 10−6 Eh with a maximum gradient of 3× 10−4 Eh a0
−1 and a maximum displacement

of 4× 10−3 a0 for geometry optimisations.

Upon generation of a reaction profile along the coordinate, the configuration clos-

est to the energy maximum (in cases where there was a maximum) was used as the

input structure for a saddle point optimisation. The initial, final and transition state

configurations were re-optimised at the MP2/cc-pVTZ level (without the frozen core

approximation), and the resulting energies used to compute the barriers and heats of

reaction.

This method was appropriate for radical reactions (systems with a multiplicity of

2). Singlet state biradical reactions, on the other hand would not work in the same

way since for the forward reaction, the codes were unable to generate an initial wave-

function guess with the correct spin density distribution (opposing spins on each of the

reactants), and for the reverse reaction, the UHF calculation was unable to homolyti-

cally dissociate the bond, resulting in an incorrect spin distribution. As a solution, a
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single point UHF calculation in the triplet state was performed on the initial configura-

tion in order to introduce a bias into the wavefunction, and this was used as an initial

guess for a singlet state single point calculation. The resulting wavefunction was used as

the initial guess for the first configuration in the constrained optimisation. Obviously

this method will not work for the reverse reaction, and is therefore not quite as thor-

ough; however, we expect the biradical reactions to be barrierless in the gas phase, so we

do not have to characterise the transition state.

MP2 calculations in general provide good geometries, but the transition state ener-

gies are generally grossly overestimated due to spin contamination. For this reason, cou-

pled cluster with singles, doubles and perturbative triples single points were taken at the

initial, final and transition states, and used to recompute the barriers and heats of reac-

tion. Thus our best estimate for the energies in the gas phase are at the CCSD(T)/aug-cc-

pVTZ//MP2/aug-cc-pVTZ level. It was necessary to use NWChem for these accurate

calculations. The following convergence criteria were used: for single points, an energy

change of 1× 10−8 Eh, and for geometry optimisations an energy change of 1× 10−7 Eh

between ionic steps, with a maximum gradient threshold of 1.5× 10−5 Eh a0
−1 and a

maximum step size of 6× 10−5 a0.
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The reactions that will be examined in the section are:

CO+H−→HCO (6.37)

HCO+H−→H2CO (6.38)

H2CO+H−→CH3O (6.39)

H2CO+H−→H2COH (6.40)

H2COH+HCO−→CH2OHCHO (6.41)

2 HCO−→HOCCOH (6.42)

HOCCOH+H−→CH2OCHO (6.43)

CH2OCHO+H−→CH2OHCHO (6.44)

(6.45)

The following mechanism proposed by Charnley and Rodgers168 will not be considered

for two main reasons. Firstly, as observed by Woods et al., atomic carbon and oxygen

are only likely to be present in significant quantities relative to atomic hydrogen during

early times. The second problem arises primarily from the first reaction in the chain,

6.46.

HCO+C−→HC2O (6.46)

HC2O+H−→CH2CO (6.47)

CH2CO+H−→CH2CHO (6.48)

CH2CHO+O−→CH2OCHO (6.49)

Reaction (6.46) is notable because it has significant multireference character (see section

3.5.1). It can be regarded as a combination of two non-identical resonance structures:

one with a C−−−C triple bond and the unpaired electron localised on the oxygen, and

the other with a C−−C double bond and the electron localised on the carbon which is



CHAPTER 6. FORMATION OF INTERSTELLAR GLYCOLALDEHYDE 174

bonded to the hydrogen.

In this study, we will examine two possible mechanisms; the first (A) is the most

likely candidate (from a chemical perspective) identified by Woods et al.164; the second

(B) was independently proposed by Goumans.

A Similar to the mechanism proposed by Beltrán et al.8

CO+H−→HCO (6.50)

HCO+H−→H2CO (6.51)

H2CO+H−→H2COH (6.52)

H2COH+HCO−→CH2OHCHO (6.53)

B Alternative mechanism proposed by Goumans

CO+H−→HCO (6.54)

2 HCO−→HOCCOH (6.55)

HOCCOH+H−→CH2OCHO (6.56)

CH2OCHO+H−→CH2OHCHO (6.57)

6.7.3 Results and discussion

A full geometry optimisation on the simplest structures, the final and transition states

of the HCO molecule, confirmed that structures relaxed at the MP2 level were almost

identical to those optimised at the CCSD(T) level, with the bond lengths and angle

varying by less than 1%. Although this may not hold for more complex structures, the

resources were not available to perform full coupled cluster geometry optimisations,

thus it was assumed that the MP2 geometries were essentially the same.

According to table 6.1 The forward barriers for the reactions studied indicate that
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in general, MP2 greatly overestimates barriers as a result of spin contamination in the

transition state structures. For example, in the reaction H2CO+H−→H2COH, the

MP2 barrier is almost double the height of the CCSD(T) barrier. In principle, the

ideal value of S(S + 1) is 0.75 for a single unpaired electron (with S = 0.5); however,

the expectation value of < S2 > was calculated to be 0.92, a deviation of 0.17. Woon

eliminated spin contamination from his gas phase calculation by employing the PMP2

method172, in which “intruder” states are projected out at the expense of computational

cost. It was decide that this was unnecessary for this work in light of the CCSD(T)

results.

The second noteworthy point is that the DFT barriers are all underestimates. The

B3LYP barriers in particular are gross underestimates, compared with the BHandHLYP

and M05-2x barriers, emphasising the importance of a large exact exchange fraction; the

Hartree-Fock exchange somewhat mitigates the self interaction error inherent in DFT,

reducing barrier underestimates. It is less clear why the only GGA tested, HCTH/120

gives such reasonable barriers; it can only be assumed that the empirical fitting results

in some error cancellation.

