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Abstract

Cubic ice Ic is a rarely-observed ambient pressure phase of water implicated in the catal-
ysis of atmospheric reactions. It forms between 160 K¥ and 243 K2, in droplets smaller
than 5 pm"” in diameter. It is metastable with respect to hexagonal ice Th and is poorly
characterised both experimentally and theoretically. The proton ordered ground state
for cubic ice has /4, md symmetry and is named ice XIc*. We find that the ground state
proton ordered configurations of hexagonal and cubic ice, XI and XIc are isoenergetic.

The surface energy of ice is strongly dependent on proton ordering. The “striped”
configuration® has the lowest surface energy, and clustering of dangling OH bonds in-
creases the surface energy. Cubic ice is has a surface energy approximately 10% higher
than hexagonal, and is more reactive. Elementary steps on the ice surface reconstruct
to lower the step formation energy; under-coordinated molecules on the step edge relax
to form an additional hydrogen bond with the lower terrace. We examine five different
steps: the low energy A-and B,-steps and the high energy B;-, B, and B}-steps. Different
growth rates for these steps combined with a proton disorder are in part responsible for
the isotropic bilayer growth of ice observed by Sazaki et al®.

Glycolaldehyde, the simplest sugar, has been observed recently in the interstellar
medium”® and in a solar-type protostar”. We evaluate two potential mechanisms for its
formation on icy dust grains at 10K, finding that activation barriers are greatly reduced
by the ice surface, and that the most likely route is a reaction between H,COH and

HCO radicals, which are formed by the sequential hydrogenation of carbon monoxide.
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Chapter 1

Introduction

1.1 Why study ice?

In spite of its ubiquity, water is a contentious area of research; for example, in 2009,
Huang ez al. asserted that liquid water is inhomogeneous, and consists of ‘tetrahedral

202 5 view

patches surrounded by thermally excited H-bond distorted structures
directly contended by Soper et al**., who suggest that ‘each molecule is typically hydro-
gen bonded to four others, with rarely more than one additional nonbonded molecule
in the first coordination shell’. The simple chemical formula H,O belies its extensive
range of anomalous physical properties (listed in extensive detail on Martin Chaplin’s
website?)), including the unusual temperature dependences of its density and phase, its
wide range of stable and metastable amorphous and crystalline solid structures and its
high viscosity and surface tension. Most of these properties can be generally explained
by the ability of each water molecule to form four relatively strong hydrogen bonds,
although an accurate theoretical model of water remains elusive; for this reason, the
question ‘what is the structure of water’ was one of the top 125 unanswered questions
in the 125" anniversary edition of Science?*.

Hexagonal ice is the solid phase of water that is most commonly encountered on

Earth and has been extremely well studied, yet new and unusual properties continue to

20
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Figure 1.1: Photographs of hexagonal ice Th crystals'®, and the crystalline structure of
orientationally ordered hexagonal ice.

be discovered. For example, it has been recently shown that ice nucleates differently at
positively and negatively charged surfaces of pyroelectric materials® (materials which
become polarised upon temperature change), and that the surface of crystalline ice dis-
plays a continuum of vacancy energies®.

A crystalline ice lattice consists of water molecules bound together by hydrogen
bonds; in a crystal free of defects, all water molecules are four-coordinated, donating
two hydrogen bonds and accepting two. The ambient pressure ice I polytypes (including
the ubiquitous hexagonal ice Ih and cubic ice Ic) discussed in this thesis are comprised
of tetrahedrally coordinated water molecules with a HOH bond angle close to 109.5°

and hydrogen bonds which are approximately straight and form six-rings.
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(a) Hexagonal ice (b) Cubic ice

Figure 1.2: Stacking of bilayers in hexagonal and cubic ices. The vertical is normal to
the (0001) basal surface of hexagonal ice, and the (111) surface of cubic ice. Only oxygen
atoms are shown, connected by hydrogen bonds indicated by blue lines. The coloured
boxes indicate the sequences that have translational symmetry in the z-direction (green:
A, pink: B, orange: C). It can be seen that hexagonal ice is characterised by a mirror
plane, whereas cubic ice contains straight “channels” that run diagonally from this per-
spective.

There are currently 15 known phases of ice, with ice XV being discovered as recently
as 200927, Of the two low pressure proton disordered polytypes, ices Ih (hexagonal)
and Ic (cubic) , only hexagonal ice has been studied extensively. Cubic ice — which
is studied in this thesis — is metastable (hence the absence of a solid line in the phase
diagram, figure[1.3), and has not been synthesised in pure form in the laboratory. These
two polytypes differ only in the stacking order of the hexagonal bilayers (figure [1.2).

Experiments have revealed that ice nucleates homogeneously as cubic ice in small

droplets with radii in the range 5nm2#2? to 5 um? and in confined pores

at tempera-
tures between 160 K and 243 K2. Whilst it was previously thought that Ic transforms
to Th at temperatures above ~180 K-200 K, recent studies indicate that Ic remains stable

for hours at 228 K with complex time and temperature dependences'z. There is no well
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Figure 1.3: The phase diagram of water'!. There is considerable uncertainty in the

temperature bounds of the regime of interest for ice Ic, highlighted with a red box.

defined phase transition. The cohesive energy difference between ices Ic and Ih is tiny
by chemical standards. Attempts have been made to measure the heat of transition from
ice Ic to ice Ih (AH,_,,), with estimates ranging from —160 ] mol™" to —13 J mol 3%,
Murray et al. suggest that this is because cubic ice invariably contains some hexago-
nal sequences, and the cubic sequences anneal to hexagonal ones over a wide range of
temperatures such that there is no distinct cubic-hexagonal phase transition — for this
reason, there is some debate as to whether cubic ice is actually a distinct phase of water:
it could be more accurate to describe it as hexagonal ice with cubic stacking faults. As
a result, calorimetric techniques tend to underestimate AH,_,,°*, and they suggest that
the true value is likely to lie closer to —155] mol™!, from the 2006 study by Shilling et

al.Be,

The structural and energetic differences between cubic and hexagonal ice are subtle
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but the chemical reactivity of these two phases are distinct and could profoundly effect
atmospheric chemistry on Earth. Given the temperature regime and droplet sizes re-
quired for cubic ice formation, it seems likely that cubic ice nucleates preferentially in
the Earth’s upper atmosphere”?, with a significant impact on processes such as cloud
formation and ozone depletion as a result of differences in surface chemistry between

4% Tt has also be suggested that cubic ice could be used in

hexagonal and cubic ices
cryopreservation of cells, since octahedral Ic crystals are benign, in contrast with the
destructive needle-like crystals that can be formed by hexagonal ice**.

It has been shown experimentally and using quantum chemistry, that a proton or-
dered (i.e. orientationally ordered) form of hexagonal ice can exist at temperatures be-
low 72 K, even though differences between the cohesive energies of proton ordered con-
figurations are small (up to ~1k] mol™)*% However, there is no known analogous
proton ordered phase of cubic ice. Quantum chemical simulations have shown that
proton ordering affects surface energies by an order of magnitude more than it effects
bulk energies®, which is particularly relevant since surface effects will be dominant in
the size regime of ice nucleation.

There are very few computational studies (particularly quantum mechanical) of cu-
bic ice in the literature, and given (i) the absence of conclusive experimental data, and
(i1) the difficulty in preparing pure samples of cubic ice, modelling offers a route to a
better understanding of its structure and chemistry.

In this thesis, three different aspects of the chemistry of ice are examined. First,
a characterisation of bulk cubic ice is undertaken, comparing it with the ubiquitous
hexagonal ice. In particular, the effect of orientational (proton) ordering will be in-
vestigated, and the ground state configuration determined. Next, the effect of proton
ordering on both pristine ice surfaces and surfaces with step defects is discussed. Fi-

nally, the developed surface models are employed to simulate the reactions which form

interstellar glycolaldehyde.



Chapter 2

A review of water ice

2.1 The crystalline structure of ice

There are currently 15 known crystalline structures of ice®***, which are identified by
the roman numerals I - XV; this does not include a number of amorphous phases in-
cluding high density and low density amorphous ices. The high pressure phases of ice,
which form in excess of 100 MPa, will not be discussed in any detail here, since the main
thrust of this study is the simplest ambient pressure polytypes, ices Ih (hexagonal) and
Ic (cubic) and their proton ordered variants. Ice XI is the most stable proton ordered
form ice Th, and is formed when KOH-doped ice Th is cooled to 72 K**. Proton order-
ing is discussed in more detail in chapter {4, Examples of high pressure phases include
Ice VII, which consists of two interpenetrating Ic lattices and its stable orientationally-
ordered analogue ice VIII, and ice X which is a non-molecular form of the tetrahedral
ice lattice with protons equidistant from adjacent pairs of oxygen atoms. These phases
all contain approximately straight hydrogen bonds and six-membered rings; this is not
necessarily the case for other high pressure phases, which contain four-, five-, seven-
and eight-membered rings and bent hydrogen bonds. In the most unusual high pres-
sure phase, ice X, molecular units of H,O can no longer be discerned — it consists of

hydrogen atoms at the midpoint between pairs of oxygen atoms.

25
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Note that to date, no pure proton ordered ices have been formed in laboratory con-

14 and

ditions™, with the exceptions of ice VIII, which can be formed by cooling ice VI
ice II, which has no proton disordered form; they have only been synthesised in the
presence of a dopant. There is currently no known proton ordered phase of ice Ic.

Bjerrum made one of the first attempts to deduce the properties of ice from a simple
electrostatic model of the H,O molecule*”. The oxygen atoms in a hexagonal ice crystal
form a tetrahedral structure as a result of the four-coordination of water molecules; each
donates and accepts two hydrogen bonds. The resulting structure is a puckered hexag-
onal layering of oxygen atoms. The stacking order of these layers determines whether
the ice has a hexagonal structure (ABAB stacking), or a cubic structure (ABCABC stack-
ing, reminiscent of diamond), as shown in figure Ice Th therefore consists of sheets
of hexamers in the chair and boat configurations, whereas Ic contains only the chair
configuration; the higher symmetry of cubic ice made it popular for modelling applica-
tions in the past*. Despite the structural similarities, Ic is metastable with respect to
Th. Hexagonal ice is the familiar structure of ice generally seen in terrestrial conditions,
while cubic ice has been shown to nucleate homogeneously at low temperatures and in
small droplets?, yet the difference in energy between cubic and hexagonal is small; ex-
perimental estimates of its value vary between —160] mol™! and —13 ] mol~"?%%%, Like
the energies, the structures are very subtly different; the difference in cohesive energy
may be due to the fact that cubic ice has twelve molecules in the second coordination
sphere, compared with thirteen for hexagonal ice.

To answer the question of why hexagonal ice forms preferentially to cubic ice, Bjer-
rum characterised hydrogen bonds as strong or weak, depending on the geometry of
the water “dimer” constituting the bond. He identified 6 possible dimer configurations.
Taking symmetry into account, there are four unique hydrogen bond configurations
(figure 2.1), which I will refer to as they are more commonly and concisely known in

the literature!##”: c-trans (inverse mirror symmetric), h-cis (oblique mirror symmetric),
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c-cis (inverse centre symmetric) and h-trans (oblique centre symmetric).

Figure 2.1: (Taken from Hirsch et al.#) Hydrogen bond types in a tetrahedral ice lattice
- h-cis (A), h-trans (B), c-cis (C) c-trans (D).

Bjerrum suggested, not unreasonably, that the trans hydrogen bond configurations
would be more energetically favourable, since the distance between repulsive centres
is maximised - indeed, his calculations from experimental data indicated that mirror-
symmetric bonds are 0.5% shorter than centre-symmetric bonds, and electrostatic cal-
culations showed that 100% centre-symmetric ice is less stable than 25% mirror sym-
metric; evidence, perhaps that proton ordering does play a role in the formation of
ice crystals. If this theory of strong and weak hydrogen bonds was robust, we would
expect the relative number of strong (trans-) hydrogen bonds to increase as the temper-
ature decreases, i.e. the most stable proton-ordered structures should have the largest
fraction of trans hydrogen bonds. Bjerrum’s hypothesis resulted in the prediction of
the Pna2, (figure structure as the lowest energy proton ordered configuration of
hexagonal ice. It has since been shown using quantum mechanical calculations that this
is incorrect'?, although calculations using classical potentials tend to favour the Pna2,

structure (see, for example, Buch et al.**). Bjerrum’s classification scheme may still be
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important; Hirsch and Ojamie’® have suggested that the energy of a cell may be related
to a linear combination of the hydrogen bond types rather than a simple fraction of

bonds with the trans- configurations.

2.2 Cubic ice

2.2.1 Structure: a stacking disordered phase?

Whilst pure hexagonal ice has been isolated within instrumental resolution, pure cubic
ice still eludes experimental synthesis; Murray and Bertram® have prepared cubic ice
that is ~80% pure, although the coherence of the cubic sequences was not reported. A
common trend in the literature regarding laboratory preparation is the assumption of
cubic ice formation on the basis of the temperature and pressure regime, rather than
spectroscopic analysis. Recently, Malkin ez al. used X-ray diffraction on ice crystallized
from supercooled water droplets suspended in an oil emulsion at temperatures under
232K*%. Instead of cubic ice, they observed a stacking disordered phase they named
ice I ; with approximately the same proportion of cubic and hexagonal sequences, ran-
domly arranged. These observations were strongly supported by Monte Carlo simu-
lations using the TIP4P model. Earlier molecular dynamics simulations by Moore and
Molinero using the mW model (a monatomic water model that mimics hydrogen bonds
using a short range anisotropic potential) also predict a stacking disordered phase, albeit

with a 2:1 ratio of cubic to hexagonal sequences".

2.2.2 Phase transition to hexagonal ice

There is no sharp temperature-dependent phase transition between hexagonal and cubic
ice; Ic gradually and irreversibly anneals to ITh as it is heated over approximately —200 K-
—180K, although it has been recently shown to persist for several hours at 228 K. They

have almost identical densities, and extremely similar binding energies, with a heat of
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1718957 Yamamuro et al.*°

transition (AH,_,,) in the range —160] mol~! to —13 ] mo
suggested that measurements on the high end of the range had overestimated the energy
difference by forming ice Ic from amorphous ice, which resulted in small particles and
an exaggerated surface effect; they cite a figure of 37 ] mol™! using cubic ice formed from
the sequence of transitions III — IX — Ic. Murray et al. suggest that the energy differ-
ence has been grossly underestimated since pure cubic ice has not been synthesized, and
necessarily contains hexagonal sequences®®, and support the value cited by Shilling ez
al.”®; 155] mol~!. Indeed, Kuhs et al.*! assert that the stacking faults are an inherent
property of ice Ic; it could be claimed that cubic ice is not a unique phase, but merely
hexagonal ice containing a high proportion of cubic stacking faults. On the other hand,
it has been proposed that the broad phase transition is a result of the defect energy at in-
terphase grain boundaries when hexagonal crystals grow in bulk cubic ice®?. Salzmann
et al. suggest that increasing numbers of hexagonal sequences in cubic ice seem to cor-
relate with a less exothermic transition®®. The lower free energy of Ih is attributed to
an extra water molecule in the second coordination sphere of Ih in comparison to Ic%%
radial distribution functions confirm that hexagonal stacking gives rise to 13 molecules

inside the second coordination sphere, compared with 12 molecules for cubic stacking,

resulting from the lack of a mirror plane.

2.2.3 Cubic ice in nature

Although cubic ice is metastable and forms at low temperatures, its effects were first
observed as early as 1629 by Christophe Scheiner>*. Haloes are visible around the sun
and moon around 100 times a year; these usually appear at an angle of 22° (figure
and are a result of light refracted by large quantities of randomly oriented ice Th crystals
in the form of hexagonal prisms. Scheiner’s halo was at an angle of 28° and was most
probably caused by light refracted by octahedral crystals of ice Ic. The fact that there

were only three subsequent sightings of Scheiner’s halo in the following 250 years in-
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Figure 2.2: A 22° halo around the sun"™. These are caused by light refracted by large
quantities of hexagonal ice crystals in the upper atmosphere. Scheiner’s halo appears at
28°, has been observed very infrequently and is evidence of octahedral cubic ice crystals.

dicate just how rare it is. Whalley”* suggests that the halo will only result from large
numbers of octahedral crystals that are small enough to be fully randomly oriented by
Brownian motion; larger crystals that are not completely randomly oriented may result
in partial haloes. Scheiner’s halo was recently observed in Northern Chile in 2000~>.
The formation of dendritic or polycrystalline snow flakes with their c-axes at 70° to one

another is further evidence of the influence of cubic ice in nature. Studies>®>”

suggest
that this is a result of the growth of ice Ih on an octahedral ice Ic nucleus.

It is thought that cubic ice is influential in processes occurring in the earth’s at-
mosphere, particularly in ice cirrus clouds (from aqueous ammonia and sulphuric acid
droplets), and in polar stratospheric clouds (from aqueous nitric and sulphuric acid
droplets), which play a key role in stratospheric ozone depletion””. Murphy*” has pro-

posed a mechanism by which ice nucleates to Ic, then converts to Ih, with the resulting

vapour pressure differential resulting in the formation of larger ice crystals; larger crys-
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tals have higher terminal velocities and are therefore more effective at dehydrating air.
This dehydration mechanism is only important at temperatures below 200K, which
happens to be the temperature range present in tropical tropopause and polar strato-

spheric clouds.

2.2.4 Formation conditions

Cubic ice was first created under laboratory conditions by Dewar in 1905%, who ob-
served a phase change to a ‘milk-white’ crystalline form when slowly heating com-
pressed ice at 15kbar and 193K. Dowell and Rinfret later prepared amorphous ice
by condensation of water on to a surface maintained below 110K, which transformed
to cubic ice (identified by X-ray diffraction) on heating above 110K, Bertie et al.>’
claimed to be the first to prepare large quantities of ice Ic in 1963, by heating samples of
high pressure ice phases (ices II, Il and V) from 77K at zero pressure. Mayer and Hall-
brucker®? succeeded in preparing cubic ice from liquid water in 1987 (it had previously
only been formed via the amorphous ice phase) by rapidly quenching aqueous aerosol
droplets with a diameter of roughly 3 um to 190K-200K on a cryoplate. They found
that cubic ice formed in this way annealed to ice Th slower than ice Ic formed from amor-
phous ice, perhaps as a result of the higher surface area to volume ratio, which allowed
faster heat dissipation. This would suggest that cubic ice crystals formed in the atmo-
sphere must be more stable, since they are thermally isolated from each other. Steytler
et al. cooled heavy water trapped in porous silica (with pores of mean diameter 9 nm) to
260K and identified cubic ice using neutron diffraction®®, demonstrating that cubic ice
could be stabilised at higher temperatures by formation in confined geometries.
Johari®! argues that water droplets will freeze to ice Th or Ic depending on their
size. His thermodynamic calculations yield a ‘critical radius’ of 15.1 nm, suggesting that
water droplets smaller than this will freeze to ice Ic, and larger droplets will freeze to

ice Th. He also calculates the “critical thickness’ of a water film to be 10 nm (water films
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thinner than 10 nm will freeze to ice Ic). These results are borne out by experiment, to
an extent; a number of studies (for example, Dunn et al. (1988)2) on ice formation in
the pores of nanoporous materials indicate that ice Ic is indeed formed in these confined
geometries. Johari adds that the critical radius (or thickness, for a water film) is affected
by the temperature and shape of the droplets, and that it is expected to be affected by the
presence of impurities and, crucially, the degree of proton ordering in the ice formed

since heat capacity is affected by proton ordering.

2.2.5 Attempts to prepare pure cubic ice

Murray et al.”” attempted to experimentally simulate the conditions present in the at-
mosphere during cloud formation, namely homogeneous nucleation of ice in water
droplets. Aqueous droplets of 2 pm-20 um were suspended in an oil matrix by emul-
sification, and the ice phase formation was monitored using X-ray diffraction. Aqueous
droplets containing ammonia, sulphuric acid and nitric acid among other solutes were
all found to freeze to ice Ic containing hexagonal stacking faults at 190K, a temperature
representative of the tropical tropopause and stratosphere, while 10 um droplets of pure
water were shown to contain significant proportions of ice Ic (~67%) at 235K. Suffi-
cient heating of these ice particles caused the ice Ic to anneal to ice Ih. The authors of the
study estimated that heat transfer is approximately ten times slower in the atmosphere
than it is in the emulsion, so a 10 um droplet in the atmosphere is unlikely to contain
much ice Ic after freezing.

Murray and Bertram® conducted similar experiments, with an emphasis on deter-
mining the proportion of cubic ice formed in emulsified pure water droplets as a func-
tion of droplet size, and investigating the stability of the droplets after freezing. They
found that as the median diameter of the droplets increased from 5.6 um to 17 um, the
fraction of ice Ic present decreased from almost 100% (with some hexagonal stacking

faults), indicating a strong inverse size dependence. This can be rationalised in terms of
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heat transfer: crystallisation is an exothermic process, so heat is produced on freezing.
Smaller crystals have a larger surface area to volume ratio, and can therefore dissipate
the heat to their surroundings more rapidly; this heat would otherwise result in the
ice Ic to Ih transition. They conclude that ice Ic is the phase that nucleates, and the
final amount of Ic in the droplet is governed by the variation in the temperature of the
droplet after freezing.

As part of the same study, they also looked at ice Ic stability as a function of tem-
perature. Using a similar experimental setup, an emulsion of 10 um water droplets
was cooled to 228 K-263 K, then the temperature increased, and the diffraction pattern
monitored. It was found that ice Ic is extremely stable at 228 K, but at 263 K it is rapidly
converted to ice Ih; there is a clear disparity with previous studies, with indicated that
ice Ic is rapidly converted to Th at 205 K. Murray and Bertram rationalise this by sug-
gesting that the transition is highly dependent on the surface area of droplet, and the
results of previous experiments were dominated by gas phase transfer which is blocked
by the emulsion. This theory is corroborated by studies on freezing in porous silica, in
which ice Ic was also observed at higher temperatures®.

Murray and Bertram’s results conflict with predictions from Johari’s®' thermody-
namic calculations, which predicted that only droplets of <10 nm would freeze to ice Ic,
a difference of almost 3 orders of magnitude. One order of magnitude can be accounted
for by the increased heat transfer from the droplets in the emulsion; in the atmosphere,
heat dissipation would occur at approximately a tenth of the rate in the emulsion so a

10 um droplet in the emulsion will behave as a 1 pm droplet in the atmosphere.

2.3 Proton ordering in bulk ice

Linus Pauling’s seminal 1935 paper® was the first to quantify orientational effects on
entropy in ice. It was known that the oxygen atoms in an ice crystal form a tetrahedral

structure from X-ray diffraction studies; however there was still uncertainty regarding
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the positions of the hydrogen atoms because X-rays are scattered by electrons, and the
bulk of the electron density surrounds the oxygen atoms leaving the hydrogen positions
poorly characterised. Pauling deduced that the hydrogens must not be midway between
the oxygens since this would require a much larger change in properties than is observed
between the gas, liquid and solid phases of water; for example, the melting points of
most ionic crystals are several hundred degrees higher than that of ice®. Additionally,
there must be a constraint forcing the hydrogen atom to occupy one of the two available
positions between a pair of neighbouring oxygens, since the concentration of H;O% and
OH-™ ions in water is low. These orientational constraints are summarised by the “ice

rules,” formalised by Bernal and Fowler®, which stipulate that:

1. there may only be two hydrogen atoms bonded to each oxygen (formally, a water

molecule)

2. there may only be one hydrogen atom per hydrogen bond (that is, one hydrogen

atom between each pair of neighbouring oxygen atoms).

Two types of defects arise from the violation of these rules*: ionic defects resulting
in the violation of the first rule, which are responsible for the formation of H;O" and
OH" ions, and Bjerrum L (no proton on a hydrogen bond axis) and D (two protons on
a hydrogen bond axis) defects, resulting from the violation of the second rule.

Thus ice crystals can exist in a number of configurations with differing molecular
orientations, subject to the ice rules. Each molecule can assume one of six orienta-
tions (figure|2.3) — a constraint imposed by the underlying tetrahedral structure — and
according to Pauling®, the chance that the adjacent molecules will permit that orien-
tation is §, hence there are (g)N = (%)N ways of arranging N molecules, therefore the

molar entropy (S) of ice at 0K is given by,

3
S=RInW=NRIn <5>, 2.1)
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Figure 2.3: The six canonical orientations of a water molecule in a tetrahedral ice lattice.

where R is the molar gas constant and W is the number of ways of arranging the
molecules.

S

)" ways of arranging N water molecules in an

Pauling calculated that there are (
ice crystal, but speciously argued that these configurations would all be degenerate at
low temperatures, perhaps based on the assumption that all configurations contribute
equally to the entropy. Petrenko and Whitworth suggest that long range interactions
between molecules are negligible; they quote Pauling: ‘under ordinary conditions the
interaction of non-adjacent molecules is not such as to stabilise one of the many con-
figurations satisfying the ice rules with respect to the others*. It seems intuitive that
variations in proton ordering would affect the electrostatic energy, making some con-
figurations more favourable than others. However, the energy differences between pro-
ton ordered structures with the same underlying oxygen lattice can be small (as low as
10] mol=1)2 so their resolution requires the application of extremely precise modelling
techniques.

Ice therefore has a finite entropy at 0K, and must have a large number or proton-

ordered and disordered configurations. It is now known that proton ordered phases of
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ice can form under certain conditions, indicating that the different configurations are
non-degenerate.

Although Pauling’s entropy calculation is exact for dendritic (branching) structures,
closed loops of hydrogen bonds introduce an error. For example, it has been shown
that in a closed loop of six hydrogen bonds (the shortest closed loop present in ice I),
assuming the first five bonds are correctly formed with probability 3, the probability
that the sixth bond is correctly formed is slightly greater than 3. As a result, Pauling’s
calculation underestimates W and therefore the entropy .

To date, there is a considerable body of computational work on proton ordering
in bulk hexagonal ice, but very little on cubic ice or the ice surface. There have been
attempts at determining the structure of a possible proton ordered phase of ice Ic in the
literature: Silvi compares the 74,md cubic ice and ice XIII structures, identifying the

768 and Lekner generates an exhaustive set proton ordered con-

former as a “prototype
figurations from the cubic cell®”®®, Casassa et al. compare the configurational energies
of different hexagonal and cubic proton ordered and disordered structures®”. However,
it would seem that there has been no published work on cubic ice analogous to Hirsch
and Ojamie’s on hexagonal ice’®: an exhaustive study of proton ordered polymorphs

of ice Ic in order to determining the most viable candidate for a proton ordered cubic

ice phase using DFT.

2.4 Modelling ice using empirical potentials

One of the striking features of the ice (and water) literature is the sheer number of
models that have been constructed in attempts to reproduce small subsets of the anoma-
lous properties of water. In his 2002 review, Guillot lists 46 different forcefield models;

this value has increased considerably in the interim”.

The most common are rigid
body models, which have no internal degrees of freedom; these models generally differ

in terms of geometry, charge distribution, polarisation, etc. Flexible (in which bond
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lengths and angles are degrees of freedom) and polarisable (in which charge distribu-
tion is a degree of freedom) models are also available, but do not offer any significant
advantage over simpler models considering the added computational cost”".

One of the most simple models is SPC (simple point charge) “%; it is a three site model
with the tetrahedral geometry of ice, point charges located on the atomic positions,
and a Lennard-Jones potential centred on the oxygen site. A reparameterisation of this
model that has been extremely successtul in reproducing the properties of ice is the
SPC/E variant. It is identical to SPC, except that it includes a polarisation correction
with the aim of reproducing the enthalpy of vaporisation.

The popular TIP%P (n-point transferable intermolecular potential) family of models
is characterised by the use of the gas phase geometry of water molecules”. The simplest
member is the three site TIP3P model, which is is similar to SPC in terms of charge
distribution and the potential, but adopts the geometry of the gas phase molecule. Jor-
gensen et al. developed the four site TIP4P model in an attempt to better reproduce the
oxygen-oxygen radial distribution function”} it differs from TIP3P primarily in terms
of charge distribution: the charge is moved off the oxygen atom, and onto the massless
‘M-site’ along the HOH angle bisector in the direction of the hydrogen atoms, with the
Lennard-Jones potential remaining at the oxygen site. This allows the dipole moment
to be varied without altering the geometry of the molecule. The TIP5P model resem-
bles TIP3P, but with additional negative charges at the ‘L-sites,” located at the positions
of the oxygen lone pairs. These models are parameterised to reproduce experimental
values for the enthalpy of vaporisation and density at ambient conditions, and crucially

in the case of TIP5P, the temperature at which the density of water is at a maximum

(Typ)™-
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(a) TIP3P (b) TIP4P (c) TIP5P

Figure 2.4: The three basic TIPnP forcefield models, with geometries and charges.
TIP4P contains an imaginary “M”-site at the bisector of the HOH angle, and TIP5P
has two imaginary “L”-sites at the positions of the lone pairs on the oxygen.

Model Type c(A) € &Jmol™) 1, A) 1, A) q; (e) q, (e) g ) ¢ ()
SPC a 3.16600 0.6500 1.0000 — +0.410 —0.820 109.47 —

TIP3P a 3.15061 0.6364 0.9572 — +0.417 —0.834 104.52 —

TIP4P b 3.15365 0.6480 0.9572 0.15 +0.520 —1.040 104.52  52.26
TIP4P /ice b 3.1668 0.8822 0.9572 0.1577  +0.5897 —1.1794 104.52 52.26
TIP4P/ZOO5 b 3.1589 0.7749 0.9572 0.1546 +0.5564 —1.1128 104.52 52.26
TIP5P C 3.12000 0.6694 0.9572 0.70 +0.241 —0.241 104.52 109.57
NE6 b+c 31155, 0715, 09800 0.8892, +0477 —0044, 108.00 111.00

0.673;;  0.115p 0.2300,, —0.866)

Table 2.1: Geometries and parameters for some relevant rigid body forcefield models*
(NES refers to the Nada-van der Eerden six-site model). The type and geometric quan-
tities correspond to those indicated in ﬁgure o and € are Lennard-Jones parameters.

There have been many attempts to reparameterise the TIP4P model, including sev-
eral with the specific aim of reproducing ice properties. Even though TIP4P molecules
assume the gas phase geometry, it generates a qualitatively correct phase diagram, for
which reason Abascal et al. attempted to modify it to model ice”t. They noted that it
is impossible to simultaneously fit the melting temperature and the enthalpy of vapor-
isation for rigid models, choosing to prefer fitting to the melting temperature. The re-
sulting potential, named TIP4P /ice, demonstrated excellent agreements for the melting
point of ice Th (272.2K), the densities of most ice phases, and the enthalpy of melting,

but an unsurprisingly bad fit for the enthalpy of vaporisation. However, it provided a
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poor representation of the extremely dense forms of ice (VII and VIII), perhaps a conse-
quence of the model having only one repulsive site per molecule.

Abascal et al. later proposed a new variation of dubbed TIP4P/2005%® which was,
like TIP4P/ice, designed to model the condensed phases of water. In contrast with
TIP4P /ice, it does not sacrifice the ability to predict the enthalpy of vaporisation, for
which it uses a corrective term. It was also taken into account that many empirical
models overestimate the stability of ice II; SPC/E, in particular does this unless it is
transformed into a four site model. They used a larger number of target parameters
than most other potentials, notably including 7}, and the distance between the oxy-
gen atom and the M-site was modified. The resulting potential represented a signifi-
cant improvement in terms of accuracy of predictions (for the liquid phase as well as
the solid), and reproducing a wider range of properties than many other potentials. It
proved to be a better model than SPC/E, TIP3P, TIP4P and TIP5P” over a wide range
of properties which notably included densities of ice polymorphs, melting points and
structure predictions. Vega et al.”” note that although the dipole moments of the mod-
els examined are similar, the quadrupole moments differ greatly, TIP4P /2005 having
the highest, and TIP5P having the lowest. This may be a clue as to why TIP4P /2005 is
so much better at modelling the condensed phases, where there is a strong short range
orientational dependence between molecules.

McBride et al.”” have attempted to modify TIP4P/2005 to include quantum delo-
calisation effects which are responsible for (to name one example) the discrepancy in
the maximum density temperature between H,O (~4°C) and D,0O (~7°C). Empirical
models which are tailored to reproduce experimental results at 273 K tend to fail as the
temperature is reduced since classical models do not account for one of the consequences
of the third law of thermodynamics, namely that the thermal expansion coefficient «
tends to zero as the temperature tends to zero. Quantum effects are thus significant

at low temperatures, particularly in the 77 K regime, where many experiments are con-
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ducted using liquid nitrogen cooling. The TIP4P /2005 and the “quantum compensated”
TIP4PQ/2005 models are identical, except that the latter has a larger dipole moment
achieved by a 0.02e shift in charge from each of the hydrogen sites to the M site. Sim-
ulations on all ice phases other than ice X suggested that the new model was ‘clearly
superior.’