A potentially important comparison is the different products of the reaction be-

tween formaldehyde (H2CO) and an hydrogen atom: the methoxy radical (CH3O) is

not involved in any glycolaldehyde-forming mechanisms, and may form the basis of

competing mechanism for species such as methanol and methyl formate. The hydrox-

ymethyl radical (H2COH) could potentially form methanol or glycolaldehyde. It can

be seen that whilst the methoxy radical is kinetically favourable, with a barrier that

is lower by 28.8 kJ mol−1, the hydroxymethyl radical is thermodynamically favourable

with a reaction heat that is more exothermic by 34.57 kJ mol−1 (see table 6.3) at the

CCSD(T) level. This is a moot point under the conditions of the ISM, however, since

neither reaction will be activated at temperatures of 10 K.
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6.8 Reactions on hydroxylated silicate nanoclusters

6.8.1 Introduction

In section 6.2, it was mentioned that ISM dust grains are thought to consist of a siliceous

core surrounded by low density amorphous ice. Such inferences are generally made

by analysing their mid-IR (2.5 µm to 15 µm) to far-IR spectra (15 µm to 100 µm). The

dominant form of silicate in the ISM is amorphous, with crystalline polymorphs such

as olivine and pyroxene comprising <2%179.

Concrete evidence of the composition of certain types of dust grain was provided by

NASA’s “Stardust” mission, in which more than 10000 particles in the size range 1 µm

to 300 µm were collected from the comet Wild 2 by high speed capture in silica aerogel

and physically returned to Earth. A ‘major portion’ of the particles larger than 1 µm

were found to be olivine and pyroxene180.

To date, catalysis of interstellar reactions by bare siliceous surfaces has been stud-

ied in some detail. Goumans et al. use an embedded cluster QM/MM approach to

evaluate the catalytic activity of the edingtonite (BaAl2Si3O10) on methanol (one of

the most abundant ISM molecules) formation181. The proposed mechanism is simi-

lar to the initial stages of glycolaldehyde formation, with the repeated hydrogenation

of a carbon monoxide molecule — the difference being that in methanol formation, the

methoxy radical (CH3O) is formed instead of the hydroxymethyl radical (CH2OH) —

thus methanol and glycolaldehyde may follow competitive pathways. Whilst a nega-

tively charged SiO– surface defect is shown to lower the activation barriers, the effect is

insufficient to enable the reaction at temperatures of 10 K to 20 K without tunnelling182.

Here we examine a limited subset of the glycolaldehyde-forming reactions on hy-

droxylated silicate nanoclusters, which represent bare interstellar dust grains.
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6.8.2 Model and methods

The details of the DFT calculations were chosen to be consistent with the work of Jelfs

et al.18 All cluster calculations were carried out using NWChem, the 6-31G** basis set

and the B3LYP and BHandHLYP hybrid functionals, but in this case the DFT-D3 dis-

persion correction119 was employed in addition in order to more accurately describe the

reaction chemistry. The reacting species and product molecules were adsorbed onto the

clusters at a variety of different binding sites in order to find the most favourable; in or-

der to minimise the number of such calculations, the symmetry of the cluster was used

to avoid redundant configurations. The initial and final configurations were then used as

the end points in a NEB calculation containing 8 images. Single points were considered

to be converged for energy changes of less than 1× 10−6 Eh and gradients of less that

5× 10−4 Eh a0
−1. The respective tolerances for the energy, gradient and step sizes be-

tween geometry optimisation steps were 5× 10−6 Eh, 4.5× 10−4 Eh a0
−1 and 3× 10−4 a0.

NEB calculations had a convergence threshold of 1× 10−5 Eh for the total band energy.

It was our intention to evaluate a limited subset of the reactions comprising mech-

anisms A and B (page 174) on clusters of varying size and with varying degrees of hy-

droxylation, allowing us to gauge the effects of curvature (related to cluster size) and the

nature of the substrate on the reaction barriers. However, time constraints meant that it

was only possible to study in detail three reactions on two fully hydroxylated (i.e. every

silicon atom has a hydroxyl group) clusters.

The smallest cluster considered is the 8-silicon double four-ring, consisting of only

four-rings (pictured in figure 6.318). Of the two possible 16-silicon clusters available,

only cage 1 (figure 6.4a) was used due to time constraints. Whilst both are fully hy-

droxylated, cage 2 (figure 6.4b) contains 4-, 5- and 6-rings, whereas cage 1 contains only

4- and 5-rings. A larger structure is required for larger rings, so in principle, the largest

ring size can be considered a rough measure of curvature. Of the two 16-silicon clusters,

cage 2 has a lower curvature in the vicinity of the 6-ring.
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Figure 6.3: the 8-silicon hydroxylated cluster, the double four-ring18. Silicon atoms are
yellow, oxygens red and hydrogens white.

(a) Cage 1: 4- and 5-rings. (b) Cage 2: 4-, 5- and 6-rings.

Figure 6.4: The two 16-silicon fully hydroxylated clusters. Silicon atoms are yellow,
oxygens red and hydrogens white.
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6.8.3 The nudged elastic band (NEB) method

The nudged elastic band (NEB) is a convenient method for locating saddle points on

a potential energy surface. A sequence of “images,” system configurations along the

reaction path, are linked together using springs with a spring constant k, such that when

atoms on images along the band are acted on by two elastic forces which “pull” them

towards the configuration of the adjacent images, ensuring an equal separation of images

in phase space. When all forces perpendicular to the band are minimised, the sequence

of images represents the minimum energy path between the reactants and products, and

contains at least one first order saddle point. In order to locate the saddle point, the

band is optimised by minimising the total force acting on each image.
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Figure 6.5: Schematic representation of the nudged elastic band method (taken from
Sheppard et al.19)

In this work, the fixed endpoints (vectors ~R0, the reactant configuration, and ~Rn+1,

the product configuration, in phase space) were created by relaxing the reactant molecules

and the product molecules on the substrate to their equilibrium configurations. The in-

tervening images (vectors (~R1, ~R2, . . . , ~Rn) are generated using a linear interpolation of

the coordinates between the initial and final states.

In the state described above, the method has two major problems: firstly, the geom-

etry optimisation for each image results in a net force which pushes all of the images
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towards their nearest local minimum (the reactant and product states), resulting in a

sparser distribution of images around the saddle point; this is known as the “sliding

down” phenomenon. Secondly, in regions where the minimum energy path is curved

in phase space, local decreases in the potential energy surface can cause corners to be cut,

with images in these “concave” regions being forced into spurious minima. These prob-

lems can be avoided by introducing the “nudge,” or projecting out the components of

the true force parallel to the chain, and the components of the spring force perpendicular

to the chain183.

The adjusted force acting on an image i is,

~F NEB
i = ~F S‖

i +
~F t⊥

i (6.58)

where ~F S‖
i is the spring force parallel to the tangent (The unit vector τi in figure 6.5)

and ~F t⊥
i is the true force perpendicular to the tangent. The spring component in this

expression is the projection of the spring force onto the unit tangent vector.

~F S‖
i = {k[(~Ri+1− ~Ri )− (~Ri − ~Ri−1)] · τ̂i}τ̂i (6.59)

Similarly, the true force component is the projection of the true force onto the normal

to the tangent, where the true force is simply the gradient of the image potential Ei .

~F t⊥
i =

~F t
i − (~F

t
i · τ̂i )τ̂i (6.60)

= ~∇Ei − (~∇Ei · τ̂i )τ̂i (6.61)

The unit tangent vector τi can be estimated either by normalising the vector connecting

images i −1 and i +1, or by normalising the sum of the two unit vectors between i −1

and i , and i and i + 1 (see figure 6.5). The latter method of calculating the tangent is

generally better, since it ensures that the images are equally spaced; however, in cases
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where the perpendicular component of the force is small compared with the parallel,

kinks may develop in the band particularly near the saddle points on the minimum

energy path. In a variant of the NEB method designed by Henkelman and Jónsson184,

the tangent is given by,

τi = τ
+
i F (E1)+τ

−
i G(E2) (6.62)

where τ+i is the vector connecting images i and i + 1, and τ−i is the vector connecting

images i−1 and i . The magnitudes of the vectors are determined by switching functions

F and G which are dependent on the relative energies of the three images. This formu-

lation of the tangent, together with a modified expression for the spring force parallel to

the tangent, called the “improved tangent” NEB, and used in this work, reduces errors

in the minimum energy path caused by kinks in the band.

In addition many variants of the NEB method involve some implementation of a

“climbing image” (including the one used in this work), where the image with the high-

est true energy is allowed to move uphill on the potential energy surface, thereby locat-

ing the transition state.

6.8.4 Results and discussion

Looking first at results for the reactions on the double four-ring (tables 6.4 and 6.5 for

BHandHLYP/6-31G** and B3LYP/6-31G** respectively), it is clear that B3LYP, whilst

being a good functional for describing the geometry and formation energies of hydrox-

ylated silicate clusters, is inappropriate for calculating reaction barriers of interest; com-

pared with BHandHLYP, it grossly underestimates barriers.

Although the double four-ring seems to catalyse the hydrogenation of carbon monox-

ide, resulting in a barrier that is lower by a factor of almost two, it actually hinders the

hydrogenation of formaldehyde, increasing the barriers of both competing reactions by

a factor of 2–3.

The calculations involving sixteen-silicon clusters were far more expensive, so we
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Forward barrier Reverse barrier Heat

H2CO+H−→CH3O 6.90 153.52 −146.62
H2CO+H−→H2COH 18.91 193.72 −174.81

Table 6.6: Reaction barriers and heats in kJ mol−1 for two reactions on the sixteen-
silicon hydroxylated nanocluster (cage 1) at the BHandHLYP/6-31G** level. Gas phase
reactions at the same level of theory are listed in table 6.4.

limited ourselves to a comparison of two the competing reactions forming CH3O and

H2COH. A variety of H2CO binding sites were used in the NEB, most of which

yielded a viable reaction path for CH3O, but not for H2COH. The energies of the

paths with the lowest barriers are listed in table 6.6. Compared with reactions on the

double four-ring reactions on cage 1 are far more favourable: the barriers are actually

reduced, and they are a factor of approximately two lower than in the gas phase. This

seems to support the earlier assertion that a lower curvature has an enhanced catalytic

effect on these reactions.

Figure 6.6 shows the NEB paths for these reactions on cage 1. In the case of CH3O,

the hydrogen atom follows a direct path to the carbon, whereas for H2COH, the hy-

drogen is somewhat hindered by overly acute HÔC angle and the hydrogen atom to

which the formaldehyde is hydrogen bonded. It can be seen that over the course of the

reaction, the H2CO fragment moves much further in the case of H2COH; initially it is

on the boundary between the four- and five-rings, but by the end it is obviously over the

four-ring. The movement of the formaldehyde fragment is the only way that the reac-

tants can overcome the steric hindrance inherent in the point at which they are bound

to the cluster. It can be concluded that this reaction is only feasible if the formalde-

hyde molecule is physisorbed onto the cluster between two rings and by comparing

the results for the reactions on the double four-ring (where the reaction occurs on the

boundary between two four-rings) and cage 1 (where it occurs between a four-ring and a

five-ring), supports the earlier claim that a lower curvature on the cluster surface results

in a lower barrier.
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(a) CH3O (b) H2COH

Figure 6.6: NEB paths for a hydrogen atom reacting with a H2CO molecule on a hy-
droxylated silicate cluster (cage 1, figure 6.4a) to form CH3O (left) and H2COH (right).
The reactant hydrogen atom is coloured blue and the five- and four-rings on which the
reaction occurs are coloured orange for clarity.