Empirical models allow the reproduction of limited sections of the phase diagram of
water, and are computationally inexpensive way of calculating relative thermodynamic
potentials and configurational energies, but they clearly fall short when attempting to
resolve the subtle energy differences between proton ordered polymorphs. This under-
lines the need for more precise modelling techniques, such as density functional theory
(DFT, discussed in detail in chapter ).

It should be noted that the success of classical methods in predicting the relative
energies of proton ordered configurations depends largely on the complexity of the
model. The most widely used potentials, namely SPC and the TIP#P family, have failed
in predicting the structure of ice XI, favouring the antiferroelectric Pna2, configuration
instead of the experimentally verified C mc2, configuration*®, Only the six-site Nada-

van der Eerden six-site model (NE6)* has been successful in this respect?®.

2.5 Ice XI

Ice XI is the proton ordered form of ice Ih. Although there has been some debate
regarding its crystalline structure, the consensus is that it is the ferroelectric Cmc2,

variant, as opposed to the antiferroelectric configuration predicted by Davidson and

Morokuma™, the Pna2, structure (figure[2.5a).

1% reported a phase transition in KOH-doped ice Th at 72K, associated

Tajima et a
with a loss of approximately 70% of its configurational entropy, indicating a transition
to a proton ordered phase; later experiments indicate an entropy loss of up to 82%*.

They noted that the phase transition is remarkably insensitive to the KOH concentra-
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(@) Cmc2, (b) Pna2,

Figure 2.5: The ferroelectric Cmc2, structure of ice XI and the antiferroelectric Pra2,
structure predicted by Davidson and Morokuma™*.

tion (it could be varied by at least two orders of magnitude without losing the transi-
tion), perhaps indicating the role of the OH™ ions as a catalyst. Howe and Whitworth®!
suggested that the Th «— XTI transition does not occur in pure ice because it does not con-
tain the point defects that allow orientational reconfiguration. Leadbetter et al.®¥ per-
formed neutron diffraction experiments on KOH-doped D, O, and concluded that only
the lattice spacings in the Cmc2, structure could account for the diffraction pattern.
Jackson and Whitworth® later addressed the fact that the proposed Cmc2, struc-
ture is ferroelectric by investigating the transition of KOH-doped ice Th under the in-
fluence of an applied electric field. They used a ‘thermally stimulated depolarisation’
(TSD) technique, in which KOH-doped ice was cooled in an electric field, causing the
induced polarisation to become ‘frozen in.” Upon removal of the applied electric field
and heating, a “TSD’ current was observed. They determined that ice XI is ferroelec-
tric parallel to the c-axis, consistent with the Cmc2, structure, and crucially, that when
no electric field was applied, no TSD current was observed. This indicated that the
summed contributions to the electric field over bulk ice XI must average to zero, that

is, without an applied electric field, ice XI forms from ferroelectric domains with op-
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posing orientations resulting in a non-polar macroscopic structure. This was supported
by the observation that increasing the applied electric field resulted in a larger TSD cur-
rent (although they did not increase it enough to reach a saturation point, which would
indicate a single domain limit).

According to Petrenko and Whitworth*®, there are six possible domain orientations
in ice XI, and there must be equal proportions of domains polarised in opposite direc-
tions in order to avoid a net polarisation. They suggest that there are ‘incompatibilities’
between certain domain orientations - for example, it is impossible for two domains
oppositely polarised along their ¢ axes to join without violating the ice rules at the
boundary; for this reason there will always be some residual ice Th and it is impossible
to form a single-domain phase pure ice XI crystal. This is supported by the failure of
calorimetric experiments to recover the full Pauling entropy; OH™ ions would have to
follow an improbably exact path through the ice lattice in order to remove all remaining

disorder.

2.6 Generating ice simulation cells

Howe® devised a scheme for generating the symmetry-unique proton ordered configu-
rations of the 8-molecule cell of ice Th. By independently fixing the orientations of spe-
cific molecules in one of the two hexagonal layers of the cell, and working out the per-
mutations of orientations of the dependent molecules subject to the constraints of the
ice rules, she was able to determine that there are 13 unique configurations of molecules
in one of the layers. By considering the combinations of ways in which the two layers
could be connected, she concluded that there are 57 configurations permissible by the
ice rules. This differs from the number of 114 configurations independently arrived at
by Hirsch and Ojamaie by a factor of two, but can be explained by the fact that there
are two possible positions for a proton on every hydrogen bond, and for every one of

the 57 configurations predicted by Howe there is a ‘converse’ configuration in which
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each proton is the alternate position. Hayward and Reimers® developed a method of
generating proton disordered hexagonal ice cells with minimised multipole moments
by the application of orientational constraints. However, it seems that the most effi-
cient method of generating hydrogen bond topologies is that of Kuo, Knight, Singer ez
al.® They demonstrate the use of graph invariants in generating proton ordered con-
figurations, and show that graph invariants may also be used to predict various physical
properties.

Lekner®® calculates the electrostatic energies of various proton ordered configura-
tions of ice Ic, based on the conjecture that any energy difference as a result of differ-
ences in proton ordering will be purely electrostatic. It is a fairly primitive study, since
it only considers the Hartree component of the total energy, and uses ideal (unrelaxed)
ice lattices with straight hydrogen bonds, ignoring quantum effects. By using the pro-
ton position on the hydrogen bond as a coordinate, and what appears to be a similar
method to Howe’s®, Lekner concludes that there are 90 configurations of the cubic
eight-molecule Fd3m cell that satisfy the ice rules. In a later study®, Lekner explicitly
calculates the number of valid configurations for the eight-molecule ice Th cell as 114 in
agreement with Hirsch and Ojamie"?.

Lekner’s calculations suggest that the electrostatic energy is linearly related to the
dipole moment of the cell squared, so the degeneracy of the configurations can be
worked out on the basis of the cell dipole moment; in this way, he determines that
there are 17 distinct energies for the Ih cell (in agreement with Howe®*), and 4 for the Ic
cell. He goes on to suggest that antiferroelectric configurations for both hexagonal and
cubic cells would be energetically favoured on the basis of electrostatic considerations.
In an analogous study of diamond*®®, he shows using purely electrostatic arguments that
the cubic structure for a lattice of carbon atoms is the energetically favourable compared
with a hexagonal lattice. Although his method makes qualitatively correct predictions,

it is highly unlikely that it is robust considering the coarseness of the approximations;
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he used unrelaxed structures and did not take quantum mechanical effects into consid-
eration.

It is impossible to use atomistic periodic models of ice to simulate macroscopic pro-
ton disordered systems since they are ordered by construction (although it is possible to
simulate proton disorder using surprisingly small cells of a few hundred molecules);
any non-periodic system would have to be intractably large in order to capture the
macroscopic properties of ice, and would include surface effects. Rick and Haymet®*
used ensembles of quasi-disordered ice configurations generated by their ‘Move Algo-
rithm’ in order to simulate disorder, with the aim of reproducing experimental values
of the exceptionally high dielectric constant of water. The Move Algorithm essentially
uses random walks to identify closed loops of hydrogen bonds, then reorienting the
molecules on the loop using the Metropolis Monte Carlo scheme to accept or reject the
new arrangement on the basis of configurational energy. Of the three empirical poten-
tials used, they found TIP4P-FQ (a TIP4P variant that allows fluctuating charge, and
therefore induced polarisation®?) to give a dielectric constant closest to the experimen-
tal value; it also showed signs of a transition to a proton ordered phase at 50 K-100K

which would make it consistent with the ice Th «— ice XI transition.

2.7 Proton ordering in ices Th and Ic

Buch, Sandler and Sadlej** approach the problem of proton ordering in ice with a view
to constructing a potential that favours the ferroelectric Cmc2, as the most stable pro-
ton ordered form of ice Ih, rather than Bjerrum’s Pna2, structure. They used a Rick
and Haymet’s ‘Move Algorithm™ to generate quasi-random proton-disordered config-
urations for large unit cells containing up to 1600 water molecules. Cells were gen-
erated containing the oxygen sub-lattice for ice Ic or Ih, and a hydrogen atom placed
at one of the two possible positions on each oxygen-oxygen axis, at which point each

oxygen atom would be ‘bonded’ to between zero and four hydrogen atoms. At each
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Monte Carlo step, a bond was picked at random, and the hydrogen atom moved to the
alternative position on the oxygen-oxygen axis with a probability favouring a config-
uration with all oxygen atoms bonded to exactly two hydrogen atoms. The fact that
they found 16 distinct eight-molecule ice 1h configurations (in agreement with Hirsch
and Ojamie’?) vindicates their method. The energies of the ideal cells displayed a linear
correlation with the fraction of trans hydrogen bonds (f,), with more stable structures
having a higher £, as predicted by Bjerrum; however full geometry optimisation broke
the correlation. Rick and Haymet® have used f, as an order parameter in an earlier
study, but this only makes sense when using rigid body models such as SPC and TIP4P.

One limitation of studying proton-ordered configurations of ice is that for a cell
containing a given oxygen sub-lattice, the fraction of trans hydrogen bonds can only
take certain discrete values. Barték and Baranyai® performed Monte Carlo simulations
on quasi-disordered ice configurations, in order to effectively make the trans fraction a
continuous variable, within limits prescribed by the geometric constraints - for example,
the fraction of h-cis and h-trans bonds in ice Ih is 0.75. They noted that it was only
possible to generate disordered configurations with the trans fraction in a narrow range,
and it was not generally possible to expand this range substantially by increasing the cell
size; for example, in a 432 molecule cell, 0.56 < f, < 0.75. They found that the energy
and trans fraction were (more or less) correlated, as expected, and suggested that the
distribution of hydrogen bond isomers can be used to uniquely identify phases for the
tetrahedral structures examined (ices ITh, XI, VII and VIII), but the hydrogen bonding
structures of other phases were too complicated for this approach. They conclude by
estimating that there are generally small energy differences of 10] mol™'-1000 ] mol™"
between pairs of proton ordered and disordered polymorphs, which is consistent with
DFT calculations.

Bartok and Baranyai used several empirical potentials in their aforementioned study,

including TIP5P-EW (a re-parameterised TIP5P with better representation of long range
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forces), TIP4P-EW and TIP4P/2005. In a previous paper’l, they simulated the ice
phases I-XII (an exhaustive set at the time) using the popular SPC/E and TIP4P po-
tentials and a Monte Carlo method. The results suggested that these coarse models are
unable to predict the subtle energy differences between low pressure phases (notably ices
Ih and Ic), and they significantly overestimate the energies of the high pressure phases.
This is not entirely surprising when one considers the physical origin of these models
as Baranyai and Bartdk do in a subsequent paper?®. They are both rigid body models
based on opposite extremes of the phase diagram: SPC/E is 3-site model based on the
perfect tetrahedral structure of crystalline ice, and TIP4P is a 4-site model with geom-
etry based molecules in the gas phase. In this study, they repeated the calculations on
thirteen phases of ice using the TIP4P potential and two of its variations, TIP4P-EW and
TIP4P /ice, as well as an ‘average’ model, with geometry compromised between those
of SPC/E and TIP4P. It was found that none of these models resulted in a significant
improvement over SPC/E and TIP4P, although TIP4P-EW yielded the best results. It
therefore seems that no single simple rigid-body model is sufficient to model all phases
of water, and are not capable of resolving the energy differences between ices Ic and Ih,
let alone their proton ordered configurations, although constant refinement and repa-
rameterisation may eventually yield a usable potential.

The group of Casassa, Pisani et al. has written a number of papers on proton order-
ing energetics in hexagonal and cubic ice®®™, In their 1996 paper”?, they use periodic
Hartree-Fock (HF) calculations to determine the energy difference between two proton
ordered forms of ice Th, denoted C-ice (which is the actual structure of Ice XI, space
group Cmc2,) and P-ice (a hypothetical anti-ferroelectric proton-ordered ice structure
proposed by Davidson and Morokuma™®, in space group Pna2,). According to David-
son and Morokuma’s three-body potential calculations, P-ice has a lower energy than
C-ice because all of the hydrogen bonds have the trans-configuration, maximising the

distances between repulsive centres; however the HF calculations of Pisani er al. sug-
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gest that C-ice and P-ice are ‘essentially iso-energetic’, and while their binding energies
were in good agreement with experimental results (allowing for the characteristic under-
binding of HF calculations), Hirsch and Ojamie’s later work™® demonstrates that HF
calculations using the fairly extensive 6-31G™** basis set are not accurate enough to re-
solve energy differences between proton ordered polymorphs of ice, most likely due to
the omission of electron correlation.

Whilst there are no studies that examine an exhaustive set of proton valid proton
ordered configuration in cubic ice in the vein of the Hirsch and Ojamie study'4, there
are details of possible ground state structures. In a neutron diffraction study of ice Ic,
Kuhs et al. mentioned candidates for a hypothetical proton orrdered phase with space
groups [4,md and P2,2,2 %', Casassa et al. examined two configurations with space
groups [4,md (ferroelectric) and P4,2,2 (antiferroelectric)®. In this paper, they take
a step up from HF methods and apply GGA and hybrid periodic DFT methods to
calculate the energies of four different proton ordered configurations of ice: the afore-
mentioned Cmc2, (polar hexagonal) and Pna2, (apolar hexagonal) structures, and two
different cubic ice configurations: P4,2,2 (apolar cubic) and 74,md (polar cubic). By
performing DFT calculations on water molecules and dimers using various basis sets, it
was shown that HF tends to under-bind and DFT tends to over-bind, with the B3LYP
hybrid functional yielding results closer to experimental values cited by Petrenko and
Whitworth*® than the PW91 GGA functional. Their results indicated that ice XI
(Cmc2,) is metastable with respect to proton ordered cubic ice (4,md) by 880 ] mol~'-
3517 ] mol™!, a fact they described as ‘contrary to intuition.” They conclude that the
cubic structure is more stable than the hexagonal, and ferroelectric structures are more
stable than anti-ferroelectric; the latter assertion is widely supported in the literature
(for example, Knight et al.%%), but the former has interesting implications, and again
raises the question as to why hexagonal ice structures are preferred in nature. Note that

in contradiction with the CRYSTAL calculations in this paper, the VASP calculations
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suggest that the anti-ferroelectric structure should be more stable; they also disagree
with the analogous CASTEP calculations of Hirsch and Ojamie, which are considered
to be robust - indeed, they acknowledge that the VASP results are erroneous in a later
publication®®.

In their 2009 papers”**®, Erba et al. perform essentially the same calculations as in
the 2005 paper® on the Cmc2, and Pna2, structures, but with a different computa-
tional setup. HF, post-HF (local-MP2) and DFT (PW91, B3LYP) with two different
basis sets. In this case, the GGA calculations were in agreement with those of Hirsch
and Ojamide. The B3LYP results are in such good agreement with experimental data
that Erba ez al. significantly conclude that dispersive interactions are insignificant in ice
(since DFT is known not to model long range interactions well); however, unpublished
results suggest that a dispersion correction adds 5-10% to total absolute energies, which
would take the B3LYP energies significantly away from the experimental values; in this

®”is responsible for the excellent agree-

case, perhaps a ‘fortuitous cancellation of errors’
ment.

Tribello and Slater®” revisited the 16 symmetry-inequivalent proton ordered struc-
tures of Hirsch and Ojamaie in an attempt to determine what effect the exchange-correlation
functional recipe has on their relative energies, the answer being “surprisingly little”. By
performing DFT calculations using the CASTEP code, they showed that the relative en-
ergies were similar for two GGA functionals, PW91 and RPBE, and even an LDA func-
tional - leading to the conclusion the proton ordering energetics are determined solely
by electrostatic effects; this was confirmed by a multipolar analysis, which also demon-
strated that an accurate description of the electrostatics in ice requires ‘surprisingly high
order multipoles.’

Labat et al. performed a detailed study of the Pra2, and Cmc2, configurations

of hexagonal ice, their assertion being that the energy of the Pna2, structure is close

to the approximate average energy of the ensemble of structures comprising ice Th*.
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They examine the relative energies using several density functionals including GGA,
hybrid, meta-GGA and hybrid meta-GGA with differing fractions of Hartree-Fock ex-
change. Whilst the structure and band gap are sensitive to the choice of functional,
they show that the energy difference is only weakly affected, by ~2 meV, supporting
the notion that the energetics of proton ordering is well-described by a range of func-
tional®””. They conclude that although non-local exchange has a significant effect on
the electronic structure and energetics of hexagonal ice, it does not significantly affect
the relative energies of proton ordered configurations, and that the relative energy is
insensitive to changes in the exchange-correlation functional recipe. They also note that
only the MO6-L (meta-GGA) and B3LYP (hybrid) functionals reproduce the formation
energies, and only B3LYP is capable of accurately describing the electronic structure.
Calculating the dipole moment of a water molecule in an ice crystal is a non-trivial
task, since it is necessary to take into account the dipoles induced by neighbouring
molecules (and perhaps even those in higher coordination shells). Batista et al.*” de-
veloped an ingenious ‘induction model’ which uses an individual water molecule to
calculate high order multipole moments of water molecules in ice crystals. Starting
with the dipole moment of an isolated molecule, a first order correction is added for
dipoles, quadrupoles, octapoles and higher order multipoles induced by neighbouring
molecules, then this process is repeated using the updated multipoles to generate a sec-
ond order correction, and so forth. Each molecule is then represented by multipole
tensors at its centre of mass. The electric field of the molecule is then calculated using
experimental values for the dipole and quadrupole, and results obtained from ab initio
calculations for higher order multipoles. They found that by using such a multipole ex-
pansion up to and including the hexadecapole, they were able to reproduce the electric
field as calculated using DFT. This goes some way to explaining why empirical poten-
tials have been so unsuccesstul at correctly predicting the structure of ice XI (they tend

to show a preference for the Pra2, structure predicted by Bjerrum instead of the ferro-
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electric Cmc2, structure) - most of these potentials do not expand beyond the dipole

term.

2.8 Proton ordering in the ice surface

Faraday’s famous experiment in which a length of cheese wire with weights at either
end cuts through a block of ice demonstrated that there is something ‘special’ about the
ice surface; as the wire descends, the two surfaces above it fuse together, leaving a sin-
gle block of ice, a phenomenon known as ‘regelation’ that cannot simply be accounted
for by pre-melting®®. The ice surface is characterised by three different types of sur-
face molecule: dangling OH bonds, notionally dangling hydrogen bonds (the lone pair
on the oxygen atom, or the hydrogen bond site not occupied by a proton) and four-
coordinated water molecules with distorted geometry. Dangling bonds tend to desta-
bilise the surface, so there is great interest in how surface reconstructs itself in order to
(at least partially) mitigate their effect.

Fletcher’s 1992 paper'® considers proton ordering on the ice surface. His intuitive
analysis of electrostatic interactions in basal and prism surfaces led him to conclude that
these surfaces should undergo a transition to a proton-ordered phase. One candidate
for an ordered phase was the distinctive ‘striped’ phase (see figure |5.2| for the atomic
structure), consisting of alternating rows of dangling OH bonds and lone pairs. He pro-
posed a mechanism for this reconstruction, based on the motion of Bjerrum L (“empty”
hydrogen bonds) and D (hydrogen bonds occupied by two protons) defects which can
form in bulk ice in pairs, but singly at the surface. The surface acts as a sink and a source
for these defects, and at a reduced energy cost since the surface reduces the elastic strain
associated with these defects.

Proton transfer can also occur in ice via the motion of ionic defects. In the absence
of impurities, these defects are formed by water autoionisation, in which a pair of water

molecules forms a H;O™ ion and an OH™ ion; charge transfer occurs as a result of pro-
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tons hopping between ions because the H;O* is more mobile. Note that this is not a
conduction mechanism; the passage of a proton along a path results in molecular reori-
entations which would require violations of the second ice rule for additional protons
to follow the same path. Devlin and Buch®™ used an isotopic exchange technique to
examine this phenomenon. The spectra of three unique species were observed in D,O-
doped ice nanocrystals: D,O, coupled [HDO], dimers and isolated HDO molecules.
Measurements of proton transfer rate suggested that it occurred 20 times faster in the
surface than in the bulk, and that there is an energy barrier to the penetration of surface-
originating protons which increases with depth into the crystal — perhaps a result of
coulombic attraction to the much less mobile OH™ ions which are “frozen” into the
surface. Intriguingly, they found that the proton exchange rate could be made to vary
wildly with the addition of an adsorbate. For example, a surface monolayer of a pro-
ton source such as H,S greatly increased the exchange rate by injecting protons into the
crystal. A 1% monolayer of NH; almost stopped proton exchange due to the trapping
of surface protons by a strong acceptor, whereas a full monolayer induced an increased
exchange rate since the high OH™ ion concentration restarted exchange in spite of the
low mobility of OH™ ions. A 40% monolayer of SO, caused an extreme acceleration in
proton exchange; this was attributed to a reduction in surface strain due to the incorpo-
ration of the adsorbate into the surface. The SO, adsorbate also eliminated orientational
defects, supporting the hypothesis that Bjerrum defects are injected from the surface.
Buch et /"% performed a series of surface calculations using two empirical poten-
tials, TIP4P/ice and EMP (a modification of the MCY ab initio potential designed to
include induced polarisation effects'®), and sets of ice slabs with orientational disorder
in the bulk. Each slab had one of three surface ordered pattern on the two basal planes
that formed the slab surfaces; it was found that the sets using the fletcher “striped” phase
had the lowest mean energy. Monte Carlo simulations of fully disordered surfaces indi-

cated a tendency for clusters of dangling OH bonds to “unclump” - although the surface
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atoms did not assume the Fletcher striped phase, they did arrange themselves in a ‘me-
andering stripe pattern,” which was locally reminiscent of the striped phase, and almost
iso-energetic. This is qualitatively in agreement with the DFT calculations of Pan ez
al., whose order parameter (which is directly correlated with surface energy) assigns the
striped and meandering striped phase the same value, whilst the less favourable “honey-
comb” phase has a higher order parameter. It is important to note that the model Buch
et al. used in this study does not predict the correct structure for ice XI, which is not
a convincing basis for a study on surface effects; however, the only significant surface
effect is the Coulomb repulsion of dangling protons, which is modelled. Another pos-
sible criticism of this study is the lack of an order parameter to quantify the degree of
order in the ice surface.

One of the defining characteristics of the many DFT calculations of the energies of
proton ordered configurations of bulk ice is how small the range of energy differences
is: slightly less than 1kJ mol™! separates the most and least stable or the 16 symmetry-
unique proton ordered configurations of Hirsch and Ojamie’. In their study on proton

l 5i104

order of the ice Th surface, Pan et a estimate that the proton-ordered configurations

of bulk ice Ih are within ~5 meV/H,O of each other, compared with ~100 meV/H,O
for the surface. It therefore seems that proton ordering affects the energetics of the ice
surface by an order of magnitude more than it affects the bulk. Indeed, according to
their calculations, the studied ice surfaces (the basal [0001] and prism [1010]) will not
become fully disordered at any meaningful temperature, i.e. before the onset of pre-
melting. They also determined, using an order parameter, that surface energy increases
as the degree of proton ordering in the surface increases, although they were not able
to identify a unique surface that could be said to be the most stable - instead there ap-
pears to be a family of highly ordered degenerate surfaces, including Fletcher’s ‘striped
phase,” in which the repulsive electrostatic energy of dangling OH bonds is minimised.

They go on to suggest that the charge-charge interactions between dangling OH bonds
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on the ice surface is analogous to the much weaker dipole-dipole interactions “notion-
ally dangling” hydrogen bonds (i.e. an oxygen lone pair that acts as a hydrogen bond
acceptor) in the bulk ice, which may explain why proton ordering affects energetics on
the surface so much more dramatically than it does in the bulk.

Computational modelling has clearly taught us a great deal about the relationship
between the sub-nanometre scale structure of ice and its properties, but many gaps in
our knowledge remain. The calculations described in this thesis to further our under-
standing of ice primarily use electronic structure methods, for which the theoretical

background is discussed in the next chapter.



Chapter 3

Theoretical background

3.1 Introduction

At the atomic level, all interactions between non-relativistic particles are governed by

quantum mechanics, as prescribed by the time-dependent Schrodinger equation.
i h——" 2 = HU({r};1) (3.1)

Here, the particle wavefunctionV is a function of its position r; and time ¢, and H is the
Hamiltonian. The wavefunction can be decomposed into time-dependent and indepen-
: _iE :
dent parts, and written W({r;};¢) = ¥({r,;})e” 7 . If the wavefunction does not evolve

with time, equation simplifies to the time-independent Schrédinger equation,
HY({r;}) = E¥({r;}) (3.2)

This is an eigenvalue equation; the eigenstates correspond to stationary points on the
g q g P Yy P

potential energy surface, and the eigenvalues at those points are their energies. The

ground state energy can in principle be determined by minimising the total energy E

with respect to the independent variables {r;}. In practice, this is a very difficult prob-

54



CHAPTER 3. THEORETICAL BACKGROUND 55

lem for all but the simplest systems; for many-body systems, it is intractable unless
approximations are made. The most basic of these is the Born-Oppenheimer approx-
imation: since the mass of an electron is so much smaller than the mass of a nucleus,
their motions can be decoupled by treating the nuclear mass as infinite when solving the
Schrodinger equation for the electrons, and using the gradient of the electronic energy
to calculate the forces on the nuclei.

This section discusses the means by which the Schrodinger equation can be recast
into a form which can in practice be used to explore the potential energy landscapes of
systems of many atoms. These methods can be used to evaluate clusters of atoms, or
when periodic boundary conditions are applied, bulk solids. With a judicious choice
of models, they can also be used to model (among many other things) infinite two-

dimensional surfaces and to study reaction chemistry and catalysis.

3.2 General polyelectronic systems

The basic Hamiltonian for a system of interacting electrons and nuclei is (using atomic

units of 5=m, =e = =1):
€0

Z — —2 I (3.3)

|r‘ 1| 255 n—nl 297 R
=f+\7 + Vo +E, (3.4)

where Z, is the charge of the I'" nucleus, 7, is the position of the i’ electron and
R, is the position of the /*” nucleus. Note that the nuclear kinetic energy opera-
tor — >, M%V? is omitted via application of the Born-Oppenheimer approximation
(M, > m,, where M, is the mass of nucleus /). The terms in equation are, in
order, the kinetic energy operator (T), the potential energy of an electron in the nu-

clear potential (V. ,), the potential energy arising from electron-electron interactions
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(V..) and the nuclear-nuclear potential energy (E, ;).

The total energy of the system is the expectation value of the Hamiltonian acting on

the total electronic wavefunction:

p oy 2 A
T ) T

~>

<ruﬁ@+fd%mgﬂmo+a, 3.5

Here, E,, is a classical additive term. The eigenstates of this equation are stationar
11 g q y

points of E, and can be found using the variational method and Lagrange multipliers.
A naive first guess at the total wavefunction ¥ of a N electron system is a simple

product of the single electron spin orbitals, the Hartree product:

¥(1,2,...,N)= x,(1)x,(2)... xxy(N) (3.6)

where yy is the single electron spin orbital of the N* electron. This choice is inappro-
priate because it does not satisfy the antisymmetry principle (or Pauli exclusion princi-
ple), which requires the sign of the total wavefunction to change under the exchange of
two electrons. To state this in a more intuitive way, the Hartree product assumes that
the probability of finding an electron at a specific point is independent of the probability
of finding any other electron there.

The most convenient way of writing an antisymmetric polyelectronic wavefunction

is a Slater determinant.

(D) (1) - (D)

W:L )(2.(1) )(2.(2) XN'(z) (3.7)

) w2 - xn(N)

Interchanging any two rows of the determinant represents the exchange of two electrons

and is associated with a change of sign. Additionally, a multiple of any column can be
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added to any other column without altering the determinant, i.e. spin orbitals can be

constructed from linear combinations of other spin orbitals.

3.3 Hartree-Fock theory (HF)

The expression for the energy of a general polyelectronic system can be cast in a

more concise form by decomposing the energy into the three main contributions:
1. The potential and kinetic energy of the electrons moving in the nuclear potential:

core 1 2 S ZA
H :Jdrl)(i(l) —Evi—Z— x:(1) (3.8)

—1 7ia

2. The pairwise electrostatic repulsion between electrons 1 and 2 in spin orbitals z
and j:
5= | | mdmnm@—n ) 69)

The total electrostatic interaction between electrons in orbital y, and the other

(N —1) electrons is therefore,

Efoulomb = Z dndfle(l)xl(l) % (Qx;(2) (3.10)
J#i

Hence the total Coulomb contribution for all electrons is:

1
Egosomt = Z Z dt,d7,,(1)x,()—x,2x;(2) (3.11)
i=1 j=i+1 12
N N
=>.2.J; (3.12)
=1 j=i+1

3. The energy of the exchange interaction between electrons 1 and 2 in orbitals z
and ;. This is a manifestation of the Pauli exclusion principle, and it has no clas-

sical analogue. The physical consequences are that there is a finite probability of
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finding two electrons with the opposite spins at the same position, but there is a
zero probability of finding two electrons with the same spin at the same position.
The exchange interaction always lowers the total energy, and is therefore some-
times interpreted as the interaction of an electron with a positive “exchange hole”

surrounding it.

f f ded e, (07, 2)— )(,(2))(]( ) 613

This quantity is only non-zero if the electrons in spin orbitals y; and y; have the
same spin. The interaction energy between an electron in spin orbital y; and the

other N — 1 electrons is:

f J dridy 1))(]() 2@x(1) 3.14
/751

Hence the total exchange energy for the system is:

N N
=3 3 [ [dndnnp@r@nn 619

where the ;' label indicates a sum over electrons with the same spin as i.

These terms can be incorporated into the Schrodinger equation as follows:

M ZA
Hvi; 7] +3 [t @r o] wo-
|:f de)(] )x:(2 :| Ze”)(] (3.17)

H™(1)x;(1) +Z]i(1))(i(1) - ZKj(l))(z'(l) = Zfij)(j(l) (3.18)

]



CHAPTER 3. THEORETICAL BACKGROUND 59

Note that the sums in equation (3.17) include spurious “self-interaction” terms where
i = j; in the full Hartree-Fock expression, these conveniently cancel out between the
Coulomb and Exchange terms (the second and third terms in equation (3.17)). Using

the fact that {J;(1) — K,(1)} y,(1) = 0, we arrive at the Hartree-Fock equations:

Hcore(l)_i'z{]j(l)_Kj(l)} )(z‘(l):zfij)(j(l) (3.19)
9;‘(1))(;‘(1):251‘/)(,‘(1) (3.20)

Where the Fock operator Z; is an effective one-electron Hamiltonian for a polyelec-

tronic system. For the less general closed shell case, it becomes,

N/2

F,(1)=H"(1)+ > _{2];(1) ~ K, ()} (.21)

The Fock operator is invariant under unitary transformations, and as long as ¢, ; is her-
mitian, it is always possible to transform the Hartree-Fock equations (3.20) to a canon-
ical eigenvalue equation Z, y; = ¢, y,. The integro-differential equations can be
recast as a set of algebraic equations by representing wavefunctions using a set of spatial
basis functions (for example, Gaussians). Introducing a general basis {¢ ,}, u =1,...,K,

the spatial orbitals ¢ are:

0.=>.C,é, i=12,...K (3.22)

Substituting into the canonical Hartree-Fock equations:

9(1)2%%(1) = fiZCiv¢v(1) (3.23)
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Multiplying by ¢* and integrating:

ch f $(1 (1)dr, =, Z Jgﬁ (1)dr, (3.24)
SICBIFI0) =0 3G, [ 400 0dx 629
>C, T, =¢ Z S (3.26)

In matrix form, these are the Roothan-Hall equations, #C =SCe¢; Z, C, S and ¢ are
K x K matrices and ¢ is diagonal. In order to solve the Roothan-Hall equations must
be transformed into an eigenvector equation using the transformation matrix X, which
generates an orthonormal basis {¢'} from the initial basis {¢}. This orthogonal trans-
formation satisfies X'SX =1 such that C'=X"!C and C=XC'. Thus the Roothan-

Hall equations become:

FXC' =SXC'e (3.27)
(XTZX)C' = (X'SX)C'e (3.28)
F'C' =Cle (3.29)

Many properties of they system can be derived using the electron density, so the

electron density matrix P, can be derived from the electron density p(r) as follows:

N/2 N/2

=ZZ|¢i(r>lz =ZZ 0,(r)g!(r) (3.30)
N/2 K K *

=2 (Z Cpisé,,(r)) <Z Cyi¢v<r)> (3.31)
1=1 1 %

N/2
Z[ Z i ] L)) (3.32)

v

N/2

_22 4G (3.33)
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Each equation represents the motion of a single electron in the fixed field resulting
from the N — 1 other electrons in the system — clearly, any solution found for the
single electron Hamiltonian will alter the solutions of the remaining N — 1 equations —
thus the overall solution must be found using the self-consistent field (SCF) approach.