6.9 Reactions on icy mantles

6.9.1 Introduction

The conditions in the dense molecular clouds in which interstellar glycolaldehyde has

been detected place strong constraints on the mechanism of its formation. It has already

been established that at 10 K, the barrier for the simplest reaction (CO+H−→HCO)

is too high to feasibly occur in the gas phase. As demonstrated in section 6.7.3, the other

activated reactions have even higher barriers in the gas phase.

The composition of the mineral core of ISM dust grains is difficult to generalise;

with the only available physical samples collected from the comet Wild 2180, we are

forced to rely on spectroscopic observations, which suggest various polymorphs of car-

bonaceous and silicate materials. What is more certain is that 60-70% of the interstellar

ice coating the grains is H2O, most likely in the form of impure ASW155. The observed



CHAPTER 6. FORMATION OF INTERSTELLAR GLYCOLALDEHYDE 189

abundance of interstellar glycolaldehyde can only be accounted for by the catalysis on

the surface of icy dust grains.

Owing to the difficulty in representing a highly disordered structure in a relatively

small scale periodic model, our first step is the evaluation of the viability of glycolaldehyde-

formation reactions on a crystalline ice surface, with a view to refining the method to

include an amorphous surface in the future.

6.9.2 Model and methods

The main aim of this work has been to evaluate the likelihood of these reaction occur-

ring on an ice surface representative of an interstellar dust grain mantle. There have

been some attempts to characterise some of these reactions on ice, but these have been

limited to nanoscale cluster models which lack the long range order of a true surface172.

To this end, we have used a 3D periodic slab model of ice, on top of which the reactions

occur. The main problem with this type of calculation is the cost: in order to get rea-

sonable reaction barriers, it is necessary to use (at the minimum) hybrid DFT, which

is prohibitively expensive for a periodic cell containing hundreds of water molecules.

CP2K offers a convenient solution to this problem; the recently implemented ADMM

method185 allows such calculations to be completed in about two or three times the

time taken for a similar GGA calculation, an improvement of orders of magnitude over

other hybrid DFT methods. It is important to note, however, that this is improvement

relies on error cancellation and the use of more limited basis sets, thus we do not expect

to achieve chemical accuracy.

It was originally our intention to model reactions on a six-bilayer cubic ice slab for

which the surface energy is converged with respect to addition or removal of bilayers.

In order to be large enough to avoid image interactions between surface species, the slab

would need to contain at least 288 water molecules. However, we soon realised that this

would be too difficult given the time and resources available, and scaled it down to a
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two bilayer slab containing 96 water molecules. This is a fairly coarse model, but allows

us to gauge the relative barriers to the reactions which form glycolaldehyde. Figure 5.6

demonstrates that the surface energy of an ice slab converges rapidly with respect to the

number of bilayers, justifying the choice of model. All calculations were performed us-

ing the BHandHLYP hybrid density functional (which includes 50% Hartree-Fock ex-

change), Goedecker-Teter-Hutter (GTH) double-ζ (DZVP) basis sets and pseudopoten-

tials129, a plane wave cutoff of 400Ry and Grimme’s DFT-D3 dispersion correction119

potential with a dispersion cutoff of 10 Å. The convergence tolerances were set at and

energy change of 1× 10−6 Eh for single points, and for geometry optimisations, a max-

imum displacement of 1× 10−3 a0 and a maximum force of 5× 10−5 Eh a0
−1. For the

ADMM method the cpFIT3 auxiliary basis set was employed, and a truncated Coulomb

potential was employed to facilitate periodic Hartree-Fock calculations. The Coulomb

truncation radius was set to 5 Å.

In order to generate the ice slabs, a proton ordered bulk cell containing 288 water

molecules with surface order parameter of 2.0 for the surfaces at the top and bottom of

the cell (z = 0 and z = c ) was used as a starting point. A computer code employing

the Hayward-Reimers algorithm85 was used to alter the order parameter on the surfaces

whilst maintaining the integrity of the ice lattice. This was achieved by finding random

loops of hydrogen bonds and rotating them such that the ice rules remained inviolate;

only moves that increased the surface order parameter were allowed, thereby resulting

in a series of slabs with increasing order parameters between 2 and 4.5 (approximately).

A slab with an order parameter of 3.33 was chosen as the most representative of a real

ice surface, and as having the largest variety of adsorption points for molecules. This

configuration was reduced to a two bilayer, 96 molecule slab approximately 10 Å thick,

and the cell extended to 45 Å in the z-direction. At 35 Å, the vacuum gap in this case was

perhaps excessive, but was retained such that there would be a sufficiently large vacuum

gap for a six bilayer slab with the same cell parameters. The cell parameters were fixed,
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and the two bilayer slab was allowed to fully relax, forming the slab to be used in the

majority of the calculations below.

In previous experimental work, biradical reactions have been assumed to be bar-

rierless because radical species other than hydrogen atoms were not observed; it was

concluded that the were being consumed in biradical reactions too rapidly to be de-

tected154. Here, this has not been assumed, and these reactions have received the same

explicit treatment, allowing for the eventuality that DFT model is not representative

of the experimental reality, or that the surface somehow inhibits the recombination of

radicals.

For the single radical reactions, the reactants were placed on the surface and allowed

to fully relax. This was repeated for binding sites that obviously constituted a differ-

ent immediate environment (although an exhaustive survey of binding sites was not

conducted due to limited resources), and for the products. The relaxed initial and fi-

nal configurations were then used as the fixed endpoints for a seven-replica improved

tangent184 nudged elastic band calculation.