5

The following iterative procedure’® is generally used when solving the Hartree-Fock

equations:
1. Calculate the integrals comprising the Fock matrix
2. Construct the overlap matrix S
3. Diagonalise S
4. Guess or calculate initial density matrix P
5. Construct the Fock matrix Z using integrals and density matrix
6. Transform F — F' =X ZX
7. Diagonalise Z” to solve the eigenvalue equation with respect to C’
8. Calculate C=XC”
9. Re-evaluate density matrix P using C
10. Repeat from step 5 until self-consistency is achieved

Hartree-Fock is an ab initio method; its strength lies in the fact that in principle,
it calculates the exact exchange energy. However, it neglects all correlation other than
the two-body correlation required by the Pauli exclusion principle, and this usually
constitutes a significant error. Although Hartree-Fock calculations on small systems
are tractable, it scales poorly with size; 3N coordinates are required to describe a closed
shell system containing N electrons (4N for an open shell system); it also scales as b*

for a system described by b basis functions.
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3.4 Open shell systems: unrestricted Hartree-Fock (UHF)

The restricted Hartree-Fock (RHF) as described above assumes all molecular orbitals
are fully occupied; the most general formulation, Unrestricted Hartree-Fock, relaxes
this requirement.

A major shortcoming of RHF can be demonstrated by considering the hydrogen
molecule (H,) with a minimal basis set, i.e. the atomic orbitals consist of one s-function
on each centre, y, and y,. An RHF calculation will result in a doubly occupied bonding

MO, ¢,, and an unoccupied anti-bonding MO, ¢,:

b1=xa+ X3 (3.34)

Pr=Xa— X (3.35)

The ground state can be expressed as a Slater determinant, ®,:

¢1(1)a(1) ¢1(1)/6(1)

o, = (3.36)
$:1(2)e(2) $1(2)5(2)

= ¢ (Da(1)9,(2)5(2) — ¢,(1)B(1)¢,(2)(2) (3.37)

= ¢, ()¢, (2)[(1)5(2) — 2(2)5(1)] (3.38)

The first excited state ®, can be written,

_[$a0a(t) ¢ 0B

o, (3.39)
(/52(2)0‘(2) ¢2(2)/5(2)

= ¢,(Da(1)$,(2)5(2) — (1) B(1)$,(2)2(2) (3.40)

= $,(1)9,(2)[(1)5(2) — «(2) 5(1)] (3.41)

The Hamiltonian is spin-independent in the RHF approximation, so the spin functions
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a and 3 can be ignored, and the MOs expanded in terms of the atomic orbitals (equation

(3.34)).

Dy = (ra(D) + x(D)(xa(@) + x5(2) = xaxa+ xs x5+ XaXs + XsXa (3.42)

@, = (a(D) + x5 (xa(2) = x8(2) = xaxa+ xsx8 — XaXs + XpXa) (3.43)

The final expressions for ®; and @, can be divided into two separate contributions. The
first is the ionic contribution to the wavefunction, with both electrons on the same
atomic centre (y, x4+ ¥ xp) and the second is the covalent contribution with electrons
on opposite atomic centres (Y, ¥z + ¥zx4)- Lhese expressions demonstrate that in the
RHF approximation, the wavefunctions contain equal ionic and covalent character at
all atomic separations, when in fact, in the case of the H, molecule, the wavefunction
should have 100% covalent character at large separations. This is known as the RHF
dissociation problem: when the atomic centres are pulled apart, the ionic character
results in heterolytic rather than the desired homolytic dissociation.

The RHF dissociation problem can be corrected using an unrestricted Hartree-Fock

wavefunction:

¢1a(1):()(A+CXB)a(1) (3.44)
¢ 8(1) = (cxu+ x5)B(1) (3.45)

The coetficient ¢ is determined using the variational principle. A value of ¢ = 1 recovers

the RHF wavefunction. Thus the ground state UHF wavefunction can be written by
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expanding its Slater determinant:

HUHF _ 951(1)0‘(1) ¢1(1)/6(1)
T 4222 $,2)802)

= c(yaxa+ xsxs)aB —Ba)+(xaxsaf — ypxafa) (3.47)

(3.46)

+(PxpxaaB— xaxsBa) (3.48)
= [eCraxa+ xpxs) + (xaxs + xsx))(a B — Ba) (3.49)
+ (=) uxsBa— xsxaaf) (3.50)

Expanding the first four RHF determinants in terms of AOs gives,

@5 = [taxa+ s xs + XaXs + xsxal(2 8 — Ba) (3.51)
O = [yaxa+ XeXs — XaXs — XsXa) (@B = Ba) (3.52)
O = [yaxa+ xpxs)(@B = Ba) = [xaxsl(aB + Ba) (3.53)
q’RHF Deaxa = xsxsl(@B = Be)+ Dxaxs — xpxal(a B+ o) (3.54)

The excited states ®"'" and ®1F can be combined to construct the singlet and triplet
states, '® and’® . respectively:

1@_ — (pRHF @RHF

Uxaxa— xsxsl(@f — Ba) (3.55)

P, —‘I)RHF‘F@RHF [xaxs — xsxal(@B+ Ba) (3.56)

. . UHF . .
Thus the first term in the expansion of @™ (3.49) can be expanded as a linear combina-
tion of the &' and ¥ determinants and therefore describes a pure singlet state. The
second term (3.50) has terms in common with the triplet state °*®_. Thus the ground
state UHF determinant contains both singlet and triplet states, and is not a pure spin

state — this phenomenon is known as spin contamination. Spin contamination is gen-
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erally most significant near transition states, where bonds are stretched and are not at
the RHF limits. The UHF description overestimates biradical character in homolytic
dissociation (i.e. the tendency for a bond to break into two radicals rather than two
ions). Spin contamination is not constant along the reaction coordinate, which can lead
to the actual transition state appearing as a bogus local minimum on the UHF poten-
tial energy surface. In addition, the UHF solution is often too flat near saddle points,
which can lead to UHF barriers being lower than RHF barriers. The UHF wavefunc-
tion lowers the energy by allowing some occupation of excited states (i.e. introduces
some correlation), but increases the energy by higher energy spin states. The point at
which these two effects are equal is known as the instability point: as a bond is stretched,
the correlation energy increases until it exceeds the spin contamination energy at this
point.

For pure spin states, the expectation value of the $2 operator is given by the ex-
pression ($2) = § (S, +1). This equality no longer holds when spin contamination is
involved; it is evaluated by taking the spatial overlap between all pairs of @ and 3 spin

orbitals:
NMO

(87)=S$,(5,+ D)+ Ny = D (¢716) (3.57)

Therefore if @ and [ are identical, there is no spin contamination.

3.5 Electron correlation and post-Hartree-Fock meth-

ods

The Hartree-Fock method captures approximately 99% of the total energy of a system;
the remaining 1% is called the “correlation energy” and although relatively small, is of-
ten important in describing chemical interactions. Mean field models such as Hartree-

Fock and density functional theory assume that the probability of an electron classically
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occupying a specific point in space is independent of the position of all other electrons
in the system, and instead depends on an all-encompassing potential. Lewars uses the
analogy of an individual walking through a crowd'®: given the knowledge of the posi-
tions and motions of every other person in the crowd, it is possible to avoid collisions
by adjusting, or correlating one’s route accordingly; this information is not available in
the case of a “mean field.” Since interactions are not treated in a pairwise manner in the
HF approximation, they are allowed to get too close to each other on average, resulting
in an energy that is too high, even in the limit of an infinite basis set.

Lowdin defines the correlation energy in the following terms:'%1%

“The correlation energy for a certain state with respect to a specified Hamil-
tonian is the difference between the exact eigenvalue of the Hamiltonian and
its expectation value in the Hartree-Fock approximation for the state under

consideration”

In other words, the correlation energy is defined as the difference between the true
energy of the system and the Hartree-Fock energy with an infinite basis set — thus the
correlation energy will always be negative. In Lewars’ words, the correlation energy is

the “energy that the Hartree-Fock procedure fails to account for™%.

E correlation — Eexact —E HF limit (3 3 8)

Hartree-Fock theory only includes correlation arising as a result of the Pauli exclu-
sion principle, and there is no correlation between two electrons in the same molecular
orbital (MO). Correlation between electrons with opposite spins (Coulomb correla-
tion) has both intra- and inter-orbital contributions, and will therefore be more signif-
icant than correlation between electrons with the same spin (Fermi correlation). Elec-
tron correlation is the tendency for electrons to “avoid” each other, thereby reducing

the energy of the system. Even notional uncharged electrons would be surrounded by
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a region that cannot be occupied by another uncharged electron of the same spin (the
Fermi hole); there is a similar exclusion zone which arises from electrostatic repulsion
(the Coulomb hole). Thus correlation energy arises from two distinct effects. Dynamic
correlation is the “instantaneous” correlation (electrons in the same spatial orbital), and
static correlation is where electrons avoid each other on a more “permanent” basis (elec-
trons in different spatial orbitals). By way of example, correlation between the two elec-
trons in a helium atom is purely dynamic, whereas correlation between the electrons in
a hydrogen molecule is purely static. There is no convenient way of decomposing the
correlation energy into dynamic and static contributions.

There are three general strategies for adding correlation effects to the Hartree-Fock

formalism:

e Explicitly include interelectronic distances as a variable in the Schrédinger equa-

tion. This is usually computationally intractable.

e Explicitly include the wavefunction of electron configurations other than the
ground state, i.e. excited states. This forms the basis for the configuration in-

teraction and coupled cluster methods.

e Treat the real system as a perturbed Hartree-Fock system, as in many body (Meller-

Plesset) perturbation theory.

3.5.1 Configuration interaction (CI)

It is possible to improve on the Hartree-Fock description by allowing electrons to oc-
cupy virtual molecular (anti-bonding) orbitals, essentially giving them more room to
avoid each other. This can be achieved using a multi-determinant wavefunction. In the

HF method, the components ¢ of the many body wavefunction ¢ are constructed as
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a linear combination of M basis functions, y..

M
¢ :Zcis)(s (3.59)
s=1

Using the CI method, the components ¥, of the wavefunction W are built using a linear

combination of N Slater determinants ¢ _:

U,=> ¢, (3.60)

In this representation, ¢, is the ground state HF determinant, and the rest represent ex-
cited states formed by promoting one or more electrons from occupied MOs to virtual
MOs. Just as M basis functions result in M MOs, L determinants result in L wave-
functions. ¥, is the ground state wavefunction, and W¥,_, are wavefunctions for excited
states. Thus electron correlation methods are “two dimensional,” requiring two bases:
the basis set used to expand electronic wavefunctions, and the set of determinants to
model correlation. This makes them prohibitively expensive for all but the smallest
systems.

Excited Slater determinants are generated by replacing MOs that are occupied in
the HF determinant with MOs that are unoccupied. The excitation level depends on
the number of such replacements: singles (S), doubles (D) triples (T) and quadruples
(Q) denote one, two, three and four occupied orbitals in the determinant replaced with
virtual MOs respectively, up to a potential L excitations. For any basis set larger than
minimal, there are more virtual MOs than occupied MOs, thus number of excited Slater
determinants increases factorially with the number electrons and basis functions.

The CI method is uses a variational approach comparable to Hartree-Fock. A set

of fixed HF MOs are used to build Slater determinants (), and a trial wavefunction is
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written as a linear combination of these determinants:

‘I'CIZﬂo¢HF+Z“s¢S+ZﬂD¢D +Z“T¢T+'“ (3.61)
S D T
=D 4 (3.62)

Where ¢y is the HF determinant, ¢ are singly excited determinants, ¢, are double
excited and so on. Without going into the mathematics in detail, this is solved varia-
tionally using Lagrange multipliers, subject to the constraint that the CI wavefunction

is normalised. The Lagrangian L is therefore,
L= (To|H[Yq) = A(YalYa) — 1) (3.63)

where the first bracket is the energy of the CI wavefunction, and the second bracket is
its norm. Exploiting the orthogonality of the MOs, this reduces to,

j#0
L= a’E,+> aa(p,|H|p)—AD a’—1) (3.64)

The variational procedure requires that all derivatives of the Lagrangian with respect to

a; are set to zero:

aL
a—i:ZZaj(¢j|H|¢j)—2xlai:O (3.65)

a

ﬂi(Ei_/l)'l'Zdj(gﬁi'H'gsj):o (3.66)
J#0

Here, it turns out that the Lagrange multiplier A is the CI energy. The variational

problem has become the set of secular CI equations, which can be written as a matrix

equation (using H;; = (¢,|H|¢;)) and solved by diagonalising:

(H-—EDa=0 (3.67)
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The lowest eigenvalue is the CI energy, the second lowest is the energy of the first excited
state, and so on.

In principle, the full CI energy is exact in the limit of an infinite basis set; how-
ever, as mentioned, the number of determinants increases factorially with the number
of electrons and basis functions, so only extremely small systems are computationally
tractable. In practice, the excitation level as in equation must be truncated. Trun-
cation at the singles level results in the configuration interaction with singles method
(CIS), which gives no improvement over HF energies. Inclusion of only doubles (CID)
results in an improvement, but is only marginally more expensive than including sin-
gles and doubles (CISD). CISD is the normal practical limit for calculations, and scales
as M® (where M is the number of basis functions).

The CI method generates excited electron states from a single reference state,the
Hartree-Fock determinant. In many cases this is not an appropriate choice for the ref-
erence state, for example, ozone (O,) formally resembles a closed shell singlet species,
but in fact has significant open shell biradical character (figure[3.1). In such cases, a mul-
tireference wavefunction must be used by invoking such methods as multiconfiguration
SCF (MCSCEF), multireference CI (MRCI), complete active state SCF (CASSCF) and
restricted active space SCF (RASSCF).
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Figure 3.1: Resonance structures ozone'®. The presence of non-equivalent resonance
structures requires the use of multireference methods in order to recover all of the cor-
relation energy.

3.5.2 Mopgller-Plesset perturbation theory

In perturbation theory, it is assumed that the problem at hand differs only slightly
from a “reference” problem that has already been solved. In the case of the Schrodinger

equation, the perturbed Hamiltonian H is written,
H=H,+ AH' (3.68)

where H,, is the reference Hamiltonian for the solved reference problem, H' is the per-
turbation, and the parameter A varies from 0 to 1 such that A = 0 corresponds to the

reference problem, which is:

Hyp, =E; ¢, (3.69)

where ¢, is a complete set of orthonormal solutions. The perturbed Schrodinger equa-

tion is then,

Hy=W¢ (3.70)
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As the perturbation is increased by varying A, the energy and wavefunction increase

continuously, and can be expressed as a Taylor expansion in terms of A:

W =W, + AW, + W, +... (3.71)
=do+ Ay, + X, +... (3.72)

Substituting these into the perturbed Schrédinger equation (3.70):
(Hy+ AH) o+ A+ Xy +..) = (W + AW, + W, +...) (3.73)

Collecting terms with the same powers of A:

HOSAn +H/¢n—1 :Z‘)Visbn—i (374)
1=0

It can be show that the 7th order wave function can be used to calculate the (272 + 1)th

order energy:

Wy = (0 H14,) = S Wor o (el ) 3.75)

kJ=0
The corrections to the unperturbed energy and wavefunction become more and more
complicated to express as the perturbation order is increased, so I will only mention
the first and second order corrections. Bearing in mind that the nth order corrections
to the energy and wavefunction can be expressed in terms of the matrix elements of

the perturbation operator over the unperturbed wavefunction ¢, and the unperturbed

energy E,. Starting from equation (3.74),

1. First order: Hyp,+ H' ¢y = Wb, + Wby where 4, =3 . ¢;p,

W= ((/50|H/|¢o) (3.76)

(|H o)

c = 3.77
) (3.77)
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2. Second order: Hyb, + H' by = Wydb, + W b, + Wby where b, =" d. .

(Pl H | (P H | o)
W, _Z_o] E_F (3.78)
4= (@1 1)@l H [P0 (Hi1H' |0} (PolH'|bo) 379
! i=0 (Eo - Ej)(EO - Ei) (Eo - E]')z

Moiller-Plesset perturbation theory is formulated by choosing a sum over Fock op-
erators (equation (3.21)) to be the unperturbed Hamiltonian; this is the only choice that
results in a size-extensive method, although it is not necessarily consistent with the re-

quirement that the perturbation is small compared with H,,. For an N electron system:

N N
Hozzgr :Z b, +Z([ ~K)) (3.80)
=2 b+, (g) (3.81)

N

=> h+2(V,,) (3.82)
= N N N N

H/:H_HOZZZ&‘]‘_ZZ(&]) (3.83)
=1 j=1 =1 j=1

= ee - 2(V€€> (3'84)

Here, V,, is the interelectronic potential, and the final expression for H’ is referred to
as the “fluctuation potential.” The zeroth order wavefunction is therefore simply the

Hartree-Fock determinant, and the zeroth order energy is,

N

= (PolHyl o) = qﬂolZquﬁo Zel (3.85)

which is the sum of HF molecular orbital energies. The MO energy is the energy of
an electron in the field of all nuclei and all other electrons, therefore at zeroth order,

electron-electron repulsion is double counted. Using equation (3.76), the first order
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correction is,

Wi = (ol H'|$o) = (Vie) = 2(Vee) = —(VL,) (3.86)

which corrects the spurious double counting. Therefore the first order Mgller-Plesset

(where MP7 denotes the nth order Moller-Plesset method) recovers the total energy

from the Hartree-Fock method, and in this scheme, the lowest level of approximation

for electron correlation occurs at the second order. The second order energy correction
1S,

: / b by
- LS <¢O|H |¢?]‘ )(¢j] |H |¢O>
S apcaiilc
1<j a<b 0 ij

E(MPZ):ivzir<¢i¢j|¢a¢b>_<¢i¢j|¢b¢a) (3.89)

i<) a<b €, te;—€,—€,

(3.87)

The Mgller-Plesset method essentially allows electrons to partially occupy virtual MOs,
giving them more room to “avoid” each other, thus lowering the total energy. The de-
nominator of equation (3.88) shows that as the energy difference between the occupied
and virtual MOs increases the second order contribution to the energy becomes smaller
since it becomes harder to promote electrons, meaning that higher order excitations
have a smaller contribution to the correlation energy.

The perturbation is a two-electron operator, so all matrix elements involving triples,
quadruples and higher order excitations are zero. It can be shown that the contribution
from singly excited states is zero, leaving only contributions from doubles. This appears
as a sum over doubly excited determinants, where two electrons are promoted from
occupied (occ) MOs i and ; to virtual (vir) MOs a and b. MP2 generally accounts for
80-90% of the correlation energy’®. It is relatively cheap, since the energy correction
is calculated as a sum of two electron integrals over HF MOs, which scale as M*, but
there is a transformation from the atomic orbital basis to the molecular orbital basis

which pushes this up to M°. This makes MP2 the cheapest post-Hartree-Fock method
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of introducing correlation effects. MP3 and MP4 scale as M® and M respectively, and
are still computationally feasible; MP4 requires a similar amount of effort to a CISD
calculation, and captures 95-98% of the correlation energy.

MP# methods are not variational, and as such do not represent an upper bound
to the energy; this may result in some error cancellation. The main limitation is the
assumption that the zeroth order wavefunction is a good approximation to the real sys-
tem, which in turn allows the assumption that the perturbation is small. This assump-
tion does not hold for systems that are not well described in the HF approximation
(for example, systems with significant multireference character). A poor reference state
description can result in slow or erratic convergence. Another problem arises as a con-
sequence of the theory of infinite series convergence: the perturbation coefficient A is
allowed to take complex values, and the series is only convergent inside the “conver-
gence radius” |A| < R, which allows for non-physical states such as A < 0, representing
an attractive force between electrons. These “intruder states” can prevent the conver-

gence.

3.5.3 The coupled cluster method

Whilst perturbation theory adds all types of correction (single, double, triple etc.) to
nth order, the coupled cluster method includes all corrections of a given type to infinite

order. The method defines an “excitation operator” T,

T=T+T,+...+Ty (3.89)
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such that 7; acting on the HF reference wavefunction generates all zth excited Slater

determinants. For example,

occ  vir

T ¢y = ZZ ti (3.90)
Tyo= > 1l d (3.91)
k<j a<b

The expansion coefficients ¢ are called “amplitudes.” An intermediate normalisation

generates the CI wavefunction.
b =1+ T)do=(1+T,+T)+...)b, (3.92)

The coupled cluster wavefunction is,

1

K
=T (3.93)

boc=e"do=(1+T+= T2+ T3+ Vo=

k=0

Substituting equation (3.89) and collecting all singles, doubles, triples etc. gives,

el =1+ T1+(Tz+%T12)+(T3+ Tle+%Tf)+<T4+TsTl+%T§+%TzT5+%T3>+
(3.94)
These terms represent the HF reference, all singles, all doubles, all triples, all quadruples
and so forth. Terms in this expansion can be “connected” (for example, 7, which repre-
sents four electrons interacting simultaneously) or “disconnected” (7} representing two
non-interacting pairs of electrons interacting). The key difference between the coupled
cluster and CI methods is that the coupled cluster equations contain “product” states
such as 7,7 and T}, whereas the CI equations only contain “true” states such as 7, and

T;. The formal coupled cluster Schrédinger equation is:

He' ¢, =Ee' &, (3.95)



CHAPTER 3. THEORETICAL BACKGROUND 77

The energy can be evaluated as the expectation value of the coupled cluster wavefunc-

tion, and the variational principle used to find the amplitudes.

EYar — (¢CC|H|¢CC) — <eT¢O|H|eT¢O)
< (becldec) (eTole” Py

(3.96)

The expansion of the exponential operator according to equation contains non-
vanishing terms up to 7", where N is the number of electrons. Therefore, this
method is tractable only for very small systems. When the HF orbitals are used to
construct the Slater determinants, the one-electron integrals vanish due to Brillouin’s

theorem, and the only non-vanishing terms are two-electron integrals.

occ  vir

Eec=Eqy+ ZZ;(th + tft]'b - tib t;)(<¢i¢j|¢a¢b) —($:9;1¢,8.)) (3.97)
i<j a<
This is the general coupled cluster equation.

The equations above are exact, containing all terms up to 7V where N is the number
of electrons, and give results identical to a full CI calculation. In practice, it is necessary
to truncate the expansion to include only terms up to the nth excitation. Truncating the
series at T = T, offers no improvement over the HF description due to Brillouin’s theo-
rem. Including only 7' = T, (coupled cluster doubles, CCD) significantly improves the
description, and scales as M¢ (for M basis function). However, singles can be included in
a CCD calculation, improving the description without increasing the cost significantly
(scaling as M®), resulting in coupled cluster singles and doubles (CCSD). Truncating
the series at T = T; gives coupled cluster singles, doubles and triples (CCSDT), which
scales as M®. CCSD(T) involves calculating the triples perturbatively rather than itera-
tively, using the MP4 formula with CCSD amplitudes, and scales as M”. The CCSD(T)

approach is regarded as the benchmark for moderately sized molecular calculations™®.
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3.6 Density Functional Theory (DFT)

Density functional theory has revolutionised condensed matter theory fields by allow-
ing the replacement of intractable systems of many-body wave mechanics equations
with relatively simple sets of equations based on electron density. It has been shown to
usually outperform Hartree-Fock theory in terms of accuracy.

In their 1964 paper®, Hohenberg and Kohn made the first step towards a workable

density functional theory with their theorems!!:

1. For any system of interacting particles in an external potential V_(r), the poten-

tial V__(r) is defined uniquely by the ground state particle density 7(r).

ext

2. It is possible to define a universal energy functional of the density, E[n], valid

for any V_(r). For any particular V_, the ground state energy is the global

ext?

minimum of this functional.

The computational expediency gains from using DFT stem from the fact that for a
N electron system, the electron density is the square of the wavefunction integrated over
N — 1 coordinates, depends on three coordinates, and is independent of the number of
electrons (N). This is in contrast with wavefunction methods, which use 3N coordinates
(4N if the spin is included) and are therefore scale less favourably with system size.

The problem can be formulated as follows: the Hamiltonian (H) for a system of
interacting electrons is the sum of the kinetic (7') and mutual interaction (V) energy
of the electrons, and an external potential (U) representing the influence of nuclear

attraction.

H=T+U+V=H,+V (3.98)

H, is the “fixed” part of the Hamiltonian, the sum of the internal and kinetic energies

of the system, whilst V' is a sum of electronic potentials v(r;) and is determined by the
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Kohn-Sham theory.
V=> o) (3.99)

If the many-body wavefunction is ¢, then the ground state energy E, is given by the
integral,

=($|H,+ V) (3.100)

The electron density 7(r) is in fact a sum of two spin polarised electron densities in the

open shell case, 7(r) = n4(r) + 7, (r). The density is defined as:

n(r)=> n(r,o)=> > |47 (x)F (3.101)

o i=1

where o is the spin. Although I have dropped the spin superscript in the remaining
equations, they are straightforward to generalise from the closed shell case.

Since E, is uniquely determined by the electron density, it can be written in the
following functional form, with the external field interaction separated from the inter-

electron interactions:

E [n(r)]= f dro(r)n(r)+ F[n(r)] (3.102)

Here, F[n(r)] is the ground-state expectation value of H, when the electron density is
n(r). Given the correct density, £, will be the ground state energy. The minimisation
can be achieved using the variational principle and the constraint that the number of

electrons is fixed, namely:

N[n] :J n(r)dr=N (3.103)

It is convenient to extract the long-range Coulomb interaction (the Hartree energy)
from F[n]:
n(t)n(r’ ,
drdr + G[n], (3.104)

[r—r]
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where G[ 7] is another functional. Thus the energy functional (3.102) can be expanded:
1 n(tn(t’)
r—r

Kohn and Sham developed a method by which the Hohenberg-Kohn theorems
could be employed practically to determine the properties of a many body system us-
ing the electron density as a basic variable in their 1965 paper''!. Their strategy was to

construct a more tractable ‘auxiliary system’ via the Kohn-Sham ansatz™:

e The ground state density of the interacting system is the same as that of some

chosen non-interacting system.

By this assumption, Kohn and Sham showed that it is possible to reduce a compli-
cated many-body problem to an easier set of single-body problems. The many-body
problem is recast as a set of Schrodinger-like single-body equations under the influence
of an effective potential, V. Starting from equation (3.104), the functional G[7] is
expressed as a sum of the kinetic energy of non-interacting electrons (7, [7]) and a term
(which is exact by definition) encompassing the exchange and correlation components

of the electron-electron interactions, Ey-[7]:
G[n]=T,[n]+ Ex[7] (3.106)

Applying the variational principle to (3.105), and requiring that the number of electrons

remains constant,

f Sn(r)dr =0, (3.107)

one obtains the equation,

ST, [n]
J 3n<r>{¢<r>+ S +pxc<n<r>>}dr=o, (3.108)
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where

n(r')

{

dr, (3.109)

)=o)+ [ 2
and yc 1s the chemical potential of a uniform electron gas of density 7(r), and depends
on the choice of functional Ey.[7]. It can be shown that (3.108) is exactly the same as

for a non-interacting electron gas under the influence of an effective external potential

v

ext*

Vg = ¢(1) + uxc(n(r)) (3.110)

Applying the Lagrange undetermined multipliers method to the variational problem

results in a set of Schrddinger-like equations, the Kohn-Sham equations:

Hys;(r) = ¢;¢,(r) (3.111a)
Hyg = —%Vz + V(1) (3.111b)
\/eff(r) - ‘/ext(r) + VHartree(r) + VXC(r) (3 11 1C)

The electron density is related to the Kohn-Sham orbitals ¢, (r) by the relationship

n(r) :Z|¢i(r)|2 (3.112)

The Schrodinger-like Kohn-Sham equation is complicated by the fact that the elec-
tron density, 7(r) appears on both sides — it must therefore be solved self consistently.

The following procedure™® is generally used:

1. Make an initial guess of electron density n(r).
2. Calculate the effective potential V.
3. Solve the Kohn-Sham equations (3.111).

4. Calculate the electron density (3.112).
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5. If n(r) is not self-consistent, return to step 2. If self-consistency has been achieved,

proceed.

6. Calculate the relevant quantities: energy, forces, stresses, eigenvalues etc.

The Kohn-Sham equations, in principle, are exact. The difficulty arises in the choice
of the exchange-correlation functional, Ey-[n]. After the local spin-density approx-
imation, there is no established analytical or consistent method for generating new
and more accurate functionals. As established in equation (3.17), the spurious self-
interaction terms cancel between the Coulomb and exchange terms in Hartree-Fock the-
ory; DFT exchange-correlation functionals, in contrast, contain self interaction terms
that can only be corrected at great computational expense (although, in the limit of
exact DFT, these would vanish).

The advantage DFT has over HF theory is the inclusion of correlation terms beyond
exchange, namely the van der Waals energy. This is a long range effect, and can be
physically explained as the tendency of separate electron densities to “avoid” each other,
resulting in transient dipoles, which weakly attract each other. Whilst significant, it is
by far the smallest contribution to the total energy, constituting around 1%. In practice,
it is very difficult to calculate the exact correlation contribution, so a convenient (but

not the only) definition of the correlation energy is:
Ec=EJT—ET (3.113)

i.e. the difference between the exchange correlation energy as calculated by DFT and
the exact exchange energy as calculated by HF.

There are several levels of approximation used in the construction of the exchange-
correlation functional (3.114), which treat it with varying degrees of complexity; these
are rungs of what Perdew and Schmidt call the ‘Jacob’s ladder of density functional ap-

proximations’2, Higher rungs of the ladder incorporate theory from lower rungs with
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improvements, and generally (but not necessarily) represent a higher level of accuracy

at greater computational expense.

B[] = [ dmn(oesc(n(oin) 6114

The five rungs of the ladder are (from highest to lowest):

e Exact exchange and exact partial correlation (hybrid)

Exact exchange and compatible correlation (hybrid)

Meta-generalised gradient approximation (meta-GGA)

Generalised gradient approximation (GGA)

Local spin density approximation (LSDA/LDA)

The computational costs for the first three rungs are fairly similar, but they rapidly
increase thereafter™”. Post Hartree-Fock methods such as MP2 and CCSD offer even
higher accuracies at extreme computational costs.

The lowest level is the local spin density approximation (LSDA), which simplifies to
the local density approximation (LDA) in closed shell systems. Starting from the ansatz
that the density is a slowly varying function, it can be assumed that the density can be
treated Jocally as a uniform electron gas, i.e. truncating the expansion of E[7] in terms

of the energy of homogeneous electron gas after the first term:

Eyc[n] :f exc(n)ndr—I—J egé(n)|Vn|2dr+... (3.115)

where €y is the energy per electron in a homogeneous electron gas. The rationale for this
approximation is that the range of exchange and correlation effects is short for densities
characteristic of solids. One would expect it to work best where the electron gas is close

to homogeneous as in solids, but fail in inhomogeneous cases where the electron density
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tends to zero outside atoms. In practice, the LDA tends to underestimate exchange
energy by ~ 10%, and overestimate the correlation energy by a factor of ~ 2, resulting

1% The performance of LDA models is similar to that of HF

in significant overbinding
theory.

The next level of approximation is the generalised gradient approximation (GGA),
in which the density and its derivatives are used to construct the exchange-correlation
functional (this is more complicated that the simple Taylor expansion in equation (3.115)),
hence “generalised”). These methods are sometimes known as “semi-local,” because
they use the require the density at position r, and in and infinitesimal neighbourhood
surrounding r. GGA models generally perform much better than LDA methods, giv-
ing better geometries and vibrational frequencies; the performance is comparable to ab
initio second order Mgller-Plesset (MP2) methods.

The third rung of the ladder, meta-GGA, uses kinetic energy densities 7, (r), and
sometimes the Laplacian of the electron density, V?n(r), as ingredients of the exchange-
correlation functional. Meta-GGA is the highest rung that does not utilise full non-
locality, instead using a non-local functional of electron density and a semi-local func-
tional of orbitals. It is thus potentially not much more expensive than a pure GGA
but has the advantage of eliminating self-correlation, which can have a severe effect in
low density systems. Meta-GGA functionals generally result in better atomisation ener-
gies, metal surface energies and lattice constants, but bond lengths (especially hydrogen
bonds) can be worse than for pure GGA functionals.

The highest level of approximation involving density functional theory is the “hy-
brid” model, which takes elements of both HF theory and DFT. The exchange-correlation
energy is related to the potential connecting a non-interacting “reference” system and a

real interacting system by the adiabatic connection formula (ACF):

E= f (s Ve Dl ), 3.116)
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where V.. is the exchange-correlation potential, and the integration coupling constant
A can be considered to “turn on” electron-electron correlation interactions. The A =1
case corresponds to the real, fully interacting system, whilst A = 0 represents a system
of non-interacting electrons in an effective one body potential with the same density as

)M and exact exchange as prescribed

the real system (the Kohn-Sham auxiliary system
by HF theory. Becke proposed a simple correction to the A = O case to incorporate

correlation into an exact exchange framework:
Exe =EQM +ag(ES™ — EX™), (3.117)

DFT : : : ¢
where E " is approximate DFT exchange-correlation energy, EZ™ is the exact ex-
DFT . . . .
change energy from HF theory, E2*" is the contribution to exchange energy contribu-

tion from DFT, and a4, is a parameter determining the ‘Hartree-Fock character’*. Em-

1

7 is optimal™%; Perdew

pirical fitting atomisation energies suggest that a value of 4, ~
et al. later justified this value using fourth order perturbation theory™> — thus the
PBEO hybrid functional incorporates 25% exact exchange into the PBE GGA func-
tional. There are various other recipes for incorporating exact exchange using different
numbers of parameters, for example, BALYP uses three mixing parameters in a variation
of equation (3.117). Although such hybrid functionals are generally more accurate than
pure GGA functionals (especially at predicting reaction barriers, which GGA function-
als tend to grossly underestimate), they require the solution of the Hartree-Fock equa-
tions and are therefore much more computationally expensive.

DFT calculations require a similar amount of computational effort to HF calcula-
tions, but have the potential to be much more accurate due to the implicit inclusion of
correlation effects. It has been shown (for example, in Feibelman (2008)*¢) that DFT
methods can characterise hydrogen bonding well (when HF theory fails, for example,
in Casassa et al. (2005)*%), which is an important consideration when modelling ice.

One of its main shortcomings is the failure of current functionals to characterise disper-



CHAPTER 3. THEORETICAL BACKGROUND 86

sion (Van der Waals-type) interactions; for example, the inherent overbinding in LDA
models results in an attraction between rare gas atoms which is inaccurate. Errors as-
sociated with DFT calculations include, the basis set superposition error (BSSE) arising
from the use of local basis sets (but not unique to DFT), self-interaction and unphysical
effects arising from certain functionals, such as the existence of correlation energy in
one-electron systems.

Unlike HF theory, DFT is considered by some not to be an ab initio method. In
principle it is exact, but only in the limit of a complete basis set and with an exact
exchange-correlation functional. There is currently no functional that works for all
systems, which means that choosing the correct functional for a system is as much of
an art as a science. Additionally, many functionals (excluding LDA and many GGA)

contain empirical fitting parameters and tabulated data for the sake of expediency.

3.7 Quantum Monte Carlo (QMC)

Variational (VMC) and Diffusion (DMC) Monte Carlo are stochastic techniques for
evaluating the expectation values of many body Hamiltonians and wavefunctions. Al-
though they are computationally expensive, they scale well with system size, and are
currently regarded as the most accurate method of evaluating the energies of large num-
bers of interacting quantum mechanical particles’”. Both methods are variational, and

as such yield an upper bound to the ground state energy.
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3.7.1 Variational Monte Carlo

The energy calculated via the variational principle, E,_, for an approximate many-body

var?

trial wavefunction, ¥, can be written,

dRY(R)HY (R
e st
[ dR¥2(R)
= J dRElocal(R)p(R)’ (3119)
where the local energy E,__,(R) and probability function p(R) are defined,

R v (R) 3.120

p(R)= [IRE®) (3.120)

ElocaI(R) = \P;lH\IJT (3121)

The variational energy E, _can be evaluated by randomly sampling the probability dis-
tribution p(R) within the integration limits using the Metropolis Monte Carlo algo-
rithm. E__ is then the average of the local energies of configurations R; over M sampling

points:

1 M
E_=— E R, 3.122
var M; local( z) ( )

The main problem with this process is the difficulty in preparing trial wavefunctions
of equivalent accuracy for different systems. Thus the VMC approach is often used to

optimise the parameters in trial wavefunctions for DMC calculations.

3.7.2 Diffusion Monte Carlo

—™H s used to

In the diffusion Monte Carlo method, the imaginary time operator e
project out the ground state from the initial state. This is equivalent to solving the

imaginary time Schrédinger equation, where the time ¢ is replaced with the imaginary
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time T = /¢ in the time dependent Schrédinger equation (3.1):

_gié(R, t)=(H — E;)®(R, 1) (3.123)

T

= (—%Vi +V(R)—E;)®(R,7) (3.124)

Here, E, is an arbitrary offset called the reference energy. Equation (3.124) has the
form of a generalised diffusion equation, hence the name diffusion Monte Carlo. If the

approximate wavefunction ®(R, 7) is expanded in terms of the exact wavefunction ¢.,

(R, 1) :Zci(T)¢i(R’T):Zciqsi(R)e_EiT’ (3.125)

it can be seen that states with a high energy (E,) decay faster than low energy states, and

as a result, only the ground state survives.

3.7.3 Some QMC caveats

QMC techniques rely on sampling from a probability distribution, but fermionic wave-
functions can not generally be treated as such because they contain positive and negative
regions due to antisymmetry. This results in 3N — 1 dimensional hypersurfaces called
nodes, on which the wavefunction and therefore probability is zero; excessive sampling
of nodal regions will reduce the accuracy of the calculation. This problem can be over-
come using the fixed node approximation, which effectively places an infinite repulsive
potential on the nodal surface, or by using a more computationally efficient importance
sampling transformation.

The accuracy of a QMC calculation is very sensitive to the trial wavefunction, in
particular, the nodal structure, which is not trivial to determine. Most electronic sys-
tems use a trial wavefunction of the Slater-Jastrow type, ¥ e which is a product of the

Jastrow factor ¢/® and spin up and down determinants (which are often obtained from
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DFT or HF calculations):
U (R)=¢/®det[ ¢, (r])]dec[ ), (r])] (3.126)
N, N,
](R):ZX(Ri)_Z”(RnR]‘) (3.127)
i 1>

The parameters in J(R) are chosen to reproduce nuclear-electron and electron-electron
cusps. In this formulation, correlation is introduced through the explicit dependence
on electron separation.

In a QMC geometry optimisation, peak computational efficiency is achieved by
moving a single atom at a time. This allows a faster evaluation of the trial wavefunction.
Many particle wavefunctions satisty Bloch’s theorems, but it is only possible to perform
many particle calculations on a single k-point, resulting in a poor representation of bulk
systems. Therefore, a supercell is usually required.

QMC methods are associated with an inherent statistical error which decreases with
the inverse square of the sampling frequency. The statistical error makes evaluation of

derivatives for geometry optimisations and vibrational frequencies problematic.

3.8 A note on nomenclature

For all DFT and ab initio calculations, the standard nomenclature for representing the
levels of theory is used. For example, CCSD(T)/cc-pVDZ//MP2/cc-pVTZ means that
the geometry of the system was optimised at the MP2 level using the cc-pVTZ basis set,

and the calculated energy 1s a CCSD(T) single point using the cc-pVDZ basis set.

3.9 Dispersion corrections in DFT

One of the main shortcomings of common GGA and hybrid functionals is their in-

ability to describe the long range correlation effects responsible for Van der Waals-type
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interactions. DFT works well for systems under extremes of temperature or pressure
since the repulsive part of the potential is sampled at high pressures, but is less accu-
rate for weakly interacting systems at ambient conditions, notably hydrogen bonded
liquids. Two different dispersion corrections have been used in this thesis, the DFT-D
method of Grimme™*!™ and the van der Waals DFT method of Langreth ez al1#%14L,
Langreth et al. note that it is impossible to construct a GGA that will mimic van der
Waals interactions because there is not enough information in the small overlap region
utilised by the functional, and atoms that can affect van der Waals interactions may not

be nearest neighbours’#.

3.9.1 DFT-D

Grimme!* proposed the solution of limiting the density functional description to short
range, and describing medium to long range interactions with damped C,R™® terms,
where C; is the ‘dispersion coefficient.” The scheme is limited to the C, term because
it was found that the higher order C; and C,, terms interfered with the short range
description. Compared with other dispersion correction schemes, Grimme’s (named
DFT-D2) is less empirical and requires fewer fitting parameters; it is reported to give
good results when implemented with the B97-D functional, and to a lesser extent, PBE
(although it is not explicitly tested with bulk water in the literature).

A recent revision to Grimme’s DFT-D scheme is detailed in his 2010 paper™?, of-
fering an improved description of inter- and intra-molecular dispersion for the most
commonly used functionals. It implements a consistent description of all chemically
relevant elements with atomic number 1-94, specifying dispersion coefficients and cut-
off radii for element pairs, and coefficients that are dependent on coordination number
derived from ab initio calculations on simple molecules. The only other new ingredi-
ents are the Cq term representing a shorter range contribution to the dispersion, and

a C, term for three-body interactions. There are only two parameters that must be
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determined empirically, the s, , and s factors, which allow the seamless merging of cor-
relation contributions from different length scales; the rest can be determined ab initio
(although this is not necessarily done for expediency).

On the basis of the WATER27 benchmark — a ‘tough test for the description of
strong hydrogen bonds™", using 27 neutral (H,O),, negative OH™~(H,0O), and positive
H*(H,0), clusters — it seems that PBE is a poor choice of functional, displaying clear
overbinding which is only exacerbated by the dispersion correction. Grimme et al.
therefore recommend the BLYP, revPBE or B97-D functionals for modelling water

because they underbind in the absence of a dispersion correction.

3.9.2 Van der Waals DFT (vdw-DFT)

Van der Waals DFT"# is a cheap yet sophisticated treatment of long range correlation
effects in which a standard GGA functional is used to calculate exchange, but the cor-
relation part is replaced with a “van der Waals density functional” (vdW-DF). Many
common GGA functionals exhibit a binding effect between rare gas dimers; this has
been shown to arise from the exchange interaction instead of correlation, and is not
present when exact exchange is used’#2. Whilst this long range exchange effect mitigates
the lack of long range correlation to some extent, it has been shown to be unreliable
in general? (although it should be noted that this refers to long range exchange; the
overall exchange energy is accurate to within 1% in the majority of cases).

Langreth et al. recast the exchange-correlation functional as follows:

Eyc[n] = ESSM + EX+ EX (3.128)

where the terms on the right hand side represent respectively the GGA exchange
energy, the short range (but still non-local) correlation term, and the term encompassing
non-local correlation terms that give rise to long range van der Waals interactions. The

short range correlation term is approximated to the LDA correlation, ES*, which is
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valid for slowly varying systems.

In its original incarnation, the exchange part of the vdW-DF consists of the LDA
exchange energy with the gradient correction term from the revPBE functional, which
does not exhibit the attractive long range exchange interaction typical of many GGAs.
Klimes et al. were able to improve the accuracy of the vdW-DF by replacing revPBE
exchange with a different, optimised GGA functional’®*. They achieved substantially
improved accuracy for the S22 dataset (of weakly interacting biologically important
dimers) using van der Waals density functionals with reparameterised B88 and PBE
exchange, dubbed optB88-vdW and optPBE-vdW. Significantly, coupled cluster calcu-
lations predict the ground state of the water hexamer to adopt a “prism” configuration,
whilst PBE and BLYP give rise to six-ring and “book” configurations. The optPBE-
vdW functional recovers the prism configuration, along with a dissociation energy that

is essentially identical to that obtained with CCSD(T).

3.10 The Gaussian and plane waves (GPW) representa-
tion

The main difference between the DFT code used for this research, the QUICKSTEP
module of CP2K"# and its contemporaries is the use of the Gaussian and plane waves
(GPW) representation of wavefunctions and electron density — it utilises the strengths

of both representations to allow better algorithmic efficiency.

3.10.1 The Gaussian representation

Atomic orbitals can be represented as Slater-type orbitals (STO), which consist of wave-
functions constructed from Slater determinants. STOs are a faithful representation of
electronic wavefunctions; however integrals involving STOs are difficult to calculate,

especially when the atomic orbitals in question are centred on different nuclei. Such
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integrals can be made analytic by expanding the atomic orbitals as linear combinations

105126 ar

of Gaussian functions of the form x*y”z¢e=*"" | where the exponent & determines
the spread of the function. The product of two Gaussians is another Gaussian with an
intermediate centre, which offers the advantage of allowing two-electron integrals to be
reduced to the integral of a single Gaussian.

The accuracy of calculations depends on the number and types of functions in the
basis set. Increasing the number of basis functions generally (but not invariably) im-
proves accuracy; a minimal basis set includes a single Gaussian contraction (a sum of
Gaussian functions with fixed exponents and coefficients) per atomic orbital, whilst a
double-zeta set would contain two contractions, a triple-zeta set would contain three
contractions, and so on. Adding functions beyond the minimal basis set allows the
description of non-spherical aspects of the electron distribution required for higher an-
gular momenta (p-orbitals and above). Split valence sets use a simpler set for modelling
core electrons, with a more diverse set for the chemically interesting valence electrons.
Polarisation functions can be added for a better description of molecules, where the
charge distribution is often perturbed from the nuclear centres, and highly diffuse func-
tions are useful for situations where there is a significant charge density in the internu-
clear region, for example, lone pairs. An increase in the quality of the basis set obviously
comes at the expense of computational cost.

A fundamental difficulty that arises from the necessity of using incomplete basis
sets is the basis set superposition error (BSSE). When interacting species approach each
other, their basis functions overlap, effectively increasing the size of their basis sets,
resulting in a difference in energy between the composite species and its individual part,

beyond the cohesive energy. This becomes less significant when larger basis sets are

used, and disappears in the limit of a complete basis set.
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3.10.2 The plane wave representation

When modelling ordered, highly symmetric condensed matter systems such as metals,
the most natural representation for electrons is in terms of plane waves, which are peri-
odic by definition, as opposed to Gaussian functions, which are localised. According to
Bloch’s theorem, a wavefunction can be expanded in a plane wave basis using a wave-like

component and a cell-periodic component’#*:

i(r) = fi(r)e’™r, (3.129)

where k is a reciprocal vector. The cell periodic part, f, can be expanded using a basis

set of discrete plane waves with coefficients c:

f(0)=> ¢ ge'em, (3.130)
G

where G are reciprocal lattice vectors. Thus each electronic wavefunction can be written

as a sum of plane waves:

fi(r)= Z Ci,k+G‘f’i(k+G)'r (3.131)
G

As a result of the reciprocal space representation, coefficients ¢ with a small kinetic
energy (%|k+ GJ?) are more important, so that only plane waves with an energy lower
than a pre-determined cutoff energy are included. Bloch’s theorem ensures that there is
a finite number of plane waves (for a continuous plane wave basis set, there would be an
infinite number of plane waves regardless of the cutoff); it is then possible to increase
the cutoff until convergence is achieved.

A problem with the plane wave method is that all-electron calculations are much
more expensive. Core electrons are tightly bound, and have rapidly oscillating wave-
functions in the vicinity of the nucleus due to the strong ionic potential. In addition,

valence electron wavefunctions oscillate rapidly in the core region to maintain orthogo-
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nality with the core electrons. A large number of plane waves is necessary to represent
these rapidly varying wavefunctions accurately. This problem is usually overcome us-
ing the pseudopotential approximation: instead of including the chemically irrelevant
core electrons in the calculation, their influence is folded into a smooth potential that
only excludes valence electrons; it is constructed such that the scattering properties of
pseudo-wavefunctions are identical to the cumulative scattering properties of the nuclei
and core electrons, but critically, have no radial nodes in the core region. Outside the
core region, the pseudo-wavefunctions are indistinguishable from the actual wavefunc-

tions.

3.10.3 The GPW representation

The plane wave representation has several advantages over the Gaussian representa-
tion#®, Plane waves are independent of atomic positions, which simplifies calculation
of forces; there is no associated BSSE; calculation of exchange-correlation and Hartree
potentials are much more straightforward, and the use of Fourier transforms simplifies
algebraic manipulations (fast Fourier transform (FFT) algorithms make this even more
efficient). However, the BSSE is replaced by the degree of approximation inherent in
the use of pseudopotential and the computational cost of modelling the vacuum is the
same as for populated regions, making surface calculations more expensive.

The GPW approach involves explicit treatment of valence electrons only, with pseu-
dopotentials accounting for the effect of core electrons. Plane waves are used to rep-
resent electron density, thereby simplifying calculations of the Hartree and exchange-

correlation potential, whilst Gaussians are used to represent wavefunctions. In this
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formulation, the energy functional (3.104) becomes:

vz
E[n] :Zfi<¢i| -5t Ve (0)l¢:) +Zﬁ<¢i(r)V£P(r, r')|¢(r'))
' e ' (3.132)
n (G)n(G) _
+4m0 > — f drn(r)e o [2](x)

IGI<G,
Here, the pseudopotential is split into local (V/'F) and non-local (V¥) parts, f; is the

occupancy of orbital ¢; defined by

n=2 fldil, (3.133)

2 is the volume and G, is the wave vector corresponding to the cutoff energy. 7 is
the density evaluated in the primary (Gaussian) basis, and 7 is the density evaluated
in the auxiliary (plane wave) basis, the two being equal if both basis sets are complete.
The pseudopotentials of Goedecker, Teter and Hutter (GTH) % are appropriate for this
method since they are constructed such that all matrix elements can be calculated ana-
lytically in a Gaussian basis. The numerical accuracy in the GPW scheme as prescribed

1128 is dependent on only two parameters: the plane wave cutoff G, and

by Lippert et a
the screening parameter ¢..

Vandevondele ez al."** note that DFT is generally efficient for up to about 100 atoms,
but for larger systems, the computation of the Hartree energy and orthogonalisation of
wavefunctions do not scale linearly with system size — Gaussians are localised, so the
representations of the Kohn-Sham, overlap and density matrices become sparse as the

system size increases; together with a real space integration scheme, linear scaling is

achieved.
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3.11 Using DFT to model hydrogen bonding in water
and ice

There has been a great number of studies in the literature on the ability of DFT to char-
acterise hydrogen bonds, notably for the case of this project, the water dimer. It has been
noted’®® that the LDA overbinds the dimer by ~70%, and results in an oxygen-oxygen
separation that is ~10% too short; use of the GGA results in significant improvements.

Santra et al.**! evaluated the performances of 16 different functionals on small (<5
molecules) water clusters using the large aug-cc-PV5Z basis set, with a view to min-
imising basis set incompleteness errors. Since there is limited available experimental
data on such clusters, results were compared with MP2 benchmarks extrapolated to the
complete basis set limit, which are accurate to within a few meV, and bond lengths to
within 0.01 A. They observed that with sufficiently large basis sets, all of the functional
considered are capable of chemical accuracy (1 kcal mol™ ~ 43 meV/H bond), although
this is a fairly weak constraint, considering hydrogen bond strengths vary from 10 meV-
30 meV/H bond. The best performance for dissociation energies and geometries were
achieved by the X3LYP and PBEOQ hybrid functionals, with X3LYP giving results almost
identical to MP2 in some cases. Dissociation energies for these functionals were within
7 meV/H bond of MP2 benchmarks. The best pure GGAs were mPWLYP and PBE1W,
achieving dissociation energies within 12 meV/H bond of the benchmarks. BLYP and
B3LYP consistently underbound clusters by 35 meV/H bond and 20 meV/H bond re-
spectively, whilst PBE displayed a tendency to overbind more as the size of the cluster
increased (overbinding the dimer by 5 meV /H bond, and the pentamer by ~20 meV/H
bond).

Dimer and cluster energies and geometries are a good test case for functionals, but
these quantities are not representative of hydrogen bonding in ice. The phenomenon of

31

cooperativity has been demonstrated on water clusters’! — as the number of molecules
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in a cluster increases, the average hydrogen bond strength increases, resulting in a length
contraction. Hamann"*® systematically compares one LDA and four GGA functionals,
including B86, PW91, PBE and B-loc, applied to the Bernal-Fowler ice cell. He con-
cludes that PW91 and PBE give by far the best agreement for the cohesive energy and
the volume, but they significantly underestimate the bulk modulus — an effect which is
mitigated by adding a correction to model the zero-point motion of hydrogen atoms.

In his study on the ab initio calculation of the lattice constant mismatch between (-
Agl and ice Th, Feibelman™® compares the performances of eight GGA functionals. It
has been suggested that as a result of the similarity in lattice parameters between 3-Agl
and ice Th, Agl smoke might be used to “seed” cloud formation by acting as a catalyst
for ice nucleation. Experiments have shown that the mismatch between the a and ¢
lattice parameters is 2.2%, whilst PBE predicts a 5.9% mismatch. He notes that PBE re-
sults in the best lattice energy (5% overbinding), and BLYP gives the best volume (2.8%
too large). However, DFT tends to under-represent Van der Waals interactions, whilst
arguably the best GGA functional for modelling ice, PBE, overbinds — thus adding an
attractive dispersion correction would only exacerbate the overbinding. From this per-
spective, the GGA functionals that underbind, namely BLYP, RPBE and revPBE, are
the most promising. However, none of the functionals adequately calculates the lattice
mismatch factor; RPBE comes closest, but is still out by a factor of two.

The majority of the calculations in chapters 4f and [5| employ the PBE functional,
which has been shown by Hirsch and Ojamie to predict the correct proton ordered
ground state for ice Th'4 Feibelman also demonstrates that of the GGA functionals, it
yields a good agreement with experiment for the lattice energy and geometry in spite
of a small but consistent overbinding'®. T have used the underbinding BLYP functional
in conjunction with the D3 dispersion correction, since using D3 with PBE would ex-
acerbate the overbinding. It was necessary to use a hybrid functional for the reaction

chemistry in chapter [f] to correctly evaluate barriers. The choice of hybrid functional
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used in these calculations is discussed in detail in section [6.7.11



Chapter 4

Proton ordering in bulk ice

4.1 Introduction

Hexagonal ice is the most prevalent phase of ice on Earth, accounting for ~10% of its
surface area, thus giving it an important role in climatic regulation via albedo. Although
hexagonal ice is one of the most studied materials in science, new properties are being
discovered, with implications for both ice and other materials. For example, it has
been shown that ice nucleates differently at positively and negatively charged surfaces
of pyroelectric materials®, and that the surface of crystalline ice displays a continuum
of vacancy energies<®.

Cubic ice has not been studied to the same extent, and its existence in nature is a sub-
ject of debate since it is known that proton disordered ice Ic is metastable with respect
to Th*2. Scheiner’s halo is interpreted as evidence of cubic ice in the upper atmosphere,
but it has only been observed a few times over the past 200 years'*?, perhaps suggest-
ing that cubic ice is not important in nature. However, recent work suggests that ice
Ic forms readily and persists under conditions characteristic of the Earth’s atmosphere.
Experiments have shown that water droplets homogeneously freeze to cubic ice at am-
bient pressure and temperatures between 160 K* and 240K“, and in droplets with radii

2829

in the range 5nm“*# to 5pm?. Whilst it was previously believed that Ic transforms
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rapidly to Th at temperatures above ~180K-200K, recent studies indicate that Ic re-
mains stable for hours at 228 K2. It has also been argued that differences in the surface
chemistry of cubic and hexagonal ice could influence processes such as cloud formation
and dehydration® and ozone depletion””.

The proton ordered ground state of hexagonal ice is well characterised. It forms
when ice Th is cooled to 72K in the presence of a KOH dopant®®, since the OH™ ions
generate the Bjerrum defects necessary for orientational reordering. A stacking defect-
free sample of cubic ice has yet to be prepared in the laboratory, so observation of a
proton ordered cubic ice ground state is unlikely for the foreseeable future. In fact, on
the basis of X-ray diffraction experiments and Monte Carlo simulations, Malkin ez al.**
suggest that cubic ice sequences only exist in a stacking disordered phase, ice I ;. Hirsch
and Ojamie'? demonstrated that DFT methods predict the correct structure of ice XI,
so we attempt a similar analysis here.

This chapter is motivated by these recent developments, and consists of a basic char-
acterisation of bulk cubic ice. We first generate an exhaustive set of proton ordered,
symmetry-unique cells for cubic ice in order to determine the proton ordered ground
state, analogous to ice XI. We then compare the proton ordered ground states (ices XI
and XIc¢) in order to gain some insight into their relative abundances and the unusual

phase transition.

4.2 Methodology and computational setup

4.2.1 Constructing unit cells

In section it was noted that there are six ways of orienting each water molecule
within the constraints of a tetrahedral ice lattice. Therefore, there are 6" ways of ori-
enting the molecules in a N molecule ice cell. Hence, for an eight-molecule cubic or

hexagonal ice cell, there are 68 = 1679616 ways of orienting the molecules, most of
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which are forbidden by the ice rules. A computer code developed by the author (avail-
able on request) which employed the Hayward-Reimers algorithm® was used to gener-
ate all valid eight-molecule cells for cubic and hexagonal ice; in both cases, it was found
that there are only 114 valid configurations for each phase. It should be noted that this
algorithm yields an exhaustive list of valid configurations and as a result is computa-
tionally intractable for cells of approximately 16 molecules and larger. Most of the 114
valid cells are related by symmetry operations; the set of symmetry-unique structures
was found using graph invariant software developed by Knight, Singer and Beck #6812
resulting in 16 hexagonal ice cells, in agreement with Hirsch et al."2
The cubic ice cell listed generally mentioned in the literature contains eight molecules,

and is cubic with a side of length 6.358 A and space group Fd3m. This cell only has
4 symmetry-unique proton ordered configurations, one of which is anti-ferroelectric.
By cutting through the (011) plane, it is possible to construct a four molecule tetrag-
onal cell of dimensions 4.4958 A x 4.4958 A x 6.3580 A, which also has four proton
ordered configurations; this can be used to construct a 2 X 1 x 1 supercell which has
11 symmetry-unique proton ordered configurations, two of which are antiferroelectric,
and is comparable to the eight molecule orthorhombic cell used by Hirsch and Ojamie.

This cell was used to examine proton ordering in cubic ice.

4.2.2 Setup for DFT calculations

DFT calculations were conduced using the VASP plane wave code and the QUICK-
STEP!% module of the CP2K suite, which uses the computationally efficient Gaus-
sian/plane wave representation.

Initial calculations on all symmetry-unique proton ordered configurations of the
aforementioned eight molecule hexagonal and cubic ice cells were conducted using
CP2K. Wavefunctions were constructed using the triple-{’ doubly polarised (TZV2P)

basis set, and the electron density using a plane wave expansion with a 450 Ry cut-
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off with Goedecker-Teter-Hutter (GTH) norm-conserving pseudopotentials’® and ba-
sis sets. For calculations without a dispersion correction, the Perdew-Burke-Ernzerhof
(PBE) GGA exchange-correlation functional was used, since it has been shown to de-

199 with a small but consistent 5%

scribe hydrogen bonding energetics in ice Th wel
overbinding .

Applying a dispersion correction in conjunction with PBE would only exacerbate
the overbinding; however, the Becke-Lee-Yang-Parr (BLYP) GGA functional consis-
tently underbinds ice, and has been shown to perform well for hydrogen bonded sys-
tems when dispersion is taken into account™. The long range dispersive forces were
accounted for using Grimme’s DFT-D3 correction™ with a dispersion cutoff of 12 A,
and the repulsive three-body C9 term was omitted from the calculations since it consid-
erably increases the computational cost without significantly improving the accuracy.

CP2K only supports I'-point sampling, so the unit cells were replicated to construct
3 x 2 x 2 hexagonal ice supercells (with a smallest lattice parameter of 13.48 A) and 2 x
3 x 2 cubic ice supercells (with smallest side 12.46 A), both containing 96 molecules. In
all cases, full cell relaxation and geometry optimisation were performed in the absence
of any symmetry constraints.

In order to gauge the impact of basis set completeness and basis set superposition er-
ror (BSSE), the CP2K calculations were repeated using VASP. The projector-augmented
wave (PAW) method was used’”” with a plane wave cutoff of 550V and a 6 x 3 x 3
Monkhorst-Pack grid of 54 k-points for hexagonal ice or 3 x 6 x 4 grid of 72 k-points for
cubic ice. Additional high precision calculations were performed on the ground state
cubic and hexagonal ice configurations using hard PAW potentials, a plane wave cutoff
of 1000 eV and 128 k-points (a 8 x 4 x 4 grid for hexagonal ice or 4 x 8 x 4 for cubic ice).
For the high precision calculations, a number of approaches were used to examine the
importance of van der Waals interactions and electron delocalisation between the two

ground state polytypes, including the PBE GGA functional, the van der Waals density
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functional’®! using PBE exchange (optPBE-vdW'#*) and the PBEO hybrid functional,
which includes 25% Hartree-Fock exchange. The van der Waals DFT calculations were

performed in VASP, using the self-consistent implementation of Klimes et a/.1*®

4.2.3 Setup for DMC calculations

As an independent quantum mechanical reference point, diffusion Monte Carlo (DMC)
calculations were performed on the ground state hexagonal and cubic configurations by
Dario Alfé®. His calculations employed the CASINO code™” with Dirac-Fock pseu-

137 ysing core radii of 0.4 A and 0.26 A for oxygen and hydrogen respec-

dopotentials
tively, and trial wavefunctions of the Slater-Jastrow type, with a single Slater determi-
nant. The single particle orbitals were obtained from plane wave DFT calculations

D8 with a plane wave cutoff

in the local density approximation using the PWscf code
of 300 Ry, and re-expanded in B-splines™®. Extensive tests on the ice VIII and ice II
primitive cells, close to their equilibrium volumes**® demonstrated that a time step of
0.002 a.u., together with the locality approximation*!; resulted in cohesive energy dif-
ferences converged to within 5 meV per molecule; this setup was therefore used in the
calculations described. The 96-molecule hexagonal and cubic ground state supercells de-
scribed for the CP2K calculations were used for the DMC calculations. The model pe-
riodic Coulomb technique was used to treat electron-electron interactions, significantly
reducing DMC size errors**2. Size tests performed on the ice VIII and II cells showed

that finite size errors are reduced to less than 5 meV per molecule for cells containing 96

molecules or more!*,

4.2.4 Setup for empirical forcefield calculations

Although previous computational studies have shown that the commonly used empiri-

48165091192

cal potentials lack the precision required to describe proton ordering in ice there

are still some reasons to be interested in them, particularly from a methodological per-
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spective. What is the magnitude of the difference in energy between proton ordered
configurations when using empirical potentials, and can we expect to see evidence of
proton ordering during a simulation of nucleation? And perhaps more importantly,
do these commonly used models display a bias towards nucleation of a specific phase?
The latter question may have considerable repercussions, for example, in the field of
biological simulations, where the TIP3P model is very frequently used.

All calculations were carried out using the GROMACS molecular dynamics code™
using 596 molecule supercells of the orthorhombic eight-molecule hexagonal and cubic
ice cells mentioned in the previous section (6 X 3 x 4, with a shortest side of 24.92 A
for cubic and 6 x 4 x 3, with a shortest side of 22.01 A for hexagonal). Simulations
were run in the isothermal-isobaric (NPT) ensemble; the temperature was maintained
at 0.01K using a velocity rescaling thermostat with a 1ps period in lieu of a zero-
temperature energy minimisation, and the pressure was maintained at 1bar using an
anisotropic Berendsen barostat with a period of 5 ps. For each proton ordered configu-
ration considered, a leapfrog integrator was run for 100 ps with a timestep of 1 fs (100000

steps), and a cutoff of 10 A was used when calculating neighbour lists, and van der Waals

and Coulomb interactions. Coulomb interactions were treated using the particle-mesh

Ewald (PME) method.

4.3 Results and discussion

Here the cohesive energy E, (synonymous with “sublimation energy”) is defined as the

energy released when 7 (non-interacting) water molecules, each of energy E in the

molecule

gas phase are brought together to form the unit cell of an ice lattice with energy E_,

1.e.

E = Ecell —nkE

Cc

(4.1)

molecule
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When phase transition energies are discussed, it is important to distinguish between

the internal energy U and the enthalpy H, which is defined as:

H=U+pV (4.2)

For a cell of volume V' at pressure p. Assuming a pressure of 1 bar and a cell volume
of 250 A%, the contribution from the pV term is of the order of 2] mol~!. Considering
the cell volume varies by no more than 1% between proton ordered configurations, it
can be deduced that the contribution of the pV term to the enthalpic difference will
be less than a negligible 0.01 ] mol™'. Therefore the enthalpy of transition as discussed
below is approximated to the internal energy change of transition.