Owing to the necessity of manually specifying an initial guess for the biradical re-

actions, it proved impossible to adapt the nudged elastic band method for them. A

variation of the constrained optimisation method was used in these cases; as for the gas

phase calculations, the code was unable to generate an initial guess wavefunction with

the correct spin density distribution. To remedy this, an initial guess was formed us-

ing a single point on the starting configuration with the spin on the reactant fragments

constrained to be either 1 or −1 using Blöchl’s density-derived atomic point charges

(DDAPC) scheme186, resulting in a singlet state.

6.9.3 Results and discussion

In many ways, the model used was less than optimal. Although crystalline ice has been

detected in the ISM, the vast majority of water ice, including the mantle of interstellar
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dust grains is expected to be low density amorphous ice. Whilst periodic models of

amorphous ice do exist, an extremely (prohibitively, in the case of hybrid functionals)

large unit cell is required to adequately model the disorder in such systems. However, a

crystalline ice surface is suitable as a first approximation.

It was found that the HCTH/120 GGA functional recovers reaction barriers almost

as well as the chosen hybrid functional, BHandHLYP153. However, at the time of writ-

ing, an open shell version of HCTH/120 has not been implemented in CP2K. At the

start of this project, it was our intent to extend our somewhat crude two-bilayer model

to a six-bilayer model (the bulk energy is converged with respect to surface energy at

four bilayers or more using the PBE functional, according to Pan et al.5); however, this

would have proven too computationally expensive using a hybrid functional with the

resources available.

We were also limited in our choice of hybrid functional to those available in CP2K,

the only code capable of making such hybrid supercell calculations tractable. Whilst

BHandHLYP gives good barrier heights, it is less convincing with respect to reaction

energies153. Ideally, we would have chosen a semi-empirical “tuned” hybrid functional

with a high Hartree-Fock exchange fraction, such as MPW1K, or a modest Hartree-

Fock exchange fraction with an improved correlation form, such as B97-1. In addition,

the use of the double zeta basis set introduces a significant BSSE, of the order of a few

kJ mol−1. This is the same order of magnitude as the barrier heights calculated for many

of the reactions; however, a larger basis set would be computationally intractable.

Owing to the inaccuracies inherent in the model, the figures in table 6.7 should not

be regarded as absolute values, but should instead be used as a comparison with gas

phase calculations at the same level of theory as an indication of the extent to which the

reaction barriers are lowered, if at all.

A comparison of the reaction barriers in the gas phase (table 6.1) and on the ice

surface (table 6.7) suggests that the ice surface greatly facilitates three of the four rate
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determining reactions in the mechanisms considered. For this reason, barriers and reac-

tion energies in the gas phase were recomputed using at the BHandHLYP/DZVP level,

i.e. with a congruent (but not identical) basis set.

The reaction barrier for H+CO−→HCO is reduced by almost a factor of two. This

reaction has been studied in some detail in the gas phase, at high levels of theory173, and

to a limited extent on small water clusters embedded in a dielectric field representative

of ice by Woon172. This result clearly conflicts with Woon’s; he found that a four-

water molecule cluster reduced the barrier by 3.6 kJ mol−1 from a gas phase value of

20.75 kJ mol−1; a significant but insufficient reduction. Moreover, the dielectric field

intended to replace the long range influence of an ice surface reduced the barrier by

less than 1 kJ mol−1. Although his model is less sophisticated, Woon’s calculations are

performed at a higher level of theory, PMP2 and QCISD.

Of greater significance is the effect of the ice surface on the addition of hydrogen

to formaldehyde. At the BHandHLYP/DZVP level, the barrier of the methoxy radical

formation reaction is reduced by a factor of four (from 12.36 kJ mol−1 to 4.67 kJ mol−1),

whilst the effect on the hydroxymethyl radical formation reaction is more pronounced,

displaying a barrier reduction of a factor of six (from 41.00 kJ mol−1 to 7.35 kJ mol−1).

Without performing path integral molecular dynamics calculations, it is impossible to

quantify the effects of tunnelling on these barriers, but given that tunnelling of hydro-

gen atoms at 10 K is thought to be significant, it is possible to envisage these barriers

being overcome since they are the same order of magnitude as the barrier for the hydro-

genation of carbon monoxide. Taking into account BSSE and the inherent uncertainties

associated with the functional, the barriers can be considered to be essentially the same;

in addition, the formation of the hydroxymethyl radical is more exothermic by an in-

significant amount (0.64 kJ mol−1), from which we can conclude that both reactions are

approximately equally likely to occur.

Given that all of the biradical reactions are barrierless as suggested by experimental-
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Species Adsorption energy (kJ mol−1)

H −1.39
CO −10.90
HCO −15.59
H2CO −50.12
CH3O −28.05
H2COH −36.50
HOCCOH −102.32
CH2OCHO −93.30
CH2OHCHO −117.84

Table 6.8: Adsorption energies (in kJ mol−1) for all species involved in mechanisms A
and B on the two bilayer crystalline ice surface (at the BHandHLYP/DZVP level). The
adsorbed configurations are shown in figure 6.7.

ists154, there is a clear rate determining step for each of the two mechanisms. In the case

of mechanism A (page 174), it is the hydrogenation of formaldehyde, and in the case of

mechanism B, it is the hydrogenation of the HOCCOH species. The reaction barrier

for the latter is marginally higher (by 1.83 kJ mol−1), but not sufficiently to be sure that

the difference is not a result of BSSE or self interaction. It seems more likely that the

respective rates are limited by the ease with which the HCO and H2COH radicals can

migrate across the ice surface.

It was found to be extremely difficult to calculate a migration barrier for a hydrogen

atom because the potential energy landscape of a proton disordered ice surface is so

irregular. Hydrogen atoms can physisorb either to the “flat” surface water molecules

(i.e. molecules without a dangling OH) or sit above the centre of a six-ring, depending

on the proton ordering in the local environment. Two attempts to calculate the barrier

using the nudged elastic band approach yielded energies of 2 kJ mol−1 to 4 kJ mol−1;

taking into account BSSE, hydrogen migration therefore has either a low or zero barrier.