Tables[4.1]and[4.2]list the cohesive energies of each of the 27 proton ordered configu-
rations for the orthorhombic eight-molecule unit cells of hexagonal and cubic ice using
the PBE exchange-correlation functional and the BLYP-D3 dispersion-corrected func-
tional using the GPW method of CP2K, and the PBE functional using a BSSE-free plane
wave basis in VASP. The cohesive energies relative to structure number 1 for hexago-
nal and cubic ice have been plotted in figure The structures numbered in order of
symmetry, 1 having the highest symmetry. In both cases, structure 1 is found to be the
ground state proton ordered configuration. For hexagonal ice, this corresponds to the
Cmc2, structure of ice XI, in agreement with the calculations of Hirsch and Ojamie™?
and Tribello and Slater®”. It should be noted that this structure has been experimentally
verified® (see section [2.5).

Cobhesive energies for the TIP4P and TIP3P forcefields are tabulated in tables
and and their energies relative to the Cmc2, configuration for hexagonal ice and
I4,md for cubic ice are plotted in figures and Relative energies for TIP3P in
the figures have been scaled down by a factor of ten in the graphs to allow easy compari-
son. Surprisingly, the TIP3P model agrees with DFT on the ground state configuration

of cubic ice, but not for hexagonal ice. In agreement with other studies*™*®, both the
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Figure 4.1: Relative energies for 16 hexagonal and 11 cubic symmetry-unique proton
ordered configurations, as calculated using DFT. Energies are shown relative to struc-
ture 1 in both cases. The connecting lines have no physical meaning, and are present to
guide the eye. In structure 1 is the experimentally verified Cmc2, structure of ice
XI, and 2 is the antiferroelectric Pna2, configuration predicted by Davidson and Mo-
rokuma’®. In structure 1 is the ground state /4, md structure, according to PBE
and BLYP-D3 calculations, and can be considered the cubic analogue of ice XI.
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TIP4P and TIP4P /2005 models favour the Pna2, structure for hexagonal ice, and the
P4,2,2 structure for cubic ice, in both cases the antiferroelectric configuration with the
highest symmetry. The range of energies for proton ordered configurations is consider-
ably lower for the TIP4P calculations, up to ~150 ] mol™!, which in turn is considerably
lower than the range for the DFT calculations. These models are useful in many situ-
ations, but when they are used to attempt to resolve energy differences on the scale of
40] mol™! (the TIP4P energy difference between the Cmc2, and Pna2, configurations),
they are clearly insufficient. The preference for antiferroelectric phases (in the case of
TIP4P) suggests an underlying problem with the model; this has been addressed by Tri-
bello and Slater, who established that widely used potential models such as TIP4P lack
the description of high order multipole moments required to capture proton ordering

energetics®”.

4.3.1 Hexagonal ice

All three datasets for hexagonal ice (figure agree with each other with regards to
the ground state and the general shape; they are also in broad agreement with calcu-
lations by Hirsch and Ojamie’?, with differences perhaps attributable to their choice
of functional (PW91), k-point sampling and lower plane wave cutoff. The similarity
between the VASP and CP2K results confirms that the GPW method is reliable for dis-
criminating the extremely small (on the J mol™! scale) energy differences involved in
proton ordering. Grimme’s D3 dispersion correction uses an empirically parameterised
function with a % dependence to simulate long and short range dispersive forces™?. It
can be seen that the relative energies calculated using BLYP-D3 (the red line in figure
have a similar distribution, suggesting that to a first approximation, long range dis-
persion has a negligible effect on proton ordering energetics. The inherent overbinding
of PBE at hydrogen bonding distances mimics the effect of short range dispersive forces

on the cohesive energy. The cohesive energy of —67.76 k] mol™! compares favourably
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Figure 4.2: Relative energies for 16 hexagonal and 11 cubic symmetry-unique proton
ordered configurations, as calculated using MM. Energies are shown relative to structure
1 in both cases. The connecting lines have no physical meaning, and are present to guide
the eye. In[4.24] structure 1 is the experimentally verified C mc2, structure of ice X1, and
2 is the antiferroelectric Pna2, configuration predicted by Davidson and Morokuma'*.
In structure 1 is the ground state 74, md structure, and 11 is the antiferroelectric
configuration with the highest symmetry. The relative energies for TIP3P are much
larger than for the TIP4P models, and have been scaled down by a factor of 10 for easy

comparison.
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(a) Ice XTh (Cmc2,)

(b) Ice Xic (I4,md)

Figure 4.3: DFT ferroelectric ground state structures of ice Th (XTh) and ice Ic (XIc).
Although the tetragonal four molecule cell of XIc is shown, a 2 x 1 x 1 supercell was
generated to enumerate proton ordered configurations and calculate energies.

with the value of —68.1k] mol™! reported by Pan et al.”, who also used CP2K albeit
with a lower plane wave cutoff.

To the best of our knowledge, there is no experimental estimate for the cohesive
energy of ice XI. According to Petrenko and Whitworth, proton disordered ice Th is

171%. Pan et al. reported an en-

estimated to have a cohesive energy of —58.95k] mo
ergy range of 500] mol™" dependent on the degree of proton disorder, and a recent
study yielded a cohesive energy of 67.3 k] mol™" for Th?. The results presented here
suggest, in agreement with Tribello and Slater””, that the proton ordering energies are
not sensitive to the choice of functional, hence it must be predominantly influence by
the electrostatic interactions. Note that the energy difference between the Cmc2, and

Pna2, structures (N = 1and 2 respectively in figure[4.1) is 400 ] mol~!, which compares
favourably with the 335 ] mol™ reported by Labat et al.“®.
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4.3.2 Cubic ice

Given that results for hexagonal ice are consistent with previous work (notably by
Hirsch and Ojamie’?), the results for cubic ice can be viewed with confidence. Accord-
ing to all of the DFT recipes used, the ground state is the ferroelectric /4, md structure
(only 2 and 7 are anti-ferroelectric), and consists of 100% inverse centre-symmetric (“h-
cis”) dimers, according to Bjerrum’s classification*”. This configuration will henceforth
be referred to as “Ice Xlc,” where the “c” suffix 1s retained from ice Ic to denote the
cubic stacking order of the bilayers even though the unit cell is tetragonal. 74,md is a
sub-group of Fd3m, the space group of the cubic ice cell (in the interest of disambigua-
tion, ice XI will be referred to as “XIh” in this chapter). The hydrogen bond topology
is in fact identical to that of the sub-lattices of ice VIII (recall that ice VIII is the pro-
ton ordered variant of ice VII, which consists of two interpenetrating ice Ic lattices);
however, the ice VIII lattice is antiferroelectric overall, because the dipole moments of
the two sub-lattices exactly cancel each other out. The dipole moments of all molecules
in the Xlc cell are aligned in the c-direction, resulting in a higher dipole moment in

comparison with XTh.

4.3.3 Estimating the Ic—Ih transition energy

In real terms, a phase transition from cubic ice to hexagonal ice is a transition from the
Ic phase to the Th phase, both of which are disordered. Since simulating proton disorder
is computationally expensive, the energy difference between XTh and Xlc is used as a
first approximation to the transition energy.

Although the hexagonal and cubic dataset are internally consistent, agreeing on the
ground state configurations and relative energies of the structures, there is a significant
mismatch in the energy difference between XIh and XlIc (AH,_,;) for the GPW and
plane wave datasets. GPW calculations using the PBE functional indicate that XTh has

a lower cohesive energy than XIc by 102 ] mol™!, but the plane wave calculation yield
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a much larger difference of AH,_, ~—416]mol~!. Note that the order of stability
(hexagonal being more stable than cubic) disagrees with the findings of Casassa et al.®>
In order to shed light on this discrepancy, additional DMC and high precision plane
wave DFT calculations were performed on the XTh and XIc structures, as delineated at
the end of section The results of these calculations are displayed in table

The first point to take from the high precision calculations is that regardless of the
functional recipe used, AH,_,, is very close to zero; for all of the methods used (with
the possible exception of DMC which is subject to a statistical error), the cohesive ener-
gies are within 60 ] mol™" of each other. The second noteworthy point is that the sign
of AH,_,, varies with the recipe used. The GGA functional PBE, the hybrid PBEO and
the BLYP-D2 functional, employing the semi-empirical D2 dispersion correction™® all
suggest that XIc is marginally more stable, with values of +47, +-54, and +12 ] mol ™" re-
spectively. (Note that data for BLYP-D2 are not included on table[4.5because molecular
energies could not be reliably calculated as a result of a software bug.) In particular, the
PBEO result suggests that a moderate level of non-local exchange (25%) has very little
effect on the energy difference between two proton ordered configurations. The func-
tional with the most sophisticated treatment of long range dispersion, optPBE-vdW,
is the only one to yield a negative value for AH__,, (—29 ] mol™"). Together with the
lower energy difference from BLYP-D2, it seems likely that long range dispersion sta-
bilises XTh with respect to XIc. Finally, with regards to the DMC calculations, the
Xlc is slightly (40 ] mol™") more stable, albeit with a substantial error bar; the primary
conclusion one can draw from this result is that XTh and XIc are essentially isoenergetic.

There is no clear correlation between the relative cell volumes per molecule and
cohesive energies. One would intuitively expect the structure with the lower cohesive
energy to be more dense, and therefore have a smaller cell volume; however, the PBE
calculations suggest that XIc is more stable and denser, whereas the optPBE-vdW calcu-

lations show the opposite trend, with XIh being more stable, but XIc having the higher
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Figure 4.4: Equation of state plot for ices XIc and XIh; calculated using the optPBE-
vdW functional and DMC.

density. It has been noted that PBE overbinds at hydrogen bonding distances, which
mimics short-range dispersion, but there is no effect that adds long-range dispersion.
The optPBE-vdW functional explicitly models both types of dispersion, therefore one
might expect it to stabilise XTh with respect to XIc, since XTh has an additional wa-
ter molecule in the second coordination sphere. PBEO on its own has no long range
dispersion correction, and generates a more localised electron density distribution; this
results in a larger electrostatic contribution to the cohesive energy and yields XTh as the
denser and more stable phase. This is slightly counterintuitive, since one might expect
the larger dipole moment of the XIc cell (by 0.1 Debye) to electrostatically stabilise it
with respect to XTh.

The zero point energy is sizeable in ice and could therefore influence the relative

stability of XTh and XIc. Four point numerical derivative vibrational mode calculations
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were performed on the PBE (hard PAW pseudopotential) optimised structures; at the
time, the stress tensor had not been implemented for the optPBE-vdW functional, even
though it would have been the natural choice for these calculations). It was found that
the zero point energy of Xlc is 133.349 k] mol™!, compared with 133.224 k] mol™! for
XTh —i.e. the zero point energy of XIc is 125 ] mol ™" greater than for XTh. Thus AH,_,
is modified to —78] mol~!, suggesting that XIh is the more stable phase. PBE calcula-
tions using ultrasoft pseudopotentials and the plane wave CASTEP code, performed by
Ben Slater®, tell a different story: a zero point energy difference of 467 ] mol™ com-
bined with a AH__,, of —130] mol~! stabilise cubic ice. However, considering that sev-
eral first derivative methods have been unable to reach an agreement as to which phase
is more stable, it seems premature to interpret zero point energies, which are derived
from the second derivative of the energy.

Turning to configurational entropy, there are six possible orientations of each molecule
in the cell within the constraints of the ice lattice, resulting in 6° = 1679616 configura-
tions for an eight molecule cell. Of these, only 114 are allowed by the ice rules, and the
majority of the 114 are related by symmetry operations. In the case of hexagonal ice,
six of the 114 have the Cmc2, structure, whilst for cubic ice, six of the 114 have the
I4,md structure. Thus there are the same number of ways of generating both ground
state configurations (XTh and XIc), and it can be concluded that they have identical
configurational entropies.

For all of the functionals used, the denser phase reassuringly has the lower nearest
neighbour oxygen-oxygen separation. It has recently been shown that that the linearity

14 _ more stable structures

of the OHO bond is an extremely good indicator of stability
generally correspond to hydrogen bond angles closer to 180°. For all of the functionals
used, XIc has a mean OHO bond angle closer to 180°, with a smaller variance; this is

compelling evidence that XIc should be the more stable phase, and that the order of

stability is very subtly influenced by the functional recipe used.
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Recently, Kobayashi and Yasuda’* induced a phase transition from Ic to XI at 95K
in a thin film by irradiation with high energy electrons. It is noteworthy that there was
no transition to Xlc, and the transition occurred above the 72K reported by Tajima
et al™. and the Bjerrum defects required for reorientation are created by ionisation of
water molecules into H* and OH™. They suggest an intermediate transition to Ih, but

do not rule out the possibility of XIc forming.

4.4 Summary and conclusions

The ferroelectric 74, md configuration (polarised in the ¢ direction), dubbed ice XIc, is
identified as the unambiguous ground state proton ordered phase of cubic ice accord-
ing to PBE and BLYP-D3 DFT calculations performed using the Gaussian/plane wave
CP2K code. Higher precision plane wave calculations using a variety of functionals (no-
tably the best available approximation to a long range dispersion corrected functional,
optPBE-vdW) and hard PAW pseudopotentials in the VASP code suggest that the differ-
ence in cohesive energy between XTh and XIc is only a few tens of ] mol™". Considering
the error bars in the DMC calculations and the lack of agreement between the high pre-
cision plane wave DFT methods, it is only appropriate to conclude that ices XTh and
Xlc are essentially isoenergetic.

In principle Ic should transform to Xlc in a manner similar to the Th — XTh tran-
sition, with the addition of a KOH dopant to allow reorientation. The difference in
energy between the most favourable and second most favourable proton ordered con-
figuration for cubic (~270] mol™') and hexagonal (~130] mol~') suggest that the tran-
sition may be more facile in the case of cubic ice, since the potential well separating the
two most favorable configurations is deeper.

In order to prepare ice XIc, one would need to surmount the considerable obstacle of
obtaining a reasonably pure sample of Ic. Ices XIII, XIV>? and XV** have been isolated

by cooling very slowly (to prevent transformation to Ih and XIh) in the presence of a
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dopant, and it can be tentatively suggested that XIc might be prepared from a good Ic

sample in a similar way™.
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DFT cohesive energy (k] mol™)

Space group CP2K/PBE CP2K/BLYP-D3 VASP/PBE

@OO\IG\U'I-PWNHZ

10
11
12
13
14
15
16

Cmc2, —67.901
Pna2, —67.432
Pna2, —67.470
Pbn2, —67.650
Pca2, —67.740
P2.2,2, —67.330
P2,2.2, —67.572
Cc —67.777
Pc —67.718
Pc —67.665
Pc —67.688
P2, —67.450
P2, —67.452
P2, —67.735
P2, —67.665
P1 —67.760

—69.434
—68.914
—68.979
—69.144
—69.241
—68.818
—69.070
—69.307
—69.234
—69.144
—69.189
—68.946
—68.945
—69.230
—69.136
—69.272

—64.503
—64.102
—64.131
—64.268
—64.373
—63.995
—64.235
—64.402
—64.336
—64.273
—64.324
—64.115
—64.118
—64.374
—64.271
—64.387

Table 4.1: DFT cell optimised cohesive energies for all symmetry-unique proton or-

dered hexagonal ice configurations.

z

DFT cohesive energy (k] mol™)

Space group CP2K/PBE CP2K/BLYP-D3 VASP/PBE

— = N0 0NN 0N R W

0
1

I4,md —67.797
P4,2,2 —67.182
Pna2, —67.479
Pna2, —67.354
Pmn2, —67.346
Pca2, —67.640
P2,2,2 —67.327
Pc —67.504
Pc —67.650
P2, —67.408
P2, —67.353

—69.021
—68.312
—68.615
—68.424
—68.452
—68.768
—68.453
—68.616
—68.771
—68.493
—68.424

—64.087
—63.538
—63.818
—63.680
—63.663
—63.952
—63.662
—63.806
—63.953
—63.738
—63.681

Table 4.2: DFT cell optimised cohesive energies for all symmetry-unique proton or-

dered cubic ice configurations.
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MM potential energy (k] mol™")

N  Space group TIP4P TIP4P /2005 TIP3P

1 Cmc2, —57.0844+0.000 —63.0184+0.000 —54.82640.000
2 Pna2, —57.125+0.000 —63.053+0.000 —54.5444-0.002
3  Pna2, —57.074£0.000 —62.994+£0.000 —54.22940.005
4 Pbn2, —57.067£0.000 —62.996+0.000 —53.95440.003
5 Pca2, —57.1094+£0.000 —63.037+0.001 —54.30140.003
6 P22.2, —57.100+£0.001 —63.033+0.001 —55.10140.002
7 P22.2, —57.105+0.001 —63.0364+0.000 —54.96340.001
8 Clcl —57.0104£0.000 —62.931+£0.000 —54.63340.001
9 Plcl —57.041+£0.000 —62.964+0.000 —54.23540.002
10 Pilcl —57.045+£0.000 —62.966+0.000 —54.108+0.004
11 P12,1 —57.061+£0.000 —62.9894+0.000 —54.06540.005
12 P12,1 —57.097+£0.000 —63.0244+0.000 —54.76340.003
13 P12,1 —57.0994+0.000 —63.0264+0.000 —54.65840.003
14 P12,1 —57.087+£0.000 —63.017+0.000 —54.2284-0.003
15 P12,1 —57.0504+£0.000 —62.974+0.000 —54.04140.006
16 P1 —57.063+£0.000 —62.9904+0.000 —54.41940.003

Table 4.3: MM cell optimised cohesive energies for all symmetry-unique proton or-
dered hexagonal ice configurations, using 3 common empirical potentials: TIP4P,

TIP4P /2005 and TIP3P.
MM cohesive energy (k] mol™")

N Space group TIP4P TIP4P /2005 TIP3P

1 I4,md —57.032+£0.000 —62.961£0.000 —55.56440.001
2 P4.2.2 —57.129+£0.000 —63.064£0.000 —54.92040.064
3  Pna2, —57.089+£0.000 —63.017+0.003 —54.69710.071
4  Pna2, —57.099+£0.000 —63.029£0.001 —54.80040.067
5 Pmn2, —57.079+£0.000 —63.009£0.000 —54.12940.001
6 Pca2, —57.058+0.001 —62.983+0.002 —55.029+0.035
7  P22.2 —57.078+£0.000 —63.009+£0.001 —54.13240.001
8 DPc —57.060+£0.000 —62.991+0.000 —53.94040.002
9 Pc —57.057+£0.000 —62.984+£0.001 —55.04940.026
10 P2, —57.075+£0.000 —63.008+£0.000 —54.05440.002
11 P2, —57.102+£0.001 —63.033+£0.000 —54.80540.067

Table 4.4: MM cell optimised cohesive energies for all symmetry-unique proton ordered
cubic ice configurations, using 3 common empirical potentials: TIP4P, TIP4P /2005 and

TIP3P.
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Chapter 5

The ice surface

5.1 Introduction

Polar stratospheric clouds (PSC, figure|5.1) are observed in the stratosphere at altitudes
of 15km to 25 km during the winter. They are thought to contain cubic ice crystals,
which is inferred from observations of Scheiner’s halo®* and the temperature regime at
that altitude. Reactions which process HCI, ClONO2 and HOCI into Cl,, and subse-
quently dissociate Cl, homolytically to form the chlorine radicals implicated in ozone
depletion are heterogeneously catalysed by the surfaces of ice crystals in these clouds™*.
Just as proton ordering affects the bulk cohesive energy of ice, it is known to affect

the surface energy, albeit to a much greater extent®. When a hexagonal ice crystal is

cleaved to reveal the [0001] basal plane, each surface molecule in the top half of the

Figure 5.1: Polar stratospheric clouds.
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Figure 5.2: [0001] basal surface of a 2 bilayer hexagonal ice slab. Dark blue atoms are
oxygens in the top half of the uppermost bilayer. The dangling OH bonds are ordered
as in Fletcher’s striped phase, with the stripes highlighted in green.

bilayer has one broken hydrogen bond; when the surface molecule is a hydrogen bond
donor, it is said to have a “dangling OH bond.” Each surface molecule has six sur-
face nearest neighbours (figure[5.2); it has been shown that the orientation of a surface
molecule relative to those of its six neighbours has a significant effect on the surface
energy.

Experiments have shown that the ice surface is indeed the ideal full bilayer surface
termination of the basal plane of hexagonal ice™. Although they were not able to
resolve proton ordering, Glebov ez al. observed “small domains of additional structure”

with a periodicity of approximately twice the lattice constant of the ideally terminated
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surface in helium atom scattering experiments'*”. Whilst Glebov et al. conclude that
the most likely configuration of the ice surface is disordered (attributing the helium
diffraction peaks mentioned above to boundaries between domains of different phase or
orientation, Buch er al. suggest that they may be a result of the proton ordered striped
phase’®.

Recently, Sazaki et al. optically imaged elementary steps on a hexagonal ice sur-
face using laser confocal microscopy®. Such observations will in principle allow the
experimental evaluation of the step ledge free energy of hexagonal ice, which may be
important not only in the theory of two dimensional nucleation, but also in reaction
chemistry, where these defects may be important in catalysis. For example, theoreti-
cal studies of HCI adsorption on ice have shown that ice surface defects can increase
its adsorption energy, and possibly facilitate ionisation**. Bolton reports QM/MM
simulations which indicate that step (and seven-ring) defects on a hexagonal ice surface
facilitate that barrierless ionic dissociation of HCI molecules™®. Batista and Jénsson
used the TIP4P potential to form “island” defects on a hexagonal ice surface, their re-
sults suggesting that for one to five adsorbed water molecules, the molecules comprising
the island occupy non-crystallographic positions, but become crystalline when a sixth
molecule is added via a complicated restructuring with a low barrier™*. The first stage

in a study of surface defects is an analysis of step defects.
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Figure 5.3: A reconstructed step feature on an ice I surface consisting of two visible
bilayers. Molecules on the step edge are in colour.

Figure 5.4: Optical images of a basal [0001] hexagonal ice surface taken using laser con-
focal microscopy (taken from Sazaki et al.%) They show the birth, growth and coales-
cence of elementary (single bilayer) step defects. The fact that no step contrast remains
after the growth fronts merge indicates that the steps are indeed elementary. Note that
the step growth is isotropic.

This chapter begins with an assessment of the effect of proton ordering on the hexag-

onal and cubic ice surfaces, followed by an attempt to characterise step defects on the
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basal planes of cubic and hexagonal ice with a view to explaining the circular growth

observed in figure

5.2 Model and methods

5.2.1 Generating proton ordered cubic ice slabs

As mentioned previously, the surface energy of hexagonal ice is affected by proton or-
dering by an order of magnitude more than the bulk cohesive energy. With this in mind,
we can fully randomise the bulk proton ordering in the slab, and only pay attention to
the surface ordering whilst assuming that the bulk energy has not changed significantly.
The surface ordering is defined by the following order parameter on the [0001] basal

plane (of the hexagonal ice cell)?,

5 1 Nou
ct,= N—Zq, (.1)
OH i=1

where N, is the total number of dangling OH bonds on the surface (both sides of
the slab), and ¢; is the number of dangling OH bonds adjacent to the ;" dangling OH.
The B denotes the basal [0001] surface of hexagonal ice. In other words, the order
parameter Cgy; is defined as the average number of dangling OH bonds surrounding a
dangling OH bond.

In principle, C5 | can vary between 2 and 6, where the Fletcher “striped phase” has
an order parameter of 2 — although the order parameter is non-unique, for example, a
“meandering” surface pattern will also have a surface order parameter of 2. A high order
parameter represents a high degree of clustering of dangling OH bonds, while a random
surface configuration will have an order parameter of 3. Note that C5__ is calculated by
averaging over both sides of the slab in this work.

The analogous surface of cubic ice is the (111) plane. Cubic ice crystals are generally
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described as having octahedral symmetry (for example, in the explanation of Scheiner’s
halo®*), and all eight surfaces on an octahedral crystal will be topologically identical
(ignoring proton disorder) due to the symmetry. Whilst the (111) surface may not be
the only facet expressed during crystallisation, it is the natural starting point for a study
of the surface energy of cubic ice, which has no equivalent to the prism face of hexagonal
ice.

The cubic ice cells used in chapter |4/ do not have bilayers normal to the faces of the
cell, so it was necessary to construct a new cell with bilayers normal to the z-direction,
analogous to those for hexagonal ice. Thus starting from the fully cell optimised cubic
P4,2,2 cell (chosen because it is the highest symmetry antiferroelectric cell, and a non-
polar slab is required for such calculations), a surface was constructed in the (111) plane,
resulting in a 12 molecule cell that was three bilayers deep. This was used to construct
a six-bilayer 5 x 3 x 2 supercell containing 360 molecules, analogous to the six-bilayer
hexagonal ice slabs used by Pan et al.>. The surfaces of the slab were defined at the
extremities of the cell in the z-direction (z = 0 and z = ¢); the initial cell had an order
parameter of 2.

Rick and Haymet describe an algorithm for randomising the proton ordering in
an ice cell without violating the ice rules, called the “move” algorithm®?, summarised

below.

1. Identify a closed loop of hydrogen bonds

a) Randomly select a molecule in the lattice, :
b) Randomly select one of its 4 nearest neighbours, j

¢) If j is a hydrogen bond donor to i, randomly pick one of the two neighbours
of ; that are donors to j; otherwise pick one of the two neighbours of j that

are acceptors to J.

d) Continue to walk randomly in this way until the next molecule has already



CHAPTER 5. THE ICE SURFACE 126

been visited on the walk. In a periodic cell, the walker may stop on a periodic

image of the starting molecule.

2. Reorient the water molecules without violating the ice rules. For each molecule
j on the N-molecule loop, rotate the molecule about the O,-H, ; axis, where H,;
is the hydrogen atom in j not in the loop. The effect of this is to reverse the

direction of all the hydrogen bonds that form the loop.

This scheme would normally be used in conjunction with a Monte Carlo/Metropolis
algorithm, where the acceptance probability of a move is an exponential function of the
energy change resulting from the move. In this case, however, the aim was to alter
the proton ordering pattern on the surface, so only moves that (i) contained surface
molecules and (ii) increased the order parameter were accepted; a configuration was
saved after every such move. Although in principle the maximum value of C5__ is 6 in
an infinite cell®, no configurations were observed with values of more than ~4.5 (with
loose tolerances; it was assumed that no more configurations were to be found after
5000 “moves” with no increase in the order parameter). Some examples of the surfaces
constructed by this algorithm are shown in figure

As an additional step, after every move, the configuration was screened for a dipole
moment. When performing slab calculations, it is necessary to ensure that the dipole
moment of the slab is close to zero in the z-direction, otherwise there may be long range
residual electrostatic forces between periodic images, which cause the slab to potentially
drift through the vacuum gap during geometry optimisation. Any move which was
found to increase the magnitude of the dipole in the cell was rejected. Hayward and

Reimers describe three methods of imposing this constraint in an ice slab®.
CO0: No additional constraints; screen the cell for zero dipole moment after generation

C1: Constrain the number of each of the 36 OH bond orientations (24 for hexagonal

ice) to be equal.
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C2: Constrain the number of each of the 12 OH bond orientations per bilayer to be

equal.

Constraint CO is inefficient, since it will result in a vast majority of unusable config-
urations, whilst C2 is too strong and my introduce unwanted order into the lattice.

Therefore, the cell was tested against the C1 constraint after every move.

5.2.2 Surface energy of ices Ih and Ic

Surface energy calculations were performed on five such configurations with different

order parameters, and by way of comparison, on the five configurations used by Pan ez

al.” (surface energy calculations are extremely sensitive to the details of the computa-

tional setup, so it was decided that these calculations should be repeated using the same

settings, rather than using the data acquired by Pan ez al.)

The surface energy y of a n bilayer slab is calculated as prescribed by Pan ez al”.:
E:lab(ﬂ) _ nEbulk
— ot tot

2A

: (5.2)

where E®" s the total energy of the slab, E!* is the bulk reference energy per bilayer
and A is the surface area of one face of the slab. The bulk reference energy is defined as,

Ebulk — polabiyy E:ijb(n —1), (5.3)

tot tot

i.e. the difference in energy between a 7 bilayer slab and a » — 1 bilayer slab. Here,
it is assumed that the slab is deeper than the critical thickness, such that the total en-
ergy increases uniformly with the number of bilayers. Figure [5.6{demonstrates that the
surface energy converges rapidly with respect to the number of bilayer. The fact that
cubic ice has a lower surface energy than hexagonal for the first column of this plot has
no physical meaning, since a single bilayer of ice is neither hexagonal nor cubic. The

difference in energy between the single bilayer data points arises from the difference in
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Figure 5.5: Illustration of proton ordering patterns on the (111) surface of ice Ic. Dan-
gling hydrogens are shown in white; hydrogen atoms below the uppermost layer are
hidden. The surfaces respectively have order parameters (C5 ) of A: 2.0, B: 2.8, C: 3.6,
D: 4.4. Note that these numbers include dangling bonds on both sides of the slab, even
though only one side of each slab is shown. Neighbouring dangling OH bonds corre-
spond to the second nearest neighbour oxygen atoms (they are all on one half of the
bilayer), hence the hexagonal pattern.

cell dimensions, since this was a geometry optimisation rather than a cell optimisation
(the slabs were created by successively removing bilayers from a six bilayer hexagonal

or cubic ice slab). Thus although in principle the structures for single bilayer slabs are
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Figure 5.6: Graph of surface energy against number of bilayers. The surface energy has
essentially converged at 3 bilayers.

identical, there is some residual stress caused by the unrelaxed cell, and there may be a
different number of plane waves in each cell.

Five slabs with different surface order parameters were generated using the method
described in section The bulk structures were converted to slabs by inserting a
vacuum gap of at least 20 A extending in the z-direction; these were geometry optimised
in CP2K using the PBE exchange-correlation functional, a 400Ry plane wave cutoff and
the GTH TZV2P basis set. SCF cycles were assumed to have converged for energy
changes of less than 1.0 x 107¢ £, . The geometry optimisation was assumed to be con-
verged when the change in geometry was less than 3.0 X 107> 4, and the forces were less

than 5.0 X 107 E, a,~".
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5.2.3 Step formation energies of ices ITh and Ic

The grooved slab used to model steps is shown schematically in figure Step forma-

Figure 5.7: Schematic representation of the grooved slab used to model step defects
(taken from Yu et al1). A single layer step is formed on a N layer slab; the slab is 2D
periodic with cell dimensionsa = L, and » = L, (in the 3D periodic case a vacuum gap
is used in the c-direction, and steps separated by a distance /.

tion energies were computed using a modified version of the method described by Li et
al’>. The surface energy ¥ is taken from equation (5.2), and the ledge energy is defined

as,

(Eslab —Ep — J/A)
E, dge = oL , (5.4)

X

where the terms in parenthesis are respectively the energy of the grooved slab (£, ), the
bulk energy (Ey i), and the surface energy over both sides of the slab (yA), i.e. the ledge
energy is the excess energy when the bulk and surface energies are subtracted from the
slab energy. L_ is the length of the step. Here, it is assumed that either the step is non-
polar, or the separation / between periodic images of the step is sufficient such that there
is no residual electrostatic interaction between steps. Interactions between steps can be
incorporated using the following relation, which assumes an inverse square interaction
between images:

Eledge = Estep + (55)

1_23
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where B is a constant to be determined.

Thus for cases where there is interaction between steps, the ledge energy is calculated
for slabs with different step separations (/), and equation used to determine the
form of the step energy. This is problematic in the case of the ice surface since for
any proton disordered surface, there will be a different arrangement of dangling OH
bonds on the step for different values of / — and it is impossible to decompose the final
contribution into proton disorder and the Coulomb interaction between periodic step
images. For this reason, we will only consider the ledge energy E,.,.., ensuring that only
steps with a sufficiently large value of / are considered.

A variety of different slabs were used to calculate step energies; these were con-
structed using the eight-molecule hexagonal and twelve-molecule cubic cells described
in section A 10 x 3 x 3 striped (order parameter 2) hexagonal ice slab was con-
structed to investigate step growth in the [1000] direction, and a 5 X 6 x 3 slab to study
growth in the perpendicular [0100] direction. Similarly, 10 x 3 x 2 and 5 x 6 x 2 slabs of
cubic ice were constructed to study steps in analogous directions (they are not assigned
Bravais-Miller indices due to the cubic cell). The top (or bottom) bilayer of the slab was
cleaved as in figure[5.7]on either side to create a symmetrical “top hat” feature of varying
widths, resulting in a set of configurations with different values of /. These configura-
tions were geometry optimised using the same computational setup as in section[5.2.2}

Vacancy energies (E ) were calculated by removing one molecule from the step and

vacancy

re-optimising; the vacancy energy is defined as:
Evacancy = Eslab - Estep - EHZO (56)

where E,;, is the total energy of the slab with a step defect and vacancy, £, is the total
energy with the step but no vacancy, and Ey;  is the gas phase total energy of a water
2

molecule.
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5.3 Results and discussion

5.3.1 Surface energy of ices Ih and Ic

The results of the surface energy calculations are presented in figure This is in

22 T T T T T | T
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Surface energy [meV/A’]
>
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<& Cubic
q 4
12 1 | 1 | 1 | 1 | 1 | 1
2 2.5 3 3.5 4 4.5 5

Order parameter CBOH

Figure 5.8: Surface energy of hexagonal and cubic ice as a function of the order param-
eter C5_; a higher value of CZ  represents a higher degree of clustering of dangling

OH bonds. Formally, it is the average number of dangling OH bond adjacent to each
dangling OH bond.

broad agreement with the results of Pan et al., who report a linear correlation between
the surface energy and order parameter. The surface energy of the striped hexagonal
phase is slightly higher at the PBE level (12.9 meV A~? compared with 12.5 meV A~2
according to Pan). Unsurprisingly, the cubic ice surface displays the same trend, from
which we can draw the same conclusion as Pan et al.: that the most favourable surface

ordered configuration minimise electrostatic repulsion between dangling OH bonds,
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subject to the constraint that the ice rules are not violated.

Crucially, the cubic ice surface has a higher surface energy by approximately 10%
for all values of C*, although the physical meaning of this is a potential subject for
debate. At the most fundamental level, cleaving a cubic crystal to expose the (111) plane
is less facile than it is to form the basal [0001] plane of hexagonal ice. This means that
the hexagonal ice surface is more stable, and therefore less reactive.

In order to explain these findings, we calculated the structural relaxation energy of
the striped surfaces, which is defined as the difference in total energy between the final
optimised structure and a single point on the initial structure. The relaxation energy
turned out to be 0.15 €V higher for hexagonal ice, i.e. the hexagonal ice surface relaxes
considerably more. An analysis of the structure revealed that both surfaces undergo
reconstruction to roughly the same extent for both polytypes; the oxygen-oxygen sep-
aration in the surface bilayers changes from 2.691 A to 2.704 Afor cubic ice and from
2.694 A to 2.707 A for hexagonal. The standard deviation of surface bilayer oxygen-
oxygen separation changed from 0.002 A to 0.073 A for cubic ice and 0.021 A t0 0.071 A
for hexagonal. The relative separation of surface protons changed very little, by less
than 0.001 A on average. The only outlying value in this case is the standard deviation
surface oxygen-oxygen separation for hexagonal ice before reconstruction; it is almost
an order of magnitude higher than for cubic, suggesting there is considerably less sym-
metry in the hexagonal surface (i.e. the oxygen atoms are further from their ideal lattice
points).

The fact that the atoms in cubic ice are more constrained to their lattice points sug-
gests that the curvature of potential energy surface is higher than for hexagonal ice. This
is supported by the fact that the hexagonal ice slab took almost an order of magnitude
more steps to reach the same convergence threshold (99, compared with 16 for the cubic
slab). It is possible that when the surface is cleaved, the shallow potential energy surface

for hexagonal ice facilitates further movement in phase space. Performing calculations
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Figure 5.9: Definition of the two step types. Only oxygen atoms are shown; atoms in
the uppermost bilayer are coloured red, and atoms in the lower bilayer are coloured
grey. Oxygen atoms on step edges are coloured blue on the upper half of the top by
layer and cyan on the lower half. The cubic ice surface is shown; on the hexagonal ice
surface, there would be no offset between the layers (the hexagons in the two bilayers
would coincide vertically), and the steps would grow in the [1000] and [0110] directions
for the A-steps and in the [0100] direction for the B-step.

analogous to Watkins et al.28 to determine vacancy energies for the cubic ice bulk and

surface may be instructive.

5.3.2 Steps on striped surfaces

There are two contributions to the step formation energy on ice surfaces; this section
focuses on the effect of the underlying oxygen lattice on the step energy, followed by

the effect of proton ordering in section 5.3.3]

5.3.2.1 A, B, and B, steps

In order to simplify the notation, we define two distinct types of step: A and B (figure
5.9). Furthermore, B-steps are subdivided into two types: B, which are terminated
with molecules in the upper half of the top bilayer (figure [5.10b), and B,, which are
terminated with molecules in the lower half (figure [5.10d).
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Figure 5.10: The A-, B,- and B,-steps (unrelaxed). Oxygen atoms on the step edge on
the upper half of the top bilayer are blue, and cyan on the lower half.

Step formation energies for the hexagonal and cubic A-steps are reported in table
The alternating value of the ledge energy for the A-steps as [ increases is an artefact
of the method by which the slab was created, but leads to an important insight into
step formation. For the higher ledge energies, the proton ordering resulted in a major
structural relaxation on one side of the striped slab, but not on the other, whilst for the
lower ledge energies, reconstruction occurred on both sides.

When the basal plane of an ice crystal is cleaved, as in section the water
molecules that are normally four-coordinated in the bulk become three-coordinated at
the surface. When a step defect is introduced, some molecules in the top half of the top
bilayer on the step edge become two-coordinated, an energetically unfavourable situa-
tion. These two-coordinated molecules will sometimes relax to form a third hydrogen
bond with a three-coordinated molecule on the bilayer below (figure[5.11), but in some
cases the hydrogen bond topology makes this impossible. The lower ledge energies on

table|5.1|correspond to surface proton ordering configurations where substantial recon-
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A-step B-step

I (A) Hexagonal Cubic [ (A) Hexagonal Cubic
8.8 10.1 17.0 15.3 30.1 29.4
13.2 16.5 8.9 19.1 37.8 37.5
17.6 10.4 16.7 229 14.26 15.9
22.0 16.3 9.0 26.7 42.9 41.2
26.4 10.5 16.8  30.6 29.9 28.9
30.8 16.9 10.1 344 38.2 37.1
34.2 12.8 17.0  38.2 14.3 16.0

Table 5.1: Ledge energies (£}4,,) in eV A" of hexagonal and cubic A- and B-steps on
striped surfaces. / is the distance between steps (periodic images), i.e. a larger value of
[ represents a narrower step with a larger distance to the next periodic image (see figure
5.7). A single row of molecules is removed from the step edge in to create slabs with
progressively larger values of /.

struction as in figure occurs on both step defects (i.e. both sides of the “top hat”
on the slab), whilst the higher energies correspond to a situation where there is recon-
struction on one side only. Reconstruction can occur similarly on the B-step, as shown
in figure

Ledge energies for B-steps are almost invariably higher than for the A-steps, but
spread is much larger, and there are four distinct energy “bands”. As with the A-steps,
it is possible for either side of the step feature to relax, but in addition there are two
distinct ways of cleaving the surface to generate either a B,-step or a B,-step, compared
with one for the A-steps. The ledge energies are considerably higher as a result of the
topology of the surface — in all cases, only one of the two step edges was able to relax to
form the third hydrogen bond mentioned above. On the A-step, there were up to three
water molecules on the step edge that underwent major structural relaxation to form an
extra hydrogen bond (figure[5.13), compared with up to five on the B -step (figure
and none on the B, step. The B, step undergoes minimal structural relaxation because
all of the molecules on the step edge are in the lower half of the bilayer and are therefore

three-coordinated.
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(d) Side view after reconstruction.

Figure 5.11: A step feature on the basal plane of a striped six bilayer 10 x 3 x 2 cubic ice
surface before and after reconstruction (only two bilayers shown). Oxygen atoms are
coloured according to their “height” in the cell; dark blue atoms are in the top half of the
upper bilayer, and dark red atoms are in the lower half of the bottom bilayer. Hydrogen
bonds are indicated by blue broken lines. Note the formation of the new hydrogen
bond to the two-coordinated molecules in the uppermost bilayer after relaxation.

5.3.2.2 B; and B; steps

The situation is complicated further by the lack of mirror symmetry for the two upper-

most bilayers when a B-step forms. It is therefore necessary to define two further types
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(a) Top view before relaxation.
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(d) Side view after relaxation.

Figure 5.12: A step feature on the basal plane of a striped six bilayer 5 x 6 x 2 cubic
ice surface before and after relaxation (only two bilayers shown). Oxygen atoms are
coloured according to their “height” in the cell; dark blue atoms are in the top half of the
upper bilayer, and dark red atoms are in the lower half of the bottom bilayer. Hydrogen
bonds are indicated by blue broken lines. Note the formation of the new hydrogen
bond to the two-coordinated molecules in the uppermost bilayer after relaxation.

of B-step: B} and B;. The difference between B, and B} is shown in figure There

are one-coordinated molecules on a B}-step edge, thus even after major reconstruction,

the edge molecules remain two-coordinated. The two-coordinated edge molecules on
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Figure 5.13: The “active” molecules in the reconstruction of the A-step in the top bilayer
(green) and its only nearest neighbour in the lower bilayer (orange) on an A-step. Red
oxygen atoms are in the upper terrace and blue ones are in the lower terrace.

Figure 5.14: The “active” molecules in the reconstruction of the B,-step in the top bi-
layer (green) and its nearest neighbours in the lower bilayer (orange) on an A-step. Red
oxygen atoms are in the upper terrace and blue ones are in the lower terrace.

the B, step have two nearest neighbours on the lower terrace with which they can form
a hydrogen bond, compared with only one for the B-step.

A similar situation arises for the B,- and B} steps; however, there is minimal struc-
tural relaxation for any B, step, so their step formation energies should be similar.

Due to the symmetry of the ice slab, it is impossible to form a grooved slab with only
B, or B; steps, there will always be one of each (and similarly for B, and B}). Therefore

the ledge energies presented for B-steps are not representative of a single type of step.

The five different types of step are summarised in table[5.2] Table[5.3|lists the lowest
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(c) B, (side). (d) B (side).

Figure 5.15: Difference between B,- and B} unreconstructed steps. Two-coordinated

molecules are green, and the lower terrace molecules to which they form new hydrogen
bonds are orange. Note that in the B} step, the two-coordinated molecules each have
two nearest neighbours in the lower terrace, compared with one for the B, -step.

ledge energies for the cubic striped slabs. For these three cases, both sides of the terrace
have the same step feature (i.e. a reconstructed A-step, a reconstructed B, step or an
unreconstructed B, step on both sides), so based on the assumption that / is sufficiently
high (approximately 20 A in these cases) and the Coulomb interaction between step

images is essentially zero, these are the step formation energies.
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— umber of nearest
Coordination number of N

Step step edge molecules neighbours in lower

terrace
A 2 1
B, 2 1
B! 1 2
B, 3 —
B’ 3 —

Table 5.2: Summary of different step types.

Ledge energy
méV/A  eV/molecule
A 17.38 0.25
B,+B: 2281 0.10
B,+B, 3295 -
B, +B, 1597 _

B +B, 41.22 -

Table 5.3: Lowest step formation energies for proton ordered (striped) surfaces. Due
to the slab symmetry, there are always two types of step in the B-direction on each
slab. Step energy per molecule refers to (notionally) two-coordinated molecules. Ledge
energies per molecule are expressed as energy per two-coordinated molecule. Values for
step combinations involving a B, step have not been included because they do have
two-coordinated molecules on the step edge.

The bulk energy of hexagonal or cubic ice is 0.7 €V and in the bulk, there are two
hydrogen bonds per molecule (in the bulk each molecule is involved in four hydrogen
bonds, accepting and donating two each, but these are shared so there are only two
bonds per molecule), resulting in an average energy of 0.35eV per bond. The lowest
ledge energy per molecule for an A-step on the cubic striped slab can be expressed as
0.25 €V per notionally two coordinated molecule, which corresponds approximately to
the formation of one additional hydrogen bond during reconstruction. Similarly, the
energy of the B, step can be expressed as 0.10 €V per two coordinated molecule, which
is considerably lower. The B, step has a higher density of two coordinated molecules

than the A-step (2.20 A~" for the former compared with 3.81 A~! for the latter), but the
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ledge energy per Angstrom is higher for the B, step. This is somewhat counterintuitive,
since one might expect more reconstructions per unit length to lower the B, step energy

more than for the A-step.

5.3.2.3 Formation energies of different step types

In order to explain these numbers, I have attempted to calculate the energy of each
unique B-step type. The symmetry of the ice lattice normal to the surface and in the
B-direction means that it is only possible to construct certain combinations of B-steps.
This gives the sums of step energies in table These can be regarded as four simulta-

neous equations with four unknowns, which can be written in matrix form:

1100 E(B,) 22.81
0011 E(BY) 32.95
— (.7)
1010 E(B,) 15.97
0101 E(B}) 41.22

This matrix is singular, as can be demonstrated by adding the first and second rows,
and the third and forth rows, thus there are linear dependencies and this set of equations
cannot be uniquely solved. If we assume that B, = B}, the resulting equations can be
solved to give step energies of E(B,) = —0.51 meV A1, E(B;)=23.33meV A-'and E(B,)
= 16.49meV A~!. The negative energy for the B, step suggests that the assumption
that the B, steps have identical energies is not completely valid. It is not unreasonable,
however, to assume they are similar, from which it follows that the B, step has the lowest
energy of all steps (including A) due to the dense reconstruction. The high energy
of the B} step is a result of one-coordinated molecules reconstructing to become two
coordinated, such that although they do undergo reconstruction, the edge molecules
still have a lower coordination (2) than on the B, steps (3). Finally, in order to make

the step formation energy of B, positive, the B,-step must have a lower energy than B},



CHAPTER 5. THE ICE SURFACE 143

although the reasons for this are unclear, since both undergo minimal reconstruction.

Up to this point, we have not discussed the difference between steps on hexagonal
and cubic ice surfaces. Table[5.1|suggests that A-step energies are about 5-10% higher for
hexagonal ice on the cubic ice surface, and B-step energies are generally 5-10% higher for
B-steps on the hexagonal ice surface. In a hexagonal ice crystal the bilayers are stacked
such that in the z-direction, “channels” run through the hexagonal rings; in cubic ice,
the layers are offset such that a molecule lies at the centre of a hexagonal ring on the layer
below. The differences in step energy must be a combined result of the difference, and
the subtly different proton ordering (even though both hexagonal and cubic surfaces are
striped). At this stage, we do not have an explanation for the energy differences.

In the following sections, we use only proton disordered cubic ice surfaces; both
hexagonal and cubic ices are of interest for different reasons, so the choice is somewhat
arbitrary. We expect the same step formation model will be valid for both polytypes
with subtle energetic differences, since in the first coordination sphere of a molecule,
the structures are identical. After development of a model for cubic ice, we hope to

revisit hexagonal ice in future work.

5.3.3 Steps on disordered surfaces

It is difficult to relate these numbers to the two-dimensional single bilayer crystal growth
on the ice surface, firstly because the surfaces considered thus far are striped (having
an order parameter of 2), and secondly because of topological variation when a single
layer is cleaved from the step edge due to both the underlying ice lattice and the surface
proton ordering. The lowest energy B-step on the hexagonal slab is more favourable
than the lowest energy A-step, but a randomly cleaved B-step is less likely to have the
lower energy due to topological variation. These considerations are however somewhat
artificial, since one would expect the surface to be proton disordered, with an order

parameter of 3.0.
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[ (A) A-step

13.2  20.0
17.6 284
220 250
264 255
308 174
352 3041
39.6 185

Table 5.4: Ledge energies in meV A~! for proton disordered cubic ice A-steps (C P
3.07).

I(A) B,+B; B,+B

9.5 19.1 38.8
17.1 30.6 36.3
24.8 38.6 31.7
324 31.6 371

Table 5.5: Ledge energies in meV A~! for proton disordered cubic ice B-steps (C o=
3.07).

The energies in section only apply to a special case, the striped Ih/Ic surface;
on a disordered surface, the step termination is unlikely to lead to a straight step defect
since the relaxation must be dependent on the proton ordering on the top two bilay-
ers. Surface disordered slabs were generated as in section in the first instance,
surfaces with an order parameter closest to three (the supposed order parameter of a
real hexagonal ice surface) were considered. Tables[5.4/and[5.5/demonstrate the range of
ledge energies for seven different proton disordered A-steps and eight different proton
disordered B, and B, steps on surfaces with an order parameter of 3.07.

From this relatively small set of results, it can be seen that ledge energies range be-
tween 17.4meV A~" and 30.1 meV A~" for A-steps, 19.1 meV A~ and 38.6 meV A~ for
B, -steps and 31.7 méV A~! and 38.8 méV A~! for B,-steps. These numbers give the im-
pression that disordered A-steps generally have the lowest ledge energies, followed by

B, steps, and B, steps have the highest energies.
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Considering first the A-step energies, those at the lower end of the range occur
when all of the two-coordinated step edge molecules are in a favourable configuration
to form the additional hydrogen bonds. As the number of under-coordinated molecules
increases, the step energy increases. There are instances where a two-coordinated molec-
ular configuration is so unfavourable due to Coulomb repulsion that it is almost forced
out of the step, becoming part-way between a step molecule and a surface-adsorbed
molecule; these have the highest step energy.

The energies above for B, steps are an average for the B,-step on one side of the
terrace, and a B} on the other — and as demonstrated in section the B, ordered step
has the lowest formation energy and the B} ordered step has the highest energy since
after reconstruction B, -step edge molecules are three-coordinated, whereas B} molecules
are two-coordinated. The outlying energy for the B,-step at / = 9.5 has two possible
causes. The first is the favourable, locally striped proton ordering on the B -step which
allows full reconstruction of all two-coordinated edge molecules. The second is the
fact that each edge molecule on the B; step has two nearest neighbours on the lower
terrace, which for the local proton ordered structure in this case, allowed one of the
edge molecules to become three coordinated, lowering the step energy substantially.

The figures in tables[5.4/and[5.5|give an indication of the affect of proton ordering on
cubic ice steps, but to get a statistical average for these energies requires far more calcula-
tions on surfaces of varying order parameter and the same periodic step separation. The
surfaces used in this chapter are somewhat biased by the way they were constructed:
the Move algorithm was used on a striped slab; although this randomises the surface
over time, surfaces with low values of CJ | locally retain characteristics of the striped
slab, which may result in slabs that are more ordered than intended. A possible solution
would be to start with a high-C? _ slab, and run the algorithm in reverse, only accepting

moves that reduce the order parameter.
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Figure 5.16: The twelve possible configurations for the “active” molecules in a A-step
edge termination on cubic ice, together with the vacancy energy of the molecule in the
upper half-bilayer of the step (coloured green) and its dipole moment. The other upper
bilayer molecules are coloured red, and lower bilayer molecules are coloured blue. The
ledge energy depends on whether this molecule is unrestricted enough to relax and form
a hydrogen bond with the closest molecule in the upper half-bilayer of the lower terrace
(coloured yellow). The three configurations marked with an asterisk (*) do not undergo
this reconstruction.

5.3.3.1 Vacancy energies for disordered steps

In the case of the A-step, it was observed that the ability of a two-coordinated molecule
in the top half of the top bilayer (dark blue in figure to relax is determined by
its orientation and the orientation of its nearest three-coordinated neighbour in the top
half of the bilayer below (pale red in figure 5.11). A molecule constrained by an ice
lattice has six allowed orientations, and there are only two possible orientations of the
molecule in the lower bilayer that can influence the relaxation, a dangling OH bond
or a non-dangling OH. Thus there are 2 x 6 = 12 configurations of the two “active”
molecules, pictured in figure The vacancy energy of the upper bilayer molecule
(in green) was evaluated in each case, along with the dipole moment of the molecule in
question.

It is noteworthy that of the 12 configurations illustrated in figure only three

are incapable of the reconstruction to form an additional hydrogen bond. These con-
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figurations have the lowest vacancy energies, which is unsurprising since they remain
two-coordinated. Thus approximately one in four molecular sites on a step will have
a high energy, onto which adsorption and therefore crystalline growth are easier. Ad-
sorption onto one of these sites will result in two kinks on the step, which facilitate

expansion of the growth front.

5.3.3.2 Molecular dipoles of step edge molecules

Watkins ez al. established that surface molecules have a large and continuous range of
vacancy formation energies, and that the vacancy energy is weakly correlated with the
molecular dipole®. They note that in the bulk (a set comprised of all molecules below
the surface bilayer), molecular dipoles have values in a narrow band around 3.5D, the
bulk molecular dipole, and the surface molecules have dipoles in a wide band between
roughly 2.7D and 4.5D. Figure shows the frequency of molecular dipoles in a 10 x
3 x 2 (6-bilayer) proton disordered cubic ice slab with an A-step. In agreement with the
finding of Watkins ez al. there is a strong peak in the range 3.4-3.7D which constitutes
the bulk molecules, with a large spread for the surface molecules.

If we consider only molecules on the step edge that are two-coordinated when the
surface is cleaved, the frequency distribution of dipoles is shown in figure It can
be seen that most edge molecules have a dipole between the bulk value (3.5D) and the
gas phase value (1.85D). This is because the geometry of a molecule is less constrained
at the step edge compared with the bulk, and the bond angle is allowed to relax to a
conformation closer to the gas phase value.

In a similar analysis to Watkins et a/%%., figure[5.19shows the molecular dipole plot-
ted against the vacancy energy, but only for molecules on the step edge in the top half of
the bilayer, i.e. molecules that are two coordinated instantaneously after the surface is
cleaved to create the step feature. Note that the gas phase energy of a water molecule is

used as the reference here (whereas Watkins et al. used a bulk phase reference). It shows
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800
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Figure 5.17: Histogram of molecular dipole moments for all molecules in seven different
six-bilayer cubic ice slabs with a step feature. The sharp peak in the 3.5-3.6D range
corresponds to the molecular dipole in bulk ice.

a weak positive correlation — higher dipoles are generally associated with a higher va-
cancy energy. This is consistent with the findings of Watkins et al. for a pristine surface.
Thus in principle, it should be possible to identify the most weakly bound molecules
by identifying the step molecules with the lowest dipole moment as the points on the
step edge most susceptible to pre-melting. Thierfelder et al. report adsorption ener-
gies in the range 0.548 eV to 0.576 €V for a water monomer on a disordered hexagonal
ice surface using VASP and the PBE functional’>!. The adsorption energy is therefore

higher than the vacancy energy for the step edge molecules that do not undergo sig-

nificant reconstruction in figure [5.16 (5.16d, [5.16f| and |5.16g), and possibly one or two
that do undergo reconstruction (5.16b} [5.16h). Molecules in these configurations must

be metastable with respect to migration from the step to the terrace, but there must
also be an activation barrier since they did not spontaneously move during geometry
optimisation. It is possible that some of these molecule occupy local minima on the po-

tential energy surface, and it should be emphasised that we have only performed static
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calculations at 0K. In a molecular dynamics simulation, where the system is given ther-
mal energy, it is quite possible that these loosely bound molecules will overcome low
barriers and migrate to one of the terraces, manifesting pre-melting on the microscopic
scale.

The ledge energies for ordered and disordered surfaces give us an important insight
into the rate and direction of the two dimensional nucleation reported by Sazaki et al®.
A low step energy represents a stable termination. After the crystal is cleaved to form a
step, some of the molecules in the upper half of the top bilayer will be two-coordinated,
i.e. they only form hydrogen bonds with two other molecules. This is an unstable
arrangement — the lowest energy configuration in bulk ice consists of four-coordinated
molecules which are topologically impossible at the surface — therefore molecules at the
step edge prefer to relax, forming a third hydrogen bond with the lower terrace. The
formation of such stable steps actually hinders the lateral growth of a bilayer because
hydrogen bonds must be broken in order to adsorb additional molecules. Steps are more
reactive relative to the surface or bulk because the molecular sites are undercoordinated,
and are therefore particularly susceptible to adsorption and modify diffusion barriers®>2.
Crystal growth is faster on “sticky” edges, that is, edges with a higher ledge energy
where the energy will be lowered by the addition of a molecule from the liquid phase
without a barrier. In the case of the three-coordinated step edge molecules, this might
require the breaking of the newly formed hydrogen bond. Growth is therefore faster
on a step where the structural relaxation has not occurred.

Sazaki et al. observed birth and isotropic growth of single ice bilayers — there was
no preferred growth direction and no distinct flat step front. Steps in [1000] and [1010]
directions are topologically identical (as illustrated in figure [5.9| when considering the
oxygen sub-lattices, so one might expect to see the birth of hexagonal “islands” and their
planar growth; the work of Sazaki demonstrates that this is not necessarily the case.

The formation of hexagonal islands is hindered by two effects. The first is that an
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A-step may conditionally have a higher ledge energy than a B-step, due to the fact that a
B-step may consist of only molecules in the upper half of the bilayer in the upper terrace,
or only molecules in the lower half of the bilayer. The former will relax to create a low
energy step due to the higher density of notionally two-coordinated molecules per unit
length compared with A-steps, whilst the latter is a high energy and therefore “sticky”
step since molecules in the lower half of the bilayer are invariably three-coordinated and
cannot relax. This should presumably lead to a step growth with two distinct alternating
rates: fast when the sticky high energy step is exposed, then low when the low energy
relaxed step is formed.

The second effect is surface proton disorder. Watkins et al. demonstrated that the
ice surface has a wide range of molecular vacancy energies, and figure demonstrates
that the same is true of step edge molecules in the upper half of the bilayer, suggesting
that certain points on the step are more susceptible to pre-melting. The converse is also
true: that there is a range of molecular adsorption energies at the step edge which will
result in non-uniform two-dimensional crystal growth.

In conclusion, it would appear that the isotropic two-dimensional growth of single
bilayers on the ice surface is a complicated superposition of three effects: firstly, the
growth of A-steps in the direction of the prism faces which in principle would result
in the formation of expanding hexagonal islands; secondly, growth of B-steps, which
alternates between faster than growth in any other direction and slow depending on
whether the step terminates in molecules in the bottom or top half of the bilayer respec-
tively; and thirdly, proton disorder, which should be stochastic for the expected random
dangling-OH distribution. It is not inconceivable that these three effects in conjunction
could lead to the birth and growth of the expanding circular islands observed by Sazaki

et al. but a more detailed characterisation requires further study.
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5.4 Summary and conclusions

DFT calculations show that the cubic ice surface, like the hexagonal ice surface, un-
dergoes reconstruction to minimise the energy due to electrostatic repulsion between
dangling OH bonds. As with hexagonal ice, the surface energy is correlated with the
order parameter CPM, which describes the average number of dangling OH bonds adja-
cent to a dangling OH bond, such that clustering of dangling OH bonds is energetically
unfavourable, whilst the Fletcher striped phase has the lowest energy. The surface en-
ergy of the cubic striped phase is approximately 10% higher than that of the hexagonal
striped phase, so hexagonal ice is less reactive.

We have identified five distinct types of step on the ice I surface, and evaluated their
energies on proton ordered and disordered surfaces. Some proton ordered configura-
tions allow the undercoordinated molecules on a step edge to reconstruct, forming an
additional hydrogen bond with the lower terrace, thereby reducing the step energy.
B, steps have the lowest step formation energy since they undergo the most molecu-
lar reconstructions per unit length. B steps have the highest surface energy because
the terminating molecules are one-coordinated, and reconstruct to become only two-
coordinated. Only molecules in the upper half of the top bilayer at the step edge are
capable of undergoing this relaxation, thus B, steps, where the step terminates on a
three-coordinated molecule on the lower half of the bilayer will undergo minimal re-
construction (i.e. will not form new hydrogen bonds), and have a higher step energy.
Proton disordered steps have a range of energies, and disordered A-steps generally have
a lower energy than disordered B-steps for the reason detailed above.

Two-coordinated molecules on the step edge (prior to reconstruction) have a range
of vacancy energies; these vacancy energies are weakly correlated with the molecular
dipole moment, since the most weakly bound molecules have weaker hydrogen bonds,
therefore their electron density is closer to that of the gas phase.

Two-dimensional bilayer ice growth is dependent on step energies: high energy steps
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will result in a faster moving growth front since they are more reactive and therefore
“sticky”. Thus growth is fastest in the B-step direction, and has an alternating rate: fast
when a B,-step is exposed, and slow when a B, step is exposed. However, the overlap-
ping range of energies for disordered A-steps means that growth in the direction of the
A-step maybe conditionally favoured depending on the local proton ordered configura-
tion. A range of molecular vacancy energies for two-coordinated molecules on the step
edge means that certain sites on the step are more favourable for adsorption, resulting
in non-uniform growth. These effects in part explain the lack of straight step fronts in
the two-dimensional growth of elementary ice layers observed by Sazaki et al., but we

cannot make strong inferences about the circular growth patterns observed.



Chapter 6

Formation of interstellar

glycolaldehyde

6.1 Introduction

Glycolaldehyde is the simplest sugar, a monosaccharide containing two carbon atoms
with the formula CH,OHCHO. Tt is the subject of interest due to its implication in the
formation of RNA and amino acids in terrestrial environments. The prebiotic synthesis
of sugars on Earth was thought to occur via the formose reaction 2H,CO — CH,OHCHO,
which is autocatalytic after the first reaction catalysed by (for example) a clay surface,

2. The discovery of extraterrestrial glycolaldehyde in molecular

a base, or a photon
clouds, where stars are born, casts doubt on this proposition.

It has been detected in significant quantities first in the Galactic Centre molecular
cloud Sagittarius B2(N)“ and more recently near the star-forming hot molecular core
G31.4140.31%. It is known that the reactions necessary to form glycolaldehyde cannot
occur in the gas phase in the lifetime of a molecular cloud (roughly ten million years);

although many reactions between hydrogen atoms and neutral molecules have low bar-

riers, they cannot proceed at temperatures lower than 100 K", Whilst the details of

154
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the formation mechanism is unknown, it is assumed to proceed via a series of reaction
starting with the hydrogenation of carbon monoxide, catalysed by icy “mantles” coat-
ing dust grains in the interstellar medium (ISM).

The interstellar formation of Glycolaldehyde is a potential future hot topic, since
it has recently been observed using ALMA (the Atacama Large Millimeter Array) in
the vicinity of the Sun-like protostar IRAS 16293-2422%. Crucially it was detected at
distances roughly equivalent to the separation of the Sun and Uranus from the protostar,
suggesting that the ingredients for life were present during the formation of the solar
system.

Since it is impossible to simulate the long timescales and extremely low fluxes in-
volved in astrochemistry experimentally, examining reaction barriers using computa-
tional modelling can give us great insight into the mechanisms of glycolaldehyde forma-
tion.

In this chapter we propose a potential mechanism for the formation of glycolalde-
hyde based on the astrophysical and chemical considerations in a recent paper by Woods
et al., and an alternative proposed by Goumans (private communication, 2011). The
first part is a characterisation of the reactions comprising these mechanisms in the gas
phase to high levels of theory including MP2 and CCSD(T). The second part models
bare dust grains as hydroxylated silicate nanoclusters, assessing their effect on the reac-
tion barriers. The third part examines the catalytic effect of a crystalline ice surface on

these reactions, modelling icy mantles on interstellar dust grains.

6.2 The nature of interstellar dust grains

Glycolaldehyde has been observed in molecular clouds, cold and dense regions con-
taining gas and dust which agglomerate to form stars and planets. Temperatures vary
between 10K and 100K; the temperature is lowest at the core of the cloud, which is

shielded from radiation by the surrounding dust grains. The collision rate between
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gaseous atoms and molecules is less than once per year, with significant chemical evolu-
tion occurring over a timescale of 10° to 10” years™>*. At such low temperatures, reaction
barriers are typically too high in the gas phase, and are therefore thought to occur on

the surface of dust grains for the following three reasons*>*:

e At 10K, most atoms and molecules deposited on the grain surface remain ad-

sorbed for long periods of time.

e Excess energy from exothermic reactions can escape into the surface, allowing ad-

dition and recombination reactions to proceed without subsequent dissociation.

e The surface can be a catalyst, reducing reaction barriers and allowing the forma-

tion of complex molecules under unfavourable conditions.

The nano-particles comprising interstellar dust make up only 1% of the total mass
of the interstellar medium, but play a vital role in its chemical evolution'>>. Dust grains
form at ~1000K from magnesium, silicon, oxygen and carbon surrounding dying stars
and range in size from 1nm to 1 um”*>. Young molecular clouds of this type are sparse
and easily penetrated by cosmic rays, and remain as bare siliceous or carbonaceous par-
ticles as volatile molecules are rapidly evaporated by incident radiation. As the cloud
cools the density increases, and the core is shielded from radiation, thus allowing the
deposition of molecules on the grains and the formation of mantles of molecular ices.
The mantle consists mostly of water ice, but contains many other species such as CO,
CO,, H,CO, CH,OH, CH, and NH,, as observed in the infrared spectrum of the
molecular cloud surrounding protostar W33A (figure[6.1). The observed abundances of
these species can only explained by reactions catalysed on icy dust grain surfaces’>*.