The situation is more complicated for molecules: a specific proton ordering pattern

is required for a polar molecule to bind to the ice surface, and on a disordered sur-

face, the most favourable binding sites require a specific proton ordered configuration
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(a) CO (b) HCO

(c) H2CO (d) H2COH

(e) CH3O (f) HOCCOH

(g) CH2OCHO (h) CH2OHCHO

Figure 6.7: Binding of various species to the ice surface. Water molecules that are not
involved in physisorption are coloured grey.
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coupled with a specific molecular orientation; it is expected that this, in conjunction

with the larger mass, will hinder migration. Since we have neither the time nor com-

putational resources to perform an extensive survey of migration barriers, as a first

approximation, adsorption energies for the species involved in both mechanisms were

calculated, and are presented in table 6.8. It should be noted that these values corre-

spond to only one local proton ordered environment of many on the ice surface, so

in fact there will be a range of energies. The environment on which to calculate was

chosen on the following basis: a survey of adsorption sites was performed for carbon

monoxide (this proved to include a relatively small number of calculations, since for

a bound CO molecule, the “local environment” constitutes only three surface water

molecules, one of which must have a dangling OH. The site with the largest adsorption

energy was chosen to sequentially hydrogenate the CO molecule in order to construct

molecules up to CH3O and H2COH. For the two-carbon molecules, the situation was

more complicated; it was necessary to find sensible adsorption sites for both reactants

and products on a finite slab, so the case of reactions (6.53) and (6.55), there was only

one possible location for the reaction to occur. The adsorption energy of CO ranged

between −10.90 kJ mol−1 and −4.70 kJ mol−1.

The low barrier for hydrogen migration calculated using the NEB method supports

the proposition that adsorption energies and migration barriers are generally correlated;

the adsorption energy for hydrogen is almost negligible, and considerably less than the

largest potential error caused by BSSE and the self-interaction error. The adsorption

energy of the HCO molecule is an order of magnitude larger, at −15 kJ mol−1, which

supports the notion that only hydrogen atoms are mobile on the crystalline ice surface.

The potential energy surface on ASW is far more irregular, and it is therefore conceiv-

able that in areas that are locally “flat,” it will be possible for these larger species to

overcome the migration barrier by tunnelling.

One reaction that has not been studied is the formation of methyl formate, CH3O+



CHAPTER 6. FORMATION OF INTERSTELLAR GLYCOLALDEHYDE 198

HCO−→CH3OCHO. It is likely to be barrierless on the ice surface, considering all

of the other biradical reactions on the ice surface were found to be barrierless; if any-

thing, the lower barrier to the formation of the CH3O radical should make it more

favourable than the competing glycolaldehyde-forming reaction (6.53). On the other

hand, H2COH is essentially planar, whilst CH3O is tetrahedral, therefore taking steric

hindrance into account, HCO can attack H2COH from two angles (either side of the

plane), whereas it can only attack CH3O from one direction (the side of the oxygen

atom). It is impossible to draw a strong conclusion from this in the absence of rate

constants for these reactions, but these conclusions may go some way to explaining the

higher abundance of methyl formate.

We now attempt to estimate the characteristic temperature using the method de-

scribed in section 6.6 for the reaction H2CO+H−→CH3O. We assume that the form

of the function used to fit the profile of the reaction on the ice surface is qualitatively

similar to the gas phase profile. Thus a detailed dataset from the gas phase reaction is

used to determine the functional form that will be fit to the ice surface data (figure 6.8).

The coordinates for the ice surface reaction were converted from Ångström to atomic

units (Bohr), and rescaled to normal mode coordinates by multiplying each coordinate

by the square root of the atomic mass. This new basis was used to recompute the reac-

tion coordinate.

The function f (x) that was found to fit the gas phase data is a linear combination of

a Morse function and a Gaussian function:

f (x) = a[(1− e−b (x−c))2− 1]+ pe−
(x−q)2

r 2 + s (6.63)

f ′′(x) = 2ab 2[−e−b (x−c)− 2e2b (x−c)]+
2 p

r 4
e−

−(x−q)2

r 2 [(x − q)2− r 2] (6.64)

The fit for this function with the ice surface data for the reactions H2CO+H−→CH3O

and H2CO+H−→H2COH is shown in figure 6.9, and is used to determine the param-
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Figure 6.8: Function f (x) fit to the gas phase (Cartesian) reaction coordinate for
H2CO+H−→CH3O.

eters a, b , c , p, q , r and s in each case. The second derivative f ′′(x) is taken at the

transition state to calculate the curvature. The curvature at the transition state for the

formation of CH3O in figure 6.9a is −0.01 atomic units, which translates to an imagi-

nary frequency of −2300 cm−1 and a characteristic temperature of 3300 K. In contrast,

the imaginary frequency for the H2CO+H−→H2COH reaction was calculated from

figure 6.9b as −440 cm−1, corresponding to a characteristic temperature of 640 K. The

first value is perhaps surprisingly high; Goumans and Kästner used harmonic quantum

transition state theory (HQTST) to predict the characteristic temperature of hydrogen

abstraction from methanol (H+H3COH−→H2 +H2COH or CH3O)187 in the gas

phase, which is a similar class of reaction to the type studied here. HQTST is a semi-

classical method that has been shown to perform well at low temperatures. They report

values of Tc = 331 K for H2COH formation and 396 K for CH3O formation, i.e. an or-

der of magnitude smaller than for the CH3O-forming reaction considered above. The

exceptionally high characteristic temperature calculated suggests that on the ice surface,
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(a) Function f (x) fit to the ice surface reaction coordinate (normal mode
coordinates) for H2CO+H−→CH3O.