Significantly, the broad H,O peak in the 3 um region suggests the presence of low
density amorphous (LDA) ice, or amorphous solid water (ASW) (as denoted by the as-

tronomical community; here, the latter abbreviation is used to avoid confusion with

the local density approximation) instead of crystalline ice. The ASW mantle is doped
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Figure 6.1: 2.4 pm-2.5 pm infrared spectrum of icy dust grains comprising the molecu-
lar cloud around the protostar W33A (taken from Gibb ez al. (2000)'4). W33 A is unusual
in having a ‘rich solid-state molecular spectrum.’

with impurities including CO and CO,. Crystalline cubic ice Ic forms at higher tem-
peratures and remains crystalline even when cooled to 10K since it is more stable, but

can be transformed to ASW under certain conditions®*.

e Under bombardment from 100 keV electrons at temperatures below 80 K.
e Under incident ultraviolet photons at temperatures below 70 K.
e Under bombardment from 700 keV protons or 3 keV He™ ions.

Note that although most water ice in interstellar dust grain mantles is thought to be
amorphous, observations of crystalline ice are not unprecedented. Ice mantles formed
above a threshold of ~110K are crystalline, and those formed below are amorphous. In
addition to experimental data, Maldoni et al. developed an astrophysical model which
suggests that grain mantles in dust surrounding oxygen-rich stars are crystalline’>®. Tt
has been suggested that slow water deposition rates may result in the formation of cu-

1571158

bic ice, even at temperatures associated with amorphous ice formation . However,

it does not necessarily follow that grain mantles in molecular clouds are crystalline.
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Amorphous ice undergoes a phase transition to ice Ic at ~120K, a process that occurs
at a decreased rate as the temperature drops. Omont et al. therefore propose that amor-
phous mantles may transform to crystalline ice if left for long enough at sufficiently
high temperatures below the transition point™?, but this is likely to result in ice con-
sisting of the two coexisting phases. A crystalline “seeding” surface in amorphous ice

will also greatly increase the transition rate.

6.3 Reactions on icy mantles

Reactions on the surface of interstellar dust grains broadly fall into two categories. The
first type is energetic processes caused by incident cosmic rays, specifically ultraviolet
radiation and ions in the keV-MeV range. The products are numerous and varied, and
depend on the composition of the ice; CO, CO, and CH,OH doped ices result in the
formation of such species as H,0O,, HO,, HCO, H,CO, HCOOH and CH,CHO 124l
Energetic processes are generally suppressed by shielding of the molecular cloud core,
leading to the second type, which includes non-energetic surface reactions involving
abundant species such as hydrogen and oxygen atoms.

At low temperatures, only atoms are likely to be mobile on grain surfaces; in partic-
ular at 10K, only hydrogen atoms are mobile.

Most atomic and molecular species present in the ISM adsorb onto ice at 10K. Typ-
ically one hydrogen atom will adsorb onto a dust grain per day, and one carbon or
oxygen atom every few days. The surface coverage of the grain is low, so the Langmuir-
Hinshelwood mechanism (in which both reacting species are adsorbed onto the surface)
dominates over the Eley-Rideal mechanism (one species is adsorbed, the other is inci-
dent from the gas phase). At 10K, most thermally activated processes are impossible due

to the size of the reaction barriers, therefore quantum tunnelling becomes important.
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The de Broglie wavelength A of a particle of mass 7 is defined as,

Ap= 6.1)
@ 2mkT

For a rectangular barrier of width 4 and height E, the tunnelling rate &, is defined as
approximately,

k, =~ voe_z?ﬂ vamE 6.2)

where v, is the frequency of harmonic oscillation. It is clear that tunnelling is indepen-

dent of temperature. This can be compared with the rate of thermal diffusion &,
ky, = voe_% (6.3)

Tunnelling is generally possible when the de Broglie wavelength of the reactant species
is similar to the barrier width; this is only thought to be possible for light atoms (namely
hydrogen) at low temperatures. It is also significant in surface diffusion. The tunnelling
rate drops drastically as the mass of the species increases, and is acutely sensitive to
the shape of the barrier — meaning its symmetry as well as its width @ (tunnelling is

facilitated by a symmetrical barrier).

6.4 The effect of grain surface morphology

There is no known viable mechanism for the formation of hydrogen molecules in the
gas phase via recombination of hydrogen atoms at low temperatures. It is therefore
generally accepted that this reaction happens on the surface of interstellar dust grains
via the Langmuir-Hinshelwood or hot atom mechanism. This reaction releases 4.5 eV
of energy, the partitioning of which could have a significant impact on the chemical
and physical evolution of the molecular cloud. Hornekear ez al. performed laboratory

experiments in which hydrogen and deuterium recombined on porous and non-porous
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amorphous ice films'®, reaching several important conclusions. Firstly, they found
that hydrogen atoms are extremely mobile on the ASW surface at temperatures as low
as 8K. Secondly, H, molecules formed by recombination on porous ASW remained
physisorbed for long periods since it is retained in the pores, with approximately one
molecule desorbing per year (a short period on an astronomical scale). Most of the heat
of recombination is transferred to the ASW in this case, facilitating thermal catalysis
of grain surface reactions. Thirdly, in the case of non-porous ASW, the H, molecules
desorb much sooner after recombination, and the energy released is transferred into
the gas phase as translational and vibrational kinetic energy in the H, molecules. They
conclude that in the case of dense or “dark” molecular clouds, the grain morphology
is responsible for the energy distribution of gaseous H,, and not the detailed chemical
nature of the grain surface.

Al-Halabi and van Dishoeck examined the adsorption and diffusion of hydrogen
atoms on an amorphous ice surface using classical trajectory calculations and the TIP4P
water model with a H-H, O pair potential*®. They found that (somewhat counterin-
tuitively) the adsorption rate is weakly dependent on whether the surface is crystalline
or amorphous, but the atoms are much more tightly bound on the amorphous ice sur-
face as a result of corrugations, which mean that adsorbed species have more nearest
neighbours inside grooves. The binding energy distribution for crystalline ice is much
narrower since amorphous ice has a diverse array of adsorbing potential wells in com-
parison. They calculate that the adsorption lifetime for a hydrogen atom at 10K is ap-
proximately 1 day on crystalline surface, compared with 230 million years on an ASW
surface. The vastly increased adsorption lifetime for ASW means that hydrogen recom-
bination is much more efficient. Since the recombination reaction is barrierless, it is
expected to be the dominant process on the grain surface, compared with hydrogena-
tion of CO-derived species.

Interstellar ice is thought to have a larger range of hydrogen binding energies due to
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the presence of molecules other than H O. A lower binding energy generally results in
a higher diffusivity, but lowers the adsorption probability.

Hidaka ez al. experimentally examined the effect of the morphology of the ice sur-
face on the hydrogenation of CO"?, Hydrogenation was allowed to occur on amor-
phous and crystalline (presumably cubic from the formation regime) ices in the follow-

ing sequence,
CO — HCO — H,CO — CH,0 or H,COH — CH,0OH (6.4)

and the abundances of each species monitored using Fourier transform infrared spec-
troscopy. It is noteworthy that none of the radical species (HCO, CH,O or H,COH)
were detecting, suggesting that the biradical reactions involved in their hydrogenation
occurred extremely rapidly. It transpired that the rate of the CO + H — HCO step
was much higher on ASW, perhaps due to the lower hydrogen desorption rate on the
amorphous surface caused by the trapping of atoms in pores and corrugations'®!. The
rate constant was found to be the same on ASW and crystalline ice, suggesting that the
enhanced rate on the ASW surface is purely a result of the greater hydrogen atom num-
ber density. CO doped ice has lower hydrogen adsorption rate than pure ice because it
has a much smaller dipole; as a result, the reaction rate is decreased if the CO molecule

coverage is too high.

6.5 Proposed glycolaldehyde formation mechanisms

Glycolaldehyde, methyl formate and acetic acid are isomers with the empirical formula
C,H,O,, and have all been detected in molecular cores. They appear with varying abun-
dances as a result of their different formation mechanisms; glycolaldehyde and acetic
acid have comparable abundances, whereas methyl formate is ubiquitous in comparison.

Hollis et al. reported relative abundances (glycolaldehyde : acetic acid : methyl formate)
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(a) Glycolaldehyde (b) Acetic acid (c) Methyl formate

Figure 6.2: Three isomers with the empirical formula C,H,O, detected in molecular
clouds.

of 1:0.5:26 in the Large Molecule Heimat hot core in Sagittarius B2(N)163,

Woods et al. list five possible mechanisms for the formation of glycolaldehyde™*:

I Sorrell (2001)163

H,0+hy— OH+H 65)
CH, +hv—CH, +H 6.6)
CH, + OH — CH,0H 67)
CO+H — HCO 68)
CH,OH + HCO — CH,0HCHO + H 6.9)

IT Bennett & Kaiser (2007)

CH,OH +CRP — CH,OH + H (6.10)
CO +H — HCO (6.11)

CH,OH + HCO — CH,0OHCHO (6.12)
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III Halfen et al. (2006)*/

H? +H,CO — H,COH* +H, (6.13)
H,COH* +H,CO — CH,0OHCH,0* (6.14)
CH,OHCH,0* — CH,OHCHOH?* (6.15)
CH,OHCOH* — CH,0OHCHO + H* (6.16)

IV Béltran et al. (2009)%

CO+H+H — H,CO 6.17)
CO +H — HCO (6.18)
H,CO + HCO +H — CH,0HCHO (6.19)

V Charnley & Rodgers (2005)1¢%

CO +H — HCO (6.20)
HCO +C — HC,0 6.21)
HC,0 +H — CH,CO 6.22)
CH,CO +H — CH,CHO (6.23)
CH,CHO + O — OCH,CHO (6.24)
OCH,CHO + H — CH,0HCHO (6.25)

Note that “CRP” stands for cosmic ray particle. All of these mechanisms apart from ]
(which happens in the gas phase) occur on a grain surface, via the Langmuir-Hinshelwood
or hot atom mechanisms. Woods et al. assess each of these models using astrophysical
models, concluding that[[]and[[II can be dismissed since their rates would be too low to
account for the observed abundance of glycolaldehyde, whilst [V]is only feasible if the
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rate of the final step is enhanced. From a physical perspective, the chance of a three-
body collision happening as in mechanism[[V]is vanishingly small, although these steps
can be replaced with two separate hydrogenations.

It should be noted that during experimental observations of such reactions on amor-
phous ice surfaces, no radical species were detected™®*?!' because it is assumed that bi-
radical reactions that consume them occur at a much higher rate. It is therefore generally
thought that the biradical reaction steps are barrierless on the grain surface.

They conclude that a modified version of[[|is the most likely scheme at 10K:

CH, + OH — CH,0H (6.26)
CO+H — HCO (6.27)
CH,OH + HCO — CH,0HCHO + H (6.28)

Without performing any detailed quantum chemical calculations, Woods ez al. attempt
to assess the chemical viability of these reactions™®. They suggest that reaction [6.28]
is not viable, since one of the reactants is the stable methanol molecule, and one of
the products is the extremely reactive hydrogen atom, so the reverse reaction would be
favoured. Similarly, reaction is unlikely to occur not only because formaldehyde
(H,CO) is a stable species, and a reaction between two formaldehyde molecules is un-
likely to be facile. Instead, this reaction can be split in two parts; the formation of the

hydroxymethyl radical (H,COH) and a subsequent biradical reaction with HCO:

H,CO+H — H,COH (6.29)

H,COH +HCO — CH,0OHCHO (6:30)

The crucial step in this sequence is the formation of the hydroxymethyl radical (H,COH)

which is in principle competitive with the formation of the methoxy radical (CH,O).

The latter is kinetically favoured in the gas phase, with a barrier that is lower by ~ 40 k] mol~1%/2,
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whilst the former is thermodynamically favoured, with an energy approximately 20 k] mol™!
lower (at the MP3/6-31G**/ /HF/6-31G** level'#).

Woods et al. suggest that mechanism |V|is unlikely since it involves carbon and oxy-
gen addition reactions, when the hydrogen atom is the only mobile species on the ice
surface at 10K. In particular, reaction is unlikely to compete with the formation
of formaldehyde since atomic hydrogen is so much more abundant than atomic carbon.
Hence from a chemical perspective, mechanism IV]is identified as the best candidate of

the two favoured by astrophysical considerations.

6.6 The characteristic (cross-over) temperature

For a generalised reaction A + B — C, the rate of formation of C is expressed in the
equation,

S = k(TALB), 6.31)

where square brackets indicate the concentration of the enclosed species and £(T) is a
temperature dependent rate constant. The van ’t Hoff equation describes the temperature-

dependence of the equilibrium constant k for a reversible reaction:

dink AU
AT~ k,T?

(6.32)

Here, kj is the Boltzmann constant and AU is the change in internal energy, which is
equivalent to the activation (reaction) barrier V,,. This expression can be integrated to
give the Arrhenius equation, which allow the calculation of the classical rate constant as
a function of temperature.
Y
B(T)= kye "7 (6.33)
The pre-exponential factor k, expresses the probability of a reaction occurring through

the frequency of collisions between reactants, and is determined via transition state the-
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ory. It can be expressed as a function of the vibrational modes of the system, thus
calculating the rate constant requires both a barrier height and vibrational frequencies;
whilst the first can be obtained for systems of hundreds of atoms using DFT, the sec-
ond is intractable for the systems considered in section Moreover, the Arrhenius
equation only describes reactions classically; in the regime of interest, it is thought that
transitions across the activation barrier will be more frequent due to quantum mechan-
ical tunnelling.

Whilst it is not possible to calculate a rate constant using only the reaction profile, it
is possible to calculate the characteristic (or crossover) temperature 7, which is defined
as the temperature at which the probabilities of classical thermal transitions over the
barrier and quantum mechanical tunnelling transition through the barrier are equal’*.

Benderskii et al. simplify the problem to give the following expression for T 1%

hHeo*

< 27tky

(6.34)

Here, w* is the imaginary frequency associated with the transition state. If the cartesian
reaction coordinate is rescaled to normal mode coordinates in atomic units, this quan-
tity is given by the curvature (second derivative) of the reaction profile at the transition
state. The transformation into normal coordinates can be achieved by multiplying the

cartesian by the atomic mass for each atom in the system.

6.7 Gas phase reactions

The formation barriers and relative stability of the methoxy (CH,O) and hydroxymethyl

(H,COH) radicals may have an important role in the mechanism or products. For the
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reactions,

H,CO+H —CH,0 (6.35)

H,CO+H — H,COH (6.36)

Sacbg et al. report barriers of 51.9 k] mol~" and 84.2kJ mol™', and that the H,COH
species is more stable by 20.9 k] mol™!, at the MP3/6-31G**//HF/6-31G** levell%.
Sosa et al. conducted extensive studies on the same reactions using large basis sets, find-
ing the barriers to be 27.97 k] mol™" and 57.11 k] mol™" at the CISD-SCC/6-311G(d,p)/ /HF /6-
31G(d) level (where SCC stands for size consistency correction). They observed that
barriers calculated using perturbation theory are consistently 25 k] mol~!-50 k] mol™*
too high due to spin contamination in the transition state. They estimate the difference
in energy between the two radical species is 27.2 k] mol ™.

Woon examines two steps in the hydrogenation of carbon monoxide, terminat-
ing with methanol; these are also important reactions in the glycolaldehyde mecha-

172178, the addition of hydrogen to carbon monoxide to form the formyl radical

nism
(HCO) and the addition of hydrogen to formaldehyde to form the methoxy radical
(CH,0). At the QCISD(T) level, his calculations indicate a barrier of 19.16 k] mol~!
for HCO formation, and a barrier of 20.75 k] mol™" for CH, O formation. An experi-
mental derivation of the activation energy based on the Arhenius equation for the for-
mation of the formyl radical at 10K yielded (8.3 £ 1.7) k] mol™!, although this is likely
to be significantly lower than the actual barrier since it implicitly includes rate effects
such as quantum tunnelling.

Woon attempts to simulate the effect of an ice surface using cluster calculations con-
sisting of the reacting species and between one and four water molecules embedded in

a dielectric field which simulates the long range effect of an ice surface'”®. This has a

minimal effect on the barrier for formyl radical formation, with three water molecules
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increasing it by ~1k] mol™" at the QCISD//MP2 level.

The barrier for the formation of the methoxy radical is analogously 20.75 k] mol™"
at the QCISD(T) level. Unlike the previous reaction, the addition of one to four water
molecules results in a significant (but perhaps insufficient) reduction in the barrier. The
reduction is attributed to the fact that formaldehyde has a dipole moment similar to that
of the water molecule, whereas the dipole moment of the carbon monoxide molecule
is twenty times lower than that of water. The addition of four H,O molecules reduces
the barrier by 3.60 k] mol~" at the QCISD level, which is a clear improvement over the
the other reaction. The dielectric field only reduces the barrier by 0.96 k] mol™! in the
gas phase, which would seem to suggest that the effect of the bulk ice on the barrier is
minimal. Woon initially suggests that abstraction of the formyl radical (H,CO +H =
HCO+H,) will compete with the hydrogenation of formaldehyde, but the calculations
indicate that the presence of water molecules hinders the formation fo the hydrogen
molecule.

This leads him to conclude that formyl radical formation may not be efficient on
grain mantles unless tunnelling has a greater effect than experiments suggest, and that

icy grains only play a minor role in formaldehyde and methanol formation.

6.7.1 Choice of density functional for surface reactions

One of the main drawbacks of DFT is that the approximated exchange-correlation func-
tionals available are not derived ab initio; the exact form of the density functional in the
Kohn-Sham equations is unknown, and there is no systematic method for developing
new functionals. In the absence of a universal density functional that describes all sys-
tems, new functionals are continually developed to model a small subset of systems or
phenomena, thus choosing the right functional is critical.

For the calculations in this chapter, it is necessary to use a hybrid density functional,

i.e. one that mixes a certain fraction of Hartree-Fock exchange in with the Kohn-Sham



CHAPTER 6. FORMATION OF INTERSTELLAR GLYCOLALDEHYDE 169

exchange. The reason for this is essentially that a fundamental flaw of approximate
exchange-correlation functional is the self interaction error, the interaction of an elec-
tron with its own charge distribution, which causes barriers to be grossly underesti-
mated; incorporating exact exchange goes some way towards mitigating this. Although
self interaction corrections are available for GGAs, they are costly and impractical.
Andersson and Griining conducted a detailed survey of available density functional
and attempted to assess their suitability for studying astrophysically relevant reactions’>?.
They achieved this by calculating gas phase barrier heights and reaction energies for
10 reactions, notably including hydrogen addition (H + X = HX) and hydrogen ab-
straction (X + H, = HX + H), using 39 different functionals including LDA, GGA,

meta-GGA, and hybrids with low and high exact exchange fractions.

Their general conclusions relevant to this work are summarised as follows:

1. Hybrids with a high exact exchange fractions (e.g. BHandHLYP, MPW 1K) work
well for calculating barrier heights, but less so for atomisation and reaction ener-

gies.

2. Some hybrids with modest exact exchange fractions (notably B1B95-28, B97-1,
B97-2 and B98) result in barriers that are almost as good as with a high exact ex-

change fraction (in most cases), and give better atomisation and reaction barriers.

3. Meta-GGAs can potentially perform almost as well as hybrids for barriers, no-
tably VS98 and OLAP3. Functionals with OPTX exchange (e.g. OLYP) tend to

outperform those with B88 exchange (e.g. BLYP).

4. The HCTH family of GGA functionals performs almost as well the meta-GGAs,
but not as well as hybrids. In particular, the HCTH/120 functional has the water

dimer in its training set, and may be suitable for modelling ice.

5. The best hybrids for modelling the low barrier hydrogen addition reactions are

B1B95-25 and B1B95-28.
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6. BHandHLYP performs best (including reaction energies) for the abstraction-type

reactions.

7. For the general class of reaction where a hydrogen atom is a reactant, the best func-
tionals are MPW1K, B97-1, MPW58 /60, BHandHLYP, KMLYP-mod and B98, all
of which have a mean average error of ~4 k] mol™! for their barrier heights (i.e.

chemical accuracy).

8. The results achieved with double-{ and triple-{ basis sets are comparable to those
obtained with quadruple-’; this bodes well for work on larger systems that rely

on smaller basis sets.

They conclude that the best overall functional with respect to barrier heights is MPW 1K,
and the best overall description (including atomisation and reaction energies) is provided
by B1B95-28.

Obviously the choice of functional for this work is reliant on what has been im-
plemented in CP2K. The BHandHLYP functional was chosen since many of the semi-
empirical functionals have not been implemented, and in any case, the model used is

too crude to expect anything approaching chemical accuracy.

6.7.2 Model and methods

We first characterise the reactions of interest in the gas phase in order to gauge the
reaction barriers at high levels of theory.

All gas phase calculations were performed using the NWChem'*” and Orca'?® quan-
tum chemistry codes. Both are electronic structure codes that employ Gaussian basis
sets and are capable of performing (non-periodic) high level post Hartree-Fock calcula-
tions. NWChem was mainly used to characterise the larger systems since the paralleli-
sation 1s more extensive.

Initial and final geometries for gas phase products and reactants were determined
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at the hybrid DFT PBEO/DZVP level. The resulting structures were reoptimised at
the frozen core MP2/cc-pVDZ level using Orca, and for the cases where there was
an obvious reaction coordinate, constrained optimisation was used to locate the tran-
sition state, if any. Starting from the reacting species in the initial configuration, the
reaction coordinate was constrained using z-matrix notation, and all other degrees of
freedom were fully relaxed. The reaction coordinate was reduced, bringing the reactant
species closer together, and the process repeated until the product was reached. The
MP2 method suffers heavily from spin contamination near the transition state, so there
were frequently convergence problems, which were solved by reducing the reaction
coordinate step size in the constrained optimisation (this worked because the wavefunc-
tion from a completed constrained optimisation was used as the initial guess for the next
step). Tight SCF convergence criteria were used in all cases, namely an energy change
of 1 x 107® E; and a gradient of 1 x 107° E, a,! for single points, and energy change of
5% 107° E, with a maximum gradient of 3 x 10™* E| 4,~! and a maximum displacement
of 4 x 107 4, for geometry optimisations.

Upon generation of a reaction profile along the coordinate, the configuration clos-
est to the energy maximum (in cases where there was a maximum) was used as the
input structure for a saddle point optimisation. The initial, final and transition state
configurations were re-optimised at the MP2/cc-pVTZ level (without the frozen core
approximation), and the resulting energies used to compute the barriers and heats of
reaction.

This method was appropriate for radical reactions (systems with a multiplicity of
2). Singlet state biradical reactions, on the other hand would not work in the same
way since for the forward reaction, the codes were unable to generate an initial wave-
function guess with the correct spin density distribution (opposing spins on each of the
reactants), and for the reverse reaction, the UHF calculation was unable to homolyti-

cally dissociate the bond, resulting in an incorrect spin distribution. As a solution, a
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single point UHF calculation in the triplet state was performed on the initial configura-
tion in order to introduce a bias into the wavefunction, and this was used as an initial
guess for a singlet state single point calculation. The resulting wavefunction was used as
the initial guess for the first configuration in the constrained optimisation. Obviously
this method will not work for the reverse reaction, and is therefore not quite as thor-
ough; however, we expect the biradical reactions to be barrierless in the gas phase, so we
do not have to characterise the transition state.

MP2 calculations in general provide good geometries, but the transition state ener-
gies are generally grossly overestimated due to spin contamination. For this reason, cou-
pled cluster with singles, doubles and perturbative triples single points were taken at the
initial, final and transition states, and used to recompute the barriers and heats of reac-
tion. Thus our best estimate for the energies in the gas phase are at the CCSD(T) /aug-cc-
pVTZ//MP2/aug-cc-pVTZ level. It was necessary to use NWChem for these accurate
calculations. The following convergence criteria were used: for single points, an energy
change of 1 x 107® £, , and for geometry optimisations an energy change of 1 x 107" E,,

1

between ionic steps, with a maximum gradient threshold of 1.5 x 107> E, 4,~! and a

maximum step size of 6 x 107° a,,.
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The reactions that will be examined in the section are:

CO +H — HCO (6.37)
HCO +H — H,CO (6.38)
H,CO+H— CH,0 (6.39)
H,CO+H — H,COH (6.40)
H,COH 4 HCO — CH,OHCHO (6.41)
2HCO — HOCCOH (6.42)
HOCCOH +H — CH,0CHO (6.43)
CH,0CHO + H — CH,0OHCHO (6.44)

(6.45)

The following mechanism proposed by Charnley and Rodgers'*® will not be considered
for two main reasons. Firstly, as observed by Woods ez al., atomic carbon and oxygen
are only likely to be present in significant quantities relative to atomic hydrogen during

early times. The second problem arises primarily from the first reaction in the chain,

[6.46l

HCO+C — HC,0 (6.46)
HC,0 +H — CH,CO (6.47)
CH,CO +H — CH,CHO (6.48)
CH,CHO + O — CH,0CHO (6.49)

Reaction (6.46) is notable because it has significant multireference character (see section
3.5.1). It can be regarded as a combination of two non-identical resonance structures:
one with a C=C triple bond and the unpaired electron localised on the oxygen, and

the other with a C=C double bond and the electron localised on the carbon which is
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bonded to the hydrogen.
In this study, we will examine two possible mechanisms; the first (A) is the most
likely candidate (from a chemical perspective) identified by Woods et al.**; the second

(B) was independently proposed by Goumans.

A Similar to the mechanism proposed by Beltran et al.®

CO+H — HCO (6.50)
HCO+H — H,CO (6.51)
H,CO+H — H,COH (6.52)
H,COH + HCO — CH,0OHCHO (6.53)

B Alternative mechanism proposed by Goumans

CO+H — HCO (6.54)
2HCO — HOCCOH (6.55)
HOCCOH +H — CH,0CHO (6.56)
CH,0CHO + H — CH,OHCHO (6.57)

6.7.3 Results and discussion

A full geometry optimisation on the simplest structures, the final and transition states
of the HCO molecule, confirmed that structures relaxed at the MP2 level were almost
identical to those optimised at the CCSD(T) level, with the bond lengths and angle
varying by less than 1%. Although this may not hold for more complex structures, the
resources were not available to perform full coupled cluster geometry optimisations,
thus it was assumed that the MP2 geometries were essentially the same.

According to table 6.1| The forward barriers for the reactions studied indicate that
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in general, MP2 greatly overestimates barriers as a result of spin contamination in the
transition state structures. For example, in the reaction H,CO + H — H,COH, the
MP2 barrier is almost double the height of the CCSD(T) barrier. In principle, the
ideal value of S(S + 1) is 0.75 for a single unpaired electron (with § = 0.5); however,
the expectation value of < §? > was calculated to be 0.92, a deviation of 0.17. Woon
eliminated spin contamination from his gas phase calculation by employing the PMP2
method??, in which “intruder” states are projected out at the expense of computational
cost. It was decide that this was unnecessary for this work in light of the CCSD(T)
results.

The second noteworthy point is that the DFT barriers are all underestimates. The
B3LYP barriers in particular are gross underestimates, compared with the BHandHLYP
and M05-2x barriers, emphasising the importance of a large exact exchange fraction; the
Hartree-Fock exchange somewhat mitigates the self interaction error inherent in DFT,
reducing barrier underestimates. It is less clear why the only GGA tested, HCTH/120
gives such reasonable barriers; it can only be assumed that the empirical fitting results
in some error cancellation.

A potentially important comparison is the different products of the reaction be-
tween formaldehyde (H,CO) and an hydrogen atom: the methoxy radical (CH,O) is
not involved in any glycolaldehyde-forming mechanisms, and may form the basis of
competing mechanism for species such as methanol and methyl formate. The hydrox-
ymethyl radical (H,COH) could potentially form methanol or glycolaldehyde. It can
be seen that whilst the methoxy radical is kinetically favourable, with a barrier that
is lower by 28.8 k] mol~!, the hydroxymethyl radical is thermodynamically favourable
with a reaction heat that is more exothermic by 34.57 k] mol™! (see table at the
CCSD(T) level. This is a moot point under the conditions of the ISM, however, since

neither reaction will be activated at temperatures of 10K.
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6.8 Reactions on hydroxylated silicate nanoclusters

6.8.1 Introduction

In section[6.2] it was mentioned that ISM dust grains are thought to consist of a siliceous
core surrounded by low density amorphous ice. Such inferences are generally made
by analysing their mid-IR (2.5 um to 15 pm) to far-IR spectra (15um to 100 pm). The
dominant form of silicate in the ISM is amorphous, with crystalline polymorphs such
as olivine and pyroxene comprising <2%".

Concrete evidence of the composition of certain types of dust grain was provided by
NASA’s “Stardust” mission, in which more than 10000 particles in the size range 1 um
to 300 um were collected from the comet Wild 2 by high speed capture in silica aerogel
and physically returned to Earth. A ‘major portion’ of the particles larger than 1pm
were found to be olivine and pyroxene!®.

To date, catalysis of interstellar reactions by bare siliceous surfaces has been stud-
ied in some detail. Goumans er al. use an embedded cluster QM /MM approach to
evaluate the catalytic activity of the edingtonite (BaAl,Si,O ) on methanol (one of

8l The proposed mechanism is simi-

the most abundant ISM molecules) formation
lar to the initial stages of glycolaldehyde formation, with the repeated hydrogenation
of a carbon monoxide molecule — the difference being that in methanol formation, the
methoxy radical (CH,O) is formed instead of the hydroxymethyl radical (CH,OH) —
thus methanol and glycolaldehyde may follow competitive pathways. Whilst a nega-
tively charged SiO™ surface defect is shown to lower the activation barriers, the effect is
insufficient to enable the reaction at temperatures of 10K to 20K without tunnelling'*.

Here we examine a limited subset of the glycolaldehyde-forming reactions on hy-

droxylated silicate nanoclusters, which represent bare interstellar dust grains.
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6.8.2 Model and methods

The details of the DFT calculations were chosen to be consistent with the work of Jelfs
et al'® All cluster calculations were carried out using NWChem, the 6-31G** basis set
and the B3LYP and BHandHLYP hybrid functionals, but in this case the DFT-D3 dis-
persion correction™” was employed in addition in order to more accurately describe the
reaction chemistry. The reacting species and product molecules were adsorbed onto the
clusters at a variety of different binding sites in order to find the most favourable; in or-
der to minimise the number of such calculations, the symmetry of the cluster was used
to avoid redundant configurations. The initial and final configurations were then used as
the end points in a NEB calculation containing 8 images. Single points were considered
to be converged for energy changes of less than 1x 107¢ E, and gradients of less that
5% 107" E, a,~'. The respective tolerances for the energy, gradient and step sizes be-
tween geometry optimisation steps were 5 X 107¢ E, ;4.5 x 107* E, 2,7 and 3 x 107* 4,.
NEB calculations had a convergence threshold of 1 x 107 E, for the total band energy.

It was our intention to evaluate a limited subset of the reactions comprising mech-
anisms |A| and [B| (page on clusters of varying size and with varying degrees of hy-
droxylation, allowing us to gauge the effects of curvature (related to cluster size) and the
nature of the substrate on the reaction barriers. However, time constraints meant that it
was only possible to study in detail three reactions on two fully hydroxylated (i.e. every
silicon atom has a hydroxyl group) clusters.

The smallest cluster considered is the 8-silicon double four-ring, consisting of only
four-rings (pictured in figure [6.3[1%). Of the two possible 16-silicon clusters available,
only cage 1 (figure was used due to time constraints. Whilst both are fully hy-
droxylated, cage 2 (figure contains 4-, 5- and 6-rings, whereas cage 1 contains only
4- and 5-rings. A larger structure is required for larger rings, so in principle, the largest
ring size can be considered a rough measure of curvature. Of the two 16-silicon clusters,

cage 2 has a lower curvature in the vicinity of the 6-ring.
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Figure 6.3: the 8-silicon hydroxylated cluster, the double four-ring™®. Silicon atoms are
yellow, oxygens red and hydrogens white.

(a) Cage 1: 4- and 5-rings. (b) Cage 2: 4-, 5- and 6-rings.

Figure 6.4: The two 16-silicon fully hydroxylated clusters. Silicon atoms are yellow,
oxygens red and hydrogens white.
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6.8.3 The nudged elastic band (NEB) method

The nudged elastic band (NEB) is a convenient method for locating saddle points on
a potential energy surface. A sequence of “images,” system configurations along the
reaction path, are linked together using springs with a spring constant k, such that when
atoms on images along the band are acted on by two elastic forces which “pull” them
towards the configuration of the adjacent images, ensuring an equal separation of images
in phase space. When all forces perpendicular to the band are minimised, the sequence
of images represents the minimum energy path between the reactants and products, and
contains at least one first order saddle point. In order to locate the saddle point, the

band is optimised by minimising the total force acting on each image.
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Figure 6.5: Schematic representation of the nudged elastic band method (taken from
Sheppard et al. ™)

In this work, the fixed endpoints (vectors Eo> the reactant configuration, and ﬁn o
the product configuration, in phase space) were created by relaxing the reactant molecules
and the product molecules on the substrate to their equilibrium configurations. The in-
tervening images (vectors (ﬁl,ﬁz, e ,ﬁn) are generated using a linear interpolation of
the coordinates between the initial and final states.

In the state described above, the method has two major problems: firstly, the geom-

etry optimisation for each image results in a net force which pushes all of the images
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towards their nearest local minimum (the reactant and product states), resulting in a
sparser distribution of images around the saddle point; this is known as the “sliding
down” phenomenon. Secondly, in regions where the minimum energy path is curved
in phase space, local decreases in the potential energy surface can cause corners to be cut,
with images in these “concave” regions being forced into spurious minima. These prob-
lems can be avoided by introducing the “nudge,” or projecting out the components of
the true force parallel to the chain, and the components of the spring force perpendicular
to the chain®.

The adjusted force acting on an image 1 is,

where FZ.S” is the spring force parallel to the tangent (The unit vector 7, in figure D
and F'* is the true force perpendicular to the tangent. The spring component in this

expression is the projection of the spring force onto the unit tangent vector.

V= (kIR = R~ (R, = R, _)]-#)4, (6.59)
Similarly, the true force component is the projection of the true force onto the normal

to the tangent, where the true force is simply the gradient of the image potential ..

C_(F'-4)%, (6.60)

E.—(VE, %)%, (6.61)

The unit tangent vector 7, can be estimated either by normalising the vector connecting
images 7 — 1 and 7 + 1, or by normalising the sum of the two unit vectors between 7 — 1
and 7, and 7 and 7 + 1 (see figure [6.5). The latter method of calculating the tangent is

generally better, since it ensures that the images are equally spaced; however, in cases
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where the perpendicular component of the force is small compared with the parallel,
kinks may develop in the band particularly near the saddle points on the minimum
energy path. In a variant of the NEB method designed by Henkelman and Jénsson'®%,
the tangent is given by,

T, =7, F(E)+ 7, G(E,) (6.62)

1

where 77 is the vector connecting images 7 and 7 + 1, and 77 is the vector connecting
images  —1 and ;. The magnitudes of the vectors are determined by switching functions
F and G which are dependent on the relative energies of the three images. This formu-
lation of the tangent, together with a modified expression for the spring force parallel to
the tangent, called the “improved tangent” NEB, and used in this work, reduces errors
in the minimum energy path caused by kinks in the band.

In addition many variants of the NEB method involve some implementation of a
“climbing image” (including the one used in this work), where the image with the high-
est true energy is allowed to move uphill on the potential energy surface, thereby locat-

ing the transition state.

6.8.4 Results and discussion

Looking first at results for the reactions on the double four-ring (tables 6.4 and [6.5|for
BHandHLYP/6-31G** and B3LYP/6-31G** respectively), it is clear that B3LYP, whilst
being a good functional for describing the geometry and formation energies of hydrox-
ylated silicate clusters, is inappropriate for calculating reaction barriers of interest; com-
pared with BHandHLYDP, it grossly underestimates barriers.

Although the double four-ring seems to catalyse the hydrogenation of carbon monox-
ide, resulting in a barrier that is lower by a factor of almost two, it actually hinders the
hydrogenation of formaldehyde, increasing the barriers of both competing reactions by
a factor of 2-3.

The calculations involving sixteen-silicon clusters were far more expensive, so we
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Forward barrier Reverse barrier  Heat

H,CO+H — CH,0O 6.90 153.52 —146.62
H,CO+H — H COH 18.91 193.72 —174.81

Table 6.6: Reaction barriers and heats in k] mol™! for two reactions on the sixteen-
silicon hydroxylated nanocluster (cage 1) at the BHandHLYP/6-31G** level. Gas phase
reactions at the same level of theory are listed in table

limited ourselves to a comparison of two the competing reactions forming CH,O and
H,COH. A variety of H,CO binding sites were used in the NEB, most of which
yielded a viable reaction path for CH,O, but not for H COH. The energies of the
paths with the lowest barriers are listed in table Compared with reactions on the
double four-ring reactions on cage 1 are far more favourable: the barriers are actually
reduced, and they are a factor of approximately two lower than in the gas phase. This
seems to support the earlier assertion that a lower curvature has an enhanced catalytic
effect on these reactions.

Figure|6.6{shows the NEB paths for these reactions on cage 1. In the case of CH, O,
the hydrogen atom follows a direct path to the carbon, whereas for H,COH, the hy-
drogen is somewhat hindered by overly acute HOC angle and the hydrogen atom to
which the formaldehyde is hydrogen bonded. It can be seen that over the course of the
reaction, the H,CO fragment moves much further in the case of H,COH; initially it is
on the boundary between the four- and five-rings, but by the end it is obviously over the
four-ring. The movement of the formaldehyde fragment is the only way that the reac-
tants can overcome the steric hindrance inherent in the point at which they are bound
to the cluster. It can be concluded that this reaction is only feasible if the formalde-
hyde molecule is physisorbed onto the cluster between two rings and by comparing
the results for the reactions on the double four-ring (where the reaction occurs on the
boundary between two four-rings) and cage 1 (where it occurs between a four-ring and a
five-ring), supports the earlier claim that a lower curvature on the cluster surface results

in a lower barrier.
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(1 CH,O (b) H,COH

Figure 6.6: NEB paths for a hydrogen atom reacting with a H,CO molecule on a hy-
droxylated silicate cluster (cage 1, figure @ to form CH, O (left) and H,COH (right).
The reactant hydrogen atom is coloured blue and the five- and four-rings on which the
reaction occurs are coloured orange for clarity.

6.9 Reactions on icy mantles

6.9.1 Introduction

The conditions in the dense molecular clouds in which interstellar glycolaldehyde has
been detected place strong constraints on the mechanism of its formation. It has already
been established that at 10K, the barrier for the simplest reaction (CO + H — HCO)
is too high to feasibly occur in the gas phase. As demonstrated in section[6.7.3] the other
activated reactions have even higher barriers in the gas phase.

The composition of the mineral core of ISM dust grains is difficult to generalise;
with the only available physical samples collected from the comet Wild 219, we are
forced to rely on spectroscopic observations, which suggest various polymorphs of car-
bonaceous and silicate materials. What is more certain is that 60-70% of the interstellar

ice coating the grains is H,O, most likely in the form of impure ASW™. The observed
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abundance of interstellar glycolaldehyde can only be accounted for by the catalysis on
the surface of icy dust grains.

Owing to the difficulty in representing a highly disordered structure in a relatively
small scale periodic model, our first step is the evaluation of the viability of glycolaldehyde-
formation reactions on a crystalline ice surface, with a view to refining the method to

include an amorphous surface in the future.

6.9.2 Model and methods

The main aim of this work has been to evaluate the likelihood of these reaction occur-
ring on an ice surface representative of an interstellar dust grain mantle. There have
been some attempts to characterise some of these reactions on ice, but these have been
limited to nanoscale cluster models which lack the long range order of a true surface’?.
To this end, we have used a 3D periodic slab model of ice, on top of which the reactions
occur. The main problem with this type of calculation is the cost: in order to get rea-
sonable reaction barriers, it is necessary to use (at the minimum) hybrid DFT, which
is prohibitively expensive for a periodic cell containing hundreds of water molecules.
CP2K offers a convenient solution to this problem; the recently implemented ADMM
method ™ allows such calculations to be completed in about two or three times the
time taken for a similar GGA calculation, an improvement of orders of magnitude over
other hybrid DFT methods. It is important to note, however, that this is improvement
relies on error cancellation and the use of more limited basis sets, thus we do not expect
to achieve chemical accuracy.

It was originally our intention to model reactions on a six-bilayer cubic ice slab for
which the surface energy is converged with respect to addition or removal of bilayers.
In order to be large enough to avoid image interactions between surface species, the slab
would need to contain at least 288 water molecules. However, we soon realised that this

would be too difficult given the time and resources available, and scaled it down to a
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two bilayer slab containing 96 water molecules. This is a fairly coarse model, but allows
us to gauge the relative barriers to the reactions which form glycolaldehyde. Figure
demonstrates that the surface energy of an ice slab converges rapidly with respect to the
number of bilayers, justifying the choice of model. All calculations were performed us-
ing the BHandHLYP hybrid density functional (which includes 50% Hartree-Fock ex-
change), Goedecker-Teter-Hutter (GTH) double-{’ (DZVP) basis sets and pseudopoten-

122”2 plane wave cutoff of 400Ry and Grimme’s DFT-D3 dispersion correction*

tials
potential with a dispersion cutoff of 10 A. The convergence tolerances were set at and
energy change of 1 x 107° E, for single points, and for geometry optimisations, a max-
imum displacement of 1 x 107 4, and a maximum force of 5x 107 E, 4,”!. For the
ADMM method the cpFIT3 auxiliary basis set was employed, and a truncated Coulomb
potential was employed to facilitate periodic Hartree-Fock calculations. The Coulomb
truncation radius was set to 5 A.

In order to generate the ice slabs, a proton ordered bulk cell containing 288 water
molecules with surface order parameter of 2.0 for the surfaces at the top and bottom of
the cell (z = 0 and z = ¢) was used as a starting point. A computer code employing
the Hayward-Reimers algorithm®” was used to alter the order parameter on the surfaces
whilst maintaining the integrity of the ice lattice. This was achieved by finding random
loops of hydrogen bonds and rotating them such that the ice rules remained inviolate;
only moves that increased the surface order parameter were allowed, thereby resulting
in a series of slabs with increasing order parameters between 2 and 4.5 (approximately).
A slab with an order parameter of 3.33 was chosen as the most representative of a real
ice surface, and as having the largest variety of adsorption points for molecules. This
configuration was reduced to a two bilayer, 96 molecule slab approximately 10 A thick,
and the cell extended to 45 A in the z-direction. At 35 A, the vacuum gap in this case was
perhaps excessive, but was retained such that there would be a sufficiently large vacuum

gap for a six bilayer slab with the same cell parameters. The cell parameters were fixed,
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and the two bilayer slab was allowed to fully relax, forming the slab to be used in the
majority of the calculations below.

In previous experimental work, biradical reactions have been assumed to be bar-
rierless because radical species other than hydrogen atoms were not observed; it was
concluded that the were being consumed in biradical reactions too rapidly to be de-
tected®*. Here, this has not been assumed, and these reactions have received the same
explicit treatment, allowing for the eventuality that DFT model is not representative
of the experimental reality, or that the surface somehow inhibits the recombination of
radicals.

For the single radical reactions, the reactants were placed on the surface and allowed
to fully relax. This was repeated for binding sites that obviously constituted a differ-
ent immediate environment (although an exhaustive survey of binding sites was not
conducted due to limited resources), and for the products. The relaxed initial and fi-
nal configurations were then used as the fixed endpoints for a seven-replica improved

5% nudged elastic band calculation.

tangent

Owing to the necessity of manually specifying an initial guess for the biradical re-
actions, it proved impossible to adapt the nudged elastic band method for them. A
variation of the constrained optimisation method was used in these cases; as for the gas
phase calculations, the code was unable to generate an initial guess wavefunction with
the correct spin density distribution. To remedy this, an initial guess was formed us-
ing a single point on the starting configuration with the spin on the reactant fragments

constrained to be either 1 or —1 using Blochl’s density-derived atomic point charges

(DDAPC) scheme™®, resulting in a singlet state.

6.9.3 Results and discussion

In many ways, the model used was less than optimal. Although crystalline ice has been

detected in the ISM, the vast majority of water ice, including the mantle of interstellar
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dust grains is expected to be low density amorphous ice. Whilst periodic models of
amorphous ice do exist, an extremely (prohibitively, in the case of hybrid functionals)
large unit cell is required to adequately model the disorder in such systems. However, a
crystalline ice surface is suitable as a first approximation.

It was found that the HCTH/120 GGA functional recovers reaction barriers almost
as well as the chosen hybrid functional, BHandHLYP"*. However, at the time of writ-
ing, an open shell version of HCTH/120 has not been implemented in CP2K. At the
start of this project, it was our intent to extend our somewhat crude two-bilayer model
to a six-bilayer model (the bulk energy is converged with respect to surface energy at
four bilayers or more using the PBE functional, according to Pan ez al.®); however, this
would have proven too computationally expensive using a hybrid functional with the
resources available.

We were also limited in our choice of hybrid functional to those available in CP2K,
the only code capable of making such hybrid supercell calculations tractable. Whilst
BHandHLYP gives good barrier heights, it is less convincing with respect to reaction
energies’>. Ideally, we would have chosen a semi-empirical “tuned” hybrid functional
with a high Hartree-Fock exchange fraction, such as MPW1K, or a modest Hartree-
Fock exchange fraction with an improved correlation form, such as B97-1. In addition,
the use of the double zeta basis set introduces a significant BSSE, of the order of a few
k] mol~'. This is the same order of magnitude as the barrier heights calculated for many
of the reactions; however, a larger basis set would be computationally intractable.

Owing to the inaccuracies inherent in the model, the figures in table|6.7|should not
be regarded as absolute values, but should instead be used as a comparison with gas
phase calculations at the same level of theory as an indication of the extent to which the
reaction barriers are lowered, if at all.

A comparison of the reaction barriers in the gas phase (table and on the ice

surface (table suggests that the ice surface greatly facilitates three of the four rate
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determining reactions in the mechanisms considered. For this reason, barriers and reac-
tion energies in the gas phase were recomputed using at the BHandHLYP/DZVP level,
i.e. with a congruent (but not identical) basis set.

The reaction barrier for H+CO — HCO is reduced by almost a factor of two. This
reaction has been studied in some detail in the gas phase, at high levels of theory'*?, and
to a limited extent on small water clusters embedded in a dielectric field representative

72

of ice by Woon2. This result clearly conflicts with Woon’s; he found that a four-
water molecule cluster reduced the barrier by 3.6 k] mol™' from a gas phase value of
20.75 k] mol™!; a significant but insufficient reduction. Moreover, the dielectric field
intended to replace the long range influence of an ice surface reduced the barrier by
less than 1k] mol™'. Although his model is less sophisticated, Woon’s calculations are
performed at a higher level of theory, PMP2 and QCISD.

Of greater significance is the effect of the ice surface on the addition of hydrogen
to formaldehyde. At the BHandHLYP/DZVP level, the barrier of the methoxy radical
formation reaction is reduced by a factor of four (from 12.36 k] mol™! to 4.67 k] mol™1),
whilst the effect on the hydroxymethyl radical formation reaction is more pronounced,
displaying a barrier reduction of a factor of six (from 41.00 k] mol™! to 7.35 k] mol™1).
Without performing path integral molecular dynamics calculations, it is impossible to
quantify the effects of tunnelling on these barriers, but given that tunnelling of hydro-
gen atoms at 10K is thought to be significant, it is possible to envisage these barriers
being overcome since they are the same order of magnitude as the barrier for the hydro-
genation of carbon monoxide. Taking into account BSSE and the inherent uncertainties
associated with the functional, the barriers can be considered to be essentially the same;
in addition, the formation of the hydroxymethyl radical is more exothermic by an in-
significant amount (0.64 k] mol™!), from which we can conclude that both reactions are
approximately equally likely to occur.

Given that all of the biradical reactions are barrierless as suggested by experimental-
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Species Adsorption energy (k] mol™")
H —-1.39

CO —10.90

HCO —15.59

H,CO —50.12

CH,0 ~28.05

H,COH —~36.50
HOCCOH —102.32
CH,OCHO ~93.30
CH,OHCHO —117.84

Table 6.8: Adsorption energies (in k] mol™) for all species involved in mechanisms
and[B|on the two bilayer crystalline ice surface (at the BHandHLYP/DZVP level). The
adsorbed configurations are shown in figure

1>% there is a clear rate determining step for each of the two mechanisms. In the case

ists
of mechanism[A] (page[174), it is the hydrogenation of formaldehyde, and in the case of
mechanism B} it is the hydrogenation of the HOCCOH species. The reaction barrier
for the latter is marginally higher (by 1.83 k] mol™"), but not sufficiently to be sure that
the difference is not a result of BSSE or self interaction. It seems more likely that the
respective rates are limited by the ease with which the HCO and H,COH radicals can
migrate across the ice surface.

It was found to be extremely difficult to calculate a migration barrier for a hydrogen
atom because the potential energy landscape of a proton disordered ice surface is so
irregular. Hydrogen atoms can physisorb either to the “flat” surface water molecules
(i.e. molecules without a dangling OH) or sit above the centre of a six-ring, depending
on the proton ordering in the local environment. Two attempts to calculate the barrier
using the nudged elastic band approach yielded energies of 2k] mol™ to 4 k] mol™;
taking into account BSSE, hydrogen migration therefore has either a low or zero barrier.

The situation is more complicated for molecules: a specific proton ordering pattern

is required for a polar molecule to bind to the ice surface, and on a disordered sur-

face, the most favourable binding sites require a specific proton ordered configuration
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(g) CH,OCHO (h) CH,OHCH
3 2 2

Figure 6.7: Binding of various species to the ice surface. Water molecules that are not
involved in physisorption are coloured grey.
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coupled with a specific molecular orientation; it is expected that this, in conjunction
with the larger mass, will hinder migration. Since we have neither the time nor com-
putational resources to perform an extensive survey of migration barriers, as a first
approximation, adsorption energies for the species involved in both mechanisms were
calculated, and are presented in table It should be noted that these values corre-
spond to only one local proton ordered environment of many on the ice surface, so
in fact there will be a range of energies. The environment on which to calculate was
chosen on the following basis: a survey of adsorption sites was performed for carbon
monoxide (this proved to include a relatively small number of calculations, since for
a bound CO molecule, the “local environment” constitutes only three surface water
molecules, one of which must have a dangling OH. The site with the largest adsorption
energy was chosen to sequentially hydrogenate the CO molecule in order to construct
molecules up to CH,O and H,COH. For the two-carbon molecules, the situation was

more complicated; it was necessary to find sensible adsorption sites for both reactants

and products on a finite slab, so the case of reactions (6.53) and (6.55)), there was only

one possible location for the reaction to occur. The adsorption energy of CO ranged
between —10.90 k] mol~! and —4.70 k] mol~".

The low barrier for hydrogen migration calculated using the NEB method supports
the proposition that adsorption energies and migration barriers are generally correlated;
the adsorption energy for hydrogen is almost negligible, and considerably less than the
largest potential error caused by BSSE and the self-interaction error. The adsorption
energy of the HCO molecule is an order of magnitude larger, at —15 k] mol™', which
supports the notion that only hydrogen atoms are mobile on the crystalline ice surface.
The potential energy surface on ASW is far more irregular, and it is therefore conceiv-
able that in areas that are locally “flat,” it will be possible for these larger species to
overcome the migration barrier by tunnelling.

One reaction that has not been studied is the formation of methyl formate, CH,O+
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HCO — CH,OCHO. It is likely to be barrierless on the ice surface, considering all
of the other biradical reactions on the ice surface were found to be barrierless; if any-
thing, the lower barrier to the formation of the CH,O radical should make it more
favourable than the competing glycolaldehyde-forming reaction (6.53). On the other
hand, H,COH is essentially planar, whilst CH, O is tetrahedral, therefore taking steric
hindrance into account, HCO can attack H COH from two angles (either side of the
plane), whereas it can only attack CH,O from one direction (the side of the oxygen
atom). It is impossible to draw a strong conclusion from this in the absence of rate
constants for these reactions, but these conclusions may go some way to explaining the
higher abundance of methyl formate.

We now attempt to estimate the characteristic temperature using the method de-
scribed in section 6.6/ for the reaction H CO +H — CH,O. We assume that the form
of the function used to fit the profile of the reaction on the ice surface is qualitatively
similar to the gas phase profile. Thus a detailed dataset from the gas phase reaction is
used to determine the functional form that will be fit to the ice surface data (figure [6.8).
The coordinates for the ice surface reaction were converted from Angstrdm to atomic
units (Bohr), and rescaled to normal mode coordinates by multiplying each coordinate
by the square root of the atomic mass. This new basis was used to recompute the reac-
tion coordinate.

The function f(x) that was found to fit the gas phase data is a linear combination of

a Morse function and a Gaussian function:

Fx)=a[(1—e P62 1] 4 pe™ F 45 6.63)
2p _-x=q?
—e€

7e 7 [(x—q)=1"] (6.64)
.

f”(x) = Zde[_e—b(x—c) _ ZeZb(x—c)] +

The fit for this function with the ice surface data for the reactions H,CO+H — CH,O
and H,CO+H — H,COH is shown in figure|6.9, and is used to determine the param-
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Figure 6.8: Function f(x) fit to the gas phase (Cartesian) reaction coordinate for
H,CO+H — CH,O.

eters a, b, ¢, p, q, v and s in each case. The second derivative f”(x) is taken at the
transition state to calculate the curvature. The curvature at the transition state for the
formation of CH,O in figure is —0.01 atomic units, which translates to an imagi-
nary frequency of —2300cm™" and a characteristic temperature of 3300 K. In contrast,
the imaginary frequency for the H,CO + H — H,COH reaction was calculated from
figure as —440cm™!, corresponding to a characteristic temperature of 640K. The
first value is perhaps surprisingly high; Goumans and Kistner used harmonic quantum
transition state theory (HQTST) to predict the characteristic temperature of hydrogen
abstraction from methanol (H 4+ H,COH — H, + H,COH or CH,0)**” in the gas
phase, which is a similar class of reaction to the type studied here. HQTST is a semi-
classical method that has been shown to perform well at low temperatures. They report
values of 7, = 331K for H,COH formation and 396 K for CH,O formation, i.e. an or-
der of magnitude smaller than for the CH,O-forming reaction considered above. The

exceptionally high characteristic temperature calculated suggests that on the ice surface,
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(a) Function f(x) fit to the ice surface reaction coordinate (normal mode
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Figure 6.9: Demonstration of fitting procedure to obtain curvature at the transition
state for two ice surface reactions. Note that the D3 dispersion correction was used in
neither calculation due the resulting introduction of numerical noise.
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quantum mechanical tunnelling happens is by far the dominant barrier-crossing process
at all temperatures of physical interest, and that it is more important on the ice surface
than it is in the gas phase. It is perhaps a sign that the ice alters the form and curvature of
the potential energy surface of the reactants such that tunnelling is far more favourable
than in the gas phase, by making the barrier narrower, and perhaps more symmetrical.

The characteristic temperature for the H COH-forming reaction is much lower, and
is of the same order of magnitude as the frequencies reported by Goumans et al. When
a hydrogen atom approaches a formaldehyde molecule on the ice surface, the approach
vector is more favourable for the formation of CH,O because in the case of H COH,
the COH bond angle is acute, and far from the angle in the product molecule. The NEB
paths for these reactions are shown in figure[6.10] Whilst the hydrogen atom has a direct
path in the case of CH,O (figure , its path is clearly modified by the presence
of the ice surface hydrogen atom to which the oxygen in the formaldehyde molecule
is hydrogen bonded (figure . When forming the H COH radical, the path of
the hydrogen atom is deflected both vertically and laterally by the potential energy
surface. It is possible that this makes the potential energy surface for the latter reaction
more complicated, with a more distorted barrier that is less favourable for tunnelling:
the reaction barrier is superimposed onto the torsional barrier on the H-CO—H axis.
However, these conclusions assume that the curvature estimates (not to mention the
model) are accurate enough; this may not be the case.

There were two problems which prevented the calculation of 7. for all of the ice
surface reactions, both of which made the fitting process impossible in the majority of
cases. The first was the sparsity of data points, especially in the vicinity of the transition
states. The use of a harmonic approximation with a finite difference approximation of
the curvature was rendered impossible for this reason, and also results in a large margin
of error for the curvature, as can be seen in figure The second reason is numerical

noise, which we believe is primarily a result of the D3 dispersion correction. D3 is a
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(@ CH,O (b) H,COH

Figure 6.10: NEB paths for a hydrogen atom reacting with H,CO to form CH,O (left)
and H,COH (right) on an ice surface. Only the path of the hydrogen atom is shown
for clarity.

semiempirical method. The problems with D3 are twofold. Firstly, in attempting to
empirically improve long range correlation using a ¢, term, it employs a method which,
while appropriate for describing intermolecular interactions, is part of a completely dif-
ferent paradigm to DFT and therefore deteriorates the intramolecular and interatomic
description. Secondly, the corrections are parameterised using gas phase data from neu-
tral atoms, which behave very differently to atoms in the solid state, including water
ice. For example, the polarisability and dipole moment of water molecules change by a
factor of two in the transition from the gas phase to the solid state. In summary, whilst a
long range dispersion correction is necessary to describe reaction catalysed by a surface,

the implementation is far from perfect.
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6.10 Summary and conclusions

On the basis of astrophysical and chemical models, two mechanisms for the formation
of glycolaldehyde were examined; the first involving hydrogenation of carbon monox-
ide to form formyl and hydroxymethyl radicals which combine to produce glycolalde-
hyde, and the second requiring the formation and reaction of formyl radicals to form
the HOCCOH species, which is subsequently hydrogenated to form glycolaldehyde.
These reactions have been characterised in detail up to a high level of theory, and it is
apparent that none of the activated reactions are feasible in the gas phase at 10K.

It was found that hydroxylated silicate nanoclusters will catalyse the hydrogenation
of formaldehyde, and the barrier reduction from the gas phase is related to the curvature
of the substrate cluster; larger clusters result in a greater reduction.

Reactions simulated on an ice surface were found to have their barriers reduced con-
siderably. In particular, the difference in barrier between the hydrogenation of forma-
lydehyde to the methoxy and hydroxymethyl radicals was reduced from 28 k] mol~! in
the gas phase to 3 k] mol™! on the ice surface. That is, the formation of the hydrox-
ymethyl radical is only slightly less kinetically favourable than the methoxy radical,
which may be responsible for the abundance of methyl formate.

The rate determining steps are the hydrogenation of formaldehyde and the hydro-
genation of HOCCOH respectively. The latter has a higher barrier by 2 k] mol ™!, there-
fore the first mechanism is the more likely (although this may change if BSSE is signifi-
cant). Both reactions are contingent on the ability of the formyl radical to migrate across
the ice surface; the adsorption energy of HCO is about an order of magnitude higher
than that of the hydrogen atom which has a zero migration barrier, so in the regime
of quantum tunnelling and considering the long timescales involved in astrochemistry,

migration should be possible.



Chapter 7

Conclusions and future work

7.1 Conclusions

In this thesis, computational models were employed to improve the characterisation
of cubic ice, which to date remains incomplete. We generated an exhaustive set of
symmetry-unique proton ordered bulk configurations for hexagonal (16 configuration)
and cubic (11 configurations) lattices, and were able to determine their unambiguous
ground states, independent of functional recipe. In the case of hexagonal ice, the calcu-
lated Cmc2, ground state is in agreement with previous work’%, and experimental evi-
dence®. Similarly the ground state configuration of cubic ice was found to have 74,md
symmetry and named ice XIc*. High precision DFT calculations and comparison with
reference DMC calculations suggest that ices XI and XIc are essentially degenerate. It
may be possible to prepare ice XIc in the laboratory using a similar method to XI, using
slow cooling in the presence of a KOH dopant.

As with hexagonal ice, the cubic ice surface reconstructs to minimise electrostatic re-
pulsion between dangling OH bonds. The Fletcher “striped” phase achieves the lowest
surface energy for cubic ice by minimising the average number of dangling OH bonds
adjacent to a dangling OH bond. The surface energy increases as the degree of clus-

tering of dangling OH bonds increases. Both hexagonal and cubic ice surfaces have the

204
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same relation between surface energy and dangling OH bond clustering; however, cubic
ice surfaces of any order parameter are approximately 10% higher in energy than their
hexagonal counterparts.

Elementary steps on the ice surface can undergo major reconstruction to lower step
formation energies. Two-coordinated molecules on the step edge can form an additional
hydrogen bond with the lower terrace, but this process is contingent on local proton or-
dering on the step and lower terrace. When a molecule forms a third hydrogen bond, it
stabilises the step locally, and when the reconstruction is not possible, it forms a high
energy site which s “sticky” and facilitates adsorption and therefore step growth. Of
the five step types considered, A-steps appear at the lower end of the step formation
energy spectrum. The B,-step has a higher density of two-coordinated molecules and
can therefore reconstruct to form more hydrogen bonds, resulting in the lowest step
energy. Molecules on the B} step edge are one-coordinated, and reconstruct to become
two-coordinated; their lower coordination results in B} steps having the highest forma-
tion energy. There are no two-coordinated molecules on the B,-step, so it undergoes a
minimal reconstruction and generally has a high energy (but not the highest). Thus we
expect two-dimensional bilayer growth the be fast in the direction of the B-steps (but
with a staggered rate due to the difference between the B,-, B} and B, steps) and slow in
the A-step direction, but also non-uniform due to proton disorder. This may go some
way to explaining the isotropic two-dimensional growth observed by Sazaki et a/®.

In the chapters{4{and |5} the physics of structural features of the cubic ice surface was
discussed; in chapter [} surfaces were used to assess their catalytic impact on the forma-
tion of glycolaldehyde, the simplest sugar in the interstellar medium. Glycolaldehyde
has been detected in the dense molecular clouds” and more recently in the vicinity
of a Sun-like protostar?, but calculations show that its formation is not feasible in the
gas phase at 10K. By modelling bare interstellar dust grains as hydroxylated silicate

nanoclusters, and their ice mantles as a crystalline ice surface, we find that surfaces are
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capable of reducing barriers to the point where reactions may happen (albeit over long
time scales, and with the aid of quantum tunneling) at low temperatures. It was found
that the barrier height for reactions occurring on the silicate clusters is related to the
curvature of the cluster; larger clusters with a flatter surface reduce the barrier more.
The ice surface causes a more substantial barrier reduction, and of the two mechanisms
studied, the reaction between H,COH and HCO radicals, which themselves are formed

by hydrogenation of carbon monoxide, is the more favourable.

7.2 Future work

It was recognised that in the bulk, the atoms in hexagonal ice are on average further
from their ideal lattice points than in cubic ice, highlighting the difference in the po-
tential energy surfaces for these polytypes. The atoms in cubic ice are more confined
to their lattice points, suggesting a higher curvature on the potential energy surface,
which apparently allows less reconstruction on the cubic ice surface. It would be inter-
esting perform a similar analysis to Watkins et a/.%%, and calculate vacancy energies on
the cubic ice surface, comparing them with vacancies in the hexagonal ice surface.

There is an enormous amount of scope for further study on the topic of elementary
steps on the ice surface. Although static DFT calculations at 0K give us a lot of insight
into the energetics of step formation, the situation is very different at finite tempera-
tures: due to the lower coordination, thermal excitations are much less costly on the
edge of a step than they are on a pristine surface, so it is impossible to simply extrap-
olate from zero-temperature simulations’>*. Additionally, surface and step formation
energies are only relevant to a surface-vacuum interface, when the situation of genuine
interest is an interfacial energy between the surface and liquid water. It may therefore be
instructive perform dynamic calculations, either ab initio, or more likely using classical
forcefields such as TIP4P, to simulate the time evolution of the crystal.

One of the primary motivations for this work was to investigate the impact of cubic
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ice on atmospheric reactions implicated in ozone depletion. Bolton used a QM/MM
approach to demonstrate that step defects enable the barrierless homolytic dissociation
of HCI, a reaction important in ozone destruction*; his calculations used the semiem-
pirical PM3 method, and may benefit from a higher level of theory. It would also be
interesting (if costly) to compare reaction barriers for such atmospheric reactions be-
tween cubic and hexagonal ice surfaces and steps.

The NEB calculations on glycolaldeyde in chapter [f] would benefit from an im-
proved model. As previously mentioned, the HCTH/120 GGA functional yields bar-
riers that are comparable to BHandHLYP"? at a fraction of the cost, but an open shell
version has not been implemented in CP2K. It would allow the use of thicker (up to
six bilayers), larger surface areas (and therefore a wider variety of environments), steps,
and most importantly the use of low density amorphous ice slabs which are intractable
using hybrid functionals. In order to estimate reaction rates, it is necessary to perform
vibrational frequency calculations which are intractable for the numbers of atoms used
since each atom in the system requires three single point calculations in the central dif-
ference approximation, multiplied by three spatial degrees of freedom. This issue can
be sidestepped by a fairly coarse approximation, using a reduced Hessian calculation
and only calculating the vibrational modes for the “important” atoms, ignoring the ice
substrate — but open shell vibrational frequency calculations have not yet been imple-
mented in CP2K. An alternative is to take a cut from the ice slab, containing the reacting
species and a small number of substrate molecules, freezing the substrate atoms, and do-
ing a transition state optimisation on the reactant atoms using non-periodic boundary
conditions. The vibrational frequencies of this cluster can then be calculated at a lower

COst.
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