(b) Function f (x) fit to the ice surface reaction coordinate (normal mode
coordinates) for H2CO+H−→H2COH.

Figure 6.9: Demonstration of fitting procedure to obtain curvature at the transition
state for two ice surface reactions. Note that the D3 dispersion correction was used in
neither calculation due the resulting introduction of numerical noise.
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quantum mechanical tunnelling happens is by far the dominant barrier-crossing process

at all temperatures of physical interest, and that it is more important on the ice surface

than it is in the gas phase. It is perhaps a sign that the ice alters the form and curvature of

the potential energy surface of the reactants such that tunnelling is far more favourable

than in the gas phase, by making the barrier narrower, and perhaps more symmetrical.

The characteristic temperature for the H2COH-forming reaction is much lower, and

is of the same order of magnitude as the frequencies reported by Goumans et al. When

a hydrogen atom approaches a formaldehyde molecule on the ice surface, the approach

vector is more favourable for the formation of CH3O because in the case of H2COH,

the COH bond angle is acute, and far from the angle in the product molecule. The NEB

paths for these reactions are shown in figure 6.10. Whilst the hydrogen atom has a direct

path in the case of CH3O (figure 6.10a), its path is clearly modified by the presence

of the ice surface hydrogen atom to which the oxygen in the formaldehyde molecule

is hydrogen bonded (figure 6.10b). When forming the H2COH radical, the path of

the hydrogen atom is deflected both vertically and laterally by the potential energy

surface. It is possible that this makes the potential energy surface for the latter reaction

more complicated, with a more distorted barrier that is less favourable for tunnelling:

the reaction barrier is superimposed onto the torsional barrier on the H−CO−H axis.

However, these conclusions assume that the curvature estimates (not to mention the

model) are accurate enough; this may not be the case.

There were two problems which prevented the calculation of Tc for all of the ice

surface reactions, both of which made the fitting process impossible in the majority of

cases. The first was the sparsity of data points, especially in the vicinity of the transition

states. The use of a harmonic approximation with a finite difference approximation of

the curvature was rendered impossible for this reason, and also results in a large margin

of error for the curvature, as can be seen in figure 6.9a. The second reason is numerical

noise, which we believe is primarily a result of the D3 dispersion correction. D3 is a
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(a) CH3O (b) H2COH

Figure 6.10: NEB paths for a hydrogen atom reacting with H2CO to form CH3O (left)
and H2COH (right) on an ice surface. Only the path of the hydrogen atom is shown
for clarity.

semiempirical method. The problems with D3 are twofold. Firstly, in attempting to

empirically improve long range correlation using a c6 term, it employs a method which,

while appropriate for describing intermolecular interactions, is part of a completely dif-

ferent paradigm to DFT and therefore deteriorates the intramolecular and interatomic

description. Secondly, the corrections are parameterised using gas phase data from neu-

tral atoms, which behave very differently to atoms in the solid state, including water

ice. For example, the polarisability and dipole moment of water molecules change by a

factor of two in the transition from the gas phase to the solid state. In summary, whilst a

long range dispersion correction is necessary to describe reaction catalysed by a surface,

the implementation is far from perfect.
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6.10 Summary and conclusions

On the basis of astrophysical and chemical models, two mechanisms for the formation

of glycolaldehyde were examined; the first involving hydrogenation of carbon monox-

ide to form formyl and hydroxymethyl radicals which combine to produce glycolalde-

hyde, and the second requiring the formation and reaction of formyl radicals to form

the HOCCOH species, which is subsequently hydrogenated to form glycolaldehyde.

These reactions have been characterised in detail up to a high level of theory, and it is

apparent that none of the activated reactions are feasible in the gas phase at 10 K.

It was found that hydroxylated silicate nanoclusters will catalyse the hydrogenation

of formaldehyde, and the barrier reduction from the gas phase is related to the curvature

of the substrate cluster; larger clusters result in a greater reduction.

Reactions simulated on an ice surface were found to have their barriers reduced con-

siderably. In particular, the difference in barrier between the hydrogenation of forma-

lydehyde to the methoxy and hydroxymethyl radicals was reduced from 28 kJ mol−1 in

the gas phase to 3 kJ mol−1 on the ice surface. That is, the formation of the hydrox-

ymethyl radical is only slightly less kinetically favourable than the methoxy radical,

which may be responsible for the abundance of methyl formate.

The rate determining steps are the hydrogenation of formaldehyde and the hydro-

genation of HOCCOH respectively. The latter has a higher barrier by 2 kJ mol−1, there-

fore the first mechanism is the more likely (although this may change if BSSE is signifi-

cant). Both reactions are contingent on the ability of the formyl radical to migrate across

the ice surface; the adsorption energy of HCO is about an order of magnitude higher

than that of the hydrogen atom which has a zero migration barrier, so in the regime

of quantum tunnelling and considering the long timescales involved in astrochemistry,

migration should be possible.



Chapter 7

Conclusions and future work

7.1 Conclusions

In this thesis, computational models were employed to improve the characterisation

of cubic ice, which to date remains incomplete. We generated an exhaustive set of

symmetry-unique proton ordered bulk configurations for hexagonal (16 configuration)

and cubic (11 configurations) lattices, and were able to determine their unambiguous

ground states, independent of functional recipe. In the case of hexagonal ice, the calcu-

lated C mc21 ground state is in agreement with previous work12, and experimental evi-

dence82. Similarly the ground state configuration of cubic ice was found to have I 41md

symmetry and named ice XIc4. High precision DFT calculations and comparison with

reference DMC calculations suggest that ices XI and XIc are essentially degenerate. It

may be possible to prepare ice XIc in the laboratory using a similar method to XI, using

slow cooling in the presence of a KOH dopant.

As with hexagonal ice, the cubic ice surface reconstructs to minimise electrostatic re-

pulsion between dangling OH bonds. The Fletcher “striped” phase achieves the lowest

surface energy for cubic ice by minimising the average number of dangling OH bonds

adjacent to a dangling OH bond. The surface energy increases as the degree of clus-

tering of dangling OH bonds increases. Both hexagonal and cubic ice surfaces have the

204
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same relation between surface energy and dangling OH bond clustering; however, cubic

ice surfaces of any order parameter are approximately 10% higher in energy than their

hexagonal counterparts.

Elementary steps on the ice surface can undergo major reconstruction to lower step

formation energies. Two-coordinated molecules on the step edge can form an additional

hydrogen bond with the lower terrace, but this process is contingent on local proton or-

dering on the step and lower terrace. When a molecule forms a third hydrogen bond, it

stabilises the step locally, and when the reconstruction is not possible, it forms a high

energy site which is “sticky” and facilitates adsorption and therefore step growth. Of

the five step types considered, A-steps appear at the lower end of the step formation

energy spectrum. The B1-step has a higher density of two-coordinated molecules and

can therefore reconstruct to form more hydrogen bonds, resulting in the lowest step

energy. Molecules on the B∗1 step edge are one-coordinated, and reconstruct to become

two-coordinated; their lower coordination results in B∗1 steps having the highest forma-

tion energy. There are no two-coordinated molecules on the B2-step, so it undergoes a

minimal reconstruction and generally has a high energy (but not the highest). Thus we

expect two-dimensional bilayer growth the be fast in the direction of the B-steps (but

with a staggered rate due to the difference between the B1-, B∗1 and B2 steps) and slow in

the A-step direction, but also non-uniform due to proton disorder. This may go some

way to explaining the isotropic two-dimensional growth observed by Sazaki et al 6.

In the chapters 4 and 5, the physics of structural features of the cubic ice surface was

discussed; in chapter 6, surfaces were used to assess their catalytic impact on the forma-

tion of glycolaldehyde, the simplest sugar in the interstellar medium. Glycolaldehyde

has been detected in the dense molecular clouds7;8 and more recently in the vicinity

of a Sun-like protostar9, but calculations show that its formation is not feasible in the

gas phase at 10 K. By modelling bare interstellar dust grains as hydroxylated silicate

nanoclusters, and their ice mantles as a crystalline ice surface, we find that surfaces are
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capable of reducing barriers to the point where reactions may happen (albeit over long

time scales, and with the aid of quantum tunneling) at low temperatures. It was found

that the barrier height for reactions occurring on the silicate clusters is related to the

curvature of the cluster; larger clusters with a flatter surface reduce the barrier more.

The ice surface causes a more substantial barrier reduction, and of the two mechanisms

studied, the reaction between H2COH and HCO radicals, which themselves are formed

by hydrogenation of carbon monoxide, is the more favourable.

7.2 Future work

It was recognised that in the bulk, the atoms in hexagonal ice are on average further

from their ideal lattice points than in cubic ice, highlighting the difference in the po-

tential energy surfaces for these polytypes. The atoms in cubic ice are more confined

to their lattice points, suggesting a higher curvature on the potential energy surface,

which apparently allows less reconstruction on the cubic ice surface. It would be inter-

esting perform a similar analysis to Watkins et al.26, and calculate vacancy energies on

the cubic ice surface, comparing them with vacancies in the hexagonal ice surface.

There is an enormous amount of scope for further study on the topic of elementary

steps on the ice surface. Although static DFT calculations at 0 K give us a lot of insight

into the energetics of step formation, the situation is very different at finite tempera-

tures: due to the lower coordination, thermal excitations are much less costly on the

edge of a step than they are on a pristine surface, so it is impossible to simply extrap-

olate from zero-temperature simulations152. Additionally, surface and step formation

energies are only relevant to a surface-vacuum interface, when the situation of genuine

interest is an interfacial energy between the surface and liquid water. It may therefore be

instructive perform dynamic calculations, either ab initio, or more likely using classical

forcefields such as TIP4P, to simulate the time evolution of the crystal.

One of the primary motivations for this work was to investigate the impact of cubic
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ice on atmospheric reactions implicated in ozone depletion. Bolton used a QM/MM

approach to demonstrate that step defects enable the barrierless homolytic dissociation

of HCl, a reaction important in ozone destruction146; his calculations used the semiem-

pirical PM3 method, and may benefit from a higher level of theory. It would also be

interesting (if costly) to compare reaction barriers for such atmospheric reactions be-

tween cubic and hexagonal ice surfaces and steps.

The NEB calculations on glycolaldeyde in chapter 6 would benefit from an im-

proved model. As previously mentioned, the HCTH/120 GGA functional yields bar-

riers that are comparable to BHandHLYP153 at a fraction of the cost, but an open shell

version has not been implemented in CP2K. It would allow the use of thicker (up to

six bilayers), larger surface areas (and therefore a wider variety of environments), steps,

and most importantly the use of low density amorphous ice slabs which are intractable

using hybrid functionals. In order to estimate reaction rates, it is necessary to perform

vibrational frequency calculations which are intractable for the numbers of atoms used

since each atom in the system requires three single point calculations in the central dif-

ference approximation, multiplied by three spatial degrees of freedom. This issue can

be sidestepped by a fairly coarse approximation, using a reduced Hessian calculation

and only calculating the vibrational modes for the “important” atoms, ignoring the ice

substrate — but open shell vibrational frequency calculations have not yet been imple-

mented in CP2K. An alternative is to take a cut from the ice slab, containing the reacting

species and a small number of substrate molecules, freezing the substrate atoms, and do-

ing a transition state optimisation on the reactant atoms using non-periodic boundary

conditions. The vibrational frequencies of this cluster can then be calculated at a lower

cost.
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